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Abstract

Alumina is an inorganic material, which is widely used in ceramics, catalysts, catalyst supports, ion exchange and
other fields. The micromorphology of alumina determines its application in high tech and value-added industry and
its development prospects. This paper gives an overview of the liquid phase synthetic method of alumina preparation,
combined with the mechanism of its action. The present work focuses on the effects of various factors such
as concentration, temperature, pH, additives, reaction system and methods of calcination on the morphology
of alumina during its preparation.
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Review
Introduction
Different materials are essential for the social develop-
ment. Generally, certain material structure and morph-
ology are required for their applications in a specific
field. Inorganic materials are an important branch of
materials, which promote development of science and
technology. Alumina is an inexpensive and widely used
inorganic material. It has a complex structure and many
crystalline polymorphic phases such as α-Al2O3, β-
Al2O3, γ-Al2O3, δ-Al2O3, θ-Al2O3, η-Al2O3, κ-Al2O3, χ-
Al2O3 and ρ-Al2O3. The phase transition temperatures
are different for different precursors during their calcin-
ation as shown in Fig. 1 [1].
Among the numerous crystal forms of alumina, α-

Al2O3 and γ-Al2O3 are the two most common kinds. α-
Al2O3 has some excellent physical and chemical proper-
ties such as good acid, alkali and heat resistances and
high hardness and strength. It is widely used in different
fields such as ceramics, surface protective layer mate-
rials, refractory materials, catalysts and catalyst supports
and optical materials [2–5]. γ-Al2O3, which is also called

activated alumina, has a large surface area, strong ad-
sorption capacity, good catalytic activity and wear re-
sistance. It is also widely applied in various fields such
as adsorbents [6], ceramics [7], catalysts and catalyst
supports [8].
The application performance of alumina depends on

not only the size of ultra-fine particles but also the par-
ticle shape [9–11]. Alumina has a variety of shapes such
as rod [12], fibrous structure [13], flake [14] and sphere
[15]. Different shapes of alumina have different physical
and chemical properties and applications. For example,
the fibrous nano-alumina has a very strong anti-
sintering property [16], which is often used as an addi-
tive for epoxy resin to improve its tensile strength and
rigidity. The flake-like alumina is generally used as a
seed crystal added to ceramics, which significantly en-
hances the toughness of ceramics [17].
Alumina is a common catalyst support, whose pore

structure is closely related to the activity, selectivity and
lifetime of the catalyst. Alumina is divided into different
categories such as microporous alumina, mesoporous
alumina and macroporous alumina according to its pore
size. The pore size of mesoporous alumina is between 2
and 50 nm. It is a rigid porous material with a mutually
interconnected or isolated network structure. It has not
only the characteristics of a crystalline phase of alumina
but also the characteristics of a porous material.
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Mesoporous alumina is widely used in the catalysis [18],
adsorption [19] and other fields due to its adjustable
pore structure, relatively large internal and external sur-
face area and pore volume.
The morphology, purity, surface acidity and hydrother-

mal stability, the pore structure and other properties re-
strict the application of alumina. The research is
ongoing on the pore structure, surface acidity and
hydrothermal stability [20]. Morphology, as one of the
important parameters of particle characterization, has a
substantial effect on the properties and applications of
the products. The morphology of particles is influenced
and controlled by its crystallization habit during the
preparation using liquid-phase method [21, 22], which is
restricted by the environment and the growth condi-
tions. This article reviews the research carried out on
the preparation of alumina starting from the liquid-
phase method for its synthesis including its mechanism
and discusses the effect of different factors such as react-
ant concentration, temperature, pH, additives, system
environment and calcination methods on the micromor-
phology of particles.

Liquid-Phase Method for Synthesis of Alumina
There are some common liquid-phase methods for syn-
thesis of alumina, such as sol-gel method, hydrothermal
method, template method, precipitation method, emul-
sion method or microemulsion method and electrolysis
method. Alumina with different morphologies can be
obtained by using different synthesis methods and opti-
mizing the reaction conditions.

