
1 

 

Cardioprotection with inorganic nitrites; potential mechanisms with 

particular reference to changes in mitochondrial morphology and function 

 

 

PhD Thesis 

Vivien Demeter-Haludka 

 

 

 

Supervisor: Prof. Dr. Ágnes Végh 

 

Department of Pharmacology and Pharmacotherapy 

Albert Szent-Györgyi Medical Centre 

Doctoral School of Multidisciplinary Medical Science 

University of Szeged 

Hungary 

 

 

 

 

 

2019 



2 

 

LIST OF PUBLICATIONS 

 

Full papers related to the Thesis 

 

I. Demeter-Haludka V, Juhasz L, Kovacs M, Gardi J, Vegh A Is there a role of iNOS 

activation in the delayed antiarrhythmic effect of sodium nitrite? CANADIAN JOURNAL 

OF PHYSIOLOGY AND PHARMACOLOGY 95:(4) pp. 447-454.-2017 IF: 2.21 

II. Demeter-Haludka V, Kovács M, Petrus A, Patai R, Muntean DM, Siklós L, Végh Á 

Examination of the role of mitochondrial morphology and function in the cardioprotective 

effect of sodium nitrite administered 24 h before Ischemia/reperfusion injury FRONTIERS 

IN PHARMACOLOGY 9:(MAR) Paper 286.-2018 IF: 3.83 

 

 

  

Full papers not related to the Thesis 

III. Végh Á, Demeter-Haludka V, Kovács M, Miskolczi G Szívvédelem szervetlen 

nitrátokkal CARDIOLOGIA HUNGARICA 47:(Suppl.G) pp. G56-G63.-2017 

IV. Juhasz Laszlo, Haludka Vivien Demeter, Seprenyi Gyorgy, Kaszaki Jozsef, Gardi 

Janos, Vegh Agnes Acute inhibition of monoamine oxidase with pargyline does not modify 

the severity of ischemia and reperfusion-induced ventricular arrhythmias in dogs 

EXPERIMENTAL AND CLINICAL CARDIOLOGY 19:(1) pp. 1-7.-2013 

Abstract for oral presentation 

 

V. Demeter-Haludka V, Kovács M, Petrus A, Patai R, Siklós L, Muntean D, Végh Á A 

nátrium-nitrit mitokondriális morfológiára és kálcium szintre gyakorolt késői hatása 

altatott kutyamodellben. (Changes in mitochondrial morphology and calcium 24h after 

sodium nitrite administration in anaesthetized dogs) CARDIOLOGIA HUNGARICA 

47:(Suppl.C) pp. C36-C37.A Magyar Kardiológusok Társasága 2017. Évi Tudományos 

Kongresszusa. Balatonfüred, Magyarország: 2017.05.11 -2017.05.13.-2017 



3 

 

VI. Demeter-Haludka V, Kovács M, Petrus A, Patai R, Siklós L, Muntean D, Végh Á A 

nátrium-nitrit késői hatása a mitokondriális funkcióra és morfológiára altatott kutya 

iszkémia/reperfúzió modellben. (Delayed protective effects of sodium nitrite on 

mitochondrial function and morphology in anaesthetized canine model of ischaemia and 

reperfusion) CARDIOLOGIA HUNGARICA 46:(Suppl.F) pp. F35-F46. Magyar 

Kardiológusok Társaságának Kongresszusa. Balatonfüred, Magyarország: 2016.05.05 -

2016.05.07.-2016 

VII. Demeter-Haludka V, Juhász L, Seprényi Gy, Végh Á A nátrium-nitrit késői 

hatásának vizsgálata a koszorúér-okklúzió és reperfúzió kiváltotta korai kamrai 

ritmuszavarokra altatott kutyamodellben (Administration of sodium nitrite produces 

delayed antiarrhythmic effects in anaesthetized dogs) CARDIOLOGIA HUNGARICA 

45:(Suppl. D) p. D30.-2015 

 
 

Abstract for poster presentation 

VIII. Demeter-Haludka V, Kovács M, Petrus A, Muntean D, Nagy N, Varró A, Végh Á The 

effect of sodium nitrite on the calcium homeostasis of the cell In: Ravingerova T, Farkasova 

V, Slezak J (szerk.) Advances in Cardiovascular Research: From basic mechanisms to 

therapeutic strategies. Konferenciahelye, ideje: Smolenice, Szlovákia, 2018.05.23-

2018.05.26. Bratislava :2018. p. 72. (ISBN:9788022416498) 5th European Section Meeting 

of the International Academy of Cardiovascular Sciences (IACS-ES)-2018 

 

IX. Demeter-Haludka V, Kovács M, Petrus A, Patai R, Siklós L, Muntean D, Végh Á 

Altered mitochondrial morphology and function involved in the delayed antiarrhythmic 

effect of sodium nitrite in anaesthetized dogs. CURRENT RESEARCH: CARDIOLOGY - 

EXPERIMENTAL CLINICAL 3:(3) p. 106. 3rd European Section Meeting of the 

International Academy of Cardiovascular Sciences (IACS-ES). Marseille, Franciaország: 

2016.10.01 -2016.10.04.-2016 

Other oral and poster presentations 

X. Gazdag P, Hartai T, Demeter-Haludka V, Ördög B, Oravecz K, Nagy N, Acsai K, Barta 

B, Oláh A, Radovits T, Merkely B, Papp J Gy, Varró A, Prorok J Characterization of 

http://www.isbnsearch.org/isbn/9788022416498


4 

 

changes in Ca2+ handling and contractile function in a rat model of exercise-induced cardiac 

hypertrophy In: Ravingerova T, Farkasova V, Slezak J (szerk.) Advances in Cardiovascular 

Research: From basic mechanisms to therapeutic strategies. Konferenciahelye, ideje: 

Smolenice, Szlovákia, 2018.05.23-2018.05.26. Bratislava: 2018. p. 78. 

(ISBN:9788022416498) 5th European Section Meeting of the International Academy of 

Cardiovascular Sciences (IACS-ES)-2018 

XI. Prorok J, Gazdag P, Oravecz K, Hartai T, Demeter-Haludka V, Ördög B, Acsai K, 

Barta BA, Oláh A, Radovits T, Merkely B, Papp J Gy, Nagy N, Varró A Az intenzív edzés 

hatására kialakult változások jellezmése szív hipertrófiás patkánymodell Ca2+ háztartásában 

és kontraktilis funkciójában. (Characterisation of excersize-induced changes in Ca2+ 

handling and contractile function in a rat model of cardiac hypertrophy) CARDIOLOGIA 

HUNGARICA 48:(Suppl.C) p. C43. (2018) Magyar Kardiológusok Társasága 2018. Évi 

Tudományos Kongresszusa. Balatonfüred, Magyarország: 2018.05.10 -2018.05.12.-2018 

 

http://www.isbnsearch.org/isbn/9788022416498


5 

 

TABLE OF CONTENTS 

LIST OF PUBLICATIONS ....................................................................................................... 2 

TABLE OF CONTENTS ........................................................................................................... 5 

SUMMARY .............................................................................................................................. 8 

1. INTRODUCTION.............................................................................................................. 10 

1.1 The pathomechaisms of the generation of ventricular arrhythmias after coronary artery 

occlusion ........................................................................................................................................... 10 

1.1.2. The role of mitochondria in the arrhythmogenesis ................................................................ 11 

1.2 The role of nitrites and nitrates in the treatment of coronary artery diseases .......................... 12 

1.2.1. The role of nitric oxide in the antiarrhythmic effect of preconditioning ................................. 13 

1.2.2. The cardioprotective effect of the inorganic sodium nitrite ................................................... 14 

2. AIMS ................................................................................................................................... 16 

3. MATERIALS AND METHODS ...................................................................................... 17 

3.1 Ethics ........................................................................................................................................... 17 

3.2 Animals and housing ................................................................................................................... 17 

3.3 Surgical interventions and in vivo measurements ...................................................................... 17 

3.4 Determination of the area at risk (AAR) ..................................................................................... 19 

3.5 In vitro measurements ................................................................................................................ 19 

3.5.1 Determination of iNOS enzyme activity ................................................................................... 19 

3.5.2. Determination of plasma nitrite/nitrate (NOx) concentrations .............................................. 19 

3.5.3. Assessment of changes in mitochondrial morphology............................................................ 20 

3.5.4. Assessment of the mitochondrial respiration ......................................................................... 20 

3.5.5. Measurement of ATP production ............................................................................................ 21 

3.5.6. Determination of the superoxide levels .................................................................................. 21 

3.5.7. Assessment of the peroxynitrite formation ............................................................................. 22 

3.6 Statistical Analysis ....................................................................................................................... 22 

3.7 Experimental Protocol ................................................................................................................ 23 

4. RESULTS ........................................................................................................................... 25 

4.1. Examination of the delayed antiarrhythmic effects of sodium nitrite; the role of iNOS 

activation (Study I) ............................................................................................................................ 25 

4.1.1. Haemodynamic effects of saline, NaNO2, AEST, NaNO2+AEST and coronary artery occlusion

 .......................................................................................................................................................... 25 

4.1.2. The severity of ventricular arrhythmias during a 25 min occlusion of the LAD ...................... 26 

4.1.3. Changes in the severity of ischaemia during a 25 min occlusion of the LAD .......................... 27 

4.1.4. The effect of NaNO2 on the area at risk .................................................................................. 28 



6 

 

4.1.5. Changes in plasma nitrate/nitrite (NOx) levels ....................................................................... 29 

4.1.6. The effect of nitrite on iNOS activity ....................................................................................... 30 

4.2 Examination of the role of mitochondria in the delayed cardioprotective effect of sodium 

nitrite (Study II) ................................................................................................................................. 30 

4.2.1. Alterations in the mitochondrial morphology following I/R and nitrite administration ......... 30 

4.2.2. Changes in mitochondrial respiration following I/R and nitrite administration ..................... 33 

4.2.3. The effect of sodium nitrite on the mitochondrial ATP production ......................................... 34 

4.2.4. The effect of NaNO2 on the superoxide and peroxynitrite production during reperfusion ..... 34 

4. DISCUSSION ..................................................................................................................... 36 

NEW FINDINGS ..................................................................................................................... 45 

REFERENCES ........................................................................................................................ 46 

ANNEX.................................................................................................................................... 58 

 



7 

 

LIST OF ABBREVIATIONS 

 

3-NT   3-nitrotyrosine 

ABP     Arterial blood pressure 

ADP   Adenosine 5’-diphosphate 

ATP   Adenosine 5’-triphosphate 

CI   Mitochondrial respiratory chain complex I 

CII   Mitochondrial respiratory chain complex II 

CytC  Cytochrome c 

DABP   Diastolic arterial blood pressure 

DHE  Dihydroethidium 

eNOS  Endothelial nitric oxide synthase 

ETS   Electron transport system 

FCCP   Carbonyl cyanide p-(trifluoro-methoxy) phenyl-hydrazone 

HR   Heart rate 

I/R  Ischaemia and reperfusion 

IMF   Inter-myofibrillar 

iNOS  Inducible nitric oxide synthase 

LAD   Left anterior descending coronary artery 

LV   Left ventricle 

LVEDP    Left ventricular end-diastolic pressure 

LVSP   Left ventricular systolic pressure 

MPTP   Mitochondrial permeability transition pore 

OXPHOS Oxidative phosphorylation 

PN   Perinuclear 

RCR   Respiratory control ratio 

RLU    Relative luminescence unit 

ROS   Reactive oxygen species 

SNO   S-nitrosylation 

SSM   Sub-sarcolemmal 

SUIT protocol Substrate-uncoupler-inhibitor titration (SUIT) protocol 

VF  Ventricular fibrillation 

VPBs  Ventricular premature beats 

VT  Ventricular tachycardia 



8 

 

SUMMARY 

Ventricular tachyarrhythmias and sudden cardiac death (SCD), resulting from severe 

coronary artery disease, are one of the main causes of mortality worldwide. Over decades, 

attempts have been made on to reduce the ischaemia and reperfusion (I/R)-induced injury, 

and thereby its serious consequences. One of the first drugs that had been introduced to the 

therapy against anginal attacks was the organic nitrite and nitrates. These drugs, by releasing 

nitric oxide (NO), are able to increase NO bioavailability even under ischaemic conditions 

and protect the heart against the consequences of ischaemic injury, including the generation 

of severe ventricular arrhythmias. There is increasing evidence that a similar protection can 

be achieved by the inorganic nitrite and nitrate compounds. Nitrates and nitrites are the 

natural oxidative metabolites of NO, which are able to readily reduce back to NO, 

particularly under reductive conditions, such as hypoxia or ischaemia. It is proposed that they 

can serve as stores for NO, and increase the bioavailability of NO under ischaemic 

conditions, when the synthesis of NO by the nitric oxide synthase (NOS) enzymes has 

become limited. 

We have previous evidence that the infusion of sodium nitrite (NaNO2) in low (micro-molar) 

concentration, prior to coronary artery occlusion, or just prior to reperfusion in anaesthetized 

dogs, results in marked protection against the I/R-induced arrhythmias. The aim of the 

experiments, presented in the current Thesis, was to examine, whether sodium nitrite exerts a 

similar antiarrhythmic effect, when it is administered 24h before ischaemia and reperfusion. 

We have also examined the potential mechanisms, involved in this delayed antiarrhythmic 

protection. Thus, we have examined whether (I) changes in the inducible nitric oxide (iNOS) 

activity, and/or whether (II) alterations in mitochondrial morphology and function would play 

a major role in the late cardioprotective effect of NaNO2. 

I. In this series of experiments NaNO2 was infused in a concentration of 0.2 µmol kg-1 min-1 

24h before a 25 min coronary artery occlusion and reperfusion of the left anterior 

descending (LAD) coronary artery in anaesthetized dogs. We have shown that this 

concentration of NaNO2 markedly reduced the number and severity of ventricular 

arrhythmias during occlusion, and increased survival (0% vs. 50%) from the combined 

I/R insult. Furthermore, nitrite markedly attenuated the I/R-induced increase of the 

indices of the ischaemia severity, such as the epicardial ST-segment and in the degree of 

inhomogeneity of electrical activation. The results of the measurements of iNOS enzyme 

activation showed that the inhibition of iNOS activity with S-(2-aminoethyl)-isothiourea 
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(AEST; 2.0 mg kg-1, i.v.) completely abolished the nitrite-induced increase in iNOS 

activation, but it only attenuated the antiarrhythmic effect of NaNO2. Thus our conclusion 

was that NaNO2 protects the myocardium against the severe ventricular arrhythmias that 

results from a 25 min period of I/R, 24h later. Furthermore, it seems that in this 

antiarrhythmic effect, the activation of iNOS does not play a mandatory role, since the 

inhibition of iNOS by AEST only attenuates the protection against some types of I/R-

induced arrhythmias. 

II. In these experiments we have examined the role of changes in mitochondrial structure 

and function following nitrite administration in order to explore whether mitochondria are 

involved in the protective effect of nitrite. Therefore, we have determined the alterations 

in mitochondrial morphology, as well as of the changes in the respiratory parameters, 

ATP production and in the generation of reactive oxygen species (ROS) during I/R and 

following nitrite administration. 

The results show that the administration of NaNO2 prevented the I/R-induced changes in 

mitochondrial structure, 24h later. Furthermore, the infusion of sodium nitrite alone, and 

under conditions of ischaemia, depressed mitochondrial respiration (oxidative 

phosphorylation, ETC, respiratory control and P/E coupling ratios), without substantially 

modifying the rate of ATP production. Nitrite also reduced the generation of superoxide. 

We propose that nitrite has an effect on the mitochondria. It can preserve the structural 

integrity of the mitochondria, and by modifying the various elements of the mitochondrial 

respiratory chain that are responsible for ROS production, reduces the generation of ROS 

during I/R. Our hypothesis is that nitrite acts on the phosphorylation system, which is in 

turn suppresses the function of ROS producing complexes. This mechanism is certainly 

may contribute to the late antiarrhythmic effect of NaNO2. 
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1. INTRODUCTION 

Coronary artery diseases and its consequences, such as acute myocardial infarction, heart 

failure and the occurrence of serious, life-threatening ventricular arrhythmias, are the main 

causes of mortality worldwide (Finegold et al., 2013). According to the World Health 

Organisation surveys in 2017, ischaemic heart disease (IHD) is the first morbidity, before 

stroke and lower respiratory infections that are responsible for death (Global Health 

Estimates, 2018), and its incidence continuously increases (Global Burden of Disease 

Collaborative Network, 2017). In Hungary, compared to the world statistics, there is no 

substantial difference; the main cause of death is IHD, before the cerebrovascular diseases 

and lung cancer (Global Burden of Disease Collaborative Network, 2017). 

The high risk of IHD for mortality, and particularly for sudden cardiac death from fatal 

ventricular fibrillation, urged to develop new strategies for preventing and treating the severe 

consequences of IHD. In the last decades the development of the invasive and non-invasive 

surgical interventions, novel drugs and some other non-drug related treatments (e.g. 

ischaemic preconditioning) are promising approaches to reduce the generation of the 

ischaemia-induced life-threatening ventricular arrhythmias, and consequently to decrease the 

morbidity and mortality caused by IHD. 

1.1 The pathomechaisms of the generation of ventricular arrhythmias after coronary 

artery occlusion 

Following a sudden coronary artery occlusion, the acute arrhythmias occur in two phases, 

termed as phase 1A and phase 1B (Kaplinsky et al., 1979). The phase 1A arrhythmias usually 

appear between the 3 and 8 min of the occlusion that is followed by an arrhythmia free 

period, whereas the phase 1B arrhythmias can be observed between the 15-30 min of the 

ischaemia. These 1B phase of arrhythmias are frequently terminate in ventricular fibrillation 

(deGroot et al., 2001). The acute arrhythmia phase is difficult to assess under clinical 

conditions, since they usually appear and terminate before the patient reaches the hospital. 

The mechanism of the two phases of the acute arrhythmias is different. It is proposed that 

sudden occlusion of a coronary artery leads to an imbalance between oxygen supply and 

demand of the myocardium distal to the occlusion site, and results in a rapid shift from 

aerobic to anaerobic metabolism. The impairment of glycolysis, the Szent-Györgyi-Crebs 
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cycle and the ATP production, as well as a drop in pH, modifies the function of ion channels, 

resulting in an increase in the intracellular Na+ and in the efflux of K+. These ionic alterations 

lead to changes in action potential morphology and the spread of impulse (Janse et al., 1986; 

Kléber et al., 2000), and can be served as underlying mechanisms of functional re-entry and 

the generation of the phase 1A arrhythmias (Janse et al., 1986, Kléber et al., 1987). 

The mechanisms of the phase 1B arrhythmias are different. Among others, changes in the 

metabolic and electrical coupling between the cells may play an important role in the genesis 

of the 1B phase of the arrhythmias (Végh et al., 2011). In this phase of arrhythmias 

preservation of gap junction (GJ) function upon the increase in calcium levels and 

catecholamines due to ischaemia, may have a protective role (Dekker et al., 1996, Lameris et 

al., 2000, Papp et al., 2007). There are many endogenous and exogenous substances which 

can modify GJ function (Dhein et al., 2004; Dhein et al., 2010), and thereby influencing the 

generation of arrhythmias during phase 1B. Among these, the most important for us is nitric 

oxide (NO), which has been shown, in several previous studies, that plays an important role 

as a trigger and mediator of preconditioning-induced protection against arrhythmias (Végh et 

al., 1992b, Végh and Parratt, 1996, Kis et al., 1999b). We have also evidence that NO is able 

to modify GJ function and thereby influence arrhythmia generation (Gönczi et al., 2009). 

1.1.2. The role of mitochondria in the arrhythmogenesis 

Mitochondria are abundant in the cardiomyocyte (approximately 30% of the cell volume) and 

responsible for vital functions such as ATP production. Several studies have been examined 

the role of mitochondria in the generation of arrhythmias. Two main underlying mechanisms 

are responsible for the generation of arrhythmias regarding the mitochondria: the sudden 

increase of reactive oxygen radicals (ROS) production and the changes in calcium handling. 

In the first few minutes of reperfusion a burst of ROS can be observed which are able to 

provoke arrhythmias (Manning et al., 1988). The attempts which targeted the suppression of 

this ROS burst or the use of mitochondria specific antioxidants are proved to be 

antiarrhythmic (Kónya et al., 1992; Cho et al., 2007). ROS are responsible for the 

impairment of cardiac excitability either directly via biochemical modification of the ion 

channels (Aggarwal et al., 2013; Kawakami et al., 1998) or indirectly through signal 

transduction (Shang et al., 2008). ROS can modify the cellular cation levels (Murphy et al., 

2009; Williams et al., 2013). Reactive oxygen radicals contribute to the appearance of an 

inward rectifying current during the first 10 minutes of ischaemia via modulating the energy 
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sensing ATP-sensitive potassium channels which can lead to action potential heterogeneity 

and arrhythmias (Sasaki et al., 2001). ROS can mediate the partial dissipation or collapse in 

mitochondrial membrane potential via modifying the mitoKATP channels and sarcKATP 

current and can be arrhythmogenic (O’Rourke et al., 2004; Aon et al., 2003). There is 

evidence that superoxide can disrupt the mitochondrial membrane potential, resulted in a 

phenomenon called ROS-induced ROS release which leads to the whole depolarization of the 

cardiomyocyte in the myocardium (Zorov et al., 2000; Zorov et al., 2006). Mitochondrial 

permeability transition pore (MPTP) can also be modified during ischaemia/reperfusion and 

cause arrhythmias since MPTP is responsible for the spreading of death signal (Halestrap et 

al., 2004). On the other hand, mitochondrial calcium overload can trigger ROS generation, 

open the MPTP, and release Cytochrome c which can be responsible for arrhythmia 

generation (Brookes et al., 2004). Mitochondrial calcium uniporter (MCU) as well as the 

mitochondrial sodium–calcium exchanger (mNCX) play an important role in the regulation 

of calcium influx and efflux (Laurita et al., 2008). 

1.2 The role of nitrites and nitrates in the treatment of coronary artery diseases 

Organic nitrites and nitrates were the first drugs that had been introduced in treatment of 

angina pectoris. Their discovery goes back to the 1870s, when people working in dynamite 

(glycerine-trinitrate) factory and suffering from the typical side-effects of nitro-glycerine 

(NTG), such as headache, flushing, vasodilatation, underwent medical investigation. As a 

result of this, it was recognized that the effects of NTG could be utilized for the prevention of 

symptoms of angina (Murrell, 1879). Since then, and still, NTG and the organic nitrates and 

nitrites are important part of the therapy of angina pectoris. The protective effects of nitrates 

and nitrites have been described in various experimental settings, moreover it was pointed out 

that the pharmacological effects are due to NO, which can release from these drugs 

undergoing both by enzymatic and non-enzymatic degradation (Miller et al., 2007). 

An important discovery in nitrite biology was the recognition that inorganic nitrites and 

nitrates, the end-products of nitrite metabolism, which had been considered as biologically 

inert molecules, can also form NO (Lefer, 2006). It has been recognised that these oxidative 

metabolites of NO can readily reduce back to NO in a reductive milieu, such as anoxia, 

hypoxia or myocardial ischaemia, and thereby can serve as stores for NO under 

pathophysiological conditions. This recognition might be an important therapeutic approach, 

since during ischaemia, when the oxygen supply to the myocardium is limited, and the NO 
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synthase enzymes are producing inadequate amount of NO, the natural metabolic products 

would provide NO and increase NO bioavailability in the ischaemic myocardium (Zweier et 

al., 1995). 

