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ABSTRACT 

The current diminution of fossil-fuel reserves, stricter environmental guidelines and the 

world’s ever-growing energy needs have directed to the deployment of alternative renewable 

energy sources. Among the many renewable energies, wind energy is one of the most 

promising and the fastest growing installed alternative-energy production technology. 

In order to meet the production goals in the next few decades, both significant increases 

in wind turbine installations and operability are required, while maintaining a profitable and 

competitive energy cost. As the size of the wind turbine rotor increases, the structural 

performance and durability requirements tend to become more challenging. In this sense, 

solving the wind turbine design problem is an optimization problem where an optimal solution 

is to be found under a set of design constraints and a specific target.  

Seen the world evolution towards the renewable energies and the beginning of an 

implementation of a local wind industry in Quebec, it becomes imperative to follow the 

international trends in this industry. Therefore, it is necessary to supply the designers a suitable 

decision tool for the study and design of optimal wind turbine blades.  

The developed design tool is an open source code named winDesign which is capable 

to perform structural analysis and design of composite blades for wind turbines under various 

configurations in order to accelerate the preliminary design phase. The proposed tool is 

capable to perform a Pareto optimization where optimal decisions need to be taken in the 

presence of trade-offs between two conflicting objectives: the annual energy production and 

the weight of the blade. For a given external blade shape, winDesign is able to determine an 

optimal composite layup, chord and twist distributions which either minimizes blade mass or 

maximizes the annual energy production while simultaneously satisfying design constraints. 

The newly proposed graphical tool incorporates two novel VCH and KGA techniques and is 

validated with numerical simulation on both mono-objective and multi-objective optimization 

problems. 



iii 

TABLE OF CONTENTS 

ABSTRACT .............................................................................................................................................................. ii 

TABLE OF CONTENTS ........................................................................................................................................ iii 

LIST OF TABLES ................................................................................................................................................... vi 

LIST OF FIGURES ................................................................................................................................................ vii 

NOMENCLATURE AND ABBREVIATIONS ...................................................................................................... ix 

DEDICACE ............................................................................................................................................................. xii 

INTRODUCTION ..................................................................................................................................................... 1 

CHAPTER 1 : WIND TURBINE OPTIMIZATION: LITERATURE REVIEW .................................................. 5 

1.1 WIND ENERGY STATUS: GENERAL OVERVIEW .......................................................................... 5 

1.2 WIND TURBINE OPTIMIZATION: TIMELINE & COMPONENTS ................................................... 7 

1.3 SURVEY OF WTO STUDIES ................................................................................................................ 8 

1.3.1 REVIEW OF AIRFOIL SHAPE OPTIMIZATION IN WT DESIGN STUDIES ............................. 8 

1.3.2 REVIEW OF WIND TURBINE BLADE OPTIMIZATION STUDIES .......................................... 11 

1.3.3 REVIEW OF WIND TURBINE PERFORMANCE OPTIMIZATION STUDIES ........................ 18 

1.4 SUMMARY ............................................................................................................................................. 25 

CHAPTER 2 : MATHEMATICAL MODELS OF THE WIND TURBINE OPTIMIZATION PROBLEMS.. 27 

2.1 INTRODUCTION ................................................................................................................................... 27 

2.2 OBJECTIVE FUNCTIONS ................................................................................................................... 27 

2.2.1 MINIMIZATION OF THE COST OF ENERGY ............................................................................. 29 

2.2.2 MAXIMIZATION OF THE ANNUAL ENERGY PRODUCTION ................................................. 30 

2.2.3 MINIMIZATION OF THE WIND BLADE MASS ........................................................................... 30 

2.2.4 MULTI-OBJECTIVE OPTIMIZATION FORMULATIONS ........................................................... 31 

2.3 CONSTRAINTS APPLIED IN WIND TURBINE DESIGN PROBLEMS ........................................ 32 

2.3.1 GEOMETRICAL CONSTRAINTS .................................................................................................. 32 

2.3.2 AERODYNAMIC CONSTRAINTS .................................................................................................. 35 

2.3.3 PHYSICAL CONSTRAINTS ............................................................................................................ 38 

2.4 SUMMARY ............................................................................................................................................. 44 

CHAPTER 3 : THE PROPOSED GENETIC ALGORITHM ............................................................................ 46 

3.1 INTRODUCTION ................................................................................................................................... 46 

3.2 COMPUTATIONAL ALGORITHMS APPLIED IN WTDP ................................................................ 46 

3.2.1 GRADIENT-BASED APPROACHS ............................................................................................... 49 



iv 

 

3.2.2 GENETIC ALGORITHMS ................................................................................................................ 50 

3.3 PROPOSED CONSTRAINT-HANDLING TECHNIQUE (VCH) – ORIGINAL CONTRIBUTION54 

3.3.1 MOTIF .............................................................................................................................................. 54 

3.3.2 CONSTRAINT-HANDLING TECHNIQUES – LITERATURE REVIEW ................................. 56 

3.3.3 PROPOSED ‘VCH’ METHOD ...................................................................................................... 59 

3.3.4 NUMERICAL VALIDATION OF VCH .......................................................................................... 65 

3.3.5 DISCUSSION OF THE VCH METHOD ...................................................................................... 78 

3.4 PROPOSED SELECTION PROCESS USING CLUSTERING ANALYSIS – ORIGINAL 

CONTRIBUTION ................................................................................................................................................... 79 

3.4.1 MOTIF .............................................................................................................................................. 79 

3.4.2 CLUSTERING ANALYSIS IN OPTIMIZATION ALGORITHMS .............................................. 80 

3.5 SUMMARY ........................................................................................................................................... 100 

CHAPTER 4 WIND TURBINE BLADE DESIGN AND OPTIMIZATION TOOLS ................................. 102 

4.1 INTRODUCTION ................................................................................................................................. 102 

4.2 OVERVIEW OF WIND TURBINE ROTOR AERODYNAMICS .................................................... 102 

4.3 WIND TURBINE DESIGN NUMERICAL TOOLS ........................................................................... 110 

4.3.1 AIRFOIL PREPARATION CODES ............................................................................................ 110 

4.3.2 ROTOR PERFORMANCE MODELS ........................................................................................ 111 

4.3.3 AERODYNAMIC LOADS SOLVERS ........................................................................................ 112 

4.3.4 GEOMETRIC DESCRIPTION .................................................................................................... 113 

4.4 WIND TURBINE STRUCTURE DESIGN SOFTWARE ................................................................. 113 

4.4.1 STATIC TOOLS ............................................................................................................................ 114 

4.4.2 DYNAMIC TOOLS ....................................................................................................................... 115 

4.5 CO-BLADE TOOL ............................................................................................................................... 116 

4.5.1 CO-BLADE DESIGN TOOL ........................................................................................................ 116 

4.5.2 CLASSICAL LAMINATION THEORY (CLT) ............................................................................ 119 

4.6 SUMMARY ........................................................................................................................................... 125 

CHAPTER 5 PROPOSED WIND TURBINE BLADE DESIGN TOOL – ‘WINDESIGN’ ....................... 126 

5.1 INTRODUCTION ................................................................................................................................. 126 

5.2 WIND TURBINE MULTIOBJECTIVE OPTIMIZATION .................................................................. 126 

5.2.1 INTRODUCTION .......................................................................................................................... 126 

5.2.2 MATHEMATICAL FORMULATION ........................................................................................... 128 



v 

 

5.2.3 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS ......................................................... 130 

5.3 WINDESIGN – GENERAL STRUCTURE ....................................................................................... 131 

5.3.1 MONOOBJECTIVE OPTIMIZATION – WINDESIGN ............................................................. 131 

5.3.2 MULTIOBJECTIVE OPTIMIZATION – WINDESIGN ............................................................. 133 

5.4 SUMMARY ........................................................................................................................................... 135 

CHAPTER 6 CONCLUSION & FUTURE WORKS ....................................................................................... 138 

6.1 VCH METHOD: CHALLENGES AHEAD & UPCOMING SUCCESS .......................................... 138 

6.2 KGA TECHNIQUE: FEASIBLE SCIENTIFC IMPACT ................................................................... 141 

6.3 WINDESIGN TOOL: MOVING TOWARDS WINDESIGN 2.0 ...................................................... 143 

6.3.1 AIM & FOCUS .............................................................................................................................. 143 

6.3.2 CURRENT TRENDS & FUTURE CHALLENGES .................................................................. 144 

ANNEX .................................................................................................................................................................. 167 

ANNEX A: INPUTS FOR WINDESIGN .................................................................................................... 167 

ANNEX B: WINDESIGN LAYOUT ............................................................................................................ 172 

REFERENCES .................................................................................................................................................... 148 

 
 



vi 

LIST OF TABLES 

TABLE 1 : OPTIMAL RESULTS FOR HIMMELBLAU’S NONLINEAR PROBLEM. ...................... 69 

TABLE 2 : STATISTICAL RESULTS FOR HIMMELBLAU’S NONLINEAR PROBLEM. ............... 69 

TABLE 3 : OPTIMAL RESULTS FOR SPRING DESIGN PROBLEM. .......................................... 71 

TABLE 4 : STATISTICAL RESULTS FOR SPRING DESIGN PROBLEM. ................................... 71 

TABLE 5 : OPTIMAL RESULTS FOR PRESSURE VESSEL DESIGN PROBLEM. ..................... 73 

TABLE 6 : STATISTICAL RESULTS FOR PRESSURE VESSEL DESIGN PROBLEM. .............. 74 

TABLE 7 : OPTIMAL RESULTS FOR WELDED BEAM DESIGN PROBLEM. ............................. 77 

TABLE 8 : STATISTICAL RESULTS FOR WELDED BEAM DESIGN PROBLEM. ...................... 77 

TABLE 9 : SUMMARY OF THE TEST FUNCTIONS. ................................................................... 93 

TABLE 10 : COMPARISON OF STATISTICAL RESULTS OF 4 ALGORITHMS FOR TEST 

PROBLEMS 1–7 OF DIMENSIONS D=10. .......................................................................... 95 

TABLE 11 : COMPARISON OF STATISTICAL RESULTS OF 4 ALGORITHMS FOR TEST 

PROBLEMS 1–7 OF DIMENSIONS D=20. .......................................................................... 97 

TABLE 12 : P-VALUES FOR WILCOXON TEST FOR BENCHMARK FUNCTION 7. ............... 100 

TABLE 13 : DESIGN VARIABLES FOR CO-BLADE. ................................................................. 118 

TABLE 14 : BLADE MASS FOR DIFFERENT OPTIMIZATION FORMULATIONS. ................... 133 



vii 

LIST OF FIGURES 

FIGURE 1 : NUMBER OF PUBLISHED DOCUMENTS ON WIND TURBINE DESIGN IN THE LAST 

40 YEARS  (REPRODUCED FROM SCOPUS DATABASE). .................................................. 7 

FIGURE 2 : FLOWCHART OF GIGUÈRE ET SELIG (GIGUERE & SELIG, 2000) (REPRODUCED 

FROM (GIGUERE & SELIG, 2000)). ....................................................................................... 12 

FIGURE 3 : NUMERICAL ALGORITHM APPLIED BY FUGLSANG AND MADSEN (P. FUGLSANG 

& MADSEN, 1999). .................................................................................................................. 13 

FIGURE 4 : BLADE MATERIAL OF CHEN ET AL. (J. CHEN ET AL., 2013) (REPRODUCED FROM 

(J. CHEN ET AL., 2013)). ........................................................................................................ 18 

FIGURE 5 : DESIGN TOOL OF FUGLSANG ET AL. (PETER FUGLSANG ET AL., 2002) 

(REPRODUCED FROM (PETER FUGLSANG ET AL., 2002)). .............................................. 21 

FIGURE 6 : FLOWCHART OF THE OPTIMIZATION SCHEME OF MAKI ET AL. (MAKI ET AL., 2012) 

(REPRODUCED FROM (MAKI ET AL., 2012)). ...................................................................... 22 

FIGURE 7 : BLADE SECTION DIAGRAM (SOURCE (MAKI ET AL., 2012)). ................................. 36 

FIGURE 8 : FORCES APPLIED ON A WIND TURBINE BLADE ELEMENT (SOURCE (MANWELL, 

MCGOWAN, & ROGERS, 2010)). ........................................................................................... 41 

FIGURE 9 : CLASSIFICATION OF META-HEURISTIC ALGORITHMS (SOURCE (DRÉO, 2007)).

 ................................................................................................................................................. 48 

FIGURE 10 : PSEUDO-CODE OF A STANDARD GENETIC ALGORITHM. .................................. 51 

FIGURE 11 : OPTIMIZATION SCHEME USING A GENETIC ALGORITHM (SOURCE (T DIVEUX 

ET AL., 2001)). ......................................................................................................................... 53 

FIGURE 12 : COMPLETE FLOWCHART OF THE PROPOSED GA. ............................................. 66 

FIGURE 13 : AVERAGE CONSTRAINT-HANDLING (CV) AND BEST FITNESS FUNCTION 

OBTAINED WITH THE PROPOSED VCH METHOD FOR THE WELDED BEAM DESIGN 

PROBLEM................................................................................................................................ 79 

FIGURE 14 : FUNCTION CODE OF THE MEMBERSHIP PROBABILITY VECTOR...................... 89 

FIGURE 15 : FLOWCHART OF THE PROPOSED KGAF TECHNIQUE. ........................................ 90 

FIGURE 16 : SEARCH FOR THE OPTIMAL NUMBER OF CLUSTERS. ....................................... 92 



viii 

 

FIGURE 17 : ORIENTATION OF THE BLADE AXE SYSTEMS (DANNY SALE, 2012). .............. 117 

FIGURE 18 : COMPOSITE BEAM BENDING WITH LAYER NUMBERING. ................................ 121 

FIGURE 19 : COORDINATE SYSTEMS USED IN THE LAMINATED PLATE THEORY.............. 123 

FIGURE 20 : NUMBER OF PUBLISHED DOCUMENTS ON MULTI-OBJECTIVE EVOLUTIONARY 

ALGORITHMS. ...................................................................................................................... 127 

FIGURE 21 : PARETO-FRONT FOR THE GIVEN NUMERICAL EXAMPLE (ANNEX A, EQ. 5.5)

 ............................................................................................................................................... 135 

FIGURE 22 : FLOWCHART OF THE MULTI-OBJECTIVE OPTIMIZATION ALGORITHM. ......... 136 



ix 

NOMENCLATURE AND ABBREVIATIONS 
 
 
a   Induction factor   

ACO   Ant Colony Optimization 

AEP    Annual Energy Production 

AoA    Angle of attack (º) 

as   Speed of sound (m/s) 

BEM    Blade Element Momentum theory 

bm   Buckling margin   

Ccomp   Component cost ($) 

CanWEA  Canadian Wind Energy Association 

CD   Drag coefficient  

CL   Lift coefficient  

CL/CD   Lift-to-drag ratio 

CP   Rotor power coefficient 

CP     Pressure coefficient 

Cmc   Pitching moment coefficient  

CWT   Total wind turbine cost 

CHT   Constraint-Handling Technique 

CFD   Computational Fluid Dynamics 

CLT    Classical Lamination Theory 

CoE   Cost-of-Energy  

DB   Davies-Bouldin validity index 

DE   Differential Evolution 

DES   Detached Eddy Simulation  

DNS   Direct Navier-Stokes 

𝑫𝐑   Diameter of the wind turbine rotor (m) 

EA   Evolutionary Algorithms 

EAP   Annual Energy Production (kWh) 

ECGA  Extended Compact Genetic Algorithm 

ES   Evolutionary Strategy 

f(V)   Wind speed distribution  

FD   Drag force applied on the blade element (N) 

FL   Lifting force applied on the blade element (N) 

Fn   Axial force applied on the blade element (N) 

Ft   Tangential force applied on the blade element (N) 



x 

 

FWT   Calibration factor for the cost model   

FSF   Fatigue Safety Factor 

𝒈𝒊(𝒙⃗⃗ )   Inequality constraints 

GA   Genetic Algorithm 

GBA   Gradient-Based Methods 

𝒉𝒊(𝒙⃗⃗ )   Equality constraints 

HAWT  Horizontal Axis Wind Turbine 

IEC   International Electrotechnical Commission  

K   Number of clusters 

KGA   K-means Genetic Selection  

KGAf   K-means Genetic Selection process with a fixed number of clusters 

KGAo-DB  K-means Genetic Selection using the Davies-Bouldin validity index 

KGAo-S  K-means Genetic Selection using the Silhouette validity index 

KMA   K-means Algorithm  

LES   Large Eddy Simulation  

LU   Lebanese University 

M   Shaft torque applied on the blade element (N.m) 

Mmax   Maximum permissible shaft torque on a blade element (N.m) 

MN   Mach number 

MNtip   Mach number at the wing tip 

MOOP  Multi-objective Optimization Problem 

MOEA  Multi-objective Evolutionary Algorithm 

N   Number of revolutions per minute (rpm)  

NCGA  Neighborhood Cultivation Genetic Algorithm 

Ncross  Number of crossover-ed individuals during the evolution process 

Nelite   Number of elite individuals selected during the evolution process 

Nmt   Number of mutated individuals during the evolution process 

NPGA  Niched Pareto Genetic Algorithm  

NREL   National Renewable Energy Laboratory  

NSGA  Non-dominated Sorting Genetic Algorithm 

n   Number of revolutions per second (rps)  

P(V)   Power curve  

PAES   Pareto Archived Evolution Strategy 

PopNum  Population length in a genetic population 

PSO   Particle Swarm Optimization 

RANS  Reynolds Averaged Numerical Simulation  

S   Silhouette validity index 

SA   Simulated Annealing  



xi 

 

Sf   Safety gap factor between ω1f and ω3p 

SLP   Sequential Linear Programming 

SPEA   Strength Pareto Evolutionary Algorithm  

SQP   Sequential Quadratic Programing 

SR    Swept area of the rotor (m2) 

T   Thrust generated by a blade element (N) 

Tmax   Maximum permissible thrust on a blade element (N) 

U   Wind velocity or wind velocity spectrum (m/s) 

UQAC  Université du Québec à Chicoutimi 

UQAR  Université du Québec à Rimouski 

𝑽𝐭𝐢𝐩   Velocity of the blade tip (m/s) 

𝑽𝒕𝐢𝐩,𝐦𝐚𝐱  Maximum blade tip velocity (m/s) 

VCH   Violation Constraint-Handling technique 

VEGA  Vector-Evaluated Genetic Algorithm 

WT   Wind Turbine 

WTDP  Wind Turbine Design Problems 

WTO   Wind Turbine Optimization 

𝒙⃗⃗    Vector of design variables 

𝒙⃗⃗ 𝒍𝒐𝒘𝒆𝒓   Lower bound vector of the design variables 

𝒙⃗⃗ 𝒖𝒑𝒑𝒆𝒓   Upper bound vector of the design variables 

λ   Tip speed ratio  

Δ   Tolerance between two design variables of the same nature    

θ   Angle between the relative flow and the chord line 

𝝈   Normal stress generated on a blade element (N.m-2) 

ρ   Density (kg/m3) 

ϭult   Ultimate permissible stress (N.m-2) 

ω   Natural frequency (Hz) 

ω1f   First blade flap natural frequency at rotor rated speed (Hz)  

ω3p   Three-per-rev frequency at rotor rated speed  

𝝎∗   Target frequency of the rotor at rated speed  

ωlower   Lower bound of the natural frequency of the blade (Hz)  

ωupper   Upper bound of the natural frequency of the blade (Hz)  

ɛ50    Strain at 50-year extreme conditions 

ɤ   Safety factor on the strain 

ɛcr   Critical buckling strain 

ɛult   Ultimate strain 

ηGB    Gearbox efficiency 



xii 

 

DEDICATION 

 
 This thesis is the product of a four-year journey, during which numerous life lessons were 

acquired. This short dedication does not and will not recognize the many individuals throughout 

this journey; nonetheless it is a brave attempt to do so. 

It all started at the Faculty of Engineering of the Lebanese University in Beirut, fall of 

2011, inside Professor Mazen Ghandour’s office where we both had a long discussion about a 

numerical simulation study of a VAWT which I conducted earlier in the summer of 2011. Little 

did I know that this meeting would be a milestone event, after which I was introduced to Hussein 

Ibrahim (Ph.D) and Professor Rafic Younes. During my final year of undergraduate studies and 

under the supervision of Rafic Younes, we conducted a comparative study of the performance 

of textile composite materials wind turbine blades. During my two-months internship in Gaspé 

and Rimouski, I had the pleasure to discover Hussein Ibrahim’s work, his area of expertise and 

his personal journey throughout his doctoral studies. At the same time, my internship in Quebec 

exposed me to the growing market of renewable energy, particularly wind energy, and hybrid 

storage. I recall meeting Professor Adrian Ilinca for the first time in the cafeteria of the UQAR. 

No promises were given at the time, but together we spoke about the possibility of a doctoral 

project together.  

Fast forward a year later, dragging two suits in both hands and carrying a laptop in my 

backpack, I set forth towards a town 200 km north of Quebec City by the name of Chicoutimi 

(Saguenay). I can still recall arriving in January 2014 and giving instructions to the taxi driver 

to transport me towards the LIMA AMIL laboratory at the Université du Québec à Chicoutimi. I 

was welcomed by Elizabeth Crook and Professor Jean Perron. Boiling emotions run through 

my body as I recall my first few days and weeks in Chicoutimi.  

My first year in Chicoutimi was full of technical and personal challenges. If I am required 

to attribute a label to the 2013-2014 academic year, it would be: Hope. The hope that beyond 

the confusion, chaos, the many variables in the playing ground, there is a clearer sight ahead. 



xiii 

 

The outcome of that year was a complete review of performance optimization techniques 

applied in the design of wind turbines. Remaining hopeful paid-off.  

Highly motivated to tackle the trials of my second year, I successfully completed my 

doctoral exam with the conclusion that our doctoral research required a minor adjustment. My 

mindset was to strive for success and greatness. The product of my second year was a novel 

technique for constraint-handling in genetic algorithms. Developing optimization algorithms 

became an obsession.  

Going into my third year, I was dealing with a personal crisis following a series of events 

and incorrect choices. It was clear from the beginning of year 2016 that it would be one filled 

with obstacles of a different taste and magnitude. I recall sitting with Professor Perron, 

reassuring me that this is a normal and necessary state of mind called ‘la traversée du désert’. 

I would be a hypocrite to claim that I overcame my obstacles all alone, with ease and no 

negative impact on productivity. Adel Chehouri, Hussein Ibrahim, Ahmad Chamseddine, 

Ibrahim Bitar and Zein Saleh, you all have superhero powers, word can’t express how grateful 

I am to have your support, guidance and mentoring. Finding my way out of the desert, breaking 

through many constraints and in search of a work-life balance, I gathered my thoughts and set 

forth a higher objective: silence the doubters and strive for success. Working in parallel with 

Rafic Younes and my supervisors, we pushed forward the research project and set a plan for 

the remaining calendar.  

September 2016, I reverted to my childhood passion and love: general aviation – a 

reunion 9 years in the making. I had two priorities for the year of 2016-2017: complete my PhD 

studies and receive my private pilot license. I label this year as ‘Trusting the Process’. At the 

final stage of my doctoral studies, a Transport Canada private pilot license in one hand and a 

solid curriculum vitae in the other, I was ready to begin scripting my next chapter.  

There is something about the month of May, great things always seem to occur for me 

in May. With the same suits cases, same laptop in my backpack, Ahmad Chamseddine’s SUV 



xiv 

 

filled with boxes, I departed Saguenay in the direction of my hometown, Montreal – and began 

my career journey with Hatch. 

To my Brother, Parents, Sister… 

To Eleanor Barbara Chehouri…  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the heart of suffering, heroism is born.  



xv 

 

 

 

 

 

 

 

Bruce Wayne: I wanted to save Gotham. I failed.  

Alfred Pennyworth: Why do we fall sir? So that we can learn to pick ourselves up. 

 

 

 

 

 

 

¸ 

 

WHY DO WE FALL? 
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INTRODUCTION 

The depletion of fossil-fuel reserves, stricter environmental regulations and the world’s 

ever-growing energy needs have steered to the deployment of alternative renewable energy 

sources. Among the various renewable energy alternatives, wind energy is one of the most 

promising and the fastest growing installed alternative-energy production technology (M. 

Grujicic et al., 2010).  

CanWEA reports that the province of Quebec is Canada’s second-biggest market for 

wind power with 3510 MW of installed capacity. Their 2030 energy policy aims to increase 

renewable energies by 25 % and decrease fossil fuel by 40 % over the next year. In fact, it is 

anticipated that by 2025, at least 20% of Canada’s electricity demand will be met by various 

onshore and offshore wind-farms (Lafrance, Nolet, & Cote). Achieving this vision will deliver 

huge paybacks:  

• Generating $79 billion in Canadian wind energy investments, in a $1.8 trillion global 

wind industry. 

• Creating at least 52,000 full-time jobs. 

• 55,000 MW of clean energy injected into the electrical grids. 

• Cutting Canada’s annual greenhouse gas emissions by 17 %.    

In order to meet the 20% production goal in the next 10 years, both significant increases 

in wind turbine installations (offshore and inshore farms) and an increase in wind turbine 

operability are required, while maintaining a profitable and competitive energy cost 

(Lindenberg, Smith, & O’Dell, 2008). To reduce the cost of energy (typically expressed in 

$/kWh), commercial wind turbines have grown considerably in size over the last 30 years. This 

is economically profitable because as the hub-height and rotor radius increase, the average 

wind speed captured increases due to wind shear. Hence this development has made it 

possible that less wind turbines units are required to meet the power production for the set-up 

of wind farms, which inevitably leads to a reduction in operation costs.  
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As the size of the wind turbine rotor increases, the structural performance and durability 

requirements tend to become more challenging. Presently it is still unclear the ultimate rotor 

diameter which can be attained with the current material and manufacturing technologies (M. 

Grujicic et al., 2010). In addition to the aforementioned structural performance and durability 

requirements the wind turbine has to meet with the evolving energy policies, international 

treaties, legislations and regulations set by the governments (Saidur, Islam, Rahim, & Solangi, 

2010).  

In this sense, solving the wind turbine design problem is an optimization problem where 

an optimal solution is to be found under a set of design constraints and a specific target. Seen 

the world evolution towards the renewable energies and the beginning of an implementation of 

a local wind industry in Quebec, it becomes imperative to follow the international trends 

concerning the integration of composite material in this industry. Therefore, it is necessary to 

supply the designers a suitable decision tool for the study and design of optimal wind turbine 

blades 

As reported in Seminar 1 and 2, the primarily goal of our research is to propose a wind 

turbine design tool with an interactive interface. It is important to mention that throughout our 

doctoral research; the topic has evolved from an early focus towards its current form. Initially, 

the intention was oriented towards the study of textile composites inside the structure of the 

wind turbine blades. After completing a literature review on the optimization techniques applied 

in WTOP, we concluded that our efforts should be oriented towards building an optimization 

tool capable of handling multiple technical specifications. The developed design tool is an open 

source code named winDesign which is capable to perform: 

• Structural analysis and design of composite blades for wind turbines under various 

configurations in order to accelerate the preliminary design phase.  
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• The proposed winDesign tool should perform a Pareto optimization where optimal 

decisions need to be taken in the presence of trade-offs between two conflicting 

objectives: AEP and the weight of the blade. 

• For a given external blade shape, winDesign should determine an optimal composite 

layup, chord and twist distributions which either minimizes blade mass or maximizes 

the annual energy production while simultaneously satisfying design constraints. 

