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ABSTRACT

Non-parametric modelling is a method which relies heavily on data and

motivated by the smoothness properties in estimating a function which involves

spline and non-spline approaches. Spline approach consists of regression spline and

smoothing spline. Regression spline characterised by the truncated power series

basis with Bayesian approach is considered in the first step of a two-step method

for estimating the structural parameters for stochastic differential equation (SDE).

Previous methodology revealed the selection of knot and order of spline can be done

heuristically based on a scatter plot. To overcome the subjective and tedious process

of selecting the optimal knot and order of spline, an algorithm is proposed. A single

optimal knot is selected out of all the points with exception of the first and the last

data and the least value of Generalised Cross Validation is calculated for each order of

spline. The spline model is later utilised in the second step to estimate the stochastic

model parameters. In the second step, a non-parametric criterion is proposed for

estimating the diffusion parameter of SDE. Linear and non-linear SDE consisting

of Geometric Brownian Motion (GBM) for the former and logistic together with

Lotka Volterra (LV) model for the later are tested using the two-step method for both

simulated and real data. The results show high percentage of accuracy with 99.90%

and 96.12% are obtained for GBM and LV model respectively for diffusion parameters

of simulated data. This verifies the viability of the two-step method in the estimation

of diffusion parameters of SDE with an improvement of a single knot selection.
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ABSTRAK

Permodelan tak berparameter ialah satu kaedah yang sangat bergantung

kepada data dan bermotivasikan kelicinan dalam menganggar fungsi yang melibatkan

pendekatan splin dan bukan splin. Pendekatan splin terdiri daripada splin regresi

dan splin pelicinan. Regresi splin berunsurkan siri asas kuasa terpangkas dengan

kaedah Bayesian digunakan dalam langkah pertama untuk kaedah dua-langkah bagi

menganggar parameter struktur persamaan pembeza stokastik (SDE). Metodologi

terdahulu menunjukkan bahawa pemilihan simpulan dan tertib splin boleh dilakukan

secara heuristik berdasarkan plot serakan. Untuk mengatasi proses pemilihan

bilangan simpulan dan tertib splin yang subjektif dan memakan masa, satu prosedur

penyelesaian dikemukakan. Simpulan tunggal terbaik dengan nilai pengesahan silang

teritlak minimum dipilih dari semua titik kecuali data pertama dan terakhir. Model

splin yang terhasil kemudiannya digunakan dalam langkah kedua untuk menganggar

parameter model stokastik. Dalam langkah kedua satu kriteria tak berparameter

telah dicadang untuk menganggar parameter pembauran model persamaan pembeza

stokastik. Persamaan pembeza stokastik linear dan tak linear terdiri daripada model

Gerakan Geometri Brown (GBM) dan model logistik beserta model Lotka-Volterra

diuji (LV) menggunakan kaedah dua-langkah bagi data cerapan dan data simulasi.

Hasil kajian menunjukkan peratus ketepatan yang tinggi iaitu 99.90% dan 96.12%

diperoleh untuk model GBM dan LV masing-masing bagi parameter pembauran

dengan menggunakan data simulasi. Ini mengesahkan kebolehjayaan kaedah dua-

langkah menggunakan kriteria tak berparameter yang dicadang dalam menganggar

parameter pembauran model persamaan pembeza stokastik dengan menambahbaik

kaedah pemilihan simpulan tunggal.
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ẋ∗ − Derivative of true solution of ODE
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Many physical phenomena can be better presented and understood via

mathematical modeling. Wide range of literatures on mathematical modeling

of physical system may be found with deterministic modeling particularly by

deterministic differential equation whereby the element of noise is not considered.

Deterministic differential equation describes a model of physical system and is solved

to explain how a system changes or develops, when change occurs and the effect

of the starting point to the initial solution and so forth. It represents idealised

situations and can be improved by introducing stochastic element since in reality

many phenomena in nature are affected by stochastic noise and Stochastic Differential

Equations (SDE) may be required. Some of the fields which apply SDE are in finance

(Aguilera et al., 1999), (Henderson, 2005), (Cifarelli and Tagilani, 2002), in population

dynamics (Bahar, 2005), (Kamina et al., 2000), (McKane and Newman, 2004), in

engineering (Ló et al., 2008), (Li et al., 2012) (Sogutlu and Koc, 2007) and in biometry

(Garcia, 1983), (Goulding, 1994), (Preisler et al., 2004).