1.2.1. The role of nitric oxide in the antiarrhythmic effect of preconditioning 

The phenomenon of ischaemic preconditioning (IPC) was first described by Murry and 

colleagues in 1986 (Murry et al., 1986). They showed that brief periods of ischaemia can 

protect the myocardium against the severe consequences of a similar, but more prolonged 

ischaemic insult (Murry et al., 1986). Since then we have learnt much more about this 

remarkable protective phenomenon. For example, we know that preconditioning not only 

reduces the size of infarct, but it markedly attenuates the ischaemia and reperfusion-induced 

life-threatening ventricular arrhythmias (Shiki and Hearse, 1987; Végh et al., 1990, 1992a) 

and improves myocardial contractility following reperfusion (Cave and Hearse, 1992). 

Furthermore, a preconditioning-like protection can be induced by other stimuli than acute 

coronary artery occlusion (Végh et al., 1992a), such as cardiac pacing (Végh et al., 1991a), 

heavy physical exercise (Babai et al., 2002), heat stress (Cumming et al., 1996) or various 

drugs (pharmacological preconditioning [Cohen et al., 2000]). For example, we have ample 

of evidence that NO plays an important role in the early (Végh et al., 1992) and also in the 

delayed (Kiss et al. 1999a, 1999b) antiarrhythmic effect of coronary artery occlusion and 

cardiac pacing-induced PC. Furthermore, we have shown that the NO donor isosorbide 

mononitrate and the KATP channel opener and NO donor nicorandil (Végh et al., 1996, 

György et al., 2000), as well as sodium nitroprusside (Gönczi et al., 2009) are able to protect 

against arrhythmias. Moreover, statins through the stimulation of NO synthesis can protect 

the myocardium (Kisvári et al., 2014; Kisvári et al., 2015). Thus, there is strong evidence that 

an increase in NO bioavailability either by PC or by the administration of a NO donor 

molecule, under ischaemic conditions, is protective against arrhythmias and ischaemic 

damage (Végh et al., 1992b; Parratt and Végh, 1997; Lochner et al., 2000). One of the most 

accepted hypothesis for the mechanism of the delayed cardioprotective effect of PC is that the 

PC stimulus enhances NO synthesis via the stimulation of eNOS, which increased NO then 

stimulates the inducible form of NO synthase (iNOS), further enhancing NO production 

(Végh and Parratt, 1996; Bolli et al., 1997). 
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1.2.2. The cardioprotective effect of the inorganic sodium nitrite 

Inorganic nitrites and nitrates have been considered as biologically inert molecules until 

recently. There is now increasing evidence that not only the organic, but the inorganic nitrites 

and nitrates can release NO, and thereby may have cardioprotective effects. This recognition 

has opened new perspectives both for the research of NO biology and for clinical 

exploitation. The potential cardioprotective benefit of the inorganic nitrates and nitrites 

originated from the recognition that NO can be produced not only by the NOS enzymes, but 

through, a so-called, enzyme-independent manner as well (Zweier et al., 1995a). They 

showed, using electron paramagnetic resonance measurements that in isolated rat hearts 

following I/R a marked increase in NO production could be observed, suggesting that under 

these conditions NO generated primary from nitrite rather than from synthesis by the NOS 

enzymes (Zweier et al., 1995a). 

Since then, many studies have revealed that inorganic nitrites and nitrates can transform to 

NO by a non-enzymatic way, when the surrounding milieu becomes hypoxic or anoxic, such 

as during ischaemia (Zweier et al., 1995a; Zweier et al., 1995b). Under these reductive 

conditions this way of the NO formation would be particularly important, since in the 

absence of oxygen the enzymatic generation of NO is compromised (Kevil et al., 2011a; 

Kevil et al., 2011b). Several studies have proved that under ischaemic conditions the 

transformation of nitrite to NO might be a way through which the NO bioavailability can be 

maintained or increased to the myocardium, thus nitrite can serve as a store for NO even 

under ischaemic conditions (Lefer, 2006; Lundberg et al., 2011). In experimental studies, the 

most frequently used nitrite is the sodium nitrite (NaNO2), which has been proved to possess 

cardioprotective effects in very low concentration range (Kevil et al., 2011a; Lefer, 2006; 

Dejam et al., 2004). 

 

On the basis of these abovementioned findings, we have also examined the potential 

cardioprotective effects of nitrites. We wondered whether these drugs are able to protect 

against arrhythmias in our established canine model of ischaemia and reperfusion. We have 

shown that sodium nitrite, infused in a concentration of 0.2 µmol kg-1 min-1 either prior to 

ischaemia or just prior to reperfusion markedly reduced the severity of I/R-induced 

arrhythmias (Kovács et al., 2015). Thus, the number of ventricular premature beats (VPBs), 

the number of episodes and the incidence of ventricular tachycardia (VT), as well as the 

incidence of ventricular fibrillation (VF) during occlusion were significantly decreased, and 
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survival increased. For example, the survival rate in dogs infused with NaNO2 10 min prior to 

reperfusion was 92%. This is, indeed, a remarkable protective effect. We have also shown 

that in this protection S-nitrosylation and/or glutathionylation of proteins may play a role 

(Kovács et al., 2015). 

As it mentioned above, there is substantial evidence for the key role of NO both in the early 

and the late cardioprotection (Végh et al., 1992b, Végh and Parratt, 1996; Bolli et al., 1997). 

It is well accepted that in the delayed protection, the PC stimulus-induced eNOS activation 

resulted NO formation, and the subsequent increased NO-stimulated iNOS (eNOS) activation 

(Bolli et al., 1997, Kovács et al., 2013), which can further increase NO bioavailability during 

ischaemia, may play a mandatory role. The evidence for this comes from the direct 

measurement of NO production (Bolli et al., 1997), and in our studies from the fact that the 

inhibition of iNOS activation markedly attenuates the antiarrhythmic protection (Végh et al., 

1994; Kis et al., 1999a,b). 

If an increase in NO bioavailability during I/R is an important factor for the induction 

of the delayed cardioprotection, it was obvious to examine, whether sodium nitrite can 

elicit a delayed antiarrhythmic effect, and if so, whether the mechanism involves the 

NO/iNOS/NO pathway, as could have been seen with PC. 

There is a few previous evidence that NaNO2 results in delayed cardioprotection in various 

experimental models (Shiva et al., 2007a). These studies suggested that nitrite, following its 

administration nitrosylates mitochondrial proteins, which remains stable for the next 24h. 

This S-nitrosylation (SNO) process then preserves mitochondrial function, when the heart is 

subjected to ischaemia (Shiva et al., 1997a,b). Since SNO involves respiratory complexes of 

the mitochondria, responsible for free radical formation, the proposed mechanism of 

protection is the limitation of ROS production during I/R, by nitrite (Shiva et al., 2007a). 

Taking account the potential involvement of mitochondria in the delayed antiarrhythmic 

effect if sodium nitrite, we have examined whether 24h following the administration of 

sodium nitrite changes can be detected in mitochondrial structure and function in the 

absence and presence of I/R. 
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2. AIMS 

The objectives of studies presented in the Thesis were as the follows: 

I. Examination of the potential delayed antiarrhythmic effect of sodium nitrite 

against ischaemia and reperfusion-induced severe ventricular arrhythmias in 

anaesthetized dogs. In the same experiments we wanted to explore the role of iNOS 

activation in the delayed effect of sodium nitrite. 

This series of experiments were designed to study, whether sodium nitrite, administered 

24h before a coronary artery occlusion and reperfusion, would result in protection 

against arrhythmias. Therefore, in anaesthetized dogs, NaNO2 was infused in a 

concentration of 0.2 µmol kg-1 min-1 (this concentration does not significantly modify 

coronary blood flow and blood pressure) over a period of 20 min, 24 hours prior to a 25 

min occlusion and reperfusion of the left anterior descending coronary artery (LAD). In 

order to assess the role of iNOS activation in the effect of nitrite, the inducible nitric 

oxide synthase (iNOS) inhibitor S-(2-aminoethyl)-isothiourea (iv., AEST, 2.0 mg kg-1) 

was given prior to the infusion of nitrite and, again, before the coronary artery occlusion. 

The severity of ventricular arrhythmias and of ischaemia was assessed. We also 

determined the activity of iNOS enzyme and the plasma concentrations of nitrite/nitrate 

(NOx). 

II. The role of mitochondria in the delayed antiarrhythmic effect of sodium nitrite, 

with particular reference on changes in mitochondrial morphology and function. 

In this series of experiments we planned to examine the role of mitochondria in the 

delayed antiarrhythmic effect of NaNO2. We have approached to this question by 

analysing the effect of NaNO2 on those structural and functional (mainly respiratory) 

alterations of the mitochondria that occur following a 25 min period of I/R. Therefore, 

24h after the administration of NaNO2 (0.2 µmol kg-1 min-1) the hearts were either 

stopped and removed, or the animals were subjected to a 25 min occlusion and 2 min 

reperfusion insult, after which the hearts were also stopped, and myocardial tissue 

samples were taken. Changes in mitochondrial morphology and in various respiratory 

parameters (e.g. oxidative phosphorylation, respiratory control and P/E ratios), as well 

as in the rate of ATP, superoxide and peroxynitrite productions were assessed. 
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3. MATERIALS AND METHODS 

3.1 Ethics 

All the experiments were carried out in accordance with the Hungarian law 40/2013 (II. 14.) 

and were supervised and approved by the Ethical Committee for the Protection of Animals in 

Research of University of Szeged and the Csongrád County Governmental Office for Food 

Safety and Animal Health. Approval number: XIII./1211/2012 (file no. VI-I-01/1211-

4/2012). (I.) and XIII./4657/2016 (file no. CSI/01/4657-6/2016) (II.). 

3.2 Animals and housing 

I. In the first study 36 adult mongrel dogs of either sexes (19 males and 14 females) 

were used. The mean body weight of dogs was: 21 ± 4 kg. 

II. In the second study 30 adult dogs (17 males and 13 females) with a mean body weight 

of 22 ± 4 kg were used. 

All the dogs were housed in an environmentally controlled room. Two animals were kept in 

one pen (house to kennel ratio 1:1). The temperature was set 10-20 oC, humidity 40-70%, and 

lightening 12 hours per day, for two weeks before the experiment. The dogs were fed a 

standard diet and ad libitum access to water. Food was withdrawn 24h before the anaesthesia. 

3.3 Surgical interventions and in vivo measurements  

The surgical interventions were carried out as described previously (Végh et al., 1992; Végh 

et al. 1994). On day one, the dogs were lightly anaesthetized with sodium pentobarbitone (30 

mg kg-1, i.v., Euthasol 40%, Produlab Pharma B.V., Netherlands) which allowed the animals 

to breathe spontaneously. A polyethylene catheter was introduced into the jugular vein for the 

injection of the drugs (saline, NaNO2 or AEST). Arterial blood pressure was measured by a 

Millar tip catheter (F5, Millar Instruments Inc., USA), introduced into the left carotid artery. 

Twenty-four hours later (day 2) the dogs were re-anaesthetized with a bolus injection of 

sodium pentobarbitone (30 mg kg-1, i.v.; Euthasol 40%, Produlab Pharma B.V., Netherlands) 

and the anaesthesia was maintained with the mixture of α-chloralose and urethane (60 and 

200 mg kg-1, i.v.; Sigma, USA). The depth of the anaesthesia was monitored by the 

examination of cornea and pain reflexes, as well as the blood pressure, and further bolus 

injections of the anaesthetic were given, if was necessary.  

The dogs were intubated and ventilated with room air using a Harvard respirator (Harvard 

Apparatus, USA). The blood gas values were monitored during the experiment and were 
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maintained within physiological range during the whole experiment (Végh et al., 1992). 

Body temperature was assessed from the mid-oesophagus and maintained between 36.5 and 

37.5 using a heating pad. The right femoral artery was prepared, and a catheter was 

introduced to measure the systolic and diastolic arterial blood pressure. Left ventricular (LV) 

systolic (LVSP) and end-diastolic pressure (LVEDP), as well as the LV positive and negative 

dP/dtmax were measured using a Miller tip catheter (5F, Millar Instruments Inc., USA), 

positioned into the cavity of the left ventricle. Through the jugular vein a catheter was placed 

into the coronary sinus in order to collect blood samples for the determination of 

nitrite/nitrate (NOx) levels. 

A thoracotomy was performed in the fifth intercostal space. The pericardium was opened, 

and the heart was explored. The anterior descending branch of the left coronary artery (LAD) 

was prepared proximal to the first diagonal branch. Myocardial ischaemia was induced by a 

25 min occlusion of the LAD, followed by a 2 min period of reperfusion (Végh et al., 1992). 

At the end of the experiments the animals were euthanized with an excess dose of sodium 

pentobarbitone (150 mg kg-1, iv., Euthasol 40%, Produlab Pharma B.V., Netherlands). 

The severity of ischaemia was assessed by measuring changes in the epicardial ST-segment 

and in the degree of inhomogeneity of electrical activation using a composite electrode. This 

electrode contains 24 bipolar and 2 unipolar electrodes, which collects the summarised 

recording of R waves, and records ST-segment changes, respectively, from the epicardial 

surface of the ischaemic myocardium (Végh et al., 1992). In the normal, oxygenated 

myocardium all electrode sites are activated simultaneously, resulting in a single, large R 

spike. Following occlusion, however, widening and fractionation of this summarized R-wave 

occurs, indicating inhomogeneous fibres activation. Changes in inhomogeneity were 

expressed in milliseconds, whereas the alterations in epicardial ST-segment were expressed 

in mV. 

Ventricular arrhythmias and the heart rate (HR) were assessed from chest lead II 

electrocardiogram. The arrhythmias were evaluated according to the Lambeth Conventions 

(Walker et al., 1998), modified by us previously (Végh et al., 1992). Thus, the number of 

ventricular premature beats (VPBs), the number of episodes and the incidence of ventricular 

tachycardia (VT) and the incidence of VF during occlusion were evaluated. During 

reperfusion, only the incidence of ventricular fibrillation and survival were assessed. The 

dogs were considered survivors, if they were in sinus rhythm two minutes after reperfusion. 
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All parameters were recorded on a Plugsys Hemodynamic Apparatus (Hugo Sachs 

Electronik, Germany) and evaluated by LabChart 7 software (AD Instruments, Australia). 

3.4 Determination of the area at risk (AAR) 

The risk area was measured as described previously (Végh et al., 1992).  Briefly, at the end 

of experiments the hearts were removed, and either Patent Blue V Dye or saline was infused 

into the re-occluded LAD or into the circumflex branch, respectively, with a pressure 

equivalent to the mean arterial blood pressure. The area, stained by the dye, was separated, 

weighted and the AAR was expressed as the percentage of the left ventricle together with the 

septum. 

3.5 In vitro measurements 

3.5.1 Determination of iNOS enzyme activity 

The assessment of iNOS enzyme activity was performed using the radio immunoassay 

method. Tissue samples from the left ventricle were used for total protein isolation as 

described previously (Kisvári et al., 2014). Protein concentrations were determined by 

Bradford protein assay. The measurements were carried out using a NOS activity assay kit 

(Cayman Chemical, USA), in the absence of calcium and calmodulin, based on the 

conversion of [3H] L-arginine to [3H] L-citrulline by NOS. The background NOS activity in 

the control samples was eliminated by the administration of 10 mmol L-NG-Nitro-arginine 

[(L-NNA), a non-specific inhibitor of the NOS enzyme], to the reaction before the addition of 

the tissue sample. A liquid scintillation counter (Wizard, PerkinElmer, USA) was used to 

detect the amount of radio-labelled L-citrulline formation induced by iNOS and expressed as 

the percentage of the total counts corrected with the background counts per minute. 

3.5.2. Determination of plasma nitrite/nitrate (NOx) concentrations 

Plasma NOx levels were determined by Griess reaction as described previously (Kiss et al., 

2010; Kisvári et al., 2014). On day one plasma samples were collected from the jugular vein 

and on day two from the coronary sinus at different time points as shown in Figure 1. The 

method is based on measuring the absorbance of the azo-compound spectrophotometrically at 

540 nm using a microplate reader (FLUOstar OPTIMA, BMG LABTECH GmbH, Germany). 

The total nitrate/nitrite (NOx) concentration (µmol l-1) was determined using a standard 

calibration curve of NaNO2 and NaNO3 (Sigma, USA). The data were analysed by OPTIMA 

software (Control and Data Analyses; BMG LABTECH GmbH, Germany).  
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3.5.3. Assessment of changes in mitochondrial morphology 

Tissue blocks (1 mm3), excised from the ischaemic and non-ischaemic areas of the left 

ventricle, were immediately fixed in Karnovsky solution (Karnovsky et al., 1965) for 4h, and 

then rinsed in glucose-containing buffer and post fixed in osmium-tetroxid (Millonig, 1961). 

After dehydration with ethanol the blocks were embedded into epoxy resin (Durcupan ACM, 

Sigma, USA) and polymerized at 56 oC for two days. Ultra-thin slices (50 nm) were cut and 

contrasted with uranyl-acetate and lead citrate. Three different regions: sub-sarcolemmal 

(SSM), inter-myofibrillar (IMF) and perinuclear (PN) were captured by transmission electron 

microscopy in transmission mode (80 keV; TEM, Zeiss CEM 902, Germany) with a Spot RT 

14.0 CCD camera (Diagnostic Instruments, USA). Changes in the area (µm2), perimeter 

(µm), Feret diameter (µm) and roundness (0-1) ([4x[Area]/(πx[Major axis]2)] were calculated 

using the build-in applications of ImageJ 2 (NIH, Bethesda, USA). Five images were 

evaluated and averaged per dog and within a certain group also averaged. This average was 

used for the comparison among the groups. 

3.5.4. Assessment of the mitochondrial respiration 

Mitochondria were freshly isolated from phosphate buffer-perfused left ventricle segment, 

immediately after the removal of the heart. Left ventricular samples (0.75 g) were 

homogenized in a sucrose containing buffer, and centrifuged on 8000g, 700g and 8000g. 

Concentration of the isolated mitochondria was determined by Bradford protein assay and 0.1 

mg ml-1 isolated mitochondrial was used in mir05 buffer (110 mM sucrose, 60 mM potassium 

lactobionate, 20 mM taurine, 20 mM HEPES, 0.5 mM EGTA, 3 mM MgCl2, 10 mM 

KH2PO4,1 g l-1 BSA, pH 7.1 at 37 °C) (Gnaiger et al., 2014). A Clarke-type oxygen electrode 

(Strathkelvin 782 oxygen system, Strathkelvin, Glasgow) was used to measure the 

mitochondrial respiration. In the closed electrode chamber the oxygen consumption reflects 

purely the mitochondrial oxygen consumption. The mitochondrial respiratory measurements 

were carried out according to the SUIT protocol (Gnaiger et al., 2014). Mitochondrial 

complex I (CI) and complex II (CII) respiration were induced by either glutamate (final 

concentration: 10 mM) and malate (CI, 1 mM) or rotenone (0.5 µM) and succinate (CII, 10 

mM). To characterize the oxidative phosphorylation, ADP (State 3, 5 mM) was added to the 

chamber and the oxygen consumption rate was measured. State 4 respiration was assessed by 

the injection of the ATP synthase inhibitor, oligomycin (Omy, 2.5 µM, Sigma, USA). State 4 

respiration refers to the proton leak and proton slip, when ATP synthase is blocked, and 
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protons accumulates in the inter-membrane space. Uncoupling of respiration was measured 

by adding carbonyl-cyanide-p-(trifluoro-methoxy) phenyl-hydrazone (FCCP, 0.5 µM, Sigma, 

USA). This protonophore was added to measure capacity of electron transport system (ETS). 

Antimycin A (5 µM), a complex III (CIII) ETS blocker was used to measure the residual 

oxygen consumption, which is independent from the mitochondria. From the measured 

parameters respiratory control ratio (RCR=OXPHOS/State 4) and P/E (OXPHOS/ETS) ratios 

were calculated. RCR refers to the efficiency of the coupling between the respiration and 

ATP production. P/E ratio combines the effect of coupling and limitation by the 

phosphorylation system (possible modification of the ATP synthase (CV), the phosphate 

transporter or the ADP/ATP translocator (ANT)). 

3.5.5. Measurement of ATP production 

The mitochondrial ATP production was measured by a bioluminescent assay (ATP 

Determination Kit, Invitrogen, USA) according to the manufacturer’s suggestion. Malate 

(100 mM, Sigma, USA) and pyruvate (100 mM, Sigma, USA) were used as substrates. The 

emitted light was detected with a luminescent optic using a plate reader (FLUOstar OPTIMA, 

Germany). The values were expressed as relative luminescence unit (RLU). Three parallel 

measurements were averaged per dogs and then averaged within a group. These means were 

used to compare among groups. 

3.5.6. Determination of the superoxide levels 

This was performed using the dihidroethidine (DHE) dye method, based on the oxidation of 

DHE to ethidine by superoxide. The amount of ethidine relates to the level of superoxide. 

Following reperfusion, tissue blocks (0.5cmx0.5cmx2.0cm) were excised from the ischaemic 

and non-ischaemic areas and embedded into a glycol and resin containing mounting media 

(Bio-Optica, Italy). Then snaps were frozen in liquid nitrogen, and the samples were stored at 

-80 oC and kept on -20 oC, 24h before the use. Longitudinal slices (20 µm) slices were 

prepared by cryo-sectioning (Leica, USA). The samples were incubated in dark at room 

temperature with 1 µM DHE (Sigma, USA) and washed with PBS two times for 5min. For 

the negative control, the antioxidant N-acetyl-cysteine (100 mM, Sigma, USA) was used. 

Confocal laser scanning microscope (Olympus FV 1000, Japan) was used to capture ten 

pictures per dog. The images were analysed by Image J2 (Fiji) and expressed in arbitrary 

units. The intensity of randomly chosen four pictures was averaged, and data obtained from 

dogs within a group were also averaged. 
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3.5.7. Assessment of the peroxynitrite formation 

Peroxynitrite production was measured by assessing 3-nitrotyrosine (3-NT) production using 

Western blot. Left ventricular samples from the ischaemic and non-ischaemic area were 

excised, snap frozen in liquid nitrogen, and stored at -80 ℃. Total protein extracts (25 µg) 

were resolved using 10% sodium dodecyl sulphate-polyacrylamide gel electrophoresis and 

transferred onto polyvinylidene fluoride membranes. After blocking in 5% milk-TBS-T, the 

membranes were immunolabeled with the mouse monoclonal anti-nitrotyrosine (3-NT), as 

the primary antibody (Chemicon, Millipore, USA; overnight, at 4 oC; dilution: 1:3000). 

Horseradish peroxidase-conjugated rabbit anti-mouse IgG (Dakocytomation, Denmark; 1h, 

room temperature, 1:1000) was used as the secondary antibody. The blots were developed 

with an ECL kit (Western Bright ECL, Advansta, USA) and exposed to X-ray film and 

scanned. Equal loading was provided by determining the protein concentration by Bradford 

protein assay and was verified by Coomassie Brilliant Blue staining and the samples were 

normalized to total protein. Parallel western blots were used for the statistical analysis using 

Welch-ANOVA and Bonferroni-Holm post hoc tests. Integrated optical density values (sum 

of each band corrected to the background) was assessed using Image J (Fiji; NIH, Bethesda, 

MD). 

