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Abstract 
 
 
Effect of heat treatment on decay resistance of white birch was evaluated for different 

incubation periods ranging from 2 to 12 weeks using three species of brown rot and one 

species of white rot fungus. The results of weight loss tests showed that the white rot 

fungus, Trametes versicolor, effectively degraded the untreated wood (73.5%). While the 

degradation of untreated wood by brown rot fungi species Gloephyllum trabeum (11.6%) 

and Conifora puteana (6.2%) was considerably less compared to T. versicolor, the third 

brown rot fungi studied, Poria placenta, caused an appreciable degradation of the same 

species (52.4%). The results clearly showed that the heat treatment reduced the effect of 

fungi attack on white birch. Increasing the heat treatment temperature from 195°C to 

215ºC resulted in reduction of weight loss, consequently, reduction in fungal attack. As 

en example, the weight loss due to T. versicolor, P. placenta, G. trabeum and C. puteana 

attack was reduced 62.2%, 71.3%, 89.6% and 100%, respectively, compared to the 

weight loss of untreated wood when it is heat treated at 215ºC. Thus, these results 

confirmed that the heat-treatment increased the biological resistance of white birch. 

 

Keywords: Betula papyrifera, brown rot fungi, heat-treated wood, white rot fungus,                        

                   White birch, Wood decay 
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1. Introduction  
 

The heat treatment of wood is an environment friendly method for improving the 

resistance against decay (Kamdem et al. 2002; Mburu et al. 2007). Many organisms can 

deteriorate wood, but the greatest damage is caused by fungi. Wood can be colonized and 

biodegraded by a variety of fungi including brown rot, white rot and soft rot fungi. The 

degradation caused by fungi is a complex process and depends on the fungi involved, and 

the kind of wood used. During wood decay, compounds such as cellulose, hemicelluloses 

and lignin are depolymerised in order to provide energy and metabolites for fungal 

growth (Fengel and Wegener 1984). 

One of the effects of heat treatment is the reduction of the hygroscopicity which improves 

the dimensional stability of wood. Another effect is the improvement of the durability of 

wood by limiting its biodegradation by decay fungi (Tjeerdsma et al. 1998; Weiland and 

Guyonnet 2003). A number of authors have attempted to explain the improvement of 

wood durability by heat treament on molecular level (Baechler 1959; Boonstra et al. 

2006; Hakkou et al. 2006; Highley 1970; Kamdem et al. 2000; Kamdem et al. 2002; 

Stamm 1964; Tjeerdsma et al. 1998).  According to the literature, the reasons for the 

improvement in durability of wood by heat-treatment against fungal attack can be 

grouped under following four categories (Kamdem et al. 2002; Weilland and Guyonnet 

2003): (1) enhancement in hydrophobic character of wood, (2) production of extractives, 

(3) modification of the wood polymers, (4) degradation of hemicelluloses.  

Hakkou et al. (2006) have undertaken a study with the aim of understanding the effect of 

heat treatment on the durability of beech wood. The durability of heat-treated beech wood 

was tested against Trametes versicolor. There was not enough evidence supporting the 
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hypothesis of improved decay resistance due to generation of fungicidal compounds or 

due to the increasing hydrophobic character of wood during heat treatment. According to 

the authors, the most plausible hypothesis which would explain the improvement of wood 

durability could be its chemical modifications. Indeed, degradation of hemicellulose 

associated with other chemical modifications appearing during treatment could be the 

origin of improved durability. 

In the literature, there are studies reported on the optimization of wood heat-treatment 

parameters (Poncsák et al. 2006). Contrarily, data on decay resistance due to heat-treated 

wood are scarce (Shi et al. 2007). The present study aims to fill this void. 

In this study, the white birch wood was heat-treated at different temperatures in the 

prototype furnace of University of Québec at Chicoutimi. The objective of this work was 

to evaluate the effect of heat treatment on the biological resistance of this wood species 

against three species of brown rot fungi and one white rot fungus species. The molecular 

reasons for the modification of resistance against fungal attack are discussed. 