The perturbation or random fluctuation included in the function and the

stochastic modeling can be considered from the corresponding Itô or Stratonovich

differential equations or from the associated Kolmogorov (Fokker-Planck and

backward) differential equations (Gutiérrez et al., 2008). All the above differential

equations represent the extrinsic stochasticity wherein the stochasticity is introduced
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by incorporating multiplicative or additive stochastic terms into the differential

equation. Extrinsic stochasticity is due to random variation of one or more

environmental or external factors such as temperature of concentration of reactant

species, whereas intrinsic stochasticity is inherent to the system, which arises due

to the relatively small number of reactant molecules. Intrinsic stochasticity can be

described by a chemical master equation (Gillespie, 1977) as in APPENDIX I. Only

external random fluctuations or external stochasticity will be considered in this work.

The general form of the SDE consist of deterministic or average drift term and a

diffusion term. The element of noise is contained alongside with the diffusion term

and represented by Brownian motion.

1.2 Research Background

Classical parametric estimator for stochastic differential equation includes

Maximum Likelihood Estimation (MLE), methods of moment, Least Squares

Estimation (LSE) and Kalman filtering. The drawback of the first method is the

requirement of the transition density function which is sometimes unavailable in some

SDE functions. In MLE, the numerical approximation of transition density function is

computed with numerical approximation. Three methods of numerical approximation

include solving numerically the Kolmogorov partial differential equations satisfied by

the transition density (Lo, 1988) or deriving a closed-form Hermite expansion to the

transition density (Egorov et al., 2003) and lastly simulating R times of the process

using Monte-Carlo to integrate the transition density (Durham and Gallant, 2002),

(Pedersen, 1995), (Hurn et al., 2003). The third approach is also known as Simulated

Maximum Likelihood (SML). Picchini noted that the first and the last approach are

computationally intense and poorly accurate while the second method is accurate and

fast, applicable over a wide range of SDE models (Picchini, 2006).

However, the main drawback of the second method is computing the Hermite

expansion of the transition density. It could be a very difficult task if the SDE is

multivariate and non-linear and it is only available for small number of models. Instead



3

of considering to estimate the parameters of SDE with likelihood approach, we opt to

take fully non-likelihood approach by applying the two-step method used in estimating

parameters of SDE with non-parametric approach. The application of non-parametric

approach in SDE in previous studies includes the estimation of trends for stochastic

differential equations with kernel type estimator or kernel function technique (Mishra

and Rao, 2011), (Federico and Phillips, 2003), (Nicolau, 2008). Nevertheless, in Two-

step method the purpose is to estimate SDE parameters with spline technique with

Bayesian approach which is considered quite distinct from previous works.

1.3 Problem Statement

The motivation of this work is to estimate the structural parameters of SDE

by implementing some non-likelihood approach. This is due to the difficulty in the

existing technique which involves the estimation of the likelihood density functions.

Classical methods such as Maximum Likelihood Estimation (MLE) require complex

computational procedures. In this study, a non-parametric approach with regression

spline is considered in the first step since it is considered easier and more flexible

than smoothing spline. Truncated power series basis is utilised in favour to B-spline

basis. This would be an advantage, since if B-spline is used instead when choosing

fewer knots, it will show a non-local behaviour pattern. The estimation of regression

spline parameters will be done by implementing the Bayesian approach with Winbugs

software in this research, since it provides a more exact inference and faster simulation

time.

Classical methods such as MLE is considered difficult in ODE parameter

estimation because of the implicit dependence of the independent variable x on the

parameter, which prohibits proper maximization of the likelihood function. Derivative-

based methods like Newton-Raphson are not easy to handle and evaluation of the

likelihood necessitates the integration of the ODE, which becomes a burden when a

huge parameter space needs to be explored. The same problem would persist relating
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to MLE approach in SDE opting us to consider non-likelihood approach in the Two-

step procedure. In the second step the estimation of the parameters of the drift term

will be done utilizing a criterion from existing literature. To estimate the parameter of

the diffusion term a new non-parametric criterion will be proposed. This approach is

expected to be simpler since it does not involve the estimation of the likelihood density

function and may be an alternative to classical likelihood approach, thus, avoiding the

computational difficulties encountered by such method.