3.6 Statistical Analysis 

Data were expressed as mean ± standard error of mean. Kruskal-Wallis test was used to 

compare the differences between the means, regarding the number of VPBs and number of 

episodes of VT. The incidence of VT, VF and survival were compared using Fisher exact 

test. For the statistical analysis one-way ANOVA/Bonferroni post-hoc tests and Welch-

ANOVA/Bonferroni-Holm post-hoc tests were used. Differences between groups were 

considered significant at P<0.05. 
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3.7 Experimental Protocol 

Protocol I. 

Thirty-three dogs were divided into three groups. In the control group (n=12) the dogs were 

infused with saline (1 ml min-1), whereas in the treated group (n=21) NaNO2 (Merck, USA) 

was administered in a concentration of 0.2 µmol kg-1 min-1 for 20 minutes. In nine dogs out 

of the twenty-one NaNO2-treated animals, the iNOS enzyme inhibitor S-(2-aminoethyl)-

isothiourea (AEST, 2.0 mg kg-1) was given over a 5 min period, 5 min prior to the 

administration of NaNO2. According to the previous study (Kis et al., 1999), AEST was 

given again, 24h later, over a period of 30 min, just prior to the coronary artery occlusion. In 

all groups, 24h after saline or drug administration the dogs were subjected to a 25 min of 

LAD occlusion, followed by 2 min reperfusion interval. In dogs that had survived this period 

of reperfusion, an excess dose of anaesthetics was given. Then the hearts were removed for 

further in vitro analyses. During experiments blood samples (BS) were collected from the 

jugular vein and from the coronary sinus at different time points as shown in Figure 1. Three 

dogs served as sham-operated controls (SO group); these dogs underwent the same surgical 

intervention as the other groups. 

 

Figure 1. Experimental protocol for the examination of the delayed antiarrhythmic effect 

of NaNO2 and the role of iNOS enzyme activation 
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Protocol II. 

In this study, four groups of anaesthetized dogs were used. In two groups out of the four 

groups, each containing 5 animals, either saline (SC group) or sodium nitrite (NaNO2 group, 

0.2 µmol kg-1 min-1; Merck) were administered intravenously over a period of 20 min. From 

these dogs heart samples were taken 24h later without subjecting them to I/R. Another two 

groups of dogs (IC, n = 5; NaNO2+I/R, n = 5), 24h after the administration of saline and 

NaNO2 the animals were subjected to a 25 min occlusion and reperfusion insult. In these dogs 

myocardial tissue samples were taken 2 min after reperfusion for in vitro analyses. 

 

Figure 2. Experimental protocol to examine the role of the mitochondria in the delayed 

antiarrhythmic effect of NaNO2 
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4. RESULTS 

4.1. Examination of the delayed antiarrhythmic effects of sodium nitrite; the role of 

iNOS activation (Study I) 

4.1.1. Haemodynamic effects of saline, NaNO2, AEST, NaNO2+AEST and coronary artery 

occlusion 

These are shown in Table 1 and Table 2. Compared to the saline treated controls, the 

intravenous infusion of NaNO2 reduced the arterial blood pressure and slightly increased the 

heart rate. AEST itself, administered either on day one or day two, did not significantly 

modified the haemodynamic parameters, but when it was given in NaNO2 treated dogs, 

AEST attenuated the haemodynamic effects of NaNO2 (Table 1). 

Occlusion of the LAD resulted in significant reductions in the arterial blood pressure, LVSP, 

positive and negative dP/dtmax and an increase in LVEDP in all the examined groups, whereas 

the HR remained virtually unchanged (Table 2). These ischaemia-induced haemodynamic 

changes were less marked in dogs infused with NaNO2 nitrite, 24h previously. The 

administration of AEST in the NaNO2 treated dogs did not modify the occlusion-induced 

haemodynamic changes compared to the controls or the NaNO2 treated dogs. 

Table 1. The haemodynamic effects of saline, NaNO2, AEST and NaNO2+AEST 

 

Values are means ± SEM, calculated from n=8 experiments. *P<0.05 vs. baseline 

value, #P<0.05 vs. control group, †P<0.05 vs. NaNO2 group. Abbreviations: SABP: 

systolic arterial blood pressure, DABP: diastolic arterial blood pressure, MABP: mean 

arterial blood pressure, HR: heart rate 
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Table 2. Changes in the haemodynamic parameters during a 25 min LAD occlusion  

 

Values are mean ± SEM, calculated from n=8 experiments. *P<0.05 vs. baseline value, 

#P<0.05 vs. saline treated control group. Abbreviations: SABP: systolic arterial blood 

pressure, DABP: diastolic arterial blood pressure, MABP: mean arterial blood pressure, 

LVSP: left ventricular systolic pressure, LVEDP: left ventricular end-diastolic pressure, HR: 

heart rate. 

4.1.2. The severity of ventricular arrhythmias during a 25 min occlusion of the LAD 

The severity of ventricular arrhythmias occurring during occlusion and reperfusion is 

illustrated in Figure 3. In control dogs (infused with saline) a 25 min coronary artery 

occlusion resulted in a high number of VPBs (379 ± 89), VT episodes (11.2 ± 3.2) and 

incidence of VT (100%) and VF (40%) during occlusion (Figure 3). Furthermore, all the 

remaining dogs fibrillated on reperfusion, thus in this group no dog survived the combined 

the occlusion and reperfusion insult. The administration of NaNO2 significantly decreased the 

severity of the ischaemia-induced ventricular arrhythmias (VPBs: 47 ± 15; VT: 0.2 ± 0.2; 

VT%: 22%; VF%: 0%), and increased survival (0% in the controls vs. 50% in the nitrite 

treated group). When AEST was administered in the NaNO2 treated animals, the NaNO2-

induced protection against the arrhythmias was significantly attenuated, but it was not 

completely abolished. Thus, the number of VPBs (170 ± 43) and episodes of VT (3.7 ± 1.1), 

as well as the incidence of VT (67%) were again significantly increased during occlusion. 

The incidence of the occlusion-induced VF (11%) and survival (11%), however, did not 

significantly differ from the nitrite treated dogs. 
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Figure 3. The number and incidence of ventricular arrhythmias assessed during a 25 min 

occlusion and reperfusion of the LAD. Values are means ± SEM. *P < 0.05 compared to the 

controls; #P < 0.05 compared to the NaNO2 treated dogs. 

4.1.3. Changes in the severity of ischaemia during a 25 min occlusion of the LAD 

This was assessed by the measurement of two parameters; i.e. changes in the epicardial ST-

segment and in the degree of inhomogeneity of electrical activation (Figure 4). In control 

dogs following the occlusion of the LAD both the epicardial ST-segment and the degree of 

inhomogeneity of electrical activation rapidly increased and reached their maximum at 
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around the 5 min of the ischaemia. In contrast in dogs infused with NaNO2, 24h previously, 

these ischaemic changes were significantly attenuated; i.e. both the elevation of epicardial 

ST-segment and the degree of inhomogeneity were less marked than in the controls. The 

administration of AEST almost completely abolished the anti-ischaemic effects of NaNO2. 

 

Figure 4. Changes in the epicardial ST-segment (A) and in the degree of inhomogeneity of 

electrical activation (B) during a 25 min occlusion of the LAD. Values are mean ± SEM.*P < 

0.05 compared to the controls. 

4.1.4. The effect of NaNO2 on the area at risk 

There were no significant differences in the area at risk among the groups. The area at risk 

was 36±3% in the controls, 37±3% in the NaNO2, and 35±4% in the AEST+NaNO2 treated 

groups. 
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4.1.5. Changes in plasma nitrate/nitrite (NOx) levels 

These were assessed at 4 time points during the experiments; i.e. before and after the infusion 

of NaNO2 infusion, and 24 hours later before and 25 min after the coronary artery occlusion. 

There were no significant changes between the baseline NO values among the groups. 

Twenty minutes after the infusion of NaNO2 the NOx levels were significantly increased, and 

still remained elevated 24h later. Interestingly both in the NaNO2 and the AEST+NaNO2 

groups this increase in the NOx resulted primarily from the marked elevation in the nitrate 

levels (the concentration of nitrite in all groups was almost the same as the baseline 

concentrations of nitrite on day one; Figure 5). During occlusion the NOx levels were 

significantly higher in the nitrite treated dogs than in the controls, and this effect of nitrite 

was not substantially modified by the administration of AEST. 

 

Figure 5. Changes in plasma nitrate/nitrite (NOx) concentrations. Values are means ± S.E.M. 

*P < 0.05 compared to the baseline (pre-infusion) value of the corresponding group, #P < 

0.05 compared to the pre-occlusion value of the corresponding group, and †P < 0.05 

compared to the control group. 
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4.1.6. The effect of nitrite on iNOS activity 

Compared to the sham-operated controls, a 25 min ischaemia resulted in no significant 

changes in iNOS activity. However, the administration of NaNO2 caused an increase in iNOS 

activation, but this change proved statistically not significant. AEST completely abolished the 

NaNO2-induced activation of iNOS (Figure 6). 

 

Figure 6. Changes in iNOS enzyme activation, assessed by radioimmunoassay. Values are 

means ± SEM. *P<0.05 compared to the NaNO2 group. 

4.2 Examination of the role of mitochondria in the delayed cardioprotective effect of 

sodium nitrite (Study II) 

These experiments planned to examine the involvement of changes in mitochondrial 

morphology and function in the delayed antiarrhythmic effect of sodium nitrite. Therefore, in 

four groups of dogs, each containing five animals, similar I/R protocols were performed as in 

the previous study. Since the haemodynamic alterations and the occurrence of arrhythmias, 

following ischaemia and nitrite administration were not significantly different from that we 

have previously observed, the results are not repeated here. 

4.2.1. Alterations in the mitochondrial morphology following I/R and nitrite administration 

The representative images, taken by TEM, are shown in Figure 7, whereas the results 

obtained from the quantitative analysis of the pictures are illustrated in Figure 8 and 

summarized in Table 3. 

The images show that compared to the SC dogs, in dogs of the IC group a substantial 

swelling, a greater distance between the contractile units and disorganization of cristae of the 
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mitochondrial matrix could be observed (indicated by arrows, Figure 7), irrespective of their 

localization (SSM, PN and IMF). These alterations were less marked in dogs infused NaNO2. 

 

Figure 7. Representative TEM pictures of the changes in the mitochondrial morphology. The 

images show that compared to the SC group, in dogs subjected to a 25 min I/R, swelling and 

disorganization of cristae of the mitochondrial matrix appeared in all the three examined 

regions (indicated by arrows). 

Data obtained following the quantitative analysis of mitochondria localized in the sub-

sarcolemmal (SSM), inter-myofibrillar (IMF) and perinuclear (PN) areas, are summarized in 

Table 3, whereas changes in the measured parameters in the IMF region are also shown in 

Figure 8. Compared to the SC dogs, a 25 min I/R resulted in a significant reduction in the 

mitochondrial area, perimeter and Feret diameter, and a significant increase in mitochondrial 

roundness. These alterations were significantly less marked in the nitrite treated dogs (Table 

3 and Figure 8). Sodium nitrite itself did not significantly changed the morphological 

parameters (Figure 8). 
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Table 3. Changes in morphology of three mitochondrial subsets 

 Area (µm2) Perimeter 

(µm) 

Feret 

diameter (µm) 

Roundness 

SC 

    SSM 

    IMF 

    PN 

 

0.48±0.02 

0.68±0.04 

0.49±0.02 

 

2.69±0.03 

3.38±0.06 

2.77±0.09 

 

1.04±0.01 

1.37±0.03 

1.09±0.04 

 

0.57±0.05 

0.46±0.03 

0.58±0.02 

IR 

    SSM 

    IMF 

    PN 

 

0.35±0.02* 

0.39±0.04* 

0.39±0.02* 

 

2.12±0.05* 

2.30±0.08* 

2.26±0.05* 

 

0.77±0.02* 

0.88±0.03* 

0.82±0.02* 

 

0.75±0.01* 

0.67±0.03* 

0.75±0.02* 

NaNO2-IR 

    SSM 

    IMF 

    PN 

 

0.65±0.05# 

0.54±0.04# 

0.51±0.02# 

 

3.15±0.12# 

2.88±0.06# 

2.76±0.05# 

 

1.22±0.07# 

1.13±0.01# 

1.04±0.02# 

 

0.58±0.07# 

0.53±0.04# 

0.65±0.02# 

NaNO2 

    SSM 

    IMF 

    PN 

 

0.58±0.06# 

0.67±0.08# 

0.47±0.02# 

 

2.96±0.15# 

3.18±0.19# 

2.64±0.08# 

 

1.13±0.05# 

1.22±0.03# 

1.02±0.03# 

 

0.58±0.02# 

0.54±0.01# 

0.60±0.02# 

Values are means ± S.E.M. *P < 0.05 compared with SC; #P < 0.05 compared with IC. SSM: 

sub-sarcolemmal, IMF: inter-myofibrillar, PN: perinuclear. 

 

Figure 8. Changes in mitochondrial morphology within the IMF region. Values are means ± 

S.E.M. *P < 0.05 compared with SC; #P < 0.05 compared with IC. 
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4.2.2. Changes in mitochondrial respiration following I/R and nitrite administration 

Mitochondrial respiration was assessed by various measured (State 2, OXPHOS, State 4, 

ETS) and calculated (RCR and P/E) CI and CII-dependent respiratory parameters. The results 

are shown in Figure 9 and Figure 10, respectively. There were no significant differences in 

the basal (State 2) respiration among the groups. However, following a 25 min I/R insult the 

CI-dependent OXPHOS, ETS and the RCR were markedly decreased compared with the SC 

dogs, whereas the P/E control coupling ratio was almost identical in the SC and in the IC 

dogs (Figure 9). These changes were less marked in case of the CII-dependent respiration 

(Figure 10). Compared to the SC dogs, nitrite alone significantly reduced the CI-dependent 

OXPHOS, ETS and RCR, without substantially modifying State 4 and the P/E coupling ratio. 

Moreover, in dogs infused with NaNO2 and then subjected to I/R, further significant 

decreases occurred both in the CI and CII-dependent OXPHOS and RCR, as well as an 

increase in State 4, compared with the IC dogs. Since, in the NaNO2+I/R group the OXPHOS 

was markedly reduced, but the ETS was unchanged compared with the IC group, the 

calculated P/E ratio in the nitrite treated dogs was markedly reduced. This result indicates 

that under ischaemic conditions, nitrite limits OXPHOS by changing the phosphorylation 

system. 

 

Figure 9. The effect of NaNO2 on CI-dependent mitochondrial respiration. Values are means 

± S.E.M. *P < 0.05 compared with SC; #P < 0.05 compared with IC, §P < 0.0.5 compared 

with nitrite alone. 
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Figure 10. The effect of NaNO2 on CII-dependent mitochondrial respiration. Values are 

means ± S.E.M. *P < 0.05 compared with SC; #P < 0.05 compared with IC, §P < 0.0.5 

compared with nitrite alone. 

4.2.3. The effect of sodium nitrite on the mitochondrial ATP production 

Changes in the rate of ATP production are expressed in RLU (over 30 sec/mg protein). 

Compared with the SC group, a 25 min period of I/R significantly decreased the 

mitochondrial ATP production (12232 ± 1291 cp. 7213 ± 1117 RLU/30s/mg protein). The 

administration of nitrite alone (13001 ± 3109 RLU/30s/mg protein vs SC group) and under 

ischaemic conditions (7130 ± 1560 RLU/30s/mg protein vs. IC group) did not significantly 

modify the rate of ATP production. 

4.2.4. The effect of NaNO2 on the superoxide and peroxynitrite production during reperfusion 

This is illustrated in Figure 11 and Figure 12. Compared to the SC dogs, the generation of 

superoxide was markedly increased in the IC dogs. This I/R-induced increase in the 

superoxide production was attenuated by the administration of nitrite (Figure 11). 
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Figure 11. Changes in the tissue 

superoxide production. Values are means 

± S.E.M. *P < 0.05 compared with SC; #P 

< 0.05 compared with IC. 

Figure 12. Changes in the tissue 

peroxynitrite production. Values are 

means ± S.E.M. *P < 0.05 compared with 

SC; #P < 0.05 compared with IC. 

 

Similarly, compared to the SC dogs, a 25 min occlusion and reperfusion insult significantly 

increased peroxynitrite production, as assed by changes in 3-nitrotyrosine (3-NT) formation 

(Figure 12). This increase in 3-NT formation was markedly reduced in the NaNO2 treated 

dogs. 
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4. DISCUSSION 

The aims of the presented studies were to examine the potential delayed antiarrhythmic effect 

of the inorganic sodium nitrite, and to explore mechanism(s) that might be involved in this 

protection. Thus, first we have examined, whether NaNO2, infused 24 hours before a 

coronary artery occlusion and reperfusion in anaesthetized dogs, provides protection against 

the severe ventricular arrhythmias. Furthermore, if so, we wanted to explore, whether the 

activation of iNOS enzyme would play a role in the antiarrhythmic effect of nitrite. There 

was previous evidence that in the delayed antiarrhythmic effect of preconditioning the NO-

induced iNOS activation, and the subsequent increased NO formation plays a central role 

(Végh and Parratt 1996, Bolli et al., 1997, Kis et al., 1999a,b). Therefore, in the present 

study, the role of iNOS activation in the nitrite-induced protection was also examined by the 

administration of the iNOS enzyme inhibitor, AEST.  

We have found that the infusion of NaNO2, 24h prior to I/R, markedly reduced the severe 

ventricular arrhythmias during occlusion and increased survival following reperfusion. Since, 

the iNOS inhibitor AEST, although completely blocked the nitrite-induced iNOS activation, 

it only partially abolished the nitrite evoked antiarrhythmic effect, we concluded that in the 

delayed cardioprotective effect of nitrite other mechanisms than activation of iNOS, may play 

a role. 

Therefore, we designed further studies, in which we have examined the role of the 

mitochondria in the delayed antiarrhythmic effect of nitrite. There were a few previous 

studies, which had already indicated that the modification of the mitochondrial respiration by 

S-nitrosylation of complexes of the respiratory chain would play an important role in the 

cardioprotective effects of nitrite (Shiva et al., 2007; Shiva et al., 2009). This mechanism by 

attenuating mitochondrial ROS production, similar to preconditioning (Shiva et al., 2007), 

would be responsible for the protection. Since we had ample of evidence for the role of NO in 

preconditioning (Végh et al., 1992b, Végh and Parratt, 1996, Kis et al., 1999b), further there 

was a lack of evidence for the delayed effect of nitrite in large animal experiments, in a 

second study we have examined the role of the functional and structural changes of the 

mitochondria, following ischaemia and nitrite administration. We have found that NaNO2 

significantly reduced the I/R-induced morphological changes of the mitochondria. The 

administration of nitrite, however, caused a further depression in mitochondrial respiration 

resulting from I/R, without significantly modifying the rate of ATP production. The effect of 

nitrite on the mitochondrial respiratory complexes were examined previously, although this is 
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the first study which suggests that nitrite has an effect on the phosphorylation system. The 

influence of nitrite on the various components of the mitochondrial respiratory chain resulted 

in a marked reduction in the superoxide, and consequently on peroxynitrite productions under 

conditions of I/R, which mechanism certainly plays a role in the protection against 

arrhythmias.  

According to the results of the two studies, the following conclusions can be drawn.  

First, we have now evidence that sodium nitrite can evoke a marked delayed antiarrhythmic 

effect, in a large animal model of I/R. Thus, compared with the untreated controls, if dogs 

had been given sodium nitrite 24h before a 25 min occlusion and reperfusion insult, the 

number of VPBs, the number and incidence of VT, the incidence of VF during occlusion 

were markedly reduced. Furthermore, in contrast to the ischaemic control group, in which no 

dog survived reperfusion, in the nitrite treated group 50% of the dogs, survived the combined 

I/R insult. Similarly, the infusion of nitrite significantly attenuated the ischaemic changes, 

assessed by measuring epicardial ST-segment and the degree of inhomogeneity of electrical 

activation.  

Second, it seems that it is unlikely that the delayed antiarrhythmic effect of sodium nitrite 

would be identical with the late protective effect of preconditioning. The evidence for this 

comes from the experiments, in which we used the partially selective iNOS enzyme inhibitor 

AEST. This was given twice in nitrite treated dogs; i.e. prior to the infusion of sodium nitrite, 

and 24h later before the coronary artery occlusion. This protocol was similar to that we had 

used previously with ischaemic preconditioning (Kis et al., 1999b; Hajnal et al., 2005). We 

have found that in contrast to preconditioning, where the administration of AEST completely 

abolished the antiarrhythmic effect of PC (Kis et al., 1999b), the nitrite-induced protection 

against arrhythmias was only partially diminished by AEST. Thus, in the presence of AEST 

there was an increase in the number of ectopic beats and of episodes of VT during occlusion, 

but these were still significantly less than in the controls (Figure 3). Furthermore, AEST did 

not substantially modify the protective effect of nitrite against the occlusion-induced VF, but 

it abolished the protection against the reperfusion-induced VF. AEST also reversed the anti-

ischaemic effects of nitrite (Figure 4). 

Furthermore, the results of the measurement of iNOS activity showed that the infusion of 

nitrite only slightly increased the activity of iNOS, which also indicates that in contrast to PC, 

the stimulation of iNOS plays a less important role in the nitrite-induced protection. The fact 

that the nitrite-induced increase in iNOS activation was completely abolished in the presence 
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of AEST; moreover, in the AEST treated dogs the iNOS activity was somewhat lower than in 

the sham-operated controls, confirms the previous findings that AEST is able to effectively 

block the activation of iNOS, and subsequently the iNOS-derived generation of NO, to which 

we attribute a key role in the delayed cardioprotection (Végh et al., 1994; Kis et al., 1999b). 

It might well be that a difference between the PC and the nitrite-induced late protection can 

be associated with the difference, regarding the source of NO during ischaemia. Whereas in 

the preconditioning-induced delayed protection the iNOS-induced NO generation seems to 

have a mandatory role (Végh and Parratt, 1996; Bolli et al., 1997; Dawn and Bolli, 2002), 

since the inhibition of iNOS activation abolishes the protection (Végh et al., 1994; Kis et al., 

1999a,b), in case of the nitrite evoked delayed protection the activation of iNOS to produce 

NO is probably less important, since after the complete inhibition of iNOS activity, the 

protection, at least against the occlusion-induced arrhythmias, is still present. 

In order to examine the source of NO 24h after the administration of sodium nitrite, we have 

measured plasma nitrate and nitrite levels before and after the 20 min infusion of nitrite in the 

systemic blood, and again 24h later before and after a 25 min coronary artery occlusion in the 

blood of the coronary sinus. We have found that there were no significant differences among 

the groups in the baseline (pre-infusion) nitrate, nitrite and NOx levels. However, in dogs 

infused with nitrite, irrespective of the presence of AEST, the concentration of NO 

metabolites were markedly increased by the end of the infusion period compared with the 

saline infused controls (Figure 5). Twenty-four hours later, when the level of these NO 

metabolites were assessed again, now in the blood of the coronary sinus, we have found that 

in all groups the nitrite levels were almost the same as the basal plasma nitrite concentrations, 

24h previously, whereas the nitrate concentrations were highly elevated in the nitrite treated 

dogs compared with the controls (Figure 5). Thus, we concluded that soon after its 

administration, nitrite converts to nitrate, and over the next 24h nitrate circulate in the blood, 

since in the absence of food intake, the NOx is only affected by the renal function (Lauer et 

al., 2001). If at this time the dogs were subjected to coronary artery occlusion, probably 

nitrate was used, as a substrate, to produce NO. This is supported by the results that following 

the LAD occlusion, although the total nitrate/nitrite (NOx) concentrations were reduced in all 

groups compared to their corresponding pre-occlusion values, but in the nitrite treated dogs 

the NOx levels were significantly higher than in the untreated controls (Figure 5). 