Admitted into the PhD in engineering program at UQAC in January 2014, this report 

includes 10 trimesters of research studies on the subject of: optimization of the structure of 

wind turbine blades using a genetic algorithm, under the supervision of:  

1. Professor Jean Perron, UQAC: doctoral advisor/director  

2. Professor Rafic Younes, LU:  co-director and main scientific advisor 

3. Professor Adrian Ilinca, UQAR: co-director of research 

This dissertation is divided into 6 main chapters in which the following key elements are 

discussed: 

• A literature review of the most relevant wind turbine optimization studies is presented 

in chapter 1.  

• Survey of the mathematical models applied in wind turbine performance optimization 

problems are presented in chapter 2.  

• Two main original contributions for the proposed genetic algorithm of winDesign are 

discussed in this chapter. In section 3.3, a new constraint-handling technique named 

‘Violation Constraint-Handling’ (VCH) is introduced. Likewise, section 3.4 presents a 

selection process mechanism using clustering analysis for genetic search called KGA.  

• In chapter 4, we will focus on existing wind turbine blade design codes, tools and 

software solvers, which played a major role in building the proposed winDesign 

platform. 
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• The newly proposed winDesign graphical tool which incorporates the novel VCH and 

KGA techniques, is presented in chapter 5 with results from both mono-objective and 

multi-objective numerical simulations.  

• Finally, we terminate this dissertation with chapter 6, where a detailed discussion, 

conclusion and a projection of future works are presented.  
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CHAPTER 1 

WIND TURBINE OPTIMIZATION: LITERATURE REVIEW  

 
 
1.1 WIND ENERGY STATUS: GENERAL OVERVIEW  

Since early recorded history, humans have harnessed the kinetic energy of the wind. Wind 

energy propelled boats along the Nile River as early as 5000 B.C. By 200 B.C., windmills in 

China and Persia were pumping water, while vertical-axis windmills were grinding grain in the 

Middle East. 

With the development of electrical power, wind power found new applications in residential 

lighting away from power plants. Throughout the 20th century, small wind turbine plants, 

suitable for farms and homes, along with larger wind farms connected to the grid were 

developed. 

In the 1980’s, while wind energy’s growth in North America was slow, wind energy in 

Europe expanded in part due to environmental concerns in response to scientific studies about 

global climate change and global warming.   

Today, wind power operates in various size range, from small turbines for isolated 

residences to large hundred of megawatt-size wind farms that generate electricity to the 

transmission grid.  

As of the 21st century began, fossil fuel is still relatively inexpensive, but rising concerns 

over global warming and the eventual fossil fuel depletion has led to an expansion of interest 

in renewable energy. Since wind power can only generate electricity rather than liquid fuels, it 

cannot substitute for petroleum in transportation in the immediate future.  

Canada, with its massive landmass and diversified geography, has significant renewable 

resources including: water, wind, biomass, solar, geothermal and ocean energy (Basbous, 

Younes, Ilinca, & Perron, 2012; Hussein Ibrahim, Ilinca, Younes, Perron, & Basbous, 2007; H 
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Ibrahim, Younès, Basbous, Ilinca, & Dimitrova, 2011; Hussein Ibrahim, Younès, Ilinca, 

Dimitrova, & Perron, 2010; Hussein Ibrahim et al., 2011). In 2016, renewable energy sources 

currently provided 19% of the total Canadian energy demand with 96 636 MW of installed 

capacities. Hydropower is the most important renewable energy source in Canada, accounting 

for more than 59% of Canada’s electricity generation. In fact, Canada ranks as the second 

largest producer of hydroelectricity in the world (Adib et al., 2016).  

Canada has large areas with excellent wind resources and therefore a potential for wind 

turbine projects. Much like other sites, the highest potential areas are offshore and along the 

coastlines. Until now, no offshore wind farms have been built in Canada. In 2016, Canada 

added 1.5 GW for a total of 11.2 GW, ranking sixth globally for additions and seventh for total 

capacity. The installed wind power capacity was enough to supply 5% of Canada’s electricity 

demand.  

The 2030 energy policy set by CanWEA aims to increase renewable energies by 25 % 

and decrease fossil fuel by 40 % over the next year. In fact, it is anticipated that by 2025, at 

least 20% of Canada’s electricity demand will be met by various onshore and offshore wind-

farms (Lafrance et al.). In order to meet the 20% production goal in the next 10 years, both 

significant increases in wind turbine installations (offshore and inshore farms) and an increase 

in wind turbine operability are required, while maintaining a profitable and competitive energy 

cost (Lindenberg et al., 2008). To reduce the cost of energy (typically expressed in $/kWh), 

commercial wind turbines have grown considerably in size over the last 30 years. As the size 

of the wind turbine rotor increases, the structural performance and durability requirements tend 

to become more challenging. In addition to the aforementioned structural performance and 

durability requirements the wind turbine has to meet with the evolving energy policies, 

international treaties, legislations and regulations set by the governments (Saidur et al., 2010).  

In this sense, solving the wind turbine design problem is an optimization problem where 

an optimal solution is to be found under a set of design constraints and a specific target. 
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Therefore, our literature review search must begin from a survey of wind turbine optimization 

studies. 

1.2 WIND TURBINE OPTIMIZATION: TIMELINE & COMPONENTS  

The rapid growth in the number of research publications on wind turbine design 

optimization since 1990 highlights the status of the field of WTO (Figure 1). In the past, some 

authors have compared the impact of different optimization objectives on the quality of the 

solution, others have reviewed the optimization algorithms, energy policies, economics, 

environmental impacts of wind turbines but numerous researchers have proposed different 

optimization methodologies and resolution strategies.  

None of the manuscripts in the literature reviewed the techniques of performance 

optimization of wind turbines. Therefore, the purpose of our published literature review in the 

journal of Applied Energy was to review the optimization techniques applied to wind turbines.  

 

Figure 1 : Number of published documents on wind turbine design in the last 40 years  
(reproduced from Scopus database). 
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1.3 SURVEY OF WIND TURBINE OPTIMIZATION STUDIES  

We begin by examining the most relevant wind turbine performance optimization studies 

conducted in the last 20 years. The reader is invited to refer to ‘review of performance 

optimization techniques applied to wind turbines’ for a complete overview of the performance 

optimization techniques applied to horizontal wind turbines. 

1.3.1 REVIEW OF AIRFOIL SHAPE OPTIMIZATION IN WIND TURBINE DESIGN 

STUDIES 

The design of new airfoils families suited for wind turbines is an imperative field of 

research for the development of the wind energy industry (Björck, 1990; Peter Fuglsang, Bak, 

Gaunaa, & Antoniou, 2004; J. L. Tangler & Somers, 1995; Timmer & Van Rooij, 2003). During 

the last two decades, a series of airfoil design guidelines have been proposed by national 

energy laboratories and international commissions (Dutton, Bonnet, Hogg, & Lleong, 2010; P 

Fuglsang, 2002; Veritas, 2002). According to Ju and Zhang (Ju & Zhang, 2012), a desirable 

wind turbine airfoil should satisfy the following aerodynamic requirements:  

1. High lift-to-drag ratio (CL/CD) and high lift coefficient (CL) 

2. Good performance during stochastic behavior of wind speed 

3. Low sensitivity to leading edge roughness 

A reduced sensitivity to the roughness (mainly leading edge roughness) means that the 

wind turbine blade should be efficient in dirty conditions (Sagol, Reggio, & Ilinca, 2013).  In 

addition, the moment coefficient cannot be too high because this will increase blade torsion. In 

contrast, in pitch regulated wind turbine, a low moment coefficient causes a reduction in control 

forces. Because of wind gusts, the local angle of attack can suddenly change and be in pre-

stall or stall zones (F. Grasso, 2011). Hence, the selection of the airfoil families is crucial in the 

design of wind turbine blades. Therefore, it is crucial to examine in this section the prominent 
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approaches in wind turbine airfoil shape optimization. Below, we will review the most relevant 

airfoil shape optimization studies in the last two decades. 

The desirable airfoil characteristics for wind turbine blades can be divided into two main 

categories: structural and aerodynamic. Throughout the wind turbine blade length distribution, 

different physical characteristics are key at the root, mid and tip.  The root is mainly designed 

with regards to structural concerns, whereas the tip is determined for aerodynamic 

considerations (Bizzarrini, Grasso, & Coiro, 2011). The most significant structural parameters 

are the maximum airfoil thickness and its chord-wise location (F. Grasso, 2011). The airfoil 

thickness must be able to provide the required blade strength and stiffness. The location of the 

maximum thickness along the chord ensures a better penetration of the spar inside the airfoil 

sections. As for the tip region, the main aerodynamic parameter is the lift-to-drag ratio. This 

ratio is mainly related to the stall behavior and the CL,max of the airfoil. A relatively high value of 

the lift coefficient allows the designer to reduce the chord and consequently the loads in parked 

conditions at high speeds. A lower chord near the tip also reduces the weight of the blade and 

the amplitude of fluctuating load resulting from wind gusts (F. Grasso, 2011). 

Burger and Hartfield (Burger & Hartfield, 2006) examined the feasibility of using the 

combination of the vortex lattice method with a genetic algorithm to optimize the aerodynamic 

performance of a horizontal axis wind turbine blade.   

Li et al. (J. Y. Li, Li, Gao, & Huang, 2010) presented an improved optimization technique 

using response surface methods to improve the lift-to-drag ratio for 2D wind turbine airfoils.  

In (Bizzarrini et al., 2011; F. Grasso, 2011; Francesco Grasso, 2012) the authors focused 

on the airfoil design at the tip region of the blade using numerical models. Grasso (Francesco 

Grasso, 2012) presented a hybrid optimization platform based on genetic and gradient based 

algorithms to design a new family of airfoils dedicated to the root region of the wind turbine 

blade. The motif was to enhance the aerodynamic efficiency (
𝐿

𝐷
) together with the sectional 

moment of resistance (𝐼𝑥𝑥) of the airfoil section. Because these two parameters are conflicting 
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with each other, Grasso combined both objectives using a weighted linear combination (Eq. 

1.1):  

min𝑓(𝑥 ) = 𝑘 (
𝐿

𝐷
) + (1 − 𝑘)𝐼𝑥𝑥 [1.1] 

where k is a weighting parameter varying between 0 and 1, L/D the ratio of lift over drag, 

Ixx is the sectional moment of resistance. 

In recent years, blunt trailing edge or flatback airfoils have been suggested for the 

inboard regions of large wind-turbine blades since they provide some structural and 

aerodynamic performance advantages (ASHWILL, 2003; Jackson, Zuteck, Van Dam, 

Standish, & Berry, 2005; Standish & Van Dam, 2003; Van Rooij & Timmer, 2003). Chen et al. 

(X. Chen & R. Agarwal, 2012) apply a multi-objective genetic algorithm code for the optimal 

design of flatback series. The two objectives were the maximum lift coefficient and maximum 

lift-to-drag ratio. It was shown that the multi-objective scheme generated flatback airfoils with 

better performances than those obtained using a single objective GA algorithm in (X. Chen & 

Agarwal, 2010; X. M. Chen & R. Agarwal, 2012).      

Ribeiro et al. (Ribeiro, Awruch, & Gomes, 2012) coupled a RANS equation in steady 

state with one equation turbulence model and an optimization algorithm. Single and multi-

objective genetic algorithms are employed, and artificial neural networks were used as a 

surrogate model to generate optimal airfoil shapes.   

Jeong et al. (Jeong, Park, Jun, Song, & Lee, 2012) minimized the fluctuation of the 

unsteady aerodynamic load under turbulent wind condition. It was noted that the out-of-plane 

fluctuating unsteady aerodynamic load is more significant than the in-plane loads for structural 

fatigue of the blade. The rms of the out-of-plane bending moment was reduced by about 20% 

and its mean was reduced by about 5% (Jeong et al., 2012).  
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Ju et al. (Ju & Zhang, 2012) developed a robust design optimization (RDO) for wind 

turbine airfoils by maximizing the CL/CD and CL of the airfoil along with a sensitivity minimization 

of the roughness at the leading edge associated with the geometry profile uncertainty.  

1.3.2 REVIEW OF WIND TURBINE BLADE OPTIMIZATION STUDIES 

In this section, we examine the most relevant wind turbine blade optimization studies 

conducted in the last 20 years.  

One of the early studies was performed in 1996 by Selig and Coverstone-Carroll (M. S. 

Selig & Coverstone-Carroll, 1996). They examined the maximization of energy production with 

no or few constraints on the loads. 

 A year later, Giguère et Selig (Giguere & Selig, 2000) presented a multi-disciplinary 

optimization platform for the optimal blade geometry of HAWT’s (refer to Figure 2). A 

combination of two objectives was used to obtain a trade-off curve, captured by the use of a 

sharing function. Only the structure of the blade was considered but the effects of the rotor on 

other components are represented in the cost model. These components include the hub, 

drivetrain, controller, nacelle and the tower. The cost of each component is modeled using the 

relative approach where the cost is obtained from a baseline model. In addition, the cost of 

each component is correlated with the corresponding design variables and normalized with the 

value from the baseline (except for the controller, which does not rely on baseline cost). 

The following procedure was used to estimate the blade weight and resulting cost, as 

indicated in Figure 2.  

1. The flap-bending load at each segment is determined from the thrust distribution for 

the given load condition (specified by the user or the IEC 50-year extreme wind 

speeds). An IEC load factor of 1.35 is applied to the static flap-bending loads.  
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2. The required moment of inertia of each segment is calculated using the flap-bending 

load to counterpart a prescribed stress level σp (one for the hub and skin and another 

for the spar) along the blade.  

3. The required hub and spar thickness is found, neglecting the inertia of the skin and 

spar and that of the shear webs about their own axis of rotation.  

4. The required number of plies from the skin thickness distribution is chosen. 

5. Calculation of the tip deflection. 

6. The cross-sectional area at each segment is calculated. 

7. The volume of the material is estimated from a linear extrapolation of the cross 

sectional-area.  

8. Finally, the blade weight is estimated from the number of blades N, volume MVB and 

density ρB. 

 

Figure 2 : Flowchart of Giguère et Selig (Giguere & Selig, 2000) (Reproduced from 
(Giguere & Selig, 2000)). 
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The optimization flowchart proposed by Giguère et Selig (Giguere & Selig, 2000) 

motivated researchers to conduct more studies in the field of wind turbine optimization. In the 

same way, Fuglsang and Madsen developed a famous code  (P. Fuglsang & Madsen, 1999) 

for the multi-disciplinary optimization of HAWT rotors (refer to Figure 3) based on their previous 

work at Risø National Laboratory (P Fuglsang & Aagaard Madsen, 1994; Peter Fuglsang & 

Aagaard Madsen, 1995). The design variables are divided into 3 categories: rotor shape, airfoil 

characteristics, and blade regulation. The design method demonstrated that the change in rotor 

shape resulted in a maximum allowable strain on more than 80 % of the blade and a reduction 

of 3.5 % in energy cost.  

Similarly, Maalawi and Badr (K. Y. Maalawi & Badr, 2003) developed a computer 

program and a new mathematical formulation based on dimensionless quantities to generate 

an optimum rotor configuration with the highest power output. The aerodynamic analysis is 

based on (H. Glauert, 1935; K. Y. Maalawi & Badawy, 2001; Pandey, Pandey, & Ojha, 1989; 

Robert Elliott Wilson, Lissaman, & Walker, 1976) and the design parameters are the chord and 

twist distributions, number of blades, family of the airfoil sections, hub size and the tip speed 

ratio.  

 

Figure 3 : Numerical algorithm applied by Fuglsang and Madsen (P. Fuglsang & 
Madsen, 1999). 
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A fast forward to 2005, Jureczko et al. (Jureczko, Pawlak, & Mezyk, 2005) studied the 

optimization of a wind turbine blade as a purely structural problem assuming a fixed 

aerodynamic shape. However, the model is only effective in modal, static and linear transient 

analysis. The formulation of the multi criteria discrete optimization problem forced the authors 

to take into account multiple criteria that can be contradictory at times. Jureczko et al. (Jureczko 

et al., 2005) formulated the optimization problem based on 5 different criterions: 

1. Minimization of the generated blade vibrations 

2. Maximization of the generated output  

3. Minimization of blade material costs 

4. Ensure local and global stability of the blade structure 

5. Ensure strength requirements of the blade structure 

The reason behind the first criterion is that minimal blade vibration guarantees a higher 

stability. However, caution must be taken when separating the natural frequency of the blade 

from the harmonic vibration associated with rotor rotation to prevent the occurrence of 

resonance. High vibration amplitude leads to the destruction of the wind turbine structure. 

Nevertheless, the vibration amplitude is a function of the material density, shell thickness and 

the arrangement of the structural ribs along the blade. Hence, when minimization of blade 

vibration is considered, proper care must be taken to ensure the required stiffness. This 

formulation of the optimisation problem also satisfies the second criterion; maximization of the 

generated output, since the output of a wind turbine depends also on the optimum shape. The 

third and fourth criterions are a difficult task to meet since the minimization of the costs of the 

blade materials is achieved by the minimization of the blade mass. A conflict between both 

principles arises because weight minimization puts the stability of the blade at risk, and in order 

to obtain better stability, the weight should be maximized. Finally, to meet the strength 

requirement, a limiting condition on the displacement in the transverse direction is added.  
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Méndez et Greiner (Méndez & Greiner, 2006) prepared a method to obtain the optimal 

chord and twist distributions in wind turbine blades. The distributions are calculated to maximize 

the mean power depending on the Weibull wind distribution. To optimize chord and twist 

distributions, an efficient implementation of the BEM theory (Burton, Jenkins, Sharpe, & 

Bossanyi, 2011; Jason Mark Jonkman, 2003; Martin, 2008) is used. 

Liu et al. (Liu, Chen, & Ye, 2007) develop an optimization model based on an extended 

compact genetic algorithm (ECGA) to maximize the annual energy output of a 1.3 MW stall-

regulated wind turbine. Compared to the original blades, the designed blades demonstrated a 

better aerodynamic performance. In fact, the results confirmed that at a lower wind speed, the 

power is nearly twice of that yielded by the original blades. An increase of 7.5 % in the annual 

energy output was recorded.  

Lee et al. (Lee et al., 2007) presented a robust optimization procedure for wind turbine 

blades in the offshore Korean peninsula. The blade shape is optimized to obtain the maximum 

annual power production. The method consists of two steps; the operating condition 

optimization (step 1) and the geometric blade shape design and blade performance analysis 

optimization (step 2).  

A multidisciplinary design feasible (MDF) (Cramer, Dennis, Frank, Lewis, & Shubin, 

1994) approach is used for solving the optimization problem of a wind turbine blade by Kenway 

and Martins (Kenway & Martins, 2008). The blade is constructed using 7 design variables: 

chord, twist, spar (thickness, location, and length), airfoil thickness and rotation rate. To 

demonstrate the potential for site-specific optimization, a 5-kW wind turbine case was used 

with results showing a possible output increase of 3-4 %.   

In 2009, Ceyhan et al (Ceyhan, 2008; Ceyhan, Sezer-Uzol, & Tuncer, 2009) studied the 

aerodynamic performance of horizontal axis wind turbine blades using BEM theory (Moriarty & 

Hansen, 2005) and genetic algorithm. An increase of 40 to 80 % in power production was 

recorded on a 100 kW HAWT. In the same year Clifton-Smith and Wood (Clifton-Smith & Wood, 
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2007) applied a numeric method of differential evolution (DE) to maximise both power and 

starting performance. Results show that the starting time can be improved by a factor of 20 

with a small reduction in power coefficient. Similarly, Belessis et al. (Belessis, Stamos, & 

Voutsinas, 1996), investigated the capabilities of a genetic algorithm based wind turbine design 

tool demonstrating a 10% gain of annual energy for 100, 300 and 500 kW wind turbines.  

Xudong et al. (W. Xudong, Shen, Zhu, Sorensen, & Jin, 2009; Wang Xudong, Shen, Zhu, 

Sørensen, & Jin, 2009) presented a design tool for optimizing wind turbine blades, coupling 

between an aerodynamic and an aeroelastic code to account for the structural dynamics 

represented by 11 degrees of freedom. The chord, twist and relative thickness of the blade 

were optimized. A three-bladed wind turbine was optimized, taking into consideration three 

eigenmodes (first and second flapwise modes and the first edgewise mode) along with the axial 

displacement of the whole rotor and the azimuth displacement of the blades. Further details 

concerning the aerodynamic/aeroelastic code can be found in (Omri, 2003; J. S. Schepers, H., 

2007; H Snel, 2001; H. S. Snel, JG 

Montgomerie, B, 2007), about the aerodynamic model in (H. Glauert, 1935) and the cost 

model in (Rasmussen & Kretz, 1994). In this study, Xudong et al (W. Xudong et al., 2009) 

restricted the fitness function to the cost of the rotor, where the total costs of producing, 

transporting and erecting the wind turbine rotor are evaluated. The relative value of the total 

rotor cost is defined as: 

𝑓(𝑥 ) = 𝐶𝑜𝐸 =
𝐶𝑟𝑜𝑡𝑜𝑟
𝐴𝐸𝑃

 [1.2] 

𝐶𝑟𝑜𝑡𝑜𝑟 = 𝑏𝑟𝑜𝑡𝑜𝑟 + (1 − 𝑏𝑟𝑜𝑡𝑜𝑟)𝑤𝑟𝑜𝑡𝑜𝑟 [1.3] 

where bi is the fixed part of the rotor cost (assumed 0.1) and wrotor is the weight 

parameter of the rotor calculated from the chord and blade mass distributions: 

𝑤𝑟𝑜𝑡𝑜𝑟 =∑
𝑚𝑖𝑐𝑖,𝑜𝑝𝑡

𝑀𝑡𝑜𝑡𝑐𝑖,𝑜𝑟𝑔

𝑁

𝑖=1

 [1.4] 
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where mi is the mass of the i-th cross-section of the blade; ci,opt is the averaged chord 

of the i-th cross section of the optimized blade; ci,or is the averaged chord of the i-th cross-

section of the original blade; Mtot is the total mass of the blade (W. Xudong et al., 2009).  

The wind turbine is assumed to operate 8700 hours per year, and its AEP is evaluated 

as follows: 

𝐴𝐸𝑃 = 8760∑
1

2

𝑛

𝑖=1

[𝑃(𝑉𝑖+1) + 𝑃(𝑉𝑖)]𝑓(𝑉𝑖 < 𝑉 < 𝑉𝑖+1) [1.5] 

where P(Vi) is the power at the wind speed of Vi. 

Inspired by Xudong et al. (Wang Xudong et al., 2009), Eke and Onyewudiala (Eke & 

Onyewudiala, 2010) applied a GA to optimize the shape parameters (chord, twist and relative 

thickness) using the same cost model and AEP formulation of (W. Xudong et al., 2009; Wang 

Xudong et al., 2009). Their results displayed a decrease of 0.8% in annual energy production 

and a decrease of 1.9% in the rotor cost, hence a decrease of 1.115% in rotor energy cost.  

Grujicic et al. (M. Grujicic et al., 2010) developed a two-level optimization scheme 

consisting of an inner and outer level. In the inner level, for a given aerodynamic design of the 

blade; the blade mass is minimized). In the outer level, a cost assessment analysis is 

employed. Also, in the outer-level optimization loop the cost of energy is evaluated as the ratio 

of the blade material and production costs and the calculated AEP. This procedure is repeated 

until suitable objective function minima are found for both the outer-level and the inner-level 

optimization loops. 

Wang et al. (L. Wang, Wang, & Luo, 2011) presented a multi-objective algorithm where 

the maximum power coefficient CP at the design wind speed (9 m/s) and the minimum blade 

mass are taken as conflicting objectives. The aerodynamic loads acting on the blade are 

calculated using the modified BEM theory (Dai, Tang, & Wang, 1988). The mass distribution 

and the total mass of the blade are obtained from the normal stress equations in the condition 

of a free-bending thin-walled beam. The two objectives can be formulated as follows: 
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𝑓1 = max⁡(𝐂𝐩|𝑉 = 9⁡𝑚. 𝑠
−1) [1.7] 

𝑓2 = 𝑚𝑖𝑛∫ 𝐦𝐢𝑑𝑟
𝑅

𝑅ℎ𝑢𝑏

 [1.8] 

In 2013, Chen et al. (J. Chen et al., 2013) recently established an optimized model to 

optimize the thickness and the location of the spar caps coupling a finite element program and 

a PSO algorithm. The initial ply design of the composite blade structure is composed of the 

combination of 6 laminate materials (refer to Figure 4):  

1. A unidirectional laminate 

2. Bi-axial laminate  

3. Tri-axial laminate  

4. Coating material  

5. Extra resin  

6. Foam core material  

 

Figure 4 : Blade material of Chen et al. (J. Chen et al., 2013) (reproduced from (J. Chen 
et al., 2013)). 

 

1.3.3 REVIEW OF WIND TURBINE PERFORMANCE OPTIMIZATION STUDIES 

Diveux et al. (T Diveux, Sebastian, Bernard, Puiggali, & Grandidier, 2001) used a global 

cost model for the wind turbine and its components, inspired by the parameters of (Thierry 
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Diveux, 2000; Harrison & Jenkins, 1994) to develop a custom optimization design tool for wind 

turbines near the Mediterranean. The total wind turbine cost CWT is the sum of all the 

components costs Ccomp tampered by a calibration factor FWT of 1.1, which take into account 

some unknown parameters such as the manufacturer’s margin. The annual operation and 

maintenance costs are fixed to 2-5% of the initial investment cost and an actualization factor a 

was included (T Diveux et al., 2001) as follows:  

 𝐶WT = 𝐹WT ∑ 𝐶comp
𝑁
𝑖=1  [1.9] 

𝑇𝑜𝑡𝑎𝑙⁡𝑐𝑜𝑠𝑡 = (𝑎 + 0.025)𝐶ITZ [1.10] 

The annual electrical energy output is determined by the integration of the wind speed 

distribution (Weibull) and the energy output for 1 year [kWh]. Diveux et al. use an empirical 

model for the power coefficient based on Wilson and Lissaman (Robert Elliott Wilson et al., 

1976) : 

𝐸𝐴𝑃 = 8.76
𝜌𝑎𝑖𝑟
2
𝑆𝑅∫ 𝑉3𝑓(𝑉)𝐶𝑝(𝑉)𝜂𝐺𝐵(𝑉)𝑑𝑉

𝑉2

𝑉1

 [1.11] 

where EAP is the annual energy production, with SR is the swept area of the rotor (m2), 

f(V) is the Weibull  density function of the wind speed, ηGB is the gearbox efficiency (Harrison 

& Jenkins, 1994), ηG is the generator efficiency (Harrison & Jenkins, 1994). The results of 

Diveux et al. (T Diveux et al., 2001) indicated that the optimal wind turbines for the given 

Mediterranean conditions require larger power parameters.   

Benini et al. (Benini & Toffolo, 2002) apply a multi-objective evolutionary algorithm 

(MOEA) for the design optimization of stall regulated wind HAWT with a trade-off between the 

ratio of AEP over the wind park area (to maximize) and the cost of energy (to minimize). An 

alternative objective function that is explored instead of the annual energy is the AEP density; 

ratio of this latter and the wind park area R2, a parameter that the designer seek to maximize 

in (Benini & Toffolo, 2002).  The motif behind using this metric comes from the fact that the 

number of turbines that can be installed in a given area is inversely proportional to the square 

of turbine radius Therefore, the AEP density is defined as [kWh/m2]: 
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𝐴𝐸𝑃𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝐴𝐸𝑃

𝑅2
 [1.12] 

where AEP is the annual energy production and R the radius of the wind park.  

The MOEA handles the chosen design parameters and searches for the group of optimal 

solutions following a set of Pareto concepts and basic principles of genetic programming (David 

Edward Goldberg, 1989; Schwefel, 1993). The chosen design variables are the tip speed, 

hub/tip ratio, chord and twist distributions. The airfoil parameters such as CL and CD that are 

function of the angle of attack are extracted from (Bertagnolio, Sørensen, Johansen, & 

Fuglsang, 2001). The shell thickness along the blade, coning angle, tilt angle and number of 

blades are all assumed constant during the optimization.      