1.4 Research Objectives

The objectives of this study are:

1. To propose a Two-step method in the parameter estimation of SDE.

2. To assess empirically the methods of estimating SDE parameters using simulated

and real data of Geometric Brownian Motion for linear and Logistic models and

Lotka-Volterra for non-linear models with the above-mentioned method.

3. To compare the Two-step method with MLE and LSE.

1.5 Research Scope

The incorporation of stochasticity is only restricted to extrinsic stochasticity,

where only external random fluctuations from Itô stochastic differential equation are

taken into consideration. Only regression spline with truncated power series basis

is considered with a single knot location. Besides, only one dimensional stochastic

models are considered in the empirical assessment of the proposed Two-step method

including Geometric Brownian Motion with Opening Share Prices set of data for

real application, and Power Law Logistic models in modeling the cell growth of the

fermentation process. The stochastic modeling is only imposed on the direct batch

fermentation of acetone-butanol ethanol (ABE).
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1.6 Siginificance of Research

In this research, the parameters estimation of SDE is presented in a novel

way with a total non-likelihood approach by deriving the non-parametric criterion for

the estimation of diffusion term parameter for general case of SDE. This serves as

an alternative to the existing methods of estimating the parameters of SDE. A non-

parametric criterion introduced by Varah (1982) is utilised to estimate the average drift

parameter of SDE and a proposed criterion to estimate the diffusion parameters. This

approach exclude the approximation of the probability density function in classical

methods such as MLE. It hopes to avoid difficulty and complexity of the computational

aspect of such approach.

In this work proving of consistency of the proposed non-parametric criterion

of diffusion parameter estimate is also provided. The proof has shown that the non-

parametric estimator is indeed consistent and deemed to be a good estimator. Another

contribution includes the derivation of an information criterion which acts as a stopping

criterion which stops the procedure of finding the best diffusion parameters estimate

when the required optimality objective is achieved.

The Stochastic Non Parametric Criterion coined as SNPIC is derived based

on the non-parametric criterion proposed. Results show the utilization of SNPIC

as stopping criterion produced highly accurate estimate of diffusion parameter from

simulated data and is depicted by high percentage of accuracy when compared to the

initially fixed parameters.

To simplify the process of single knot selection in the first step, an algorithm

is introduced by iteratively calculating the values of GCV with each data except the

first and the last one acting as single knot. GCV is a numerical measure where the

least value of GCV will indicate the best knot selection. This approach is a novel

application to Bayesian regression spline with Winbugs software. Bayesian estimation

in regression spline is preferred since it provides a more exact inference and faster

simulation time (Crainiceanu et al., 2005).
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In the area of biotechnology, especially in the kinetic modeling of fermentation,

majority of the literatures found had employed deterministic modeling. In the case

of ABE fermentation, the application of stochastic modeling via non-parametric

modeling is unavailable. This research is done to fill the gap in the literatures and give

new highlight to a more realistic and meaningful aspect of modeling physical or natural

phenomena primarily in ABE fermentation process and other biological modeling.

1.7 Thesis Organisation

Organisation of the thesis is as follows. Chapter 1 discusses some issues

regarding parameter estimation of SDE in general followed by the problem statement,

research objectives, research scope, significance of research and thesis organisation.

Chapter 2 highlights literature reviews of SDE parameter estimation followed by

non-parametric modeling and methods of parameter estimation in non-parametric

modeling. Lastly, the Two-step method in ODE and SDE is described along with

the literature reviews. Chapter 3 explains the details of the methods in parameter

estimation of SDE such as simultaneous estimation in least squares method and

maximum likelihood estimation. It also discusses on the Two-step Method in ODE

and SDE with the derivation of the non-parametric criterion for the estimation of

the diffusion parameters shown together with the proving of its consistency. The

verification and application of the Two-step method are described in Chapter 4 and

5 with simulated and observed data for linear SDE and non-linear SDE. For linear

SDE, the result is compared with method of MLE and for non-linear SDE the result is

compared with simultaneous estimation in least squares method. Chapter 6 discusses

the conclusions and suggestion for further work.
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