Furthermore, the fact that the reduction of NOx in the nitrite infused animals resulted mainly 

from a decrease in nitrate concentrations, whereas the nitrite levels were rather increased, we 
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may speculate that nitrate reduced to nitrite, and then possible to NO (Jansson et al., 2008). In 

contrast, in the control dogs the marked reduction in NOx, determined at the end of the 

occlusion period, resulted from a significant decrease in both the nitrate and nitrite 

concentrations (Figure 5). 

We conclude that following nitrite administration, the majority of nitrite is converted to 

nitrate, and it remains and circulates in this form over the next 24h period. We may speculate 

that even under oxygenated conditions, a part of the infused nitrite may convert to NO, which 

reductive process largely depends on the nitrite reductase activity of deoxy-haemoglobin 

(Hb) and xanthine oxidoreductase (Dejam et al., 2004). We also know that under ischaemic 

conditions the activity of the nitrite reductive mechanisms increases with decreasing pO2, and 

pH, and with increasing NAD+ concentration (Dejam et al., 2004). Although, we did not 

measure directly the NO formation and/or of nitrite reductase activity we have found an 

increase in iNOS activity 24h after nitrite administration, which almost certainly resulted 

from the enzyme stimulation by NO (Figure 5). This enzyme activation was completely 

abolished in the presence of AEST (Figure 6). 

Our results show that under ischaemic conditions the heart of the nitrite treated dogs uses 

nitrate as a primary source for NO production via its reduction to nitrite and then to NO. This 

non-enzymatic NO formation provides adequate amount of NO during occlusion and the 

subsequent reperfusion to elicit protection against the ischaemic changes and arrhythmias. 

The fact that a part of the protection has still remained in the presence of AEST, further that 

the complete inhibition of the activity of iNOS did not modify the nitrite-induced effects on 

the concentration of NO metabolites suggest that iNOS, and the iNOS derived NO has only a 

minor role in the nitrite-evoked delayed antiarrhythmic protection during ischaemia. On the 

other hand, the fact that AEST markedly attenuated the nitrite-induced protection against the 

ischaemic changes and the reperfusion-induced severe ventricular arrhythmias suggests a role 

for iNOS-derived NO in the protective effect of nitrite. We suppose that this enzymatic NO 

formation becomes particularly important during reoxygenation, when the rapid change in the 

milieu stops the nitrate-nitrite-NO conversion that has provided NO during ischaemia. 

What we may propose as a mechanism from the abovementioned results is that under 

physiological conditions the majority of the infused nitrite converts to nitrate, and it is stored 

in this form over the next 24h. This is supported by the fact that the nitrate, but not the nitrite 

levels were markedly increased 24h after the infusion of nitrite. The results of the 

measurement of iNOS activity, however, suggest that a part of nitrite is most probably 
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converted to NO, and this was sufficient to stimulate iNOS. The fact that AEST, although 

completely blocked the activity of iNOS, it did not modify the concentration of NO 

metabolites and the occlusion-induced arrhythmias suggests that iNOS has only a minor 

contribution to NO formation and the protection in the nitrite treated dogs. We propose that 

dogs treated with nitrite, use nitrate as a primary source of NO during ischaemia. This is 

converted back first to nitrite and then to NO, when reductive conditions attain, such as 

during coronary artery occlusion, when we could observe a marked reduction in the nitrate, 

and an increase in the nitrite concentrations.  

In conclusion, the results of the present study provided evidence that, in contrast with 

preconditioning, the activation of iNOS does not play a mandatory role in the nitrite-induced 

delayed antiarrhythmic protection, since the blockade of iNOS activation only attenuated but 

not completely abolished the protection.  

To explore mechanisms, which may also contribute to the marked delayed antiarrhythmic 

effect of sodium nitrite has prompted us to design studies in which the role of mitochondria in 

the delayed antiarrhythmic effect of nitrite has been examined. 

There had been some previous evidence that the mitochondria play a central role in the late 

cardioprotection induced either by preconditioning or by nitrite administration (Shiva et al., 

2007). One of the common mechanisms would be the NO regulated ROS formation (Kiss et 

al., 2010). For example, Shiva and colleagues (Shiva et al., 2007) proposed that NO derived 

from nitrite S-nitrosylates the mitochondrial respiratory complexes, mainly complex I 

(Couchani et al., 2013) which has a significant role both in the acute and the delayed 

cardioprotective effect of nitrite. We have also evidence that protein S-nitrosylation and S-

glutathionylation) plays a role in the acute antiarrhythmic effect of nitrite (Kovács et al., 

2015). It has been proposed that the redox-modification of the respiratory chain complexes by 

S-nitrosylation modifies the activity of the complexes, and thereby alter the ROS production 

(Dröse et al., 2014). Since in cardiac myocytes mitochondria CI and CIII are the main source 

of ROS production (Turrens et al., 2003), although, there is some evidence for the role of CII 

as well (Dröse et al., 2014), the modification of these complexes would certainly affect ROS 

formation, and thereby would be a part of the protective mechanisms. This hypothesis is 

supported that a decrease in CI and CII activity leads to an attenuated electron transfer to CIII 

and a subsequent reduction in the electron leakage and ROS production (Chen et al., 2006; 

Stewart et al., 2009). 
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Considering the abovementioned information, we have designed studies in order to examine 

whether in the nitrite-induced late antiarrhythmic effect changes in the I/R-induced 

mitochondrial structural and functional alterations would play a role. 

We have found that the administration of nitrite prevented the I/R-induced morphological 

alterations of the mitochondria. Thus, the swelling, the change in the normal elongated shape 

of the mitochondria, the disorganized cristae, the large, empty blebs and the disruption of the 

membrane that had resulted from I/R, were significantly less marked in the nitrite-treated 

dogs. Also, the measured basic morphological parameters, such as the mitochondrial area, 

perimeter, Feret diameter and roundness, which had been substantially altered by I/R, were 

significantly less in the NaNO2 treated animals. The best of our knowledge this is the first 

evidence that nitrite effects the I/R-induced structural changes of the mitochondria.  

The question arises, whether the preservation of mitochondrial morphology would reflect in 

the mitochondrial function. We have found that nitrite depressed the CI (and in a smaller 

degree the CII)-dependent OXPHOS and had an effect on the members of the 

phosphorylation system. We measured the changes in mitochondrial respiration following I/R 

and nitrite administration. We have found that a 25 min ischaemia and 2 min reperfusion 

depressed mitochondrial respiration; i.e. both the CI and CII-dependent OXPHOS were 

significantly decreased, and there were also reductions in RCR (OXPHOS/state4) and in the 

ETS (Figure 9 and Figure 10). Since, the P/E control coupling ratio was similar in the 

ischaemic and in the non-ischaemic control groups, we suppose that the reduced 

mitochondrial respiration resulted primary from the depression of the respiratory complexes 

(mainly CI) of the ETS. 

Interestingly, nitrite alone reduced the mitochondrial respiration 24 h later, and this was even 

further decreased, when the nitrite-treated dogs had been subjected to ischaemia and 

reperfusion. Thus, in the nitrite treated dogs both the CI and CII-dependent OXPHOS, the 

RCR and the P/E coupling control ratio were significantly lower than in the ischaemic 

controls (IC). Furthermore, nitrite significantly reduced the superoxide and the 3-NT 

productions, resulted from a 25 min period of occlusion and reperfusion insult (Figure 11, 

Figure 12). 

The results suggest that nitrite substantially modifies mitochondrial respiration. Moreover, 

the fact that nitrite decreased the P/E control coupling ratio raises the possibility that nitrite 

(NO) affects the phosphorylation system, and that the reduction in the CI-dependent 

OXPHOS would result from the modification of the phosphorylation system rather than of 
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the proximal complexes. Interestingly, despite the marked reduction in OXPHOS, the ATP 

production in the nitrite treated dogs was as the same as in the ischaemic, untreated controls. 

In contrast, the administration of nitrite significantly attenuated the ischaemia-induced 

increase in superoxide and 3-NT productions (Figure 11, Figure 12). This latter might be 

associated with the observation that the State 4 respiration was increased in the NaNO2+I/R 

dogs, indicating an increase in proton leakage in the inner membrane, which can result in a 

reduction in ROS production (Brand et al., 1999; Divakaruni and Brand, 2011). 

There is substantial evidence that NO regulates ROS formation, and that this mechanism is 

largely involved in the protective effect of NO, for example, against those severe ventricular 

arrhythmias (Kiss et al., 2010), which occur during the first minutes of the reperfusion, when 

the burst of ROS is apparent (Xia and Zweier, 1997; Iwase et al., 2007; Burwell and Brookes, 

2008). There are, of course, a number of ways by which NO may regulate ROS formation. 

For example, NO inhibits the activities of xanthine/xanthine oxidase (Ichimori et al., 1999) 

and the NADPH oxidase (Clancy et al., 1992; Fujii et al., 1997), which are the major sources 

of ROS production. The other potential source of ROS is the mitochondrial respiratory chain, 

especially in the heart, where the myocytes are abundant in mitochondria. Thus, the 

mitochondrial electron transport might become an important sub-cellular source of ROS, and 

a contributor to the reperfusion-induced injury (Ambrosio et al., 1993). There is evidence that 

NO reduces mitochondrial superoxide production by acting directly on the ETS or the 

uncoupling proteins (Burwell and Brookes, 2008), but the precise mechanisms are still not 

clarified. Recently, it has been suggested that the redox-modification of specific cysteine-

thiol groups of proteins in the subunits of the respiratory chain complexes with S-

nitrosylation influences the respiratory chain activity, and modifies ROS production (Dröse et 

al., 2014). Indeed, the reversible S-nitrosylation of CI was protective against myocardial I/R 

damage (Couchani et al., 2013). Although in the present study we did not measure protein 

SNO, our previous results have revealed that following acute administration (just prior to 

ischaemia or reperfusion) nitrite protects the myocardium by S-nitrosylation, and perhaps by 

glutathionylation (Kovács et al., 2015). As to whether in our model SNO may play a role in 

the delayed antiarrhythmic effect of nitrite warrants further investigations. 

It seems well accepted that CI and, especially in cardiac myocytes, complex III (CIII) are the 

main sources of superoxide production (Turrens, 2003), but more recently, CII has also been 

considered as an important generator of ROS, under certain circumstances (Turrens, 2003; 

Dröse et al., 2014). The contribution of these sites for the overall ROS production depends on 
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the organ, the milieu of substrates and redox conditions, as well as on the intactness of the 

respiratory chain activity (St-Pierre et al., 2002; Turrens, 2003; Dröse et al., 2014). As the 

respiratory chain becomes reduced, such as during ischaemia and reperfusion or following a 

defect of mitochondrial complexes, electrons leak from the defective complex, resulting in 

the univalent reduction of oxygen to form superoxide. More recently, however, it is turned 

out that the inhibition of CI and CII activity attenuates the electron transfer to CIII, 

diminishes CIII reduction and decreases the electron leakage and the formation of ROS at 

CIII (Chen et al., 2003, 2006; Stewart et al., 2009), thereby protecting the myocardium 

against the reperfusion injury (Chen et al., 2006; Stewart et al., 2009).  

Our proposal is that besides the involvement of the ROS producing complexes in the 

cardioprotective effects of nitrite, our results clearly show the importance of the 

phosphorylation system in the nitrite-induced protection. Although the evidence for the 

involvement of the phosphorylation system in the nitrite effect is mainly indirect, only the 

different change of the P/E ratio in the control and nitrite animals indicate this, we assume 

that the nitrite derived NO is able to act on some of the members of the phosphorylation 

system, such as on the ATP synthase (CV), the phosphate transporter or the ADP/ATP 

translocator (ANT). There is some evidence that nitrite inhibits the interaction of ATP 

synthase and cyclophilin D (Halestrap and Richardson, 2015). This interaction might play a 

role in the formation and opening of mitochondrial permeability transition pores (MPTP), and 

subsequently in the increased ROS formation during I/R. There is also evidence that the 

activation of the cysteine 203 residue of cyclophilin D, which plays a role in the opening of 

MPTP (Nguyen et al., 2011), readily undergoes protein SNO (Kohr et al., 2011), and thereby 

protects the protein from the I/R-induced irreversible oxidation (Sun et al., 2006). 

In summary, we propose that sodium nitrite provides a marked delayed antiarrhythmic and 

anti-ischaemic effect. This protection is manifested in a significant reduction in the number 

and severity of the I/R-induced serious ventricular arrhythmias, as well as in the ischaemic 

changes, such as the epicardial ST-segment and the degree of inhomogeneity of electrical 

activation 24h after the administration of nitrite. As concerns the mechanisms involved in the 

late cardioprotective effect of nitrite, the results suggest that in contrast to preconditioning the 

NO-induced iNOS activation plays only a minor role, whereas changes in mitochondrial 

morphology and respiration would be more important in the protection. We hypothesize that 

the preservation of the mitochondrial structure, the suppression of the mitochondrial 
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respiration with the subsequent reduction in ROS production during ischaemia would be 

protective and explain the antiarrhythmic effect of nitrite. 
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NEW FINDINGS 

1. We have provided evidence that sodium nitrite (NaNO2) infused 24h before a 25 min 

period of coronary artery occlusion and reperfusion in anaesthetized dogs, results in 

significant protection against the severe ventricular arrhythmias. This protection is 

manifested in a marked reduction in the ischaemia-induced arrhythmias and increase in 

survival upon reperfusion.  

2. The nitrite-induced delayed antiarrhythmic effect is not, or only partially, mediated 

through the NO-induced activation of iNOS, since in the presence of the iNOS inhibitor 

AEST, the nitrite evoked antiarrhythmic effect was only attenuated, but not completely 

abolished, while the activity of iNOS enzyme was completely blocked. This study also points 

out the difference in the mechanisms between preconditioning and nitrite-induced delayed 

cardioprotection.  

3. The best of our knowledge, we have provided the first evidence that NaNO2 is able to 

reduce the morphological changes of the mitochondria, resulting from I/R, and thereby 

preserves mitochondrial structure during ischaemia. 

4. We have demonstrated that NaNO2 suppresses mitochondrial respiration by influencing the 

mitochondrial respiratory complexes and the phosphorylation system in a way that the 

mitochondria produce less superoxide and peroxynitrite radicals, which certainly play roles in 

the arrhythmogenesis during I/R. 
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ARTICLE

Is there a role of inducible nitric oxide synthase activation in
the delayed antiarrhythmic effect of sodium nitrite?
Vivien Demeter-Haludka, László Juhász, Mária Kovác, János Gardi, and Ágnes Végh

Abstract: This study aimed to examine whether inducible nitric oxide synthase (iNOS) plays a role in the delayed antiarrhythmic
effect of sodium nitrite. Twenty-one dogs were infused intravenously with sodium nitrite (0.2 �mol·kg–1·min–1) for 20 min, either
in the absence (n = 12) or in the presence of the iNOS inhibitor S-(2-aminoethyl)-isothiourea (AEST) (total dose 2.0 mg·kg–1 i.v.,
n = 9). Control dogs (n = 12) were given saline. Twenty-four hours later, all of the dogs were subjected to a 25 min period occlusion
of the left anterior descending coronary artery followed by rapid reperfusion. Dogs treated with AEST and nitrite received again
AEST prior to the occlusion. Compared with the controls, sodium nitrite markedly reduced the number of ectopic beats, the
number and incidence of ventricular tachycardia, and the incidence of ventricular fibrillation during occlusion and increased
survival (0% versus 50%) from the combined ischaemia and reperfusion insult. Although AEST completely inhibited iNOS activity,
the nitrite-induced increase in NO bioavailability during occlusion was not substantially modified. Furthermore, AEST attenu-
ated but did not completely abolish the antiarrhythmic effect of nitrite. The marked delayed antiarrhythmic effect of sodium
nitrite is not entirely due to the activation of iNOS; other mechanisms may certainly play a role.

Key words: arrhythmias, sodium nitrite, delayed protection, ischaemia–reperfusion, nitric oxide.

Résumé : Cette étude portait sur le rôle éventuel de l’oxyde nitrique synthase inductible (iNOS) dans les effets antiarythmiques
retards du nitrite de sodium. Nous avons perfusé par voie intraveineuse du nitrite de sodium (à 0,2 �mol·kg–1·min–1) chez
21 chiens pendant 20 min, en absence (n = 12) ou en présence de S-(2-aminoéthyl)-isothio-urée (AEST), un inhibiteur de l’iNOS
(dose totale 2,0 mg·kg–1 i.v., n = 9). Nous avons administré une solution saline aux chiens témoins (n = 12). Vingt-quatre heures plus
tard, nous avons procédé chez tous les chiens à une ligature de 25 min de l’artère interventriculaire antérieure, suivie d’une
reperfusion rapide. Les chiens exposés à l’AEST et au nitrite ont de nouveau reçu de l’AEST avant l’occlusion. Par rapport au
groupe témoin, le nitrite de sodium a entraîné une réduction importante du nombre de battements ectopiques, du nombre et
du taux d’apparition de tachycardies ventriculaires ainsi que du taux d’apparition de fibrillations ventriculaires pendant
l’occlusion. Le produit a aussi permis d’augmenter le taux de survie (0 % versus 50 %) après les interventions d’ischémie et de
reperfusion combinées. Bien que l’AEST n’ait pas entraîné d’inhibition complète de l’activité de l’iNOS, l’augmentation de la
biodisponibilité du NO provoquée par le nitrite pendant l’occlusion n’était pas modifiée de façon notable. De plus, l’AEST a
entraîné une atténuation sans abolition complète des effets antiarythmiques du nitrite. L’effet antiarythmique retard marqué du
nitrite de sodium n’est pas entièrement causé par l’activation de l’iNOS; d’autres modes d’action pourraient certainement avoir
un rôle à jouer. [Traduit par la Rédaction]

Mots-clés : arythmies, nitrite de sodium, protection retard, ischémie–reperfusion, oxyde nitrique.

Introduction
There is experimental and clinical evidence that inorganic ni-

trite and nitrate, the natural products of nitric oxide (NO) metab-
olism, may serve as reservoirs of NO (Kevil and Lefer 2011). This
would be particularly important under ischaemic conditions,
when in the absence of oxygen, the generation of NO from nitric
oxide synthase (NOS) enzyme activation is limited and when the
drop in pH and oxygen tension favours the reduction of nitrite to
NO (Zweier et al. 1995), thus providing better cardiac function
during ischaemia (Lefer 2006; Lundberg et al. 2011).

Recently, we have shown that the intravenous infusion of so-
dium nitrite, in a concentration that does not significantly modify
arterial blood pressure and coronary blood flow, profoundly re-
duced the severity of ventricular arrhythmias that resulted from a
25 min coronary artery occlusion and reperfusion in anaesthe-

tized dogs (Kovács et al. 2015). This marked antiarrhythmic pro-
tection was associated with increased NO-mediated reduction in
oxidative stress, perhaps through protein S-nitrosylation and (or)
S-glutathionylation (Kovács et al. 2015).

We have evidence that in this dog model, preconditioning in-
duced by various mechanical (coronary artery occlusion, cardiac
pacing, exercise) (Végh et al. 1992a, 1994; Kis et al. 1999a, 1999b;
Babai et al. 2002) and pharmacological stimuli (NO donors, statins)
(György et al. 2000; Kisvári et al. 2014), results in a marked early
and delayed antiarrhythmic effect (Végh et al. 1992a; György et al.
2000) and that this protection is associated with the maintenance
of NO availability during ischaemia (Kiss et al. 2010). The impor-
tance of NO, both in the early and the delayed cardioprotection,
is well established (Bolli et al. 1997; Végh et al. 1992b; Végh and
Parratt 1996). For example, we know that in the delayed effect,
NO, generated by the preconditioning stimulus via the rapid acti-
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vation of the endothelial NOS (eNOS), stimulates further NO syn-
thesis by activating the inducible form of NOS (iNOS) (Bolli et al.
1997) and perhaps eNOS as well (Kovács et al. 2013). This mecha-
nism is certainly involved in the late antiarrhythmic effect, since
the inhibition of iNOS activation attenuates or even abolishes the
protection (Végh et al. 1994; Kis et al. 1999a, 1999b; Hajnal et al.
2005).

There is also some evidence that sodium nitrite induces delayed
protective effects in various experimental models (Shiva et al.
2007b). However, it is unknown whether it can evoke delayed
protection against arrhythmias, and if so, what mechanisms
would play a role. It has been proposed that nitrite causes early
mitochondrial S-nitrosylation, which is stable for 24 h, and pro-
tects mitochondrial function, when the heart is subjected to isch-
aemia (Shiva et al. 2007a, 2007b). Although this mechanism seems
to be very likely, we have now examined whether iNOS would also
be involved in the delayed effect of nitrite. Therefore, we used
S-(2-aminoethyl)-isothiourea (AEST), a relatively selective inhibi-
tor of iNOS. The changes in the severity of ischaemia and arrhyth-
mias in iNOS activity and in the plasma nitrate/nitrite levels were
examined during the experiments.

Materials and methods

Ethics
The upkeep of the dogs was in accordance with Hungarian law

(XVIII/VI/31) regarding large experimental animals, which con-
forms to the Guide for the Care and Use of Laboratory Animals by
the US National Institutes of Health (NIH publication No. 85-23,
revised in 1996) and conformed to the European Parliament Direc-
tive 2010/63/EU. All animal experiments were supervised and ap-
proved by the Department of Animal Health and Food Control of
the Ministry of Agriculture and Rural Development (No. XIII/1211/
2012) and the Ethical Committee for the Protection of Animals in
Research of University of Szeged, Szeged, Hungary (No. I-74-5-2012).

Surgical procedures
Thirty-three adult mongrel dogs of either sex, with a mean body

mass of 21 ± 4 kg, were used. The dogs were housed in a separated
animal room (temperature 10–20 °C, humidity 40%–70%, lighten-
ing 12 h per day, two animals per pen) for 2 weeks and fed a
standard diet and ad libitum access to water. Food was withdrawn
24 h before anesthesia.

On the first day, the dogs were lightly anaesthetized with
sodium pentobarbitone (30 mg·kg–1, Euthasol 40% i.v. A.U.V.;
Produlab Pharma B.V., Raamsdonksveer, The Netherlands). A poly-
ethylene catheter was introduced into the jugular vein through
which the drugs (sodium nitrite, AEST, saline) were administered
intravenously. A Millar tip catheter (5F; Millar Instruments Inc.,
Houston, Texas) was positioned into the left carotid artery for
monitoring changes in arterial blood pressure.

On the second day, the dogs were re-anaesthetized with a bolus
injection of sodium pentobarbitone (30 mg·kg–1 i.v.) and the anes-
thesia was maintained with intravenous injections of a mixture
of chloralose and urethane (60 and 200 mg·kg–1, respectively)
(Sigma, St. Louis, Missouri). The depth of anaesthesia was moni-
tored by the examination of the cornea and pain reflexes as well as
by the measurement of blood pressure, and when it was neces-
sary, a further bolus injection of the anaesthetic was given. The
dogs were ventilated with room air using a Harvard respirator
(Harvard Apparatus, Natick, Massachusetts) at a rate and volume
sufficient to maintain arterial blood gases within normal limits
(Végh et al. 1992). Body temperature was measured from the mid-
oesophagus and maintained at 37 ± 0.5 °C.