Fuglsang et al. (Peter Fuglsang et al., 2002) present a numerical optimization algorithm 

that is coupled with an aeroelastic and cost model, allowing the optimization of stand-alone flat 

terrain and offshore wind farm wind turbines for different operations and wind conditions (refer 

to Error! Reference source not found.). The work is used to identify the potentials in site 

specific design for offshore wind turbine farms by means of site specific design optimization of 

a reference 1.5 MW stall regulated wind turbine considering the hub height, rotor speed, rotor 

diameter and rated power as the design variables.  

In 2010, Bottasso et al. (Bottasso, Campagnolo, & Croce, 2010) exercised a thorough 

description of a multi-disciplinary design optimization procedure. The optimization is realized 

through the maximizing of a merit function under constraints respecting relevant design 

requirements (Commission, 2005, 2006). Bottasso et al. (Bottasso et al., 2010) assumed that 

the weight is correlated to the cost but does not use a particular cost model, arguing that a 

reliable cost model is not offered to the public. The multi objective design is not formulated as 

a Pareto optimal problem, but rather as a combined cost defined as the ratio of the annual 

energy production to the total weight. The optimization task is a nested constrained optimization 

problem that has among its constraints a second set of constraints. Since the direct solution of 

the problem may require a significant computational effort, Bottasso et al. (Bottasso et al., 
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2010) applied a sequential constrained optimization where the procedure is divided into two 

stages. In the first stage, the maximum AEP for minimum blade weight is calculated.  

 
Figure 5 : Design tool of Fuglsang et al. (Peter Fuglsang et al., 2002) (reproduced from 

(Peter Fuglsang et al., 2002)). 

Kusiak et al. (Kusiak, Zhang, & Li, 2010) introduced a data-driven approach to study the 

impact of turbine control on their vibrations and power output. The authors developed model 

for prediction of vibrations and the produced power using neural networks. To illustrate the 

importance of the three objectives (two vibrations and the power output), a weighted sum of 

these objectives is minimized: 

𝑚𝑖𝑛 (𝑤1𝑦1(𝑡) + 𝑤2𝑦2(𝑡) + 𝑤3
1

𝑦3(𝑡)
) [1.6] 

where y1(t) is the estimated vibration of the drive train; y2(t) tower vibration model; y3(t) 

estimated power output model.  

Maki et al. (Maki, Sbragio, & Vlahopoulos, 2012) conducted a new multi-level system 

design algorithm (MLS) for the analysis of a wind turbine. Similar general engineering design 

optimization models are introduced in (Fletcher, 2013; Papalambros & Wilde, 2000) (refer to 

Figure 6).  
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Figure 6 : Flowchart of the optimization scheme of Maki et al. (Maki et al., 2012) 
(reproduced from (Maki et al., 2012)). 

The cost of energy is the overall system level objective, arguing that the work that 

optimize the ratio of lift to drag do not reflect the least cost of energy. Maki et al. inspired their 

work from other areas in engineering that seek one overall global optimum design such as in 

naval architecture (Cox et al., 2001; Moraes, Vasconcellos, & Almeida, 2007), automotive 

engineering (H. M. Kim, Michelena, Papalambros, & Jiang, 2003; Sinha, 2007), mechanical 

engineering (I. Y. Kim & de Weck, 2005; Venkayya, 1989), in biomedical engineering (Moles, 

Mendes, & Banga, 2003) and others (Jouhaud, Sagaut, Montagnac, & Laurenceau, 2007; 

Lewis, 2001). The design variables (rotor diameter, rotational speed, maximum rated power, 

hub height, structural characteristic of the blade, geometric characteristic of the blade) are 

separated into blade parameters and rotor parameters to find the minimum cost of energy of 

the entire system. The system design analysis was developed using the NREL tools (NREL) 

with a cost and scaling model from the work of Fingersh et al. (Fingersh, Hand, & Laxson, 

2006). The two technical design disciplines that compose the design optimization of the wind 

turbine are: 

1. The optimal design of the blade geometry for maximum annual energy production  
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2. Structural design of the blade for minimum bending moment at the root  

In a compelling study conducted by Ning et al. (A. Ning, Damiani, & Moriarty, 2013), the 

authors study the impact of various objective functions on the quality of the optimal solutions. 

Three different optimization objective functions were examined: 

1. Maximization of the Annual Energy Production (AEP) 

2. Minimization of the turbine mass to AEP ratio 

3. Minimization of the cost of energy (CoE) 

Ning et al. (A. Ning et al., 2013) assumed that the weight loads are added to the 

aerodynamic loads at 0 degree pitch and the 3 o’clock azimuthal position, which is considered 

the worth case for edgewise loads. The 2D airfoil correction take account the rotational effects 

in the solver using a Du-Selig (Du & Selig, 1998) for lift and Eggers(Eggers, Chaney, & 

Digumarthi, 2003) for drag. The method proposed by Viterna (Viterna & Janetzke, 1982) was 

used for the extrapolation of the results for the -180º to +180º range. The NREL 5MW geometry 

was used as a reference (Jason Mark Jonkman, Butterfield, Musial, & Scott, 2009) with a 

preliminary evaluation by NUMAD for the initial layup (Resor, 2013) and the materials were 

derived from the database carried by Mandell (Mandell & Samborsky, 1997). A 

parameterization of the chord, twist and spar cap distribution along the blade length was 

completed to ensure the efficiency and flexibility in describing the geometry. The cost model 

used in (A. Ning et al., 2013)  was proposed by Fingersh (Fingersh et al., 2006) but some 

modifications were implemented in the optimization tool. One of the main adjustments was the 

computation of the blade mass using structural models and not scaling laws. Another 

modification is that the blade cost was supposed to be a linear function of the blade mass and 

the mass of the tower was estimated using physics-based scaling arguments.  

The first objective function Ning et al. (A. Ning et al., 2013) examined was a sequential 

maximization of the AEP followed by a minimization of the blade mass. The AEP can be 

conducted using different strategies, namely as follows: 
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1. deprived of a blade mass computation 

2. with mass constraints by the use of surrogates 

When maximizing the AEP using the first method, the optimization strategy lead to the 

design of multiple blades with the same AEP for different blade masses; meaning the existence 

of weak local optimum solutions.   

The blade mass constraints were imposed in diverse forms. One possibility of 

constraining the blade mass is limiting the root bending moment. However, the root bending 

moment constraint does not alter the solution since the primary objective is to maximize the 

AEP, which tends to decrease the root bending moment. Another surrogate is inspired from 

aircraft design, using wing weight portion scaling, where the weight of the wing is divided into 

a portion that scales with the planform area and another that scales the required loading (S. A. 

Ning & Kroo, 2010). In this strategy, the optimal solution is realized by decreasing the root 

chord in exchange for a larger chord at maximum chord location. The aerodynamic 

performance of the blade is improved but structurally worth, therefore a restriction on the stress 

at the blade root is set. This surrogate alters the optimization problem; applying a sequential 

algorithm where the maximization of the AEP is followed by the minimization of the blade mass. 

An alternative approach is forcing the structural analysis to dictate the blade shape whereas 

the aerodynamic analysis only dictates the airfoil shape; this is known as blade shape and 

airfoil decoupling. This approach changes the optimization because the structural analysis 

must be repeated one final time to guarantee that the constraints are satisfied. The results of 

each surrogate were compared with the minimum cost of energy formulation and a maximum 

energy reduction of 0.35% was recorded from the blade & airfoil decoupling and a 0.3% 

reduction in portion scaling. Although both approaches lead to decreases in cost of energy, 

they are still inferior to metrics that combine the aerodynamic and structural performance. 

Ning et al. (A. Ning et al., 2013) deduced that maximizing AEP and then minimizing the 

mass sequentially is ineffective. When designers are fixed with material selection, a reasonable 
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choice is to minimize the ratio of the turbine mass to the annual energy production. Results 

showed that even if a proper nacelle and tower model are not used, a constant estimate of their 

mass must be included; otherwise potential decreases in rotor mass are overemphasized, 

which can lead to exaggerated aerodynamic performance. If a fixed tower mass is chosen, 

then the optimization showed good results at a fixed rotor diameter, but for a variable-diameter 

design, inaccurate diameters were predicted. On the other hand, when the tower is allowed to 

resize, caution must be taken because the tower mass consists a large portion of total mass, 

but tower cost is a rather small to the total cost. Thus, minimizing the m/AEP ratio may risk 

overemphasizing the role of the tower if careful care in the construction of the problem is not 

pursued. Equivalently, the objective function may over incentivize the solver to decrease the 

tower mass at the expense of aerodynamic performance 

1.4 SUMMARY 

Within the last 15 years, wind turbine technology has reached maturity. The growing 

world-wide market will culminate to further improvements. The advances in horizontal wind 

turbine performance strategies and techniques will result to further cost reductions and in the 

near future wind energy will be able to compete with fossil fuel. It can be anticipated that the 

number of research publications that use optimization techniques to solve for the optimal 

horizontal wind turbine blade, airfoil shape and rotor design problems have increased 

significantly in recent years.  

The parameters that designers seek to optimize under a set of design constraints have 

evolved in recent years. Wind turbines are designed using an integrated design process where 

several important parameters are included such as annual energy production, extreme and 

fatigue loads, as well as a turbine component cost model. Ultimately, the objective is to 

minimize the cost per kilowatt-hour.   
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Lately, we have witnessed an increased awareness of improving the wind turbine 

performance. Practical constraints associated with physically harnessing the kinetic energy in 

wind to generate electricity relate to the suitability of: 

1. Wind speeds 

2. Land, access and ecological issues  

3. Residential annoyance and shadow flicker  

4. Structural and mechanical limitations  

All of the above setbacks will interfere the wind farm project if not carefully taken into 

consideration during a preliminary design phase. Therefore, in order to build an efficient and 

reliable wind turbine blade design tool, the various optimization strategies and design 

constraints have to be identified. The latter will the topic of discussion in the next chapter. 

  



27 

CHAPTER 2  

MATHEMATICAL MODELS OF THE WIND TURBINE OPTIMIZATION PROBLEMS  

 
 
2.1 INTRODUCTION 

In the previous chapter, we presented the most relevant studies conducted in the field 

of wind turbine optimization. In order to present an efficient and reliable wind turbine blade 

design tool, a thorough examination of the mathematical models must be conducted. 

Accordingly, in this chapter, we will inspect the structure of the mathematical models used in 

WTOP. At the outmost, the objective functions are assessed followed by a taxonomy of the 

wind turbine design constraints. 

2.2 OBJECTIVE FUNCTIONS 

The parameters that designers seek to optimize have evolved in recent years. In the 

early days, designers focused on the maximization of the power coefficient CP (the fraction of 

power in the wind that can be extracted by the wind turbine). This optimization strategy had a 

direct impact on the blade shape, resulting in larger root chords, larger taper and very high 

blade twist. With the increase of the rotor size for higher power production, the problems 

occurring in transportation and production began to interfere with the design. As the 

maximization of the power coefficient occurs at a particular tip speed ratio on fixed speed stall 

regulated turbines, the tendency shifted towards a second optimization parameter - the 

maximization of energy production. The maximization of the energy production is achieved over 

a given period of time (e.g. one year) and wind speed spectrum rather than a particular wind 

speed. Increased knowledge about the influence of rotational effects in stall brought a new 

generation of wind turbine blades with smaller root chords and less twist.  

Since wind energy is still unable to compete with traditional fossil fuel energy sources 

and to increase its economics, the main objective has shifted toward minimization of the cost 

of energy (CoE: ratio of the total costs and the annual energy production). In this strategy, loads 
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are translated into costs by introducing a cost model and by slightly reducing the power 

coefficient, loads on the wind turbine can be largely reduced. This type of optimization resulted 

in slender blades, with lower solidity. The design of a wind turbine rotor is complex, since design 

variables are dynamic, and some have conflicting behaviors within the definition of the CoE. 

For example, the rotor diameter is increased for a higher energy capture but this result into 

higher loads that increase the cost of energy.  

In (Ashuri, Zaaijer, van Bussel, & van Kuik, 2010; Bak, 2013; Benini & Toffolo, 2002; Eke 

& Onyewudiala, 2010; P Fuglsang & Aagaard Madsen, 1994; Peter Fuglsang & Aagaard 

Madsen, 1995; Peter Fuglsang et al., 2002; P. Fuglsang & Madsen, 1999; Giguere & Selig, 

2000; M. Grujicic et al., 2010; Maki et al., 2012; A. Ning et al., 2013; W. Xudong et al., 2009), 

the authors argue that the main objective in wind turbines is towards the minimization of the 

cost of energy rather than the maximization of the aerodynamic performance of the wind blade 

in order to make wind energy competitive with other energy sources. One of the earliest 

approaches was to restrain the blade weight growth with the increase of its length by limiting 

the chord length and increasing instead the lift coefficients of wind turbine airfoils. This strategy 

is inspired by the fact that the blade is one of the most important components of wind turbines 

and its structure has significant impact on the stability and the cost of the wind turbine. Hence 

to lower the cost, the weight should decrease but in order ensure the stability, the weight has 

to be increased. So, designing a blade with minimal blade mass requires the right balance 

between the mass and the stability. Wind turbines dimensions are becoming larger and it can 

be assumed that gravity and inertia loads become as significant as aerodynamic loads, hence 

the importance of weight reduction. However, common alternatives for the choice of the 

objective function are the maximization of the annual energy production or the power 

coefficient, blade mass minimization and maximization of the rotor thrust and torque. 

In this chapter, the objective functions that were explored are divided in four main 

categories: minimization of cost of energy, maximization of the power production, minimization 

of the blade mass and the group of multi-disciplinary optimizations. The reader is referred to 
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(Bak, 2013; Benini & Toffolo, 2002; Eke & Onyewudiala, 2010; P Fuglsang & Aagaard Madsen, 

1994; Peter Fuglsang & Aagaard Madsen, 1995; Peter Fuglsang et al., 2002; P. Fuglsang & 

Madsen, 1999; J. Y. Li et al., 2010; Liao, Zhao, & Xu, 2012; Maki et al., 2012; Morgan & Garrad, 

1988; A. Ning et al., 2013; H. Snel, 2003; L. Wang et al., 2011; W. Xudong et al., 2009) for 

further discussions concerning the choice of the objective function in wind turbine optimization.  

2.2.1 MINIMIZATION OF THE COST OF ENERGY 

The cost of energy (CoE) is a parameter that is examined as the main and overall 

objective function in the following references (Arroyo et al., 2013; T Diveux et al., 2001; Eke & 

Onyewudiala, 2010; P Fuglsang & Aagaard Madsen, 1996; Peter Fuglsang et al., 2002; P. 

Fuglsang & Madsen, 1999; Giguere & Selig, 2000; Philippe Giguère, Tangler, & Selig, 1999; 

Hendriks, Schepers, Engelen, Stern, & Boerstra, 1996; Kenway & Martins, 2008; Maki et al., 

2012; A. Ning et al., 2013; W. Xudong et al., 2009; Wang Xudong et al., 2009). It is essentially 

expressed as a ratio between the total annual cost CTA and the annual energy production 

(AEP). Because the operation and maintenance costs account a small percentage of the capital 

cost and since a well-designed wind turbine with a low cost of energy has an aerodynamically 

efficient rotor, the objective function is sometimes restricted to the cost of the rotor (Eke & 

Onyewudiala, 2010; W. Xudong et al., 2009; Wang Xudong et al., 2009).  

𝐶𝑜𝐸 =
𝐶𝑇𝐴
𝐴𝐸𝑃

 [2.1] 

In offshore wind energy, the objective is to maximize the difference between the value 

of the energy (depending on the expected payback period) and the energy cost. For example, 

Snel (H. Snel, 2003) states that in offshore wind turbine farms, the turbine cost is not dominant, 

since other elements such as the foundation, installation, and electrical cable costs are high, 

and hence the designer pursues larger rotor sizes for a more economically attractive system.  



30 

2.2.2 MAXIMIZATION OF THE ANNUAL ENERGY PRODUCTION  

The purpose behind an aerodynamic optimization is the absence of a reliable structural 

and cost model. Although the most popular objective for the current wind turbine optimization 

is minimization of the cost of energy, some trends are directed toward optimizing the 

aerodynamic performance of a wind turbine by either: 

1. Maximization of the power production at a fixed wind speed 

2. Maximization of the AEP for a given wind distribution  

The maximum annual energy for a given distribution was investigated in the following 

references (Belessis et al., 1996; P Fuglsang & Aagaard Madsen, 1994; Peter Fuglsang & 

Aagaard Madsen, 1995; Lee et al., 2007; Liu et al., 2007; K. Y. Maalawi & Badr, 2003; Méndez 

& Greiner, 2006; A. Ning et al., 2013; M. S. Selig & Coverstone-Carroll, 1996; Xuan, Weimin, 

Xiao, & Jieping, 2008). The annual energy is usually calculated by integration of the wind 

turbine power combined with a wind speed distribution (e.g. Weibull) over the wind speed 

spectrum.  

𝐴𝐸𝑃 = ∫ 𝑃(𝑉)𝑓(𝑉)𝑑𝑉
𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

 [2.2] 

here, P(V) is the power curve of the wind turbine, f(V) is the wind speed distribution. 

2.2.3 MINIMIZATION OF THE WIND BLADE MASS  

In (Chehouri, Younes, Hallal, & Ilinca, 2013, 2014; J. Chen et al., 2013; Jureczko et al., 

2005; Liao et al., 2012; Pirrera, Capuzzi, Buckney, & Weaver, 2012; Zhu, Cai, Pan, & Gu, 

2012), minimum blade mass was defined as the primary objective function. Jureczko et al. 

(Jureczko et al., 2005) developed a numerical model of the wind turbine blade to perform a 

multi-criteria discrete-continuous optimization of wind turbine blades with the blade mass as 

the main objective function and the criteria’s translated into constraints. Liao et al. (Liao et al., 

2012) developed a multi-criteria constrained design model integrating a particle swarm 

optimization algorithm with FAST (Jason M Jonkman & Buhl Jr, 2005).  
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Ning et al. (A. Ning et al., 2013) inspected the minimization of the turbine mass to AEP 

ratio as one of three examined objective functions. In a recent journal, Chen et al. (J. Chen et 

al., 2013) argue that a lighter blade mass will be beneficial to improve fatigue life based on 

requirements of blade’s strength and stiffness. Therefore, the minimum mass of the wind 

turbine blade was chosen as objective function.   

2.2.4 MULTI-OBJECTIVE OPTIMIZATION FORMULATIONS   

In references (Benini & Toffolo, 2002; Bottasso et al., 2010; Deb, 2001; Giguere & Selig, 

2000; Philippe Giguère et al., 1999; M. Grujicic et al., 2010; Ju & Zhang, 2012; Kusiak et al., 

2010; M. S. Selig & Coverstone-Carroll, 1996; L. Wang et al., 2011), the authors apply a multi-

objective optimization model.  

Giguère et Selig (Giguere & Selig, 2000) selected to simultaneously optimize  the blade 

geometry for two objectives among the following choices: 

• Minimize the cost of energy of the turbine or any component 

• Maximize the AEP or power coefficient  

• Minimum rotor thrust or torque   

The AEP & CoE are combined by means of appropriate weights in (Philippe Giguère et 

al., 1999; M. S. Selig & Coverstone-Carroll, 1996). But since both metrics have conflicting 

objectives, the variation of the AEP as a function of the CoE is fundamental. This is known in 

optimization as the search for a set of Pareto Optimal design solutions.  

Benini et al. (Benini & Toffolo, 2002) try to achieve the best trade-off between two 

metrics; the ratio of the annual energy production and the wind park area, a parameter that is 

maximized simultaneously with minimization of the cost of energy.  

Bottasso et al. (Bottasso et al., 2010) presented a multi-disciplinary optimization of a 

wind turbine as a multi-objective design problem (Deb, 2001) where a compromise between 

the maximization of the annual energy production (AEP) and weight minimization.  
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Kusiak et al. (Kusiak et al., 2010) presented a multi-objective optimization model 

considering three objectives: wind turbine power output, drive train and tower vibrations.  

The same year, Kusiak et Zheng (Kusiak & Zheng, 2010) presented a bi-objective 

optimization, a trade-off between the power coefficient and the energy output of the wind 

turbine.  

Grujicic et al. (M. Grujicic et al., 2010) developed a multidisciplinary design optimization 

procedure based on a two-level optimization scheme. Wang et al. (L. Wang et al., 2011) 

presented a multi-objective algorithm combining the maximum power coefficient and the 

minimum blade mass.  

2.3 CONSTRAINTS APPLIED IN WIND TURBINE DESIGN PROBLEMS 

In engineering optimization, a constrained optimization is the mathematical process of 

optimizing an objective function with respect to a vector of design variables under a set of 

constraints. In general terms, imposing constrains to the problem increases the difficulty of the 

formulation with the risk of complicating the design. In this section, we enumerate the design 

constraints used in the performance optimization of wind turbines. After a critical survey of the 

literature, the constraints applied in wind turbine design studies into three categories: 

geometrical, aerodynamic and physical constraints.  

2.3.1 GEOMETRICAL CONSTRAINTS  

Below we list the different geometrical constraints identified in the literature. 

2.3.1.1 GROUND CLEARANCE  

In the following references (Bizzarrini et al., 2011; Bottasso et al., 2010; J. Chen et al., 

2013; F. Grasso, 2011; Hillmer, Borstelmann, Schaffarczyk, & Dannenberg, 2007; Jeong et al., 

2012; Jureczko et al., 2005; Kong, Bang, & Sugiyama, 2005; Liao et al., 2012; A. Ning et al., 
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2013; Zhu et al., 2012), limitations on the displacement of local nodes (u) and/or a maximum 

tip deflection (δ) are employed.  

Two sets of displacement constraints were set by Jureczko et al. (Jureczko et al., 2005). 

The first displacement constraint is set for the individual nodes in the numerical model of the 

blade to ensure global stability.  The second constraint is on the blade tip to guarantee a local 

stability. 

𝑢(𝑥)⃗⃗⃗⃗ ≤ ⁡𝑢𝑚𝑎𝑥 [2.3] 

𝛿 ≤ 𝛿𝑚𝑎𝑥 [2.4] 

where u(x) and δ are respectively the local displacements and the tip deflection of the 

nodes along the blade model, umax (0.1 m) and δmax (0.15 m) are the limits.  

Liao et al. (Liao et al., 2012) choose to consider one load case to predict the tip 

deflection in the optimal design; the one that generates the same tip deflection for the initial 

blade after the analysis by FOCUS5. 

Ning et al. (A. Ning et al., 2013) calculated the deflection of the structure at rated 

speed in the 3 o’clock azimuth position; which is assumed to be the worst loading case, 

constraining the deflection to be within 10% of the baseline tip deflection δ0  (2.44 m). 

𝛿 ≤ 1.1𝛿0 [2.5] 

In order to prevent security problems, a ground clearance between the blade tip and the 

ground is set. For instance, Diveux et al. (T Diveux et al., 2001) set a safety clearance of 15 m.  

𝐷𝑅
2
+ 15 ≤ 𝐻ℎ𝑢𝑏 [2.6] 

where DR is the rotor diameter, Hhub is the hub height. 
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2.3.1.2 STRAIN 

Similar to the generated stresses in the structure, the strains are restrained in the 

following references (Bottasso et al., 2010; Maki et al., 2012; A. Ning et al., 2013; Zhu et al., 

2012) expressed by the following inequality: 

𝜖(𝑥 ) ≤ 𝜖𝑢𝑙𝑡 [2.7] 

where ɛ is the local strain at the local nodes of the blade model and ɛult is the ultimate 

strain.  

Bottasso et al. (Bottasso et al., 2010) constrains the maximum strains of the sectional 

airfoils evaluated using an anisotropic beam theory (Giavotto, Borri, Mantegazza, & 

Ghiringhelli, 1983). Ning et al. (A. Ning et al., 2013) added a maximum strain condition where 

the ultimate strain εult is bounded by the strain at 50-year extreme wind condition tampered by 

a partial safety factor for loads γf and a partial safety factor for materials γm as per the IEC 

requirements (Commission, 2005).   

−𝛾𝑓𝛾𝑚𝜖50 ≤ 𝜖𝑢𝑙𝑡 ≤ 𝛾𝑓𝛾𝑚𝜖50 [2.8] 

Maki et al. (Maki et al., 2012) ensured that the largest strain in the blade, in each of the 

four chosen sections of the blade do not exceed the limit of 0.003 

2.3.1.3 SOLIDITY 

Lee et al. (Lee et al., 2007) included a lower limit for the solidity that can be modified by 

changing the number of blades or more realistically by altering the blade chord (Burton et al., 

2011). 

𝜎 =
𝐵 ∫ 𝑐(𝑟)𝑑𝑟

𝜋𝑅2
≥ 𝜎𝐿𝐿 [2.9] 

where ϭ is the solidity of the blade, B the number of blades, c the chord distribution, R 

is the radius of the blade and ϭLL is the maximum solidity 0.0345. 
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2.3.2 AERODYNAMIC CONSTRAINTS  

Below we list the various aerodynamic constraints identified in the literature. 

2.3.2.1 SHELL AND AIRFOIL THICKNESS 

A feasibility condition is forced on the shell thickness and the surface of the airfoil of the 

wind turbine blade in the following references (Benini & Toffolo, 2002; Bizzarrini et al., 2011; F. 

Grasso, 2011; Francesco Grasso, 2012; Ju & Zhang, 2012; Maki et al., 2012; Petrone et al., 

2011). For example, Benini and Toffolo restricted the shell thickness to half of the blade profile 

thickness at any radius.  

In addition, Grazzo (F. Grasso, 2011) also imposes a minimum trailing edge thickness 

of 0.25 and a minimum leading edge radius of 0.015c to ensure airfoil’s feasibility and ensure 

a proper trailing edge separation. In (Francesco Grasso, 2012), a minimum airfoil thickness of 

35% of the chord and a minimum shell thickness at the trailing edge of 1% (to take into account 

manufacturing requirements) of the chord were chosen.  

Bizzarrini et al. (Bizzarrini et al., 2011) and Grasso (F. Grasso, 2011) impose a minimum 

airfoil thickness of 18 % of the chord at the tip a trailing edge thickness of 0.25% of the chord 

to ensure airfoil’s practicability and feasibility from manufacturing point of view.  

Maki et al. (Maki et al., 2012) ensured that the thickness of the shell ts and web tw are 

decreasing along the span. Two additional inequality constraints on their thicknesses in terms 

of the maximum sectional thickness t were added as follows (refer to Figure 7):  

𝑡𝑠 ≤
1

2
𝑡⁡⁡⁡⁡⁡⁡⁡𝑡𝑤 ≤ 2𝑡 [2.10] 
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Figure 7 : Blade section diagram (source (Maki et al., 2012)). 

Petrone et al. (Petrone et al., 2011) inserted a geometrical constraint to avoid the 

intersections of the upper and lower airfoil surfaces. In addition, the curvature change of the 

upper and lower surfaces of the airfoil is restricted (Bak, 2013; Petrone et al., 2011).  For 

instance, the inner part of the blade is designed with thicker airfoil to withstand loads whereas 

the outer part can be made with a thinner airfoil (Bak, 2013). 

2.3.2.2 AIRFOIL CHARACTERISTICS  

Two different aerodynamic constraints are imposed to control the airfoil behavior near 

stall in (Bizzarrini et al., 2011). The first is achieved by imposing a separation point, guarantying 

the robustness of the airfoil performance in case of gust. Second, in order to control the nature 

of the stall, the absolute value of the slope beyond the stall angle is limited to a certain threshold 

value. Similarly, Grasso (F. Grasso, 2011) imposes a minimum value of -0.08 for the moment 

coefficient Cmc as to limit the blade torsion based on a comparative analysis made in (Timmer 

& Van Rooij, 2003; Van Rooij, 1996). Likewise, a maximum value of Cmc  -0.15 was assigned 

at the design condition (6 degrees of angle attack) in (Francesco Grasso, 2012).  

