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SUMMARY 

 

The major aim of this thesis was to examine and modulate the local (periosteal) 

microcirculatory and systemic inflammatory consequnces of transient lower limb 

ischemia during osteoporosis – a state which affects a considerably high portion of the 

elderly population (during surgical management of osteoporotic fractures).  

In the first study, our aim was to examine the effects of limb ischemic preconditioning 

(IPC, 2 cycles of 10’/10’) on the local periosteal and systemic inflammatory 

consequences of hindlimb ischemia-reperfusion (IR) in overiectomized (OVX) rats in the 

presence and absence of chronic 17beta-estradiol supplementation (E2, 20 μg kg−1, 5 

days/week for 5 weeks). In the second study, we aimed to examine the influence of 

chronic zoledronate (ZOL; 80 µg/kg iv, weekly for 8 weeks) on the periosteal 

microcirculatory consequences of limb IR. In both studies, neutrophil leukocyte (PMN)-

endothelial interactions were quantitated in tibial periosteal postcapillary venules by 

intravital fluorescence videomicroscopy and the expression leukocyte adhesion molecule 

CD11b was measured by flow cytometry. In the first study, plasma TNF-alpha (by 

ELISA) and plasma free radical levels (as measured by chemiluminescence) as well as 

periosteal estrogen receptor expressions (by RT-PCR) were also determined.  

The results show that the beneficial periosteal microcirculatory effects of limb IPC 

(reduced PMN–endothelial interactions and PMN-derived adhesion molecule CD11b 

expressions) are lost after OVX, but can be reversed with chronic E2 treatment (also 

causing positive effects that are not present after IPC, i.e. reduced TNF-alpha and free 

radical levels). This suggests that the presence of endogenous estrogen is a necessary 

facilitating factor in the anti-inflammatory protection provided by limb IPC in females 

and that the IPC-independent effects of E2 on inflammatory reactions should also be 

taken into account.   

ZOL treatment caused temporary exacerbation in the limb IR-induced increases in 

periosteal microcirculatory reactions without causing any increases in CD11b expression 

on PMNs (which latter increased only in rats not treated with ZOL). The unaltered extent 

of limb IR-induced local periosteal microcirculatory reactions in the presence of reduced 

CD11b adhesion molecule expression on circulating PMNs may be attributable to local 

endothelial injury/activation caused by ZOL. Overall, the results suggest that chronic BIS 

treatment in osteoporosis causes no considerable postischemic periosteal microcirculatory 

complications during traumatological interventions involving tourniquet ischemia. 
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1. INTRODUCTION 

 

 1.1. The importance of periosteal microcirculatory examinations in bone surgery  

The periosteal membranes separate the bones from the surrounding tissues and also bind 

them to the elements of the skeletal system, the tendons, septa and ligaments. Although it 

is well recognized that the periosteum is more than simply an envelope for the bone, it is 

a relatively infrequent site for microcirculatory studies. Despite several decades of 

research, the regenerative potential of the periosteum and the distinct role of the 

microcirculation in a range of important physiological and pathological events are only 

incompletely characterized, mainly due to methodological limitations. Using intravital 

microscopy (IVM), however, periosteal microcirculatory reactions can be assessed in 

clinically relevant animal models of reconstructive surgery, orthopedic trauma 

interventions and systemic diseases.  

1.2. Brief anatomy and physiology of the periosteum  

The periosteum is composed of an outer fibrous and an inner osteogenic cellular layer 

(for reviews, see Augustin G et al., 2007; Dwek JR, 2010; Lin Z et al., 2014). From a 

structural aspect, the superficial portion of the outer layer is the most vascularized part, 

supplying the deeper periosteal layers and the superficial layer of cortical bone. The 

endosteum has a similar histological structure to that of the periosteum with a rich blood 

supply and (albeit to a lesser extent) mesenchymal stem cells (Brighton CT et al., 1992). 

Providing a highly vascular connective tissue coverage, the endosteum also plays an 

active role in the regulation of the metabolism and regeneration of the bone.  

The application of intravital microscopic methods has led to detailed descriptions of the 

morphological and functional characteristics of the periosteal microvasculature in 

different species. The microvascular architecture has been most extensively examined in 

rats, in which certain differences in the organization of the microvessels can be observed. 

The microvascular network within the rat mandibular periosteum comprises mainly 

arterioles and venules (Varga R et al., 2014). In rabbits, the maxillary periosteum consists 

mostly of parallel capillaries (Rücker M et al., 2005). Only a few capillaries and mostly 

venules are present in the tibial periosteum of the rat (Varga R et al., 2008). The 

microvessel density in the mandibular periosteum is similar to that in the anteromedial 

tibia (180–220 mm/mm2), whereas it is about 30% lower in the anterolateral tibia (Rücker 

M et al., 2006; Varga R et al., 2014). The calvarial periosteum has a somewhat lower 

microvessel density (120–130 mm/mm2) than that of any of these other tissues (Rana M 

et al., 2011).  
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Due to this rich nutritive vascular plexus, the periosteum is accurately described as the 

“umbilical cord of the bone” (Chanavaz M, 1995). The inner layer, also called the 

cambium layer, contains many osteogenic progenitors, similar to mesenchymal stem cells 

(Soleymaninejadian E et al., 2012; Tenenbaum HC and Heersche JN, 1985; Zohar R et 

al., 1997) and osteoblasts, situated directly on the outer surface of the bone cortex 

covered by fibroblasts. Besides the osteogenic stem cell properties, the cells of these 

membrane sheets have been shown to retain the ability to differentiate into fibroblasts, 

osteoblasts, chondrocytes, adipocytes and skeletal myocytes (Emans PJ et al., 2005). 

Consequently, the reconstruction, replacement or repair of lost tissues may be performed 

appropriately with an autogenous periosteum in experimental settings (Finley JM et al., 

1978; Reynders P et al., 1999). These differentiation processes are under hormonal 

control (e.g. estrogen, parathyroid hormone and calcitonin) and are also influenced by 

alimentary factors (e.g. calcium and vitamin D3 uptake) and age (Geusens P and Lems 

WF, 2011). Both regenerative properties of the periosteal progenitor cells and anabolic 

actions of parathyroid hormone are markedly reduced by age (Yukata K et al., 2014). 

1.3. The periosteum in bone healing and repair 

It is well known that successful healing after fractures requires the regeneration of the 

peri- and endosteal microcirculations (Macnab I and Dehoas WG, 1974). Likewise, 

periosteal damage leads to perturbed bone healing with resultant delayed union or 

pseudoarthrosis formation (Esterhai JL Jr and Gelb I, 1991; Gustilo RB et al., 1990; 

Utvag SE et al., 1998). The importance of the periosteal microcirculation was hallmarked 

by early studies on dogs showing that autologous tibial grafts with only the periosteal 

blood supply intact survived transplantation (Berggren A et al., 1982). In another study, 

free gingival autografts placed on the periosteum survived by receiving nutrients from the 

maxillary bone with an intact periosteum (Yanagihara K, 1990). Further results 

demonstrated that revascularization during wound healing is critically linked to the 

release of vascular endothelial growth factor by periosteal cells (Bourke HE et al., 2003). 

In the oral cavity, the tissues produced by cells of mesenchymal origin include cementum 

with periodontal ligament fibers and bone; under appropriate culture conditions, 

periosteal cells secrete an extracellular matrix and form a membranous structure in the 

periodontium (Mizuno H et al., 2006). Apart from the initiation of cell differentiation 

during the bone repair and remodeling process after traumas and invasive dental 

procedures (Tran Van PT et al., 1982), the periosteal and endosteal membranes also play 

significant roles in the pathogenesis of metabolic bone alterations (Allen MR et al., 2004). 

In summary, it can be concluded that adequate microcirculation is a prerequisite of the 
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bone metabolism and the regenerative potential of the periosteal and endosteal 

compartments. 

1.4. Potential regional differences in periosteal functions (axial versus appendicular 

bones) 

Although a continuous microcirculatory supply is necessary to ensure physiological 

remodeling, metabolism and regeneration, there are many differences within the skeletal 

system between axial (i.e. the skull, facial bones, vertebrae, ribs and sternum) and 

appendicular bones. While the appendicular long bones receive their vascular supply 

from the nutritive epiphyseal and metaphyseal vessels (Findlay DM, 2007; Johnson EO et 

al., 2004), the circulation of the maxillofacial bones, and especially the lower jaw, is 

provided by the mucoperiosteal tissue through the inferior alveolar and sublingual arteries 

(Huelke DF and Castelli WA, 1965; Shannon J et al., 2011). It should be emphasized that 

the jaw region is endowed with additional, particular regeneration characteristics 

(Elshahat A et al., 2004; Støre G and Granström G, 1999). Unlike long bone fractures, 

which heal mainly through endochondral ossification, intramembranous ossification has a 

much higher impact in the mandible (Yu YY et al., 2012). In line with this, mandible 

periosteum-derived stem cells have been shown to possess the highest osteogenic 

potential among the different anatomical locations (Solheim E et al., 1995; Ueno T et al., 

2002), while the tibial periosteum or the bone marrow stem cells are superior in terms of 

chondrogenesis (Park JB et al., 2012). Further, there are distinct differences in the 

expression pattern of bone development-related genes between the mandibular and tibial 

osteoblasts (Reichert JC et al., 2013). A point of interest is that systemic disorders such 

as osteoporosis affect the mandible to a significantly lesser extent (Liu H et al., 2014; 

Mavropoulos A et al., 2007; Yamashiro T and Takano-Yamamoto T, 1998). It has been 

proposed that the intense mechanical loading of the alveolar process during mastication 

may protect the alveolar bone from the osteoporosis-related bone loss observed at other 

skeletal sites (Mavropoulos A et al., 2007). 

1.5. Examination of the periosteal microcirculation  

Besides histology, various imaging methods, such as corrosion casting, 

microangiography, computer tomography and to some extent scintigraphy (Berggren A et 

al., 1982; Bhatt R et al., 2000; Fayad LM et al., 2005; Nobuto T et al., 1989; Pazzaglia 

UE, 1996; Rhinelander FW et al., 1968; Trueta J and Cavadias AX, 1955) can be used to 

visualize the architecture of the periosteal microcirculation in the jaw and long bones. 

Laser-Doppler flowmetry, laser speckle imaging (ElMaraghy AW et al., 1999; 

Swiontkowsky MF et al., 1986) and the radioactive microsphere technique (Barron SE et 
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al., 1977) can characterize functional details of the periosteal perfusion, but only with 

limitations. If more accurate detection or improved spatial resolution of the 

microcirculation is required, traditional fluorescence IVM can provide an opportunity for 

real-time examination of the microcirculation of superficial layers. Conventional 

fluorescence IVM visualizes not only changes in the efficacy of microvascular perfusion, 

but also cell–cell (e.g. polymorphonuclear leukocyte (PMN)–endothelial cell) 

interactions, such as rolling and adhesion, vascular diameter changes or signs of apoptosis 

(Abshagen F et al., 2006; Horie Y et al., 1996) (see Fig. 1A–D). Non-fluorescence 

techniques, including orthogonal polarization spectral imaging (OPS) (Groner W et al., 

1999) (Fig. 1E–F) and sidestream dark-field imaging, have also been developed for the 

imaging of individual vessels and cells (Milstein DM et al., 2010). Nevertheless, 

observation of the microcirculation of the periosteal compartment would still necessitate 

surgical exposure. 

 

 

Figure 1. Fluorescence 

intravital microscopic 

(IVM) and orthogonal 

polarization spectral (OPS) 

images of the anteromedial 

tibial (A, C, E) and 

mandibular periosteum (B, 

D, F) in Sprague–Dawley 

rats. Upper two panels: 

IVM images; plasma 

labeling with fluorescein 

isothiocyanate-dextran (150 

KDa, Sigma, St. Louis, 

MO, USA) (A, B) and 

rhodamine 6G (Sigma, St. 

Louis, MO, USA)-labeled 

neutrophil leukocytes (C, 

D), respectively. On the 

lower panels, OPS images 

of the tibia (E) and the 

mandible (F) are shown. 

The bar denotes 200 µm. 
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As concerns the appendicular bones, the anterior tibial periosteum appears to be one of 

the most easily accessible sites for microcirculatory examinations with IVM (see Table 1 

in Szabó A et al., 2017, Annex). Methods have been established for the examination of 

osteomyocutaneous flaps, where microvascular perfusion characteristics and PMN–

endothelial interactions can be dynamically assessed not only in the lateral tibial 

periosteum, but also in the adjacent muscle, subcutis and skin (Rücker M et al., 1998). In 

the cases of the axial bones, the calvarian periosteum in rats can be visualized under 

experimental conditions by means of different methods, either in acute settings (Stoetzer 

M et al., 2014) or with chronic models, applying the periosteal window and chamber 

methods (Rana M et al., 2011; Stuehmer C et al., 2009; von See C et al., 2010). The 

midfacial periosteum in rabbits (Rücker M. et al., 2005) and the mandibular periosteum in 

rats are also accessible for IVM, in the latter case also for OPS and confocal laser 

scanning microscopic assessments (Varga R et al., 2014).  

1.6. Changes in nutritive and angiogenetic functions of the periosteum in clinically 

relevant trauma-orthopedic models 

The direct consequences of traumas or surgical interventions on the periosteal 

microcirculation have been examined in a number of studies (see Table 1 in Szabó A et 

al., 2017, Annex). Soft tissue damage was induced by periosteal elevation using 

conventional and piezoelectric devices and the short- and long-term effects on the 

periosteal perfusion were compared (Stoetzer M et al., 2014). The extents of immediate 

and long-term periosteal perfusion failure were demonstrated and quantified after closed 

soft tissue traumas and closed tibial fractures showing an interaction between the skeletal 

muscle damage and periosteal microvascular injury (Schaser KD et al., 2003; Zhang L et 

al., 2003). In another study where functional capillary density changes were evaluated in 

the midfacial periosteum in rabbits, the risk of complications was higher after 

subperiosteal dissection compared to the supraperiosteal approach (Rücker M et al., 

2005). Periosteal and subperiosteal angioneogenesis were induced with the self-inflating 

hydrogel expanders used for preliminary soft tissue augmentation before bone 

augmentation surgery (von See C et al., 2010). 

The message of these studies is that regeneration of the periosteal microvasculature is a 

prerequisite of its tissue-regenerative potential. Another point for consideration is the 

communication of the periosteal and endosteal vascular networks. Alterations in the 

anteromedial and anterolateral periosteal microcirculations were recently studied with an 

OPS technique following standardized surgical destruction of the endosteum (Greksa F et 

al., 2012) (Fig. 1). The periosteal microvascular reorganization caused by reaming the 
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endomedullary cavity was not altered by implantation with titanium, a material with good 

osseointegrative properties, whereas the periosteal microcirculation was augmented by 

unstable endomedullary polyethylene nails. Although unstable implant materials can lead 

to inadequate restoration of the endosteal circulation, which remains insufficient to 

supply the cortical bone, this may be compensated for with enhanced periosteal sources 

(Greksa F et al., 2012). 

1.7. Microcirculatory and inflammatory consequences of ischemia-reperfusion (IR) 

injury in bones and flap models 

The consequences of ischemia-reperfusion (IR) and perfusion deficiencies have been 

extensively examined in the periosteum of bones and composite flaps. Vasomotion has 

been described as a compensatory reaction of the microvasculature aiding tissue survival. 

Critical perfusion conditions induce capillary flow motion in muscle, but not in the 

periosteum (Rücker M et al., 2000), and this potentially favorable reaction is preserved 

with heat shock priming (Rücker M et al., 2005). Heat shock has been shown to stimulate 

periosteal angiogenesis in the intact calvaria and in the tibia in a chronic ischemia model 

of microthrombosis (Rana M et al., 2011; Rücker M et al., 2006). The positive effects of 

heat shock priming are manifested with improved periosteal microvascular recanalization, 

recovery of perfusion rate and blood flow in the capillaries, similarly to those observed in 

other components of the osteomyocutaneous flap (Rücker M et al., 2006). In an acute 

composite flap ischemia model, heat shock reduced PMN adhesion in the postcapillary 

venules and intracellular adhesion molecule-1 (ICAM-1) expression in all examined 

tissues (Rücker M et al., 2001).  

Primarily for emergency or surgical indications, transient limb ischemia is often achieved 

with the application of a tourniquet (i.e. wrapping a band around the extremity) in daily 

orthopedic trauma clinical practice. A tourniquet provides a clear operating field with 

reduced blood loss, but it also causes iatrogenic IR injury. Since a tourniquet around the 

extremity causes IR of an appreciably high amount of tissue, the venous effluent or 

afferent neurogenic signals lead to further systemic inflammatory reactions (i.e. activation 

of circulatory PMNs). The affected tissues undergo the typical biochemical and 

microcirculatory changes of a local IR injury, the periosteal microcirculation primarily 

being affected in this process. The postischemic microcirculatory inflammatory reactions 

include perfusion failure and activation of the PMN–endothelial interactions and the 

upregulation of adhesion molecule expression (e.g. ICAM-1) (Szabó A et al., 2009) (Fig. 

2). Apart from activated PMNs (Vega VL et al., 1999), humoral factors (Goldman G et 

al., 1990), mediators of oxidative stress (Koike K et al., 1992; Koike K et al., 1993), 
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proinflammatory cytokines (e.g. TNF-alpha, platelet activatinf factor, IL-1 beta and IL-6) 

(Lawlor DK et al, 1999) and complement C5a (Fleming SD et al., 2003) have been 

implicated in remote organ dysfunctions and injuries (e.g. in the liver or lungs). These 

local processes also have relevant implications in remote organ preconditioning reactions 

as well. In other studies, antagonism of vasoconstriction-mediating endothelin-A 

receptors or pretreatment with anti-inflammatory agents (phosphatidylcholine and colloid 

solutions) likewise exerted some protection (Gera L et al., 2007; Varga R et al., 2008; 

Wolfárd A et al., 2002). These studies further revealed that the microcirculation of the 

tibial periosteum is more prone to microcirculatory inflammatory complications than that 

of the synovial membrane (Hartmann P et al., 2012).  

 

Figure 2. Representative longitudinal section of the rat tibia surrounded by soft tissues 

(stained with ICAM-1 plus hematoxylin) (A). Tibia epiphysis (EP), cortical bone (CB), 

bone marrow (BM), muscle (M) and periosteum (P) are indicated. Lower panels: weak 

ICAM-1 staining (primary antibody: a mouse monoclonal anti-rat ICAM-1; BD 

Pharmingen, BD Biosciences, San Jose, CA, USA), secondary antiobody: biotinylated 

goat anti-mouse antibody conjugated to HRP polymer (Envision®System; Dako, 

Glostrup, Denmark) in the periosteum of a sham-operated animal (B), positive staining in 

periosteal venules after 60 min of limb ischemia followed by a 180-min reperfusion 

period (C). The bar denotes 50 µm. 
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1.8. Microcirculatory conseqences of limb ischemic preconditioning (IPC) 

Ischemic tolerance of the tissues can be increased via application of ischemic 

preconditioning (IPC), an approach when transient, brief periods of ischemia are followed 

by short intervals of reperfusion. The positive effect of IPC was first described in the 

heart (Murry CE et al. 1986), but was later demonstrated in many organs (Gho BC et al. 

1996; Cheung MM et al., 2006), including the periosteum (Hartmann P et al., 2011). This 

protection is mediated by different endogenous mediators, including nitric oxide, carbon 

monoxide or adenosine (for reviews, see Walsch SR et al., 2007; Tapuria N et al., 2008), 

and it also exerts marked protection at the microcirculatory level (Hartmann P et al., 

2011). The mechanism of protection provided by IPC includes modulation of the 

oxidative burst (Quarrie R et al., 2012) and downregulation of the expression of adhesion 

molecules responsible for PMN adhesion and transmigration, thus alleviating tissue 

damage (Duda M et al., 2006). Experimental results further show that IPC also affects the 

adenosine- and cAMP-dependent pathways and modulates intracellular redox 

homeostasis and mitochondrial functions (Walsch SR et al., 2007; Tapuria N et al. 2008).  

IPC performed on limbs or arms provides quite a robust protective signal against the 

subsequent IR insult via the relatively large affected tissue mass. The favorable local and 

remote microcirculatory effects of limb IPC have both been demonstrated in many organs 

(Szabó A et al., 2009; Walsch SR et al., 2007; Tapuria N et al., 2008). The amelioration 

of IR-induced inflammatory complications by limb IPC should offer a therapeutic benefit 

in elderly patients when the prevalence of skeletal injuries increases and osteoporotic 

bones are more prone to accidental fractures.  