A catheter (Cordis F4) was introduced into the right femoral
artery to measure arterial blood pressure (systolic and diastolic).
The Millar tip catheter (5F; Millar Instruments Inc., Houston,
Texas), which had been introduced into the left carotid artery on

day 1, was now pushed into the left ventricle (LV) for measuring LV
systolic and end-diastolic pressure as well as LV positive and neg-
ative dP/dtmax. Through the right jugular vein, another catheter
was positioned into the coronary sinus to obtain blood samples
for the measurement of plasma nitrate/nitrite (NOx) levels.

A thoracotomy was performed at the fifth intercostal space, the
pericardium was transected, and the heart was explored. The an-
terior descending branch of the left coronary artery (LAD) was
prepared for occlusion proximal to the first main diagonal branch.

The severity of myocardial ischaemia was assessed by the mea-
surement of changes in the degree of electrical activation and in
the epicardial ST segment using a composite electrode positioned
within the potential ischaemic region as described in detail pre-
viously (Végh et al. 1992a). The composite electrode collects R
waves from 28 epicardial points with a bipolar lead, and the de-
gree of inhomogeneity of electrical activation is assessed as a time
delay between the first and a last point activated under the elec-
trode and expressed in ms. The electrode also contains four uni-
polar electrodes by which changes in the epicardial ST segment
(in mV) are assessed. A chest lead II standard electrocardiogram
(Plugsys Hemodynamic Apparatus; Hugo Sachs Electronik, March-
Hugstetten, Germany) was also recorded to measure heart rate
and assess the number and severity of arrhythmias.

Ventricular arrhythmias were evaluated according to the Lam-
beth Conventions (Walker et al. 1998) with a modification as pre-
viously outlined (Végh et al. 1992a). Thus, the total number of
ventricular premature beats, the incidence and the number of
episodes of ventricular tachycardia (VT), and the incidence of ven-
tricular fibrillation (VF) were assessed during the occlusion pe-
riod. During reperfusion, only the incidence of VF (which is a final
event in this species) was determined. Dogs that were still alive
2 min after reperfusion (the end of the study) were considered to
be survivors. Those dogs that survived reperfusion were eutha-
nized by an excess dose of the anaesthetic. All recordings were
assembled and evaluated by LabChart 7 software (AD Instruments
Pty Ltd., Bella Vista, Australia).

Determination of iNOS activity
This was performed using the radioimmunoassay method. The

preparation of the myocardial tissue samples (200 mg) was iden-
tical to that described previously (Kisvári et al. 2014). Total protein
concentrations were determined by the method of Bradford.

The measurements were carried out in the absence of calcium
and calmodulin using a NOS activity assay kit (Cayman Chemical,
Ann Arbor, Michigan) based on the conversion of [3H]L-arginine to
[3H]L-citrulline by NOS. To eliminate background NOS activity in
control samples, 10 mmol of L-NG-nitro-arginine, a nonspecific
inhibitor of the NOS enzyme, was given to the reaction mixture
before the addition of the tissue extract. A liquid scintillation
counter (Wizard™; PerkinElmer, Waltham, Massachusetts) was
used to detect the amount of radiolabeled L-citrulline formed dur-
ing the reaction by iNOS and expressed as the percentage of the
total counts corrected with the background counts per minute.

Assessment of plasma NOx levels
This was determined by the Griess reaction as described previ-

ously (Kiss et al. 2010; Kisvári et al. 2014). Plasma samples were
collected from the jugular vein (day 1) and after thoracotomy (day 2)
from the coronary sinus at different time points as indicated in
Fig. 1). The absorbance of the azo-compound was measured spec-
trophotometrically at 540 nm using a microplate reader (FLUOstar
OPTIMA; BMG LABTECH GmbH, Ortenberg, Germany). The total
NOx concentration (�mol·L–1) was determined using a standard
calibration curve of NaNO2 and NaNO3 (Sigma, St. Louis, Missouri).
Data were analyzed by OPTIMA software (Control and Data Anal-
yses; BMG LABTECH GmbH, Ortenberg, Germany).
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Experimental protocol
A total number of 33 dogs were used and randomly divided into

three groups. On day 1, the dogs were slightly anaesthetized and
infused intravenously either with saline (control group, n = 12) or
sodium nitrite (NaNO2 group, n = 21) (0.2 �mol·kg–1·min–1) for
20 min (Fig. 1). Twenty-four hours later, all of the dogs were sub-
jected to a 25 min occlusion of the LAD followed by rapid reper-
fusion. In nine dogs out of the sodium nitrite treated dogs, the
AEST+NaNO2 group was slowly injected (over 5 min) intrave-
nously in a total dose of 2 mg·kg–1 5 min before the commence-
ment of the sodium nitrite infusion. In these dogs, 24 h later, the
same dose of AEST was given again in intravenous infusion for
30 min, just prior to the coronary artery occlusion. The dose of
AEST applied in the present study was identical to that used pre-
viously to inhibit iNOS activity (Kis et al. 1999). Since in that study,
we proved that AEST given to control dogs (subjected only to
ischaemia and reperfusion) does not modify arrhythmia severity
(Kis et al. 1999), we did not include a separate AEST control group.
Three dogs served as sham-operated controls (not included in the
protocol figure); from these animals, myocardial tissue samples
were collected to determine iNOS activity in healthy myocardium.

At the end of the experiments, the dogs were euthanized by
an excess of the anaesthetic and myocardial tissue samples were
collected either 2 min after reperfusion (these animals were con-
sidered as survivors) or at the time when the fibrillation was
observed for further analyses (Fig. 1). Blood samples were also
collected at different time points as indicated in Fig. 1. In some
dogs (at least five dogs in each group), the size of the area, affected
by the occlusion, was assessed using the same method that has
been described in detail previously (Végh et al. 1992a). In brief, at
the end of the experiments, the heart was removed and Patent
Blue V dye was infused into the re-occluded LAD artery, whereas
saline was infused into the patent’s left circumflex artery at a
pressure equivalent to that of the mean arterial pressure. The
dyed area was cut out and weighed and the area at risk was ex-
pressed as a percentage of the left ventricular wall together with
the septum.

Statistical analysis
The data were expressed as mean ± SEM and differences be-

tween means were compared by ANOVA for repeated measures
and by one-way ANOVA as appropriate using the Fisher post hoc
and Bonferroni tests. The number of ventricular premature beats and
the number of episodes of VT were compared using the Kruskal–
Wallis test. The incidence of VT and VF as well as survival from the
combined ischaemia and reperfusion insult were compared using
the Fisher exact test. Differences between groups were considered
significant at P < 0.05.

Results

Haemodynamic effects of intravenously administered saline,
sodium nitrite, and AEST

These are illustrated in Table 1. Compared with the saline-
treated controls, the intravenous infusion of sodium nitrite re-
sulted in significant reductions in arterial blood pressure and a
slight increase in heart rate. AEST itself had no significant effect
on any haemodynamic parameters, measured either on day 1, i.e.,
prior to the infusion of sodium nitrite, or on day 2, i.e., just prior
to the occlusion, but significantly attenuated the haemodynamic
effects of the intravenously administered sodium nitrite.

Haemodynamic changes following coronary artery occlusion
These are shown in Table 2. In all groups, occlusion of the LAD

resulted in significant reductions in arterial blood pressure, LVSP,
positive and negative dP/dtmax, and an increase in LVEDP, whereas
the heart rate remained substantially unchanged. These haemo-
dynamic alterations were somewhat less pronounced in dogs
given sodium nitrite 24 h previously. The administration of AEST
in the nitrite-treated dogs did not substantially modify the
occlusion-induced haemodynamic changes compared with either
the controls or the nitrite-treated dogs.

The severity of arrhythmias during coronary artery occlusion
and reperfusion

The number and the incidence of various types of arrhythmias
occurring during a 25 min occlusion are illustrated in Fig. 2. In

Fig. 1. Experimental protocol. Three groups of dogs were used. On day 1, control dogs (n = 12) received saline in intravenous infusion over a
20 min period. In 21 dogs, sodium nitrite was infused in a dose of 0.2 �mol·kg–1·min–1) for 20 min either in the absence (NaNO2 group, n = 12)
or in the presence of the iNOS inhibitor S-(2-aminoethyl)-isothiourea (AEST+NaNO2 group, n = 9). AEST was slowly injected (over 5 min)
intravenously in a total dose of 2 mg·kg–1 5 min before the commencement of the sodium nitrite infusion. Twenty-four hours later (day 2),
all of the dogs were subjected to a 25 min occlusion of the anterior descending branch of the left coronary artery (LAD) followed by rapid
reperfusion. In the AEST+NaNO2 group, AEST was given again in intravenous infusion for 30 min, just prior to the coronary artery occlusion.
During the experiments, blood samples (BS) were taken from the jugular vein before (0 min) and after (20 min) nitrite administration as well
as 24 h later from the coronary sinus to determine changes in nitrate/nitrite levels before (0 min) and during (7, 12, 17, and 25 min) coronary
artery occlusion as well as immediately (1 min) following reperfusion. Myocardial tissue samples (TS) were collected either 2 min after
reperfusion (these animals were considered as survivors) or at the time when the fibrillation was observed for further biochemical analyses.
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control dogs, there were high numbers of ventricular premature
beats and episodes of VT that were apparent in all the examined
dogs. Furthermore, in five dogs out of the 12 (42%) control animals,
VF occurred during the occlusion period and the rest of the dogs
fibrillated on reperfusion; thus, no dog in this group survived the
combined ischaemia and reperfusion insult. In contrast, dogs in-
fused with sodium nitrite 24 h previously exhibited only a few
ectopic beats and episodes of VT, which occurred in two of the
nine (22%) nitrite-treated dogs. Furthermore, in this group, no
dog fibrillated during occlusion and 50% of the animals survived
reperfusion (Fig. 2). When AEST was given both prior to the infu-
sion of nitrite (on day 1) and 24 h later, just before the occlusion,
the number of ectopic beats and the episodes of VT as well as the
incidence of VT during occlusion were again increased but still
remained significantly less than in the untreated controls. Inhibi-
tion of iNOS with AEST did not significantly modify the protective
effect of nitrite on the incidence of ischaemia-induced VF, i.e., in
the presence of AEST, only one nitrite-treated dog out of the nine
dogs (11%) fibrillated during occlusion. AEST, however, abolished
the protective effect of nitrite on the reperfusion-induced VF. In
the AEST+NaNO2 group, only one dog (11%) survived the combined
ischaemia and reperfusion insult.

The severity of ischaemia during coronary artery occlusion
This was assessed by measuring changes in the epicardial ST

segment and in the degree of inhomogeneity of electrical activa-
tion (Fig. 3). In control dogs, both the epicardial ST segment
(Fig. 3A) and the degree of inhomogeneity of electrical activation
(Fig. 3B) were rapidly elevated during the first 5 min of the occlu-
sion and reached a maximum value of around 11 mV and 130 ms,
respectively, at the 5 min of ischaemia. The administration of
sodium nitrite 24 h previously significantly suppressed these isch-

aemic changes; both the development and the absolute values of
the elevation of the epicardial ST segment and of the degree of
inhomogeneity were much slower and less than in the controls.
The administration of AEST almost completely abolished the anti-
ischaemic effects of sodium nitrite.

Changes in plasma NOx levels
These were determined both before and after the intravenous

administration of sodium nitrite from the venous blood and also
24 h later before and after the occlusion of the LAD in blood
samples taken from the coronary sinus, as shown in the protocol
in Fig. 1. In control dogs infused with saline intravenously, there
were no significant differences between the baseline (pre-infusion)
and the 20 min values of nitrate and nitrite levels. In contrast, the
infusion of sodium nitrite significantly increased the plasma ni-
trate and nitrite as well as NOx concentrations irrespective of
whether AEST was present or not (Fig. 4).

Whereas on day 1, there were no significant differences be-
tween the baseline values of NO metabolites among the groups,
on day 2, a marked difference occurred between the control and
nitrite-treated dogs in the NOx levels measured just prior to the
occlusion in the blood of the coronary sinus. Thus, in both the
nitrite and the AEST+NaNO2 groups, there was a significant in-
crease in the NOx levels that resulted primarily from the marked
elevation in the nitrate levels, since the nitrite concentrations
were almost the same in all groups as the day 1 baseline values.
This result indicates that sodium nitrite, under oxygenated con-
ditions, occurred as nitrate in the blood 24 h later.

When the LAD coronary artery was occluded, in the control
dogs, both the nitrate and the nitrite levels were significantly
reduced, resulting in a marked decrease in NOx by the end of the
occlusion period. Compared with these changes, in the nitrite-

Table 1. Haemodynamic effects of saline, sodium nitrite, S-(2-aminoethyl)-isothiourea (AEST), and sodium nitrite plus
AEST.

AESTa

Saline NaNO2 Day 1 Day 2 AEST+NaNO2

Baseline
Max.
change Baseline

Max.
change Baseline

Max.
change Baseline

Max.
change Baseline

Max.
change

SABP (mmHg) 148±6 3±2 155±6 −11±4* 161±5 −1±4 142±4 5±6* 153±3 −3±3†

DABP (mmHg) 100±6 3±2 122±4 −7±2*# 129±4 −4±2*# 101±5 5±6* 117±3 −2±2#†

MABP (mmHg) 116±6 3±2 133±5 −8±3* 140±4 −3±2*# 115±4 4±6* 136±3 −3±2#†

HR (beats·min−1) 159±5 3±1 166±6 6±2*# 187±7 −13±3*# 166±2 −2±2* 173±4 −3±3#†

Note: Values are mean ± SEM calculated from n = 8 experiments. *P < 0.05 versus baseline value, #P < 0.05 versus control group,
†P < 0.05 versus NaNO2 group. SABP, systolic arterial blood pressure; DABP, diastolic arterial blood pressure; MABP, mean arterial blood
pressure; HR, heart rate.

aThese data represent the acute haemodynamic effects of AEST when it was given before the administration of sodium nitrite (day 1)
and 24 h later (day 2) when it was infused for 30 min prior to occlusion in the nitrite-treated dogs.

Table 2. Haemodynamic changes during a 25 min occlusion of the anterior descending branch of the
left coronary artery.

Saline NaNO2 AEST+NaNO2

Baseline
Max.
change Baseline

Max.
change Baseline

Max.
change

SABP (mmHg) 140±13 −17±3* 146±5 −11±4* 146±8 −14±3*
DABP (mmHg) 99±9 −18±3* 98±4 −11±5* 105±6 −12±3*
MABP (mmHg) 113±10 −17±2* 114±4 −11±3* 119±7 −13±4*
LVSP (mmHg) 141±9 −19±5* 148±12 −10±5* 146±9 −16±2*
LVEDP (mmHg) 6.0±1.1 7.3±1.3* 3.0±0.4 5.3±0.6*# 2.7±0.3 6.4±0.6*
+dP/dtmax (mmHg·s−1) 2792±210 −720±84* 2906±136 −535±130* 3431±114 −710±130*
−dP/dtmax (mmHg·s−1) 2526±164 −583±167* 2347±75 −166±112*# 2523±149 −535±62*
HR (beats·min−1) 167±6 4±4 161±8 −4±2 161±4 4±2

Note: Values are mean ± SEM calculated from n = 8 experiments. *P < 0.05 versus baseline value, #P < 0.05 versus
saline-treated control group. AEST, S-(2-aminoethyl)-isothiourea; SABP, systolic arterial blood pressure; DABP, dia-
stolic arterial blood pressure; MABP, mean arterial blood pressure; LVSP, left ventricular systolic pressure; LVEDP,
left ventricular end-diastolic pressure; HR, heart rate.
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treated dogs, the nitrate concentrations were considerable de-
creased and the nitrite concentrations increased during coronary
artery occlusion, suggesting a possibility for nonenzymatic NO
formation under reductive conditions. Since in these dogs, the
reduction in the nitrate concentrations was more marked than
the increase in nitrite concentrations, the NOx levels also showed
a decrease during the occlusion. Nevertheless, the NO bioavail-
ability in the nitrite-infused dogs was significantly higher during
ischaemia than in the saline-infused controls. The administration
of AEST did not significantly modify the nitrite-induced changes
in the level of NO metabolites.

The effect of nitrite on iNOS activity
This is illustrated in Fig. 5. Compared with the sham-operated

controls, in samples taken from dogs subjected only to a 25 min

occlusion and reperfusion insult, no significant changes could be
observed in the activation of iNOS. The administration of nitrite
resulted in a slight increase in iNOS activation, which was com-
pletely abolished by the administration of AEST.

Area at risk
There were no significant differences in the area at risk among

the groups. Thus, the risk area was 36% ± 3% in the controls, 37% ±
3% in the nitrite-treated group, and 35% ± 4% in the AEST+NaNO2-
treated group.

Discussion
The aim of the present study was to test the hypothesis in our

canine model of ischaemia and reperfusion whether the adminis-
tration of sodium nitrite can produce a delayed antiarrhythmic
effect, and if so, whether this effect, similar to preconditioning,
involves the activation of iNOS. This question was raised because
there is evidence, albeit in different models, that sodium nitrite
evokes delayed cardioprotection (Shiva et al. 2007b; Shiva and

Fig. 2. Number and incidence of ventricular arrhythmias
(ventricular premature beats (VPBs), ventricular tachycardia (VT),
and ventricular fibrillation (VF)) during a 25 min occlusion and
reperfusion of the anterior descending branch of the left coronary
artery in control, in sodium nitrite treated dogs (NaNO2), and
in dogs that were infused with nitrite in the presence of
S-(2-aminoethyl)-isothiourea (AEST+NaNO2). Compared with the
controls, nitrite significantly reduced the number and incidence of
ventricular arrhythmias during occlusion and increased survival on
reperfusion. AEST partially reversed the antiarrhythmic effect of
nitrite during occlusion, but it abolished the protection against
the reperfusion-induced arrhythmias. Values are means ± SEM.
*P < 0.05 compared with the controls, #P < 0.05 compared with the
nitrite-treated dogs.

Fig. 3. Changes in the (A) epicardial ST segment and (B) degree of
inhomogeneity of electrical activation during a 25 min occlusion
of the anterior descending branch of the left coronary artery.
Compared with controls, sodium nitrite significantly attenuated
both indices of ischaemia severity. These effects of nitrite were
markedly attenuated in the presence of AEST. Values are means ± SEM.
*P < 0.05 compared with the controls.

Demeter-Haludka et al. 451

Published by NRC Research Press

C
an

. J
. P

hy
si

ol
. P

ha
rm

ac
ol

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

16
0.

11
4.

10
6.

92
 o

n 
05

/1
4/

18
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 



Gladwin 2009), but the mechanism by which this protection is
attained is not well understood. We do not know whether nitrite
itself or after converting to NO would elicit the protection. It is
also not clear how this conversion will take place under physio-
logical conditions. To give answers to at least a part of these ques-

tions, we first designed studies to examine the possibility of
whether the activation of iNOS plays a role in the nitrite-induced
delayed antiarrhythmic protection.

This hypothesis was based on those previous findings that
clearly showed that iNOS has a crucial role in the delayed cardio-
protective effects of preconditioning (Végh and Parratt 1996; Bolli
et al. 1997). It was proposed that the preconditioning stimulus, via
the activation of eNOS, enhances the formation of NO, which then
stimulates iNOS (and most probably eNOS as well; Kovács et al.
2013), resulting in further NO generation (Bolli et al. 1997). This
iNOS-derived enhanced NO production certainly contributes to
the protection 24 h later when the hearts are subjected to an
ischaemia and reperfusion challenge (Végh et al. 1994; Bolli et al.
1997). The evidence for this NO-induced NO formation via the
activation of NOS enzyme isoforms comes from the direct mea-
surement of enzyme activity (Bolli et al. 1997; Kovács et al. 2013)
and from the use of the relatively selective inhibitors of iNOS,
such as aminoguanidine (Kis et al. 1999a) or S-(2-aminoethyl)-
isothiourea (Kis et al. 1999b; Hajnal et al. 2005). However, as to
whether sodium nitrite infused 24 h prior to an ischaemia–
reperfusion insult uses a similar pathway to induce protection is
not known, and to the best of our knowledge, it has not yet been
investigated.

We have found that sodium nitrite administered in dogs 24 h
before coronary artery occlusion and reperfusion results in a sig-
nificant antiarrhythmic effect. Thus, the number and incidence of
the various types of arrhythmias, resulting from a 25 min occlu-
sion and then reperfusion of the LAD, were markedly reduced
compared with the untreated controls. Similarly, the infusion of
nitrite significantly attenuated the ischaemic changes, assessed
by measuring the epicardial ST segment and the degree of inho-
mogeneity of electrical activation. We have also found that AEST,
given twice in dogs infused with sodium nitrite, only partially, but
not completely, abolished the protective effects of nitrite against
arrhythmias. Thus, in the presence of AEST, there was an increase
in the number of ectopic beats and of episodes of VT during oc-
clusion, but these were still significantly less than in the controls
(Fig. 2). Furthermore, AEST did not substantially modify the pro-
tective effect of nitrite against the occlusion-induced VF, but it
abolished the protection against the reperfusion-induced VF.
AEST also reversed the anti-ischaemic effects of nitrite (Fig. 3).

Fig. 4. Changes in nitrite (NO2), nitrate (NO3), and NOx plasma
levels determined in the venous blood before and after the
administration of sodium nitrite and also 24 h later in the blood of
the coronary sinus before and after the occlusion of the anterior
descending branch of the left coronary artery (LAD). Compared with
the pre-infusion values, the infusion of nitrite elevated the nitrite and
nitrate levels, irrespective of whether S-(2-aminoethyl)-isothiourea
(AEST) was present or not. Twenty-four hours later, the nitrite
concentrations in all groups were similar to the normal, initial
values, whereas the nitrate levels were markedly elevated in the
nitrite-treated dogs. Occlusion of the LAD significantly reduced NOx

in all groups, but the levels of NO metabolites in the nitrite-treated
dogs were significantly higher than in the controls. These changes
were also independent from the presence of AEST. Values are
means ± SEM. *P < 0.05 compared with the pre-infusion (baseline)
value of the corresponding group, #P < 0.05 compared with the
pre-occlusion value of the corresponding group, and †P < 0.05
compared with the control group.

Fig. 5. Changes in iNOS enzyme activity determined by
radioimmunoassay in the sham-operated (SO) control (n = 3), in
the ischaemic control (n = 6), and in the sodium nitrite infused
dogs without (NaNO2, n = 7) and with the administration of
S-(2-aminoethyl)-isothiourea (NaNO2+AEST, n = 6). Compared with
the SO group, there were no significant changes in iNOS activity in
the ischaemic controls, but in the nitrite-treated dogs, a detectable,
albeit statistically not significant, increase in enzyme activation
could be observed. AEST completely inhibited the activation of iNOS
resulting from nitrite administration. Values are mean ± SEM.
*P < 0.05 compared with the NaNO2 group.
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Thus, we may conclude that the activation of iNOS might have a
role in the delayed antiarrhythmic effect of sodium nitrite.

