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cosmids in sets of three, we were able to conclude that unc-100 lies on one of these three 
cosmids: ZK524, T28F4 and C26C6. We are currently performing single cosmid rescue 
experiments to determine which of the three unc-100 lies on. To further accelerate identification 
of the unc-100 gene sequence, we are conducting whole genome deep sequencing of unc-100 
(su149). 

1776/B155 
Alterations on Striated Muscle Caused by Anabolic Androgenic Steroids Associated with a 
Selective β-adrenoceptor Blocker. 
 L. B. Figueiredo1, M. M. Diaz1, M. E. Beletti2, F. S. Espindola1; 1Instituto de Genética e 
Bioquímica, Universidade Federal de Uberlandia, Uberlandia, Brazil, 2Instituto de Ciencias 
Biomedicas, Universidade federal de Uberlandia, Uberlandia, Brazil 

The effects of the association of nandrolone with metoprolol on striated muscle were investigated. 
Forty male Wistar rats were randomly distributed into four groups: control, treated with 
nandrolone 10mg/kg Biweekly, treated with metoprolol 1mg/kg/day, and treated with both 
nandrolone and metoprolol for seven weeks. Left ventricle, soleus, and gastrocnemius sections 
were cut on a cryostat (5µm), and stained with hematoxylin and eosin, or picrosirius red. Digital 
images were captured and analyzed by software. Cross-sectional area, diameter, number of 
myonuclei per fiber, central myonuclei, splitting cells, myonuclear domain, percentage of 
conjunctive tissue, and serum testosterone were measured. Glucocorticoid (GR) and androgen 
receptor (AR) were analyzed by immunodetection. An increase was seen in the morphometric 
parameters analyzed in both cardiac and striated fibers from animal treated with nandrolone. 
Metoprolol partially restored the cardiac hypertrophy caused by nandrolone without reducing the 
final percentage of conjunctive tissue. However, the anabolic effect of nandrolone was not 
reverted by metoprolol on the striated fiber. Nandrolone administration increased serum 
testosterone levels and up-regulated the expression of AR whereas down-regulated GR 
expression (P<0.05). We conclude that; (1) the hypertrophic effects caused by nandrolone 
treatment are accompanied by a higher proportion of conjunctive tissue in cardiac and skeletal 
muscles, (2) metoprolol administration has a positive effect on the cardiac concentric hypertrophy 
caused by the steroid hormone, and (3) likely competitive mechanisms of metoprolol in addition to 
up-regulation of beta-adrenoceptors could have been responsible for the increased fiber size on 
skeletal muscle after beta1-blocker treatment. 

1777/B156 
Can the Prostaglandin 15Δ-PGJ2 Influence Skeletal Muscle Regeneration? 
 E. Duchesne, C. H. Côté; CRML, CHUQ Research Center, Université Laval, Québec, QC, 
Canada 

Many actors classically known to be involved in the inflammatory response can also play an 
important role in tissue regeneration. Cyclooxygenase-2 (COX-2) is a striking example since 
there are growing evidences that COX-2-derived prostaglandins could have anti-inflammatory 
effects. In fact, 15Δ-PGJ2, a PGH2-derived metabolite, has been postulated to be a key actor in 
the resolution of inflammation and can stimulate fibroblast proliferation. OBJECTIVE: to evaluate 
if 15Δ-PGJ2 can stimulate L6 myoblast proliferation In Vitro and accelerate skeletal muscle 
regeneration In Vivo and investigate the mechanism underlying these effects. METHODS: In 
vitro: L6 myoblasts were submitted to proliferation assays with 15Δ-PGJ2, DP1 agonist and DP1 
and DP2 antagonists. In vivo: Female rats were injured with bupivacain in the tibialis anterior 
muscle, treated with 15Δ-PGJ2 and sacrificed at days 5, 10 and 15. The cross sectional area 
(CSA) of myofibers and the number of centrally nucleated fibers (CNF) were obtained from 
muscle sections stained with hematoxyline/eosine while the density of macrophages ED1+ and 
ED2+ was obtained by immunochemistry. Protein content of myoD and myogenin was evaluated 
by western blotting. RESULTS: In Vitro cell proliferation was significantly increased in a dose-
dependent manner by 15Δ-PGJ2. DP1 and DP2 antagonists inhibited the 15Δ-PGJ2-induced 
stimulation of myoblast proliferation by 84 ± 17 % and 111 ± 20%, respectively. Surprisingly, DP1 
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agonist failed to stimulate myoblast proliferation. In Vivo treatment with 15Δ-PGJ2 tended to 
increase the CSA of injured fibers at day 5 when compared to placebo (776 ± 102 µm2 vs 863 ± 
67 µm2), but this effect was lost at day 10 and 15. CNF tented to increase with treatment at day 
5, 10 and 15. Preliminaries results showed that 15Δ-PGJ2 modulated the expression of myoD 
and myogenin. In summary, 15Δ-PGJ2 can accelerate proliferation of L6 myoblast In Vitro and 
this effect could be through stimulation of DP1 and DP2 receptors. The tendency to increase CSA 
and the number of CNF following treatment with 15Δ-PGJ2 suggests that this prostaglandin could 
shorten inflammation and/or stimulate regeneration. Supported by grants from NSERC and CIHR. 