1.9. Periosteal manifestations of systemic diseases 

Osteoporosis affects more than 75 million people worldwide (Schuiling KD et al., 2011), 

with every other woman and every fifth man over 50 years suffering an osteoporotic 

fracture of the extremities during her or his remaining lifetime (Tarantino U et al., 2017). 

As the prevalence of skeletal fractures and limb injuries increases with aging, restoration 

of the periosteal microperfusion is of particular importance in surgical interventions on 

elderly patients with or without tourniquet application. The microcirculatory patency is 

influenced by many functional and morphological changes in the microvasculature and, 

as a result of the osteogenic stem cell content of the periosteum and endosteum (Brighton 

CT et al., 1992), these membranes, and the periosteum in particular, play important roles 

in the pathogenesis of hormone-related (i.e. estrogen deficiency) and trauma-induced 

osteoporotic processes. Likewise, the periosteum can serve as a target of different anti-
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osteoporotic approaches (Allen MR et al., 2004). In experimental settings, 

osteoporosis/osteopenia is often induced via bilateral ovariectomy (OVX) in animals. 

Although relatively little information is available on the microcirculatory effects of 

chronic OVX itself, a considerable amount of evidence suggests that a disintegrated 

microcirculation is involved in the osteoporotic changes in the cortex. OVX-induced 

morphological alterations within the microvasculature have been reported in the heart 

(Jesmin S et al., 2003) and brain (Jesmin S et al., 2002), but our group did not observe 

significant changes in periosteal vessel density in a chronic OVX rat model (Szabó A et 

al., 2011). It is important to note that these changes were followed in the proximal tibial 

periosteum, where the predominant vessel type is the venule (see Fig. 1). The 

postcapillary venules are predilectory sites for PMN–endothelial interactions, and thus a 

relatively high venular density may predispose to local inflammatory complications. 

Again, this feature of the periosteal microarchitecture may account, at least in part, for a 

tissue-specific response (see Figs. 1–2). 

On the other hand, there have been several experimental studies on the microcirculatory 

changes of sex hormone substitution. Since estradiol is protective in many forms of 

traumas and injuries, it is possible that 17beta-estradiol (E2) is protective independently 

of the presence of OVX. This view is supported by findings where a single dose of E2 

administered hours or even minutes before reperfusion ameliorated PMN-related 

processes in different organs (e.g. the heart, liver and retina) (Booth EA et al., 2003; 

Burkhardt S et al., 2008; Nonaka A et al., 2000). Our group previously found that the 

postischemic periosteal microcirculatory complications were not aggravated as compared 

to the non-OVX, age-matched controls (Szabó A et al., 2011). The situation was similar 

as concerns TNF-alpha release, providing further evidence that OVX itself does not 

modify the inflammatory complications, whereas E2 supplementation greatly reduces this 

reaction. It has also been demonstrated that E2 inhibits TNF-alpha gene transcription via 

the beta-estrogen receptors (Srivastava S et al., 1999) and via the TNF-alpha-mediated 

increases in the expressions of adhesion molecules and chemoattractants (Xing D et al., 

2007). A downregulation of nitric oxide synthesis by TNF-alpha may also contribute to 

the mechanisms of these microcirculatory reactions (Yoshizumi M et al., 1993). Data 

indicating the positive effect of prolonged E2 substitution on the PMN reactions and 

TNF-alpha release, however, point to another clinical implication: ovarial hormone 

deprivation supplemented with estrogen therapy (apart from the well-known positive 

effect in reducing the risk of osteoporotic fractures) affords marked protection against the 

release of inflammatory mediators. Based on the above findings, one of the present 
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studies was designed to ascertain whether IPC exerts its potentially positive anti-

inflammatory effects on limb IR injury with chronic estrogen deficiency. In our study, we 

also sought to examine whether the periosteal microcirculatory reactions are modulated 

by exogenous estrogen supplementation. With these points in mind, we decided to 

characterize the effects of IPC with or without estrogen supplementation on local 

periosteal and systemic inflammatory changes in a rodent model of hindlimb IR injury 

with chronic estrogen deficiency. 

1.10. Bisphosphonates (BIS) for the treatment of osteoporosis and oncological diseases  

Bisphosphonates (BISs) are widely used for the treatment of osteoporosis and tumors 

with bone metastasis to inhibit osteoclast activity and bone resorption (Rogers MJ et al., 

2011; Ruggiero SL et al., 2014) and ameliorate the osteoporosis-induced decrease of bone 

mineral density (Tarantino U et al., 2017; Sanderson J et al., 2016). Further, it has been 

shown that the risk of osteoporotic fractures can be reduced, in particular with the use of 

zoledronic acid (ZOL) (Tarantino U et al., 2017; Byun JH et al., 2017). The 

physicochemical and biological properties of BISs depend on the R2 side group, and the 

presence of nitrogen and its orientation influence their clinical effects (Rogers MJ et al., 

2011). In the maxillofacial region, the regional BIS uptake reaches a much higher 

concentration compared to the appendicular and other axial bones (Wen D et al., 2011). 

The receptor activator of nuclear factor κB (RANK)/receptor activator of nuclear factor 

κB ligand (RANKL)/osteoprotegerin axis, a signaling pathway that regulates osteoclast 

differentiation, is also diversely affected by BISs, which cause a decrease in RANKL 

values in the mandible and the opposite effect in the tibia (Çankaya M et al., 2013). 

Furthermore, BIS treatment exerts site-specific, differential effects during the early 

healing processes of tibial and mandibular fractures by delaying callus, cartilage and bone 

remodeling specifically in the mandible (Yu YY et al., 2012). Defective angiogenesis of 

the mandibular mucoperiosteal tissues is also evoked by long-term treatment with BIS 

(Wehrhan F et al., 2011). Nevertheless, unwanted, necrotic reactions induced by BIS may 

also be present in the skeletal system. Specifically, chronic BIS treatment can effectively 

enhance the incorporation of bone implants in appendicular bones (Stadelmann VA et al., 

2008; Ying G et al., 2016), but the likelihood of osteonecrotic complications also 

increases in parallel at the jaw bones (Tarantino U et al., 2017; Ruggiero SL et al., 2014; 

Brozoski MA et al., 2012). The incidence of necrosis is especially high in the mandible 

after oral surgical interventions, leading to a condition termed medication-related 

osteonecrosis of the jaws (MRONJ). An exact pathogenesis of this complication is still 
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unknown, but it seems to affect the appendicular and axial bones differently (Senel FC et 

al., 2010). 

1.11. Microcirculatory consequences of BIS treatments 

It has also been shown that BISs can induce significant inflammatory reactions in the 

mandibular periosteum after tooth extractions, while the microcirculation in the tibial 

region remained unaffected (Janovszky Á et al., 2015). The impact of periosteal 

microvascular reactions is also evident in the case of long-term systemic treatment with 

nitrogen-containing BISs. Treatment with osteoclast inhibitor BISs can cause MRONJ in 

the jaw after invasive dental procedures (Kühl S et al., 2012; Marx RE et al., 2007; 

Wehrhan F et al., 2011; Yamashita J et al., 2010). Such a reaction does not occur in the 

bones of the appendicular skeleton (Blazsek J et al., 2009; Stadelmann VA et al., 2008). 

Many theories have been put forward and several risk factors have been investigated in 

efforts to decipher the pathogenesis of MRONJ, but the cause is still unknown (Mehrotra 

B and Ruggiero S, 2006). The role of infection-induced inflammatory reactions has been 

suggested, among other factors, but since osteonecrosis usually develops several years 

after tooth extraction, this factor seems to be of only limited impact. Enhancement of 

PMN–endothelial cell interactions in the knee joint (Zysk SP et al., 2003) and the 

upregulation of pro-inflammatory cytokines such as IL-1 and TNF-alpha (Anastasilakis 

AD et al., 2012; Norton JT et al., 2011), however, have been clearly demonstrated in 

response to BIS administration. These effects also display spatial differences because 

certain inflammatory reactions were confined to the mandible and could not be detected 

in the femur (Senel FC et al., 2010). Moreover, in another sheep model with osteoporosis, 

the stability of implants in the femoral condyle was even enhanced after local BIS 

treatment (Stadelmann VA et al., 2008). Other data suggest that the production of vascular 

endothelial growth may be an important factor in the pathogenesis of MRONJ (Vincenzi 

B et al., 2012), a notion supported by the fact that BIS treatment combined with the anti-

angiogenic drug bevacizumab increases the prevalence of MRONJ (Aragon-Ching JB et 

al., 2009). Furthermore, the critical concentration of BIS in the mandible (Wen D et al., 

2011) and its direct toxic effect on the periosteal stem/osteoprogenitor cells and related 

inflammatory effects in the periosteum may also contribute to the development of 

MRONJ. High-dose BIS exacerbated the inflammatory response in a periodontitis model, 

where the bone lesions bear a striking resemblance to MRONJ (Aguirre JI et al., 2012). 

With prolonged use, BISs are known to accumulate in the skeleton, reaching the highest 

concentration in the mandible (Reid IR et al., 2007; Wen D et al., 2011), thus possibly 

explaining their potential toxic effects occurring predominantly in the jawbones. 
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Furthermore, osteoblasts have different proliferation properties at different locations in 

the appendicular or axial bones under physiological circumstances, and this phenomenon 

is also critically influenced by BIS treatment (Marolt D et al., 2012). The functional 

activity of osteocytes differs between the mandible and the tibia (Çankaya M et al., 

2013), and the aggravating effects of BISs on bone healing are confined to the jaw 

(Kuroshima S et al., 2014). IVM data obtained in the proximity of the alveolar injury and 

from a contralateral, intact site on the mandibular periosteum were compared with those 

on the intact tibia (Janovszky Á et al., 2015). After chronic ZOL treatment, increased 

extents of PMN–endothelial interactions (rolling and firm adhesion) were observed in the 

mandibular periosteum, both at the site of the earlier tooth extraction and at the 

contralateral site, but the corresponding interactions in the tibia were significantly less 

pronounced.  

Previously, our group also showed that BISs can induce significant inflammatory 

reactions in the mandibular periosteum after tooth extractions, while the microcirculation 

in the tibial region remained unaffected (Janovszky Á et al., 2015). The aim of the present 

study was to examine the effects of chronic BIS treatment on the postischemic periosteal 

microcirculatory changes in the lower extremities. To our knowledge, the possible 

modulator role of BIS on the inflammatory reactions of the appendicular bones disposed 

to IR injuries has not yet been evaluated elsewhere. Based on the relevant literature data 

and our previous results, our null hypothesis was that ZOL treatment does not influence 

the periosteal microcirculatory reactions of transient limb IR. We tested this hypothesis in 

a clinically relevant model of osteoporosis where anesthetized rats were challenged with 

standardized limb IR in the presence or absence of chronic ZOL treatment.  
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2. MAIN GOALS OF THE STUDIES 

 

The major aim of our study was to examine and modulate the local (periosteal) 

microcirculatory and systemic inflammatory consequences of transient lower limb 

ischemia. We addressed the following clinically relevant problems, both of which affect 

the elderly population with osteoporosis: 

 IPC has been shown to provide protection against the deleterious consequences of 

IR induced by limb ischemia. In the present study, we aimed to examine whether 

IPC exerts its potentially positive anti-inflammatory effects on limb IR injury with 

chronic estrogen deficiency. We also sought to examine whether the periosteal 

microcirculatory reactions are modulated by exogenous estrogen supplementation. 

Therefore, we characterized the effects of IPC with or without estrogen 

supplementation on local periosteal and systemic inflammatory changes in a 

rodent model of hindlimb IR injury with chronic estrogen deficiency. 

 There is a wide range of clinical indications for BIS treatment including treatment 

for osteoporosis, but this treatment causes serious complications at axial bones 

(such as osteonecrosis of the jawbones). Our second aim was to assess the effects 

of chronic BIS treatment on the consequences of tourniquet ischemia (on the 

postischemic periosteal microcirculation and systemic inflammatory reactions) in 

a clinically relevant model of osteoporosis, where anesthetized rats were 

challenged with standardized limb IR in the presence or absence of chronic ZOL 

treatment.  
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3. MATERIALS AND METHODS  

 

The experiments were performed in 2 studies. In the first study, the microcirculatory 

effects of chronic estrogen deprivation (elicited by OVX) and estrogen supplementation 

were examined on the efficacy of IPC in a tourniquet ischemia model. In the second 

study, the effects of chronic BIS treatment on the tibial periosteal microcirculatory 

consequences of limbs ischemia were examined in a shorter-term OVX model in rats.   

3.1. Animals  

All studies were carried out on Sprague–Dawley rats housed in an environmentally 

controlled room with a 12-h light-dark cycle, and kept on commercial rat chow (Charles 

River, Wilmington, MA, USA) and tap water ad libitum. The project was approved by the 

National Scientific Ethical Committee on Animal Experimentation (National Competent 

Authority) under license number V./144/2013. The studies were performed in adherence 

with EU Directive 2010/63/EU on the protection of animals used for experimental and 

other scientific purposes and the National Institute of Health guidelines for the use of 

experimental animals. Animal welfare-related assessments and interventions were carried 

out prior to and during the experiments. 

3.2. Surgical procedure for ovariectomy (OVX) 

In both studies, 12-week-old female rats (weighing 180 to 200 g) were randomly 

allocated to ovariectomized or sham-operated groups. The animals were anesthetized with 

an intraperitoneal combination of ketamine and xylazine (25 mg kg−1 and 75 mg kg−1, 

respectively), and a median laparotomy was performed under sterile conditions. The 

connection of the Fallopian tubes was cut between hemostats, the ovaries were removed, 

and the stumps were then ligated with a 3-0 non-absorbable thread (Ethibond Excel®, 

Ethicon, Somerville, NJ, USA). Thereafter, the abdomen was filled with warm sterile 

physiological saline and the abdominal wall was closed with a 4-0 absorbable suture and 

a 4-0 non-absorbable suture (Vicryl® and Prolene®, Ethicon, Somerville, NJ, USA) in 

two layers. Sham-operated animals underwent identical procedures, except of course that 

the Fallopian tubes and ovaries were not touched. 

3.3. Experimental design and protocols 

Study 1  

Chronic estrogen (E2) treatment 

Eight weeks after OVX (i.e. at 20 weeks of age) (see Fig. 3), chronic estrogen therapy 

was initiated in some of the OVX animals for 5 days/week with 20 μg kg−1 subcutaneous 

17beta-estradiol (E2, Sigma, St. Louis, MO, USA), and it was continued for 5 weeks (i.e. 
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until the end of the experimental protocol in week 25) in the first study. The remaining 

OVX and sham animals received the vehicle for E2 (100% ethanol diluted in corn oil) in 

the same volume.  

Experimental series 

In the first study, in vivo experiments were performed in two major series 13 weeks after 

the OVX and sham operations (in week 25) (Fig. 3). In the first series of experiments, the 

tibial periosteal microcirculatory consequences of a 60-min complete hindlimb ischemia 

followed by a 180-min reperfusion (with or without limb IPC) were investigated with 

IVM. In a second series, identical protocols in the same groups were carried out to detect 

changes in various systemic inflammatory reactions (see below). 

 

Figure 3. Groups and time sequence of surgical interventions, treatments and 

measurements in Study 1: Ovariectomy (OVX) or a sham operation (sham) was 

performed at 12 weeks of age; 17beta-estradiol treatment (E2) was performed for 5 weeks 

(5 days/week in a dose of 20 μg kg−1); tourniquet ischemia of a hindlimb was performed 

at the end of the protocol followed by reperfusion (IR; 60’/180’) with or without ischemic 

preconditioning of the hindlimb (IPC; 2x10’/10’). In Series 1, an assessment of local 

inflammatory reactions was carried out in the tibial periosteum using intravital 

microscopy, while in Series 2, evaluation of various systemic inflammatory parameters 

was performed. The number of animals used per group in each series is indicated in 

brackets. 

 

In the final stage of Study 1, the animals were randomly allotted to one of the following 5 

groups. These are shown in Fig. 3, week 25. Among the vehicle-treated animals, a 60-min 

complete hindlimb ischemia was induced by applying a tourniquet around the proximal 

femur and a miniclip on the femoral artery, which was followed by a 180-min reperfusion 

period in 9 sham-operated animals (sham+IR group) and 11 OVX animals (OVX+IR 

groups). Two other vehicle-treated groups were also subjected to 2 cycles of 10 min of 

limb IPC and 10 min of reperfusion (sham+IPC+IR group, N=9; OVX+IPC+IR group, 
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N=9). This IPC protocol has been shown to ameliorate local microcirculatory and 

systemic inflammatory complications caused by limb IR in male rats (Szabó A et al., 

2009). In all of the E2-treated animals, limb IR was combined with IPC 

(OVX+E2+IPC+IR group, N=6) and the experiments were started 18–24 hrs after the last 

E2 injection. In this series, the periosteal microcirculation was observed with IVM at 

baseline and every 60 min during the 180-min reperfusion period (see below). 

In a second series of Study 1, identical protocols for the same groups were applied to 

detect changes in the pro-inflammatory cytokine TNF-alpha concentrations in the plasma 

and in whole blood free radical productions, as well as in the expressions of a circulating 

PMN-derived adhesion molecule (see the groups above, N=6–9). It was necessary to 

separate the two series to avoid any interference between the fluorescent dyes used for 

IVM and the acquisition techniques used with flow cytometry and luminometry. In this 

series of experiments, measurements were made from blood samples taken at baseline 

and at every 60 min of the reperfusion phase. At the end of the protocol, periosteal 

specimens were harvested under RNase- and DNase-free conditions to detect periosteal 

estrogen receptor (ER) expressions, and then the samples were stored at –80°C until 

assay.    

 

Study 2 

In the second study, a chronic ZOL treatment was initiated in 16 animals (OVX+BIS 

group) 5 weeks after OVX (i.e. at 17 weeks of age) with 14 of the sham-operated animals 

serving as negative controls (sham+BIS group) (see Fig. 4). ZOL (80 μg kg−1 Zometa®, 

Novartis Europharm, Budapest, Hungary) was administered once a week intravenously 

into the tail vein under light ether anesthesia. The remaining OVX and sham-operated 

animals received physiological saline in the same volume (OVX+vehicle and 

sham+vehicle groups, N=16 each). These weekly injections were continued for 4 weeks. 

At the end of the experimental protocol (in week 21), all of the animals were subjected to 

a 60-min complete hindlimb ischemia followed by a 180-min reperfusion period. Limb 

ischemia was induced by applying a tourniquet around the thigh and placing a miniclip on 

the femoral artery. The experiments were performed in two experimental series. In series 

1, the periosteal microcirculation was examined using IVM at baseline and every 60 min 

during the 180-min reperfusion period (N=7–9 per group) (see below). In the second 

experimental series, blood samples from the carotid artery were taken at baseline and 

during the reperfusion period to detect changes in the plasma concentrations of TNF-

alpha and in the expression of the adhesion molecule CD11b (N=7 in each group). It was 
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again necessary to separate the two series to avoid any interference between the 

fluorescent dyes used for IVM and the acquisition techniques used with flow cytometry. 

 

 

Figure 4. Groups and time sequence of interventions and treatments in Study 2. Rats 

were sham-operated or ovariectomized (OVX) at the age of 12 weeks. Five weeks later 

(week 17), chronic bisphosphonate (BIS, once a week with a dose of 80 μg kg−1 in the tail 

vein) or saline vehicle (Veh) treatment was initiated. At the end of the protocol (week 

21), 60 min of limb ischemia was induced by 180 min reperfusion (IR), and periosteal 

microcirculatory measurements were conducted with fluorescence intravital microscopy 

(IVM; Series 1, N=7–9). Sampling for leukocyte adhesion molecule CD11b expression 

and serum TNF-alpha measurements were also carried out (Series 2, N=7 each). 

 

3.4. Assessment of local inflammatory reactions using IVM 

The experiments in both studies were performed under sodium pentobarbital (45 mg kg−1 

ip) anesthesia and sustained with small supplementary intravenous doses when necessary. 

The right carotid artery and the jugular vein were cannulated to measure mean arterial 

pressure and to administer drugs and fluids, respectively. The animals were placed in a 

supine position on a heating pad to maintain their body temperature between 36 and 

37°C. Here, Ringer’s lactate was infused at a rate of 10 ml kg−1 h−1 during the 

experiments. The trachea was cannulated to facilitate respiration. The right femoral artery 

was isolated, and the periosteum of the medial surface of the right tibia was exposed 

under a Zeiss microscope with 6× magnification, using an atraumatic surgical technique 

(Varga R et al., 2008). 