This conclusion is supported by the results obtained from the
measurement of iNOS activity. These show that sodium nitrite
increased (although it was statistically not significant) the activity
of iNOS. This increase was completely abolished in the presence of
AEST; moreover, in the AEST-treated dogs, the iNOS activity was
somewhat lower than in the sham-operated controls. This result
confirms the findings of our previous studies that AEST is able to
effectively block the activation of iNOS and subsequently the
iNOS-derived generation of NO, to which we attribute a key role in
the delayed cardioprotection (Végh et al. 1994; Kis et al. 1999b).
However, whereas AEST completely blocked the delayed antiar-
rhythmic effect of the preconditioning stimuli, such as cardiac
pacing (Kis et al. 1999b) and treadmill exercise (Hajnal et al. 2005),
it only attenuated the nitrite-induced late antiarrhythmic effect.
This finding raises the possibility that in some aspects, there
might be a difference between the preconditioning and the
nitrite-induced protection, as regards the source of NO during
ischaemia. Whereas in the preconditioning-induced delayed pro-
tection, the iNOS-induced NO generation seems to have a manda-
tory role (Végh and Parratt 1996; Bolli et al. 1997; Dawn and Bolli
2002), since the inhibition of iNOS activation abolishes the pro-
tection (Végh et al. 1994; Kis et al. 1999a, 1999b); in the case of the
nitrite-evoked delayed protection, the activation of iNOS to pro-
duce NO is probably less important, since after the complete in-
hibition of iNOS activity, the protection, at least against the
occlusion-induced arrhythmias, is still present.

To examine the source of NO 24 h after the administration of
sodium nitrite, we measured plasma nitrate and nitrite levels
twice, i.e., on day 1 before and after the 20 min infusion of nitrite
in the systemic blood and also on day 2 before and after a 25 min
coronary artery occlusion in the blood of the coronary sinus. We
found that there were no significant differences among the
groups in the baseline (pre-infusion) nitrate, nitrite, and NOx
levels. However, in dogs infused with nitrite, irrespective of the
presence of AEST, the concentrations of NO metabolites were
markedly increased by the end of the infusion period compared
with the saline-infused controls (Fig. 4). Twenty-four hours later,
when the level of these NO metabolites had been assessed again,
now in the blood of the coronary sinus, we observed that in all
groups, the nitrite levels were almost the same as the basal plasma
nitrite concentrations 24 h previously (Fig. 4). In contrast, the
nitrate concentrations were highly elevated in the nitrite-treated
dogs compared with the controls. We think that by this time,
nitrite had converted to nitrate and in the absence of food intake,
the nitrate levels were only affected by the renal function over the
24 h observation period (Lauer et al. 2001). At this time, if the dogs
had been subjected to coronary artery occlusion, the total NOx
concentrations were reduced in all groups compared with their
corresponding pre-occlusion values, but in the nitrite-treated
dogs, NOx was significantly higher than in the untreated controls
(Fig. 4). Furthermore, the reduction in NOx of the nitrite-infused
animals resulted mainly from the marked decrease in nitrate con-
centrations, whereas the nitrite levels were rather increased, in-
dicating that nitrate reduced to nitrite and then possibly to NO
during occlusion. In contrast, in the control dogs, the marked
reduction in NOx, determined at the end of the occlusion period,
resulted from a significant decrease in both the nitrate and the
nitrite concentrations (Fig. 4).

What conclusions we may draw from these results? First, it
seems that following nitrite administration, the majority of ni-
trite is converted to nitrate and it remains and circulates in this
form over the next 24 h period. We may speculate that even under
normal, oxygenated conditions, a part of the infused nitrite may
convert to NO, which reductive process largely depends on the
nitrite reductase activity of deoxyhaemoglobin and xanthine ox-
idoreductase (Dejam et al. 2004). We also know that the activity of

these nitrite reductive mechanisms increases with decreasing
pO2, and pH and with increasing NAD+ concentration, which mi-
lieu is rather unusual under physiologic conditions (Dejam et al.
2004). Therefore, in the absence of direct measurement of NO
formation and (or) of nitrite reductase activity, we are not able to
provide evidence for the existence of such a nitrite to NO conver-
sion in our experiments, but of course, the possibility of this
mechanism cannot be excluded. The possible operation of these
abovementioned nitrite reductase mechanisms (Lauer et al. 2001)
in our experiments is supported by the fact that we have found an
increase in iNOS activity 24 h after nitrite administration, which
almost certainly resulted from the enzyme stimulation by NO
(Fig. 5). This enzyme activation was completely abolished in the
presence of AEST.

Second, our results show that under ischaemic conditions, the
heart of the nitrite-treated dogs uses nitrate as a primary source
for NO production via its reduction to nitrite and then to NO. This
nonenzymatic NO formation provides an adequate amount of NO
during occlusion and the subsequent reperfusion to elicit protec-
tion against the ischaemic changes and arrhythmias. The fact that
a part of the protection, such as against the ischaemia-induced
ventricular arrhythmias, has still remained in the presence of
AEST and further that the complete inhibition of the activity of
iNOS did not modify the nitrite-induced effects on the concentra-
tion of NO metabolites suggests that iNOS and the iNOS-derived
NO have only a minor role in the nitrite-evoked delayed antiar-
rhythmic protection during ischaemia. On the other hand, the
fact that AEST markedly attenuated the nitrite-induced protec-
tion against the ischaemic changes and the reperfusion-induced
severe ventricular arrhythmias suggests a role for iNOS-derived
NO in the protective effect of nitrite. We suppose that this enzy-
matic NO formation becomes particularly important during
reoxygenation, when the rapid change in the milieu stops the
nitrate–nitrite–NO conversion that has provided NO during isch-
aemia. Thus, under these conditions, the blockade of the additional
NO source (iNOS) would result in the abolition of the nitrite-
induced protection.

The first evidence that inorganic nitrites may provide delayed
protection resulted from studies of Shiva and his colleagues (Shiva
et al. 2007a, 2007b; Shiva and Gladwin 2009). They showed in
various in vitro and in vivo models that nitrite administered 24 h
prior to ischaemia produces similar protection by the same mech-
anism as nitrite given acutely (Shiva and Gladwin 2009). They
proposed that nitrite through S-nitrosylation of mitochondrial
proteins, particularly complex I, mediates both the early and
delayed protection (Shiva et al. 2007b). It was suggested that mito-
chondrial S-nitrosylation occurs rapidly following the administra-
tion of nitrite and it remains stable for 24 h (Shiva and Gladwin
2009). The role of S-nitrosylation as a potential mechanism in the
acute effect of nitrite has been confirmed in our own studies as
well. We have shown that when sodium nitrite was administered
either prior to and during the occlusion or just prior to reperfu-
sion, it provided a marked antiarrhythmic protection against the
ischaemia and reperfusion-induced severe ventricular arrhyth-
mias and this effect was associated with protein S-nitrosylation
and glutathionylation (Kovács et al. 2015). Although the role of
stable protein S-nitrosylation cannot be ruled out as one of the
potential mechanisms for the explanation of the delayed cardio-
protection resulting from nitrite administration (Shiva et al.
2007b), there is a lack of sufficient information on how this pro-
longed protein S-nitrosylation would take place. The results of
studies in vitro from the same group (Shiva et al. 2007a) suggest
that deoxymyoglobin, which nitrite reductase activity is much
higher than deoxyhemoglobin to reduce nitrite, would be the
candidate for conserving and generating NO via nitrite reduction
under physiological conditions (Shiva et al. 2007a). Although in
the present study, we did not assess protein S-nitrosylation, we are
not fully convinced that the same mechanism operates under in
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vivo conditions and fully explains the marked delayed antiar-
rhythmic effect of sodium nitrite. What we can propose as an
alternative and (or) additional hypothesis for the delayed protec-
tive effect of nitrite that results from the NOx measurements in
our large animal experiments is that under physiological condi-
tions, the majority of the infused nitrite converts to nitrate and
in this form is stored over the next 24 h. This is supported by the
fact that the nitrate, but not the nitrite, levels were markedly
increased 24 h after the infusion of nitrite. As to whether mito-
chondrial protein S-nitrosylation would take place before the con-
version of nitrite to nitrate we do not know yet, but the possibility
of such a mechanism cannot be excluded. This warrants further
examination in our model. The results of the measurement of
iNOS activity, however, suggest that a part of nitrite is most prob-
ably converted to NO, and this was sufficient to stimulate iNOS. In
contrast, the fact that AEST, even though it completely blocked
the activity of iNOS, it did not modify the concentration of NO
metabolites, and the occlusion-induced arrhythmias suggest that
iNOS has only a minor contribution to NO formation and the
protection in the nitrite-treated dogs. We propose that dogs
treated with nitrite use nitrate as a primary source of NO during
ischaemia. This is converted back first to nitrite and then to NO
when reductive conditions are attained, such as during coronary
artery occlusion, when we could observed a marked reduction in
the nitrate and an increase in the nitrite concentrations.

In conclusion, the results of the present study provided evi-
dence that in contrast with preconditioning, the activation of
iNOS does not play a mandatory role in the nitrite-induced
delayed antiarrhythmic protection, since the blockade of iNOS
activation is only attenuated but not completely abolished the
protection. Exploration of the mechanisms that may contribute to
the marked delayed antiarrhythmic effect of sodium nitrite war-
rants further investigations, which are in progress.
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Background: We have previous evidence that in anesthetized dogs the inorganic

sodium nitrite protects against the severe ventricular arrhythmias, resulting from coronary

artery occlusion and reperfusion, when administered 24 h before. The present study

aimed to examine, whether in this effect changes in mitochondrial morphology and

function would play a role.

Methods: Thirty dogs were infused intravenously either with saline (n = 15) or sodium

nitrite (0.2 µmol/kg/min; n = 15) for 20min, and 24 h later, 10 dogs from each group

were subjected to a 25min period of occlusion and then reperfusion of the left anterior

descending coronary artery. The severity of ischaemia and ventricular arrhythmias

were examined in situ. Left ventricular tissue samples were collected either before the

occlusion (5 saline and 5 nitrite treated dogs) or, in dogs subjected to occlusion, 2min

after reperfusion. Changes in mitochondrial morphology, in complex I and complex

II-dependent oxidative phosphorylation (OXPHOS), in ATP, superoxide, and peroxynitrite

productions were determined.

Results: The administration of sodium nitrite 24 h before ischemia/reperfusion

significantly attenuated the severity of ischaemia, and markedly reduced the number

and incidence of ventricular arrhythmias. Nitrite also attenuated the ischaemia and

reperfusion (I/R)-induced structural alterations, such as reductions in mitochondrial area,

perimeter, and Feret diameter, as well as the increase in mitochondrial roundness.

The administration of nitrite, however, enhanced the I/R-induced reduction in the

mitochondrial respiratory parameters; compared to the controls, 24 h after the infusion

of nitrite, there were further significant decreases, e.g., in the complex I-dependent

OXPHOS (by −20 vs. −53%), respiratory control ratio (by −14 vs. −61%) and in the P/E

control coupling ratio (by 2 vs. −36%). Nitrite also significantly reduced the I/R-induced

generation of superoxide, without substantially influencing the ATP production.
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Conclusions: The results suggest that sodium nitrite may have an effect on the

mitochondria; it preserves the mitochondrial structure and modifies the mitochondrial

function, when administered 24 h prior to I/R. We propose that nitrite affects primary

the phosphorylation system (indicated by the decreased P/E ratio), and the reduction

in superoxide production would result from the subsequent suppression of the ROS

producing complexes; an effect which may certainly contribute to the antiarrhythmic

effect of nitrite.

Keywords: ischaemia/reperfusion, arrhythmia, sodium nitrite, cardioprotection, mitochondrial structure,

mitochondrial respiration

INTRODUCTION

We have previous evidence that the acute administration of
sodium nitrite (0.2 µmol/kg/min; i.v.), protects against the
ischaemia and reperfusion (I/R)-induced severe ventricular
arrhythmias, in anesthetized dogs (Kovács et al., 2015). This
protection was associated with protein S-nitrosylation (SNO)
and glutathionylation by nitric oxide (NO) derived from
nitrite (Kovács et al., 2015). More recently, we have reported
that sodium nitrite, administered 24 h prior to a similar
period of I/R, evokes also an antiarrhythmic effect (Demeter-
Haludka et al., 2017). This particular study has also examined
whether this post-poned effect of nitrite against arrhythmias
involves the mechanism of the nitric oxide (NO)-induced iNOS
activation, which is known to play a significant role in the
preconditioning-induced delayed cardioprotection (Végh and
Parratt, 1996; Bolli et al., 1997). We have found that, in contrast
to preconditioning, where the pharmacological inhibition of
iNOS by S-(2-aminoethyl)-isothiourea completely abolished the
delayed antiarrhythmic protection (Kis et al., 1999a,b; Babai et al.,
2002), the nitrite-induced effect was only partially diminished
following iNOS inhibition (Demeter-Haludka et al., 2017). This
finding suggested that the nitrite-induced cardioprotective effect
that occur 24 h after nitrite administrationmay involve additional
mechanisms, which are most probably independent from the
activation of iNOS (Demeter-Haludka et al., 2017).

There is some previous evidence for the late occurring
cardioprotective effect of sodium nitrite in various in vivo and
in vitro models of ischaemia and reperfusion (Shiva et al.,

Abbreviations: 3-NT, 3-nitrotyrosine; ADP, Adenosine 5′-diphosphate; ATP,
Adenosine 5′-triphosphate; CI, Mitochondrial respiratory chain complex I; CII,
Mitochondrial respiratory chain complex II; CIII, Mitochondrial respiratory
chain complex III; CytC, Cytochrome c; DABP, Diastolic arterial blood pressure;
DHE, Dihydroethidium; ETS, Electron transport system; FCCP, Carbonyl cyanide
p-(trifluoro-methoxy) phenyl-hydrazone; HR, Heart rate; IC, Ischaemic control
group; I/R, Ischaemia and reperfusion; IMF, Inter-myofibrillar; LAD, Left anterior
descending coronary artery; LV, Left ventricle; LVEDP, Left ventricular end-
diastolic pressure; LVSP, Left ventricular systolic pressure; MABP, Mean arterial
blood pressure; MPTP, Mitochondrial permeability transition pore; NO, Nitric
oxide; OXPHOS, Oxidative phosphorylation; PN, Perinuclear; RCR, Respiratory
control ratio; RLU, Relative luminescence unit; ROS, Reactive oxygen species;
SABP, Systolic arterial blood pressure; SC, Sham-operated control group; SNO,
S-nitrosylation; SSM, Sub-sarcolemmal; TEM, Transmission electronmicroscopy;
VF, Ventricular fibrillation; VPBs, Ventricular premature beats; VT, Ventricular
tachycardia

2007a,b; Shiva and Gladwin, 2009). For example, it has been
found that sodium nitrite administered in rats, 24 h prior to I/R,
reduced myocardial infarct size and hepatic reperfusion injury
(Shiva et al., 2007a). This protection was attributed to a stable
post-translational modification of the mitochondrial complexes
(particularly complex I) via S-nitrosylation (Shiva et al., 2007b).
Since there were no changes in mitochondrial respiration and
ATP generation of the hepatic mitochondria, isolated from
the nitrite treated rats until subjected them to anoxia and re-
oxygenation (Shiva et al., 2007a), it was concluded that the rapid
and prolonged S-nitrosylation of mitochondrial proteins, plays
an important role in the delayed protective effect of nitrite (Shiva
and Gladwin, 2009).

Starting from the assumption that the target of the
cardioprotective effect of nitrite might be a mitochondria-
mediated process, we designed studies, in which changes in
mitochondrial morphology and in respiratory function were
examined in dogs undergoing a 25min period of coronary
artery occlusion and reperfusion, 24 h after the administration of
sodium nitrite.

MATERIALS AND METHODS

Ethics
The upkeep of the dogs was in accordance with Hungarian
law (XVIII/VI/31) regarding large experimental animals, which
conforms to the Guide for the Care and Use of Laboratory
Animals by the US National Institutes of Health (NIH
publication No.85-23, revised in 1996), and conformed to
the European Parliament Directive 2010/63/EU. All animal
experiments were supervised and approved by the Department of
Animal Health and Food Control of the Ministry of Agriculture
and Rural Development (No.XIII/1211/2012) and the Ethical
Committee for the Protection of Animals in Research of
University of Szeged, Szeged, Hungary (No.XIII./4657/2016).

Surgical Procedures
Thirty adult mongrel dogs of either sexwith a mean body
weight of 22 ± 4 kg were used. The animals were housed in a
separated animal room (temperature: 10–20◦C, humidity: 40–
70%, lightening: 12 h per day, 2 animals per pen) for 2 weeks
and fed a standard diet and ad libitum access to water. Food
was withdrawn 24 h before anesthesia. The surgical interventions
were as the same as described previously (Végh et al., 1992;
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Demeter-Haludka et al., 2017). In brief, on day one, the dogs were
lightly anesthetized with intravenous sodium pentobarbitone
(30 mg/kg; Euthasol 40%, Produlab Pharma B.V., Netherlands),
and a polyethylene catheter was introduced into the jugular
vein for the administration of saline and sodium nitrite. A
Millar tip catheter (5F, Millar Instruments Inc., USA) was
also positioned into the left carotid artery to measure changes
in arterial blood pressure. Twenty-four hours later (on day
2), the dogs were re-anesthetized with a bolus injection of
sodium pentobarbitone (30 mg/kg, i.v.), and the anesthesia was
maintained with intravenous injections of a mixture of chloralose
and urethane (60 and 200 mg/kg respectively; Sigma, USA). The
depth of anesthesia was monitored, and when it was necessary, a
further bolus injection of the anesthetic was given. The dogs were
ventilated with room air using a Harvard respirator (Harvard
Apparatus, USA) at a rate and volume sufficient to maintain
arterial blood gases within normal limits (Végh et al., 1992).
Body temperature was measured from the mid-esophagus and
maintained at 37± 0.5◦C.

A Cordis F4 catheter was introduced into the right femoral
artery to measure arterial blood pressure, whereas the Millar
tip catheter, introduced previously into the left carotid artery,
was pushed into the left ventricle (LV) to measure LV systolic
and end-diastolic (LVEDP) pressure, as well as the LV positive
and negative dP/dtmax. After thoracotomy, the left anterior
descending (LAD) coronary artery was prepared for occlusion
proximal to the first main diagonal branch.Myocardial ischaemia
was induced by a 25min period of LAD occlusion, followed
by 2min reperfusion (Végh et al., 1992). The severity of
ischaemia was assessed by measuring changes in the degree of
inhomogeneity of electrical activation (expressed inmilliseconds)
and in the epicardial ST-segment (expressed in mV), using a
composite electrode positioned within the ischaemic area (Végh
et al., 1992; Demeter-Haludka et al., 2017). A chest lead II
standard electrocardiogram was recorded to measure heart rate
(HR) and to assess the severity of arrhythmias, such as the total
number of ventricular premature beats (VPBs), the incidence
and the number of episodes of ventricular tachycardia (VT), the
incidence of ventricular fibrillation (VF) during occlusion, and
the incidence of VF following reperfusion (Végh et al., 1992).
Dogs that were still alive 2min after reperfusion were considered
to be survivors. These dogs were euthanized by an excess
dose of the anesthetic 2min after reperfusion. All parameters
were recorded (Plugsys Hemodynamic Apparatus; Hugo Sachs
Electronik, Germany), stored and evaluated by LabChart 7 (AD
Instruments, Australia) software.

In Vitro Measurements
Assessment of Mitochondrial Morphology
This was performed by transmission electron-microscopy
(TEM). Blocks of fresh tissue samples (1 mm3), excised from the
ischaemic region, were fixed in Karnovsky solution (Karnovsky,
1965) for 240min at room temperature, rinsed and post-
fixed in 2% OsO4 (Millonig, 1961). After dehydration with
ethanol, the samples were embedded in epoxy resin (Durcupan
ACM, Sigma, USA) and polymerized at 56◦C for 2 days.
Ultrathin sections (50 nm) were prepared and contrasted with

uranyl acetate (Hayat, 1970) and lead citrate (Reynolds, 1963).
Transmission electron-microscope (Zeiss CEM 902, Germany)
was used in conventional transmission mode (80 keV) to capture
sub-sarcolemmal (SSM), perinuclear (PN) and inter-myofibrillar
(IMF) mitochondria, using a Spot RT 14.0 CCD camera
(Diagnostic Instruments, USA) at 12,000 x magnifications.
Five images were taken from each area per samples, and
the mitochondria were segmented with ImageJ 2 (FIJI; NIH,
Bethesda, USA). Changes in mitochondrial morphology were
evaluated using the built-in applications of ImageJ 2; such
as we determined the area (µm2) and perimeter (µm), the
measures of the size of the mitochondria, as well as the
roundness (4x[Area]/(πx[Major axis]2) and the Feret diameter
(µm), which describe the level of circularity and the shape of the
mitochondria. Data obtained from the five images in each animal
were averaged, and the results obtained from the individual dogs
within a certain group were also averaged. These values served
for comparison among the groups.

Assessment of Mitochondrial Respiration and ATP

Production
Mitochondrial respiration was measured by Clarke-type
oxygen electrode (Strathkelvin 782 oxygen system, Strathkelvin,
Germany). Tissue samples collected from the ischaemic area
was homogenized in isolation medium (Grainer, Strathkelvin,
Germany), containing trypsin and sucrose, and the mitochondria
were separated by centrifugation. The concentrations of the
mitochondrial proteins were determined by the method of
Bradford.

The respiratory parameters for CI and CII were determined
as described previously (Duicu et al., 2013a,b). We measured
the basal respiration (State 2), the active respiration (OXPHOS;
State 3), the capacity of the inhibition of OXPHOS (State 4;
oligomycin, 2µM, Sigma, USA) and the electron transport
system (ETS). The intactness of the outer mitochondrial
membrane (Pc) was evaluated by the administration of
10µM cytochrome C (Sigma, USA). The uncoupling was
determined using carbonyl-cyanide-p-(trifluoro-methoxy)
phenyl-hydrazone (FCCP; 0.5µM, Sigma USA). Antimycin
A (Sigma, USA) was administered to assess the residual
oxygen consumption. From the measured parameters the
respiratory control ratio (RCR = OXPHOS/State4) and the P/E
coupling control ratio (OXPHOS/ETS) were calculated. The
measurements were repeated three times in each sample per dog,
and the results were averaged. Data obtained from the individual
dogs within a group were also averaged, and these means served
for the comparison among the groups.

Mitochondrial ATP production was assessed by
bioluminescence assay, using an ATP Determination Kit
(Invitrogen, USA) according to the manufacturer’s protocol.
Malate and pyruvate (Sigma, USA) were used as substrates.
The emitted light was measured with luminescent optic using a
micro plate reader (FLUOstar OPTIMA, Germany). Data were
expressed as relative luminescence units (RLU). Three samples
in each dog were evaluated and then averaged within a certain
group. These means were compared among the groups.
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Assessment of Tissue Superoxide Production
Superoxide production was determined as described previously
(Kiss et al., 2010). The preparation of tissue samples, collected
from the ischaemic and non-ischaemic areas within 2min of
the reperfusion. Longitudinal cryosections (20µm) were cut,
stained with dihydroethidium (DHE, 10µM, Sigma, USA). N-
acetyl-L-cysteine (100mM, Sigma, USA) was used as a negative
control. Both from the stained and negative control samples, ten
images were captured by a confocal laser scanning microscope
(Olympus FV 1000, Japan). The intensity of the fluorescent
signals was analyzed by ImageJ, and expressed in arbitrary units.
The intensity values, evaluated from four images in each dogs,
were averaged, and data obtained from dogs within a certain
group were also averaged. These values served for comparison
among the groups.