1778/B157 
Incomplete Functional Redundancy of Obscurin and Obscurin-like 1 (OBSL1) in Striated 
Muscle Development. 
 M. O. Raeker, S. B. Geisler, Y. Jadcherla, D. Phillips, M. W. Russell; Pediatrics, University of 
Michigan, Ann Arbor, MI 

Background: Obscurin and OBSL1 are orthologues of the invertebrate Unc-89 gene. In C. 
elegans, mutation or loss of Unc-89, a giant cytoskeletal protein with both structural and signaling 
properties, is associated with severe impairment of locomotion and the absence of organized M 
bands in striated muscle (Waterston et al., 1980). Yet, mice lacking obscurin (Lange et al., 2009) 
and humans lacking OBSL1 (Hanson et al., 2009) do not demonstrate significant cardiac or 
skeletal myopathy, suggesting a functional redundancy of the two related proteins. Objectives: In 
this study, we examined the unique and shared contributions of obscurin and OBSL1 to striated 
muscle development and myofibril assembly using In Vivo and In Vitro models. Methods: We 
used morpholino antisense oligonucleotides to reduce expression of obscurin and OBSL1, 
individually and in combination, in developing zebrafish embryos. Comparison to mammalian 
models was performed in differentiating C2C12 myoblasts and remodeling adult rat cardiac 
myocytes. Results: Zebrafish embryos depleted of obscurin a commonly displayed abnormalities 
of somite segmentation and myofibril alignment that were not noted in embryos lacking OBSL1. 
Embryos that lacked OBSL1 shared some features with the human OBSL1 deficiency syndrome 
in that the embryos were shorter with craniofacial abnormalities that were not noted in response 
to obscurin depletion. Effects of OBSL1 reduction on cardiac structure and function were strain-
dependent with cardiac hypoplasia and pericardial edema in those more severely affected. In 
Vitro models demonstrated that, although obscurin and OBSL1 localized to the M bands of 
myofibrils, their spatio-temporal distribution suggested both shared and unique functions. 
Conclusions: Obscurin and OBSL1 have both shared and unique roles in striated muscle 
development and myofibril assembly. Their ability to compensate for each other appears to be 
context- and species-dependant. Since OBSL1 lacks the signaling properties of obscurin, it is 
likely that other cytoskeletal and signaling proteins, outside the obscurin gene family, provide a 
functional redundancy that may compensate for the loss of obscurin or OBSL1 in some settings. 

1779/B158 
Myofibril Maturation Is Coordinated with Cardiomyocyte Elongation during Cardiac 
Chamber Formation. 
 Y. Lin1,2, D. L. Yelon1,2; 1Developmental Genetics, Skirball Institute of Biomolecular Medicine, 
New York University, New York, NY, 2Division of Biological Sciences, University of California, San 
Diego, La Jolla, CA 

Embryonic hearts increase in size and contractile force to cope with rising demand during 
development. As the heart tube transforms into cardiac chambers, cardiomyocyte size expands to 
create chamber curvatures. To investigate whether myofibrils mature while cardiomyocytes 
expand, we used immunofluorescence to examine Z disc dimensions and cell contours in 
embryonic zebrafish hearts. In wild-type embryos, ventricular outer curvature cardiomyocytes 
gradually expand in size while simultaneously increasing their myofibril thickness. Thus, it seems 
that embryonic cardiomyocytes undergo hypertrophic growth similar to that observed in 
cardiomyocytes in culture, which increase their myofibril content in concert with their size 
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