Microcirculatory measurements 

3.4.1. Intravital microscopy (IVM) 

The right hindlimb with the exposed tibial periosteum was positioned horizontally on an 

adjustable stage for examination of the microcirculation by IVM (Zeiss Axiotech Vario 
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100HD microscope, 100W HBO mercury lamp, Acroplan 20× water immersion 

objective, Carl Zeiss GmbH, Jena, Germany). Microcirculation was visualized with 

fluorescein isothiocyanate (Sigma, St. Louis, MO, USA)-labeled erythrocytes (0.2 ml iv), 

while PMNs were labeled with an iv injection of rhodamine 6G (Sigma, St. Louis, MO, 

USA, 0.2%, 0.1 ml iv). The microscopic images were recorded with a charge-coupled 

device video camera (Teli CS8320Bi, Toshiba Teli Corporation, Osaka, Japan) attached 

to an S-VHS video recorder (Panasonic AG-MD 830, Matsushita Electric Industrial Co., 

Tokyo, Japan) and a personal computer.  

3.4.2. IVM - video analysis 

A quantitative assessment of the microcirculatory parameters was performed off-line by a 

frame-to-frame analysis of the videotaped images, using image analysis software (IVM, 

Pictron Ltd., Budapest, Hungary) (Fig. 5). As for the periosteum, leukocyte–endothelial 

cell interactions were analyzed within 5 postcapillary venules (with diameters between 11 

and 20 μm) per animal. IVM in the periosteum allows the observation of the primary and 

secondary PMN–endothelial interactions (rolling and adhesion, respectively). Rolling is a 

transient and reversible process, whereas adhesion represents a higher level of activation 

of leukocytes (when endothelial contact-dependent signals trigger the formation of the 

activation-dependent adhesion molecule expression of PMNs with accompanying 

NADPH oxidase activation and degranulation) (Kolaczkowska E and Kubes P, 2013). 

Based on their movements and contact with the endothelium of the postcapillary venules, 

adherent leukocytes (stickers) were defined in each vessel segment as cells that did not 

move or detach from the endothelial lining within an observation period of 30 s, and are 

expressed here as the number of cells per mm2 of endothelial surface. Rolling leukocytes 

were defined as cells moving at a velocity less than 40% of that of the erythrocytes in the 

centerline of the microvessel and were expressed as the number of cells/vessel 

circumference in millimeters.  

 

Figure 5. Representative micrographs showing the sequence of PMN−endothelial 

interactions on three consecutive images (Panels A–C) recorded using intravital 
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microscopy (recording rate: 20 frames/s). The segment of the examined tibial 

postcapillary vein is surrounded by lines in Panel A. Movement of rhodamine 6G-labeled 

PMN (marked a–c) is demonstrated frame by frame with reference to a dashed line. 

Stationary (adhesive) leukocytes are marked by ellipses. The bar in Panel C denotes a 50 

µm scale, which applies to all photomicrographs. 

 

3.5. Detection of systemic inflammatory reactions 

3.5.1. Immune labeling and flow cytometric analysis of adhesion molecule CD11b 

expression of PMNs 

The surface expression of CD11b on the peripheral blood PMNs was determined via a 

flow cytometric analysis of whole blood in duplicate. 100 μl of whole blood was 

incubated with 20 μl of (50 μg ml−1) fluorescein isothiocyanate-conjugated mouse anti-rat 

monoclonal antibody (clone OX-42, AbD Serotec, Kidlington, UK) for 20 min. Negative 

controls were obtained by omitting the monoclonal antibody. The cells were then washed 

twice in Hanks’ buffer and centrifuged (Heraeus Biofuge primoR, Thermo Scientific, 

Waltham, MA, rotor diameter: 65 mm) at 12,281 g for 5 min. The cells were again 

washed twice, and the erythrocytes were lysed with a lysis buffer (Erythrolyse Red Blood 

Cell Lysing Buffer (10x) Reagent, GenWay, San Diego, CA, USA) for 8 minutes, after 

which the cells were washed twice again (2,616 g, 5 min) and resuspended in 750 μl of 

Hanks’ buffer. CyFlow ML (Partec GmbH, Münster, Germany) equipment was used for 

cytometry; the granulocytes were gated on the basis of their characteristic forward and 

sidescatter features. 10,000 events per sample were collected and recorded, and then the 

percentages of labeled (activated) granulocytes (relative to the overall marker-bearing 

cells) and the mean fluorescence intensity (average marker density) were calculated.  

3.5.2. Determination of plasma TNF-alpha levels 

Blood samples (0.5 ml) were taken from the carotid artery and placed into precooled 

EDTA-containing polypropylene tubes, centrifuged at 13,500 rpm for 5 min at 4°C and 

then stored at –70°C until assay. Proinflammatory cytokine TNF-alpha concentrations 

were determined in plasma samples by means of commercially available enzyme-linked 

immunosorbent assays (Quantikine Ultrasensitive ELISA kit for rat TNF-alpha; R&D 

Systems, Minneapolis, MN, USA). 

3.5.3. Free radical-producing capacity of the blood  

10 μl of blood dissolved in Hanks’ buffer was incubated for 20 min at 37°C in lucigenin 

(5 mM; dissolved in Hanks’ buffer) solution in the presence or absence of zymozan (190 

μM, dissolved in Hanks’ buffer). Superoxide production was estimated via the rate of the 

zymozan-induced increase in chemiluminescence (measured with an FB12 Single Tube 
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Luminometer (Berthold Detection Systems GmbH, Bad Wildbad, Germany) and 

normalized for leukocyte counts in the peripheral blood. 

3.6. Determination of plasma E2 levels 

Endogenous E2 levels were determined using the Elecsys Estradiol III kit (Roche 

Diagnostics GmbH, Mannheim, Germany) and the Roche Cobas e 601 immunology 

analyzer (Roche Diagnostics GmbH, Mannheim, Germany).  

3.7. Determination of periosteal estrogen receptor-alpha (ER-alpha) and beta (ER-

beta) mRNA expressions 

Tissue Collection. Anteromedial tibial periosteal samples were harvested via sterile 

surgical exposure of the contralateral (non-ischemic) limbs under an operating 

microscope. The samples were washed in 0.3 ml of sterile DNase-, RNase- and protease-

free water (Sigma, St. Louis, MO, USA) and placed in RNA stabilization solution (0.2 

ml/sample; RNAlater, Ambion®, Thermo Fisher Scientific, Waltham, MA, USA). After 

overnight storage at 4°C, the RNA stabilization solution was removed, and tissue samples 

were stored at –80°C until RNA purification. Here, uterus samples were used as internal 

controls. 

RNA purification. The total RNA taken from the tibial periosteum and the uterus in each 

animal was purified with the NucleoSpin® RNA XS kit (Macherey-Nagel GmbH & Co. 

KG, Düren, Germany) according to the protocol provided by the manufacturer. 

Real Time PCR for ER-alpha and ER-beta. 100 ng of RNA template in a 10 μl reaction 

mix were measured using a quantitative reverse transcriptase-mediated PCR kit (Verso 1-

step RT-qPCR Mix, ROX kit; Thermo Fisher Scientific, Waltham, MA, USA). The 

amplification conditions were 50°C for 15 min, 95°C for 15 min, 40 cycles of 95°C for 15 

s and 58°C for 15 s. RNA levels were calculated using the ΔΔCT method and were 

normalized to 18S mRNA. The Universal Probe Library (UPL) system (Roche, Basel, 

Switzerland) was used to design primers and probes for the experiments (see Table 1). 

 

Table 1 Primers and probes for quantitative RT-PCR 
 

Target Forward primer Reverse primer Probe 

ERα TTCTTTAAGAGAAGCATTCAAGGAC TCTTATCGATGGTGCATTGG #130; 

04693663001 

ERβ GGCTGGGCCAAGAAAATC TCTAAGAGCCGGACTTGGTC #111; 

04693442001 

18S CTCAACACGGGAAACCTCAC CGCTCCACCAACTAAGAACG #77; 

04689003001 
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3.8. Statistical analyses 

The required number of animals (i.e. sample size) was assessed with the PS Power and 

Sample Size Calculations software package (version 3.1.2) prior to the experiments. Data 

analysis was performed with the SigmaStat statistical software package (Jandel 

Corporation, San Rafael, CA, USA).  

Study 1:  

The normality of the data sets was checked, and changes in variables within and between 

groups were analyzed in the case of normal distribution with the two-way repeated 

measures ANOVA test followed by the Holm–Sidak test. Data are expressed as means ± 

standard error of the mean (SEM). Due to the non-Gaussian distribution, PCR data were 

analyzed with the Kruskal–Wallis test, followed by the Dunnett test; the box plot figure 

shows the mean, the median, and the 25th and 75th percentile values. p values < 0.05 were 

considered statistically significant for all parameters. 

Study 2: 

Nonparametric methods were used: two-way RM ANOVA was used followed by the 

Holm–Sidak and Dunn’s tests to assess differences within and between groups, 

respectively. Data are presented as mean value and SEM in all figures. p values < 0.05 

were considered significant.  
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4. RESULTS 

 

4.1. Effects of E2 on limb IPC-related periosteal microcirculatory changes  

When compared with the baseline values, the values for the primary PMN–endothelial 

interactions (termed rolling) in the postcapillary venules of the tibial periosteum increased 

to a similar extent in the sham+IR and OVX+IR animals at all examined time points of 

reperfusion after limb IR (see Fig. 6A). When limb IR was combined with local IPC, 

moderately reduced rolling values were observed in non-ovariectomized rats 

(sham+IPC+IR group) at later stages of reperfusion (120 and 180 min), but no reduction 

was seen in OVX rats (OVX+IPC+IR group). At 60 min and 120 min of reperfusion, the 

lowest rolling values were detected in animals treated with chronic E2 

(OVX+E2+IPC+IR group), but these differences were not statistically significant. 

Leukocyte adherence (sticking) revealed a similar pattern to that seen with PMN rolling. 

No ameliorating effect of IPC was seen in OVX animals (in the OVX+IPC+IR group), 

but some alleviating effect was observed after E2 treatment (in the OVX+E2+IPC+IR 

group) (see Fig. 6B). 

 
 

Figure 6. Changes in primary (rolling, panel A) and secondary leukocyte−endothelial cell 

interactions (adherence, panel B) in the postcapillary venules of the tibial periosteum at 

baseline, 60, 120 and 180 min after a 60-min limb ischemia in Study 1. Sham: sham 

operation; OVX: ovariectomy; IR: tourniquet ischemia of a hindlimb followed by 

reperfusion (60’/180’); IPC: hindlimb ischemic preconditioning (2x10’/10’); E2: 17beta-

estradiol treatment. Two-way RM ANOVA was followed by the Holm–Sidak test. Here, 

data values are given as means±SEM, and *p < 0.05 vs baseline. 

 

4.2. Effects of E2 on limb IPC-related systemic inflammatory changes  

An increased expression of the adhesion molecule CD11b on the PMN surface was 

observed after 120 min and 180 min of reperfusion. Subsequently, no major differences 

could be seen between the values for the sham+IR and OVX+IR groups, but a slight 

decrease was observed after IPC in the sham-operated animals (sham+IPC+IR) (see Fig. 
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7). This amelioration, however, was not seen after OVX (in the OVX+IPC+IR group). It 

seems that chronic E2 treatment effectively prevented the IR-induced increase in CD11b 

expression (OVX+IPC+IR+E2).  

 

Figure 7. Changes in expression of the CD11b adhesion molecule on the surface of 

PMNs at baseline and in response to 60 min of limb ischemia followed by 120 min and 

180 min of reperfusion in Study 1. Sham: sham operation; OVX: ovariectomy; IR: 

tourniquet ischemia of a hindlimb followed by reperfusion (60’/180’); IPC: hindlimb 

ischemic preconditioning (2x10’/10’); E2: 17beta-estradiol treatment. Two-way RM 

ANOVA was followed by the Holm–Sidak test. Data values are given here as 

means±SEM, and *p < 0.05 vs baseline and #p < 0.05 vs sham+IR. 

 

The free radical-derived chemiluminescence of the whole blood (as determined by 

superoxide radical-dependent chemiluminescence measurements) accounted for the 

earliest increase (after 60 min of reperfusion) after IPC both in the sham-operated and 

OVX animals (sham+IPC+IR and OVX+IPC+IR), but it rose only slightly in the E2-

treated OVX+IPC+IR animals (OVX+E2+IPC+IR) at this time point (see Fig. 8). Free 

radical production did not reveal any more differences between the different experimental 

groups at later time points. 

 

Figure 8. Whole blood superoxide production at baseline and in response to 60 min of 

limb ischemia followed by 60, 120 and 180 min of reperfusion in Study 1. Sham: sham 

operation; OVX: ovariectomy; IR: tourniquet ischemia of a hindlimb followed by 
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reperfusion (60’/180’); IPC: hindlimb ischemic preconditioning (2x10’/10’); E2: 17beta-

estradiol treatment. Two-way RM ANOVA was followed by the Holm–Sidak test. Data 

values are given here as means±SEM, and *p < 0.05 vs baseline, #p < 0.05 vs sham+IR. 

 

From the experiments, we found that IR brought about a significant increase in TNF-

alpha levels in the plasma in all of the groups (see Fig. 9). Due to the high data 

dispersion, no statistically significant differences were seen between the groups at any 

time point, but the lowest increase was observed in the E2-treated animals.   

 

Figure 9. TNF-alpha levels in plasma samples at baseline and in response to 60 min of 

limb ischemia followed by 60, 120 and 180 min of reperfusion in Study 1. Sham: sham 

operation; OVX: ovariectomy; IR: tourniquet ischemia of a hindlimb followed by 

reperfusion (60’/180’); IPC: hindlimb ischemic preconditioning (2x10’/10’); E2: 17beta-

estradiol treatment. Two-way RM ANOVA was followed by the Holm–Sidak test. Data 

values are given here as means±SEM, and *p < 0.05 vs baseline. 

 

The protocol was not synchronized with the estrous cycles of the animals, and vaginal 

smear tests were not performed. The serum E2 concentrations ranged from 9.57 to 15.87 

pg ml-1 in the sham-operated animals, while these levels were significantly lower in the 

OVX animals (p < 0.001), not even attaining the detection limit of the assay (>5 pg ml-1). 

However, plasma E2 was restored by chronic E2 supplementation in the OVX animals, 

and the values were slightly higher than those in the sham group (20.06 median value pg 

ml-1, p < 0.05). 

 

4.3. Effects of estrogen supplementation on OVX-induced ER expression  

In the periosteum, a similar level of ER-beta transcription was observed in the sham-

operated and OVX animals, and the highest transcription level was noted after chronic E2 

supplementation (see Fig. 10). Periosteal ER-alpha mRNA levels, however, remained 

below the detector threshold. We excluded any methodological issues related to the 

detection of ER-alpha by simultaneously examining uterus samples taken from the same 
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animals for an mRNA analysis of both receptors. Like Mohamed and Abdel-Rahman 

(Mohamed MK and Abdel-Rahman AA, 2000), we found higher mRNA levels (for both 

ER-alpha and beta) in the uterus in the OVX group than in the sham group (data not 

shown).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. ER-beta mRNA expression levels in the tibial periosteum taken from sham-

operated (Sham), ovariectomized (OVX) and OVX animals that were treated with 17beta-

estradiol (OVX+E2) (Study 1). The Kruskal–Wallis test was followed by the Dunnett 

test. Data values are given here as mean, median, 25th and 75th percentiles, and #p < 0.05 

vs sham. 

 

4.4. Effects of chronic BIS treatment on limb IR-induced periosteal microcirculatory 

changes 

Chronic ZOL treatment did not influence baseline values of leukocyte-endothelial 

interactions in the periosteal microcirculation (Figs. 11A–B). IR, however, induced 

significant increases in both PMN rolling and adhesion during the entire reperfusion 

period, and these changes reached a similar level in sham-operated and ovariectomized 

rats. BIS treatment caused a temporary increase in leukocyte rolling in OVX+IR animals 

and, similarly, an earlier rise in PMN adhesion in both sham+IR and OVX+IR animals at 

60 min of reperfusion but did not influence PMN–endothelial interactions in later stages 

of reperfusion. 
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Figure 11. Changes in leukocyte rolling (A) and adhesion (B) in the tibial periosteal 

postcapillary venules in response to 60 min of tourniquet ischemia (IR) followed 60, 120 

and 180 min of reperfusion in sham-operated (sham) and ovariectomized (OVX) rats 

treated with bisphosphonate (BIS) or a saline vehicle (Study 2). Data values are given 

here as means±SEM, and *p < 0.05 vs baseline. Two-way RM ANOVA was followed by 

the Holm–Sidak and Dunn’s post hoc tests.  

 

4.5. Effects of chronic BIS treatment on limb IR-induced systemic inflammatory 

changes 

As compared to baseline, TNF-alpha values showed marked increases during the 

reperfusion period under examination (Fig. 12). No differences could be traced among the 

different experimental groups.  

 

Figure 12. TNF-alpha levels in plasma samples at baseline and in response to 60 min of 

limb ischemia followed by 120 and 180 min of reperfusion (IR) in sham-operated (sham) 

and ovariectomized (OVX) rats treated with bisphosphonate (BIS) or a saline vehicle 

(Study 2). Data values are given here as means±SEM, and *p < 0.05 vs baseline. Two-

way RM ANOVA was followed by the Holm–Sidak post hoc test. 

 

Compared to baseline values, the quantity of adhesion molecule CD11b on the PMN 

surface significantly increased in saline-treated sham-operated and OVX rats during 

reperfusion (Figs. 13A–B). In animals that received chronic BIS treatment, however, this 

elevation reached a significantly lower level. 
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Figure 13. Changes in expression of the CD11b adhesion molecule on the surface of 

polymorphonuclear leukocytes (PMNs) expressed as mean fluorescence intensity values 

(A) and % of positive cells among the immune-labeled cells (B) within the gated PMN 

population in Study 2. Values are shown at baseline and at 120 and 180 min of 

reperfusion after 60 min of limb ischemia in sham-operated (sham) and ovariectomized 

(OVX) rats treated with bisphosphonate (BIS) or a saline vehicle. Data values are given 

here as means±SEM, and *p < 0.05 vs baseline. Two-way RM ANOVA was followed by 

the Holm–Sidak and Dunn’s post hoc tests. 
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5. DISCUSSION 

 

5.1. Effects of estrogen supplementation on the efficacy of IPC in reducing local 

postischemic periosteal microcirculatory injury  

Previously, our group examined the periosteal microcirculatory consequences of 

tourniquet-induced ischemia in a clinically relevant, long-term follow-up study with 

osteoporotic rats (Szabó A et al., 2011). We showed that OVX did not enhance IR-

induced periosteal microcirculation dysfunction, but chronic estrogen supplementation 

ameliorated local inflammatory complications. In the present protocol, we employed a 

shorter term of OVX, which does not cause osteopenia, but it is sufficient to evoke a 

chronic estrogen deficit in rats (Iwaniec UT et al., 2001). It appears that IPC mostly 

influences the second stage of IR-induced periosteal PMN–endothelial interactions 

(sticking) both here in females and in males (Szabó A et al., 2009), which might be 

explained by the effect of IPC on adhesion molecule expression responsible for leukocyte 

adhesion to the postischemic endothelium (Szabó A et al., 2009). This protection, 

however, disappeared in the OVX animals in this study, as both PMN rolling and 

adhesion increased. Hence, it appears that the IPC-induced periosteal protection against 

postischemic inflammatory complications is lost after estrogen depletion, and this 

observation has potential clinical implications. In a similar way, CD11b expression, a 

marker of activation of circulating PMNs (Jones DH et al., 1988), was lower in IPC 

animals only if OVX was not performed. It is therefore reasonable to suppose that 

endogenous estrogen in females plays a facilitating role in the anti-inflammatory 

mechanisms provided by IPC in the periosteum. This hypothesis is supported by the 

observation that E2 supplementation reverses the protection that was lost in 

OVX+IPC+IR animals. Similarly to our present results, the positive effects of IPC were 

shown to vanish in postischemic hearts harvested from OVX rats and reversed by E2 

(Shinmura K et al., 2008). Prior to this, the microcirculatory benefits of E2 

supplementation were examined after IR without IPC. The postischemic periosteal 

microcirculatory complications of tourniquet ischemia could be reversed by E2 

supplementation (Szabó A et al., 2011), and E2 has also been shown to have beneficial 

microcirculatory effects in numerous other models of IR (Booth EA et al., 2003; 

Burkhardt M et al., 2008). Since the alleviating effects of E2 are present with or without 

IPC, it is difficult to differentiate between the beneficial effects of E2 treatment per se 

and its effect on IPC.  Hence, one may suppose that the beneficial effects of E2 seen in 

this model might be independent of its effects on IPC.  
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In this study, the microcirculatory manifestations of reduced efficacy of IPC were 

demonstrated for the first time, but similar reactions were observed by others with other 

manifestations of postischemic tissue injury in other organs (i.e. cardiac dysfunction) 

(Shinmura K et al., 2008; Kolodgie FD et al., 1997; Song X et al., 2003; Peng WJ et al., 

2004). The consequences of E2 supplementation in these scenarios, however, are not at 

all clear. As such, it was possible to restore the OVX-related loss of IPC-induced 

protection in cardiac functions with E2 in certain studies with rats (Shinmura K et al., 

2008; Kolodgie FD et al., 1997). The results are somewhat controversial, as the 

protective effects of IPC were present in OVX rabbits (Sbarouni E et al., 2006). Also, E2 

exerted no alleviating effects in other studies, where IPC was combined with OVX (Song 

Z et al., 2003; Peng WJ et al., 2004). Furthermore, long- and short-term estrogen 

administration produced different effects (Kolodgie FD et al., 1997; Babiker FA et al., 

2012), and inter-species and inter-organ differences and dissimilarities cannot be ruled 

out either (Sbarouni E et al., 2006; Kolodgie FD et al., 1997; Song Z et al., 2003; Doucet 

DR et al., 2010). The reason for the differences between endogenous and exogenous 

estrogen effects in different experimental models is not well understood.  