Grasso (F. Grasso, 2011) also imposes -a minimum range of 7 degrees between the 

start of a significant separation and the AoA by forcing the position of the separation point on 

the suction side to be at minimum 90 % of the chord at 14 degrees AoA. Finally, to avoid abrupt 

stall, the design is performed by fixing a transition condition, a length of 0.01c on the suction 
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side and 0.1c on the pressure side are taken for the occurrence of flow separation (stall) on the 

airfoil. In the airfoil design for the inner part of the blade, Grasso (Francesco Grasso, 2012) 

adds a upper limit of 1.8 for the lift coefficient at 15 degrees AoA and a maximum drop in CL 

less than 0.3 between 15 and 16 degrees (based on (Hoerner, 2012; Hoerner & Borst, 1985; 

Timmer & Van Rooij, 2003)) all of this to avoid excessive lift performance that may lead to an 

abrupt stall. Ju et al. (Ju & Zhang, 2012) limit the drag coefficient value in the airfoil geometry 

optimization to prevent it from undesirably becoming higher during the optimization of the CL/CD 

and CL of the airfoil.  

2.3.2.3 MAXIMUM CHORD  

The maximum chord is a geometric dimension that should be set to ensure proper 

transportation of the blade across difficult landmarks such as tunnels and bridges (Bottasso et 

al., 2010; Petrone et al., 2011). As stated in (Bak, 2013; Petrone et al., 2011), this constraint is 

vital to consider if the wind turbine is to be installed on offshore sites.  

2.3.2.4 NOISE LEVELS 

Noise levels constraints were employed in the following references (T Diveux et al., 

2001; P Fuglsang & Aagaard Madsen, 1994; Peter Fuglsang et al., 2002; P. Fuglsang & 

Madsen, 1999; Giguere & Selig, 2000; Lee et al., 2007; A. Ning et al., 2013; Xuan et al., 2008). 

Fuglsang and Madsen (P. Fuglsang & Madsen, 1999) constrain the noise level emitted by the 

wind turbine blades using semi-empirical aerodynamic noise models proposed by Brooks 

(Brooks, Pope, & Marcolini, 1989) and Lowson (Lowson, 1994) that are mainly function of: the 

stream flow, angle of attack and the turbulent inflow.  

Giguère et Selig (Giguere & Selig, 2000) identify that the main sources of aerodynamic 

noise are the tip-vortex/trailing edge interaction, turbulent inflow and the trailing-edge 

thickness. The aerodynamic noise can be reduced by adopting a proper tip shape (H.A Madsen 

& Fuglsang, 1996) and a sharper trailing edge over the outboard section of the blades as per 

(J Tangler, 1997). However, Giguère et Selig (Giguere & Selig, 2000) choose to limit or fix the 
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tip speed of the rotor rather than incorporating a noise model, to save computational time. In 

order to limit the noise level and sound pollution, Diveux et al. (T Diveux et al., 2001) fixed the 

maximum rotor tip speed to be 80 m/s. Similarly, different limits for the blade tip velocity are 

used in references (Bottasso et al., 2010) to contain noise emissions.  

𝑉𝑡𝑖𝑝 =
𝜋𝑁𝐷𝑅
60

≤ 𝑉𝑡𝑖𝑝.𝑚𝑎𝑥 [2.11] 

Lee et al. (Lee et al., 2007) considered the compressibility effect as a limitation of noise 

level and proposed a constraint based on the upper limit of the Mach number at the blade tip:  

𝑀𝑁𝑡𝑖𝑝 = √𝑀𝑁
2 + (

𝜋𝑛𝐷

𝑎𝑠
)2 ≤ 0.3 [2.12] 

where, MN is the Mach number, as is the speed of sound, and n is the blade revolution 

per second (rps).  

Xuan et al. (Xuan et al., 2008) conducted an airfoil optimization to minimize the noise 

level by constraining the lift to drag ratio and the maximum lift coefficient. Ning et al. (A. Ning 

et al., 2013) imposed a constraint on the maximum tip speed as an equivalent for noise 

limitation and implemented it directly into the analysis.  

2.3.3 PHYSICAL CONSTRAINTS 

Below we list the many physical constraints identified in the literature. 

2.3.3.1 LINEAR INEQUALITY 

To respect the design space where the objective function is valid, a linear inequality in 

the following form (Eq. 2.13) is generated to represent the upper and lower limits of the design 

variables (such as the chord, twist and relative thickness distributions), where 𝒙⃗⃗ 𝒍𝒐𝒘𝒆𝒓 is the 

column matrix of lower bound variables and 𝒙⃗⃗ 𝒖𝒑𝒑𝒆𝒓 is the column matrix of upper bound 

variables (Ceyhan, 2008; Ceyhan et al., 2009; Eke & Onyewudiala, 2010; Peter Fuglsang et 
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al., 2002; Liao et al., 2012; Liu et al., 2007; L. Wang et al., 2011; W. Xudong et al., 2009; Wang 

Xudong et al., 2009; Zhu et al., 2012).  

𝑥 𝑙𝑜𝑤𝑒𝑟 ≤ 𝑥 ≤ 𝑥 𝑢𝑝𝑝𝑒𝑟 [2.13] 

Design variables such as chord, twist angle and relative thickness are very important for 

the aerodynamic performance of the rotor, hence upper and lower limits need to be set 

(Bottasso et al., 2010; W. Xudong et al., 2009). Furthermore, the rotor cut in speed should be 

low and properly selected to prevent excessive loads (Bak, 2013).  

Méndez et Greiner (Méndez & Greiner, 2006) constrained the upper limit of the chord 

using a linear law between the blade sections to prevent the increasing of the blade area. 

Hence, a maximum of 10% in chord value changes and a range of 5º on the twist are imposed. 

Two measures that are used to approximate the cost of the blade; the spar mass and the 

surface area are constrained in the design process of Kenway et Martins (Kenway & Martins, 

2008).  

Bottasso et al. (Bottasso et al., 2010) also expressed the bounds of the structural 

parameters, such as the maximum relative position between the center of gravity and pitch axis 

of each airfoil section or even limits on the number of plies in a composite laminate imposed 

by the manufacturer. Liao et al. (Liao et al., 2012) constrained the number of layers that form 

the spar caps, limiting its maximum number to 50. Also, the locations of the first and last point 

in the spar caps are fixed, forming an equality constraint. Zhu et al. (Zhu et al., 2012) employ 

inequality equations to satisfy the manufacturing maneuverability and the continuity of the 

materials.  

2.3.3.2 RATED POWER 

Benini and Toffolo (Benini & Toffolo, 2002) imposed a fixed rated power. The power 

density is a function of the wind speed and rotor power coefficient CP is determined for different 

values of tip speed ratio λ for wind speeds in the range 3<U<25 m/s. An upper bound of the 
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maximum power was set by Kenway et Martins (Kenway & Martins, 2008) to match the 

maximum generator capacity. Xudong et al. (W. Xudong et al., 2009) suggested restricting the 

maximum output power since it has a direct influence on the cost of the rotor and its lifetime.   

2.3.3.3 THRUST 

Using blade momentum theory (Dexin, 2006; H. Glauert, 1935), Xudong et al. (W. 

Xudong et al., 2009) constrained the total thrust on the rotor based on axial force Fn on blades 

as follows: 

𝐹𝑛 = 𝐹𝐿𝑐𝑜𝑠𝜃 +⁡𝐹𝑑𝑠𝑖𝑛𝜃 [2.14] 

𝑇 ≤ 𝑇𝑚𝑎𝑥 [2.15] 

where, Tmax : maximum thrust of the original rotor, Fl : lift force, Fd : drag force and θ is 

the flow angle (see Figure 8).  

2.3.3.4 SHAFT TORQUE 

The tangential force Ft contributes mostly to the output power and shaft torque. A bigger 

torque will increase the load on the transmission system and reduce gearbox’s lifetime. 

Therefore, the shaft torque distribution on the blades is constrained by Xudong et al. (W. 

Xudong et al., 2009) as:  

𝐹𝑡 = 𝐹𝐿𝑠𝑖𝑛𝜃 − 𝐹𝑑𝑐𝑜𝑠𝜃 [2.16] 

𝑀 ≤ 𝑀𝑚𝑎𝑥 [2.17] 

Mmax: maximum shaft torque of the original rotor. Refer to Figure 8. 

2.3.3.5 AXIAL INDUCTION FACTOR  

A feasibility condition on the axial induction factor a (cannot exceed 0.5) was imposed 

by Benini and Toffolo (Benini & Toffolo, 2002) to prevent axial velocity beyond the rotor to 

become negative.  
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Figure 8 : Forces applied on a wind turbine blade element (source (Manwell, McGowan, 
& Rogers, 2010)). 

 

2.3.3.6 STRESS  

The stresses generated in the materials cannot exceed associated permissible strength 

requirements. To constrain the stress, the following references (Bottasso et al., 2010; Jureczko 

et al., 2005; Kenway & Martins, 2008; Liao et al., 2012; Zhu et al., 2012) expressed the 

constraint in the inequality form:  

𝜎(𝑥 ) ≤ 𝜎𝑢𝑙𝑡 [2.14] 

where ϭ(x) and ϭult are respectively the generated stresses and the ultimate permissible 

stresses.  

Kenway and Martins (Kenway & Martins, 2008) imposed a Von Misses stress constraint, 

limiting the maximum stress limit to the yield stress of Aluminum (40 MPa). Bottasso et al. 

(Bottasso et al., 2010), constrained the maximum stresses to be lower than a given upper limit 
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as per IEC requirements (Commission, 2005, 2006). A common way to select the external 

conditions and the guidelines are mentioned in (Armaroli & Balzani, 2007; Commission, 2005, 

2006; Lloyd, 2003). Extreme loads are selected from the minimum and maximum values of the 

simulation series at specific radial stations that showed critical areas (e.g. the blade root and 

at 0.3x(blade radius) in (Hillmer et al., 2007)). The stresses at these selected stations are than 

used in constraint evaluation.   

2.3.3.7 NATURAL FREQUENCY 

The separation of the natural frequency of the blade from harmonic vibrations generated 

by rotor’s rotation is introduced as a constraint to prevent resonance in (Bottasso et al., 2010; 

Jureczko et al., 2005; Liao et al., 2012; A. Ning et al., 2013; Zhu et al., 2012). Frequency 

separation was imposed in (Jureczko et al., 2005), whereas in (Bottasso et al., 2010) the 

authors forced some natural frequencies ω to lie within an admissible bound [ωlower; ωupper]. 

Another requirement is that the first blade flap, ω1f natural frequency (and thus all further 

frequencies) to be larger than three-per-rev frequency at the rotor rated speed ω3p (Bottasso 

et al., 2010; A. Ning et al., 2013):  

𝜔1𝑓 ≥ 𝑆𝑓𝜔3𝑝(Ω) [2.15] 

with Sf a safety gap factor between both frequencies.  

Ning et al. (A. Ning et al., 2013) assumed a safety gap factor of 1.1 as per the IEC 

requirements (Commission, 2005) whereas Bottasso et al. (Bottasso et al., 2010) chooses a 

safety gap of 1.2. A similar approach has been used by Liao et al. (Liao et al., 2012) to 

reduce the vibration, by separating the natural frequency of the blade and the rotor speed, 

avoiding resonance. It is expressed as follows: 

|𝜔(𝑥𝑖 , 𝑡𝑖) ⁡− 𝜔
∗| ≤ ∆ [2.16] 

where 𝝎1(xi,ti) is the first flap frequency of the optimal blade, 𝝎∗ is the target frequency 

and Δ is the tolerance.  
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The reader is referred to (K. Y. Maalawi & Badr, 2010; Karam Y Maalawi & Negm, 2002) 

for the optimal frequency design of wind turbine blades, where the optimal design is pursued 

with respect to the maximum frequency design criterion. 

2.3.3.8 BUCKLING 

Ning et al. (A. Ning et al., 2013) computed the panel buckling using the simple method 

suggested by Bir (G. S. Bir, 2001). The buckling margin was computed as: 

𝑏𝑚 =
𝜖50𝛾𝑓 − 𝜖𝑐𝑟

𝜖𝑢𝑙𝑡
 [2.17] 

where bm is the buckling margin, ɛ50 strain at 50-year extreme condition, ɤ is the safety 

factor, ɛcr critical buckling strain, ɛult is the ultimate strain.   

2.3.3.9 BLADE FATIGUE 

A fatigue analysis to wind turbine blades that includes a rain flow cycle counting analysis, 

definition of a Goodman diagram and Miners degradation is provided in (M. Grujicic et al., 2010; 

M Grujicic et al., 2010). Ning et al. (A. Ning et al., 2013) computed the fatigue strength at the 

root for a 20-year lifetime. To simplify the fatigue estimation, the S-N curve for the root section 

is parameterized as:  

𝑆𝑓 = 𝑎𝑁
𝑏 [2.18] 

where b is assumed to be -10 (glass reinforced composite materials (Mandell & 

Samborsky, 1997)) and a is calibrated so that after 20 year, the root stress had a 10% margin 

to the fatigue stress (σroot = 0.9Sf).  

Ning et al. (A. Ning et al., 2013) argues that a full lifetime fatigue analysis is a complex 

process, instead a simpler approach is to use the edgewise gravity loads since they can be 

more significant than the flapwise aerodynamic loads in determining the fatigue of large blades 

(Griffith & Ashwill, 2011). Liao et al. (Liao et al., 2012) use a fatigue safety factor (FSF) to judge 

whether the blade is safe or not. When the FSF is larger than 1, the blade structure is safe and 

it is computed by FOCUS5 (Duineveld, 2008).  
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2.3.3.10 DAMAGE AND STATIC FAILURE  

In the process of the optimizing the structural design of the blade, it is important to meet 

the requirements of the structural strength and to prevent failure. Orifici et al. [98] presented a 

review of failure models of composite materials.  

Bottasso et al. (Bottasso et al., 2010) included a constraint for the damage caused by 

loads during turbulent wind as per the  design load conditions (Commission, 2005). A multi-

axial damage criterion is applied according to references (Philippidis & Vassilopoulos, 2002a, 

2002b). The damage is calculated for multiple points for cross sections of interest and a 

damage vector is formed, which is bounded by the upper limit of 1.  

2.4 SUMMARY 

A decision can be made in agreement with (Ashuri et al., 2010; Bak, 2013; Benini & 

Toffolo, 2002; Eke & Onyewudiala, 2010; P Fuglsang & Aagaard Madsen, 1994; Peter 

Fuglsang & Aagaard Madsen, 1995; Peter Fuglsang et al., 2002; P. Fuglsang & Madsen, 1999; 

Giguere & Selig, 2000; M. Grujicic et al., 2010; Maki et al., 2012; A. Ning et al., 2013; W. 

Xudong et al., 2009), that the most suitable choice of objective functions in wind turbines is 

aimed towards the minimization of the cost of energy rather than the maximization of the 

aerodynamic performance. This is mainly due to the fact that we still require that the wind 

energy systems compete with other energy sources. 

 Despite the fact that minimum cost of energy was chosen as the single main objective 

in most of the articles that we have reviewed, many solved the performance optimization of 

wind turbines using multi-objectives in the optimization process using Pareto-optimization 

techniques to treat the competing objectives with trade-off curves that reveal weaknesses, 

anomalies and rewards of the targets to the wind turbine designers. Thus, it is seen useful in 

the early stage of wind turbine design, both minimum cost of energy and maximum annual 

energy production are pursued. For these reasons, we can anticipate that future optimization 
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problems will be set as multi-disciplinary (or multi-objective) problems. In fact, in our review we 

noticed that less than 25 % of wind turbine performance optimization problems were solved 

using a multi-objective algorithm. 

It is not always practical for developers to stipulate the exact turbine characteristics prior 

project approval. This is largely because various unpredictable factors and influences such as 

physical, geometrical and aerodynamic constraints. A thorough evaluation is required to 

examine the above issues and identify the final wind turbine blade design. Accordingly, a 

developer might seek flexibility in the blade design and each environment might identify several 

potentially suitable models. 

One of the key complications in engineering optimization is the design of the fitness 

function. When dealing with constrained problems such as WTOP, we must find a mean to 

estimate the closeness of an infeasible solution to the feasible region. Therefore, the main 

proposal of the authors in the following chapter is to suggest a constraint-handling technique 

that preserves the notions of the GA. When coupled with the Co-Blade preliminary design tool, 

the proposed genetic algorithm, the graphical winDesign tool enables developers to compute 

the optimal design of wind turbine blades under the set of different constraints.    
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CHAPTER 3 

THE PROPOSED GENETIC ALGORITHM  

 
 
3.1 INTRODUCTION 

In the previous chapter, we presented the mathematical models incorporated to solve 

the wind turbine optimization problems. The main target was to highlight the significance of the 

objective function and the design constraints when solving a WTOP. With this knowledge in 

hand, the external shape of the wind turbine blade design tool can be drawn. In this chapter, 

we will focus on the computational algorithm responsible of generating optimal solutions 

throughout the evolutionary process. Two main original contributions will be presented: a novel 

penalty-free constraint-handling technique for genetic algorithms and a selection process using 

clustering analysis to promote a more efficient selection pressure throughout the evolution 

process. 

3.2 COMPUTATIONAL ALGORITHMS APPLIED IN WIND TURBINE DESIGN 

PROBLEMS 

The selection of the optimization algorithm is an important task in engineering 

optimization that depends on the nature of the problem and the characteristics of its design 

space. The choice of the optimization algorithm is central in wind turbine performance 

optimization because the final results depend on the specific algorithm in terms of accuracy 

and local minima sensitivity.  

Throughout the years, the algorithms used to solve optimization problems in wind turbine 

design have evolved. At first, most of the methods derived directly from the BEM theory, 

typically from Wilson and Lissaman (Robert Elliot Wilson & Lissaman, 1974) momentum (BEM) 

theory. In the 1990s, Selig and Coverstone-Carroll (M. S. Selig & Coverstone-Carroll, 1996) 

were one of the first to suggest a method based on GA into the field of wind turbine blade 

design. With the necessity to complete a multi-disciplinary or multi-objective optimization 
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design, Wood (Wood, 2004) and Sale et al. (Danny Sale, Jonkman, & Musial, 2009) simplified 

the multi-objective problem into a single objective question using a weighted method. In multi-

objective optimization, there is no single solution that is optimal under the imposed constraints, 

and only non-dominated solutions exist (called Pareto optimal solutions). The approaches for 

solving conventional multi-objective design problems include:  

• objective weighted method 

• hierarchical optimization method 

• ε constraint method 

• goal programming method 

All the above algorithms convert the multi-objective problem to a single-objective 

problem. In the last decades, in order to solve complicated optimization problems, evolutionary 

algorithms have been suggested such as: 

• Niched Pareto genetic algorithm (NPGA) (Horn, Nafpliotis, & Goldberg, 1994) 

• Pareto archived evolution strategy (PAES) (Knowles & Corne, 1999) 

• Strength Pareto evolutionary algorithm (SPEA) (M. Kim, Hiroyasu, Miki, & Watanabe, 

2004) 

• Neighborhood cultivation genetic algorithm (NCGA) (Watanabe, Hiroyasu, & Miki, 

2002)  

• Non-dominated sorting genetic algorithm (NSGA)-II (Deb, Agrawal, Pratab, & 

Meyarivan, 2002).  

In the case of blade geometry optimization, there is a large number of design variables, 

which are continuous (e.g. chord and twist distributions, blade pitch, etc.) and discrete (e.g. 

airfoil family, number of blades, etc.). Moreover, some of these design variables are mutually 

dependent (e.g. chord and twist), as well as competing objectives within the definition of the 

cost of energy.  
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According to Ribeiro et al. (Ribeiro et al., 2012), the optimization algorithm fall under two 

categories: gradient based methods (GBA) and heuristic algorithms, whereas Endo (Endo, 

2011) separates the optimization methods between genetic and non-genetic algorithms.  

Meta-heuristics are general algorithms often inspired from the nature, designed to solve 

complex optimization problems, and this is a growing research field since the last few decades. 

Meta-heuristics are emerging as alternatives to more classical approaches also for solving 

optimization problems such as optimization of wind turbine.  Meta-heuristic algorithms can be 

classified according to their strategies (local search improvement or learning component), 

population-based search or single solution approach, hybrid or parallel meta-heuristics (see 

Figure 9).  

 

Figure 9 : Classification of meta-heuristic algorithms (source (Dréo, 2007)). 
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In the over two hundred publications we have reviewed in the field of performance 

optimization of wind turbine, we concluded that the use of optimization methods to solve the 

problems has increasingly developed in the last decade. This same conclusion was drawn by 

Baños et al. (Baños et al., 2011), stressing that in recent years, wind and solar energy showed 

an increase in the use of optimization methods: linear programming, Lagrangian relaxation, 

quadratic programming, heuristic optimization (precisely genetic algorithm and particle swarm 

optimization). From the examined literature, the main optimization methods used in the 

performance optimization of wind turbine can be categorized into two: 

• Gradient based approach methods (GBA) 

• Meta-Heuristic methods (GA and PSO) 

3.2.1 GRADIENT-BASED APPROACHES 

Gradient based approach algorithms have been compared to genetic algorithms in terms 

of calculation time and the choice of objective functions. They are mainly used because of their 

speed and however they are very sensitive to the initial condition (Bizzarrini et al., 2011) and 

in this sense they are not robust (Obayashi, 1996). On the other hand, gradient based 

algorithms can lack in global optimality, but they allow multiple constraints, which can be very 

useful for complex engineering designs. More often for complicated problems, it is difficult to 

obtain a global optimal because conventional algorithms (such as feasible direction methods) 

are susceptible to converge to the local optimal point (Mitsuo Gen & Cheng, 2000). Therefore, 

the user is prompted to interfere in the design process and adjust the design parameters or 

shift the initial feasible domain.  

For example, Fuglsang et al.(Peter Fuglsang et al., 2002) apply a Sequential Linear 

Programming (SLP) (Fleury & Braibant, 1986) when the design vector was feasible and the 

Method of Feasible Directions (MFD) (Vanderplaats & Moses, 1973) was used to return the 

design vector to the feasible domain  when it was unfeasible. Kenway et Martins (Kenway & 

Martins, 2008) use SNOPT (Perez & Behdinan, 2007), an optimizer based on the Sequential 
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Quadratic Programing (SQP) approach. Similarly, Ning et al. (A. Ning et al., 2013) use central 

differencing and a multi-start approach to improve the convergence behavior of the SQP 

algorithm.  

Hybrid methods between GA and GBA have been investigated by (Bizzarrini et al., 2011; 

Duvigneau & Visonneau, 2004; Foster & Dulikravich, 1997; Francesco Grasso, 2012; Vicini & 

Quagliarella, 1999). Grasso (Francesco Grasso, 2012) implement this scheme by first using 

the GA to explore large domain that contain less local optima problems, and an optimal solution 

is found. This latter is used as the initial configuration for the GBA which searches for an 

accurate optimal solution in the smaller design space. Bizzarrini (Bizzarrini et al., 2011) 

compares the results of a hybrid scheme and a single-algorithm (GA) and shows that the hybrid 

is more effective with higher accuracy and low sensitivity to local minima.  

3.2.2 GENETIC ALGORITHMS  

Genetic algorithms are the most popular evolutionary algorithms because of their 

robustness and reliability. Evolutionary algorithms are less sensitive to local minima; however, 

they are time consuming and constraints have to be included as a penalty term to the objective 

function. Usually, evolutionary algorithms are less sensitive to local minima, but they are time 

consuming and constraints have to be included as a penalty term to the objective function. 

A genetic algorithm is an optimization method that mimics Darwin’s principle of the 

survival of the fittest over a set (population) of candidate solutions (individuals) that evolves 

from one generation to another. Individuals with a large “fitness” according to the specified 

objective function for the optimization process have a superior probability to “reproduce” in 

forming the new generation compared with those with a smaller fitness value. Similarly to a 

DNA chain, each individual is coded in one string and uses reproduction, crossover, and 

mutation operators to direct the search over the generations.  
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We summarize the fundamental steps of genetic algorithms in Figure 10. In genetic 

algorithms, each individual (or solution vector) is encoded as an either a binary bit string or a 

real-value vector, both referred to as a chromosome. The standard representation of each 

individual is a binary array of bits, to facilitate the crossover and mutation operations.  

An initial population is generated according to a heuristic rule or randomly. The 

population size typically depends on the nature of the optimization problem. Often, the initial 

population is generated in a matter to allow a larger range of possible solutions inside the given 

search space. If the population size is too small, there is not enough evolution going on and 

consequently there is a risk of premature convergence towards a local optimum and ultimately 

extinction of the population. However, a larger population will cost more computational time 

and fitness evaluations.  

Genetic Algorithm 

Objective function 𝒇(𝒙⃗⃗ ), 𝑥 = (𝑥1,… , 𝑥𝑑)
𝑇 

Encode the solutions into a set of chromosomes 

Generate the initial population 

Initialize the crossover and mutation probabilities 

While (t < Max number of generations OR Stopping criteria) 

Evaluate fitness function of each individual 

Selection of the current best for the next generation 

Reproduction by crossover and mutation 

Update 𝑡 = 𝑡 + 1 

End while 
Display the optimal solution 𝑥 ∗ 

 
Figure 10 : Pseudo-code of a standard genetic algorithm. 

 

At each successive generation, a percentage of the existing population is ‘selected’ to 

breed a new generation, therefore ensuring the continuity of the population. Thus, a selection 

function chooses ‘parents’ based on a fitness-based selection process, where ‘fitter’ solutions 

are more likely to be selected. An individual can be selected more than once, in which case it 

transfers its genes to more than one offspring.  

At each generation, the GA uses the current generation to create the new offspring that 

will define the next generation. The algorithm will apply a set of genetic operators (crossover 
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and mutation) on the parents selected by the selection function to generate the children. 

Recombination (or crossover) is the combination of a pair of parents, analogous to biological 

reproduction. Mutated children are created by a random change (or mutation) of the genes of 

a single parent. Both genetic operators are essential for the success of optimization search. 

Crossover enables the algorithm to preserve the best genes from different individuals and 

recombine them into possibly fitter children. This allows a better ‘exploitation’ of the search 

space. Whereas mutation increases the diversity of the population and permits a further 

‘exploration’ of the search domain. The crossover probability is usually between 0.7 and 1.0, 

while the mutation probability is lower 0.001 ~ 0.05. Mutation probability is dependent upon the 

representation type and number of genes. For instance, for an n bit representation, the 

suggested mutation rate is 1/n. In natural systems, if the mutation rate is too high under a high 

selection pressure, the population might go extinct. A suitable elitist selection function must be 

employed to avoid loss of good solutions. Selection, crossover and mutation are iteratively 

applied to the population until a stopping condition is satisfied.  

The following references have applied a GA to solve their wind turbine optimization 

problems (Belessis et al., 1996; Bizzarrini et al., 2011; Ceyhan et al., 2009; T Diveux et al., 

2001; Eke & Onyewudiala, 2010; Endo, 2011; Giguere & Selig, 2000; Liu et al., 2007; Méndez 

& Greiner, 2006; M. S. Selig & Coverstone-Carroll, 1996; H. Wang, Wang, & Bin, 2010; L. 

Wang et al., 2011; Xuan et al., 2008). In blade geometry optimization, the usefulness of a GA 

is due to its robustness in the case of a multimodal design space. In addition, the population-

based search of a GA yields a population of optimum solutions, which is important in the event 

that there is a large area of the design space that yields optimum results with no clear optima. 

