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Abstract: Haskap (Lonicera caerulea L.) is a new northern latitude fruit crop that is increasing in
popularity. This sudden enthusiasm for haskap increases the need for obtaining baseline knowledge
related to establishing it as a crop, such as its optimal soil pH and fertilizer needs. In a greenhouse,
one-year-old haskap plants (cultivar: Indigo Treat©) were grown in a local loamy sand. We assessed
the impact of pH and fertilizer on haskap vegetative growth through an experiment involving four
soil pH and five fertilization treatments of three N sources (ammonium, nitrate, and organic (chicken
manure)). Leaf senescence as well as above-ground and root biomass were recorded after 19 weeks of
vegetative growth. For cultivar Indigo Treat©, optimal vegetative growth was observed under slightly
acidic soil conditions (pHCaCl2 5.5–6 or pHwater 5.9–6.5) without application of N. Phosphorus and
K fertilizers did not influence vegetative growth. We here discuss the implications for establishing
haskap orchards.
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1. Introduction

Haskap is a new fruit-producing crop that is growing in popularity in northern regions of
America and Europe. Haskap has a number of phytochemical and antioxidant properties, which may
improve human health by reducing blood glucose and cholesterol levels [1,2]. Although haskap is
originally native to several parts of the world (northern regions of America, Asia, and Europe) [3–5],
the development of new cultivars by the University of Saskatchewan Fruit Program (Canada) has
recently boosted its popularity. Today, haskap orchards are already well established in America
(United States and Canada) and worldwide (Russia, Japan, Czech Republic, Poland, and China) [6].
According to Quebec’s haskap association (Canada), there are about 730,000 individual haskap plants
(~350 ha) growing throughout the province of Quebec and half of these plants are located in the
Saguenay-Lac-Saint-Jean region of the province [7]. This sudden and significant enthusiasm for haskap
demands the development of baseline knowledge in regard to suitable soil conditions for its cultivation,
as presently very little information has been published for this crop [8].

Correctly managing and preparing soil prior to establishing an orchard is critical to maximize
plant establishment, vegetative growth (both above- and below-ground), and plant health. From
a producer’s perspective, favoring plant establishment minimizes costs during the initial four- to
five-year period of high investment and low income, which normally lasts from the first planting to
the first significant harvest [9]. Other than managing weeds, adjusting soil pH and applying fertilizers
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are the main management practices that are performed by producers before and during the years of
orchard establishment. Currently, soil pH and fertilizer requirements for the optimal growth of haskap
are inferred based on the optimal conditions for other small fruits, such as raspberry and highbush
blueberry [9]. Therefore, it is suggested to establish haskap orchards on slightly acidic soils and to
fertilize the crop annually with significant amounts of nitrogen (N), phosphorus (P), and potassium
(K) [9]. On the other hand, multiple cultivars (and thus a wide genetic diversity) are used for breeding
haskap [10,11], making it hard to predict the forms of N (i.e., N-organic, N-ammonium, or N-nitrate)
that haskap most prefers; the functional traits and provenance of a plant dictate its ability to use one
form of N over another [12].

Here, we investigate the effect of soil pH and N fertilizers on the second-year vegetative growth
of haskap in a greenhouse setting. We hypothesize that haskap growth will be highest under slightly
acidic soil conditions and with N supplied as calcium nitrate.

2. Materials and Methods

This study was carried out in a greenhouse at the Université du Québec à Chicoutimi during
the winter of 2016. Plastic growing pots (4.5 L) were filled gently with 3.5 kg of Mistassini loamy
sand (air-dry soil basis) [13] provided by Les Camerises du Lac Inc., Labrecque, QC, Canada (see the
reported chemical properties of the soil in Table 1). The collected topsoil (top 0–15 cm of the soil profile)
was sieved at 10 mm and then thoroughly homogenized on a tarp with a rake before potting.

Table 1. Initial chemical properties of the mineral soil (Mistassini loamy sand) used for this study.