Assessment of Peroxynitrite Production
This was assessed by measuring 3-nitrotyrosine (3-NT)
formation using Western blot. Tissue samples (70mg), taken
from the ischaemic myocardium within 2min of reperfusion,
were prepared as described previously (Kiss et al., 2010). The
formation of 3-NT was assessed from 25 µg of total protein
loaded onto SDS-PAGE gel (10%) and transferred to PVDF
membrane. Mouse monoclonal anti-nitrotyrosine was used
as primary antibody (diluted to 1:3000; Chemicon, Millipore,
USA), and horseradish peroxidase-conjugated rabbit anti-mouse
IgG (diluted to 1:1000, Dakocytomation, Denmark) was used as
a secondary antibody. The blot was developed with an enhanced
chemiluminescence kit (ECL Plus, GE Healthcare, UK), exposed
to X-ray film and scanned. The intensity of the 3-NT bands was
determined using Image J software, and expressed in percentage
of the sham-operated animals. Equal loading of the samples was
controlled by Coomassie Brilliant Blue staining, and normalized
for total protein. Protein samples, isolated from four dogs
in each experimental group, were used for western blot. The
measurements were repeated three times in each dog, and the
results were averaged. Data obtained from the individual dogs
within a group were also averaged, and these means served for
the comparison among the groups.

Experimental Protocol
Thirty dogs of both sexes were randomly divided into four
groups. On day one, 15 dogs (7 female and 8 male) were
infused intravenously with saline, and another 15 dogs (6
female and 9 male) with sodium nitrite (0.2 µmol/kg/min) for
20min. Twenty-four hours later, 10 control (IC) and 10 nitrite
(NaNO2+I/R) treated dogs underwent a 25min period of LAD
occlusion followed by rapid reperfusion. In 5 nitrite (NaNO2)
and in 5 saline (SC) treated dogs (both groups contained 2 female
and 3 male, undergoing the same surgical interventions, without
subjecting them to I/R), the hearts were removed 24 h after nitrite
and saline administration, respectively.

At the end of the experiments, the hearts were stopped by
an excess of anesthetic, removed and myocardial tissue samples
were taken for in vitro analyses. In dogs that were fibrillated
on reperfusion, the samples were collected at the time of
the fibrillation observed. The samples were either immediately

used (for the mitochondrial measurements) or frozen in liquid
nitrogen and stored on −80◦C. In 4 or 5 dogs from the IC and
NaNO2+I/R groups, the “risk area” was assessed using Patent
Blue V dye, as described previously (Végh et al., 1992; Demeter-
Haludka et al., 2017).

Statistical Analysis
The data were expressed as mean ± SEM, and differences
between means were compared by Welch-ANOVA for repeated
measures the Bonferroni-Holm post-hoc test. The number of
VPBs and the number of episodes of VT were compared using
the Kruskal-Wallis test. The incidence of VT and VF, as well
as survival from the combined I/R insult was compared by the
Fisher Exact test. Differences between groups were considered
significant at P < 0.05.

RESULTS

Haemodynamic Changes Following Nitrite
Administration and Coronary Artery
Occlusion
The intravenous infusion of sodium nitrite significantly reduced
the mean arterial blood pressure from 132± 5 to 122± 6 mmHg
(P < 0.05), without a substantial increase in the heart rate (from
167 ± 7 to 168 ± 11 beats/min). Twenty-four hours later, when
the dogs had been subjected to a 25min period of occlusion, there
were similar changes in most of the haemodynamic parameters,
except that the increase in LVEDP and the decrease in negative
dP/dtmax were significantly less in the nitrite than in the saline
infused dogs (Table 1).

The Administration of Sodium Nitrite
Reduces the Number and Incidence of
Ventricular Arrhythmias During Coronary
Artery Occlusion and Reperfusion
This is illustrated in Figure 1. Control dogs, showed a great
number of VPBs and episodes of VT that occurred in all dogs

TABLE 1 | Haemodynamic changes during a 25min occlusion of the LAD.

Saline NaNO2

Baseline Max. change Baseline Max. change

SABP (mmHg) 145 ± 14 −17 ± 3* 141 ± 4 −10 ± 5*

DABP (mmHg) 101 ± 10 −18 ± 3* 97 ± 4 −11 ± 6*

MABP (mmHg) 116 ± 11 −17 ± 2* 111 ± 3 −11 ± 5*

LVSP (mmHg) 139 ± 11 −25 ± 5* 143 ± 13 −9 ± 6*

LVEDP (mmHg) 6.6 ± 1.0 7.1 ± 1.4* 4.4 ± 1.6 5.4 ± 0.7*#

+dP/dtmax(mmHg/s) 2869 ± 226 −769 ± 78* 2839 ± 138 −557 ± 148*

−dP/dtmax (mmHg/s) 2609 ± 163 −574 ± 193* 2295 ± 63 −147 ± 118*#

HR (beats/min) 168 ± 7 5 ± 5 165 ± 8 −5 ± 2

Mean± SEM, calculated from n= 10 experiments.*P< 0.05 vs. baseline value, #P< 0.05
vs. saline treated control group. SABP, systolic arterial blood pressure; DABP, diastolic
arterial blood pressure; MABP, mean arterial blood pressure; LVSP, left ventricular systolic
pressure; LVEDP, left ventricular end-diastolic pressure; HR, heart rate.
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FIGURE 1 | The severity of arrhythmias during a 25min occlusion and reperfusion of the LAD in control dogs (IC; n = 10) and in dogs infused with sodium nitrite

(NaNO2+I/R; n = 10), 24 h previously. Sodium nitrite markedly reduced the total number of ventricular premature beats (VPBs), the incidence and the number of

episodes of ventricular tachycardia (VT), the incidence of ventricular fibrillation (VF) during occlusion, and increased survival from the combined ischaemia and

reperfusion insult. Values are means ± SEM. *P < 0.05 compared with ischaemic controls.

(100%) during the 25min LAD occlusion. Further, four animals
out of the 10 (40%) fibrillated during the occlusion and all
the remaining dogs fibrillated on reperfusion; thus no control
dog survived the combined I/R insult. In contrast, dogs infused
with sodium nitrite 24 h previously, exhibited significantly less
number of VPBs and episodes of VT that occurred in only 1
dog (10%) during the occlusion period. Moreover, no dog in the
nitrite treated group fibrillated during the occlusion and 50% of
the dogs survived reperfusion.

The Administration of Sodium Nitrite
Attenuates the Severity of Ischaemia
During Coronary Artery Occlusion
This was assessed by measuring changes in the epicardial ST-
segment and the degree of inhomogeneity of electrical activation
during a 25min occlusion of the LAD as described previously
(Végh et al., 1992). In control dogs both indices of ischaemia
severity were steeply increased, reaching the maximum value
(epicardial ST segment: 9.3 ± 0.9mV, degree of inhomogeneity:
125 ± 12mV) by the 5min of the occlusion, and these were
maintained over the rest of the occlusion. The administration of
nitrite significantly attenuated these ischaemia-induced changes
in the epicardial segment (3.7 ± 0.6mV) and inhomogeneity
(63 ± 13ms) during the entire occlusion period, although there
were no significant differences between the groups, regarding the
risk area (39.2± 1.2 vs. 40.3± 1.2 in the control and in the nitrite
group, respectively).

The Administration of Sodium Nitrite
Reduces the Ischaemia and
Reperfusion-Induced Morphological
Changes of the Mitochondria
The representative images acquired by TEM are illustrated in
Figure 2A, whereas data of the quantitative analysis obtained
from mitochondria localized in the sub-sarcolemmal (SSM),
inter-myofibrillar (IMF) and perinuclear (PN) areas, are
summarized in Table 2, and the results of mitochondria, assessed
in the IMF region, are also illustrated in Figure 2B. The images
show that compared to the SC dogs, in dogs of the IC group
a substantial swelling and disorganization of cristae of the
mitochondrial matrix could be observed, irrespective of their
localization (SSM, PN, and IMF). These I/R-induced alterations
were less marked in dogs infused with sodium nitrite, 24 h
previously (Figure 2A). Furthermore, there were slight, but
statistically not significant structural differences between the
mitochondria, assessed in the three subsets in the sham control
dogs (Table 2). A 25min I/R resulted in similar tendency of
changes in all mitochondria; thus, compared to the SC dogs,
in dogs subjected to I/R there were significant reductions in
the mitochondrial area, perimeter, and Feret diameter, and
a significant increase in mitochondrial roundness (Table 2,
Figure 2B). These alterations were significantly less marked in
the nitrite treated animals (Table 2, Figure 2B). Sodium nitrite
itself without ischaemia did not cause significant alterations in
the assessed morphological parameters (Table 2, Figure 2B).
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FIGURE 2 | Representative images (A) and the quantitative analysis (B) acquired by transmission electronmicroscopy (TEM) in sham-operated control (SC; n = 4),

ischaemic control dogs (IC; n = 6), and in dogs infused with nitrite with (NaNO2+I/R; n = 4) and without ischaemia (NaNO2; n = 4). For each n, 5 images were

evaluated and averaged. (A) There were no significant differences between the sub-sarcolemmal (SSM), inter-myofibrillar (IMF) and the perinuclear (PN) regions,

concerning the changes of mitochondrial morphology in response to I/R or nitrite treatment. The images show that compared to the SC group, in dogs subjected to a

25min I/R, substantial swelling and disorganization of cristae of the mitochondrial matrix occurred in all the three examined regions (indicated by arrows). These

alterations were less marked in dogs treated with sodium nitrite, 24 h previously. (B) This shown data obtained from mitochondria positioned in the IMF region.

Compared to the SC dogs, the mitochondrial area, perimeter and Feret-diameter were significantly reduced, whereas the mitochondrial roundness was markedly

increased in the IC dogs. These alterations were significantly less marked following the administration of sodium nitrite. Values are means ± S.E.M. *P < 0.05

compared with SC; #P < 0.05 compared with IC.

The Administration of Sodium Nitrite
Reduces Mitochondrial Respiration
Following Coronary Artery Occlusion and
Reperfusion
The changes in the CI and CII-dependent respiratory parameters
are illustrated in Figures 3, 4, respectively. Whereas, there was
no significant difference in the basal respiration between the
examined groups, the CI-dependent OXPHOS and the ETS
were markedly reduced in dogs subjected to a 25min period
of occlusion and then reperfusion. The respiratory control ratio
(RCR), a classical parameter for the mitochondrial qualitative
control, indicating the coupling between oxygen consumption
and oxidative phosphorylation (Montaigne et al., 2010) was only
slightly, but not significantly reduced following such aperiod
of I/R insult (Figure 3). Furthermore, the P/E control coupling
ratio, a measure of the limitation of OXPHOS capacity by the
phosphorylation system, was almost the same in the ischaemic
(IC group) as in the non-ischaemic (SC group) dogs, regarding
both the CI and the CII-dependent respiration (Figures 3, 4,
respectively). Interestingly, compared to the SC dogs, nitrite

alone (without I/R) significantly reduced the CI-dependent
OXPHOS, ETS, and RCR, without substantially modifying State
4 and the P/E coupling ratio (Figure 3). Furthermore, in dogs
infused with nitrite and 24 h later subjected to a 25min period
of ischaemia and reperfusion, significant decreases occurred
both in CI and CII-dependent OXPHOS and RCR, and an
increase in State 4, compared with the ischaemic controls
(Figure 3, 4). Since, in these dogs the ETS was slightly but not
significantly increased compared with the untreated ischaemic
(IC) dogs, the P/E coupling ratio was markedly reduced
(Figures 3, 4), indicating that under conditions of ischaemia and
reperfusion, nitrite limits OXPHOS capacity by influencing the
phosphorylation system.

Changes in the Mitochondrial ATP
Production 24h After Sodium Nitrite
Administration
Changes in total ATP production were determined in three
samples of each animal, collected from the sham control (SC;
n = 4), ischaemic control (IC; n = 5) dogs, as well as from dogs
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TABLE 2 | Morphological changes in the different mitochondria subsets following

ischaemia and reperfusion, and sodium nitrite administration.

Area (µm2) Perimeter (µm) Feret

diameter (µm)

Roundness

SC (n = 4)

SSM 0.48 ± 0.02 2.69 ± 0.03 1.04 ± 0.01 0.57 ± 0.05

IMF 0.68 ± 0.04 3.38 ± 0.06 1.37 ± 0.03 0.46 ± 0.03

PN 0.49 ± 0.02 2.77 ± 0.09 1.09 ± 0.04 0.58 ± 0.02

IC (n = 6)

SSM 0.35 ± 0.02* 2.12 ± 0.05* 0.77 ± 0.02* 0.75 ± 0.01*

IMF 0.39 ± 0.04* 2.30 ± 0.08* 0.88 ± 0.03* 0.67 ± 0.03*

PN 0.39 ± 0.02* 2.26 ± 0.05* 0.82 ± 0.02* 0.75 ± 0.02*

NaNO2-IC (n = 4)

SSM 0.65 ± 0.05# 3.15 ± 0.12# 1.22 ± 0.07# 0.58 ± 0.07#

IMF 0.54 ± 0.04# 2.88 ± 0.06# 1.13 ± 0.01# 0.53 ± 0.04#

PN 0.51 ± 0.02# 2.76 ± 0.05# 1.04 ± 0.02# 0.65 ± 0.02#

NaNO2 (n = 4)

SSM 0.58 ± 0.06# 2.96 ± 0.15# 1.13 ± 0.05# 0.58 ± 0.02#

IMF 0.67 ± 0.08# 3.18 ± 0.19# 1.22 ± 0.03# 0.54 ± 0.01#

PN 0.47 ± 0.02# 2.64 ± 0.08# 1.02 ± 0.03# 0.60 ± 0.02#

For each n, 5 images were evaluated and averaged. Values are means ± S.E.M.
*P< 0.05 compared with SC; #P < 0.05 compared with IC. SSM, sub-sarcolemmal; IMF,
inter-myofibrillar; PN, perinuclear.

that had been infused with nitrite with (NaNO2+I/R; n= 5) and
without (NaNO2; n = 5) ischaemia. The production of ATP was
expressed in RLU (over 30 s/mg protein). Compared with the SC
group, a 25min period of I/R almost halved the ATP production
(12232± 1291 cp. 7213± 1117 RLU/30 s/mg protein; P < 0.05).
The administration of nitrite alone (13001 ± 3109 RLU/30 s/mg
protein cp. SC group), and under ischaemic conditions (7130 ±

1560 RLU/30 s/mg protein cp. IC group) did not significantly
modify the rate of ATP production.

Changes in the Ischaemia and
Reperfusion-Induced Superoxide
Production 24h After Sodium Nitrite
Infusion
This is illustrated in Figure 5A. Compared to the SC dogs,
the generation of superoxide was markedly increased in the IC
dogs. This I/R-induced increase in superoxide production was
attenuated by the prior administration of nitrite.

Changes in the Ischaemia and
Reperfusion-Induced Peroxynitrite
Production 24h After the Infusion of
Sodium Nitrite
The changes in 3-NT production are shown in Figure 5B.
Compared to the SC dogs, a 25min I/R resulted in a significant
increase in 3-NT production. This increase in 3-NT formation
was markedly reduced in the nitrite treated dogs.

DISCUSSION

We have previous evidence that the infusion of sodium nitrite
provides a marked immediate (Kovács et al., 2015), and also
a later appearing (24 h later; Demeter-Haludka et al., 2017)
protective effect against those severe ventricular arrhythmias
that result from a 25min period of coronary artery occlusion
and reperfusion in anesthetized dogs. We have now examined,
whether the cardioprotective effect of sodium nitrite, occurring
24 h later, involves changes in mitochondrial morphology and
function. This question was raised because our previous studies,
examining the role of NO-induced iNOS activation in this
protection against arrhythmias showed that the NO/iNOS/NO
pathway (Végh and Parratt, 1996; Bolli et al., 1997) may have
some role in the protection, but it does not fully explain the
marked antiarrhythmic effect of nitrite (Demeter-Haludka et al.,
2017). Since, there has been some previous evidence, albeit
from different experimental models, which suggests that the
mitochondria might be important target organelles in the delayed
protective effect of nitrite (Shiva et al., 2007a,b; Shiva and
Gladwin, 2009), we designed studies to examine the effects of
nitrite onmitochondrial structure and function in our established
in vivo canine model of ischaemia and reperfusion (e.g., Végh
et al., 1992; Kiss et al., 2010). Using various in vitro methods,
we have determined the changes in mitochondrial morphology,
the alterations in the CI and CII-dependent mitochondrial
respiration, as well as in ATP, superoxide and peroxynitrite
productions in myocardial tissue samples, collected from the
heart of dogs during the early period (2min) of reperfusion,
following a 25min ischaemic insult.

There is emerging evidence that changes in mitochondrial
morphology play an important role both in the normal
and the diseased myocardium; by the dynamic nature of
the mitochondria their morphological changes may occur
during cardiac development, and also in response to injurious
conditions, such as ischaemia and reperfusion, heart failure,
diabetes, apoptotic, and autophagy cell death (Ong and
Hausenloy, 2010). In our study the qualitative and quantitative
analyses of the TEM images showed that a 25min period
of ischaemia and 2min reperfusion resulted in substantial
structural alterations in the mitochondria, irrespective whether
they were inter-myofibrillar, sub-sarcolemmal, or perinuclear
mitochondria (Figure 2A).We have found that the electron
density of the mitochondrial matrix was markedly reduced and
the normally tightly packed cristae became disconnected and
disorganized. There were also signs of mitochondrial swelling. In
many of these severely damaged mitochondria, large and empty
blebs could be observed that led to membrane disruption. In
other mitochondria, a rearrangement of the cristae was apparent
(Figure 2A). Furthermore, the reduction in the mitochondrial
area, perimeter, and Feret-diameter, as well as the increase in
roundness indicated that the mitochondria become smaller and
more spherical following a 25min period of ischaemia and
reperfusion insult (Figure 2B). A recent finding also shows
that in mouse subjected to a 20min global ischaemia without
reperfusion, the sphericity of the mitochondria, in all the three
subsets, was significantly increased (Kalkhoran et al., 2017). We
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FIGURE 3 | The effect of sodium nitrite administration on CI-dependent basal (State 2) respiration, on OXPHOS capacity and capacity of OXPHOS inhibition (State 4),

as well as on the respiratory control ratio (RCR), the uncoupling of ETS and the P/E coupling ratio. There were no significant differences in the basal respiration

between the examined groups. In dogs subjected to ischaemia and reperfusion (I/R), the CI-dependent OXPHOS and the ETS were significantly reduced, whereas the

RCR was also, but not significantly, decreased. In these dogs the P/E coupling ratio did not differ from the SC dogs. Nitrite itself significantly reduced OXPHOS, ETS

and RCR, without substantially modifying State 4 respiration and the P/E coupling ratio, compared with the SC dogs. In the nitrite treated dogs, subjected to I/R, there

were further significant decreases in OXPHOS and RCR, and an increase in State 4 respiration, compared with the IC dogs. Since in these dogs ETS slightly increased

compared with the IC dogs, the P/E coupling ratio was markedly reduced. Values are means ± S.E.M. from n = 5 animals/group. Values for each n were calculated

from three replicates. *P < 0.05 compared with SC; #P < 0.05 compared with IC, §P < 0.05 compared with nitrite alone.

FIGURE 4 | The effect of sodium nitrite on CII-dependent basal (State 2) respiration, on OXPHOS capacity and capacity of OXPHOS inhibition (State 4), as well as on

the respiratory control ratio (RCR), the uncoupling of ETS and the P/E coupling ratio. There were no significant differences between groups as regards the basal (State

2) respiration. In dogs subjected to ischaemia and reperfusion (I/R) no significant alterations occurred in the CII-dependent respiratory parameters. The administration

of nitrite affected only the OXPHOS, which further reduced when the nitrite treated dogs had been subjected to I/R. In these dogs the CII-dependent RCR and P/E

were also significantly decreased compared to the IC dogs. Values are means ± S.E.M. from n = 5 animals/group. Values for each n were calculated from three

replicates.*P < 0.05 compared with SC; #P < 0.05 compared with IC, §P < 0.05 compared with nitrite alone.

have also found that the I/R-induced structural changes of the
mitochondria were significantly less marked, if the dogs had been
infused with sodium nitrite, 24 h previously (Figure 2B). To the
best of our knowledge, this is the first study, which has examined
the effect of nitrite on mitochondrial morphology in a large
animal model, and showed that nitrite may modify the ischaemia

and reperfusion-induced structural changes of the mitochondria;
an effect which might have a role in the cardioprotective effect
of nitrite. However, as to whether nitrite directly acts on the
mitochondria, or whether the preservation of mitochondrial
morphology results from other effects of nitrite, we do not know;
this warrants further examinations.
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FIGURE 5 | The effect of sodium nitrite administration on ischaemia and reperfusion-induced (A) superoxide and (B) 3-nitrotyrosine (3-NT) productions, The

superoxide production was determined in 5 sham control (SC), ischaemic control (IC) and nitrite treated (NaNO2+I/R) dogs. For each n, 4 images were evaluated and

averaged. The formation of 3-NT was assessed in four dogs in each group. Values for each n were calculated from three replicates. The representative images of the

DHE staining and western blot with the corresponding Coomassie Blue staining are shown on the upper parts of the figure. Compared with the sham controls,

occlusion and reperfusion of the LAD resulted in a marked increase in both the superoxide and 3-NT production. These changes were significantly less marked in dogs

treated with nitrite 24 h previously and subjected to a similar period of I/R. Values are means ± S.E.M. *P < 0.05 compared with SC; #P < 0.05 compared with IC.

Also, we do not have direct evidence whether the preservation
of mitochondrial structure by nitrite contributes to better
mitochondrial function, but the results of the functional
measurements show that nitrite modifies mitochondrial
respiration and ROS production as well. Although there
are many possibilities to assess mitochondrial function and
dysfunction, in our experiments we measured mitochondrial
respiration, as the generally accepted indicator of mitochondrial
function (Brand and Nicholls, 2011) in isolated mitochondria,
obtained from the control and the nitrite treated dog hearts.
We have found that a 25min ischaemia and 2min reperfusion
depressed mitochondrial respiration; i.e., both the CI and
CII-dependent OXPHOS were significantly decreased, and there
were also reductions in RCR (OXPHOS/state4) and in the ETS
(Figures 3, 4). Since, the P/E control coupling ratio was similar
in the ischaemic and in the non-ischaemic control groups, we
suppose that the reduced mitochondrial respiration resulted
primary from the depression of the respiratory complexes
(mainly CI) of the ETS.

Interestingly, nitrite alone reduced the mitochondrial
respiration 24 h later, and this was even further decreased, when
the nitrite-treated dogs had been subjected to ischaemia and
reperfusion. Thus, compared with the ischaemic controls (IC
group), in the nitrite treated dogs both the CI and CII-dependent

OXPHOS, the RCR, and the P/E coupling control ratio were
significantly reduced. Furthermore, nitrite significantly reduced
the superoxide and the 3-NT productions, resulted from a 25min
period of occlusion and reperfusion insult (Figure 5).