Also, GA has the advantage in exploring, non-linear, non-derivable, non-continuous domains 

and they are less sensitive to the initial domain. For more details concerning genetic algorithms 

in airfoil design, the reader is referred to (Bizzarrini et al., 2011; López, Angulo, & Macareno, 

2008; Ribeiro et al., 2012; Shahrokhi & Jahangirian, 2007). Diveux et al. (T Diveux et al., 2001) 

use a genetic algorithm inspired by Holland (Holland, 1975) (see Figure 11). Jurecsko et al. 
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(Jureczko et al., 2005) formulate their discrete-continuous multi-objective problem using the ε-

limitations method (Marler & Arora, 2004) and solve it by means of a genetic algorithm.  

Liu et al. (Liu et al., 2007) argue that an extended compact genetic algorithm (ECGA) 

gives more accurate results with smaller population size and fewer function evaluations 

compared to simple genetic algorithm.  

 

Figure 11 : Optimization scheme using a genetic algorithm (source (T Diveux et al., 
2001)). 

 

In Kusiak et al. (Kusiak et al., 2010; Kusiak & Zheng, 2010), the multi-objective 

optimization model was solved with an Evolutionary Strategy (ES) algorithm (Deb, 2001; Z. 

Song & Kusiak, 2009; Zitzler & Thiele, 1999), particularly using SPEA (Zitzler & Thiele, 1999).  
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In 1996, Selig and Coverstone-Carroll (M. S. Selig & Coverstone-Carroll, 1996) and a 

year later Giguère and Selig (P Giguère & Selig, 1997) developed a computer program 

designed to optimize the chord and twist as well as the blade pitch for maximum annual energy 

production called PROPGA. Throughout the years, PROPGA evolved and considers additional 

design variables with the possibility of solving multi-objective problems, making it possible to 

obtain trade-off curves between competing blade design objectives. In brief, PROPGA is an 

efficient optimization tool to use prior an aeroelastic or finite element numerical simulation used 

in the work of (Giguere & Selig, 2000; M. S. Selig & Coverstone-Carroll, 1996). 

3.3 PROPOSED CONSTRAINT-HANDLING TECHNIQUE (VCH) – ORIGINAL 

CONTRIBUTION  

3.3.1 MOTIF 

In section 1.3, we presented various WTO problems and demonstrated that they highly 

nonlinear, containing a mixture of discrete and continuous design variables subject to a set of 

constraints. Such problems are known as constrained optimization problems or nonlinear 

programming problems in which traditional calculus-based methods struggle to solve. These 

numerical optimization methods are highly deterministic and are convenient in finding the 

global optimum for simple problems by improving the solution in the vicinity of a starting point. 

However, they have major drawbacks with complex engineering problems i.e.: difficulty in 

computing the derivatives, sensitivity to the initial conditions, and a large memory requirement. 

Because of these downsides, over the years, several heuristic and meta-heuristic 

algorithms were proposed. They are now emerging as popular methods for the solution of 

complex engineering problems. These algorithms are purely stochastic and consist of 

approximate methods but on the contrary, are derivative-free techniques.  

Heuristic methods try to find decent solutions that are easily reachable but are not 

necessarily the best solutions by means of trial and error. Further developments of heuristics 
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are the so-called meta-heuristic algorithms: a higher level of optimization compared to heuristic 

algorithms.  

The meta-heuristic techniques include: genetic algorithms (GA, Holland (Holland, 

1975)), simulated annealing (SA, Kirkpatrick et al. (Kirkpatrick & Vecchi, 1983)), particle swarm 

optimization (PSO, Eberhart et al. (Eberhart & Kennedy, 1995)), ant colony optimization (ACO, 

Dorigo et al. (Dorigo, Maniezzo, & Colorni, 1996)), tabu search (Glover (Glover, 1977)) etc. 

Among all meta-heuristics, genetic algorithms (proposed by Holland (Holland, 1975) in 1975) 

are one of the most popular EA’s. By mimicking the basic Darwinian mechanism from the 

famous book “The Origin of Species”, Charles Darwin (Darwin & Bynum, 2009) defined natural 

selection of biological systems or the principle of the survival of the fittest. GA’s try to evolve 

the population of chromosomes that are fitter by applying three key evolutionary operators: 

selection, crossover and mutation. The attempt is to produce a new generation or descendants 

with a better fitness value than their parents. 

Most engineering optimization design problems are difficult to solve using conventional 

algorithms since they comprise problem-specific constraints (linear, non-linear, equality or 

inequality). Despite the success of GA in a wide-range of applications, solving constrained 

optimization problems is no easy task. The most common technique is to apply penalty 

functions. As a result, the problem is converted from a constrained to an unconstrained 

optimization problem. The major drawback of these penalty functions is the requirement of a 

definition and proper tuning of their parameters, which can be challenging and problematic. 

Hence, the aim of this proposed technique is to answer one of the most stimulating 

questions encountered in meta-heuristics: constraint-handling in evolutionary algorithms. In 

this section, we will use a custom GA as a numerical tool to propose a constraint-handling 

technique that eliminates the use of penalty functions. We present a parameter-free constraint-

handling technique for GA using the violation factor; hence, the method will be referred to as 

VCH (Violation Constraint-Handling). 
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3.3.2 CONSTRAINT-HANDLING TECHNIQUES – LITERATURE REVIEW 

Below we list the most relevant constraint-handling techniques used in EA’s. The reader 

is referred to the following surveys (Coello, 2002; Coello & Carlos, 1999; Dasgupta & 

Michalewicz, 1997; Mitsuo Gen & Cheng, 1996; Michalewicz, 1995a, 1995b; Michalewicz & 

Schoenauer, 1996; Yeniay, 2005) for further details, explanations and comparison. 

1. Penalty Methods  

The penalty methods are the most common approaches for constraint-handling in EA. 

Penalty functions were initially suggested by Courant (Courant, 1943) and later extended by 

Carroll (Carroll, 1961) and Fiacco et al. (Fiacco & McCormick, 1966). Generally, the penalty 

term is determined from the amount of constraint violation of the solution vector. The 

formulation of the exterior penalty functions can be expressed as: 

𝜓(𝑥 ) = 𝑓(𝑥 ) ± [∑𝑎𝑖

𝑛

𝑖=1

× 𝐺𝑖 +∑𝑏𝑗 × 𝐻𝑗

𝑚

𝑗=1

] [3.1] 

where, 𝜓(𝑥 ) is the new fitness function to be optimized, Gi and Hj depend on the 

inequality constraints and equality constraints respectively. ai and bj are called penalty factors. 

The determination of the magnitude of the penalty term is a vital concern. The penalty 

term cannot be too high or else the algorithm will be locked inside the feasible domain and 

cannot move towards the border with the infeasible area. Too low, the term will be irrelevant in 

regard to the objective function and the search will remain in the infeasible region. Knowing 

how to exploit the search space in order to guide the search in the utmost desired direction is 

still unclear and rather challenging. 

2. Static Penalty 

In this group, the penalty factors remain constant during the evolution process and do 

not vary during each generation. A popular method is to define several levels of violation and 

attribute to each higher level a greater penalty coefficient Aki. Homaifar et al. (Homaifar, Qi, & 
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Lai, 1994) proposed to convert the equality constraints into inequality constraints and evaluate 

the following: 

𝜓(𝑥 ) = 𝑓(𝑥 ) + ∑(𝐴𝑘,𝑖 ×max[0, 𝑔𝑖(𝑥 )]
2

𝑚+𝑛

𝑖=1

) [3.2] 

Other researchers (Hoffmeister & Sprave, 1996; Morales & Quezada, 1998) have 

proposed interesting static penalties, but the main downside in these approaches are the 

necessity of a high number of parameters. They are difficult to describe and may not always 

be easy to obtain for real-world applications. 

3. Dynamic Penalty  

In this category, the penalty function depends on the generation number and usually the 

penalty term will increase over each generation. Joines and Houck (Joines & Houck, 1994) 

evaluate each individuals using the following expressions: 

𝜓(𝑥 ) = 𝑓(𝑥 ) + (0.5 × 𝑡)𝛼 ⁡× ⁡𝑆𝑉𝐶(𝛽, 𝑥 ) 

 

SVC(β, x⃗ ) = ∑Ai
β

n

i=1

(x⃗ ) +∑Bj

m

j=1

(x⃗ ) 

 and 

 

 Ai(x⃗ ) = {
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if⁡gi(x⃗ ) ≤ 0

|gi(x⃗ )|,⁡⁡⁡⁡⁡⁡⁡⁡otherwise⁡⁡
 

 

𝐵𝑗(𝑥 ) = {
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if -𝜖⁡≤ ℎ𝑗(𝑥 ) ≤ 𝜖

|ℎ𝑗(𝑥 )|,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise ⁡
 

 

[3.3] 

The cooling parameters  and  are user defined constants; gi and hj are the inequality 

and equality constraints respectively. 

A common dynamic penalty function is based on the notion of simulated annealing 

(Kirkpatrick & Vecchi, 1983; Michalewicz & Attia, 1994), where the penalty term is updated on 

every occasion the solution is locked in near a local optimal. Dynamic penalties that learn from 

the search process are called adaptive penalty functions. An incorrect choice of the penalty 
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factor may lead to a local feasible solution or an infeasible solution (Back, Fogel, & Michalewicz, 

1997). As for simulated annealing, the solution is extremely sensitive to the cooling parameters. 

4. Co-Evolution 

Coello (Coello, 2000b; Coello Coello, 1999) proposed to evaluate the following fitness 

function with only inequality constraints as follows: 

𝜓(𝑥 ) = 𝑓(𝑥 ) − (CV × 𝑤1 + Viol × 𝑤2) 
 

[3.4] 

with w1 and w2 two integers considered as penalty factors, Viol is an integer that is 

incremented for each violated constraint and CV is the sum of all violated constraints expressed 

as: 

CV =⁡∑max⁡[0, 𝑔𝑖(𝑥 )]

𝑛

𝑖=1

 [3.5] 

The idea of this method is to use a population to evolve the solution vector and another 

to develop the penalty factors w1 and w2. This technique still requires the definition of four 

parameters and according to the author, they must be empirically determined. A major 

drawback of this penalty method is that it is very subtle to variations in the parameters in 

addition of their rigorous definition and high computational cost. 

5. Death Penalty 

A major concern in optimization algorithms in general and in EA’s in particular is the 

element of ‘infeasible solutions’. The simplest way is to reject the individual (hence ‘death’) 

when at least one constraint is violated. A new point is generated until a feasible solution is 

found, therefore making this approach a lengthy process with the high risk of stagnating. 

6. Separation of Objectives and Constraints 

There are more than a few proposed approaches that separate the amount of constraint 

violation and the objective function. For instance, Powell and Skolnick (Powell & Skolnick, 
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1993) scale the objective function 𝑓(𝑥 ) into the interval ]-,1], whereas 𝑔i(𝑥 ) and ℎ𝑗(𝑥 ) are 

scaled into the interval [1, +[ and when the solution is unfeasible the objective function is not 

combined with the penalty term. During the search, each individual is assessed according to 

the following form: 

𝜓(𝑥 ) = ⁡

{
 
 

 
 𝑓(𝑥 )⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if feasible⁡

1 + 𝐴(∑𝑔𝑖(𝑥 )

𝑛

𝑖=1

+∑ℎ𝑗(𝑥 )

𝑚

𝑗=1

) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise⁡
 [3.6] 

with A a constant to be determined by the user. 

The main difficulty with Powell and Skolnick (Powell & Skolnick, 1993)  is not the 

definition of the penalty factor A but rather with the concept of superiority of feasible over 

infeasible solutions. Deb (Deb, 2000) uses a similar separation approach and evaluates the 

individuals using: 

𝜓(𝑥 ) = ⁡{

𝑓(𝑥 )⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ if feasible⁡

𝑓𝑤𝑜𝑟𝑠𝑡 + ∑ 𝑘𝑖(𝑥 )

𝑚+𝑛

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise
 [3.7] 

where, fworst is the worst feasible solution in the population and 𝑘𝑖(𝑥 ) include the 

inequality constraints and the transformed equalities. The constraints are normalized since they 

are each expressed in different units and to avoid any preference. 

3.3.3 PROPOSED ‘VCH’ METHOD  

One of the key complications in using GA for practical engineering optimization 

applications is the design of the fitness function. When dealing with constrained problems, we 

must find a mean to estimate the closeness of an infeasible solution to the feasible region. By 

simply examining the previously proposed constraint-handling techniques, several key points 

can be derived about the existing methods. Initially, they are diverse, yet require the definition 

and fine-tuning of at least one parameter. 
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Apart of being an arduous procedure to define and control the penalty terms, we claim 

that such methods deviate from the essence of the philosophy of the evolutionary algorithms 

(i.e., techniques based on the principle of natural selection). Arguably, the most widely used 

algorithm is the genetic algorithm developed by Holland (Holland, 1975). Despite the success 

of GA’s as optimization techniques in many engineering applications, they are mostly applied 

on unconstrained problems. 

Therefore, the main proposal of the authors is to suggest a constraint-handling technique 

that preserves the notions of the GA. The key motif is to keep the fitness function equivalent to 

the designer’s objective and eliminate any additional penalty functions. The core structure of 

GA is analogous to the theory of biological evolution mimicking the principle of the survival of 

the fittest. The proposed constraint-handling technique is directly inspired from the nature of 

genetic algorithms, since the objective function is preserved during the evolution process. In 

this study, we will implement the proposed VCH method inside a genetic algorithm due to its 

advantages: 

a) Adaptability: Does not oblige the objective function to be continuous or in algebraic 

form. 

b) Robustness: escapes more easily from local optimums because of its population-

based nature. 

c) Equilibrium: provide a good balance between exploitation and exploration. Do not 

need specific domain information but can be further exploited it if provided.  

d) Flexibility: GA’s are simple and relatively easy to implement.  

 We are interested in the general nonlinear programming problems (NLP); a minimization 

or maximization of a constrained optimization problem in which we want to: 

Find 𝑥  which optimizes 𝑓(𝑥 ) 

subject to certain set of constraints:  
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𝑔𝑖(𝑥 ) ≤ 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 1, … , 𝑛 
 

ℎ𝑗(𝑥 ) = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑗 = 1, … ,𝑚 

 

𝑥 𝑘
𝐿 ≤ 𝑥 𝑘 ≤ 𝑥 𝑘

𝑈,⁡⁡⁡⁡⁡⁡⁡𝑘 = 1,… , 𝑝 

 
where 𝑥  is the solution vector with p variables, n is the number of inequality constraints, 

m the number of equality constraints and the kth variable varies in the range [x⃗ k
L, x⃗ k

U]; the lower 

and upper bounds for each variable. 

These constraints can be either linear or non-linear. Most constraint-handling 

approaches tend to deal with inequality constraints only. Therefore, a customary approach is 

to transform equality to inequality constraints using the following expression: 

|ℎ𝑗(𝑥 )| − 𝜖 ≤ 0 [3.8] 

which is equivalent to ℎ𝑗(𝑥 ) − ⁡𝜖 ≤ 0⁡and −ℎ𝑗(𝑥 ) − ⁡𝜖 ≤ 0, where 𝜖 is the tolerance 

(usually a very small value, user-defined). This is justified by the fact that obtaining sampling 

points that satisfy the equality exactly is very difficult and hence, some tolerance or allowance 

is used in practice. 

We shall first illustrate the overall procedure of the VCH technique for GA. In the 

subsequent, we assume the following: 

• PopNum: Population length 

• Nelite: Number of elites 

• Ncross: Number of crossover-ed individuals 

• Nmut: Number of mutated individuals (Bmut = PopNum – Nelite –  Ncross) 

• Real-coded GA according to which each chromosome is a string of the form 

〈d1,d2,…,dm〉, where d1, d2 …, dm are real numbers 

Step 1: Initialization of the population 
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The design variables are randomly initialized to satisfy the upper and lower constraints 

as follows: 

𝑥 = 𝑥 𝑘
𝐿 + [𝑥 𝑘

𝑈 − 𝑥 𝑘
𝐿] ∗ rand(0,1) [3.9] 

Step 2: Evaluation of the fitness function, normalized constraints and constraint violation 

For each individual 𝑥 , the fitness function 𝑓(x⃗ ) is calculated along with the resulting 

constraints. All the equality constraints are converted into inequalities using Eq. 3.10, hence a 

total of n+m inequality constraints. These equations are all normalized and therefore become 

in the form of: 

𝐺𝑖 = 𝐶𝑖(𝑥 ) − 1 ≤ 0 [3.10] 

i = 1, … n⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(inequality⁡constraints) 

𝐺𝑗 = ℎ𝑗(𝑥 ) 𝜖⁄ − 1 ≤ 0 [3.11] 

j = n + 1,…n + m⁡⁡⁡⁡(equality⁡constraints) 

Furthermore, the amount of Constraint Violation (C.V) of the normalized constraints Gk, 

(k = 1, …n+m), is determined using: 

C.V =⁡ ∑ max(0, 𝐺𝑖)

𝑖=𝑛+𝑚

𝑖=1

 [3.12] 

In addition, the number of violation is defined as the percentage of violated constraints 

for a given solution: 

N.V =⁡
𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑⁡𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑛 + 𝑚
 [3.13] 

Step 3: Sorting of the population 
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The population is separated into two families; feasible solutions (V0) and unfeasible (V1) 

consisting of individuals that violate at least one constraint. The first set (V0) is sorted with 

respect to the fitness value (ascending order, assuming a minimization problem). The second 

family (V1) is sorted according to the proposed pair-wise comparison rules. In the VCH 

approach, we adopted a feasibility-based rule, a set of rules to evolve the population at each 

generation: 

• If one individual is infeasible and the other is feasible, the winner is the feasible 

solution 

• If both individuals are feasible, the winner is the one with the highest fitness value 

• If both individuals are infeasible, the winner is the one with the lowest Number of 

Violations (N.V) 

• If both individuals are infeasible with the same (N.V), the one with the lowest 

Constraints Violation (C.V) value wins 

Step 4: Formation of Elites 

The sorted families V0 and V1 form the new population. The first Nelite individuals are 

the elites, which are kept intact to the next generation with no alteration. This selection operator, 

one form of elitism consists of a driving force for self-organization or convergence and is 

essentially an intensive exploitation. 

Step 5: Reproduction by crossover and mutation:  

A tournament-based technique is used to perform the crossover among the individuals 

of the population. Whole arithmetic crossover (Michalewicz & Janikow, 1996; Michalewicz & 

Nazhiyath, 1995; Michalewicz & Schoenauer, 1996) is applied in our algorithm. It is composed 

of a linear combination of two parent vectors (A and B) to be crossed (as shown in Eq. 3.14). 

This genetic operator uses simple static parameter ∅ (a random number between 0 and 1). Any 
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linear combination of two feasible points in a convex domain will produce another feasible point 

(Michalewicz, 1992). 

A⨂B=A ∗ ∅ +B ∗ (1-∅) [3.14] 

with ∅=rand(0,1)     

The reproduction and crossover operators are programmed to imitate the paradigm of 

the survival of the fittest. The crossover operator is a recombination of two chromosomes, an 

operation that ensures an efficient exploitation in the local search within a subspace. Therefore, 

the offspring are spread over the entire feasible space. The crossover-elitism pair eases the 

achievement of global optimality. In contrast, the mutation operator is a randomization 

mechanism for global search and exploration. 

Step 6: Stopping criteria 

Steps 2-5 are repeated until either the stopping criteria is respected, or the maximum 

number of generation is attained. We implemented a severe stopping criterion on the best 

solution of each generation; the relative error between the present and the past generation for 

each design variable must remain less than the user-defined tolerance for at least N amount 

of generations. 

As the population evolves, the proposed VCH process will lead the search to reach 

feasible regions, much similar to a severe penalty function. Nonetheless, in order to maintain 

infeasible solutions near the feasible region, at each generation, the infeasible solution with the 

lowest C.V and best objective function value will be kept in the population for the next 

generation. As a result, the population will most likely have fewer infeasible solutions located 

in promising areas of the search space.  

The VCH approach does not use any penalty function to handle the constraints. Instead, 

it can be seen to have a mechanism that encourages the solutions close to the feasible region 
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in favorable areas of the design space to remain in the population. This does not add 

substantial computational cost. 

An optimization problem is called a convex programming problem if the objective 

function and the constraint functions are both convex. Originally, EAs were developed to solve 

unconstrained problems. Constrained optimization is a computationally challenging task, 

mainly if the constraint functions are nonlinear and/or nonconvex. A positive feature of the 

proposed VCH approach is that it does not care about the structure of the constraint functions 

(linear or nonlinear, convex or nonconvex).  

An accelerated VCH technique for convex optimization problems is to generate an initial 

population with only feasible solutions. Thereafter, the reproduction by means of an arithmetic 

crossover (as per expression 15) will continue to generate feasible solutions (Michalewicz, 

1992). Testing for convexity or concavity can be done by evaluating if the Hessian matrix 

𝐇(𝐗) = [
𝝏𝟐𝒇(𝐗)

𝝏𝒙𝒊𝝏𝒙𝒋
]⁡is positive semi definite (for minimization problems). The accelerated genetic 

algorithm for the solving of constrained problems in the case of convex design and objective 

spaces would not require the use of any feasibility-rules. Rather, solutions with high fitness 

values are preferred since all the individuals of the population are feasible (as described in 

Figure 12). 

3.3.4 NUMERICAL VALIDATION OF ‘VCH’ 

In order to validate the proposed constraint handling technique, several examples taken 

from the literature will be used. These numerical examples are all constrained optimization 

problems that include linear and nonlinear constraints. These are benchmark optimization 

problems that have been previously evaluated by other GA-based techniques, which is useful 

to investigate and demonstrate the quality and usefulness of the proposed VCH approach. 

The algorithm is implemented in MATLAB (R2013 a Student Version 8.1.1.604) run by 

a 2.90 GHz Intel® Core™ i7-3520M CPU (4 Duo processor) with 4096 MB of Random Access 
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Memory (RAM). The number of crossover-ed and mutated individuals in the population (100 

chromosomes) are 94 and 5 respectively. 

 
 

Figure 12 : Complete flowchart of the proposed GA. 
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That means only one individual is preserved to the following generation based on elitism. 

The termination criterion is taken as either the reach of the maximum number of generations 

(set to 500 in all examples) or the achievement of the relative error on the design vector (set to 

be equal to 10-6). To demonstrate the effectiveness of the proposed VCH, the best, mean, 

median, worst and fitness evaluations are recorded for 20 independent runs. We are concerned 

with the efficiency of the technique in terms of CPU time, because we are particularly interested 

in solving engineering optimization problems, for which the cost of fitness evaluations is 

generally high. However, it is more convenient to adopt the number of fitness evaluations since 

it is independent of the implemented hardware. The stopping condition employed in the 

numerical simulations is identical to the criteria described in step 6. 

3.3.4.1 HIMMELBLAU’S NONLINEAR OPTIMIZATION PROBLEM 

This problem was originally proposed by Himmelblau (Himmelblau, 1972) and has been 

widely used as a point of reference for nonlinear constrained optimization problems and several 

other constraint handling techniques that use penalties. In this formulation, there are five design 

variables [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5], six nonlinear inequality constraints and 10 boundary conditions. 

The problem can be stated as follows: 

Minimize  𝒇(𝒙⃗⃗ ) = 𝟓. 𝟑𝟓𝟕𝟖𝟓𝟒𝟕𝒙𝟑
𝟐 + 𝟎. 𝟖𝟑𝟓𝟔𝟖𝟗𝟏𝒙𝟏𝒙𝟓 + 𝟑𝟕. 𝟐𝟗𝟑𝟐𝟑𝟗𝒙𝟏 − 𝟒𝟎𝟕𝟗𝟐. 𝟏𝟒𝟏 

 
 
Subject to:  
 
 
𝑔1(𝑥 ) = 85.334407 + 0.0056858𝑥2𝑥5 + 0.00026𝑥1𝑥4 ⁡− ⁡0.0022053x3x5 ⁡− ⁡0.0022053x3x5 

                     
 

𝑔2(𝑥 ) = 80.51249 + 0.0071317𝑥2𝑥5 + 0.0029955𝑥1𝑥2 + 0.0021813x3
2 + 0.0021813x3

2 
               

 
𝑔3(𝑥 ) = 9.300961 + 0.0047026𝑥3𝑥5 + 0.0012547𝑥1𝑥3 + 0.0019085𝑥3𝑥4 
 

 
0 ≤ 𝑔1(𝑥 ) ≤ 92 90 ≤ 𝑔2(𝑥 ) ≤ 110 

 
20 ≤ 𝑔3(𝑥 ) ≤ 25 
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The best solution was found to be 𝑓(𝑥 ) = −30988.95, with 15000 evaluations only. The 

design vector is: 𝑥1 = 78.00, 𝑥2 = 33.08, 𝑥3 = 27.35, 𝑥4 = 44.61 and 𝑥5 = 44.26. The mean is 

𝑓(𝑥 ) = −30845.42, with a standard deviation of 48.60 (as listed in Table II). The worst solution 

found was 𝑓(𝑥 ) = −30800.89, which is better than 75% of the reviewed methods as per Table 

I. The significantly fewer function evaluations reduced the computational cost of the 

optimization procedure to an average CPU time of 0.52 s/run for 20 independent runs. 
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Table 1 : Optimal results for Himmelblau’s nonlinear problem. 

                                                                        Design Variables 
  Methods             x1            x2           x3             x4                x5                 f x  

Present study 78.00 33.08 27.35 44.61 44.26 -30988.9 

Coello (Coello, 2000a) 78.59 33.01 27.64 45.00 45.00 -30810.3 

Deb (Deb, 1997)  NA NA NA NA NA -30665.5 

Deb (Deb, 2000) 78.00 33.00 29.99 45.00 36.77 -30665.5 

Homaifar et al. (Homaifar et al., 1994) NA NA NA NA NA -30575.9 

Bean and Ben Hadj-Alouane (Bean, 1994; Ben 

Hadj-Alouane & Bean, 1997) 

NA NA NA NA NA -30560.4 

Gen and Cheng (M Gen & Cheng, 1997) 81.49 34.09 31.24 42.20 34.37 -30183.5 

Coello and Cortés (Coello & Cortés, 2004) NA NA NA NA NA -30665.5 
 

 

Table 2 : Statistical results for Himmelblau’s nonlinear problem. 

     Fitness 
  Methods Mean Worst                   Std                     Evaluation 

Present study  -30845.4 -30800.8 48.6 15000 

Coello (Coello, 2000b; Coello Coello, 

1999) 

-30984.2 -30792.4 73.6 900000 

Coello (Coello, 2000a)  NA  NA NA 16000 

Deb (Deb, 2000) -30665.5 -29846.6 NA 250000 

Homaifar et al. (Homaifar et al., 1994) -30403.8 -30294.5 64.1 40000 

Bean and Ben Hadj-Alouane (Bean, 

1994; Ben Hadj-Alouane & Bean, 1997) 

-30397.4 -30255.3 -73.8   NA         

Gen and Cheng (M Gen & Cheng, 1997)  NA  NA NA  NA 

Coello and Cortés (Coello & Cortés, 

2004) 

-30654.9 -30517.4 32.6 150000 
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3.3.4.1.1 MINIMIZATION OF THE WEIGHT OF A TENSION/COMPRESSION 

SPRING 

This optimization problem was described by Arora (Arora, 1989) and Belegundu 

(Belegundu, 1983) and it consists of minimizing the weight of a tension/compression spring, 

subject to constraints on minimum deflection, shear stress, surge frequency, outside diameter 

and on the design variables. The later are the wire diameter d (= x1), the mean coil diameter D 

(= x2) and the number of active coils N (= x3). 