Some of these differences might be due to the number and function of estrogen receptors 

within the affected tissue as well as the effect of OVX and E2 on these receptor 

expressions. E2 is known to act as a transcription factor, as the binding of E2 to its ER-

alpha or ER-beta receptors within the nucleus causes well-known genomic effects by 

inducing expression changes in different genes (e.g. nitric oxide synthase) (Nuedling S et 

al., 1999). In addition, the action of binding E2 to its (plasma and mitochondrial) 

membrane-associated receptors also mediates non-genomic events (Stefano GB et al., 

2000; Simoncini T et al., 2000), including the prevention of injury/stress-induced 

apoptosis (Stefano GB et al., 2000) and cytochrome c release from myocardial 

mitochondria (Hsieh YC et al., 2006a). In our investigations, the ER-beta expression in 

the periosteum did not vary in response to OVX; instead, it displayed an elevation in 

response to chronic E2 treatment (whereas the ER-alpha expression remained below the 

detector threshold). The upregulation of the ER-beta receptor expression by E2 in the 

mitochondria and inhibition of apoptotic processes seems to be linked to the protective 

effect of E2 in trauma-hemorrhage (Hsieh YC et al., 2006b). Moreover, the 

cardioprotective effects of E2 were attributable to the ER-beta receptor-related changes in 

the transcription of metabolic genes in another study (Gabel SA et al., 2005). In all 

likelihood, ER-beta is involved in regulating the estrogen-related increase in nitric oxide 

synthase activation (Nuedling S et al., 1999), and others have demonstrated the impact of 
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ER-alpha as well (Haynes PM et al., 2000). PMN-related inflammatory processes were 

enhanced in OVX rats after trauma-induced hemorrhagic shock, which was prevented by 

the acute administration of E2 and an ER-beta agonist (Doucet DR et al., 2010). In vivo 

gene delivery of ER-beta to the endothelium greatly reduced the IR-induced formation of 

reactive oxygen species, increased nitric oxide formation and restored mitochondrial 

function in the adjacent cardiomyocytes (Zhan Y et al., 2016). In our study, some of the 

inflammatory processes (the CD11b expression of PMNs and free radical content in the 

blood) were ameliorated with chronic E2, and the possible role of the upregulation of ER-

beta in these reactions cannot be ruled out. It should be noted, however, that estrogens 

also have a direct free radical scavenging effect via their phenolic A-ring (Prokai L et al., 

2013), a glutathione-increasing effect (Urata Y et al., 2006) and a direct modulatory 

action on NADPH activity (Dantas AP et al., 2002). Antioxidant effects of E2 may also 

be related to its influence on NFκB signaling (Xing D et al., 2012) and the upregulation of 

Nrf2 (Yu J et al., 2012). As for the systemic effects, the involvement of ER-alpha-related 

actions of E2 also plays a role (in heart IR without IPC (Favre J et al., 2010), but a 

discussion of these reactions as well as those evoked by selective estrogen modulators lies 

outside the scope of the present study. As was suggested by Murphy and Steenbergen, the 

shorter-term effects of E2 may be caused by ER-alpha, whereas longer-term effects may 

be mediated mainly through ER-beta (Murphy E and Steenbergen C, 2007). Moreover, 

ER-independent effects of E2 in this study should not be ruled out either. It should be 

noted that the periosteal expression of ERs has yet to be examined in humans, but in the 

cortical and trabecular bone tissue, both ER proteins can be detected (via 

immunohistochemistry) with a different density during bone development (Bord S et al., 

2001). It appears that only the ER-beta mRNA expression was examined in the tibial 

periosteum in the rat (Petersen DN et al., 1998), and here we were unable to detect any 

ER-alpha mRNA expression in the periosteum. This might mean that ER-alpha mRNA 

expression cannot be detected in the periosteum. However, the translation of our present 

findings (the absence of periosteal ER-alpha mRNA expression) to the human situation 

requires further in-depth investigation. 

 

5.2. Effect of estrogen supplementation on the efficacy of IPC in reducing systemic 

inflammatory reactions 

Systemic inflammatory parameters also displayed characteristic changes in Study 1. That 

is, the IR-induced increase in CD11b expression of circulating PMNs (a marker of their 

activation) was reduced by IPC only in sham-operated animals, but not in those with 

OVX. This reaction was also reversed by E2. The PMN-derived CD11b expression was 
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likewise reduced by E2 in vitro (Nadkarni S et al., 2011) and in trauma-hemorrhagic 

shock (Deitch EA et al., 2006) as well as in levels of other adhesion molecules, such as E-

selectin (Prestwood KM et al., 2004). We are unaware of any studies that have 

investigated the effect of IPC in OVX animals from the viewpoint of adhesion molecule 

expressions. In the present study, whole blood free radical content was significantly 

increased in all groups. In the sham+IR and OVX+IR groups, local (periosteal) and 

systemic inflammatory reactions had a slightly different timeframe, since IVM data 

revealed increased PMN rolling and adhesion after 60 min of reperfusion (indicating an 

early activation of the affected endothelium and a simultaneous availability of primed 

leukocytes), but the superoxide levels displayed later changes (occurring after 120 min). 

The background of this phenomenon is not yet understood, but since increased CD11b 

expression in peripheral leukocytes also occurred at later stages of reperfusion (after 120 

min), the contribution of other elements (e.g. activated macrophages) to the increased 

superoxide production may be assumed. Interestingly, IPC failed to induce any 

amelioration in whole blood free radical production; furthermore, it induced an earlier 

increase in this parameter in both sham-operated and OVX groups. It should also be noted 

that this increase was not present in the E2-treated group. Actually, free radicals are 

known to play a role in the pathomechanism of IPC because their accumulation could be 

detected in vivo and superoxide scavengers reversed the tissue protective effects of IPC 

(Kevin LG et al., 2003; Baines CP et al., 1997). ER-beta has been shown elsewhere to be 

involved in reducing neutrophil activation (Doucet DR et al., 2010) and the free radical-

reducing effect of E2 was also highlighted (Sovershaev MA et al., 2006). Interestingly, 

levels of one of the central regulators of inflammation TNF-alpha were not influenced by 

IPC. Quite surprisingly, the phenomenon observed in humans (Pfeilschifter J et al., 2002) 

indicating increased serum TNF-alpha levels after OVX could not be confirmed in the 

present study (i.e. the baseline TNF-alpha values were not dissimilar after OVX), and 

even slightly lower values were found in all of the OVX animals (after 120 min of 

reperfusion). These differences might be the result of interspecies differences or changes 

in the immunological responses seen after OVX (which are outside the scope of the 

present study). TNF-alpha release has been shown to be reduced by E2 in numerous 

studies (with or without OVX) (Babiker FA et al., 2012; Ma, 2001) even in male patients 

(Wei M et al., 2001). In this respect, the changes induced by reperfusion or IPC+IR have 

yet to be compared in OVX studies elsewhere. Here, the lowest postischemic values were 

found after applying E2 (although not attaining any statistical significance due to the 

relatively high data dispersion). Together with reduced CD11b expression and the slower 
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postischemic increase in superoxide production, this parameter represents manifestations 

of the alleviated systemic inflammatory reactions after E2 supplementation. 

Conclusions for Study 1 

In our study, we found that the beneficial periosteal microcirculatory effects of local limb 

IPC vanished after OVX in rats. These observations suggest that during orthopedic 

trauma interventions in postmenopausal females, the efficacy of limb IPC in preventing 

the inflammatory complications of tourniquet ischemia might be limited. This conclusion 

is strengthened by our findings, which show that E2 supplementation reversed these 

changes by alleviating the local and systemic inflammatory reactions. Based on our 

previous and present findings in rats, some of the alleviating effects of E2 seen here 

might be independent of its effects on IPC and may be linked to those seen with 

periosteal ER-beta expression. The clinical significance of this finding, however, remains 

to be elucidated. 

 

5.3. Effects of chronic BIS treatment on limb IR-induced periosteal inflammatory 

reactions  

BISs are effective medications for bone metastases and osteoporosis and promising 

treatment modalities for complex regional pain syndrome upon fracture healing (Adler RA 

et al., 2016; Wang L et al., 2016; Littlejohn G, 2013). The use of ZOL has been shown to 

have a positive effect on spinal fusion (Yasen M et al., 2015) and to promote 

osseointegration and fixation of dental implants in autologous bone grafts in osteoporosis 

(Qi M et al., 2012). The periapical lesion-induced bone loss in the mandible was 

effectively ameliorated (Wayama MT et al., 2015), and osseointegration of titanium 

implants in postmenopausal osteoporosis was promoted by ZOL (Ying G et al., 2016). 

Furthermore, ZOL brought about periosteal bone formation after tooth extraction in 

osteopenic sheep (Voss P et al., 2016). ZOL treatment, however, also induced reactive 

periosteal hypertrophy and even BIS-related osteonecrosis of the jaw in the same 

osteopenic sheep model (Voss PJ et al., 2016). Nevertheless, the effect of BIS on IR-

induced local and systemic inflammatory reactions has not been examined elsewhere in 

an osteopenic model. 

It is noteworthy that both anti- and proinflammatory effects have been attributed to 

different BIS compounds. The anti-inflammatory aspects of BISs include upregulation of 

the number of inflammatory monocytes (Ritz BW et al., 2011), modulation of the 

proliferation and the viability and apoptosis of monocytes and macrophages (Cecchini 

MG et al., 1990; Rogers MJ et al., 1996) and downregulation of proinflammatory 

cytokines, such as TNF-alpha (Pennanen N et al., 1995; Maksymowych WP, 2002), as 



39 

 

well as other cytokines, such as IL-1, IL-6 and neurogenic growth factor (Wang L et al., 

2016). Similarly, inhibitory effects of BIS against neurogenic inflammation have also 

been reported (Wang L et al., 2016). On the other hand, an acute phase response (<3 

days) was induced by different BISs including ZOL with increased TNF-alpha release in 

patients (Pazianas M et al., 2013), but tissue accumulation of PMNs, increased TNF-

alpha release and marked oxidative stress were also demonstrated in other tissues, such as 

the gingiva (de Barros Silva PG et al., 2017) and the liver (Karabulut AB et al., 2010), in 

animal models. Furthermore, priming of immunological reactions was also attributed to 

ZOL (Norton JT et al., 2011). BISs cause ocular inflammatory complications in some 

clinical cases (Pazianas M et al., 2013) and healing complications of the jawbones after 

invasive dental interventions, even leading to osteonecrosis (Ruggiero SL et al., 2014). 

ZOL has been shown to aggravate kidney damage (by increasing cytokine production, 

metabolic acidosis and apoptosis) during IR injury in rats (Sehitoglu I et al., 2015).  

Enhanced leukocyte-endothelial interactions have been demonstrated after BIS treatment 

in an arthritis model in mice, but little is known about ZOL-induced periosteal 

microcirculatory reactions (Zysk SP et al., 2003). Previously, we demonstrated that 

chronic BIS treatment induces some level of microcirculatory inflammation in the 

mandible, but such effects were not observed in the tibial periosteum (Janovszky Á et al., 

2015). Therefore, in this study, we tested the effect of chronic ZOL treatment in a 

tourniquet-induced limb ischemia model, where the role of PMN–endothelial interactions 

in the development of postischemic microcirculatory inflammatory reactions is well 

established. We have shown here that the reduced endogenous estrogen levels evoked by 

OVX do not predispose to enhanced periosteal microcirculatory complications per se 

(Szabó A et al., 2011), with the results also demonstrating that, apart from temporary 

exacerbation of PMN–endothelial interactions at the early stages of reperfusion, no major 

microcirculatory inflammatory risk could be detected after chronic ZOL treatment.  

 

5.4. Effect of chronic BIS treatment on limb IR-induced systemic inflammatory 

reactions  

Estrogen withdrawal induces a release of TNF-alpha, which is involved in the 

pathomechanism of osteoporotic bone loss in women (Cenci S et al., 2000), but, in this 

study, we did not demonstrate between-group differences in TNF-alpha levels in the 

postischemic phase. Nevertheless, unlike humans, where increased serum TNF-alpha 

levels have been observed after OVX (Pfeilschifter J et al., 2002), we detected no 

differences in baseline TNF-alpha levels between the different experimental groups. It 
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should be noted that serum levels of TNF-alpha are rather low in rats and baseline values 

were close to the detection limit of the assay.  

CD11b expression is a critical step for PMN adhesion to activated endothelial cells, and 

we detected a reduced IR-induced systemic PMN-derived CD11b expression after ZOL 

administration. BISs have been shown to influence PMN functions, which manifested in 

impaired PMN chemotaxis and reactive oxygen species production capacity in vivo 

(Favot CL et al., 2013) and reduced myeloperoxidase and NADPH oxidase activities in 

vitro (Salvolini E et al., 2009; Kuiper JW et al., 2012). The inhibitory effect of BIS was 

also demonstrated in other immune cells, such as macrophages (Pennanen N et al., 1995). 

In our study, ZOL reduced CD11b expression on the surface of circulating PMNs but did 

not influence the overall adhesion of PMNs in the periosteal postcapillary venules. This 

finding can only be explained by some degree of ZOL-induced endothelial activation and 

secondary endothelium-derived adhesion molecule expression. This possible ZOL-

induced endothelial upregulation of adhesion molecules (the endothelial counterparts of 

CD11b), which might be responsible for the present results, should be investigated 

further. 

Among other effects, BISs are known to inhibit vascular endothelial proliferation and to 

upregulate cellular apoptosis (Lang M et al., 2016). Furthermore, BISs (alendronate) have 

also been shown to inhibit nitric oxide synthase expression, which is an important 

endogenous modulator of PMN–endothelial interactions (Silva RO et al., 2014). These 

ZOL-induced acute postischemic reactions affecting the endothelium may also warrant 

further in-depth investigations. 

Conclusions for Study 2  

In summary, BIS treatment exerted only a minor influence on limb IR-induced PMN 

rolling and adhesion in the periosteum, and the PMN-derived adhesion molecule (CD11b) 

expression on circulating PMNs was even reduced. Further, no effect on postischemic 

TNF-alpha release was demonstrated in ZOL-treated rats. These results suggest that, 

although some level of local endothelial activation might be attributable to the treatment, 

chronic ZOL administration has no major influence on the risk of postischemic 

inflammatory microcirculatory complications in the tibial periosteum. 
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6. SUMMARY OF NEW FINDINGS 

 

1. The beneficial periosteal microcirculatory effects of local limb IPC vanished after 

OVX in rats. Therefore, the efficacy of limb IPC in preventing the inflammatory 

complications of tourniquet ischemia might also be limited when orthopedic trauma 

interventions are performed on postmenopausal females.  

2. Chronic extrogen supplementation reversed these local and systemic inflammatory 

reactions, but some of the alleviating effects of E2 might be independent of its effects 

on IPC and may be linked to those seen with periosteal ER-beta expression.  

3. BIS treatment causes no systemic postischemic complications in leukocyte activation, 

but moderately enhances limb IR-induced periosteal microcirculatory reactions. This 

phenomemon might be explained by some level of local endothelial activation 

attributable to chronic ZOL treatment. 

4. When administered in osteoporosis, chronic ZOL treatment causes no substantial acute 

postoperative complications in the periosteal microcirculation that develops during 

tourniquet ischemia as part of trauma orthopedic surgery. 
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Apart from its nutritive functions, the periosteum critically affects bone regeneration via its stem/osteoprogenitor
cell content. Normal healing after bone fractures, trauma–orthopedic interventions and invasive dental proce-
dures is critically linked to the reestablishment of the periostealmicrocirculation, but the reconstruction, replace-
ment or repair of lost tissues may also be performed with autologous periosteum. Besides the initiation of cell
differentiation during bone repair and remodeling processes, the periosteum together with the endosteum
plays significant roles in the pathogenesis of both hormone-related and trauma-induced osteoporotic alterations
in the bone metabolism. Nevertheless, the axial bones, and in particular the jawbones, and the appendicular
bones display differences not only in their blood supply and fracture healing characteristics, but also in respect
of the development of osteoporosis and their reactions to treatment modalities (i.e. bisphosphonates). These re-
actions may also be linked to the differences in periosteal microcirculatory reactions. The present overview sum-
marizes the relevant data of microcirculatory studies focusing on the periosteal reactions in different anatomical
locations together with the optimal background methodologies, study models and the most significant
observations.
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1. Introduction

The periosteal membranes separate the bones from the surrounding
tissues and also bind to them the elements of the skeletal system, the
tendons, septa and ligaments. Although it is well recognized that the
periosteum ismore than simply an envelope of the bone, it is a relatively
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infrequent site for microcirculatory studies. Despite several decades of
research, the regenerative potential of the periosteum and the distinct
role of the microcirculation in a range of important physiological and
pathological events are only incompletely characterized, mainly due to
methodological limitations. Functional changes within the periosteal
microvasculature in different experimental settings can dynamically
be assessed using intravital microscopy (IVM). In the present overview,
the periosteal microcirculatory reactions are summarized based on IVM
findings in clinically-relevant animal models of reconstructive surgery,
orthopedic-trauma interventions and systemic diseases. Differences in
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the physiology and microcirculatory reactions between the axial (i.e.
the skull, facial bones, vertebrae, ribs, sternum and the shoulder and
pelvic girdles) and appendicular bones are also discussed.

2. Brief anatomy and physiology of the periosteum

The periosteum is composed of an outer fibrous and an inner osteo-
genic cellular layer (for reviews, see Augustin et al. 2007; Dwek, 2010;
Lin et al., 2014). From a structural aspect, the superficial portion of the
outer layer is themost vascularized part, supplying the deeper perioste-
al layers and the superficial layer of cortical bone. The endosteum has a
similar histological structure to that of the periosteumwith a rich blood
Fig. 1. Fluorescence intravital microscopic (IVM) and orthogonal polarization spectral (OPS) im
Dawley rats. Upper two panels: IVM images; plasma labelingwith fluorescein isothiocyanate-de
USA)-labeled neutrophil leukocytes (C, D), respectively. The images were taken by using a Zeis
immersion objective, Carl Zeiss GmbH, Jena, Germany) and a CCD camera (Teli CS8320Bi, Toshib
A/R device; Cytometrics, Philadelphia, PA, USA) of the tibia (E) and the mandible (F) are show
supply and (albeit to a lesser extent)mesenchymal stem cells (Brighton
et al., 1992). Providing a highly vascular connective tissue coverage, the
endosteum also plays an active role in the regulation of themetabolism
and regeneration of the bone.

The application of IVM methods has led to detailed descriptions of
the morphological and functional characteristics of the periosteal mi-
crovasculature in different species (representative micrographs taken
in rats are shown in Figs. 1, 2, see details later). Themicrovascular archi-
tecture has been most extensively examined in rats, in which certain
differences in the organization of the microvessels can be observed.
Themicrovascular networkwithin the ratmandibular periosteum com-
prises mainly arterioles and venules (Varga et al., 2014). In rabbits, the
ages of the anteromedial tibial (A, C, E) and mandibular periosteum (B, D, F) in Sprague-
xtran (150 KDa, Sigma, St. Louis, MO, USA) (A, B) and rhodamine 6G (Sigma, St. Louis, MO,
s Axiotech Vario 100HD IVM microscope, 100W HBOmercury lamp, Acroplan 20× water
a Teli Corporation, Osaka, Japan). On the lower panels, OPS images (taken by the Cytoscan
n. The bar denotes 200 μm (original recordings of the authors).
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maxillary periosteum consists mostly of parallel capillaries (Rücker et
al., 2005). Only a few capillaries and mostly venules are present in the
tibial periosteum of the rat (Varga et al., 2008). The microvessel density
in themandibular periosteum is similar to that in the anteromedial tibia
(180–220mm/mm2), whereas it is about 30% lower in the anterolateral
tibia (Rücker et al., 2006; Varga et al., 2014). The calvarial periosteum
has a somewhat lower microvessel density (120–130 mm/mm2) than
that of any of the above tissues (Rana et al., 2011).