 

2. Materials and Methods 
 

Untreated and heat-treated Canadian white birch (Betula papyrifera) sapwood was used 

throughout this study. The biological durability tests were carried out and the equilibrium 

moisture content (EMC) of the wood was also measured. Wood specimens samples were 

oven dried at 103oC ± 2 until stabilization of their mass (approximatively 48 hours) 

before determination of their anhydrous weights.  

 

2.1. Heat Treatment  
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White birch wood boards with dimensions of 0.015 m x 0.045 m x 2.44 m were obtained 

from a local sawmill in Saguenay-Lac-St-Jean (Quebec, Canada). They were pre-dried in 

air until the moisture content was reduced to 5-17 %. The heat treatment of white birch 

was carried out in a prototype furnace of UQAC at Chicoutimi (Quebec, Canada). Heat 

treatment was carried out at three different maximum temperatures (195°C, 205°C and 

215°C). 15 boards were heated to maximum temperature with a heating rate of 15°C/h in 

a humid and inert gas, and were kept at that temperature for one hour. A detailed 

description of the thermal modification process is published elsewhere (Poncsak et al., 

2006). 

The percent of mass loss of wood due to heat-treatment (WL-HT) is determined using the 

equation (1) given below:  

                                   WL-HT (%) = 100 (mo – m1)/mo    (1) 

where mo and m1 are the oven dried mass of untreated and heat-treated wood samples, 

respectively. 

 
2.2. Fungal Durability  
 
 
Three brown rot fungi, Poria placenta (FTK120E), Conifora puteana (FTK9B) and 

Gloephyllum trabeum (FTK47D), and a white rot fungus, Trametes versicolor 

(FTK105D) purchased from FPInnovations FORINTEK, Québec, Canada were used in 

this study. Stock cultures of fungi were maintained on malt-agar slants stored at 4oC.  

Three brown rot fungi G. trabeum, C. puteana and P. placenta were chosen because they 

are the most common brown rot fungi available in the area and are well known for wood 
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degradation in the Nordic conditions (Borrega et al 2009).  Among the white rot fungi, T. 

versicolor and Phanerochaete chrysosporium are very common in Quebec area. 

However, it was difficult to culture Phanerochaete chrysosporium with the conditions of 

study, and the results of degradation of wood were not reproducible. Therefore T. 

versicolor was chosen as the only white rot fungus for this study.  

 
In this study, the methodology used to perform solid state cultures on wood has been 

adapted from EN-113 (1986) standard. 864 wood samples with dimensions of 0.015 m x 

0.005 m x 0.035 m in radial, tangential and longitudinal directions were prepared. The 

degradation of the wood samples was studied based on EN 113 (1986) standard. The only 

difference was that small sized samples were used following the works of Lekounougou 

et al (2009), Bami et al (2011). In this study sample size (0.015m x 0.005m x 0.035m) 

and test duration (12 weeks) were maintained in accordance with Lekounougou et al 

(2009). Untreated birch wood was used as a reference for biological durability. 

 

20 ml of sterile medium was prepared by dissolving 40g malt and 30g agar in 1 liter of 

distilled water. Petri dishes of 9 cm in diameter were filled with this medium, inoculated 

with fungus, incubated for 2 weeks at the temperature of 22oC ± 1ºC, and the relative 

humidity of 70% ± 4% so that the mycelium can colonize.  

 

Three sets of each wood sample, both heat-treated and untreated, were placed in different 

petri dishes. Each experiment was carried out three times to ensure the reproducibility of 

the results. Incubation was carried out under controlled temperature and humidity (22ºC ± 

1ºC, 70% ± 4% relative humidity) in climatic chamber (Conviron). At the end of each test 
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period, mycelia were removed and the samples were dried at 103oC ± 2ºC and the weight 

loss caused by the fungal decay (WL-FD) was determined. This was expressed as a 

percentage of the initial oven dried weight of the wood sample as follows: 

 

WL-FD (%) = 100 ((m0 – m2)/m1)          (2) 

WL-FD (%) = 100 ((m1 – m3)/m1)         (3) 

Where m0 and m2 are the mass of the untreated wood samples before and after exposure 

fungal attack whereas m1 and m3 are the mass of the heat-treated wood samples before 

and after exposure fungal attack, respectively. 