The problem is expressed as follows: 

Minimize     𝒇(𝒙⃗⃗ ) = (𝒙𝟑+2)𝒙𝟏
𝟐𝒙𝟐   

Subject to: 

𝑔1(𝑥 ) = 1 −
𝑥2
3𝑥3

71785𝑥1
4 ≤ 0 𝑔2(𝑥 ) =

4𝑥2
2 − 𝑥1𝑥2

12566(𝑥1
3𝑥2 − 𝑥1

4)
+

1

5108𝑥1
2 − 1 ≤ 0 

𝑔3(𝑥 ) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0 𝑔4(𝑥 ) =
𝑥1 + 𝑥2
1.5

− 1 ≤ 0 

The optimal solution for this problem is at: 𝑥1 = 0.0513, 𝑥2 = 0.348, 𝑥3 = 1.802, with an 

optimal fitness value of 𝑓(𝑥 ) = 0.0126, obtained after 28000 evaluations (as per Table III and 

IV). The mean is 0.01269 with a low standard deviation of 8.3210-6.  
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Table 3 : Optimal results for spring design problem. 

                                             Design Variables 
  Methods              x1             x2                x3                          f x  

Present study                                                    0.05134 0.3483                   11.8026                                   0.01267 

Coello and Mezura-Montes (Coello & 

Montes, 2002) 

0.05198                   0.3639 10.8905 0.01268 

Mezura-Montes and Coello (Mezura-

Montes & Coello, 2005) 

0.05283                   0.3849                  9.8077 0.01268 

Mezura-Montes and Coello (Coello, 

2000b; Coello Coello, 1999) 

0.05148 0.3516 11.6322 0.01270 

 

 
 

Table 4 : Statistical results for spring design problem. 

            Fitness 
  Methods  Mean Worst                      Std                                Evaluation 

Present study                                                    0.01269                    0.01270 8.328E-06  28000 

Coello and Mezura-Montes (Coello & 

Montes, 2002) 

0.01274                   0.01297 5.9E-05 80000 

Mezura-Montes and Coello (Mezura-

Montes & Coello, 2005)                     

0.01316 0.01407 3.90E-04 30000 

Coello(Coello, 2000b; Coello Coello, 

1999)                                                                        

0.01276 0.01282 3.939E-05 900000 
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3.3.4.2 DESIGN OF A PRESSURE VESSEL 

This problem was originally proposed Sandgren (Sandgren, 1988, 1990) for the design 

of a pressure vessel with minimal overall cost (material, forming and welding). The air storage 

tank has a working pressure of 2000 psi and a maximum volume of 750 ft3. There are four 

design variables namely; TS (= x1) thickness of the shell, Th (= x2) thickness of the head, R (= 

x3) inner radius and L (= x4) length of the cylindrical section of the vessel, not including the 

head. TS and Th are integer multiples of 0.0625 inch and R and L are continuous. 

The following pressure vessel design problem is taken from Kannan and Kramer 

(Kannan & Kramer, 1994) as follow: 

Minimize     𝒇(𝒙⃗⃗ ) = 0.6224𝒙𝟏𝒙𝟑𝒙𝟒 + 1.7781𝒙𝟐𝒙𝟑
𝟐 +3.1661𝒙𝟏

𝟐𝒙𝟒+ 19.84𝒙𝟏
𝟐𝒙𝟑   

Subject to: 

𝑔1(𝑥 ) = ⁡−𝑥1 + 0.0193𝑥3 ≤ 0 𝑔2(𝑥 ) = −𝑥2 + 0.00954𝑥3 ≤ 0 

𝑔3(𝑥 ) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + ⁡1,296,000 ≤ 0 
𝑔4(𝑥 ) = 𝑥4 − 240 ≤ 0 

It has been observed from Table V, that the best solution is found to be⁡𝑓(𝑥 ) =

⁡6059.79164, at x1 = ⁡0.8125, x2 = ⁡0.4375 , x3 =⁡42.0978 , x4 =⁡176.644. Based on the 

information from Table VI, our approach provided the best performance in an average 

computational time of 1.46 sec, a mean of 6060.0618 and standard deviation of 0.128.  
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Table 5 : Optimal results for pressure vessel design problem. 

                                                                      Design variables 
  Methods                                     x1          x2              x3               x4                                       f x  

Present study                                  0.8125                     0.4375                   42.0978                  176.64                   6059.79 

Mezura-Montes and Coello (Mezura-Montes & 

Coello, 2005)    

0.8125 0.4375 42.0984 176.63                 6059.71 

Coello and Mezura-Monte (Coello & Montes, 

2002) 

0.8125 0.4375 42.0974 176.65 6059.94 

Coello and Cortes (Coello & Cortés, 2004) 

  

0.8125 0.4375 42.0869 176.79                  6061.12 

Coello (Coello Coello, 2000) 0.875 0.5000 42.0939 177.08 6069.32 

Coello (Coello, 2000b; Coello Coello, 1999)             0.8125                      0.4375 40.3239 200.00 6288.74 

Deb (Deb, 1997) 0.9375 0.5000 48.3290 112.67 6410.38 

Yun (Yun, 2005) 1.125 0.6250 58.2850 43.72 7198.42 

Wu and Chow (Wu & Chow, 1995)                            1.125 0.6250 58.1978 44.29 7207.49 
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Table 6 : Statistical results for pressure vessel design problem. 

                                  Fitness 
  Methods Mean        Worst                                    Std                                    Evaluation 

Present Study                                              6060.06                   6060.21                            0.1284                        24250 

Mezura-Montes and Coello (Mezura-

Montes & Coello, 2005)                

6379.93 6820.39 2.10E+02 30000 

Coello and Mezura-Montes (Coello & 

Montes, 2002)          

6177.25 6469.32 130.92 80000 

Coello and Cortes (Coello & Cortés, 

2004)                            

6734.08 7368.06 457.99 150000 

Coello (Coello Coello, 2000) 6177.25                     6469.32 130.92 50000 

Coello (Coello, 2000b; Coello Coello, 

1999)                                       

6293.84 6308.14 7.4132 900000 
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3.3.4.3 WELDED BEAM DESIGN PROBLEM 

The welded beam problem has been used as a benchmark problem originally proposed 

by Rao (Rao, 1996). The beam is designed for minimum cost subject to constraints on shear 

stress (), bending stress in the beam (), buckling load on the bar (Pc) end deflection of the 

beam () and side constraints. In this problem, there are four design variables namely; 

thickness of the beam h (= x1), length of the welded joint l (= x2), width of the beam t (= x3) and 

thickness of the beam b (= x4). It is important to note that in this problem, there are several 

models in the overviewed literature, with different number of constraints and variable 

definitions. In the present study, the results for the following optimization formulation are 

presented: 

Minimize    𝒇(𝒙⃗⃗ ) = 1.1047𝒙𝟏
𝟐𝒙𝟐 + 𝟎. 𝟎𝟒𝟖𝟏𝟏𝒙𝟑𝒙𝟒(𝟏𝟒 + 𝒙𝟐) 

Subject to: 

𝑔1(𝑥 ) = 𝜏(𝑥 ) − 𝜏𝑚𝑎𝑥 ≤ 0 𝑔2(𝑥 ) = 𝜎(𝑥 ) − 𝜎𝑚𝑎𝑥 ≤ 0 𝑔3(𝑥 ) = 𝑥1 − 𝑥4 ≤ 0 

𝑔4(𝑥 ) = 0.10471𝑥1
2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) − 5.0 ≤ 0 

𝑔5(𝑥 ) = 0.125 − 𝑥1 ≤ 0 𝑔5(𝑥 ) = 0.125 − 𝑥1 ≤ 0 𝑔7(𝑥 ) = 𝑃 − 𝑃𝑐(𝑥 ) ≤ 0 

 

where,  is the shear stress in the weld (it has two components namely primary stress  

and secondary stress ), max is the allowable shear stress of the weld (= 13600 psi),  the 

normal stress in the beam, max is the allowable normal stress for the beam material (= 30000 

psi), Pc the buckling load, P the load (= 6000 lb) and  the beam end deflection: 

τ(x⃗ ) = √(τ')2 +
2τ'τ''x2

2R
+ (τ'')2 ,          τ' =

P

√2x1x2
 ,            τ'' =

MR

J
 ,             M = P(L +

x2

2
),      

 

R = √
x2
2

4
+ (

x1+x3

2
)
2

,         σ(x⃗ ) =
6PL

x4x3
2,           J = 2 {√2x1x2 [

x2
2

12
+ (

x1+x3

2
)
2

]}, 

 

δ(x⃗ ) = ⁡
4PL3

Ex3
3x4

                 Pc(x⃗ ) =
4.013E√

x3
2x4
6

36
⁄

L2
(1-

x3

2L
√

E

4G
) 
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𝐿 = 14⁡in 𝛿𝑚𝑎𝑥 = 0.25⁡in 𝐸 = 30 × 106 psi 𝐺 = 12 × 106 psi 

The presented algorithm has been tested on this optimization problem and compared 

with the best solutions by previous methods reported in Table VII. The optimal design vector 

was found to be: 𝑥1 = 0.2057, 𝑥2 = 3.4729, 𝑥3 = 9.0292, 𝑥4 = 0.2060 with an optimal fitness 

value 𝑓(𝑥 ) = 1.7267. In average, the time elapsed for one execution of the program is 1.82 sec 

and the average number of fitness evaluations for 20 runs is 30000. 
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Table 7 : Optimal results for welded beam design problem. 

                                                            Design Variables 
  Methods      x1 x2 x3  x4  f x  

Present study 0.2057 3.4729 9.0292 0.2060 1.7267 

Coello and Mezura-Montes (Coello & 

Montes, 2002) 

0.2059 3.4713   9.0202 0.2064 1.7282 

Coello (Coello, 2000b) 0.2088 3.4205 8.9975 0.2100 1.7483 

Siddall (Siddall, 1972)  0.2444 6.2189 8.2915 0.2444 2.3815 

Ragsdell and Philipps (Ragsdell & 

Phillips, 1976) 

NA NA   NA NA 2.3859 

Deb (Deb, 1991)  0.2489 6.173 8.1789 0.2533 2.4331 
 

 
 

Table 8 : Statistical results for welded beam design problem. 

                                              Fitness 
  Methods                                                      Mean                              Worst                            Std                                Evaluation 

Present study 1.727 1.728 0.00042 30000 

Mezura-Montes et al. (Mezura-

Montes, Coello Coello, Velázquez-

Reyes, & Muñoz-Dávila, 2007) 

1.725 1.725 1.00E-15 24000 

Coello and Mezura-Montes (Coello 

& Montes, 2002) 

1.792 1.993 0.0747 80000 

Coello (Coello, 2000b) 1.771 1.785 0.0112 900000 
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3.3.5 DISCUSSION OF THE ‘VCH’ METHOD 

Genetic algorithms try to mimic the principle of the survival of the fittest, where newer 

generations are evolved in attempt to produce descendants with a better ‘fitness’. Because at 

all times the fitness function is equal to the objective function to be minimized, our proposed 

VCH technique is more conforming with the biological fundamentals of genetic algorithms. A 

major drawback of many techniques in the literature is that the constraint handling method 

requires a feasible initial population.  

For some problems, finding a feasible solution is NP-hard, and even impossible for the 

problems with conflicting constraints. In the VCH approach, it is not required to have a feasible 

initial population. There are available techniques that ensure feasibility of the population when 

dealing with linear constraints such as [53, 54] by means of mathematical programming. 

Compared to other constraint-handling techniques based on penalty functions, the VCH 

method was able to provide a consistent performance and demonstrated to be simpler, faster 

and delivered reliable optimal solutions without any violation of the constraints. As the 

population evolves, the VCH method will lead the search to reach faster feasible regions. This 

is revealed in Figure 13, with the convergence of the average constraint violation of the elites 

towards zero (no violation) as the population evolves.  

The VCH method allows the closest solutions to the feasible region in favorable areas 

of the search space to remain in the population. Specific methods such as the reduced gradient 

method, cutting plane method and the gradient projection method are appropriate. However, 

they are only fitting either to problems having convex feasible regions or with few design 

variables. Furthermore, the overall results suggest that the proposed approach is highly 

competitive and was even able to contest (some cases improve) the results produced by other 

methods, some of which are more difficult constraint-handling techniques applied to genetic 

algorithms. The VCH algorithm was tested on several benchmark examples and demonstrated 

its ability to solve problems with a large number of constraints.  
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Figure 13 : Average constraint-handling (CV) and best fitness function obtained with 

the proposed VCH method for the welded beam design problem 

 
3.4 PROPOSED SELECTION PROCESS USING CLUSTERING ANALYSIS – ORIGINAL 

CONTRIBUTION 

3.4.1 MOTIF 

Cluster analysis is the study of techniques and algorithms to organize data into sensible 

groupings (clusters) according to measured or apparent similarities. Clustering has been 

successfully applied in various engineering and scientific disciplines such as biology, medicine, 

machine learning, pattern recognition, image analysis and data compression (Krishna & Murty, 

1999). The aim of clustering is to find a given structure among the series of data and is therefore 

exploratory in nature (Anil K Jain, 2010). The task of organizing a set of data using cluster 

analysis requires some dissimilarity measurement among the set of patterns. The dissimilarity 

metric is defined according to the nature of the data and the purpose of the analysis.  

Many types of clustering algorithms have been proposed; the reader is referred to 

(Aggarwal & Reddy, 2013; Anil K Jain, 2010; Anil K Jain, Murty, & Flynn, 1999; Xu & Wunsch, 

2005) for a taxonomy of clustering techniques, discussions on major challenges and key issues 
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and useful surveys of recent advances. The simplest and most popular clustering algorithm is 

the K-means algorithms (KMA), and was originally published by Steinhaus (Steinhaus, 1956) 

in 1956. Even though it was first proposed 60 years ago, it is still the most widely used algorithm 

for clustering.  

In this section, we propose a GA-based algorithm that utilizes clustering analysis to 

organize the population and select the parents for recombination. The performance of a newly 

proposed selection process named the K-means Genetic Algorithm Selection (KGA) process 

is investigated on a class of unconstrained optimization problems.  

The KGA technique is composed of 4 essential stages: clustering, membership phase, 

fitness scaling and selection. We postulate that clustering the evolving population can help 

preserve a continuous selection pressure throughout the evolution process. A membership 

probability index is allocated to each individual subsequent the clustering phase. Fitness 

scaling alters the membership scores into a range suitable for the selection function; which 

selects the parents of the succeeding generation. Two versions of the KGA technique are 

examined: using a fixed number of clusters K (KGAf) and via an optimal number of clusters Kopt 

(KGAo).  

The performance of each method is tested on 8 benchmark problems. The numerical 

simulations reveal that the proposed selection process is superior or competitive with the 

standard GA for the given problems. The reader is referred to our publication published in the 

journal of Algorithms for more details (Chehouri, Younes, Khoder, Perron, & Ilinca, 2017). 

3.4.2 CLUSTERING ANALYSIS IN OPTIMIZATION ALGORITHMS 

There are many algorithms that have been proposed in literature to solve the clustering 

problems. Some relevant studies that have explored the problem of clustering using various 

approaches include : evolutionary algorithms such as evolutionary programing (Sarkar, 

Yegnanarayana, & Khemani, 1997), particle swarm optimization (Cura, 2012; Das, Abraham, 
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& Konar, 2008; F. Yang, Sun, & Zhang, 2009), ant colony algorithms (Jiang, Yi, Li, Yang, & Hu, 

2010; Shelokar, Jayaraman, & Kulkarni, 2004), artificial bee colony (C. Zhang, Ouyang, & Ning, 

2010), simulated annealing (Maulik & Mukhopadhyay, 2010; Selim & Alsultan, 1991) and tabu 

search (Sung & Jin, 2000).  

Conversely, there have been many attempts to use GAs to solve clustering applications 

(Agustı et al., 2012; Babu & Murty, 1993; Cowgill, Harvey, & Watson, 1999; Hall, Ozyurt, & 

Bezdek, 1999; He & Tan, 2012; Krishna & Murty, 1999; Maulik & Bandyopadhyay, 2000; 

Maulik, Bandyopadhyay, & Mukhopadhyay, 2011; Razavi, Ebadati, Asadi, & Kaur, 2015; Tseng 

& Yang, 2001). Maulik and Bandyopadhyay (Maulik & Bandyopadhyay, 2000) proposed a GA 

approach to clustering. They tested the performance of the algorithm on synthetic and real-life 

datasets. The GA-k-means algorithm was used to search for the cluster centres which minimize 

the clustering metric; showing results significantly superior to that of the k-means algorithm. 

Another genetic algorithm approach, the genetic k-means algorithm was presented by Krishna 

and Murty (Krishna & Murty, 1999); they defined a mutation operator specific to clustering 

problems. Recently, a novel optimization algorithm was proposed by 

Krishnasamy(Krishnasamy, Kulkarni, & Paramesran, 2014) referred to as K-MCI, inspired from 

natural and society tendency of cohort individuals of learning from one another. 

Since the novelty of the proposed algorithm revolves around the notion of introducing 

clustering analysis in the selection stage of the genetic algorithm, this section will avoid the 

survey of clustering techniques. The reader is referred to (Anoop Kumar Jain & Maheswari, 

2012; Mann & Kaur, 2013; Popat & Emmanuel, 2014) for detailed surveys of clustering 

algorithms. Consequently, in the remainder of this section we will review the most relevant 

optimization algorithms that have introduced clustering analysis in one way or another. 

The process of genetic differentiation where the population subdivided was discussed in 

the literature. For instance, the island model (Latter, 1973) divides the population into discrete 

finite races, between which some migration occurs. The hypothesis is that multiple 
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subpopulations help preserve a better genetic diversity, since each island can potentially follow 

a different search trajectory through the search space. Various ‘islands’ conserve some degree 

of independence and therefore explore different regions of the search space while sharing 

some information by migration.   

Many researchers have investigated evolutionary algorithms for dynamic optimization 

problems (DOP’s) because EA’s are fundamentally inspired from biological evolution, which is 

always subject to an ever-varying environment. From the literature for DOP’s, the traditional 

approaches use the multi-population method to find the optimum solutions for multi-modal 

functions. The core notion is to divide the search space into different sub-spaces, and then 

separately search within these sub-spaces. The challenge with these multi-population methods 

(such as (Blackwell & Branke, 2004; C. Li & Yang, 2012; S. Yang & Li, 2010)), is how to choose 

an appropriate number of sub-populations to cover the entire search space. Three major 

difficulties rise using multi-populations methods: how to guide the particles towards different 

promising sub-regions, how to define sub-regions and how many sub-populations are required.  

In order to overcome these questions, a clustering particle swarm optimizer (CPSO) was 

proposed in (C. Li & Yang, 2009; S. Yang & Li, 2010). In the CPSO algorithm, a proper number 

of sub-swarms which cover different local regions are created using a clustering method. A 

hierarchical clustering method is used to locate and track multiple optima and a fast-local 

search method is employed to find the near optimal solutions in a promising region in the search 

space.  

Kennedy (Kennedy, 2000) originally proposed a PSO algorithm that uses a k-means 

clustering algorithm to identify the centers of different clusters of particles in the population, 

and then uses the centers to substitute the personal best or neighborhood best positions. The 

limitation of this approach lies in that the number of clusters must be predefined.  

Similarly, a fuzzy clustering-based particle swarm (FCPSO) algorithm was proposed in 

(Agrawal, Panigrahi, & Tiwari, 2008) to solve multiobjective environmental/economic dispatch. 
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The clustering in the FCPSO technique ensures that the obtained Pareto front will have uniform 

diversity at all stages of the search.  

In (J. Zhang, Chung, & Lo, 2007), clustering analysis was applied to adjust the 

probabilities of crossover px and mutation pm in GAs. By applying the k-means algorithm, the 

population is clustered in each generation and a fuzzy system is used to adjust the values of 

the genetic operators. Regulations are based on considering the relative size between the 

clusters holding the best and worst chromosomes respectively. 

Zhang et al. (X. Zhang, Tian, Cheng, & Jin, 2016) tackle the problem of large-scale 

many-objective optimization problems based on a decision variable clustering method. The 

proposed technique divides the decision variables into two clusters based on the features of 

each variable. The decision variable clustering method adopts the k-means method to divide 

the decision variables into two types: convergence-related variable and diversity-related 

variables.  

3.4.2.1 PROBLEM DEFINITION 

In essence, the basic object of any clustering algorithm is to find a global or approximate 

optimal for combinatorial optimization problems which are NP-hard (Vattani, 2009). The k-

means algorithm is very likely to converge to a suboptimal partition. The main lead of stochastic 

optimization techniques over deterministic-methods is that they are able to avoid convergence 

to a local optimal solution. Therefore, stochastic approaches have been employed to solve 

clustering problems; algorithms such as simulated annealing, genetic algorithms, evolution 

strategies and evolutionary programming.  

Inspired by the principles of natural selection and biological evolution, evolutionary 

algorithms seek to optimize a population of individuals by applying a set of evolutionary 

operators. They are population-based meta-heuristic optimization algorithms that make use of 

biological evolution operators such as selection, recombination and mutation.  
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In order to demonstrate the novelty in the use of clustering analysis in the selection 

process of the genetic algorithm, the performance of the proposed KGA techniques will be 

compared with existing GA methods. They were originally proposed by Holland (Holland, 

1975), inspired by the principle of natural selection of biological systems or ‘Darwinian 

evolution’. GAs have demonstrated their capability to solve a wide range of optimization 

problems such as revenue management, optimal engineering system designs, scheduling 

applications, image processing, quality control etc.  

John Holland essentially formed the foundation of modern evolutionary computing by 

fundamentally defining three key genetic operators: crossover, mutation, and selection. These 

evolutionary operators provide a way to generate offspring from parent solutions.  

Inspired from the notion that clustering (such as k-means) the evolving population can 

help avoid excessive exploitation and therefore escape local optimum (local minimum or local 

maximum). The role of clustering analysis is to improve the probability of discovering the global 

optimum by covering sufficiently the solution space (exploration) yet ensure sufficient pressure 

to obtain even better solutions from current individuals (exploitation). A detailed explanation of 

the proposed KGA technique is considered in the next section.  

3.4.2.2 PROPOSED SELECTION PROCESS TECHNIQUE: KGA 

We are interested in the unconstrained optimization problems in which we attempt to 

find 𝑥∗⃗⃗⃗⃗  which optimizes⁡𝑓(𝑥 ) using GA based algorithms. Therefore, only the standard GA will 

be used to test the performance of the proposed KGA algorithms. 

A general definition of clustering can be stated as follows: given a set of data composed 

on n objects, find K groups in such that the measure of similarities between objects in the same 

group is low while the similarities between objects in different groups are low. 
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K-means algorithm attempts to find a partition such that the squared error between the 

empirical mean of a cluster and the objects in the cluster is minimized. The goal is to minimize 

the sum of the squared error J over all K clusters, as follows:  

𝐽(𝑋, 𝐶) = ⁡∑ ∑ ‖𝑥𝑖 − 𝜇𝑘‖
2

𝑥𝑖∈𝑐𝑘

𝐾

𝑘=1

 [3.15] 

where 𝑋 = {𝑥𝑖}, 𝑖 = 1,… , 𝑁⁡is the set of N d-dimensional points to be clustered into K 

clusters, 𝐶 = {𝑐𝑘}, 𝑘 = 1,… , 𝐾⁡and 𝜇𝑘 the mean of cluster 𝑐𝑘. 

Minimizing the K-means objective function is an NP-hard problem (even for K = 2) 

(Drineas, Frieze, Kannan, Vempala, & Vinay, 2004), and therefore the algorithm can only 

converge to local minima. The main steps of K-means algorithm can be summarized as follows: 

1. Choose an initial partition with K clusters. 

2. Generate a new partition by assigning each pattern to its nearest cluster centroid.  

3. Compute new cluster centroids. 

4. If a convergence criterion is not met, repeat steps 2 and 3. 

5. Clustering the population by k-means algorithm 

6. Computing the membership probability (MP) vector (Eq. 3.16) 

7. Fitness scaling of MP 

8. Selection of the parents for recombination.  

The following section presents a brief description of the proposed k-means genetic 

selection processes. We are interested in the unconstrained optimization problems in which 

we attempt to find 𝑥∗⃗⃗⃗⃗  which optimizes⁡𝑓(𝑥 ) using GA based algorithms. Therefore, only the 

standard GA will be used to test the performance of the proposed KGA algorithms. Below, two 

distinct selection techniques KGAf and KGAo are presented.  

3.4.2.2.1 KGAf 
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The proposed KGA is different than the standard GA in several ways. Primary, the 

chromosomes of the population are partitioned into groups in a way that all individuals inside 

the same cluster are similar. This offers a novel approach to solve the two important issues in 

the evolution process of the genetic search: exploitation and exploration.  

Exploration is responsible of population diversity by exploring the search space. While, 

exploitation attempts to reduce the diversity by focusing on individuals with higher fitness 

scores. Strong exploitation encourages premature convergence of the genetic search. 

Recombining individuals inside the same cluster reduces population diversity, and thus 

clustering the population can allow an enhanced balance between exploitation and exploration.  

In the KGAf algorithm, the number of clusters is kept the same throughout the evolution 

process. The 4 main stages of KGAf are: 

1. Clustering the population by K-means algorithm 

2. Computing the membership probability (MP) vector 

3. Fitness scaling of MP 

4. Selection of the parents for recombination.  

In general, we want to maintain an even selection pressure during the evolution of the 

genetic search. At the beginning, the search may be bias towards high fitness individuals. Near 

the end of the search, as the population is converging towards an optimal solution, there may 

not be much separation among individuals in the population. Neither situation is desirable, thus 

there is a necessity to scale the fitness in a manner to preserve the selection pressure the 

same throughout in the population.  

The membership probability score (Eq. 3.16) of an individual is a measurement of its 

affiliation with respect to both designated and external clusters (refer to Figure 14). For a given 

solution i inside a cluster j of size mj, the membership probability index is calculated as follows: 
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𝑀𝑃(𝑖, 𝑗) =
𝑚𝑗

𝑚𝑗 − 1
×

1

𝑃𝑜𝑝⁡𝑆𝑖𝑧𝑒
×
𝑆𝑗 − 𝑓(𝑥𝑖)

𝑆𝑗
 [3.16] 

And 𝑆𝑗 is expressed as: 

𝑆𝑗 =∑𝑓(𝑥𝑘)

𝑚𝑗

𝑘=1

 [3.17] 

where Pop Size is the population size and 𝑆𝑗 is the sum of the fitness values 𝑓(𝑥𝑖) inside 

cluster j.   

The key characteristics that are associated with the use of the membership probability 

function are the following: 

• The sum of the membership probability scores of a given cluster j of size mj is 

equal to⁡
𝑚𝑗

𝑃𝑜𝑝⁡𝑆𝑖𝑧𝑒
. Consequently, clusters with more individuals will be attributed a 

larger probability sum.  

• An individual with a lower fitness value 𝑓(𝑥𝑖) inside a cluster of size mj is awarded 

a higher MP score. This is translated in the 
𝑺𝒋−𝒇(𝒙𝒊)

𝑺𝒋
 term, thus allocating fitter 

solutions a higher probability of selection. 

• In order to reduce the probability of recombination between individuals from the 

same cluster, therefore avoiding local optimal traps, fitter individuals in smaller 

clusters are awarded a higher MP score. This is the direct effect of 
𝒎𝒋

𝒎𝒋−𝟏
 term.  

• The sum of all membership probability scores is equal to 1.  

The general framework of the proposed KGAf algorithm is shown in Figure 15.  

Fitness scaling converts the membership scores in a range suitable for the selection 

function which selects the parents of the next generation. The selection function allocates a 

higher probability of selection to individuals with higher scaled values. 
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The range of the scaled values can affect the performance of the genetic algorithm. If 

the scaled values vary too extensively, higher scaled value individuals will reproduce too rapidly 

and prevent the GA from searching other regions in the search space. In contrast, little scaled 

value variations, all individuals will have an equal chance of reproduction and therefore will 

result into a very slow search progress. 