There is substantial evidence that NO regulates ROS
formation, and that this mechanism is largely involved in
the protective effect of NO, for example, against those severe
ventricular arrhythmias (Kiss et al., 2010), which occur during
the first minutes of the reperfusion, when the burst of ROS
is apparent (Xia and Zweier, 1997; Iwase et al., 2007; Burwell
and Brookes, 2008). There are, of course, a number of ways
by which NO may regulate ROS formation. For example, NO
inhibits the activities of xanthine/xanthine oxidase (Ichimori
et al., 1999) and the NADPH oxidase (Clancy et al., 1992; Fujii
et al., 1997), which are the major sources of ROS production. The
other potential source of ROS is the mitochondrial respiratory
chain, especially in the heart, where the myocytes are abundant
in mitochondria. Thus, the mitochondrial electron transport
might become an important sub-cellular source of ROS, and
a contributor to the reperfusion-induced injury (Ambrosio
et al., 1993). There is evidence that NO reduces mitochondrial
superoxide production by acting directly on the ETS or the
uncoupling proteins (Burwell and Brookes, 2008), but the precise
mechanisms are still not clarified. Recently, it has been suggested
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that the redox-modification of specific cysteine-thiol groups of
proteins in the subunits of the respiratory chain complexes
with S-nitrosylation influences the respiratory chain activity,
and modifies ROS production (Dröse et al., 2014). Indeed, the
reversible S-nitrosylation of CI was protective against myocardial
I/R damage (Couchani et al., 2013). Although in the present
study we did not measure protein SNO, our previous results
have revealed that following acute administration (just prior to
ischaemia or reperfusion) nitrite protects the myocardium by S-
nitrosylation, and perhaps by glutathionylation (Kovács et al.,
2015). As to whether in our model SNOmay play a role in the late
antiarrhythmic effect of nitrite warrants further investigations.

It seems well accepted that CI and, especially in cardiac
myocytes, complex III (CIII) are the main sources of superoxide
production (Turrens, 2003), but more recently, CII has also
been considered as an important generator of ROS, under
certain circumstances (Turrens, 2003; Dröse et al., 2014). The
contribution of these sites for the overall ROS production
depends on the organ, the milieu of substrates and redox
conditions, as well as on the intactness of the respiratory chain
activity (St-Pierre et al., 2002; Turrens, 2003; Dröse et al.,
2014). As the respiratory chain becomes reduced, such as during
ischaemia and reperfusion or following a defect of mitochondrial
complexes, electrons leak from the defective complex, resulting
in the univalent reduction of oxygen to form superoxide. More
recently, however, it is turned out that the inhibition of CI andCII
activity attenuates the electron transfer to CIII, diminishes CIII
reduction and decreases the electron leakage and the formation of
ROS at CIII (Chen et al., 2003, 2006; Stewart et al., 2009), thereby
protecting the myocardium against the reperfusion injury (Chen
et al., 2006; Stewart et al., 2009).

In our dog model a 25min ischaemia and 2min reperfusion
(this reperfusion interval was selected because the severe
reperfusion-induced arrhythmias occur almost immediately after
the reopening of the coronary artery; Figure 1) resulted in
a mild, but significant reduction in the CI (24%; P < 0.05
compared to the SC group; Figure 3), and also in the CII-
supported OXPHOS (Figure 4), a decrease in ATP and an
increase in superoxide (Figure 5) productions. Furthermore, in
these ischaemic dogs, the P/E coupling ratio was similar to
that observed in the sham controls (SC), suggesting that such
a period of I/R limits the capacity of the respiratory complexes
of the ETS, and consequently, increases the generation of ROS.
In contrast, the administration of nitrite itself (without I/R), and
also following an occlusion and reperfusion insult, substantially
reduced mitochondrial respiration; i.e., there was a marked
decrease in the CI-dependent OXPHOS (48% compared with
24% in the IC group), in RCR and, in particular, in the P/E
coupling ratio. The decrease in P/E following nitrite raises the
possibility that nitrite (NO) affects the phosphorylation system,
and that the reduction in the CI-dependent OXPHOS would
result from the modification of the phosphorylation system
rather than of the proximal complexes. Interestingly, despite the
marked reduction in OXPHOS, the ATP production in the nitrite
treated dogs was as the same as in the ischaemic, untreated
controls. In contrast, the administration of nitrite significantly
attenuated the ischaemia-induced increase in superoxide and

3-NT productions (Figure 5). This latter might be associated
with the observation that the State 4 respiration was significantly
increased in the NaNO2+I/R dogs, indicating an increase in
proton leakage in the inner membrane, which results in a
reduction in ROS production (Brand et al., 1999; Divakaruni and
Brand, 2011).

Although we do not have direct evidence that in the protective
effect of nitrite the modification of the phosphorylation system
plays a major role, the fact that following the administration
of the uncoupler FCCP, the decrease in ETS was similar both
in the control and in the nitrite treated dogs, supports this
idea. We assume that nitrite (or NO) acts on one of the
components of the phosphorylation system, such as, for example,
the ATP synthase, the phosphate transporter or the ADP/ATP
translocator ANT. It might well be that nitrite interferes with the
interaction of ATP synthase and cyclophilin D, which interaction
plays a role in the formation and opening of mitochondrial
permeability transition pores (MPTP), resulting in decreased
ATP synthesis and increased ROS formation under conditions of
I/R (Halestrap and Richardson, 2015). Moreover, the inhibition
of the pore forming and opening interactions between the inner
mitochondrial membrane proteins and cyclophilin D results in
protection by reducing ATP loss and ROS formation (Javadov
and Kuznetsov, 2013; Halestrap and Richardson, 2015). Recent
evidence suggests that the cysteine 203 residue of cyclophilin
D is necessary for cyclophilin D activation and subsequent
MPTP opening (Nguyen et al., 2011), and that this residue
undergoes protein SNO (Kohr et al., 2011). It has been suggested
that in a NO-enriched environment, the formation of SNO is
protective by preventing the crucial proteins from the irreversible
modification of oxidation, occurring during I/R (Sun et al., 2006).
It is tempting to speculate that in the delayed cardioprotective
effect of nitrite, the S nitrosylation of mitochondrial proteins
involved in the regulation of MPTP, plays an important role.

In summary, the results of this study confirm that the
administration of sodium nitrite provides protection against
the ischaemia and reperfusion-induced severe ventricular
arrhythmias, 24 h later. We have now shown that this
protective effect may involve, among a number of other NO-
dependent effects, changes in mitochondrial morphology and
function. Nitrite prevents the I/R-induced structural alterations
of the mitochondria, and most probably by interfering with
the phosphorylation system, inhibits the ROS producing
components of the ETS and reduces the ROS formation during
the early phase of reperfusion. As to whether the nitrite-induced
protection attains through S-nitrosylation of proteins or one of
the crucial proteins involved in the regulation of MPTP, warrants
further investigations.

AUTHOR CONTRIBUTIONS

ÁV, VD-H, and MK contributed to the conception and design
of this study. The in vivo and in vitro experiments, as well as
the data acquisition and analysis were performed by VD-H, MK,
AP (mitochondrial respiratory measurements), and RP (TEM
analysis). The drafting and revising the work was made by ÁV
with the contribution of DM and LS to data interpretation.

Frontiers in Pharmacology | www.frontiersin.org 10 March 2018 | Volume 9 | Article 286

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Demeter-Haludka et al. The Mitochondrial Effects of Sodium Nitrite

All authors participated in the manuscript revision, read and
approved the submitted version.

FUNDING

This work was supported by the GINOP 2.3.2-15-2016-
00040 and by a special grant of the Medical Faculty of

the Szeged University. MK was supported by the National
Research Development and Innovation (NKFI; Project number:
PD121 104).

ACKNOWLEDGMENTS

We are grateful to the excellent technical assistance of Erika Bakó.

REFERENCES

Ambrosio, G., Zweier, J. L., Duilio, C., Kuppusamy, P., Santoro, G., Elia, P. P., et al.
(1993). Evidence that mitochondrial respiration is a source of potentially toxic
oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J.
Biol. Chem. 268, 18532–18541.

Babai, L., Szigeti, Z., Parratt, J. R., and Végh, A. (2002). Delayed cardioprotective
effects of exercise in dogs are aminoguanidine sensitive: possible involvement
of nitric oxide. Clin. Sci. 102, 435–445. doi: 10.1042/cs1020435

Bolli, R., Manchikalapudi, S., Tang, X. L., Takano, H., Qiu, Y., Guo, Y., et al. (1997).
The protective effect of late preconditioning against myocardial stunning in
conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric
oxide acts both as a trigger and as a mediator of the late phase of ischemic
preconditioning. Circ. Res. 81, 1094–1107. doi: 10.1161/01.RES.81.6.1094

Brand, M. D., and Nicholls, D. G. (2011). Assessing mitochondrial dysfunction in
cells. Biochem. J. 435, 297–312. doi: 10.1042/B/201110162

Brand, M. D., Brindle, K. M., Buckingham, J. A., Harper, J. A., Rolfe, D. F. S., and
Stuart, J. A. (1999). The significance and mechanism of mitochondrial proton
conductance. Int. J. Obesity 23, S4–S11.

Burwell, L. S., and Brookes, P. S. (2008). Mitochondria as a target for the
cardioprotective effects of nitric oxide in ischemia-reperfusion injury.Antioxid.
Redox Signal. 10, 579–599. doi: 10.1089/ars.2007.1845

Chen, Q., Moghaddas, S., Hoppel, C. L., and Lesnefsky, E. J. (2006). Reversible
blockade of electron transport during ischemia protects mitochondria and
decreases myocardial injury following reperfusion. J. Pharmacol. Exp. Ther.

319, 1405–1412.doi: 10.1124/jpet.106.110262
Chen, Q., Vazquez, E. J., Moghaddas, S., Hoppel, C. L., and Lesnefsky, E. J. (2003).

Production of reactive oxygen species by mitochondria: central role of complex
III. J. Biol. Chem. 278, 36027–36031.doi: 10.1074/jbc.M304854200

Clancy, R. M., Leszczynska-Piziak, J., and Abramson, S. B. (1992). Nitric oxide,
an endothelial cell relaxing factor, inhibits neutrophil superoxide anion
production via a direct action on the NADPH oxidase. J. Clin. Invest. 90,
1116–1121. doi: 10.1172/JCI115929

Couchani, E. T., Methner, C., Nadtochiy, S. M., Logan, A., Pell, V. R.,
Ding, S. J., et al. (2013). Cardioprotection by S-nitrosation of a cysteine
switch on mitochondrial complex I. Nat. Med. 19, 753–759. doi: 10.1038/
nm.3212

Demeter-Haludka, V., Juhász, L., Kovács, M., Gardi, J., and Végh, Á. (2017).
Is there a role of iNOS activation in the delayed antiarrhythmic effect of
sodium nitrite? Can. J. Phys. Pharmacol. 95, 447–454. doi: 10.1139/cjpp-
2016-0357

Divakaruni, A. S., and Brand, M. D. (2011). The regulation and
physiology of mitochondrial proton leak. Physiology 26, 192–205.
doi: 10.1152/physiol.00046.2010

Dröse, S., Brandt, U., and Wittig, I. (2014). Mitochondrial respiratory chain
complexes as sources and targets of thiol-based redox-regulation. Biochim.

Biophys. Acta 1844, 1344–1354. doi: 10.1016/j.bbapap.2014.02.006.
Duicu, O., Jusca, C., Falnita, L., Mirica, S., Maximov, D., Fira-Mladinescu, O.,

et al. (2013a). Substrate-specific impairment of mitochondrial respiration
in permeabilized fibres from patients with coronary heart disease versus
valvular disease. Mol. Cell. Biochem. 379, 229–234. doi: 10.1007/s1010-013-
1644-4

Duicu, O., Mirica, S. N., Gheorgheosu, D. E., Privistirescu, A., Fira-Mladinescu,
O., and Muntean, D. M. (2013b). Ageing-induced decrease in cardiac
mitochondrial function in healthy rats. Can. J. Physiol. Pharmacol. 91, 593–600.
doi: 10.1139/cjpp-2012-0422

Fujii, H., Ichimori, K., Hoshiai, K., and Nakazawa, H. (1997). Nitric oxide
inactivates NADPH oxidase in pig neutrophils by inhibiting its assembling
process. J. Biol. Chem. 272, 32773–32778. doi: 10.1074/jbc.272.52.32773

Halestrap, A. P., and Richardson, A. P. (2015). The mitochondrial
permeability transition: a current perspective on its identity and role
in ischaemia/ reperfusion injury. J. Mol. Cell. Cardiol. 78, 129–141.
doi: 10.1016/j.yjmcc.2014.08.018

Hayat, M. A. (1970). Principles and Techniques of Electron Microscopy. Vol. 1.

Biological Applications. New York, NY: Van Nostrand Reinhold, 264–274.
Ichimori, K., Fukahori, M., Nakazawa, H., Okamoto K., and Nishino T. (1999).

Inhibition of xanthine oxidase and xanthine dehydrogenase by nitric oxide. J.
Biol. Chem. 274, 763–768. doi: 10.1074/jbc.274.12.7763

Iwase, H., Robin, E., Guzy, R. D., Mungai, P. T., Vanden Hoek, T. L., Chandel,
N. S., et al. (2007). Nitric oxide during ischemia attenuates oxidant stress and
cell death during ischemia and reperfusion in cardiomyocytes. Free Radic. Biol.
Med. 43, 590–599. doi: 10.1016/j.freeradbiomed.2007.05.017

Javadov, S., and Kuznetsov, A. (2013). Mitochondrial permeability
transition and cell death: the role of cyclophilin D. Front. Physiol. 4:76.
doi: 10.3389/fphys.2013.00076

Kalkhoran, S. B., Munro, P., Qiao, F., Ong, S. B., Hall, A. R., Cabrera-Fuentes, H.,
et al. (2017). Unique morphological characteristics of mitochondrial subtypes
in the heart: the effect of ischemia and ischemic preconditioning. Discoveries
5:e71. doi: 10.15190/d.2017.1

Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high
osmolality for use in electronmicroscopy. J. Cell. Biol. 27, 137A–138A.

Kis, A., Végh, A., Papp, J. G., and Parratt, J. R. (1999a). Repeated cardiac pacing
extends the time during which canine hearts are protected against ischaemia-
induced arrhythmias: role of nitric oxide. J. Mol. Cell. Cardiol. 31, 1229–1241.
doi: 10.1006/jmcc.1999.0955

Kis, A., Végh, A., Papp, J. G., and Parratt, J. R. (1999b). Pacing-induced
delayed protection against arrhythmias is attenuated by aminoguanidine,
an inhibitor of nitric oxide synthase. Br. J. Pharmacol. 127, 1545–1550.
doi: 10.1038/sj.bjp.0702695

Kiss, A., Juhász, L., Seprényi, G., Kupai, K., Kaszaki, J., and Végh, Á. (2010).
The role of nitric oxide, superoxide and peroxynitrite in the antiarrhythmic
effects of preconditioning and peroxynitrite infusion in anaesthetized dogs. Br.
J. Pharmacol. 160, 1263–1272. doi: 10.1111/j.1476-5381.2010.00774.x

Kohr, M. J., Apote, A. M., Sun, J., Wang, G., Murphy, E., Gucek, M., et al. (2011).
Characterisation of potential S-nitrosylation sites in the myocardium. Am. J.

Pysiol. 300, H1327–H1335. doi: 10.1152/ajpheart.00997
Kovács, M., Kiss, A., Gönczi, M., Miskolczi, G., Seprényi, G., Kaszaki, J.,

et al. (2015). Effect of sodium nitrite on ischaemia and reperfusion-induced
arrhythmias in anaesthetized dogs: is protein S-nitrosylation involved? PLoS
ONE 10:e0122243. doi: 10.1371/journal.pone.0122243

Millonig, G. (1961). Advantages of a phosphate buffer for OsO4 solutions for
fixation. J. Appl. Phys. 32:1637.

Montaigne, D., Marechal, X., Preau, S., Baccouch, R., Modine, T., Fayad, G.,
et al. (2010). Doxorubicin induces mitochondrialpermeability transition and
contractile dysfunction in the human myocardium. Mitochondrion 11, 22–26.
doi: 10.1016/j.mito.2010.06.001.

Nguyen, T. T., Stevens, M. V., Kohr, M. J., Steenbergen, C., Sack, M. N., and
Murphy, E. (2011). Cysteine 203 of cyclophilin D is critical for cyclophilin D
activation of the mitochondrial permeability transition pore. J. Biol. Chem. 46,
40184–40192. doi: 10.1074/jbc.M111.243469.

Ong, S. B., and Hausenloy, D. (2010). Mytochondrial morphology and
cardiovascular disease. Cardiovasc. Res. 88, 16–29. doi: 10.109/cvr/cvq273

Frontiers in Pharmacology | www.frontiersin.org 11 March 2018 | Volume 9 | Article 286

https://doi.org/10.1042/cs1020435
https://doi.org/10.1161/01.RES.81.6.1094
https://doi.org/10.1042/B/201110162
https://doi.org/10.1089/ars.2007.1845
https://doi.org/10.1124/jpet.106.110262
https://doi.org/10.1074/jbc.M304854200
https://doi.org/10.1172/JCI115929
https://doi.org/10.1038/nm.3212
https://doi.org/10.1139/cjpp-2016-0357
https://doi.org/10.1152/physiol.00046.2010
https://doi.org/10.1016/j.bbapap.2014.02.006.
https://doi.org/10.1007/s1010-013-1644-4
https://doi.org/10.1139/cjpp-2012-0422
https://doi.org/10.1074/jbc.272.52.32773
https://doi.org/10.1016/j.yjmcc.2014.08.018
https://doi.org/10.1074/jbc.274.12.7763
https://doi.org/10.1016/j.freeradbiomed.2007.05.017
https://doi.org/10.3389/fphys.2013.00076
https://doi.org/10.15190/d.2017.1
https://doi.org/10.1006/jmcc.1999.0955
https://doi.org/10.1038/sj.bjp.0702695
https://doi.org/10.1111/j.1476-5381.2010.00774.x
https://doi.org/10.1152/ajpheart.00997
https://doi.org/10.1371/journal.pone.0122243
https://doi.org/10.1016/j.mito.2010.06.001.
https://doi.org/10.1074/jbc.M111.243469.
https://doi.org/10.109/cvr/cvq273
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Demeter-Haludka et al. The Mitochondrial Effects of Sodium Nitrite

Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque
stain in electron microscopy. J. Cell. Biol. 17, 208–212.

Shiva, S., and Gladwin, M. T. (2009). Nitrite mediates cytoprotection after
ischemia/reperfusion by modulating mitochondrial function. Basic Res.

Cardiol. 104, 113–119. doi: 10.1007/s00395-009-0009-3
Shiva, S., Huang, Z., Grubina, R., Sun, J., Ringwood, L. A., MacArthur, P.

H., et al. (2007a). Deoxymyoglobin is a nitrate reductase that generates
nitric oxide and regulates mitochondrial respiration. Circ. Res. 100, 654–661.
doi: 10.1161/01.RES.0000260171.52224.6b

Shiva, S., Sack, M. N., Greer, J. J., Duranski, M., Ringwood, L. A., Burwell, L.,
et al. (2007b). Nitrite augments tolerance to ischemia/reperfusion injury via the
modulation of mitochondrial electron transfer. J. Exp. Med. 204, 2089–2012.
doi: 10.1084/jem.20070198

Stewart, S., Lesnefsky, E. J., and Chen, Q. (2009). Reversible blockade of electron
transport with amobarbital at the onset of reperfusion attenuates cardiac injury.
Transl. Res. 153, 224–231. doi: 10.1016/j.trsl.2009.02.003

St-Pierre, J., Buckingham, J. A., Roebuck, S. J., and Brand, M. D. (2002). Topology
of superoxide production from different sites in the mitochondrial electron
transport chain. J. Biol. Chem. 277, 44784–44790. doi: 10.1074/jbc.M207217200

Sun, J., Steenbergen, C., and Murphy, E. (2006). S-nitrosylation: NO-related
redox signalling to protect against oxidative stress. Antioxid. Redox Signal. 8,
1693–1705. doi: 10.1089/ars.2006.8.1693

Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. J.
Physiol. 552, 335–344. doi: 10.1113/jphysiol.2003.049478

Végh, Á., and Parratt, J. R. (1996). “Delayed ischaemic preconditioning induced
by drugs and by cardiac pacing,” in Myocardial Preconditioning, ed C. L.
Wainwright and J. R. Parratt (Berlin: Springer), 251–261.

Végh, Á., Komori, S., Szekeres, L., and Parratt, J. R. (1992). Antiarrhythmic effects
of preconditioning in anaesthetized dogs and rats.Cardiovasc. Res. 26, 487–495.

Xia, Y., and Zweier, J. L. (1997). Superoxide and peroxynitrite generation from
inducible nitric oxide synthase in macrophages. Proc. Natl. Acad. Sci. U.S.A. 94,
954–6958.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Demeter-Haludka, Kovács, Petrus, Patai, Muntean, Siklós and

Végh. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org 12 March 2018 | Volume 9 | Article 286

https://doi.org/10.1007/s00395-009-0009-3
https://doi.org/10.1161/01.RES.0000260171.52224.6b
https://doi.org/10.1084/jem.20070198
https://doi.org/10.1016/j.trsl.2009.02.003
https://doi.org/10.1074/jbc.M207217200
https://doi.org/10.1089/ars.2006.8.1693
https://doi.org/10.1113/jphysiol.2003.049478
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

	Article
	Introduction
	Materials and methods
	Ethics
	Surgical procedures
	Determination of iNOS activity
	Assessment of plasma NOx levels
	Experimental protocol
	Statistical analysis

	Results
	Haemodynamic effects of intravenously administered saline, sodium nitrite, and AEST
	Haemodynamic changes following coronary artery occlusion
	The severity of arrhythmias during coronary artery occlusion and reperfusion
	The severity of ischaemia during coronary artery occlusion
	Changes in plasma NOx levels
	The effect of nitrite on iNOS activity
	Area at risk

	Discussion

	Acknowledgements
	References
	Examination of the Role of Mitochondrial Morphology and Function in the Cardioprotective Effect of Sodium Nitrite Administered 24h Before Ischemia/Reperfusion Injury
	Introduction
	Materials and Methods
	Ethics
	Surgical Procedures
	In Vitro Measurements
	Assessment of Mitochondrial Morphology
	Assessment of Mitochondrial Respiration and ATP Production
	Assessment of Tissue Superoxide Production
	Assessment of Peroxynitrite Production

	Experimental Protocol
	Statistical Analysis

	Results
	Haemodynamic Changes Following Nitrite Administration and Coronary Artery Occlusion
	The Administration of Sodium Nitrite Reduces the Number and Incidence of Ventricular Arrhythmias During Coronary Artery Occlusion and Reperfusion
	The Administration of Sodium Nitrite Attenuates the Severity of Ischaemia During Coronary Artery Occlusion
	The Administration of Sodium Nitrite Reduces the Ischaemia and Reperfusion-Induced Morphological Changes of the Mitochondria
	The Administration of Sodium Nitrite Reduces Mitochondrial Respiration Following Coronary Artery Occlusion and Reperfusion
	Changes in the Mitochondrial ATP Production 24h After Sodium Nitrite Administration
	Changes in the Ischaemia and Reperfusion-Induced Superoxide Production 24h After Sodium Nitrite Infusion
	Changes in the Ischaemia and Reperfusion-Induced Peroxynitrite Production 24h After the Infusion of Sodium Nitrite

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References