Due to this rich nutritive vascular plexus, the periosteum is accurate-
ly described as the “umbilical cord of the bone” (Chanavaz, 1995). The
inner layer, also called the cambium layer, contains many osteogenic
progenitors, similar to mesenchymal stem cells (Soleymaninejadian et
al., 2012; Tenenbaum and Heersche, 1985; Zohar et al., 1997) and oste-
oblasts situated directly on the outer surface of the bone cortex covered
by fibroblasts. Besides the osteogenic stem cell properties, the cells of
these membrane sheets have been shown to retain the ability to differ-
entiate into fibroblasts, osteoblasts, chondrocytes, adipocytes and
Fig. 2. Operating microscopic view of the left anteromedial tibial periosteum (A) and the
right mandibular periosteum (B) in Sprague-Dawley rats. Medial and lateral sides are
indicated (med, lat). The bar denotes 1000 μm (original recordings of the authors).
skeletal myocytes (Emans et al., 2005). Consequently, the reconstruc-
tion, replacement or repair of lost tissues may be performed appropri-
ately with autogenous periosteum in experimental settings (Finley et
al., 1978; Reynders et al., 1999). These differentiation processes are
under hormonal control (e.g. estrogen, parathyroid hormone, calcito-
nin) being also influenced by alimentary factors (e.g. calcium and vita-
min D3 uptake) and age (Geusens and Lems, 2011). Both regenerative
properties of the periosteal progenitor cells and anabolic actions of
parathyroid hormone aremarkedly reduced by age (Yukata et al., 2014).

It is well known that successful healing after fractures requires the
regeneration of the peri- and endosteal microcirculations (Macnab
and Dehoas, 1974). Likewise, periosteal damage leads to perturbed
bone healingwith consequent delayed union or pseudoarthrosis forma-
tion (Esterhai and Gelb, 1991; Gustilo et al., 1990; Utvag et al., 1998).
The importance of the periosteal microcirculation was hallmarked by
early studies on dogs showing that autologous tibial grafts having only
their periosteal blood supply intact survived transplantation (Berggren
et al., 1982). In another study, free gingival autografts placed on the
periosteum survived by receiving nutrients from the maxillary bone
with an intact periosteum (Yanagihara, 1990). Further results demon-
strated that the revascularization during wound healing is critically
linked to the release of vascular endothelial growth factor by periosteal
cells (Bourke et al., 2003). In the oral cavity, the tissues produced by
cells with mesenchymal origin include cementumwith periodontal lig-
ament fibers and bone; under appropriate culture conditions, periosteal
cells secrete an extracellular matrix and form a membranous structure
in the periodontium (Mizuno et al., 2006). Apart from the initiation of
cell differentiation during the bone repair and remodeling process
after traumas and invasive dental procedures (Tran Van et al., 1982),
the periosteal and endosteal membranes also play significant roles in
the pathogenesis of metabolic bone alterations (Allen et al., 2004). In
summary, it can be concluded that adequate microcirculation is a pre-
requisite of the bone metabolism and the regenerative potential of the
periosteal and endosteal compartments.

3. Axial versus appendicular bones - regional differences in perioste-
al functions?

Although a continuousmicrocirculatory supply is necessary in order
to ensure physiological remodeling, metabolism and regeneration,
there are many differences within the skeletal system between axial
(i.e. the skull, facial bones, vertebrae, ribs and sternum) and appendicu-
lar bones.While the appendicular long bones receive their vascular sup-
ply from the nutritive epiphyseal and metaphyseal vessels (Findlay,
2007; Johnson et al., 2004), the circulation of the maxillofacial bones,
and especially the lower jaw, is provided by the mucoperiosteal tissue
through the inferior alveolar and sublingual arteries (Huelke and
Castelli, 1965; Shannon et al., 2011). It should be emphasized that the
jaw region is endowed with additional, particular regeneration charac-
teristics (Elshahat et al., 2004; Støre and Granström, 1999). As opposed
to long bone fractures, which heal mainly through endochondral ossifi-
cation, intramembranous ossification has a much higher impact in the
mandible (Yu et al., 2012). In line with this, mandible periosteum-de-
rived stem cells have been shown to possess the highest osteogenic po-
tential among the different anatomical locations (Solheim et al., 1995;
Ueno et al., 2002), while the tibial periosteum or the bone marrow
stem cells are superior in terms of chondrogenesis (Park et al., 2012).
Further, there are distinct differences in the expression pattern of
bone development-related genes between themandibular and tibial os-
teoblasts (Reichert et al., 2013). A point of interest is that systemic dis-
orders such as osteoporosis affect the mandible to a significantly lesser
extent (Liu et al., 2014; Mavropoulos et al., 2007; Yamashiro and
Takano-Yamamoto, 1998). It has been proposed that the intense me-
chanical loading of the alveolar process duringmastication may protect
the alveolar bone from the osteoporosis-related bone loss observed at
other skeletal sites (Mavropoulos et al., 2007).
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Bisphosphonates (BISs) are widely used for the treatment of osteo-
porosis and tumors with bone metastasis to inhibit osteoclast activity
and bone resorption (Rogers et al., 2011) also exertingdistinctive effects
on the bones in the maxillofacial region. Here the regional BIS uptake
reaches amuch higher concentration in comparisonwith the appendic-
ular and other axial bones (Wen et al., 2011). The receptor activator of
nuclear factor κB (RANK)/receptor activator of nuclear factor κB ligand
(RANKL)/osteoprotegerin axis, a signaling pathway that regulates oste-
oclast differentiation, is also diversely affected by BISs, which cause a
decrease in RANKL values in the mandible and the opposite effect in
the tibia (Çankaya et al., 2013). Furthermore, BIS treatment exerts
site-specific, differential effects during the early healingprocesses of tib-
ial and mandibular fractures by delaying callus, cartilage and bone re-
modeling specifically in the mandible (Yu et al., 2012). Defective
angiogenesis of the mandibular mucoperiosteal tissues is also evoked
by long-term treatment with BIS (Wehrhan et al., 2011).

4. Examination of the periosteal microcirculation in axial and ap-
pendicular bones

Besides histology, various imaging methods, such as corrosion cast-
ing, microangiography, computer tomography and to some extent
scintigraphy (Berggren et al., 1982; Bhatt et al., 2000; Fayad et al.,
2005; Nobuto et al., 1989; Pazzaglia, 1996; Rhinelander et al., 1968;
Trueta and Cavadias, 1955), can be used to visualize the architecture
of the periosteal microcirculation in the jaw and long bones. Laser-
Doppler flowmetry, laser speckle imaging (ElMaraghy et al., 1999;
Swiontkowsky et al., 1986) and the radioactive microsphere technique
(Barron et al., 1977) can characterize functional details of the periosteal
perfusion, but only with limitations. If more accurate detection or im-
proved spatial resolution of the microcirculation is needed, traditional
fluorescence IVM can provide an opportunity for real-time examination
of the microcirculation of superficial layers. Conventional fluorescence
IVM visualizes not only changes in the efficacy of microvascular perfu-
sion, but also cell-cell (e.g. polymorphonuclear leukocyte (PMN)–endo-
thelial cell) interactions, such as rolling and adhesion, vascular diameter
changes or signs of apoptosis (Abshagen et al., 2006; Horie et al., 1996)
(see Fig. 1 A–D). Non-fluorescence techniques, including orthogonal po-
larization spectral imaging (OPS) (Groner et al., 1999) (Fig. 1 E–F) and
sidestream dark-field imaging, have also been developed for the imag-
ing of individual vessels and cells (Milstein et al., 2010). Nevertheless,
observation of the microcirculation of the periosteal compartment
would still necessitate surgical exposure (Fig. 2).

As concerns the appendicular bones, the anterior tibial periosteum
appears to be one of themost easily accessible sites for microcirculatory
examinations with IVM (see Table 1). Methods have been established
for the examination of osteomyocutaneous flaps where microvascular
perfusion characteristics and PMN-endothelial interactions can be dy-
namically assessed not only in the lateral tibial periosteum, but also in
the adjacent muscle, subcutis and skin (Rücker et al., 1998). In the
cases of the axial bones, the calvarian periosteum in rats can be visual-
ized under experimental circumstances by means of different methods,
either in acute settings (Stoetzer et al., 2014) or with chronic models,
applying the periosteal window and chamber methods (Rana et al.,
2011; Stuehmer et al., 2009; von See et al., 2010). The midfacial perios-
teum in rabbits (Rücker et al., 2005) and the mandibular periosteum in
rats are also accessible for IVM, in the latter case also for OPS and confo-
cal laser scanning microscopic assessments (Varga et al., 2014).

4.1. Changes in nutritive and angiogenetic functions in clinically relevant
trauma-orthopedic models

The direct consequences of traumas or surgical interventions on the
periosteal microcirculation have been examined in several studies
(Table 1). Soft tissue damage was induced by periosteal elevation
using conventional and piezoelectric devices and the short- and
longer-term effects on the periosteal perfusion were compared
(Stoetzer et al., 2014). The extents of immediate and long-term perios-
teal perfusion failure were demonstrated and quantified after closed
soft tissue traumas and closed tibial fractures showing an interaction
between the skeletal muscle damage and periostealmicrovascular inju-
ry (Schaser et al., 2003; Zhang et al., 2003). In another study where
functional capillary density changes were evaluated in the midfacial
periosteum in rabbits, the risk of complications was higher after
subperiosteal dissection in comparison to the supraperiosteal approach
(Rücker et al., 2005). Periosteal and subperiosteal angioneogenesis
could be induced by the self-inflating hydrogel expanders used for pre-
liminary soft tissue augmentation before bone augmentation surgery
(von See et al., 2010).

The message of these studies is that regeneration of the periosteal
microvasculature is a prerequisite of its tissue-regenerative potential.
Another point for consideration is the communication of the periosteal
and endosteal vascular networks. Alterations in the anteromedial and
anterolateral periosteal microcirculations (Fig. 3) were recently studied
with an OPS technique following standardized surgical destruction of
the endosteum (Greksa et al., 2012). The periosteal microvascular
reorganization caused by reaming of the endomedullary cavity was
not altered by implantation with titanium, a material with good
osseointegrative properties, whereas the periosteal microcirculation
was augmented by unstable endomedullary polyethylene nails. Though
unstable implant materials can lead to inadequate restoration of the
endosteal circulation, which remains insufficient to supply the cortical
bone, this may be compensated by enhanced periosteal sources
(Greksa et al., 2012).

The consequences of ischemia-reperfusion (IR) and perfusion defi-
ciencies have been extensively examined in the periosteum of bones
and composite flaps. Vasomotion has been described as a compensatory
reaction of themicrovasculature aiding tissue survival. Critical perfusion
conditions induce capillary flowmotion inmuscle, but not in the perios-
teum (Rücker et al., 2000), and this potentially favorable reaction is pre-
served by heat shock priming (Rücker et al., 2005). Heat shock has been
shown to stimulate periosteal angiogenesis in the intact calvaria and in
the tibia in a chronic ischemia model of microthrombosis (Rana et al.,
2011; Rücker et al., 2006). The positive effects of heat shock priming
aremanifested by improved periostealmicrovascular recanalization, re-
covery of perfusion rate and blood flow in the capillaries, similarly to
those observed in other components of the osteomycotanous flap
(Rücker et al., 2006). In an acute composite flap ischemia model, heat
shock reduced PMN adhesion in the postcapillary venules and intracel-
lular adhesion molecule-1 (ICAM-1) expression in all examined tissues
(Rücker et al., 2001).

Tourniquet-induced limb ischemia, a generally applied maneuver in
orthopedic-trauma clinical practice, brings about marked local and sys-
temic inflammatory effects. Since a tourniquet around the extremity
causes IR of an appreciably high amount of tissue, the venous effluent
or afferent neurogenic signals lead to further systemic inflammatory re-
actions (i.e. activation of circulatory PMNs). The affected tissues under-
go the typical biochemical and microcirculatory changes of a local IR
injury, the periosteal microcirculation primarily being affected in this
process. The postischemic microcirculatory inflammatory reactions in-
clude perfusion failure and activation of the PMN–endothelial interac-
tions and the upregulation of adhesion molecule expression (e.g.
ICAM-1) (Szabó et al., 2009) (Fig. 4). Apart from activated PMNs
(Vega et al., 1999), humoral factors (Goldman et al., 1990), mediators
of oxidative stress (Koike et al., 1992, 1993), proinflammatory cytokines
(e.g. TNF-α, PAF, IL-1β and IL-6) (Lawlor et al., 1999) and complement
C5a (Fleming et al., 2003) have been implicated in remote organ dys-
functions and injuries (e.g. in the liver or lungs). These local processes
also have relevant implications in remote organ preconditioning reac-
tions. Limb ischemia has been proposed as an easily and relatively safely
accessible preconditioning situation (Kanoria et al., 2006). Indeed, both
periosteal and distant, systemic inflammatory reactions can be



Table 1
Dynamic measurements of periosteal microcirculatory changes using intravital videomicroscopy (IVM), orthogonal polarization spectral imaging (OPS) at different locations. The quan-
tification methods include assessments of tissue perfusion, functional capillary density (FCD), red blood cell velocity (RBCV) and polymorphonuclear leukocyte (PMN)–endothelial
interactions.

Target tissue Reference Animal Method Parameter Disease model Findings

Anterior tibial
periosteum

Zhang et
al. (2003)

Rat IVM Perfusion + PMN Closed tibial fracture Immediate microcirculatory derangements

Anterior tibial
periosteum

Schaser et
al. (2003)

Rat IVM Perfusion + PMN Closed soft tissue trauma Long-lasting disturbances

Midfacial maxillar
periosteum

Rücker et
al. (2005)

Rabbit IVM FCD Sub/supraperiosteal dissection Better periosteal perfusion after the
subperiosteal approach

Calvarial periosteum Stoetzer
et al.
(2014)

Rat IVM FCD Periosteal elevator New piezoelectric device reduces injury

Calvarial periosteum
(chamber)

Rana et al.
(2011)

Rat IVM FCD (angiogenesis) Stress conditioning of intact
periosteum by heat shock

Improvement by heat shock

Calvaria periosteum
(window)

von See et
al. (2010)

Rat IVM Vessel density
(angiogenesis)

Self-inflating hydrogel
expanders

Replacement of the periosteum by
connective tissue (subcutaneous
angiogenesis)

Muscle, skin, subcutis,
lateral tibial
periosteum

Rücker et
al. (2001)

Rat IVM Perfusion + PMN Local heat-shock +
osteomyocutaneous flaps

Amelioration of inflammatory reaction by
local heat-shock

Muscle, skin, subcutis,
lateral tibial
periosteum

Rücker et
al. (2005)

Rat IVM RBCV, flowmotion, FCD Critical perfusion of
osteomyocutaneous flap

Loss of muscle capillary flowmotion
prevented by heat shock-priming.

Muscle, skin, subcutis,
lateral tibial
periosteum

Rücker et
al. (2006)

Rat IVM Thrombus formation
(microvascular
recanalization)

Thromboembolization of
osteomyocutaneous flap

Heat shock promotes microvasculature
recanalization

Anterior tibial
periosteum

Wolfárd
et al.
(2002)

Rat IVM FCD, RBCV, PMN Limb IR Amelioration of inflammatory reaction by
endothelin-A receptor antagonism

Anterior tibial
periosteum

Gera et al.
(2007)

Rat IVM Perfusion + RBCV + PMN Limb IR

Amelioration of
inflammatory reaction
by phosphatidyl
choline

Anterior tibial
periosteum

Varga et
al. (2008)

Rat IVM Perfusion + PMN Limb IR (infusion fluids) Amelioration of inflammatory reaction by
hydroxyethyl starch

Anterior tibial
periosteum

Szabó et
al. (2009)

Rat IVM Perfusion + PMN Limb IR Local and distal amelioration of
inflammation by IPC

Anterior tibial
periosteum

Hartmann
et al.
(2011)

Rat IVM Perfusion, RBCV, PMN Limb IR Involvement of chemo- (capsaicin-)
sensitive afferent nerves in IPC

Anterior tibial
periosteum

Szabó et
al. (2011)

Rat IVM Perfusion + PMN Limb IR +
ovariectomy + exogen
estrogen

Amelioration of inflammatory reactions by
chronic estrogen supplementation

Anterior tibial
periosteum + synovial
membrane

Hartmann
et al.
(2012)

Rat IVM RBCV, perfusion + PMN,
ICAM-1

Limb IR Synovial microcirculation is less endangered
to the consequences of short-term
tourniquet IR than the periosteum

Mandibular and tibial
periosteum

Varga et
al. (2014)

Rat IVM, OPS, laser
scanning confocal
microscopy

Perfusion + PMN Intact New method

Mandible periosteum Janovszky
et al.
(2015)

Rat IVM Perfusion + PMN MRONJ induced by chronic
zoledronate
treatment + previous tooth
extraction

Microvascular inflammation

IR: ischemia/reperfusion, IPC: ischemic preconditioning, MRONJ: medication-related osteonecrosis of the jaw.
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prevented by ischemic preconditioning of the limb (Szabó et al., 2009)
and this protection appears to be mediated by the activation of
chemosensitive afferent nerves (Hartmann et al., 2011). In other stud-
ies, antagonism of vasoconstriction-mediating endothelin-A receptors
or pretreatment with anti-inflammatory agents (phosphatidylcholine
and colloid solutions) likewise exerted some protection (Gera et al.,
2007; Varga et al., 2008; Wolfárd et al., 2002). These studies further re-
vealed that the microcirculation of the tibial periosteum is more prone
tomicrocirculatory inflammatory complications than that of the synovi-
al membrane (Hartmann et al., 2012).

4.2. Periosteal manifestations of systemic diseases

As the prevalence of skeletal fractures and limb injuries increases
with aging, restoration of the periosteal microperfusion is of particular
importance in surgical interventions on elderly patientswith orwithout
tourniquet application. The microcirculatory patency is influenced by
many functional and morphological changes in the microvasculature
and, as a result of the osteogenic stem cell content of the periosteum
and endosteum (Brighton et al., 1992), these membranes, and the peri-
osteum in particular, play important roles in the pathogenesis of
hormone-related (i.e. estrogen deficiency) and trauma-induced osteo-
porotic processes. Likewise, the periosteum can serve as a target of dif-
ferent anti-osteoporotic approaches (Allen et al., 2004).

Although relatively little information is available on the microcircu-
latory effects of chronic ovariectomy (OVX) itself, a considerable
amount of evidence suggests that a disintegrated microcirculation is in-
volved in the osteoporotic changes in the cortex. OVX-inducedmorpho-
logical alterations within the microvasculature have been reported in
the heart (Jesmin et al., 2003) and brain (Johnson et al., 2004), but we



Fig. 3.Micrographs showingOPS (Cytoscan A/R; Cytometrics, Philadelphia, PA, USA) images of themicrovascular architecture of the anteromedial (A) and anterolateral (B) surfaces of the
tibial periosteum in Sprague-Dawley rats. The bar denotes 250 μm (original recordings of the authors).
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did not observe significant changes in periosteal vessel density in a
chronic OVX rat model (Szabó et al., 2011). It is important to note that
these changes were followed in the proximal tibial periosteum, where
the predominant vessel type is the venule (see Fig. 1). The postcapillary
venules are predilectory sites for PMN–endothelial interactions, and
thus a relatively higher venular density may predispose to local
inflammatory complications. Again, this feature of the periosteal
microarchitecture may account, at least in part, for a tissue-specific
response.

On the other hand, there have been several experimental studies of
the microcirculatory changes of sex hormone substitution. Since estra-
diol is protective in many forms of traumas and injuries, it is possible
that 17-beta-estradiol (E2) is protective independently of the presence
of OVX. This view is supported by findingswhere a single dose of E2 ad-
ministered hours or evenminutes before reperfusion ameliorated PMN-
related processes in different organs (e.g. the heart, liver and retina)
(Booth et al., 2003; Burkhardt et al., 2008; Nonaka et al., 2000). We
found that the postischemic periosteal microcirculatory complications
were not aggravated as comparedwith the non-OVX, age-matched con-
trols (Szabó et al., 2011). The situation was similar as concerns TNF-α
release, providing further evidence that OVX itself does not modify the
inflammatory complications, whereas E2 supplementation greatly re-
duces this reaction. It has also been demonstrated that E2 inhibits
TNF-α gene transcription via the beta-estrogen receptors (Srivastava
et al., 1999) and via the TNF-α-mediated increases in the expressions
of adhesion molecules and chemoattractants (Xing et al., 2007). A
downregulation of nitric oxide synthesis by TNF-α may also contribute
to themechanisms of thesemicrocirculatory reactions (Yoshizumi et al.,
1993). Our data indicating the positive effect of prolonged E2 substitu-
tion on the PMN reactions and TNF-α release, however, point to another
clinical implication: ovarial hormone deprivation supplemented with
estrogen therapy (apart from thewell-knownpositive effect in reducing
the risk of osteoporotic fractures) affordsmarked protection against the
release of inflammatory mediators.