Hydrothermal Method Hydrothermal method is an ap-
proach where the mixed solution is poured into a sealed
reactor. Utilization of the relatively high temperature in
the reactor and the high-pressure growth environment
promotes the dissolution and recrystallization of poorly
soluble or insoluble material. Hydrothermal methods in-
clude hydrothermal synthesis, hydrothermal treatment
and hydrothermal reactions. During the hydrothermal
process, the crystal grows to its largest possible size
under the non-restricted conditions and its characteris-
tics (various shapes, high degree of crystallinity, small

size, uniform distribution, lighter particle agglomeration,
etc.) form [23, 24]. The development of crystal face and
the morphology of the crystal formed by hydrothermal
synthesis are closely related to the hydrothermal condi-
tions such as water temperature, pressure and the permit-
tivity and viscosity and diffusion coefficient of the solution.
The same type of crystal can be produced with different
morphology under different hydrothermal conditions [25].
Li et al. [26] let ammonium aluminum sulfate, dispers-

ant PEG2000 and urea disperse in deionized (DI) water
and stirred them vigorously to form a solution. Then,
the mixed solution was poured into a stainless steel
pressure reactor with a teflon-lining. By changing the
temperature of the water, mesoporous alumina with dif-
ferent morphologies was obtained. In the course of the
reaction, the following reactions take place:

CO NH2ð Þ2 þH2O→CO2 þ 2NH3 ð1Þ
NH3 þH2O→NH4 þOH− ð2Þ

Al3þ þ 3OH−→AlOOHþH2O ð3Þ
As Fig. 2a shows, when the temperature is 90 °C, the

particles obtained are different size spheres. As it is shown
in Fig. 2b, at the temperature of 120 °C, the particles are
superfine fiber-shaped. As Fig. 2c shows, massive fiber-
shaped particles are obtained at the temperature of 150 °C.
The crystal orientation is dependent on the temperature
which affects the growth rate of the crystal face; conse-
quently, the morphology can be controlled by regulating
the temperature. These results indicate that the morph-
ology of the particles substantially changes with the in-
creasing water temperature [27].
Zhao et al. [28] prepared flat hexagonal-shaped nano-

alumina by hydrothermal synthesis, using aluminum ni-
trate as aluminum source and sodium nitrate as additive.
During the reaction, the Na+ of sodium nitrate was
adsorbed onto the surface, which hindered the accumu-
lation of Al3+ and OH− ions. This affected the appear-
ance of the particles. By changing the amount of sodium
nitrate additive to control the growth of certain crystal
face of alumina, hexagon-shaped alumina with different
parameters was obtained. When the amount of sodium
nitrate was 0.2 mol, the width of the particle was re-
duced and its length and thickness remained unchanged.
When sodium nitrite was 0.4 and 0.6 mol, the thickness
increased and the length and width remained un-
changed. The hexagon-shaped particles were gradually
transformed into thicker particles as the sodium nitrate
concentration increased as shown in Fig. 3.
Depending on different reaction systems, particles

have accordingly different crystal habits. Pramod K.
Sharma’s group and Shi’s group [29, 30] synthesized
needle-like and plate-like α-Al2O3, respectively, in water

Fig. 1 Phase transformation of alumina
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and alcohol-water reaction systems by hydrothermal
treatment method using Al(OH)3 colloid as precursor, as
shown in Fig. 4.
Mikhailov et al. [31] prepared hexagonal flake-shaped

γ-Al2O3 by hydrothermal method with Al2(SO4)3·18H2O
and ammonia as raw materials. This study has shown
that pH of solution has a significant impact on the
morphology of precursor. Under acidic conditions, the
H+ in solution will bind with the hydroxyl, which is on
the surface of the γ-AlOOH layered structure, thereby
destroying this structure, eventually forming a rod-like
nanostructure by rolling growth mechanism [32]. On the
contrary, under alkaline conditions, it retains its layered
structure, forming plate-shaped nanostructure. Figure 5
shows that when pH is 5, the product is rod-like; when

pH is 7, the product is transformed from rod-like to
plate-shaped nanostructure; when pH is 9, the product
has hexagonal shape. Boehmite converts into a γ-Al2O3

in the firing process, but its shape and size do not
change [33, 34]. Calcining the plate-like precursor at
600 °C for 4 h resulted in the original hexagonal γ-Al2O3

with basically same size.

