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Abstract 

Prebaked anodes are produced from aggregates (calcined coke, recycled butts and anodes) and 
binder pitch. Good binding between aggregates and pitch results in dense anodes and has a direct 
impact on the electrical resistivity. The quality of coke and butts has a strong influence on anode 
properties. A comprehensive study of the physical and chemical interactions taking place during 
mixing allows a better understanding of the important factors and helps determine conditions that 
will lead to improved anode properties.  

The objective of this research is to characterize the surface properties of a calcined petroleum 
coke and butt particles and then relate them to their wettability by pitch. The wetting tests were 
carried out using the sessile drop method. Further investigations were carried out using SEM, 
FTIR, and XPS. In the article, the results of this study is presented and discussed.  
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Introduction 

In Hall-Héroult cells, carbon anodes are used to reduce alumina for the production of aluminium. 
The unused part of carbon anode is known as anode butts. Prebaked anodes consist of about 65-
68% petroleum coke, 15-25% anode butts, and 13-15% coal tar pitch. [1, 2]. Binder pitch should 
provide satisfactory bond between dry aggregates (coke and anode buts). Wettability of coke and 
anode butt particles by pitch determines the quality of bonding between these two components, 
and thereby greatly affects the final anode properties. The interaction between dry aggregates 
and pitch depends on the pitch characteristics such as softening point, chemical composition, 
surface tension, viscosity, and the dry aggregate characteristics such as particle size, texture, 
chemical functional groups at the surface, and porosity [3]. The butt surface chemistry may differ 
significantly from that of petroleum coke because it is already mixed with pitch and has 
undergone physical and chemical modifications during baking and electrolysis. The surface 
chemistry of the butt may be changed as the bottom part is exposed to cryolite in the cell and 
subjected to CO2 reactivity. In addition, the top portion is affected because of the oxidation due 
to air reactivity [2]. It is cited in different references that the wettability and the penetration 
characteristics of pitch with coke is different than those with anode butt. Prouix [4] observed that 
the optimal binder demand increases about 1% due to the absence of recycled anode butts. The 
average pitch film thickness on the butt surface is found to be smaller than that found on coke 
surface [5, 6]. These show that liquid pitch penetrates more easily through accessible porosity 
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due to lower surface energy which results in a thinner film thickness on the surface of the butt 
[6]. The characterization of the surface properties of the raw materials can help explain this 
behavior. Adams [7] found that the carboxyl, lactonic, and phenolic functional groups are present 
in higher amounts on anode recycled butt surface than on petroleum coke surface by performing 
a selective neutralization technique using different bases. Different authors studied the chemical 
structures of green petroleum cokes by different analytical methods which include SEM, optical 
microscope, FT-IR, and XPS [8-14]. However, there isn’t any published work on the utilisation 
of these techniques on recycled anode butts. 

The aim of this project is to identify the wetting behaviour of recycled anode butts and petroleum 
coke. The work involves the characterization of the butt surface properties by FTIR, SEM, 
optical microscope, and XPS, their correlation with the wetting results, and the comparison of 
the results with those of petroleum coke. 

Methodology 

 Sessile Drop System 

Several investigations were reported in the literature on the determination of wetting between 
pitch and coke using the sessile-drop analysis method. The sessile-drop technique involves 
placing a drop of liquid pitch on a coke bed or positioning a solid pitch sample on a coke bed and 
heating the furnace to the desired temperature under inert gas atmosphere. The change of contact 
angle with time is recorded with a video camera for further analysis [3, 15-19]. 
Pitch/coke wetting is important because it provides information on their interactions during the 
mixing stage of anode manufacturing. The degree of wettability can be described in terms of the 
contact angle formed between solid and liquid surfaces. The contact angle is a measure of the 
ability of a liquid to spread and penetrate on a surface. Wetting can be physical due to 
intermolecular interactions known as adhesive and cohesive forces or can be chemical due to a 
reaction at the interface. Wetting coke by pitch is a function of temperature and time. With 
increasing time and temperature, wetting is improved [3, 6, 15-19] .   

In this study, the wettability of butt and petroleum coke by a coal tar pitch was studied using the 
sessile drop method as shown in Figure 1. The solid particle size was 125 μm. The experiments 
were carried out under high purity argon atmosphere. After the experiments, the drop and the 
solid were cut vertically and studied with different techniques as explained below. 
 