The impact of periosteal microvascular reactions is also evident in
the case of long-term systemic treatment with nitrogen-containing
BISs. Treatment with osteoclast inhibitor BISs can cause local
osteonecrosis, predilectorily in the jaw (also termedmedication-related
osteonecrosis of the jaw,MRONJ) after invasive dental procedures (Kühl
et al., 2012; Marx et al., 2007; Wehrhan et al., 2011; Yamashita et al.,
2010). Such a reaction does not occur in the bones of the appendicular
skeleton (Blazsek et al., 2009; Stadelmann et al., 2008). Many theories
have been put forward and several risk factors have been investigated
in efforts to decipher the pathogenesis of MRONJ, but the cause is still
unknown (Mehrotra and Ruggiero, 2006). Among others, the role of
infection-induced inflammatory reactions has been suggested, but
since osteonecrosis usually develops several years after tooth extrac-
tion, this factor seems to be of only limited impact. Enhancement of
PMN–endothelial cell interactions in the knee joint (Zysk et al., 2003)
and the upregulation of pro-inflammatory cytokines such as IL-1 and
TNF-α (Anastasilakis et al., 2012; Norton et al., 2011; 104), however,
have been clearly demonstrated in response to BIS administration.
These effects also display spatial differences, because certain inflamma-
tory reactionswere confined to themandible, and could not be detected
in the femur (Senel et al., 2010).Moreover, in another sheepmodelwith
osteoporosis, the stability of implants in the femoral condyle was even
enhanced after local BIS treatment (Stadelmann et al., 2008). Other
data suggest that the production of vascular endothelial growth can be
an important factor in the pathogenesis of MRONJ (Vincenzi et al.,
2012), a notion supported by the fact that BIS treatment combined
with the anti-angiogenic drug bevacizumab increases the prevalence
of MRONJ (Aragon-Ching et al., 2009). Furthermore, the critical concen-
tration of BIS in the mandible (Wen et al., 2011), and its direct toxic
effect on the periosteal stem/osteoprogenitor cells and related inflam-
matory effects in the periosteum may also contribute to the develop-
ment of MRONJ. High-dose BIS exacerbated the inflammatory
response in a periodontitis model, where the bone lesions strikingly re-
semble MRONJ (Aguirre et al., 2012). On prolonged use, BISs are known
to accumulate in the skeleton, reaching the highest concentration in the
mandible (Reid et al., 2007; Wen et al., 2011), which may explain their
potential toxic effects occurring predominantly in the jawbones. Fur-
thermore, osteoblasts have different proliferation properties at different
locations in the appendicular or axial bones under physiological circum-
stances, and this phenomenon is also critically influenced by BIS treat-
ment (Marolt et al., 2012). The functional activity of osteocytes differs
between the mandible and the tibia (Çankaya et al., 2013), and the ag-
gravating effects of BISs on bone healing are confined to the jaw
(Kuroshima et al., 2014). In our study, IVM data obtained in the proxim-
ity of the alveolar injury and from a contralateral, intact site on theman-
dibular periosteum were compared with those on the intact tibia
(Janovszky et al., 2015). After chronic zoledronate treatment, increased
extents of PMN-endothelial interactions (rolling and firm adhesion)
were observed in themandibular periosteum, both at the site of the ear-
lier tooth extraction and at the contralateral site, but the corresponding
interactions in the tibia were significantly less pronounced.

5. Concluding remarks

Reestablishment of the periosteal microvascular integrity after trau-
ma and orthopedic surgery is essential for normal bony regeneration



Fig. 4. Representative longitudinal section of the rat tibia surrounded by soft tissues (stained with ICAM-1 plus hematoxylin) (A). Tibia epiphysis (EP), cortical bone (CB), bone marrow
(BM), muscle (M) and periosteum (P) are indicated. Lower panels: weak ICAM-1 staining (primary antibody: a mouse monoclonal anti-rat ICAM-1; BD Pharmingen, BD Biosciences, San
Jose, CA, USA), secondary antiobody: biotinylated goat anti-mouse antibody conjugated to HRP polymer (Envision®System; Dako, Glostrup, Denmark) in the periosteum of a sham-
operated animal (B), positive staining in periosteal venules after 60 min of limb ischemia followed by a 180-min reperfusion period (C). The bar denotes 50 μm (authors' own data).
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processes. Observation of the periosteal microcirculation still necessi-
tates surgical exposure, but many different methods have been
established for the correct assessment of perfusion changes, and various
imaging methods have been introduced that allow the visualization
even of individual vessels, without disturbing their functional charac-
teristics. The examined parameters include changes in vascular density,
microvascular perfusion efficacy and cell-cell interactions. Through the
use of these parameters, microcirculatory consequences of traumas
and the related surgical interventions, IR injuries and the local periosteal
manifestations of systemic diseases can be assessed and the efficacy of
different treatment modalities can be quantified. The findings that sys-
temic insults trigger differentmicrocirculatory reactions in the perioste-
um at different anatomical locations warrant further studies.
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ABSTRACT: Our aim was to examine the effects of ischemic preconditioning (IPC) on the local periosteal and systemic inflammatory
consequences of hindlimb ischemia-reperfusion (IR) in Sprague–Dawley rats with chronic estrogen deficiency (13 weeks after
ovariectomy, OVX) in the presence and absence of chronic 17beta-estradiol supplementation (E2, 20mg kg�1, 5 days/week for 5 weeks);
sham-operated (non-OVX) animals served as controls. As assessed by intravital fluorescence microscopy, rolling and the firm adhesion
of polymorphonuclear neutrophil leukocytes (PMNs) gave similar results in the Shamþ IR and OVXþ IR groups in the tibial periosteal
microcirculation during the 3-h reperfusion period after a 60-min tourniquet ischemia. Postischemic increases in periosteal PMN
adhesion and PMN-derived adhesion molecule CD11b expressions, however, were significantly reduced by IPC (two cycles of 100/100) in
Sham animals, but not in OVX animals; neither plasma free radical levels (as measured by chemiluminescence), nor TNF-alpha release
was affected by IPC. E2 supplementation in OVX animals restored the IPC-related microcirculatory integrity and PMN-derived CD11b
levels, and TNF-alpha and free radical levels were reduced by IPC only with E2. An enhanced estrogen receptor beta expression could
also be demonstrated after E2 in the periosteum. Overall, the beneficial periosteal microcirculatory effects of limb IPC are lost in
chronic estrogen deficiency, but they can be restored by E2 supplementation. This suggests that the presence of endogenous estrogen is
a necessary facilitating factor of the anti-inflammatory protection provided by limb IPC in females. The IPC-independent effects of E2
on inflammatory reactions should also be taken into account in this model. � 2017 Orthopaedic Research Society. Published by Wiley
Periodicals, Inc. J Orthop Res

Keywords: osteoporosis; ischemia-reperfusion; limb; ischemic preconditioning; estrogen; microcirculation

During elective orthopedic interventions or traumas,
tourniquet application may lead to iatrogenic ischemia-
reperfusion (IR) injury of the affected extremities, which
may influence the healing of the bone and the surround-
ing soft tissues1 including the periosteum.2 The local IR
injury may lead to systemic inflammatory activation as
well,3 and the injury in distant organs (e.g., the liver and
lungs) is mediated by many factors, among others by
circulating pro-inflammatory cytokines and activated poly-
morphonuclear leukocytes (PMNs).1,4 Nevertheless, it has
been shown that short, repeated local IR periods termed
ischemic preconditioning (IPC) confer anti-inflammatory
protection both in the periosteum,5 and in remote organs
through humoral and neurogenic signals.6–9

The amelioration of IR-induced inflammatory com-
plications by limb IPC should offer a therapeutic
benefit in elderly patients when the prevalence of
skeletal injuries increases and osteoporotic bones are
more prone to accidental fractures. However, the
influence of osteoporosis on the efficacy of IPC against

IR-induced injury remains unexplored and the results
obtained concerning the estrogen status in this condi-
tion seem contradictory. Earlier it was demonstrated
that endogenous estrogen does not play a role in the
protective effect of IPC.10 Other studies have shown
that the positive cardiac effects of IPC are lost when
the endogenous estrogen levels are reduced by
ovariectomy (OVX), but cardioprotection could be
re-established by estrogen supplementation.11–13 So
far, available data on the effects of estrogen replace-
ment during IPC appear to conflict.11–14 We showed
earlier that OVX per se did not predispose female rats
to more severe inflammatory reactions, but estrogen
supplementation reduced the harmful consequences of
limb IR.15 Therefore the present study was designed to
ascertain whether IPC exerts its potentially positive
anti-inflammatory effects on limb IR injury with
chronic estrogen deficiency. In our study, we also
sought to examine whether the periosteal microcircu-
latory reactions are modulated by exogenous estrogen
supplementation. With the above in mind, we decided
to characterize the effects of IPC with or without
estrogen supplementation on local periosteal and sys-
temic inflammatory changes in a rodent model of
hindlimb IR injury with chronic estrogen deficiency.

MATERIALS AND METHODS
Animals
All studies were carried out on Sprague–Dawley rats housed
in an environmentally controlled room with a 12-h light-dark
cycle, and kept on commercial rat chow (Charles River,
Wilmington, MA) and tap water ad libitum.
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The project was approved by the National Scientific
Ethical Committee on Animal Experimentation (National
Competent Authority), with the license number: V./144/2013.
The study was performed in adherence with the EU Direc-
tive 2010/63/EU on the protection of animals used for
experimental and other scientific purposes and the National
Institute of Health guidelines for the use of experimental
animals. Animal welfare-related assessments and interven-
tions were carried out prior to and during the experiments.

Experimental Protocol
Ovariectomy

Twelve-week-old female rats (weighing 180–200 g) were
randomly allocated to ovariectomized (N¼ 48), or sham-
operated (N¼ 33) groups. The animals were anesthetized
with an intraperitoneal combination of ketamine and xyla-
zine (25mgkg�1 and 75mgkg�1, respectively), and a median
laparotomy was performed under sterile conditions. The
connection of the Fallopian tubes was cut between hemo-
stats, the ovaries were removed, and the stumps were then
ligated with a 3–0 non-absorbable thread (Ethibond Excel1,
Ethicon, Somerville, NJ). Thereafter, the abdomen was filled
with warm sterile physiological saline and the abdominal
wall was closed with a 4–0 absorbable suture and a 4–0 non-
absorbable suture (Vicryl1 and Prolene1, Ethicon, Somer-
ville, NJ) in two layers. Sham-operated animals underwent
identical procedures, except of course that the Fallopian
tubes and ovaries were not touched.

Chronic EstrogenTreatment
Eight weeks after OVX (i.e., at 20 weeks of age) (see Fig. 1),
a chronic estrogen therapy was initiated in some of the OVX
animals for 5 days/week with 20mgkg�1 subcutaneous
17beta-estradiol16 (E2, Sigma, St. Louis, MO) and it was
continued for 5 weeks (i.e., until the end of the experimental
protocol in week 25). The remaining OVX and Sham animals
received the vehicle for E2 (100% ethanol diluted in corn oil)
in the same volume.

Experimental Series
The later in vivo experiments were performed in two major
series 13 weeks after the OVX and sham operations (in week
25) (Fig. 1). In the first series, the tibial periosteal microcir-
culatory consequences of a 60-min complete hindlimb ische-
mia followed by a 180-min reperfusion (with or without limb
IPC) were investigated with intravital videomicroscopy
(IVM). In a second series of experiments, identical protocols
in the same groups were performed in order to detect
changes in various systemic inflammatory reactions (see
later on).

Series 1: Measurement of Local Inflammatory Reactions
Using IVM
The experiments were performed under sodium pentobarbi-
tal (45mgkg�1 ip) anesthesia and sustained with small
supplementary intravenous doses when necessary. The right
carotid artery and the jugular vein were cannulated for the
measurement of mean arterial pressure and the administra-
tion of drugs and fluids, respectively. The animals were
placed in a supine position on a heating pad to maintain
their body temperature between 36 and 37˚C. Here, Ringer’s
lactate was infused at a rate of 10ml kg�1 h�1 during the
experiments. The trachea was cannulated to facilitate respi-
ration. The right femoral artery was isolated, and the
periosteum of the medial surface of the right tibia was
exposed under a Zeiss 6� magnification operating micro-
scope, using an atraumatic surgical technique.2

In the final stage, the animals were randomly allotted to
one of the following five groups. These are shown in Figure 1,
week 25. Among vehicle-treated animals, a 60-min complete
hind limb ischemia was induced by applying a tourniquet
around the proximal femur and a miniclip on the femoral
artery, which was followed by a 180-min reperfusion period
in nine sham-operated animals (Shamþ IR group) and 11 of
the OVX animals (OVXþ IR groups). Two other vehicle-
treated groups were also subjected to two cycles of 10min of
limb IPC and 10min of reperfusion (Shamþ IPCþ IR group,
N¼ 9; OVXþ IPCþ IR group, N¼ 9).. This IPC protocol has
been shown to ameliorate local microcirculatory and systemic
inflammatory complications caused by limb IR in male rats.3

In all of the E2-treated animals, limb IR was combined with
IPC (OVXþE2þ IPCþ IR group, N¼ 6) and the experiments
were started 18–24h after the last E2 injection. In this
series, the periosteal microcirculation was observed with
IVM at baseline and every 60min during the 180-min
reperfusion period.

Microcirculatory Measurements
The right hindlimb with the exposed tibial periosteum was
positioned horizontally on an adjustable stage for examina-
tion of the microcirculation by IVM (Zeiss Axiotech Vario
100HD microscope, 100W HBO mercury lamp, Acroplan 20�
water immersion objective, Carl Zeiss GmbH, Jena,
Germany). Microcirculation was visualized with fluorescein
isothiocyanate (Sigma, St. Louis, MO)-labeled erythrocytes
(0.2ml iv), while PMNs were labeled with an iv injection of
rhodamine 6G (Sigma, St. Louis, MO, 0.2%, 0.1ml iv). The
microscopic images were recorded with a charge-coupled
device video camera (Teli CS8320Bi, Toshiba Teli Corpora-
tion, Osaka, Japan) attached to an S-VHS video recorder

Figure 1. Groups and time sequence of surgical
interventions, treatments and measurements: Ovari-
ectomy (OVX) or a sham operation (Sham) was
performed at 12 weeks of age; 17beta-estradiol treat-
ment (E2) was performed for 5 weeks (5 days/week in
a dose of 20mg kg�1); tourniquet-ischemia of a hin-
dlimb followed by reperfusion (IR; 600/1800) with or
without ischemic preconditioning of the hindlimb
(IPC; 2�100/100) was performed at the end of the
protocol. In Series 1, the assessment of local inflam-
matory reactions in the tibial periosteum using
intravital microscopy was carried out, while in Series
2, the detection of various systemic inflammatory
parameters was performed. The number of animals
used per group in each series is indicated in brackets.
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(Panasonic AG-MD 830, Matsushita Electric Industrial Co.,
Tokyo, Japan) and a personal computer.

IVM—Video Analysis
A quantitative assessment of the microcirculatory parame-
ters was performed off-line by a frame-to-frame analysis of
the videotaped images, using image analysis software (IVM,
Pictron Ltd., Budapest, Hungary) (Fig. 2). As for the
periosteum, leukocyte–endothelial cell interactions were ana-
lyzed within five postcapillary venules (with diameters
between 11 and 20mm) per animal. IVM in the periosteum
allows the observation of the primary and secondary
PMN-endothelial interactions (rolling and adhesion, respec-
tively). Rolling is a transient and reversible process, whereas
adhesion represents a higher level of activation of leukocytes
(when endothelial contact-dependent signals trigger
the formation of the activation-dependent adhesion molecule
expression of PMNs with accompanying NADPH oxidase
activation and degranulation.17 Based on their movements
and contact with the endothelium of the postcapillary
venules, adherent leukocytes (stickers) were defined in each
vessel segment as cells that did not move or detach from the
endothelial lining within an observation period of 30 s, and
are expressed here as the number of cells per mm2 of
endothelial surface. Rolling leukocytes were defined as cells
moving at a velocity less than 40% of that of the erythrocytes
in the centerline of the microvessel, and expressed as the
number of cells/vessel circumference in millimeters.

Series 2: Detection of Systemic Inflammatory Reactions
In a second series of experiments, identical protocols for the
same groups were applied to detect changes in the pro-
inflammatory cytokine TNF-alpha concentrations in the
plasma and in whole blood free radical productions, as well
as in the expressions of a circulating PMN-derived adhesion
molecule (see the groups above, N¼ 6–9). The separation of
the two series was necessary in order to avoid any interfer-
ence between the fluorescent dyes used for IVM and acquisi-
tion techniques used with flow cytometry and luminometry.
In this series of experiments, measurements were made from
blood samples taken at baseline and at every 60min of the
reperfusion phase. And at the end of the protocol, periosteal
specimens were harvested under RNase- and DNase-free
circumstances to detect periosteal estrogen receptor (ER)

expressions, then the samples were stored at �80˚C until
assay.

Immune Labeling and Flow Cytometric Analysis of Adhesion
Molecule CD11b Expression of PMNs
The surface expression of CD11b on the peripheral blood
PMNs was determined via a flow-cytometric analysis of
whole blood in duplicate.2 100ml of whole blood was incu-
bated with 20ml of (50mgml�1) fluorescein isothiocyanate-
conjugated mouse anti-rat monoclonal antibody (clone
OX-42, AbD Serotec, Kidlington, UK) for 20min. Negative
controls were obtained by omitting the monoclonal antibody.
The cells were then washed twice in Hanks buffer and
centrifuged (Heraeus Biofuge primoR, Thermo Scientific,
Waltham, MA, rotor diameter: 65mm) at 12,281 g for 5min.
The cells were again washed twice, and the erythrocytes
were lysed with a lysis puffer (Erythrolyse Red Blood Cell
Lysing Buffer (10x) Reagent, GenWay, San Diego, CA) for
8min, after which the cells were washed twice again
(2,616 g, 5min) and resuspended in 750ml of Hanks buffer.
CyFlow ML (Partec GmbH, M€unster, Germany) equipment
was used for cytometry; the granulocytes were gated on the
basis of their characteristic forward and sidescatter features.
Here, 10,000 events per sample were collected and recorded,
then the percentages of labeled (activated) granulocytes
(relative to the overall marker-bearing cells) and the mean
fluorescence intensity (average marker density) were calcu-
lated.

Determination of Plasma TNF-Alpha Levels
Blood samples (0.5ml) were taken from the carotid artery
and placed into precooled EDTA-containing polypropylene
tubes, centrifuged at 13,500 rpm for 5min at 4˚C, and then
stored at �70˚C until assay. Proinflammatory cytokine TNF-
alpha concentrations were determined in plasma samples by
means of commercially available enzyme-linked immunosor-
bent assays (Quantikine Ultrasensitive ELISA kit for rat
TNF-alpha; R&D systems, Minneapolis).

Free Radical-Producing Capacity of the Blood
10ml of blood dissolved in Hanks buffer was incubated for
20min at 37˚C in lucigenin (5mM; dissolved in Hanks buffer)
solution in the presence or absence of zymozan (190mM,
dissolved in Hanks buffer). Superoxide production was

Figure 2. Representative micrographs showing the sequence of PMN–endothelial interactions on three consecutive images (Panels
A–C) recorded by using intravital microscopy (recording rate: 20 frames/s). The segment of the examined tibial postcapillary vein is
surrounded by lines in Panel A. Movement of rhodamine 6G-labeled PMN (marked by a–c) is demonstrated frame-by-frame referring to
a dashed line. Stationary (adhesive) leukocytes are marked by ellipses. The bar in Panel C denotes 50mm scale and this applies to all
photomicrographs.
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estimated via the rate of zymozan-induced increase in
chemiluminescence (measured with an FB12 Single Tube
Luminometer (Berthold Detection Systems GmbH, Bad Wild-
bad, Germany) and normalized for leukocyte counts in the
peripheral blood.

Determination of Plasma E2 Levels
Endogenous E2 levels were determined using the Elecsys
Estradiol III kit (Roche Diagnostics GmbH, Mannheim,
Germany) and the Roche Cobas e 601 immunology analyzer
(Roche Diagnostics GmbH, Mannheim, Germany).