3.4.1.1.1 KGAo 

It is obvious that a problem we face in the KGAf algorithm is to decide the optimal number 

of clusters. Visual verification of a large multidimensional data set (e.g. more than three) is 

difficult (Halkidi, Batistakis, & Vazirgiannis, 2002a). In order to find the optimal clustering 

scheme that best fits the inherent partitions of the data set, the concept of clustering validation 

has been subject of numerous research efforts. The fundamental concepts, drawbacks and 

applications of clustering validation techniques were discussed in (Halkidi, Batistakis, & 

Vazirgiannis, 2001; Halkidi et al., 2002a; Halkidi, Batistakis, & Vazirgiannis, 2002b; Vendramin, 

Campello, & Hruschka, 2010) .   

Membership Probability Function 

%% Combining individuals belonging to the same cluster  

 

for i=1:K                                                                

     fit_per_cluster = 0; 

     num_per_clus = 1; 

     for j=1:length(idx) 

        if (idx(j)== i) 

             fit_per_cluster = Fitness(j) + fit_per_cluster; 

             Matrix(num_per_clus,i) = j; 

             num_per_clus = num_per_clus + 1; 

        end 

    end 

     Matrix(end-2,i) = num_per_cluster - 1; 

     Matrix(end-1,i) = fit_per_cluster; 

end 

  

 %% Evaluation of the probability membership vector 

 

Vector = zeros(length(Population),2); 

p = 1; 

for i=1:K 
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      Matrix(end,i) = Matrix(end-2,i)/sum(Matrix(end-2,:)); 

         if Matrix(end-2,i)== 1 

            Vector(p,1) = Matrix(end,i); 

            Vector(p,2) = Matrix(1,i); 

             p = p+1; 

         else 

   for j = 1:Matrix(end-2,i) 

Vector(p,1) = Matrix(end,i)*((Matrix(end-1,i) - Fitness(Matrix(j,i)))/(Matrix(end-1,i)*(Matrix(end-2,i)-1))); 

  Vector(p,2) = Matrix(j,i);   

  p = p+1;   

   end 

 end 

end 

 

 %% Sorting of the MP vector with respect to the probability index 

 

scores = sortrows(Vector,2); 

MP_Vector = scores(:,1); 

 

Figure 14 : Function code of the membership probability vector. 
 

In essence, there are three main approaches to examine cluster validity: 

• External criteria: evaluation of the clustering algorithm results is based on previous 

knowledge about data. 

• Internal criteria: clustering results are evaluated using a mechanism that takes into 

account the vectors of the data set themselves and prior information from the dataset 

is not required.  

• Relative criteria: aim to evaluate a clustering structure by comparing it to other 

clustering schemes.   

KGAo attempts to answer the following questions:  

1. In how many clusters can the population be partitioned to? 

2. Is there a better “optimal” partitioning for our evolving population of chromosomes?  

Two main approaches to determining the suitable number of clusters for a given data can 

be distinguished:  
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Figure 15 : Flowchart of the proposed KGAf technique. 
 

• Compatible Cluster Merging (CCM): starting with a large number of clusters, and 

successively reduce the number by merging clusters which are similar (compatible) 

with respect to a similarity criterion.  

• Validity Indices (VI’s): clustering the data for different values of K, and using validity 

measures to assess the obtained partitions.  

The CCM approach requires more computational operations than the use of a validity 

index to determine the optimal number of clusters. Moreover, the size of the evolving population 

is small (less or equal than 100 chromosomes), therefore there is no need to apply a CCM 
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approach. On the other hand, the validity index is not a clustering algorithm itself, but rather a 

measurement of the results and thus suggests a scheme that best fits the data set. At each 

generation in the proposed KGAo technique, the optimal number of clusters is calculated using 

a validity assessment index. Different validity indices suitable for K-means clustering have been 

proposed in the literature.  

Two different internal validity indices are applied in the KGAo technique: 

Silhouette(Rousseeuw, 1987) and the Davies-Bouldin index (Davies & Bouldin, 1979) 

explained below.    

1. Silhouette (S) (Rousseeuw, 1987) 

The silhouette technique assigns to the ith vector of cluster cj (𝑗 = 1, . . 𝐾), a quality 

measure⁡𝑠(𝑖) known as the silhouette width defined as S: 

𝑠𝑗 =
1

𝑚𝑗
∑

(𝑏(𝑖) − 𝑎(𝑖))

max⁡⁡[𝑎(𝑖), 𝑏(𝑖)]

𝑚𝑗

𝑖=1

 [3.18] 

𝑆 =
1

𝐾
∑𝑠𝑗

𝐾

𝑗=1

 
[3.19] 

where 𝑎(𝑖) is the average distance between the ith vector and the remaining elements 

inside the same cluster j of size⁡𝑚𝑗, 𝑏(𝑖) is the minimum average distance between vector i and 

all elements inside clusters ck (𝑘 = 1, . . 𝐾; 𝑘 ≠ 𝑗). The optimal partition is expected to minimize 

the intra-group distance a while maximizing the inter-group distance b. Thus, maximize the 

silhouette width criterion S.  

2. Davies-Bouldin (DB) (Davies & Bouldin, 1979)  

The DB index aims to evaluate intra-cluster similarity and inter-cluster differences by 

computing the following: 
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𝐵𝐷 =
1

𝐾
∑𝑚𝑎𝑥𝑖≠𝑗 [

𝑑(𝑥𝑖) + 𝑑(𝑥𝑗)

𝑑(𝑐𝑖 , 𝑐𝑗)
]

𝐾

𝑖=1

 [3.20] 

where 𝑑(𝑥𝑖) and 𝑑(𝑥𝑗) are each the sum of all the distances between the centroid of the 

cluster and the elements of clusters i and j respectively, 𝑑(𝑐𝑖 , 𝑐𝑗) is the distance between 

centroids of cluster 𝑐𝑖 ⁡and 𝑐𝑗. A good partition composed of compact and separated clusters is 

represented by a small DB value.  The Davies-Bouldin index presents decent results for 

dissimilar groups. However, it is not intended to handle overlapping clusters (Razavi et al., 

2015). 

 

Figure 16 : Search for the optimal number of clusters. 
 

Throughout the KGAo technique, the evaluation of the validity index function is performed 

within a range of cluster numbers and then an optimal number is chosen. For instance, if the 

Silhouette index is applied, the number of clusters which maximizes S corresponds to the 

optimal partition. Whereas, the minimum DB value determines the optimal number of clusters 
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for the clustering of the population. Since the size of the population is small, the maximum 

number of partitions is set to 10. Consequently, the search for the optimal partition varies 

between K = 2 and K = 10, as per Figure 16.      

3.4.1.2 NUMERICAL SIMULATIONS 

In this section, the performance of KGA techniques on 7 well-known test functions is 

investigated. In recent years, various kinds of novel computational intelligence methods have 

been proposed and the field is attracting more and more attention. To promote research on 

expensive optimization, the CEC 14’ special session competition developed a set of benchmark 

optimization problems.  

All test functions are minimization problems defined as following: 

min𝑓(𝐱);⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐱 = [𝑥1, 𝑥2, … , 𝑥𝐷] [3.21] 

D: dimension of the search space. 

Most functions are shifted by 𝒐𝑖 = [𝑜𝑖1, 𝑜𝑖2 , … 𝑜𝑖𝐷], a randomly distributed in [−10,10]𝐷. 

Some problems are rotated by a predefined rotation matrix M (Table IX).  

Table 9 : Summary of the test functions. 

No. Functions Search ranges  𝒇𝒊
∗ = 𝒇𝒊(𝒙

∗) 

1 shifted sphere  [−20,20] 0 

2 shifted ellipsoid  [−20,20] 0 

3 shifted and rotated ellipsoid  [−20,20] 0 

4 shifted step [−20,20] 0 

5 shifted Ackley [−32,32] 0 

6 shifted Griewank [−600,600] 0 

7 shifted rotated Rosenbrock [−20,20] 0 

 

1) shifted sphere function: 𝑓1(𝐱) = ∑ 𝑥𝑖
2𝐷

𝑖=1    𝐹1(𝐱) = 𝑓1(𝐱 − 𝒐1)⁡ 

2) shifted ellipsoid: 𝑓2(𝐱) = ∑ 𝑖𝑥𝑖
2𝐷

𝑖=1    𝐹2(𝐱) = 𝑓2(𝐱 − 𝒐2) 
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3) shifted and rotated ellipsoid: 𝐹3(𝐱) = 𝑓2(𝐌𝟑[𝐱 − 𝒐3]) 

4) shifted step: 𝑓2(𝐱) = ∑ |𝑥𝑖 + 0.5|
2𝐷

𝑖=1    𝐹3(𝐱) = 𝑓3(𝐱 − 𝒐4) 

5) shifted Ackley: 

𝑓4(𝐱) = −20 exp [−0.2√
1

𝐷
∑ 𝑥𝑖

2𝐷
𝑖=1 ] − exp [

1

𝐷
∑ cos(2𝜋𝑥𝑖)
𝐷
𝑖=1 ] + 20 + 𝑒; 𝐹5(𝐱) = 𝑓4(𝐱 − 𝒐5) 

6) shifted Griewank: 𝑓5(𝐱) = ∑
𝑥𝑖
2

4000
−∏ cos (

𝑥𝑖

√𝑖
) + 1𝐷

𝑖=1
𝐷
𝑖=1    𝐹6(𝐱) = 𝑓5(𝐱 − 𝒐6) 

7) shifted rotated Rosenbrock:  

𝑓6(𝐱) = ∑ [100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)
2]𝐷−1

𝑖=1 ; 𝐹6(𝐱) = 𝑓6 (𝐌𝟕 [
2.048(𝐱−𝒐7)

20
] + 1) 

Results of the KGA techniques (KGAo-S, KGAo-DB and KGAf) were taken for D = 10 and 

20 and are compared to those of the standard genetic algorithm GA and the Group Counseling 

Optimizer (GCO) (Biswas, Eita, Das, & Vasilakos, 2014) presented at the IEEE Congress on 

Evolutionary computation (CEC 2014). In all experiments, common parameters such as 

population number, maximum generation number and stopping criterion were chosen the same 

for all algorithms. Population sizes of 50 and 100 were selected for dimensions 10 and 20 

respectively. Each experiment is repeated 50 times to obtain the statistical features of the 

algorithms. A system with an Intel core i7 2.9 GHz processor and 4.096 GB RAM is used for 

implementing the MATLAB code for the proposed KGA techniques. All algorithms run the same 

number of fitness evaluations equal to 15,000 for D=10 and 20,000 for D=20, to ensure a fair 

comparison. 
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Table 10 : Comparison of statistical results of 4 algorithms for test problems 1–7 of dimensions D=10. 

          Problem 
KGAo 

(S index) 

KGAo  

   (DB index) 

Genetic     

Algorithm 

(GA) 

KGAf  

    (K=10) 
GCO 

1 

Best 8.82E-05 1.95E-04 2.76E-04 5.06E-04 3.23 

Mean 2.45E-03 5.33E-03 8.29E-03 2.84E-02 1.23E+01 

Worst 1.13E-02 5.43E-02 1.08E-01 3.04E-01 2.96E+01 

SD 2.63E-03 8.39E-03 1.58E-02 5.01E-02 6.36E+00 

   

2 

Best 2.91E-04 3.34E-04 4.60E-04 2.08E-03 8.46 

Mean 7.12E-03 7.12E-03 4.75E-02 2.09E-01 4.14E+01 

Worst 6.27E-02 4.83E-02 7.20E-01 3.62 2.22E+02 

SD 1.07E-02 1.06E-02 1.17E-01 6.13E-01 4.61E+01 

   

3 

Best 5.55E-04 2.27E-04 5.32E-04 3.23E-03 1.56E+01 

Mean 1.00E-02 8.24E-03 5.01E-02 3.12E-01 8.85E+01 

Worst 5.42E-02 7.49E-02 2.58E-01 2.49 2.09E+02 

SD 1.25E-02 1.46E-02 6.72E-02 5.63E-01 5.53E+01 

   

4 

Best 4.00 2.00 1.50E+01 3.00 3.00 

Mean 9.14E+01 6.48E+01 1.31E+02 6.50E+01 1.00E+01 

Worst 3.86E+02 4.19E+02 3.83E+02 2.05E+02 2.70E+01 

SD 9.84E+01 8.38E+01 8.88E+01 5.42E+01 6.93 

   

5 

Best 1.48E-03 8.42E-03 1.21E-02 4.01E-02 3.92 

Mean 1.49 6.55 5.15 5.62 6.35 

Worst 1.26E+01 1.31E+01 1.24E+01 1.30E+01 9.94 
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          Problem 
KGAo 

(S index) 

KGAo  

   (DB index) 

Genetic     

Algorithm 

(GA) 

KGAf  

    (K=10) 
GCO 

SD 2.28 4.52 3.62 4.12 1.71 
   

6 

Best 4.94E-02 4.97E-02 4.95E-02 5.04E-02 1.24 

Mean 6.41E-02 6.32E-02 6.38E-02 6.96E-02 2.11 

Worst 8.66E-02 8.56E-02 8.14E-02 1.00E-01 4.51 

SD 7.33E-03 6.73E-03 7.56E-03 1.07E-02 6.77E-01 
   

7 

Best 2.02E-01 3.84E-03 1.28 1.48E-01 4.42E+01 

Mean 3.77 3.65 3.22 4.59 9.28E+01 

Worst 7.77 8.81 5.09 1.55E+01 1.80E+02 

SD 1.48 2.12 5.94E-01 2.78 3.22E+01 

 
*best solution for the given test problem 
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Table 11 : Comparison of statistical results of 4 algorithms for test problems 1–7 of dimensions D=20. 

          Problem 
KGAo 

(S index) 

KGAo  

   (DB index) 

Genetic 

Algorithm (GA) 

KGAf  

    (K=10) 
GCO 

1 

Best 1.67E-03 2.36E-03 1.05 4.51E-03 3.60E+01 

Mean 1.22E-02 1.53E-02 1.63 1.16E-01 1.19E+01 

Worst 6.32E-02 9.89E-02 2.43 6.42E-01 2.17E+01 

SD 1.45E-02 1.87E-02 3.13E-01 1.40E-01 5.88 
   

2 

Best 3.76E-03 5.68E-03 8.99 5.01E-02 7.79E+01 

Mean 1.17E-01 1.19E-01 1.02E+01 4.10 9.34E+01 

Worst 1.16 2.05 1.33E+01 2.75E+01 1.79E+02 

SD 2.17E-01 2.94E-01 1.48 6.05 4.75E+01 
   

3 

Best 1.96E-01 5.50E-03 1.49E+01 2.27E-02 3.33 

Mean 9.16E-01 3.33E-01 2.45E+01 2.04 1.44E+02 

Worst 3.19 4.59 3.53E+01 1.27E+01 2.62E+02 

SD 4.29E-01 6.85E-01 4.19 2.55 4.76E+01 
   

4 

Best 7.00 7.00 3.19E+02 1.70E+01 3.00 

Mean 7.91E+01 7.52E+01 4.89E+02 8.83E+01 8.48 

Worst 5.37E+02 3.32E+02 7.23E+02 3.17E+02 1.40E+01 

SD 9.23E+01 7.44E+01 9.99E+01 6.41E+01 3.01 
   

5 

Best 1.46 1.32E-01 9.83 1.55 1.28 

Mean 6.75 5.59 1.16 5.18 4.58 

Worst 1.26E+01 1.28E+01 1.25E+01 1.20E+01 8.94 
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          Problem 
KGAo 

(S index) 

KGAo  

   (DB index) 

Genetic 

Algorithm (GA) 

KGAf  

    (K=10) 
GCO 

SD 3.69 3.58 7.38E-01 2.47 1.16 

   

6 

Best 2.72E-03 1.37E-03 1.04 6.77E-03 4.91E+01 

Mean 3.23E-02 2.93E-02 1.55 1.01E-01 1.89 

Worst 9.96E-02 7.65E-02 2.18 1.02 2.86 

SD 2.23E-02 1.80E-02 6.10E-01 1.95E-01 4.94E-01 

   

7 

Best 1.65E-02 1.02E-02 7.99 5.04E-02 3.10E+01 

Mean 1.87E+01 1.59E+01 2.63E+01 1.96E+01 1.13E+02 

Worst 7.54E+01 7.21E+01 6.15E+01 7.84E+01 1.72E+02 

SD 2.82E+01 2.74E+01 1.34E+01 2.97E+01 2.67E+01 

*best solution for the given test problem
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The statistical results of the test problems are shown in Table X and Table XI. In all 

cases, the best solution was obtained with either the KGAo-S or the KGAo-DB. This 

demonstrates the significant feasibility and efficiency of the proposed techniques over the 

standard GA. The KGA techniques ensured a broader and more exhaustive search and prevent 

premature death of potential solutions. 

The KGA methods implement an efficient partitioning of the population. They extend the 

diversity by intensifying the scope of the search process and reducing less favourable solutions. 

The recombination of two similar solutions will more likely generate a descendant with 

homogenous chromosomes. The evaluation of the membership probability vector inside the 

proposed selection process guarantees a more fitting parent selection.  

In addition, the elitism strategy that results from partitioning the population into a number 

of clusters ensures that best solutions are always carried forward to the next generation. In 

fact, rather than obtaining one elite solution, K-strong optimal solutions are generated in each 

generation. In the long run, this enhances the exploration of future generations and reduces 

the possibility of premature convergence at local minima. The latter was recorded with the 

standard GA in problems 4-7 especially. Unlike the KGAf, the KGAo-S and KGAo-DB are 

designed in such a way that there are no additional parameters to be fine-tuned.  

The most frequently used statistical tests to determine significant differences between 

two computational intelligence algorithms are the t-test and Wilcoxon signed-ranks test 

(Wilcoxon, 1945). The later is a non-parametric counterpart of the paired t-test, which ranks 

the differences in performances of two algorithms over each data set. In brief, the test omits 

the signs, and compares the ranks for the positive and the negative differences. The differences 

are ranked based per their absolute values and in case of ties average ranks are calculated.  
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A Wilcoxon test is used for pairwise comparisons between the following pairs of 

algorithms: KGAo (S index)- KGAo (DB index), KGAo (S index)-GA, KGAo (S index)-KGAf, KGAo 

(DB index)-GA, KGAo (DB index)- KGAf, GA- KGAf for test function 7 (Table XII) 

As we can see, the p-values obtained by the paired Wilcoxon test indicate that the 

algorithms behave differently, since all p-values are less the level of significance α = 0.05.  

Table 12 : p-values for Wilcoxon test for benchmark function 7. 

Comparison     R+     R- alpha z-score p-value 

KGAo (S index)- KGAo (DB index) 3.07E+02 9.68E+02 5.00E-02 3.19E+00 1.42E-03 

KGAo (S index)-GA 1.55E+02 1.12E+03 5.00E-02 4.66E+00 3.20E-06 

KGAo (S index)-KGAf 7.40E+01 1.20E+03 5.00E-02 5.44E+00 5.34E-08 

KGAo (DB index)-GA 4.51E+02 8.24E+02 5.00E-02 3.80E+00 4.18E-02 

KGAo (DB index)- KGAf 1.34E+02 1.14E+03 5.00E-02 4.86E+00 1.17E-06 

GA- KGAf 1.28E+03 0.00E+00 5.00E-02 6.15E+00 7.56E-10 

 

3.5 SUMMARY 

Two original contributions were presented in this chapter: VCH method and the KGA 

techniques: 

The VCH method is a penalty-free constraint-handling method that only uses the violation 

factor to perform the sorting of the population with both feasible and infeasible individuals.  In 

the proposed VCH method, at a given iteration, the individuals of the population are never 

compared in terms of both objective function value and constraint violation information. 

Essentially, the main motif is to keep the fitness function equivalent to the designer’s objective 

function and therefore the conversion of the constrained problem into an unconstrained one is 

no longer required. 

The KGA methods implement an efficient partitioning of the population. They extend the 

diversity by intensifying the scope of the search process and reducing less favourable solutions. 

The recombination of two similar solutions will more likely generate a descendant with 
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homogenous chromosomes. The evaluation of the membership probability vector inside the 

proposed selection process guarantees a more fitting parent selection.  

In this chapter, the emphasis was on the computational algorithm responsible of 

generating optimal solutions throughout the evolutionary process. The VCH and KGA 

technique form the core mechanisms for the constraint-handling and selection process 

respectively.  With this knowledge in hand, existing wind turbine blade design tools can now 

be dissected in the following chapter. 
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CHAPTER 4 

WIND TURBINE BLADE DESIGN AND OPTIMIZATION TOOLS  

 
 
4.1 INTRODUCTION 

In the previous chapter, we emphasized on two original contributions in computational 

intelligence mainly and in genetic algorithms specifically. The proposed VCH method allow us 

to deal with WTOP design constraints without the need to define a penalized fitness function. 

Whereas the KGA techniques promote a more efficient selection process during the search for 

optimal wind turbine blades.   

In this chapter, we will focus on existing wind turbine blade design codes, tools and 

software solvers, which played a major role in building the proposed winDesign platform. We 

overview commercial numerical tools and solvers that compute:  

• Rotor aerodynamics (BEM and CFD) 

• Airfoil preparation codes 

• Rotor performance models 

• Aerodynamic loads solvers 

• Wind turbine structure design software  

4.2 OVERVIEW OF WIND TURBINE ROTOR AERODYNAMICS 

One of the core disciplines in wind energy is fluid mechanics, precisely aerodynamics. It 

is required to describe the flow field around the rotor from which the conversion system extracts 

energy. Beside the need for the performance description of the wind turbine, a proper 

description of the flow regimes is needed to develop an interaction with the deforming structure 

(aeroelasticity). Furthermore, it allows the designers to reduce noise production and the wake 

behind the rotor that must be evaluated to determine the inflow field for the downstream rotors. 

In this section, we examine the state of art in rotor aerodynamics used in numerical tools for 

wind turbine design studies. The solvers are divided into two classes:  
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1. Blade Element Momentum (BEM) theory  

2. Computational Fluid Dynamic (CFD) 

4.2.1 BLADE ELEMENT MOMENTUM SOLVERS  

The momentum method originates from Froude (Froude, 1889), Lanchester (Lanchester, 

1915), Betz (Betz, 1920) and Glauert (Glauert, 1948), where the flows are considered in a 

control volume consisting of the stream tube surrounding the actuator disc. Betz (Betz, 1958), 

derived the famous limit,  the Betz limit, which states that the maximum energy that can be 

extracted from the wind is the 16/27th of its kinetic energy. This limit assumes the absence of 

axial pressure due to the pressure distribution on the external tube and the absence of radial 

forces on the flow. According  to van  Kuik (van Kuik, 1991), the second assumption does not 

hold, hereafter, the limit becomes slightly higher than Betz limit.  

Later, Wilson and Lissaman (Robert Elliot Wilson & Lissaman, 1974), proposed a 

method combining the blade element momentum theory and a vortex theory assuming small 

perturbation. This later model, has been used in many tools for the calculation of the 

aerodynamic loadings because of its accuracy, simplicity and ease of intuitive understanding 

(A. Hansen, 1992). An excellent discussion of the wind turbine theory for both horizontal-axis 

and vertical-axis turbines is presented by Vries (Vries, 1979). The following references (Adkins 

& Liebeck, 1983; Benini & Toffolo, 2002; Bot & Ceyhan, 2013; Buhl, 2004; Ceyhan, 2008; 

Ceyhan et al., 2009; J. Chen et al., 2013; Clifton-Smith & Wood, 2007; T Diveux et al., 2001; 

P Fuglsang & Aagaard Madsen, 1994; Peter Fuglsang & Aagaard Madsen, 1995; Peter 

Fuglsang et al., 2002; P. Fuglsang & Madsen, 1999; P Giguère & Selig, 1997; Hillmer et al., 

2007; Jureczko et al., 2005; Larrabee, 1979; K. Y. Maalawi & Badr, 2003; Méndez & Greiner, 

2006; Moriarty & Hansen, 2005; A. Ning, 2013; A. Ning et al., 2013; S. Ning, 2013; Øye, 1996; 

DC Sale, 2010; J. Schepers et al., 2002; Michael S Selig & Tangler, 1995; H Snel, 1998; H. 

Snel, 2003; L. Wang et al., 2011; Xuan et al., 2008) applied the blade element momentum 

theory (mostly based on Wilson and Lissaman (Robert Elliot Wilson & Lissaman, 1974; Robert 
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Elliott Wilson et al., 1976)) for the aerodynamic analysis in their optimization codes or 

aerodynamic tools.  

The axial momentum method presents major deficiencies (H Snel, 1998), and several 

improvements have been presented. One of the serious problems is the yaw behavior or yaw 

misalignment on controlled-yaw rotors and free-yaw rotors, a problem that has been reported 

as the second leading cause of failures in wind farms in California (Lynette, 1989). Hansen (A. 

Hansen, 1992) and Schepers et al.(J. Schepers, Snel, & Bussel, 1995) suggest than in addition 

of applying a basic annular momentum theory to the axial component of the wind speed, an 

azimuthal distribution is applied which is a function of the yaw angle. The form of this 

distribution may be from Glauert (H Glauert, 1935) or even by Gaonkar and Peters (Gaonkar 

& Peters, 1988). Readers interested in the improvements of the yaw misalignments models 

should review references (J. Schepers et al., 1995) and (H Snel, Schepers, & Nederland, 1995) 

for more details.  

Another incorrect assumption of the axial momentum method is the time independence 

of the flow. Snel et al. (H Snel et al., 1995) justifies the absence of global equilibrium or also 

referred as wake equilibrium. In fact, the rotor is changing in time as a result of the variations 

in wind speed, wind direction, wind shear effects, blade dynamics and control. In addition, the 

momentum method has a major flaw during high rotor loading, where during this mode a 

sizeable amount of kinetic energy is converted into large-scale turbulence; known as “turbulent 

wake state”. This is usually resolved by introducing an empirical correction factor between the 

axial forces and the induction factor.  

For more details concerning wind turbine blade correction factors, the reader is referred 

to Schepers (J. G. Schepers, 2012) Wilson and Lassaman (Robert Elliot Wilson & Lissaman, 

1974), Prandtl and Betz (Prandtl & Betz, 1927), Shen et al. (Shen, Mikkelsen, Sorensen, & 

Bak, 2005), Clifton-Smith (Clifton-Smith, 2009; Clifton-Smith & Wood, 2007) and Hoadly 

(Hoadley, Madsen, & Bouras, 1993). Although modern corrections exist, the decision of 
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introducing them in the codes is altered by the risk of increasing the complexity of the problem 

in terms of required computational time. 

The blade element momentum theory can be expected to remain a useful aerodynamic 

model for aeroelastic calculations, but improvements will be made inspired from the numerical 

validation that the latest computational fluid dynamics flow calculations will provide (H. Snel, 

2003; H. Yang, Shen, Xu, Hong, & Liu, 2014). Inverse design methods such as Larrabee 

(Larrabee, 1979) and Adkins et al. (Adkins & Liebeck, 1983), inherent limitations of the blade 

element theory and uncertainties in the prediction of the aerodynamic forces can reach as much 

as 20 % (J. Schepers et al., 2002). This error is mainly due to the basic assumptions made in 

the traditional BEM theory such as radial independence of flow effects, yaw flow effects 

negligence, 2D flow over the blade. Recently implemented and improved mathematical models 

for the fluid dynamics of wind turbine based on the blade element momentum theory can be 

found in (Lanzafame & Messina, 2007; Helge Aa Madsen, Bak, Døssing, Mikkelsen, & Øye, 

2010; A. Ning, 2013).  