Optical Microscope  

The optical microscope allows the examination of a larger surface area compared to the SEM 
technique. The solidified pitch drop on calcined petroleum coke or recycled anode butt after the 
sessile-drop tests were sectioned vertically and polished for image analysis of larger surface area 
at the pitch-coke or pitch-butt interface using the optical microscope. This allows the 
visualisation of pitch penetration through the particles. The calcined petroleum coke and 
recycled anode butt structures as well as the interface of the drop samples were studied by Nikon 
Eclipse ME600P optical microscope and analysed by Clemex Vision 4.0 image analysis 
software. 
 



 

Figure 1 Schematic Diagram of the Sessile-Drop Experimental Set-up at UQAC 

 
Scanning Electron Microscope (SEM) 
 
The scanning electron microscopy (SEM) is a highly useful technique to study the detail and 
inherent structural analysis of coke [13, 14] and butt samples on a smaller scale. It illustrates the 
chemical composition of the calcined petroleum coke and recycled anode butt by EDS analysis. 
The SEM analysis was carried out using JEOL-JSM-6480LV with secondary electron scattering 
and with a voltage of 20 kV and WD is 12mm. 

FT-IR Analysis 

The chemical structure of calcined petroleum coke and recycled anode butt samples were 
examined by FT-IR spectroscopy at room temperature. FT-IR is powerful tool to detect different 
functional groups based on bond energies. FT-IR can also detect different hybridization of 
carbon present in CH bonds and can also identify aromatic and aliphatic hydrocarbons which are 
difficult to analyze in XPS. IR spectra were collected in the wave number range of 500–4000 
cm−1 and all the spectra were recorded at 4 cm−1 resolution. Each time, 20 scans were carried out 
prior to the Fourier transformation. All spectra were collected using the DRIFTS (Diffuse 
Reflectance Infrared Fourier Transform Spectroscopy) technique (Perkin Elmer Instument, 
Spectrum one), and all the results were averaged over four experiments. DRIFTS technique was 
used with an aperture mask of 2 mm diameter and a reflector angle of 16°. All spectra were 
analyzed using the Spectrum version 5.0.1 software. The effective depth of the surface scanning 
was 0.5-5 microns. 
 XPS Analysis 

Recycled anode butt and calcined petroleum coke samples were studied by AXIS Ultra XPS 
spectrometer (Kratos Analytical) using Mono-chromate Al K[α] (h [upsilon] = 1486.6 eV) 
source at a power of 210 W at the Alberta Centre for Surface Engineering and Science (ACSES), 
University of Alberta. The XP-spectra fitting was performed using the CASAXPS software. The 
analysed surface depth of the sample was 2-5nm. XPS analysis provides information about the 
distribution of different atoms on the surface based on their binding energy [20]. High-resolution 

 

Quartz 
Window 

 

Sessile 
Drop Graphite 

Crucible 

Injection chamber 

Oxygen Trap 
Nitrogen 
Entry Valve 

Manometer 

Vacuum 
Pump 

To the 
Atmosphere 

Flow Meter 

Pressure 
Valve 

Humidity Trap 

Sample Holder 

 



spectra give an idea about the nature of bonds and component analysis. It can give quantitative 
information about different functional groups such as COOH, C=O, C-OH, C-C, and C=C[21]. 

Results and Discussions 

Wettability 

The contact angle measurements of coal tar pitch on the dry aggregate (petroleum coke and 
recycled anode butt) are essential for understanding the idea about the mixing time required for 
each aggregate to be wetted as much as possible for given system. Figure 2 compares the 
petroleum coke and recycled anode butt dynamic contact angles with a coal tar pitch. The initial 
contact angle of calcined petroleum coke and recycled anode butt differs by 9º. The wettability 
increases (contact angle decreases) with time for both coke and butt. Recycled anode butt has a 
lower contact angle compared to petroleum coke at all times, showing that the butt is wetted 
better than the coke by pitch. It is observed that the contact angle for recycled anode butt 
decreases very rapidly and pitch completely penetrates through the butt surface within 133 s (0º 
contact angle). On the other hand, the final contact angle was found to be 18º for petroleum coke 
even after 1500 s. 

 

Figure 2 Comparison of the wettability of butt and calcined petroleum coke by coal tar pitch 

The wettability tests give information not only on the penetration of the liquid into the solid 
substrate but also on the spreading of the liquid on the substrate. The spreading of pitch on the 
recycled anode butt was found to be faster than the spreading on the petroleum coke. In order to 
investigate the penetration characteristic of coal tar pitch, the images of the pitch drop as well as 
the sections of the anode butt and petroleum coke samples were taken using an optical 
microscope after the wettability tests. Figures 3(a) and (b) show that the penetration into both 
petroleum coke and recycled anode butt is good, and there is good adhesion between the particle 
and the pitch for both. Contact angle vs. time data might also indicate the mixing time required 
for the coke to be wetted as much as possible for a given system. 