 

 
2.3. Equilibrium Moisture Content (EMC)  

In this work the moisture content was actually measured by monitoring the weight loss of 

the clean sample before and after heating at 103oC for 48 hours.  

 

3. Results  
 

The weight loss data of untreated wood exposed to three brown rot fungi, P. placenta, G. 

trabeum and C. puteana, and one white rot fungus, T. versicolor, for periods varying 

from 2 to 12 weeks are presented in Figure 1. It was observed that the fungal growth was 

fast, and mycelia covered the untreated wood completely in two weeks. The decay of 

untreated birch samples used in this study was slow for all fungi in the beginning of the 

test up to 4 weeks. Starting from the fourth week of exposure, the samples decayed 

continuously until 12 weeks. The mycelia growth depended on the kind of decay fungi. 
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Thus, growth was greater for T. versicolor and P. placenta decay fungi (Fig. 1) compared 

to decay of the other two fungi.  The growth of four decay fungi was considerably 

different at the end of the exposure period. The weight losses observed for T. versicolor 

and P. placenta were considerably higher 73.9% and 52.4 % respectively, confirming the 

virulence of these two fungi under the conditions studied (Fig. 1). In contrast, G. trabeum 

and C. puteana fungi had lower weight losses of 11.6% and 6.2% respectively which 

showed that they were less effective in the untreated white birch degradation compared to 

the other two fungi.  

 

The effect of maximum heat treatment temperature on the weight loss of heat-treated 

white birch exposed to decay fungi is shown in Figure 2. The weight loss of untreated 

birch due to fungal decay is also shown on the same figure. The evaluations of samples 

subjected to the fungi degradation indicated that there is a considerable improvement in 

the decay resistance of wood samples with increasing heat treatment temperature. The 

weight loss of control (untreated) samples was consistently higher than that of the heat-

treated samples, but the degree of improvement depended on the type of fungus used 

under experimental conditions of this study. The treatment temperature seems to have an 

effect on the resistance to fungal attack of heat-treated white birch against T. versicolor, 

P. placenta, G. trabeum and C. puteana as can be seen in Figure 2. It was observed that 

with increasing maximum heat-treatment temperature, within the range of 195ºC to 

215oC studied, weight loss observed due to fungal decay is decreased. 
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Although heat-treatment improved the resistance of white birch wood against all decay 

fungi, its effect was lower on C. puteana and G. trabeum after 12 weeks of exposure 

(Fig.2) compared to its effect on other fungi studied.   

The Figure 3 presents the weight loss of white birch untreated and heat-treated at 215°C 

and colonized by T. versicolor, P. placenta, G. trabeum and C. puteana for 4, 8 and 12 

weeks. A slight increase in weight loss was observed after 8 weeks up to 12 weeks of 

incubation for T. versicolor, P. placenta and G. trabeum fungi. In the beginning of the 

colonization process, fungal growth takes place probably by using nutrients provided by 

the surrounding malt agar which might explain the low weight loss in the first weeks of 

wood colonization. Indeed, in filamentous fungi, majority of genes involved in polymer 

breakdown are suppressed by the presence of easily available carbon source, such as 

glucose (Aro et al. 2005). The weight loss of heat-treated birch is less than that of the 

untreated birch indicating that the heat treatment increases the resistance of this species to 

fungal degradation. 

The results confirmed that increasing the heat-treatment temperature from 195°C to 

215ºC considerably reduced the weight loss of samples due to decay by fungi compared 

to that of untreated birch (Table 1). 9.1 % reduction in weight loss was detected at 195°C  

compared to that of untreated birch whereas at 215ºC the weight loss was reduced 62.2 % 

for T. versicolor.  Similar results   were also obtained on P. placenta and G. trabeum with 

weight loss reductions of 18.9 % and 71.3%  for P. placenta,  and 29.3 % and 89.6 % for 

G. trabeum (Table1) at 195°C and at 215ºC, respectively. These findings are also in 

agreement with previous studies with other species (Boonstra et al. 2006; Hakkou et al. 