Sol-Gel Method The sol-gel method refers to inorganic
or organic alkoxide dispersed in solution. Using the
transparent sol formed by hydrolysis and condensation
of the precursor, a gel with certain structure is formed
during the aging process by the aggregation between the
gel particles. During the sol-gel process, the microstruc-
ture of the material is controlled and cut at the

50nm 50nm

50nm 50nm

a b

dc

Fig. 3 TEM image of nano-alumina with sodium nitrate concentration of a 0 mol, b 0.2 mol, c 0.4 mol and d 0.6 mol
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c

Fig. 2 TEM image of alumina prepared under different synthetic temperatures. a 90 °C. b 120 °C. c 150 °C
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mesoscopic level by means of low-temperature chemical
method, which changes the morphology and structure of
the particles [35, 36].
Ning et al. [37], using AcOH as additive and adopting

two-step alkoxide hydrolysis sol-gel method, synthesized
spherical and fibrillar Al2O3 nano-powder in organic
phase. The results showed that the amount of AcOH
has a decisive effect on the morphology of the particles.
As the amount of AcOH increased, the shape of the par-
ticles gradually shifted from the fibrillar to the spherical
shape, as shown in Fig. 6. During the reaction, AcOH
and other organic molecules containing functional
groups N, O and S (ethylacetoacetate, polyamide carbox-
ylic acid salt) as additives coordinate with inorganic ion
or are adsorbed onto the surface of crystal nucleus,
which changes the growth rate of crystal face. This leads
to the change in the morphology of particles.
Masouleh’s group and Ji’ group [38, 39], using

aluminum isopropoxide as aluminum source, [Bmim]
PF6 as ionic liquid and adopting sol-gel method to
change the molar ratio of [Bmim] PF6 and aluminum
isopropoxide, successfully synthesized uniform rod-like

mesoporous γ-Al2O3. This study has shown that ionic li-
quid plays a very important role in the morphology of
products. As it is shown in Fig. 7, with the molar ratio
of [Bmim]PF6, aluminum isopropoxide increases from 0
to 0.18; the morphology of the products shows a highly
homogeneous rod shape. When the molar ratio of
[Bmim]PF6 and aluminum isopropoxide is 0.18, the
morphology of the products with rod shape has the best
homogeneity. If this ratio exceeds 0.18, it is not condu-
cive enough to form the rod shape.

Template Method Template method is a cutting-edge
technology developed in the 1990s. It is widely applied
in recent years, and it is an effective synthetic method
for controlling the structure, particle size and morph-
ology of materials through a utilization of template. De-
pending on the differences in template structure,
template method can be divided into two groups called
hard and soft template methods.

Hard Template In hard template method, precursor is
uniformly dispersed in the pore of the hard template or

1µm 1µm

a b

Fig. 4 TEM image of α-Al2O3. a Needle-like α-Al2O3. b Plate-like α-Al2O3

500nm 500nm500nm

a b c

Fig. 5 TEM image of γ-AlOOH. a pH = 5. b pH = 7. c pH = 9
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absorbed onto its surface, thereby converting it into a
complex product. Then, by choosing an appropriate
method (dissolution, sintering, etching, etc.), the target
product can be obtained. The special structure of hard
template restricts the crystallization or polymerization of
the precursor during the process of synthesis, which

leads to formation of a mesoscopic phase with an
opposite-phase structure of the template.
The hard template is often used as a microreactor dur-

ing the synthesis. The type of hard template and the re-
action conditions such as concentration of reactants,
time of immersion, temperature of immersion and the

Fig. 6 TEM image of alumina nanoparticles with different amount of AcOH. a No AcOH. b m(AcOH)/m[Al(Opri)3] < 0.05. c m(AcOH)/m[Al(Opri)3]≈0.1

Fig. 7 SEM image of alumina particles with different molar ratio of [Bmin]PF6 and aluminum isopropoxide. a Al2O3-0. b Al2O3-0.03. c Al2O3-0.12.
d Al2O3-0.18. e Al2O3-0.24. f Al2O3-0.30
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temperature of heat treatment affect the structure and
morphology of the product. Especially, the temperature
of heat treatment has a great impact on product. The
excessively high temperature causes microscopic parti-
cles to gather together which in turn affects the order of
the micromorphology and its structure [40].
Pang et al. [41] successfully prepared alumina bubble

with tunable pore size using colloidal carbon spheres as
template and aluminum nitrate as the aluminum source
as shown in Fig. 8a. This study has shown that the con-
centration of aluminum nitrate has no significant effect
on the morphology and pore size of alumina. Also, the
adsorption time does not affect the morphology; how-
ever, the pore diameter increases gradually with increas-
ing time. The adsorption temperature as well has an
effect on the morphology. The surface of the particles
becomes smooth, and the wall thickness increases with
increasing temperature as shown in Fig. 8b, c.