Assessment of Interface with Optical Microscope 

The optical microscopy of the sessile drop sections provides useful information on the 
distribution of the coal tar pitch within the butt and the petroleum coke since it is possible to 
observe relatively large areas at low magnification. This makes the comparison of coke-pitch and 
anode butt-pitch interfaces possible from the samples obtained after the wettability tests carried 
out at 170ºC. Optical microscopy images show good adhesion for both cases, and pitch 
penetrates completely through the recycled anode butt particles (see Figure 3).  

 

Figure 3 Optical microscopy analysis of the sessile drop interface: (a) coke-pitch (b) butt-pitch 

Scanning Electron Microscope (SEM) Analysis of Structure of Coke and Anode Butt 
 
Figures 4(a) and (b) show the SEM images of the calcined petroleum coke and recycled anode 
butt samples, respectively. Coke surface contains pores and cracks, and the presence of well 
aligned basal layers of carbon is evident. The dimensions of some pores are very small although 
there are also larger pores. The presence of very small pores prevent the penetration of pitch into 
coke particles [22] and reduces the wetting of coke by pitch. Recycled anode butt surface also 
contains different size pores. Tran and Bhatia [23] stated that the micro-pore area decreases with 
heat treatment at higher temperature as a result of increase in the graphitization level of coke. 
Also, the butt particles already contain pitch carbonized previously during baking in some of its 
pores. Therefore, anode butt might contain less micro-pores and different surface characteristics 
which might lead to higher wetting compared to coke. 

SEM/EDS analysis was performed to study the surface chemistry of the coke and the butt. The 
presence of sodium on butt surface confirmed the sodium penetration into the anode during 
electrolysis. It is also possible that the presence of different impurities and greater amount of 
oxygen on butt surface might enhance the chemical wetting and lower the contact angle 
compared to that of coke. Presence of Cu and Au in petroleum coke sample comes from gold 
coating used during the sample preparation for SEM analysis. The results of EDS analysis of 
anode butt and petroleum coke are given in Table 1. 
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Figure 4. SEM image analysis of (a) petroleum coke and (b) recycled anode butt 

 
Table 1. Chemical composition of recycled anode butt and petroleum coke by EDS analysis 

  
Element 
 

Recycled Anode 
Butt 

Calcined Petroleum 
Coke 

Weight% Atomic% Weight% Atomic% 
C 87.21 91.51 89.95 95.01 
O 8.76 6.90 4.61 3.65 
Na 0.28 0.15 - - 
S 3.14 1.24 2.71 1.07 
K 0.60 0.19 - - 
Cu - - 0.62 0.12 
Au - - 2.11 0.14 

Total 100.00 100.00 100.00 100.00 
 

 
FT-IR Analysis 
 
FT-IR analysis of recycled anode butt was carried out to identify different surface functional 
groups and also to compare with those of calcined petroleum coke. The assignments of the bands 
were performed based on the literature of FT-IR data for green coke [8, 12] and pitch [24, 25]. 
FTIR analysis of calcined petroleum coke and anode butt is not well documented. The calcined 
petroleum coke has very low transmission characteristics to baseline levels [8]. Figure 5 shows 
the FTIR analysis of the anode butt and coke samples. It is evident from Figure 5 that FTIR 
spectra of calcined petroleum coke and recycled anode butt are distinctly different from each 
other. 
 
 
 
 



 
Figure 5 FTIR spectra of calcined petroleum coke and recycled anode butt by DRIFT technique 

 
FTIR analysis shows the presence of aliphatic (2850-3000 cm-1) and aromatic (3000-3100 cm-1) 
hydro carbons, C-N/C-O (1200-1300 cm-1), C-O stretch for ester/ ether/alcohol (950-1150 cm-1), 
substituted aromatic C-H (700-900 cm-1), CN (2100-2160) in both coke and anode butt. 
 