Soil Properties Method Value

Soil pH In water (1:1) 6.4
Soil organic matter (%) Combustion 5.4
Total nitrogen (g·kg−1) Kjeldahl 1.4

P (mg·kg−1) Mehlich 3-Extractable 5.4
K (mg·kg−1) Mehlich 3-Extractable 53.1

Mg (mg·kg−1) Mehlich 3-Extractable 17.3
Ca (mg·kg−1) Mehlich 3-Extractable 1284
Al (mg·kg−1) Mehlich 3-Extractable 2097
Fe (mg·kg−1) Mehlich 3-Extractable 67.8

We tested four soil pH treatments (Table 2). Lime (92% CaCO3 and 2% MgCO3, Graymont,
Saint-Marc-des-Carrières, QC, Canada) was used to increase soil pH, whereas an acidic solution
(0.4 M HCl) was applied to decrease soil pH [14]. The soil samples were kept moist for 11 weeks to
equilibrate and homogenize the soil pH within each pot. Soil pH was monitored weekly during this
initial phase and then bimonthly during the experimental period. Soil was collected for pH analysis
using an extractor tray (open rod) of an increment borer (normally used for tree-ring sampling).
The extractor tray allowed us to sample the entire soil profile (15 cm deep) with minimal disturbance
(~0.5 cm diameter holes). Soil pH was then read using a pH meter (AR25 pH Meter, Fisher Scientific,
Hampton, New Hampshire, USA) in the soil and in a 0.01 M CaCl2 solution (1:2 ratio) [15]. Compared
to measurements of soil pH in water, measurements in a CaCl2 solution are more consistent and
representative [16,17].

We applied five fertilization treatments to each of the four soil pH treatments as a secondary factor
(Table 2). We selected granular forms of P, K, and organic (granulated poultry manure, Acti-Sol©, 5-3-2,
C/N-ratio of 10) fertilizers that we mixed thoroughly into the soil. In each pot, we planted a single
one-year-old haskap seedling in dormancy (18 ± 4 cm in height, Indigo Treat©, Végétolab, Alma,
QC, Canada). We used physiological attributes (e.g., length of the stems) to select the most similar
and representative haskap plants. Before planting, the roots were soaked twice in deionized water,
10 min for each soaking, to remove any residual fertilizers that may have remained within the rooting
zone. Mineral N fertilizers (ammonium sulfate and calcium nitrate) were dissolved into water used
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for irrigation. However, unlike P, K, and the organic fertilizers, mineral N fertilizers were split into
four applications at one-month intervals (1 g of N per application per month per pot). The N solutions
were applied around the plant collet to minimize direct contact between the solution and the roots.
Mistassini loamy sand allowed for the immediate and adequate distribution of the solution throughout
the soil.

Table 2. Experimental factors used for this study.

Factor pH Category Soil pH Class 1 pHCaCl2 pHwater
1

Primary factor

pH1 Strongly acidic 4.3–4.6 4.7–5.0
pH2 Moderately acidic 5.1–5.4 5.5–5.8
pH3 Slightly acidic 5.5–6 5.9–6.5
pH4 Neutral 6.3–7 6.8–7.5

Fertilizer type N–P–K 2 N P K
g plant−1 Source

Secondary factor

C 0–0–0 — — —
T 0–2.9–1.7 — Ca(H2PO4)2 KCl

M1 4–2.9–1.7 (NH4)2SO4 Ca(H2PO4)2 KCl
M2 4–2.9–1.7 Ca(NO3)2 Ca(H2PO4)2 KCl
O 4–2.9–1.7 Granulated poultry manure

1 Soil pH class and soil pHwater obtained from Vanasse et al. [18]. 2 Fertilizers normalized on equivalent basis (Ntotal,
P2O5, and K2O).