2006; Kamdem et al. 2002; Weilland and Guyonnet 2003).  
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4. Discussion 

 

This study showed that the weight loss due to decay by all brown rot fungi was lower 

than that of white-rot fungus T. versicolor on the white birch for the same exposure 

period (Fig. 1). Similar findings were reported by Enoki et al. (1988) who showed that 

usually white-rot fungi degrade hardwoods more efficiently than softwoods. This can be 

due to differences in the chemical composition of softwood species which contain fewer 

hemicelluloses than those of hardwood with mannose as the major constituent whereas 

the major constituent in hardwood such as white birch is xylose (Fengel and Wegener 

1984). The white rot fungus T. versicolor is known to degrade simultaneously lignin and 

polysaccharides while the brown rot fungi preferentially degrade polysaccharides 

(Machuca and Ferraz 2001). This might explain the higher weight losses of white birch 

observed after exposure to T. versicolor compared to those due to exposure to brown rot 

fungi. 

According to ASTMD-2017 (1994) the class of wood is moderately resistant if the weight 

loss due to decay varies within the range of 25% to 45% (Kartal and Ayrilmis 2005). 

Therefore, a weight loss of less than 25% indicates resistance against degradation. Thus, 

an acceptable range of decay is 0 to 25%. The wood can be used for hazard classes 3 and 

4 and can be exposed to outdoor conditions (carpentry, siding) where it is in contact with 

the ground and humidity.  

Of all the brown rot fungi, the highest weight loss was observed for P. placenta (52.4%), 

followed by G. trabeum (11.6%) and C. puteana which showed the lowest weight loss 
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(6.2%) (Table1). Based on these results, white birch can be classified as slightly resistant 

or non-resistant to T. versicolor and P. placenta decay according to ASTM D-2017 

(1994) standard because the weight loss due to decay is more than 45% (Kartal and 

Ayrilmis 2005). At the same time, this wood can be classified as highly resistant to G. 

Trabeum and C. puteana fungal decay according to the same standard. The weight loss 

due to brown rot fungus C. puteana was less than 10% (Fig. 1). 

Variations in biological resistance of white birch wood against four fungi observed in this 

study were also observed by Calenego et al. (2010), Jesus et al. (1998), and Paes et al. 

(2004).  They all showed that different woods frequently presented differences in their 

resistance to different fungal decay, and the ASTM D-2017 (1994) cited that the same 

kinds of woods do not necessarily posses the same class of resistance against all decay 

fungi types. 

The improvement in decay resistance due to heat treatment is observed for heat treatment 

temperatures starting from 195ºC under conditions of this study. It is around this 

temperature that the chemical changes start to take place in wood due to heat treatment 

(Fig. 2, Table 1) (Kamdem et al. 2002; Kocaefe et al. 2007; Tjeerdsma et al. 1998). The 

main polymeric components of the cell wall (cellulose, hemicelluloses and lignin) are 

linked by covalent and hydrogen intrapolymer bonds (Winandy and Rowell 1984) and 

this contributes in different degrees to the strength and durability of wood. It is reported 

in the literature that hemicelluloses are the most thermal- chemically sensitive 

components of wood (Bourgois and Guyonnet 1988; De groot et al. 1988). Several 

authors showed that degradation of hemicelluloses and chemical modifications of the 

wood polymers during heat treatment lead to a decrease in fungal decay, thus, 
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improvement of resistance of heat-treated wood against decay fungi (Hakkou et al. 2006; 

Vernois 2001; Weiland and Guyonnet 2003). 

 

Boonstra and co-workers (2007) exposed heat-treated birch wood to the decay fungus T. 

versicolor. They used the Plato process which is carried out in two separate heat 

treatment stages and a drying stage in between. During the first stage of the heat 

treatment, the wood is treated in an aqueous environment at superatmospheric pressure 

(8-10 bars). This stage is called hydro thermolysis treatment which is conducted in the 

temperature range of 165 to 185°C. Then, wood is dried in an oven. The second stage is 

called curing treatment during which the wood samples are heat treated under   

atmospheric pressure and dry environment. The maximum temperature of heat treatment 

is 180°C and the treatment time is 6 hours. During this stage, superheated steam or 

nitrogen gas was used as sheltering gas to protect the wood from oxygen.  Similar to the 

present study, their results showed a clear improvement in decay resistance of heat-

treated birch wood against white rot fungus T. versicolor. Contrarily, the relationship 

between weight loss and decay resistance for untreated and heat-treated birch wood 