Determination of Periosteal Estrogen Receptor-Alpha (ER-Alpha)
and Beta (ER-Beta) mRNA Expressions
Tissue Collection
Anteromedial tibial periosteal samples were harvested via
sterile surgical exposure of the contralateral (non-ischemic)
limbs under an operating microscope. The samples were
washed in 0.3ml of sterile DNase, RNase and protease-free
water (Sigma, St. Louis, MO) and placed in RNA stabiliza-
tion solution (0.2ml/each sample; RNAlater, Ambion1,
Thermo Fisher Scientific, Waltham, MA). After overnight
storage at 4˚C, the RNA stabilization solution was removed,
and tissue samples were stored at �80˚C until RNA purifica-
tion. Here, uterus samples were used as internal controls.

RNA Purification
The total RNA taken from the tibial periosteum and the
uterus of each animal was purified with the NucleoSpin1

RNA XS kit (Macherey-Nagel GmbH & Co. KG, D€uren,
Germany) according to the protocol provided by the manufac-
turer.

Real Time PCR for ER-Alpha and ER-Beta
100ng of RNA template in a 10ml reaction mix were
measured, using a quantitative reverse transcriptase-medi-
ated PCR kit (Verso 1-step RT-qPCR Mix, ROX kit; Thermo
Fisher Scientific, Waltham, MA). The amplification condi-
tions were 50˚C for 15min, 95˚C for 15min, 40 cycles of
95˚C for 15 s, and 58˚C for 15 s. RNA levels were calculated
using the DDCT method and were normalized to 18S mRNA.
The Universal Probe Library (UPL) system (Roche, Basel,
Switzerland) was used to design primers and probes for the
experiments (see Table 1).

Statistical Analysis
The required number of animals (i.e., sample size) was
assessed by using the PS Power and Sample Size Calcula-
tions software package (version 3.1.2) prior to the experi-
ments. Data analysis was performed with the SigmaStat
statistical software package (Jandel Corporation, San Rafael,
CA). The normality of data sets was checked, and in case of
normal distribution, changes in variables within and be-
tween groups were analyzed by the two-way repeated
measures ANOVA test, followed by the Holm–Sidak test.
Data are expressed as means� standard error of the mean

(SEM). Due to the non-Gaussian distribution, PCR data were
analyzed by the Kruskal–Wallis test, followed by the Dun-
nett test; the box plot figure shows the mean, the median,
and the 25th and 75th percentile values. p values <0.05 were
considered statistically significant at all parameters.

RESULTS
Effects of Local IPC on the Postischemic Tibial Periosteal
Microcirculatory Inflammatory Reactions With Estrogen
Depletion
When compared with the baseline values, the values of
primary PMN–endothelial interactions (termed rolling)
in the postcapillary venules of the tibial periosteum
increased to a similar extent in the Shamþ IR and
OVXþ IR animals at all examined time-points of reper-
fusion after limb IR (see Fig. 3). When limb IR was
combined with local IPC, moderately reduced rolling
values were observed in non-ovariectomized rats (Sham
þ IPCþ IR group) at later stages of reperfusion (120
and 180min), but no reduction was seen in OVX rats
(OVXþ IPCþ IR group). At 60 and 120min of reperfu-
sion, the lowest rolling values were detected in animals
treated with chronic E2 (OVXþE2þ IPCþ IR group),
but these differences were not statistically significant.

Leukocyte adherence (sticking) revealed a similar
pattern to that seen with PMN rolling; no ameliorating
effect of IPC was seen in OVX animals (in the
OVXþ IPCþ IR group), but some alleviating effect was
observed after E2 treatment (in OVXþE2 þ IPCþ IR
group) (see Fig. 4).

Systemic Inflammatory Reactions
An increased expression of the adhesion molecule CD11b
on the PMN surface was observed after 120 and 180min
of reperfusion. After, no major differences could be seen
between the values for the Shamþ IR and OVXþ IR
groups, but a slight decrease was observed after IPC in
sham-operated animals (Shamþ IPCþ IR) (see Fig. 5).
This amelioration, however, was not seen after OVX (in
the OVXþ IPCþ IR group). It seems that chronic E2
treatment effectively prevented the IR-induced increase
in CD11b expression (OVXþ IPCþ IRþE2).

The free radical-derived chemiluminescence of the
whole blood (as determined by the superoxide radical-
dependent chemiluminescence measurements) gave
the earliest increase (after 60min of reperfusion) after
IPC both in the sham-operated and OVX animals
(Shamþ IPCþ IR and OVXþ IPCþ IR), but it rose
only slightly in the E2-treated OVXþ IPCþ IR ani-
mals (OVXþE2þ IPCþ IR) at this time point (see
Fig. 6). Free radical production did not reveal any

Table 1. Primers and Probes for Quantitative RT-PCR Used in This Study

Target Forward Primer Reverse Primer Probe

ER-alpha TTCTTTAAGAGAAGCATTCAAGGAC TCTTATCGATGGTGCATTGG # 130; 04693663001
ER-beta GGCTGGGCCAAGAAAATC TCTAAGAGCCGGACTTGGTC # 111; 04693442001
18S CTCAACACGGGAAACCTCAC CGCTCCACCAACTAAGAACG # 77; 04689003001
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more differences between the different experimental
groups at later time points.

From the experiments, we found that IR brought
about a significant increase in TNF-alpha levels in the
plasma in all of the groups (see Fig. 7). Due to the high
data dispersion, no statistically significant differences
were seen between the groups at any time point, but the
lowest increase was observed in the E2-treated animals.

The protocol was not synchronized with the estrous
cycles of the animals and vaginal smear tests were not
performed. The serum E2 concentrations ranged from
9.57 to 15.87pg/ml in the Sham-operated animals, while
these levels were significantly lower in the OVX animals
(p< 0.001), not even attaining the detection limit of the
assay (>5pg/ml). However, plasma E2 was restored by

chronic E2 supplementation in the OVX animals and the
values were slightly higher than those in the Sham
group (20.06 median value pg/ml, p< 0.05).

Periosteal Estrogen Receptor Expression
In the periosteum, a similar level of ER-beta transcrip-
tion was observed in the sham-operated and in the
OVX animals; and the highest transcription level was
noted after chronic E2 supplementation (see Fig. 8).
Periosteal ER-alpha mRNA levels, however, remained
below the detector threshold. We excluded any meth-
odological issues related to the detection of ER-alpha
by simultaneously examining uterus samples taken
from the same animals for an mRNA analysis of both
receptors. Similar to Mohamed and Abdel-Rahman,18

Figure 3. Changes in primary leukocyte–endothelial cell inter-
actions (rolling) in the postcapillary venules of the tibial perios-
teum at baseline, 60, 120, and 180min after a 60-min limb
ischemia. Sham: Sham operation; OVX: ovariectomy; IR: tourni-
quet-ischemia of a hindlimb followed by reperfusion (600/1800);
IPC: hindlimb ischemic preconditioning (2� 100/100); E2: 17beta-
estradiol treatment. Two-way RM ANOVA was followed by the
Holm-Sidak test. Here, data values are given as means�SEM,
and �p<0.05 versus baseline.

Figure 4. Changes in secondary leukocyte–endothelial cell
interactions (adherence) in the postcapillary venules of the tibial
periosteum at baseline, and 60, 120, and 180min after a 60-min
limb ischemia. Sham: Sham operation; OVX: ovariectomy; IR:
tourniquet-ischemia of a hindlimb followed by reperfusion
(600/1800); IPC: hindlimb ischemic preconditioning (2� 100/100);
E2: 17beta-estradiol treatment. Two-way RM ANOVA was
followed by the Holm–Sidak test. Here, data values are given as
means�SEM, and �p<0.05 versus baseline and #p<0.05 versus
Shamþ IR.

Figure 5. Changes in expression of the CD11b adhesion
molecule on the surface of PMNs at baseline and in response to
60min of limb ischemia followed by 120 and 180min of reperfu-
sion. Sham: Sham operation; OVX: ovariectomy; IR: tourniquet-
ischemia of a hindlimb followed by reperfusion (600/1800); IPC:
hindlimb ischemic preconditioning (2�100/100); E2: 17beta-estra-
diol treatment. Two-way RM ANOVA was followed by the
Holm–Sidak test. Here, data values are given as means�SEM,
and �p<0.05 versus baseline and #p< 0.05 versus Shamþ IR.

Figure 6. Whole blood superoxide production at baseline and
in response to 60min of limb ischemia followed by 60, 120, and
180min of reperfusion. Sham: Sham operation; OVX: ovariec-
tomy; IR: tourniquet-ischemia of a hindlimb followed by
reperfusion (600/1800); IPC: hindlimb ischemic preconditioning
(2�100/100); E2: 17beta-estradiol treatment. Two-way RM
ANOVA was followed by the Holm–Sidak test. Here, data values
are given as means�SEM, and �p<0.05 versus baseline,
#p<0.05 versus Shamþ IR.
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we found higher mRNA levels (for both ER-alpha and
beta) in the uterus in OVX group than in the Sham
group (data not shown).

DISCUSSION
Previously we examined the periosteal microcircula-
tory consequences of tourniquet-induced ischemia in a
clinically relevant, long-term follow-up study with
osteoporotic rats.15 We showed that OVX did not

enhance IR-induced periosteal microcirculation dys-
function, but chronic estrogen supplementation ame-
liorated the local inflammatory complications. In the
present protocol we employed a shorter term of OVX,
which does not cause osteopenia, but it is sufficient to
evoke a chronic estrogen deficit in rats.19 It appears
that IPC mostly influences the second stage of IR-
induced periosteal PMN-endothelial interactions
(sticking) both here in females and in males,3 which
might be explained by the effect of IPC on adhesion
molecule expression responsible for leukocyte adhesion
to the postischemic endothelium.3 This protection,
however, disappeared in the OVX animals in this
study, as both PMN rolling and adhesion increased.
Hence, it appears that the IPC-induced periosteal
protection against postischemic inflammatory compli-
cations is lost after estrogen depletion and this obser-
vation has potential clinical implications. In a similar
way, CD11b expression (a marker of activation of
circulating PMNs20 was lower in IPC animals only if
OVX was not performed. It is therefore reasonable to
suppose that endogenous estrogen in females plays a
facilitating role in the anti-inflammatory mechanisms
provided by IPC in the periosteum. This hypothesis is
supported by the observation that E2 supplementation
reverses the protection that was lost in OVXþ IPCþ
IR animals. Similarly to our present results, the
positive effects of IPC were shown to vanish in
postischemic hearts harvested from OVX rats, and
reversed by E2.11 Prior to this, the microcirculatory
benefits of E2 supplementation were examined after
IR, without IPC. The postischemic periosteal microcir-
culatory complications of tourniquet ischemia could be
reversed by E2 supplementation15 and E2 has also
been shown to have beneficial microcirculatory effects
in numerous other models of IR.21–22 Since the allevi-
ating effects of E2 are present with or without IPC, it
is difficult to differentiate between the beneficial
effects of E2 treatment per se and its effect on IPC.
Hence, one may suppose that the beneficial effects of
E2 seen in this model might be independent of its
effects on IPC.

In our study, the microcirculatory manifestations of
reduced efficacy of IPC after OVX were demonstrated for
the first time, but similar reactions were observed with
other manifestations of postischemic tissue injury in
other organs by others (i.e., cardiac dysfunction).11–14

The consequences of E2 supplementation in these
scenarios, however, are not at all clear. As such, the
OVX-related loss of IPC-induced protection in cardiac
functions could be restored by E2 in certain studies with
rats.11–12 The results are somewhat controversial, as the
protective effects of IPC were present in OVX rabbits.10

Also, E2 did not exert any alleviating effects in other
studies where IPC was combined with OVX.13–14

Furthermore, long- and short-term estrogen administra-
tion produced different effects,12,23 and inter-species and
inter-organ differences and dissimilarities cannot be
ruled out either.10,12–13,24 The reason for the differences

Figure 7. TNF-alpha levels in plasma samples at baseline and
in response to 60min of limb ischemia followed by 120, and
180min of reperfusion. Sham: Sham operation; OVX: ovariectomy;
IR: tourniquet-ischemia of a hindlimb followed by reperfusion
(600/1800); IPC: hindlimb ischemic preconditioning (2� 100/100); E2:
17beta-estradiol treatment. Two-way RM ANOVA was followed by
the Holm–Sidak test. Here, data values are given as means�
SEM, and �p< 0.05 versus baseline.

Figure 8. ER-beta mRNA expression levels in the tibial
periosteum taken from sham-operated (Sham), ovariectomized
(OVX) and OVX animals that were treated with 17beta-estradiol
(OVXþE2). Kruskal-Wallis test was followed by the Dunnett
test. Here, data values are given as mean, median, 25th and
75th percentiles, and #p<0.05 versus Sham.
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between endogenous and exogenous estrogen effects in
different experimental models is not well understood.

Some of the above differences might be due to the
number and function of estrogen receptors within the
affected tissue and also due to the effect of OVX and
E2 on these receptor expressions. E2 is known to act
as a transcription factor, as the binding of E2 to its
ER-alpha or ER-beta receptors within the nucleus
causes well-known genomic effects by inducing expres-
sion changes of different genes (e.g., nitric oxide
synthase).25 In addition, the action of binding E2 to its
(plasma and mitochondrial) membrane-associated
receptors also mediates non-genomic events26–27 in-
cluding the prevention of injury/stress-induced
apoptosis26 and cytochrome c release from myocardial
mitochondria.28 In our investigations, the ER-beta
expression in the periosteum did not vary in response
to OVX, but displayed an elevation in response to
chronic E2 treatment (whereas the ER-alpha expres-
sion remained below the detector threshold). The up-
regulation of the ER-beta receptor expression by E2 in
the mitochondria and inhibition of apoptotic processes
seems to be linked to the protective effect of E2 in
trauma-hemorrhage.29 Moreover, cardioprotective
effects of E2 were attributable to the ER-beta receptor-
related changes in the transcription on metabolic
genes in another study.30 In all likelihood, ER-beta is
involved in regulating the estrogen-related increase in
nitric oxide synthase activation25 and others demon-
strated the impact of ER-alpha as well.31 PMN-related
inflammatory processes were enhanced in OVX rats
after trauma-induced hemorrhagic shock, which was
prevented by the acute administration of E2 and an
ER-beta agonist.24 In vivo gene delivery of ER-beta to
the endothelium greatly reduced the IR-induced for-
mation of reactive oxygen species, increased nitric
oxide formation and restored mitochondrial function in
the adjacent cardiomyocytes.32 In our study, some of
the inflammatory processes (the CD11b expression of
PMNs and free radical content in the blood) could be
ameliorated by chronic E2; and the possible role of
the up-regulation of ER-beta in these reactions cannot
be ruled out. It should be noted, however, that estro-
gens also have a direct free radical scavenging effect
via their phenolic A-ring,33 a glutathione increasing
effect,34 and a direct modulatory action on NADPH
activity.35 Antioxidant effects of E2 may also be
related to its influence on NFkB signaling36 and
the up-regulating of Nrf2.37 As for the systemic effects,
the involvement of ER-alpha-related actions of E2 also
plays a role (in heart IR without IPC38), but discussion
of these reactions as well as those evoked by selective
estrogen modulators lies outside the scope of the
present study. As was suggested by Murphy and
Steenbergen, the shorter-term effects of E2 may be
caused by ER-alpha, whereas longer-term effects may
be mediated mainly through ER-beta.39 Moreover,
ER-independent effects of E2 in this study should not
be ruled out either. It should be mentioned that the

periosteal expression of ERs has not yet been exam-
ined in humans, but in the cortical and trabecular
bone tissue, both ER proteins can be detected (via
immunohistochemistry) with a different density dur-
ing bone development.40 It appears that only the
ER-beta mRNA expression was examined in the tibial
periosteum in the rat41 and here we were unable to
detect any ER-alpha mRNA expression of in the
periosteum. This might mean that ER-alpha mRNA
expression is not detectable in the periosteum. How-
ever, the translation of our present findings (the
absence of periosteal ER-alpha mRNA expression) to
the human situation requires further in-depth investi-
gation.

Systemic inflammatory parameters also displayed
characteristic changes. That is, the IR-induced
increase in CD11b expression of circulating PMNs (a
marker of their activation) was reduced by IPC only in
sham-operated animals, but not in those with OVX.
This reaction was also reversed by E2. The PMN-
derived CD11b expression was likewise reduced by E2
in vitro42 and in trauma-hemorrhagic shock43 as well
as in levels of some of other adhesion molecules such
as the E-selectin.44 We have not come across any
studies that investigated the effect of IPC in OVX
animals from the viewpoint of adhesion molecule
expressions. In the present study, whole blood free
radical content was significantly increased in all
groups. In the Shamþ IR and OVXþ IR groups, local
(periosteal) and systemic inflammatory reactions had a
slightly different timeframe, since IVM data revealed
increased PMN rolling and adhesion after 60min of
reperfusion (indicating an early activation of the
affected endothelium and a simultaneous availability
of primed leukocytes), but the superoxide levels dis-
played later changes (occurring after 120min). The
background of this phenomenon is not yet under-
stood, but since increased CD11b expression in
peripheral leukocytes also occurred at later stages of
reperfusion (after 120min), the contribution of other
elements (e.g., activated macrophages) to the in-
creased superoxide production may be assumed.
Interestingly, IPC failed to induce any amelioration
in whole blood free radical production, and further-
more, it induced an earlier increase in this parame-
ter in both sham-operated and OVX groups. It should
also be mentioned that this increase was not present
in the E2-treated group. Actually, free radicals are
known to play a role in the pathomechanism of IPC
because their accumulation could be detected in vivo
and superoxide scavengers reversed the tissue pro-
tective effects of IPC.45–46 ER-beta has been shown
elsewhere to be involved in reducing neutrophil
activation24 and the free radical reducing effect of E2
was also highlighted.47 Interestingly, levels of one of
the central regulators of inflammation TNF-alpha
were not influenced by IPC. Quite surprisingly,
the phenomenon observed in humans48 indicating
increased serum TNF-alpha levels after OVX could
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not be confirmed in the present study (i.e., the
baseline TNF-alpha values were not dissimilar after
OVX), and even slightly lower values were found in
all of the OVX animals (after 120min of reperfusion).
These differences might be the result of interspecies
differences or changes in the immunological
responses seen after OVX (which are outside the
scope of the present study). TNF-alpha release has
been shown to be reduced by E2 in numerous studies
(with or without OVX),23,49 even in male patients.50

In this respect, the changes induced by reperfusion
or IPCþ IR have yet to be compared in OVX studies
elsewhere. Here, the lowest postischemic values were
found after applying E2 (although not attaining any
statistical significance due to the relatively high data
dispersion). This parameter together with reduced
CD11b expression and the slower postischemic in-
crease in superoxide production represent manifesta-
tions of the alleviated systemic inflammatory
reactions after E2 supplementation.

CONCLUSIONS
In our study, we found that the beneficial periosteal
microcirculatory effects of local limb IPC vanished
after OVX in rats. These observations suggest that in
postmenopausal females during orthopedic-trauma
interventions, the efficacy of limb IPC in preventing
the inflammatory complications of tourniquet ischemia
might be limited. This conclusion is strengthened by
our findings which show that E2 supplementation
reversed these changes by alleviating the local and
systemic inflammatory reactions. Based on our previ-
ous and present findings in rats, some of the alleviat-
ing effects of E2 seen here might be independent of its
effects on IPC and may be linked to those seen with
periosteal ER-beta expression. The clinical significance
of this finding, however, remains to be elucidated.
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Microcirculatory consequences of limb
ischemia/reperfusion in ovariectomized
rats treated with zoledronic acid
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Abstract

Background: Nitrogen-containing bisphosphonates (BIS) are potent therapeutics in osteoporosis, but their use may
result in osteonecrotic side-effects in the maxillofacial region. Periosteal microcirculatory reactions may contribute to
the development of bone-healing complications, particularly in osteoporotic bones, where ischemia–reperfusion (IR)
events often develop during orthopaedic/trauma interventions. The effect of BIS on the inflammatory reactions of
appendicular long bones has not yet been evaluated; thus, we aimed to examine the influence of chronic zoledronate
(ZOL) administration on the periosteal microcirculatory consequences of hindlimb IR in osteopenic rats.