To reflect early summer conditions in the Saguenay-Lac-Saint-Jean region, greenhouse air
temperatures were set at 18 ◦C during the day and 11 ◦C at night; the daily photoperiod was fixed at
14 h. The plants were irrigated manually to keep the soil water content between 0.15 and 0.20 m3·m−3,
representing about 50–80% of the soil field capacity. A time-domain reflectometer probe (GS3, Decagon
Devices, Pullman, Washington, United States) combined with a portable data logger (Procheck,
Decagon Devices, Pullman, Washington, United States) was used weekly to verify and, if needed,
adjust the soil moisture in each pot. Water was gently added to avoid nutrient leaching from the
bottom of the pots. The pH of the water used for irrigation was adjusted throughout the experiment to
maintain the pH of the treatments.

Plants were harvested 19 weeks after planting. Final (at harvest) dry above-ground (leaf and
stem) and root biomass (g) were determined after drying the samples at 65 ◦C for 24 h. Prior to drying,
roots were gently washed in water to remove soil particles. Ten seedlings were used to estimate
initial (before planting) above- (mean 0.41 ± 0.08 g) and below-ground biomass (mean 0.43 ± 0.10 g).
Leaf nitrogen concentrations were indirectly estimated using a chlorophyll meter (SPAD-502, Konica
Minolta, Tokyo, Japan) two (week #15) and four (week #17) weeks after the last mineral N application.
A combined average of four non-senesced leaves per plant was used for SPAD analysis. In addition,
the percentage of leaf senescence (%) was calculated as the weight of the leaves that fell (senescence)
prior to the end of the experiment (g), divided by the final total leaf biomass (g), multiplied by 100.
Finally, a plant was considered as defoliated when four leaves out of five were senesced.

All treatments (20 treatments: 4 soil pH × 5 fertilizer) were replicated five times (100 experimental
units) in a split-plot experimental design (to facilitate irrigation), where soil pH and fertilization served
as primary and secondary factors, respectively (Table 2). We ran analysis of variance (ANOVA) on
the results using the lmerTest package in R [19,20]. When results from ANOVA were significant,
Tukey post-hoc tests determined the treatments having significant differences. The applied ANOVA
model differed for soils fertilized with ammonium sulfate (M1) and granulated poultry manure (O)
because of difficulties in adequately controlling soil pH after the application of these forms of fertilizer.
To address this issue for these treatments, soil pH (median = 5.62) was used as a covariate. We used
the car package in R to perform analysis of covariance (ANCOVA) [21]. When necessary, response
variables were transformed (e.g., logarithm (log)) to ensure a normal distribution of the data.
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3. Results

Leaf senescence and both above-ground and root biomass were optimal (lowest senescence and
highest biomass) at slightly acidic conditions of treatment pH3 (pHCaCl2 5.5–6) (Figure 1). Compared
to the control, adding mineral N as calcium nitrate (M2) did not significantly influence chlorophyll
meter values (week #15: p = 0.352; week #17: p = 0.421 (results not shown)) but it markedly reduced
root biomass by about 50% only for treatments pH3 (pHCaCl2 5.5–6) and pH4 (pHCaCl2 6.3–7) (Figure 1).
Compared to the control (C), adding P + K (T) did not influence any of the measured variables
(Figure 1). Relative to ammonium sulfate (M1), adding organic fertilizer (O) did not affect significantly
leaf senescence and root biomass; however, it reduced above-ground biomass by about 40% (Figure 1).
On average, half of the haskap plants were considered as defoliated after nine and 11 weeks for
pH1 and pH2, respectively, whereas less than 20% of haskap plants were defoliated at the end of the
experiment (week #19) for pH3 and pH4 (results not shown). Similarly, half of the haskap plants were
defoliated at week #10 and #14 for (M1 and O) and M2 fertilizer treatments, respectively, whereas less
than 15% of haskap plants were defoliated at the end of experiment for C and T treatments (results
not shown).
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Figure 1. Leaf senescence, above-ground and root dry biomass at harvesting, after 19 weeks of
vegetative growth in a greenhouse, for treatments with differing soil pH levels and types of fertilizer
applied. Error bars represent the standard deviation from the mean. Letters indicate significant
differences between the combined averages (main effect figures) and average (interaction figures) based
on Tukey’s post-hoc tests. pH1 = strongly acidic; pH2 = moderately acidic; pH3 = slightly acidic; pH4
= neutral (see Table 2 for the pH ranges of each category); C = without fertilizer; T = P + K (without
N); M1 = N + P + K, N as ammonium sulfate; M2 = N + P + K, N as calcium nitrate; O = N + P + K,
as organic fertilizer (granulated poultry manure).
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4. Discussion