Anode butt and petroleum coke, both contain COOH functional group as evident from the 
transmittance bands around 3530 cm-1and 1126 cm-1. At around 3040 cm-1 transmittance band, 
petroleum coke shows the presence of aromatic CH in sp2 hybridized state whereas this bond is 
missing in recycled anode butt. Peak around 2100-2160 cm-1 for anode butts appears to be 
mainly due to presence of nitrile groups. There is also a possibility of a small peak for C≡C 
(2130-2150 cm-1) in this region. This peak is not significant in the case of calcined petroleum 
coke. Peak at 2349 cm-1 transmittance band is due to CO2 which was not considered for analysis. 
Since the petroleum coke, anode butt, and coal tar pitch contain complimentary functional 
groups, there is a possibility that the functional groups on the coke and butt surfaces might 
interact with those present in pitch. Polycyclic aromatic hydrocarbons (PAH) are predominant in 
pitch. Also, alkylated PAH, PAH with cyclopenteno moieties, partially hydrogenated PAH, 
oligo-aryl methanes, hetero-substituted PAH: NH2, OH, carbonyl derivatives of PAH, polycyclic 
hetero-aromatic compounds are found in pitch [7, 12, 24]. This shows that there is a possibility 
of the formation of electrostatic as well as hydrogen bonds between coke or butt and pitch during 
wetting. 
 
XPS Analysis 

FT-IR analysis is used to identify the chemical functionality of the calcined petroleum coke and 
the recycled anode butt. Data acquired from FT-IR analysis are used to perform the de-



convolution of C1s peak. The de-convoluted C1s spectrum for anode butt is very different than 
that for petroleum coke. XPS spectra of anode butt comprises of a separate large peak for C-C at 
285.5 eV. Atomic percentages of different components of calcined petroleum coke and recycled 
anode are presented in Table 3 for the survey spectra and de-convoluted C1s spectrum. The de-
convoluted C1s spectra of calcined petroleum coke and recycled anode butt are illustrated in 
Figure 6. From this figure it can be observed that butts have a significant amount of C-C which 
makes it different from coke. However, butts contain less amount of C=C compared to that of 
calcined coke. Usually C=C in aromatic compounds help wetting through electrostatic bond. 
Thus, C=C bonds in aromatic compounds need compounds with positive centres (such as NH4+) 
to establish an interaction. However, these kinds of electron-deficient functional groups are not 
present in notable quantity in anode materials. Thus, the low amount of C=C in butts do not 
significantly affect the wettability. It is evident from the XPS results that recycled anode butts 
contain higher amounts of heteroatoms (O, N) and sodium (Na) compared to those in calcined 
petroleum coke (see Table 2). The functional groups with heteroatoms may form covalent/ 
hydrogen bonds with conjugate functional groups and assist wetting. Thus, the difference in the 
amount of heteroatoms in coke/butts might explain the difference in their wettability by pitch.   

Table 2. Atomic percentages of different components of calcined petroleum coke and recycled 
anode butt 

Sample C(%) Carbon components O(%) N(%) S(%) Na% 

  C=C C-C CN/CO/CS C=O COO     

Coke 95.4 87.22 9.73 2.23 0.75 0.43 2.95 0.95 0.68 - 

Butt 90 50.69 29.57 5.60 8.34 4.60 7.46 1.15 0.40 0.99 

 

The greater the oxygen percentage is, the higher is the possibility of forming bonds between 
recycled anode butt and pitch functional groups; consequently, the wettability increases with 
increasing oxygen percentage. As it is well-known, bonds containing oxygen and nitrogen are 
more reactive. Also, the presence of greater amount of COOH plays a significant role in the 
initiation of chemical reactions. Therefore, it is possible that calcined petroleum coke forms 
fewer chemical bonds with pitch compared to recycled anode butt at 170°C due to the 
differences in the functional groups present on their surfaces. The lower nitrogen concentration 
in coke can be attributed to the presence of lower concentration of amine groups, which results in 
lower wetting.  



 

Figure 6 De-convoluted C1s peaks of (a) Coke and (b) Recycled anode butt 

Conclusions 

The results showed that the butt particles have a lower contact angle; consequently, they are 
better wetted by pitch than the coke particles for the samples studied. Optical microscopy 
revealed the higher penetration of pitch through the butt particles compared to that of petroleum 
coke. This behavior may be the result of the presence of more oxygen containing functional 
groups in the anode butt compared to the coke. FT-IR analysis indicated the presence of surface 
functional groups in both coke and anode butt which can provide chemical bonding with coal tar 
pitch leading to wetting. SEM and XPS results show in butt samples the presence of Na and K 
due to anode’s exposure to cryolite as well as higher concentration of oxygen containing 
functional groups resulting from air and CO2 reactivities [7]. 
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