Materials and methods: Twelve-week-old female Sprague–Dawley rats were ovariectomized (OVX) or sham-operated,
and ZOL (80 μg/kg iv, weekly) or a vehicle was administered for 8 weeks, 4 weeks after the operation. At the end of the
pre-treatment protocols, 60-min limb ischemia was induced, followed by 180-min reperfusion. Leukocyte-endothelial
interactions were quantitated in tibial periosteal postcapillary venules by intravital fluorescence videomicroscopy.
CD11b expression of circulating polymorphonuclear leukocytes (PMN, flow cytometry) and plasma TNF-alpha
levels (ELISA) were also determined. Two-way RM ANOVA followed by the Holm–Sidak and Dunn tests was used
to assess differences within and between groups, respectively.

Results: Limb IR induced significant increases in PMN rolling and firm adhesion in sham-operated and OVX rats,
which were exacerbated temporarily in the first 60 min of reperfusion by a ZOL treatment regimen. Postischemic
TNF-alpha values showed a similar level of postischemic elevations in all groups, whereas CD11b expression only
increased in rats not treated with ZOL.

Conclusions: The present data do not show substantial postischemic periosteal microcirculatory complications
after chronic ZOL treatment either in sham-operated or OVX rats. The unaltered extent of limb IR-induced local
periosteal microcirculatory reactions in the presence of reduced CD11b adhesion molecule expression on circulating
PMNs, however, may be attributable to local endothelial injury/activation caused by ZOL.

Keywords: Bisphosphonate, Periosteum, Inflammation, Intravital microscopy, Leukocytes

Introduction
Osteoporosis affects more than 75 million people world-
wide [1], with every other woman and every fifth man over
50 years suffering an osteoporotic fracture of the extrem-
ities during her or his remaining lifetime [2]. Ischemia–re-
perfusion (IR) often takes place in the affected tissue, e.g.
due to use of a tourniquet or other temporary occlusive

devices and techniques during trauma surgeries. In these
cases, IR can lead to unwanted complications through the
development of an antigen-independent inflammatory
process, which involves the activation and adhesion of
polymorphonuclear (PMN) leukocytes in the periosteal
endothelium [3] and the upregulation of several
danger-associated molecular pattern-related pathways in
the locally affected and contralateral limbs as well [4]. Pro-
inflammatory cytokines (e.g. TNF-alpha, IL-1 and IL-6)
typically reach peak values after fracture operations [5],
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and it is suggested that these proinflammatory reactions
may critically influence the process of bone regeneration.
Bisphosphonates (BISs) are potent therapeutic agents

that ameliorate the osteoporosis-induced decrease of
bone mineral density [2, 6]. Further, it has been shown
that the risk of osteoporotic fractures can be reduced, in
particular with the use of zoledronic acid (ZOL) [2, 7].
Nevertheless, BIS-induced unwanted, necrotic reactions
may also be present in the skeletal system. Specifically,
chronic BIS treatment can effectively enhance the in-
corporation of bone implants in appendicular bones [8,
9], but the likelihood of osteonecrotic complications also
increases in parallel at the jaw bones [2, 10, 11]. The in-
cidence of necrosis is especially high in the mandible
after oral surgical interventions, leading to a condition
termed medication-related osteonecrosis of the jaws. An
exact pathogenesis of this complication is still un-
known, but it seems to affect the appendicular and
axial bones differently [12, 13]. Previously, we have
also shown that BISs can induce significant inflamma-
tory reactions in the mandibular periosteum after
tooth extractions, while the microcirculation in the
tibial region remained unaffected [14].
The aim of the present study was to examine the ef-

fects of chronic BIS treatment on the postischemic peri-
osteal microcirculatory changes of the lower extremities.
To our knowledge, the possible modulator role of BIS
on the inflammatory reactions of the appendicular bones
disposed to IR injuries has not yet been evaluated. Based
on the relevant literature data and our previous results,
our null hypothesis was that ZOL treatment does not in-
fluence the periosteal microcirculatory reactions of tran-
sient limb IR. We tested this hypothesis in a clinically
relevant model of osteoporosis where anaesthetized rats
were challenged with standardised limb IR in the pres-
ence or absence of chronic ZOL treatment.

Materials and methods
All studies were carried out on Sprague–Dawley rats
housed in an environmentally controlled room with a
12-h light–dark cycle. The animals were kept on com-
mercial rat chow (Charles River, Wilmington, MA, USA)
and tap water ad libitum.
The project was approved by the National Scientific

Ethics Committee on Animal Experimentation (National
Competent Authority) under licence number V./144/
2013. The study was performed in compliance with EU
Directive 2010/63/EU on the protection of animals used
for experimental and other scientific purposes and the
National Institutes of Health guidelines on the use of ex-
perimental animals. Animal welfare-related assessments
and interventions were carried out prior to and during
the experiments.

Experimental protocol
Ovariectomy
Ovariectomy (OVX) is a well-established animal model of
osteoporosis sharing many similarities with the human
condition including increased rate of bone turnover, rela-
tively rapid bone loss and most importantly, similar skel-
etal responses to treatments used in humans (e.g.
oestrogen, calcitonin and BISs) [15, 16]. In our study,
12-week-old female rats (weighing 180 to 200 g) were
randomly allocated to ovariectomized (N = 32) or
sham-operated (N = 30) groups under anaesthesia admin-
istered intraperitoneally by a combination of ketamine
and xylazine (25mg kg−1 and 75mg kg−1, respectively). As
conditions were sterile, a median laparotomy was per-
formed and the connection of the Fallopian tubes cut be-
tween haemostats. The ovaries were then removed and
the stumps ligated with a 3-0 non-absorbable thread (Ethi-
bond Excel®, Ethicon, Somerville, NJ, USA). Thereafter,
the abdomen was filled with warm sterile physiological sa-
line, and the abdominal wall was closed with a 4-0 absorb-
able suture and a 4-0 non-absorbable suture (Vicryl® and
Prolene®, Ethicon, Somerville, NJ, USA) in two layers.
Sham-operated animals underwent identical procedures,
except of course that the Fallopian tubes and ovaries were
not touched.

Experimental protocol, experimental groups
Five weeks after OVX (i.e. at 17 weeks of age) (see Fig. 1),
a chronic zoledronate treatment was initiated in 16 ani-
mals (OVX + BIS group) with 14 of the sham-operated
animals serving as negative controls (Sham + BIS group).
ZOL (80 μg kg−1 Zometa®, Novartis Europharm, Budapest,
Hungary) was administered once a week intravenously
into the tail vein under light aether anaesthesia. The
remaining OVX and sham-operated animals received
physiological saline in the same volume (OVX + vehicle
and sham + vehicle groups, n = 16 each). These weekly in-
jections were continued for 4 weeks. At the end of the ex-
perimental protocol (in week 21), all of the animals were
subjected to a 60-min complete hindlimb ischemia
followed by a 180-min reperfusion period. Limb ischemia
was induced by applying a tourniquet around the thigh
and placing a miniclip on the femoral artery. The ex-
periments were performed in two experimental series.
In series 1, the periosteal microcirculation was exam-
ined using fluorescence intravital microscopy (IVM) at
baseline and every 60 min during the 180-min reperfu-
sion period (n = 7–9 per group). In the second experi-
mental series, blood samples from the carotid artery
were taken at baseline and during the reperfusion
period to detect changes in the plasma concentrations
of TNF-alpha and in the expression of the adhesion
molecule CD11b (n = 7 in each group). It was necessary
to separate the two series to avoid any interference
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between the fluorescent dyes used for IVM and acquisi-
tion techniques used with flow cytometry.

Surgical procedure for intravital microscopic examination of
the periosteal microcirculation
The animals were anaesthetized intraperitoneally with
an initial dose of sodium pentobarbital (45 mg kg−1).
After tracheal intubation, one of the jugular veins was
also cannulated to administer fluid and drugs (supple-
mentary dose of sodium pentobarbital, 5 mg kg−1). Dur-
ing the surgical procedures and investigation, the rats
were placed in a supine position on a heating pad to
maintain body temperature at 36–37 °C.
Under an operating microscope at × 4 magnification,

the anteromedial surfaces of the tibial periosteum and the
femoral artery on the same hindlimb were exposed with
an atraumatic microsurgical technique [3]. The limbs were
positioned horizontally on a special stage to expose peri-
osteal vessels suitable for intravital fluorescence micros-
copy (IVM) in different phases of the experiment. At the
end of the experiment, the animals were sacrificed with an
overdose of sodium pentobarbital.

Intravital video microscopy
Leukocyte−endothelial cell interactions are decisive
events among the complications of IR injury. After an
initial low affinity interaction (i.e. rolling), a higher affin-
ity binding (firm adhesion) takes place between the
PMN and the endothelial surface. These dynamic cellu-
lar reactions can be detected in real time using IVM. In
our model, the tibial periosteum was superfused with 37
°C saline, and the microcirculation was visualised by
IVM (Zeiss Axiotech Vario 100HD microscope; Carl
Zeiss GmbH, Jena, Germany, 100-W HBO mercury

lamp, Acroplan 20x water immersion objective). Fluores-
cein isothiocyanate-labelled erythrocytes (0.2ml intraven-
ously; Sigma, St. Louis, MO, USA) were used to stain red
blood cells, and rhodamine-6G (0.2%, 0.1 ml intraven-
ously; Sigma, St. Louis, MO, USA) was used to label leu-
kocytes [3]. The images from three to four fields of the
tibial periosteum were recorded with a charge-coupled de-
vice video camera (Teli CS8320Bi, Toshiba Teli Corpor-
ation, Osaka, Japan), which is attached to an S-VHS video
recorder (Panasonic AG-MD 830; Matsushita Electric In-
dustrial Co., Tokyo, Japan) and a personal computer.

Video analysis
Quantitative evaluation of the microcirculatory parame-
ters was performed offline by frame-to-frame analysis of
the videotaped images (IVM; Pictron, Budapest,
Hungary). Leukocyte–endothelial cell interactions were
analysed in at least four postcapillary venules per rat.
Rolling leukocytes were defined as cells moving with a
velocity of less than 40% of that of the erythrocytes in
the centreline of the microvessel passing through the ob-
served vessel segment within 30 s and are given as the
number of cells per millimetres per second. Adherent
leukocytes were defined as cells that did not move or de-
tach from the endothelial lining within an observation
period of 30 s and are given as the number of cells per
square millimetre of endothelial surface, calculated from
the diameter and length of the vessel segment [17].

Biochemical measurements
Immune labelling and flow cytometric analysis of CD11b
expression of neutrophil leukocytes
Leukocyte–endothelial cell interactions are dependent
upon simultaneously increased expression of adhesion

Fig. 1 Time sequence of interventions and treatments. Rats were sham-operated or ovariectomized (OVX) at the age of 12 weeks. Five weeks
later (on week 17), chronic bisphosphonate (BIS, once a week in a dose of 80 μg kg−1 in the tail vein) or saline vehicle (Veh) treatment
was initiated. At the end of the protocol (week 21), 60 min of limb ischemia followed was induced by 180 min reperfusion (IR), and
periosteal microcirculatory measurements by fluorescence intravital microscopy (IVM; series 1, n= 7–9) were conducted as well as sampling for leukocyte
adhesion molecule CD11b expression and serum TNF-alpha measurements (series 2, n= 7 each)
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molecules on the surfaces of PMNs and those of the ac-
tivated endothelia. The firm adhesion step is mediated
by PMN-derived ß2 integrins (i.e. CD11a, b, c/CD18)
which bind to various integrin receptors (intercellular
adhesion molecules-1 and intercellular adhesion
molecules-2 and vascular adhesion molecule-1) of the
endothelium [18]. An increased expression of CD11b on
PMNs in the systemic circulation can be detected after
limb IR [3]. In the present study, these changes were de-
termined from the peripheral blood by flow cytometry in
duplicate samples. One hundred microlitres of whole
blood was incubated with 20 μl of FITC-conjugated
mouse anti-rat CD11b monoclonal antibody (BD Phar-
mingen, San Jose, CA, USA) for 20 min. Negative con-
trols were obtained by omitting the antibody. The cells
were then washed twice in Hanks’ buffer and centrifuged
for 5 min at 13,500 rpm, and the pellet was resuspended.
The erythrocytes were lysed with a lysing kit (Biodesign,
Saco, ME, USA), after which the cells were washed twice
again (5 min, 6000 rpm) and resuspended in 750 μl of
Hanks’ buffer. Computer-assisted FACStar Plus Becton
Dickinson equipment was used for cytometry; the granu-
locytes were gated on the basis of their characteristic
forward and side-scatter features. Generally, 10,000
events per sample were collected and recorded; the per-
centage of labelled (activated) granulocytes (relative to
the overall marker-bearing cells) and the mean fluores-
cence intensity (average marker density) were calculated.

Detection of plasma level of TNF-alpha levels
The rest of the blood samples (0.5 ml) were centrifuged
for 5 min at 4 °C at 13,500 rpm and then stored at 70 °C
until assay. Plasma TNF-apha concentrations were deter-
mined in duplicate with a commercially available ELISA
kit (Quantikine ultrasensitive ELISA kit for rat
TNF-alpha; R&D Systems Inc., Minneapolis, MN, USA).
The minimum detectable level was less than 5 pgml-1,
and the inter-assay and intra-assay coefficients of vari-
ation were less than 10%.

Statistical analysis
Data analysis was performed with a statistical software
package (SigmaStat for Windows, Jandel Corporation,
San Rafael, CA, USA) using nonparametric methods.
Two-way RM ANOVA followed by the Holm–Sidak and
Dunn tests was used to assess differences within and be-
tween groups, respectively. Data are presented as mean
value and SEM in all figures. P values < 0.05 were con-
sidered significant.

Results
Chronic ZOL treatment did not influence baseline
values of leukocyte–endothelial interactions in the peri-
osteal microcirculation (Fig. 2a, b). IR, however, induced

significant increases in both PMN rolling and adhesion
during the entire reperfusion period, and these changes
reached a similar level in sham-operated and ovariecto-
mized rats. BIS treatment caused a temporary increase
in leukocyte rolling in OVX + IR animals and, similarly,
an earlier rise in PMN adhesion in both sham + IR and
OVX+IR animals at 60 min of reperfusion but did not
influence PMN–endothelial interactions in later stages
of reperfusion.
As compared to baseline, TNF-alpha values showed

marked increases during the reperfusion period under
examination (Fig. 3). No differences could be traced
among the different experimental groups.
In comparison to baseline values, the amount of adhe-

sion molecule CD11b on the PMN surface significantly
increased in saline-treated sham-operated and OVX rats
during reperfusion (Fig. 4a, b). In animals that received
chronic BIS treatment, however, this elevation reached a
significantly lower level.

Discussion
BISs are effective medications for bone metastases and
osteoporosis and promising treatment modalities for
complex regional pain syndrome upon fracture healing
[19–21]. The use of ZOL has been shown to have a posi-
tive effect on spinal fusion [22] and to promote osseoin-
tegration and fixation of dental implants in autologous
bone grafts in osteoporosis [23]. The periapical
lesion-induced bone loss in the mandible was effectively
ameliorated [24], and osseointegration of titanium im-
plants in postmenopausal osteoporosis was promoted by
ZOL [9]. Furthermore, ZOL brought about periosteal
bone formation after tooth extraction in osteopenic
sheep [25]. ZOL treatment, however, also induced react-
ive periosteal hypertrophy and even BIS-related osteo-
necrosis of the jaw in the same osteopenic sheep model
[26]. Nevertheless, the effect of BIS on IR-induced local
and systemic inflammatory reactions has not been exam-
ined elsewhere in an osteopenic model.
It is noteworthy that both anti- and proinflammatory

effects have been attributed to different BIS compounds.
The anti-inflammatory aspects of BISs include upregula-
tion of the number of inflammatory monocytes [27],
modulation of the proliferation and the viability and
apoptosis of monocytes and macrophages [28, 29] and a
downregulation of proinflammatory cytokines, such as
TNF-alpha [30, 31], as well as other cytokines, such as
IL-1, IL-6 and neurogenic growth factor [20]. Similarly,
inhibitory effects of BIS against neurogenic inflammation
have also been reported [20]. On the other hand, an
acute phase response (< 3 days) was induced by different
BISs including ZOL with increased TNF-alpha release in
patients [32], but tissue accumulation of PMNs, in-
creased TNF-alpha release and marked oxidative stress
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were also demonstrated in other tissues, such as the gin-
giva [33] and the liver [34] in animal models. Further-
more, priming of immunological reactions was also
attributed to ZOL [35]. BISs cause ocular inflammatory
complications in some clinical cases [36] and healing
complications of the jawbones after invasive dental inter-
ventions even leading to osteonecrosis [10]. ZOL has
been shown to aggravate kidney damage (by increasing
cytokine production, metabolic acidosis and apoptosis)
during IR injury in rats [37].
Enhanced leukocyte–endothelial interactions have

been demonstrated after BIS treatment in an arthritis
model in mice, but little is known on the ZOL-induced
periosteal microcirculatory reactions [38]. Previously, we
demonstrated that chronic BIS treatment induces some

level of microcirculatory inflammation in the mandible,
but such effects were not observed in the tibial perios-
teum [14]. Therefore, in this study, we tested the effect
of chronic ZOL treatment in a tourniquet-induced limb
ischemia model, where the role of PMN–endothelial in-
teractions in the development of postischemic microcir-
culatory inflammatory reactions is well established.
Here, we have shown that the reduced endogenous
oestrogen levels evoked by OVX do not predispose to
enhanced periosteal microcirculatory complications per
se [39, 40], with the results also demonstrating that,
apart from temporary exacerbation of PMN–endothelial
interactions at the early stages of reperfusion, no major
microcirculatory inflammatory risk could be detected
after chronic ZOL treatment. Oestrogen withdrawal in-
duces a release of TNF-alpha, which is involved in the
pathomechanism of osteoporotic bone loss in women
[41]; but here, we did not demonstrate between-group
differences in TNF-alpha levels in the postischemic
phase. Nevertheless, unlike humans, where increased
serum TNF-alpha levels after OVX have been observed
[42], we did not detect any differences between the base-
line TNF-alpha levels between the different experimental
groups. It should be noted that serum levels of
TNF-alpha are rather low in rats and baseline values
were close to the detection limit of the assay.
CD11b expression is a critical step for PMN adhesion to

activated endothelial cells, and we detected a reduced
IR-induced systemic PMN-derived CD11b expression
after ZOL administration. BISs have been shown to influ-
ence PMN functions which manifested in impaired PMN
chemotaxis and reactive oxygen species producing cap-
acity in vivo [43] and reduced myeloperoxidase and
NADPH oxidase activities in vitro [44, 45]. The inhibitory

Fig. 2 Changes in leukocyte rolling (a) and adhesion (b) in the tibial periosteal postcapillary venules in response to 60 min of tourniquet ischemia
(IR) followed 60, 120 and 180min of reperfusion in sham-operated (sham) and ovariectomized (OVX) rats treated with bisphosphonate (BIS) or a
saline vehicle. Here, data values are given as means ± SEM, and *P < 0.05 vs baseline. Two-way RM ANOVA was followed by the Holm–Sidak and
Dunn post hoc tests

Fig. 3 TNF-alpha levels in plasma samples at baseline and in response
to 60 min of limb ischemia followed by 120 and 180 min of
reperfusion (IR) in sham-operated (sham) and ovariectomized (OVX)
rats treated with bisphosphonate (BIS) or a saline vehicle. Here, data
values are given as means ± SEM, and *P < 0.05 vs baseline. Two-way
RM ANOVA was followed by the Holm–Sidak post hoc test
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effect of BIS was also demonstrated in other immune
cells such as macrophages [30]. In our study, ZOL re-
duced CD11b expression on the surface of circulating
PMNs but did not influence the overall adhesion of
PMNs in the periosteal postcapillary venules. This
finding can only be explained by some degree of
ZOL-induced endothelial activation and secondary
endothelium-derived adhesion molecule expression.
This possible ZOL-induced endothelial upregulation
of adhesion molecules (the endothelial counterparts of
CD11b) which might be responsible for the present
results should be further investigated.
Among other effects, BISs are known to inhibit vascu-

lar endothelial proliferation and to upregulate cellular
apoptosis [46]. Furthermore, BISs (alendronate) have
also been shown to inhibit nitric oxide synthase expres-
sion, which is an important endogenous modulator of
PMN–endothelial interactions [47]. These ZOL-induced
acute postischemic reactions affecting the endothelium
may also warrant further in-depth investigations.
In summary, BIS treatment exerted only a minor in-

fluence on limb IR-induced PMN rolling and
adhesion in the periosteum, and the PMN-derived ad-
hesion molecule (CD11b) expression on circulating
PMNs was even reduced. Further, no effect on postis-
chemic TNF-alpha release was demonstrated in
ZOL-treated rats. These results suggest that although
some level of local endothelial activation might be at-
tributable to the treatment, chronic ZOL administra-
tion does not have a major influence on the risk of
postischemic inflammatory microcirculatory complica-
tions in the tibial periosteum.
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