Soft Template Method Soft template utilizes the inter-
molecular or intramolecular interaction forces, such as
hydrogen bonds and bond and static electricity, to form
aggregates with certain structural characteristics (liquid
crystal, vesicles, micelle, microemulsion, self-assembled
film, etc.) during the reaction. The reactants use these
aggregates as template to generate a particle with certain
morphology and structural features.
In the synthesis by soft template method, it is usually

thought that the interaction between liquid crystalline
phase and organic/inorganic interface plays a decisive role
in the morphology of mesoporous materials [42, 43]. The
liquid crystalline phase formed by the surfactant in solu-
tion has a rich structure such as lamellar phase, cubic
phase and hexagonal phase and is easy to construct and
adjust [44]. The interaction of the organic/inorganic inter-
face is a weak hydrogen bond force in the strong acid en-
vironment while it is a strong electrostatic attraction force
in the strong alkaline environment [45].

Gu et al. [46] successfully synthesized plate-like and
rod-like mesoporous alumina, using F127 as soft tem-
plate and aluminum isopropoxide as alumina source,
and changing the mole ratio of aluminum isopropoxide
and F127, as shown in Fig. 9. This study showed that the
molar ratio of aluminum isopropoxide and F127 has an
obvious effect on the morphology of the product. It is
gradually transformed from square to plate and rod, and
eventually, all become rod-like as the molar ratio in-
creases. The result of crystalline phase analysis showed
the diffraction peaks that are indexed at (311), (222),
(400) and (440) associated with γ-alumina which become
wider from curve a to f (Fig. 10). This XRD results sug-
gest that the crystallite size can be smaller by increasing
of F127 amount. Soft template F127 gives a good per-
formance to weaken the crystallization process.
Groenewolt et al. [47] synthesized the ordered meso-

porous γ-Al2O3 by using the soft template method. They
have systematically studied the effects of various factors
such as the type of aluminum source, the type of surfac-
tant, the type of the acidity regulator and the reaction
temperature on the structure and morphology of the
products.

Precipitation Method Precipitation method produces
the target products by adding the precipitant agent to
the metal solution and heat treating the precipitate. The
particles with different morphology can be obtained by
adjusting the reaction temperature, the concentration of
the reaction, pH, etc.
Zhou et al. [48] synthesized fibrillar nano-Al2O3, using

Al2(SO4)3·18H2O and NaOH as raw materials with dir-
ect precipitation method. They discussed, respectively,
the effect of reaction temperature and the concentration
of Al2(SO4)3 on the morphology (Fig. 11). The results
showed that the fibrillar nano-Al2O3 with good disper-
sion was obtained at 65 °C.

Fig. 8 TEM image of alumina bubble with different synthetic temperatures. a 25 °C b 45 °C and c 55 °C
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The concentration of reactants is also one of the import-
ant factors which control the morphology and dispersion
of the product. It has an effect on the formation and the
growth rates of the crystal grain, and the effect on the for-
mation rate of the grain is greater than that on the growth
rate. As shown in Fig. 12, when the concentration of Al3+

is 1 mol L−1, the granular product can be obtained. When
the concentration of Al3+ is 0.8 mol L−1, the fibrillar prod-
uct of poor dispersion is formed. When the concentration
of Al3+ is 0.3 and 0.5 mol L−1, the reticular and fibrillar
products of good dispersion are formed, respectively.

The Effect of Calcination System on the Morphology of
Alumina
The alumina calcination system is very important for
obtaining nanoparticle powder with monodispersity and
uniform morphology. Nano-Al2O3 powder, which is

composed of widely used α-Al2O3, γ-Al2O3 and amorph-
ous Al2O3, is generally obtained by alumina precursor
calcined at different temperatures. Therefore, the compac-
tion among alumina particles of high activity is inevitable
at high temperature, which results in severe particle ag-
glomeration and resintering of individual particles with
surrounding ones after melting with a formation of den-
dritic structure called “neckformation” of particle [49].
The result of the experiments showed that the calcination
temperature, holding time and heating rate have a signifi-
cant effect on the morphology of alumina. While the
temperature is less than 800 °C, alumina particles can con-
tinue to maintain their original morphology. If the
temperature becomes higher than 800 °C, the activity of
alumina particles is enhanced, and agglomeration begins
to occur [50]. Ceresa et al. [51] first presented the relation-
ship between temperature and phase transformation of
alumina during the calcination process.
It can be seen from Fig. 13 that the calcination

temperature and time have a significant influence on the
transformation of alumina (crystal type). When alumina
particles calcined at the desired temperature in order to
obtain certain crystal types, the calcination time depends
on the size of the precursor. The smaller the particle size
of precursor is, the shorter the time required for the cal-
cination is, and the higher the temperature of the heat
treatment is, the shorter the time required for the calcin-
ation is. The method of controlling the temperature and
time during the calcination of Al2O3 is well-known. This
method ensures that while the Al2O3 particles go through
a complete phase change, their morphology remains un-
affected and the dispersion of particles is reduced [52].
A significant amount of research is carried out in this

area, and effective methods are proposed to control the
morphology of alumina particles such as using DI water,
alcohol and organic solvent mixtures to wash precursor
before calcination in order to prevent agglomeration, en-
hance the dispersion, and increase the specific surface