Optimal vegetative growth for haskap under greenhouse conditions occurred in slightly acidic soil
conditions; thus, haskap had maximum growth in the pH range of most cropped species [18,22]. Above
and below these values (pHwater 5.9–6.5), root development was markedly compromised and leaf
aging was greater, therefore likely reducing long-term vegetative growth. A reduction in root biomass
at lower soil pH values has been reported for many domesticated and wild plants, as root development
can be compromised by increased aluminum availability in soils having a lower pH [23–27]. On the
other hand, alkaline soil conditions can also reduce root biomass, since an increase in calcium activity
within the soil solution decreases the ability of the plant to uptake other nutrients, such as phosphorus
and manganese [28]. Increased leaf senescence for treatments pH1 and pH2 may also be due to the
chlorine added through the HCl used for acidifying the soil, as leaves of woody plants (e.g., trees,
vines, shrubs) are generally sensitive to chlorine concentrations in soils [29]. However, the sensitivity of
haskap to chlorine concentrations in soil remains to be demonstrated. Opposite trends in root biomass
and leaf senescence (Figure 1) also suggest that leaf aging was likely a result of the inability of the
plant to maintain a large leaf area with a limited root biomass. Plants must balance their allocations
between leaves and roots so as to match the physiological activities and functions performed by these
organs [30].

Although the soil used was initially very nutrient poor (Table 1), adding P + K fertilizers did not
improve haskap vegetative growth. Moreover, adding N fertilizers (regardless of the N source) likely
increased stress by strongly reducing root development and increasing leaf senescence and defoliated
plants (Figure 1). The negative impact of N fertilizers on root development has been documented for
other crops, and two mechanisms may explain this pattern. First, stress from increased soil salinity
caused by fertilizer applications may decrease root development [31]. However, the K fertilizer used
in our study (KCl) is also known to increase markedly soil salinity [32], whereas its use had an
insignificant impact on root development and leaf senescence in our treatments (Figure 1). Second,
plants may inversely adapt their root development to soil concentrations of N [33,34]; plants invest
less energy in root development where concentrations of soil N are high, as reflected by our lower root
biomass and similar chlorophyll meter values for all N fertilizers, regardless of the N source or type
(Figure 1). Although both mechanisms may occur simultaneously, we believe the second mechanism
(i.e., a lower investment in root growth with use of N fertilizers) better explains our results.

Many haskap producers fertilize their orchards during the establishment period using significant
amounts of N (2–4 g of N plant−1·year−1) around the plant collet and under an impermeable plastic
mulch (polyethylene) [9]. As haskap root growth should be favored and leaf aging (senescence)
should be minimized (to expand the volume of soil and above-ground areas that can be exploited),
our results suggest that producers should not use N fertilizers, at least during the establishment
period. Phosphorus and K fertilizers might be used (if judged as necessary), as they did not influence
significantly root and overall vegetative growth.

Finally, it remains possible that our results are specific to only a few haskap cultivars (Indigo Treat©
was used in this study), as a large genetic diversity exists among phenotypes [8]. Furthermore, results
should be interpreted cautiously; mineral N concentrations were not directly monitored throughout
this experiment. To assure transferability to field conditions, a larger study involving multiple cultivars
of haskap over a longer period of time and under various field conditions would be ideal in developing
robust recommendations for farmers and stakeholders.
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