(Betula pendula and/or Betula pubescens) against decay fungus C. puteana was found to 

be different than that observed during this study (Fig. 2). The average weight loss of 25-

44% was observed and this wood was classified as moderately resistant. These 

differences can be due to the variations which can be observed among the same kind of 

woods who do not necessarily posses the same class of resistance across all decay fungi 

(Paes et al. 2004). As it can be seen from the results of this study, European and North 

American birch wood behaves differently when exposed to same fungi. Another reason 
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might be the effect of the type of heat treatment technology, consequently, the treatment 

parameters (heating rate, holding time and treatment temperature) used on the durability 

of same wood species.  

 

5. Conclusions 

 

This study showed that thermal treatment of White birch increases durability against 

decay fungi T. versicolor and P. placenta. For temperatures between 195º C and 215º C, 

a considerable reduction in weight loss was detected (9.1-62.2% and 18.9-71.3% 

respectively). However G. trabeum and C. puteana had little effect on the decay 

resistance of White birch due to the fact that they had low weight losses of 11.6% and 

6.1% respectively for the untreated control. In other words, White birch has high decay 

resistance against G. trabeum and C. puteana even in untreated condition. But there was 

considerable difference in the activities of G. trabeum and C. puteana. For example the 

reduction % was 32.7 for G. trabeum for heat treatment at 205oC whereas for C. puteana 

the value was 100 for the same condition.  
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Table. 
 
 
 
Table 1: Effect of heat treatment temperature on the decay resistance of white birch 

wood to the four decay fungi after 12 weeks of colonization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* MC: moisture content  
 
 
 
 
 
 
 
 
 
 
 

Fungal 
species 

Heat treatment  
temperature (°C) 

MC*  
 (%) 

Weight loss 
       (%) 

Reduction in weight  
loss due to heat 
treatment (%) 

T. versicolor  Untreated 
195°C 
205°C 
215°C 

P. placenta Untreated  
195°C 
205°C 
215°C 

G. trabeum Untreated 
195°C 
205°C 
215°C 

C. puteana Untreated  
195°C 
205°C 
215°C 

161.1 ±1 
  75.4 ±1 
  40.7 ±1 
100.5 ±1 

135.8 ±1 
127.1 ±1 
  95.7 ±1 
  61.9 ±1 

114.5 ±1  
115.8 ±1 
  80.5 ±1 
  69.7 ±1 

  50.1 ±1 
114.8 ±1 
  26.4 ±1 
  21.6 ±1 

73.9 
67.2 
33.9 
27.9 
 

    - 
  9.1 
54.1  
62.2 

52.4 
42.5 
27.6 
15.1 

   - 
18.9 
47.3 
71.3 

11.6 
8.2 
7.8 
1.2 

    - 
 29.3 
 32.7 
 89.6 

6.2 
2.5 
  0 
  0 
 

    - 
 59.7 
 100 
 100 
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Figure Captions 
 
 
Fig.1. Degradation of untreated white birch wood by T. versicolor, P. placenta,  

         G. trabeum and C. puteana after 12 weeks of incubation.   

■: Trametes versicolor (TV); ▲: Poria placenta (PP); ●: Gloephyllum trabeum (GT); Χ: 

Conifora puteana (CP). 

 
 
Fig.2. Effect of maximum heat treatment temperature on the weight loss of white birch   

after 12 weeks of exposure to T. versicolor, P. placenta, G. trabeum and C. 

puteana. 

          □: Control samples; heat-treated wood to: ■: 195°C; ■: 205ºC; ■: 215°C. 

 

 

Fig.3. Weight loss of untreated and heat-treated (215°C) white birch due to degradation  

by T. versicolor, P. placenta, G. trabeum and C. puteana for 4, 8 and 12 weeks. 

           ■: Conifora puteana; □: Gloephyllum trobaum; ■: Poria placenta; □: Trametes 

versicolor. 
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                    Fig. 3 
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