Fig. 9 TEM image of alumina with different morphology. a Al2O3-∞. b Al2O3-60. c Al2O3-30

Fig. 10 Wide-angle XRD patterns of alumina synthesized with different
F127 molar ratio. a Al2O3-∞, b Al2O3-1500, c Al2O3-1000, d Al2O3-500, e
Al2O3-60, f Al2O3-30
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area of alumina [53]. In addition, the sintering properties
of the powder can be improved with ultrasonic pretreat-
ment, so that the neckformation created by agglomer-
ation of the particles will not occur until 1400 °C [54].
The phase transformation temperature of γ-Al2O3 to α-
Al2O3 can be decreased if sintering is carried out under
the CO2 or ethanol atmosphere; consequently, the well-
crystalline spherical α-Al2O3 is eventually obtained [55].
Dispersants and surfactants also play an effective role

in dispersion of particles and control of agglomeration.
For example, using poly(methacrylic acid), organic acid,
glucose, sucrose, inorganic salts, trimethylsilane and
other additives [56], which results in a strong electro-
static repulsion among particles, eventually change the
polarity of the particle surface from hydrophilic to
hydrophobic (water-repellent). Polyacrylamide, silica gel
and lignin and other polymer dispersants can form a
protective layer with certain strength and thickness on
the particle surface and prevents the agglomeration of
the particles [57]. Surfactants can form a coating layer of
several nanometers on the surface of the particles, which
can reduce the surface energy and effectively hinder the
interactions among the particles [58].
Besides, by adding 5 wt.% α-Al2O3 seed and 44 %

NH4NO3 during the calcination process, the phase

transition temperature can be decreased from 1200 to
900 °C [59]. Table 1 summarizes the effects of different
calcination temperatures on the grain size of Al2O3 in
the presence of various additives mentioned above.
As shown in Table 1, the amorphous Al2O3 particles ob-

tained at 600 °C are light yellow while the additive is still
present on the surface of the particles. This coating grad-
ually disappears while 800 °C is reached. In addition, some
additives can decrease the phase transition temperature of
α-Al2O3 to 1000 °C. As the temperature increases, the
grain size of Al2O3 will inevitably increase, meanwhile the
agglomeration will start to occur. This is due to the fact
that when Al2O3 completely transformed to α phase, the
spatial arrangement of the O2 in α-Al2O3 occurs, which is
the reconstruction of phase transition from face-centered
cubic to hexagonal close-packed lattice [60].

Conclusions
The morphology of Al2O3 can be influenced by various
factors such as raw materials, concentrations, different
synthesis methods, additives and heat treatment system.
During the preparation of Al2O3, the morphology of the
precursors and the protection of the particles during
heat treatment play a decisive role in the final morph-
ology of alumina. The morphology will not change

Fig. 11 TEM image of alumina with different synthetic temperatures. a 40 °C. b 55 °C. c 65 °C. d 80 °C
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during the low-temperature heat treatment. However,
when high temperature is reached, the diffusion of the
powder particles accelerates. Thus, the particles diffuse
from the inside to the surface of the crystal lattice and
spread to the surrounding resulting in the

neckformation as well as the agglomeration of sur-
rounded particles. Accordingly, the morphology of the
particles changes. The use of various additives effectively
reduces the calcination temperature; consequently, the
problem of particle agglomeration can be solved. The

Fig. 13 The relationship between temperature and phase transformation of alumina

Fig. 12 TEM image of alumina of different concentration. a 1.0 mol L−1. b 0.8 mol L−1. c 0.5 mol L−1. d 0.3 mol L−1
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utilization of template is a new research hotspot with
the objective of improving the dispersibility of Al2O3

powder and controlling the shape of the sample
particles.

Prospects
In the research field of the morphology of Al2O3 and its
application performance, more work is needed to obtain
nano-Al2O3 powder with different shapes, single morph-
ology and good dispersion. There is also a need to ex-
pand the application range of this type of nano-Al2O3

powder and improve its application prospect in high
tech and value-added product development fields.
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