4.2.2 COMPUTATIONAL FLUID DYNAMICS SOLVERS  

In recent years, a common way during the rotor design is to produce a draft rotor from a 

preliminary analysis tool using a relatively simple method such as BEM and then evaluate it 

using an aeroelastic code (Timmer, 2013). The decision of carrying further evaluation using a 

CFD solver depends on the efficiency of the draft model and on the experience of the designer. 

Since the start of the 1990s CFD techniques for wind turbines (Dornberger, Büche, & Stoll, 

2000; J. Johansen, Madsen, Gaunaa, Bak, & Sorensen, 2009; J. Michelsen, 1992; J. A. 

Michelsen, 1994; N. N. Sørensen, 1995) and reduced models where volume forces are 

included into the flow (Robert Mikkelsen, 2003; So̸rensen & Shen, 2002),  have been 

introduced aside from the commercially available CFD codes ("ANSYS, CFX," ; "ANSYS, 

Fluent,"). In the process of optimization, getting an accurate value of the objective function is 

important. We can summarize the performance of different calculation methods as follows: 
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• Direct Navier-Stokes (DNS) 

• Euler Simulation (Inviscid calculation)  

• Reynolds Averaged Numerical Simulation (RANS) 

• Large Eddy Simulation (LES) 

• Detached Eddy Simulation (DES) 

The most rigorous way of analyzing the global flow field for wind turbines would be the 

use of time-dependent incompressible Navier-Stokes equations. However, this requires the 

solution of difficult set of equations. In fact a Direct Navier-Stokes (DNS) for a relevant value 

of Reynolds would require several centuries of computing time (H. Snel, 2003). The first work 

done by NASA-NREL applying the DES method can be found in (Jeppe Johansen, Sorensen, 

Michelsen, & Schreck, 2002).  

The most common solution of the Navier-Stokes equations is achieved by separating 

the flow into an average part and a fluctuating part. The equations are then averaged; this is 

called the Reynolds Averaged Navier Stokes (RANS) method. The reader is referred to 

references (Castellani & Vignaroli, 2013; X. Chen & Agarwal, 2010; X. Chen & R. Agarwal, 

2012; X. M. Chen & R. Agarwal, 2012; Ramachandran, Webster, & Zhuang, 2010; Ribeiro et 

al., 2012; J. Sørensen, 1999; N. N. Sørensen, Michelsen, & Schreck, 2002; Srinivasan, 

Ekaterinaris, & Mccroskey, 1995) for more applications of the RANS method in airfoil and wind 

turbine blade optimization. The RANS method gives accurate lift and drag coefficients at low 

angle of attack before separation.  

For highly separated flow, problems with the RANS method arise, and it is recommended 

to use the Large Eddy Simulation (LES). According to Mellen et al. (Mellen, Fr-ograve, hlich, & 

Rodi, 2003) "when resolution requirements are specified, LES is able to produce the correct 

overall flow behavior”. Details are provided on the structure of the flow and its time-dependant 

behavior that are not available from RANS calculations. However, meeting resolution 

requirements lead to calculations that are extremely expensive and currently not suitable for 
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routine use". This latter method is combined with RANS, where the RANS is responsible for 

the attached flow whereas the LES resolves the far flow; the method is called the Detached 

Eddy Simulation (DES).  

Johansen et al. (Jeppe Johansen et al., 2002) showed that the DES computations did 

not improve the predicted blade characteristics because the LES takes too much computational 

time. Instead of applying the Navier-Stokes equations, we can use the Euler equations; which 

is the non-viscous form of the Navier-Stokes (Huyse, Padula, Lewis, & Li, 2002; Vatandas & 

Özkol, 2008; Whitney, Sefrioui, Srinivas, & Périaux, 2002). The assumption of a constant 

density holds for the analysis of wind turbines since the flow speeds have a maximum cut out 

wind speed of approximately 25 m/s, even at the blade tip where the tip speed can reach 100 

m/s. Hence, assumptions are taken on the flow, where the process of creation, diffusion and 

the dissipation of vorticity are not considered (H. Snel, 2003).  

For low angles of attack when the flow is attached to the airfoil, the Euler calculation 

gives a reasonable pressure coefficient distribution, but the drag coefficients CD tend to be 

underestimated due to the negligence of the viscous drag. Madsen (H. Madsen, 1988) 

evaluated the Euler equations for an axi-symmetrical case. A special solution of the Euler 

equations is the vortex wake method.  

Recently, the free vortex wake method has been applied to wind turbines. It is more 

demanding than the BEM in terms of computational time. The flow field around the rotor, both 

upstream and downstream can be modelled by on viscous methods as long as the vorticity is 

accounted for (H. Snel, 2003). A practice is to apply this method for the study of the induction 

for yawed flow conditions. For more details concerning the wake method applied to wind 

turbines, the reader is referred to (H Snel, 1998) and application of the free vortex wake method 

can be found references (Bareiss, Guidati, & Wagner, 1997; Simoes & Graham, 1991).  

An alternate to the wake method is the field method, where the Euler equations are 

solved with the addition of the vorticity created by the blade. In general, the CPU time needed 
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for the resolution of the vortex wake methods is still high, so further simplifications have to be 

made. Because it is needed that the wake be extended to at least 2 rotor diameters behind the 

rotor plane, a hybrid method is used such as REVLM (Bareiss et al., 1997), that has reported 

a 75 % reduction in computer time with an error of 5%. This method assumes that for one rotor 

diameter downstream, the flow is treated as a free wake and the rest as a prescribed wake.  

An additional Euler solver is the Asymptotic Acceleration Potential method formulated 

by the Delft University of Technology (Vanholten, 1977) for helicopters. It was extended by 

Bussel et al. (G. J. W. Van Bussel, 1995) for wind turbines. The method assumes small 

perturbations of the main flow, an assumption that holds for wind turbines and not for 

helicopters. This method much like the vortex wake methods,  has been applied mainly to 

examine the flow fields in order to add improvements to the momentum method (G. van Bussel, 

1996).  

Above, the emphasis was made on the modeling of unsteady aerodynamics of the blade 

sections, but another vital area that needs consideration in wind energy modeling is the 

modeling of rotor wake. Wind turbine wakes have been a topic of evaluation since the 1970’s 

when the interest in wind energy became more significant.   

When regarding wind turbine wakes, a distinction is usually made between two types: 

near and far wakes. The near wake is taken at the area just behind the rotor. Vermeer et al. 

(Vermeer, Sørensen, & Crespo, 2003) considers the region of near wake extends up to one or 

two rotor diameters downstream. The far wake is the region beyond the near wake and 

attention is put on the influence on the wind turbines in the wind farm (up to 10 rotor diameters 

downstream). Hence the near wake is focused on the performance the process of power 

extraction from the kinetic energy in the incoming flow, whereas the far wake is more fixated 

on the mutual influence of wind turbines distributed in the farm. On the other hand, because of 

land and civil work costs, wind turbines tend to be built as closely as possible to one another. 
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Therefore, most interest has been focused on the study of far wakes. A guideline for wind 

turbine spacing can be found in (Builtjes & Smit, 1978).  

Wind turbines mounted in large wind farms introduce two major issues: a reduction in 

power production due to wake velocity deficits and an increase in dynamic loads because of 

higher turbulence levels. According to Sanderse et al. (Sanderse, Pijl, & Koren, 2011), power 

loss of a downstream turbine can reach 40 % in full-wake conditions. Sheinman and Rosen 

(Sheinman & Rosen, 1992) showed that neglecting the effect of wake turbulence in the 

incoming flow can lead to an overestimation of turbine output by more than 10%. Power losses 

because of a lower incident wind speed in wind turbines grouped in wind farms have been 

reported in (R. Barthelmie et al., 2009; Rebecca J Barthelmie et al., 2008; Elliott, 1991; 

Neustadter & Spera, 1985; Sanderse et al., 2011; Sheinman & Rosen, 1992).  

In an early approach (Bossanyi et al., 1980; Emeis & Frandsen, 1993; Frandsen, 1992; 

Milborrow, 1980), it was assumed that the turbines acted as distributed roughness elements 

modifying the ambient atmospheric flow. However, the most common approach is to consider 

each individual wind turbine wake and examine its interaction with and superposition on 

neighboring ones (Crespo, Hernandez, & Frandsen, 1999; S. Lissaman, 1979), thus calculating 

the detailed flow field and not the averaged distribution.  

Crespo et al. (Crespo et al., 1999) surveyed the methods for wake modeling for both 

wind turbines and wind farms. Vermeer et al. (Vermeer, 2001; Vermeer et al., 2003) reviewed 

all previous experiments and analyses of the flow through the wind turbine rotor. It is clear from 

the review that only a few wind tunnel experiments on the wake flow behind the rotor have 

been pursued.  

Sanderse et al. (Sanderse et al., 2011) presented an important review of the numerical 

calculation of wind turbine wake aerodynamics, examining the different turbulence models that 

are employed to study wake effects on wind turbines. Finally, modelling and measurements of 

wind turbine wakes in wind tunnels have been conducted using hot wire anemometry (HWA) 
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or particle image velocimetry (PIV) in the following studies (Rebecca Jane Barthelmie et al., 

2007; Chamorro & Porté-Agel, 2009; Ebert & Wood, 1997; Grant et al., 2000; Grant & Parkin, 

2000; Grant, Parkin, & Wang, 1997; Grant, Smith, Liu, Infield, & Eich, 1991; Maeda, Kinpara, 

& Kakinaga, 2005; Mast, Vermeer, & van Bussel, 2004; Medici & Alfredsson, 2006; Vermeer, 

2001; Whale, Anderson, Bareiss, & Wagner, 2000).   

4.3 WIND TURBINE DESIGN NUMERICAL TOOLS 

Many graphical user-friendly design tools have been developed for the purpose of 

airfoil preparation, rotor performance optimization and aero-elastic simulation of horizontal-

axis wind turbines.  

Below, we list the most relevant numerical tools for the design of HAWT’s.  

4.3.1 AIRFOIL PREPARATION CODES   

In order to calculate the loads on the blade, the BEM methods requires the lift and drag 

coefficients of the airfoil distribution. AirfoilPrep (C. Hansen) is a design code developed by 

Windward Engineering & NREL that is used to generate airfoil data files from 2D data needed 

by aerodynamic softwares such as WT-Perf (Buhl, 2004) and AeroDyn (Moriarty & Hansen, 

2005). A key feature of AirfoilPrep is the adjustment of 2D data for rotational augmentation: 

stall delay effect by Du-Selig (Du & Selig, 1998) and Eggers(Eggers et al., 2003) correction for 

drag. In addition, Viterna et Janetzke (Viterna & Janetzke, 1982) or flat plate theory is used to 

extrapolate the coefficients at high angle of attacks.  

Several panel codes are used by designers in the design and analysis of airfoils. The 

Eppler code was used by Tangler and Somers (J. L. Tangler & Somers, 1995) to design the 

SERI/NREL S8xx-series. Nonetheless, the most standard code is the Xfoil developed by Drela 

(Drela, 1989). Similarly, Tangler and Kocurek (James Tangler & Kocurek, 2005) propose an 

extrapolation of post stall and is usually employed (Kenway & Martins, 2008). Xfoil is used in 

the optimization work of (Kenway & Martins, 2008).  
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An alternative to Xfoil is the Rfoil code (Van Rooij, 1996) that guarantees a better 

convergence around the max since different velocity profiles for the turbulent boundary layer. 

The Xfoil and Rfoil codes are used in studies (Clifton-Smith & Wood, 2007; Peter Fuglsang & 

Bak, 2004; Peter Fuglsang et al., 2004; Xuan et al., 2008) and (Bizzarrini et al., 2011; J. Chen 

et al., 2013; F. Grasso, 2011) respectively to calculate the pressure coefficient (CP) for each 

blade section. According to the definition of the pressure coefficient, the pressure p can be 

computed. 

𝐶𝑝 =
𝜌 − 𝜌∞
1/2𝜌𝑈2

 [4.1] 

where ρ is the air density of 1.205 kg/m3; CP is the pressure coefficient; ρ∞ is the standard 

atmospheric pressure; U is the relative velocity (combination of the axial velocity and the 

tangential velocity calculated from the BEM theory).  

     A similar code to XFOIL employed in (M. Grujicic et al., 2010), named Javafoil (Hepperle, 

2011), a two- dimensional aerodynamic analysis computer code that solves the flow equations 

over an airfoil using the boundary integral method.   

4.3.2 ROTOR PERFORMANCE MODELS 

Giguère and Selig (Giguere & Selig, 2000) obtain their performance predictions from 

PROPID (P Giguère & Selig, 1997; Michael S Selig & Tangler, 1995); an inverse design method 

for HAWTs that is based on BEM theory. The airfoil data are modified in PROPID to include 

the three-dimensional effects using stall-delay models(Du & Selig, 1998; J. L. Tangler & Selig, 

1997). WT-Perf (Buhl, 2004) is a software that computes a steady-state calculation (no 

dynamics), that computes the power, torque, thrust and blade-root bending moment that uses 

BEM theory. WT-Perf is incorporated in the optimization process of (Maki et al., 2012).  

A second code by the name of HARP_Opt (Horizontal Axis Rotor Performance 

Optimization) developed by Sale (DC Sale, 2010) utilizes a multiple objective genetic algorithm 

and BEM theory to design HAWT and hydrokinetic rotors. The BEM theory of WT_Perf (Buhl, 

2004) is used to predict the rotor performance metrics. In HARP_Opt the objective function can 
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be single or multiple (the maximization of the AEP or /and the minimization of the blade mass). 

Since they are conflicting objectives, a set of Pareto optimal solutions are identified by 

HARP_Opt. This code is integrated into the optimization design process of (Maki et al., 2012). 

In (M. Grujicic et al., 2010), PROPID (M. Selig & Tangler, 1994) is utilized to compute the 

variation of the aerodynamic efficiency with the blade tip speed ratio.  

In order to determine the overall sound pressure level, Xuan et al. (Xuan et al., 2008) 

use NAFNoise,  Ramachandran et al. (Ramachandran et al., 2010) use AIBM (Yu, Zhou, & 

Zhuang, 2008) (similar to FW-H integral method (Williams & Hawkings, 1969)) combined with 

CFD to evaluate the aerodynamic and aeroacoustic performance of airfoil sections. 

4.3.3 AERODYNAMIC LOADS SOLVERS 

AeroDyn (Moriarty & Hansen, 2005) is another NREL software based from the work of 

Peters and He (Peters & He, 1991) that is used to compute the aerodynamic loads on the wind 

turbine blade as part of the aero-elastic solution. AeroDyn contains two models for the 

calculation of the effect of wind turbine wakes: BEM theory and the generalized dynamic-wake 

(GDW) theory. AeroDyn is integrated and used in the optimization procedure of the following 

references (G. Bir & Jonkman, 2007; Gallardo, 2011; Jeong et al., 2012; Lanzafame & Messina, 

2007; A. Ning, 2013; DC Sale, 2010).  

Kenway et Martins (Kenway & Martins, 2008) developed a BEM code by the name of 

pyBEM based on the theory of Hansen (M. O. Hansen, 2013). The code was extended for 

coned rotors using the model of Mikkelsen et al. (R Mikkelsen, Sørensen, & Shen, 2001). 

Another blade element momentum method for analyzing the wind turbine performance 

is CCBlade developed by Ning (S. Ning, 2013) (which stands for Continuity and Convergence). 

CCBlade integrates a new solution strategy that is robust with a better convergence based on 

(A. Ning, 2013) which allows the designers to apply CCBlade in gradient-based optimization 

applications. This code was added in the optimization design process of (A. Ning et al., 2013).  
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4.3.4 GEOMETRIC DESCRIPTION 

One of the most important ingredients in numerical optimization is the choice of design 

variables and the parameterization of these variables. In order to reduce the number of 

necessary parameters to take to describe the airfoil’s shape without losing information about 

the geometrical characteristics of the airfoil, several mathematical formulations are proposed. 

For instance, common parametric curves and analytical functions used in the geometry 

description in wind turbine optimization are: 

• Bezier curve used in (Bizzarrini et al., 2011; X. Chen & Agarwal, 2010; X. Chen & R. 

Agarwal, 2012; X. M. Chen & R. Agarwal, 2012; F. Grasso, 2011; Francesco Grasso, 

2012; Ju & Zhang, 2012; Kampolis & Giannakoglou, 2008; Karakasis, Giotis, & 

Giannakoglou, 2003; Liu et al., 2007; López et al., 2008; Peigin & Epstein, 2004; 

Vatandas & Özkol, 2008; L. Wang et al., 2011; Xuan et al., 2008) 

• Splines description used in (Huyse et al., 2002) 

• B-splines description used in (Duvigneau & Visonneau, 2004; F. Zhang, Chen, & 

Khalid, 2003) 

• Hicks and Henne (H.-J. Kim, Sasaki, Obayashi, & Nakahashi, 2001; Yin, Xu, An, & 

Chen, 2008) 

• Quadratic equations (Whitney et al., 2002) 

• Combination of ellipses and splines (Rai & Madavan, 2000) 

4.4 WIND TURBINE STRUCTURE DESIGN SOFTWARE 

Very few commercial finite-elements based software’s have been proven to be reliable 

tools for the structural analysis of wind turbines. Nevertheless, they fall into two major types of 

codes: static (time independent) and dynamic (time-dependent domains).  
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4.4.1 STATIC TOOLS 

Jureczko et al. (Jureczko et al., 2005) applied the MSC Patran commercial software to 

compute the shear centers, centroids, moments of inertia and sectionals areas.  

Commercial finite element software such as ANSYS ("ANSYS,"), ABAQUS (Hibbitt, 

Karlsson, & Sorensen, 2001) and SolidWorks are used in (J. Chen et al., 2013; Jureczko et al., 

2005; F. F. Song, Ni, & Tan, 2011; Zhu et al., 2012), (M. Grujicic et al., 2010) and (F. F. Song 

et al., 2011) respectively for the structural analysis of the wind turbine components.  

A structural analysis tool named pBEAM (Polynomial Beam Element Analysis Module) 

was developed, which uses Euler-Bernoulli beam elements with 12 degrees of freedom (three 

translational and three rotational at each end of the element), see Yang (T. Yang, 1986) for 

more details. This code was used for the structural analysis of the wind turbine blade in the 

following references (A. Ning et al., 2013).    

An in-house structural analysis code named pyFEA is utilized by Kenway and Martins 

(Kenway & Martins, 2008). It models the wind turbine blade internal spar using Timoshenko 

elements with 6 degrees-of-freedom. A similar code was built by Liao et al. (Liao et al., 2012) 

to verify the Prelayers code that compute the properties of the sectional layers using PreComp 

(Gunjit S Bir, 2006).  

The authors of  (Bottasso et al., 2010; A. Ning et al., 2013; Veers et al., 2003) used 

NuMAD (Laird, 2008); a FEM based software for the structural analysis of rotor blades. Also, 

two codes RotorOpt (Anonymous, 2007; L. Fuglsang, 2008) and FOCUS5 (Duineveld, 2008) 

were included as required environments and tools for optimization and wind turbine design in  

(Bottasso et al., 2010; A. Ning et al., 2013). The optimum results were tested by FOCUS5 in 

the following references (Bottasso et al., 2010; Liao et al., 2012; A. Ning et al., 2013).      

PreComp (Gunjit S Bir, 2006)  is a software developed by NREL that computes sectional 

properties of composite blades for beam types models. The inputs for PreComp are the 
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external blade shape and internal lay-up of composite laminas and uses a modified laminate 

theory (CLT) with a shear flow approach. During the calculation of the stresses, all the loads 

and inertial properties are transferred to the elastic center and principal aces of each section. 

Some of its assumptions and limitations are: straight blades only, webs are assumed normal 

to the chord, thin-walled closed sections, no transverse shearing and no in-plane distortion. 

PreComp is incorporated in the design process of (Liao et al., 2012; Maki et al., 2012).         

A recent program called BLADOPT (Bulder, Barhorst, Schepers, & Hagg, 2013), a 

successor of PVOPT (J. Schepers, 1996), is a numerical optimization computer program for 

the design of HAWT rotor blades. The chord and the twist are optimized as to minimize the 

cost of energy.  

In order to compute the mode shapes and natural frequencies of the blade and the tower 

a software developed by NREL by the name of BModes (Gunjit S Bir, 2005). Using 15 degrees 

of freedom and a set of linearized equations, the mode shapes are derived under the following 

assumptions: straight blade, cantilevered blade root, isotropic material and no material 

couplings.     

4.4.2 DYNAMIC TOOLS 

The aeroelastic model that was used by Fuglsang et al.(Peter Fuglsang et al., 2002) is 

FLEX4 (Øye, 1996), a time domain solver of the loads based on blade element theory. 

Additional effects such as tower shadows, dynamic stall, wind shear and wind turbulence were 

included for a more efficient wind turbine design code. Hillmer et al. (Hillmer et al., 2007), 

generate the loading cases with the FLEX5 software.  

 Another aeroelastic computer-aided engineering tool for HAWT is FAST (Fatigue, 

Aerodynamics, Structures and Turbulence) (Jason M Jonkman & Buhl Jr, 2005) by NREL. The 

code models the wind turbine as a combination of flexible and rigid bodies (24 DOF for a 3-

bladed wind turbine, 22 DOF for a 2-bladed turbine). The aerodynamic forces along the blade 
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are generated by AeroDyn (Moriarty & Hansen, 2005). FAST is used in the following references 

(G. Bir & Jonkman, 2007; Jeong et al., 2012; Liao et al., 2012; Maki et al., 2012; Namik & Stol, 

2010). 

An additional design code to study the dynamics of the wind turbine is MSC. ADAMS 

(ADAMS, 2005) (stands for Automatic Dynamic Analysis of Mechanical Systems). An interface 

called MSC.ADAMS-to-AeroDyn (ADAMS2AD) (Laino & Hansen, 2001) was developed by 

NREL to analyze complex wind turbine dynamic models in MSC.ADAMS because ADAMS 

allows the user to create custom dynamic-link-libraries (DLLs) enabling a direct link between 

the program and the user’s subroutines. Hence, complex dynamics can be analyzed in MSC. 

ADAMS while benefiting from the aerodynamics analysis capabilities of AeroDyn (Moriarty & 

Hansen, 2005). ADAMS2AD was incorporated in the following works (G. Bir & Jonkman, 2007). 

4.5 CO-BLADE TOOL 

Co-Blade is a tool that helps designers compute structural the properties of a wind 

turbine blade. It uses a combination of classical lamination theory (CLT) with an Euler-Bernoulli 

theory and shear flow theory applied to composite beams is used to perform its analysis. This 

approach allows for a direct computation of the structural properties of a given blade, within 

several seconds of execution. 

In this section, we examine the main elements which were extracted from Co-Blade to 

build the winDesgin graphical tool.  

4.5.1 CO-BLADE DESIGN TOOL 

The fitness function that Co-Blade minimizes is the blade mass penalitized by the 

maximum stress, buckling, deflection and the natural frequency. The design variables are the 

chordwise width of the spar cap at the inboard and outboard locations, the thickness of the 

“blade-root” material, and the thicknesses of the laminas within the LEP, TEP, spar cap, and 

shear webs along the length of the blade. They are listed in Table XIII below. 
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At first, the blade is represented as a cantilever beam under flapwise and edgewise 

bendings, axial deflection, and elastic twist. Additional coupling between bending, extension, 

and torsion are accounted for, due to the offsets of between the beam shear center, tension 

center, and center of mass from the blade pitch axis (refer to Error! Reference source not 

found.). The beam cross sections are assumed thin-walled, closed, and single or multi-cellular 

and the periphery of each beam cross section is discretized as a connection of flat composite 

laminates. 

 
Figure 17 : Orientation of the blade axe systems (Danny Sale, 2012). 

In regard to Euler-Bernoulli beam theory, the beam cross sections are considered as 

heterogeneous and each of the material properties depends on the location in each cross 

section. The structural analysis at each discrete portion of the composite beam characterizes 

effective mechanical properties computed via classical lamination theory. Each discrete portion 

of the cross section then contributes to the global section properties of the composite beam, 

(described further in (Allen & Haisler, 1985; Rivello, 1969)). Once the global cross sectional 

properties are calculated, the deflections and effective beam axial stress (𝜎𝑧𝑧) and effective 

beam shear stress (𝜏𝑧𝑠) can be now computed under the assumptions of an Euler-Bernoulli 

beam (refer to (Allen & Haisler, 1985; Bauchau & Craig, 2009; Rivello, 1969)).  
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Table 13 : Design variables for Co-Blade. 

Parameters Description 

w_cap_inb, w_cap_oub Width of the spar cap normalized by the chord length at the INB_STN and OUB_STN blade stations 

t_blade_root Thickness of the “blade-root” material at the INB_STN blade station 

t_blade_skin1 …t_blade_skinN Thickness of “blade-shell” material at control points 1 through NUM_CP. The control points are equally 
spaced along the blade between the TRAN_STN and OUB_STN blade stations 

t_cap_uni1 …t_cap_uniN Thickness of “spar-uni” material at control points 1 through NUM_CP 

t_cap_core1 …t_cap_coreN Thickness of “spar-core” material at control points 1 through NUM_CP 

t_lep_core1 …t_lep_coreN Thickness of “LEP-core” material at control points 1 through NUM_CP 

t_tep_core1 …t_tep_coreN Thickness of “TEP-core” material at control points 1 through NUM_CP 

t_web_skin1, t_web_skin2 Thickness of “web-shell” material at the two control points located at INB_STN and OUB_STN 

t_web_core1, t_web_core2 Thickness of “web-core” material at the two control points located at INB_STN and OUB_STN. 

w_cap_inb, w_cap_oub Width of the spar cap normalized by the chord length at the INB_STN and OUB_STN blade stations 

t_blade_root Thickness of the “blade-root” material at the INB_STN blade station 

t_blade_skin1 …t_blade_skinN Thickness of “blade-shell” material at control points 1 through NUM_CP. The control points are equally 
spaced along the blade between the TRAN_STN and OUB_STN blade stations 

t_cap_uni1 …t_cap_uniN Thickness of “spar-uni” material at control points 1 through NUM_CP 

t_cap_core1 …t_cap_coreN Thickness of “spar-core” material at control points 1 through NUM_CP 

t_lep_core1 …t_lep_coreN Thickness of “LEP-core” material at control points 1 through NUM_CP 
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The calculation of 𝜏𝑧𝑠, prediction of shear center and torsional stiffness are based on a 

shear flow approach, which is discussed in details in (Bauchau & Craig, 2009). Finally, by 

converting the distribution of effective beam stresses 𝜎𝑧𝑧 and 𝜏𝑧𝑠 into equivalent in-plane loads, 

the lamina-level strains and stresses in the principal fiber directions (𝜀11, 𝜀22, 𝛾12, 𝜎11, 𝜎22, and 

𝜏12) can be evaluated using CLT. 

As mentioned earlier, Co-Blade applies a penalized blade mass defined as the following: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡𝑓(𝑥⃑) = 𝐵𝑙𝑎𝑑𝑒𝑀𝑎𝑠𝑠⁡x∏𝑚𝑎𝑥(1, 𝑝𝑛)
2

8

𝑛=1

 
 

[4.2] 

𝑝1 =
𝜎11,𝑚𝑎𝑥
𝜎11,𝑓𝑇

 𝑝2 =
𝜎11,𝑚𝑖𝑛
𝜎11,𝑓𝐶

 𝑝3 =
𝜎22,𝑚𝑎𝑥
𝜎22,𝑓𝑇

 𝑝4 =
𝜎22,𝑚𝑖𝑛
𝜎22,𝑓𝐶

 

𝑝5 =
|𝜏12,𝑚𝑎𝑥|

𝜏12,𝑦
 𝑝6 = (

𝜎

𝜎𝑏𝑢𝑐𝑘𝑙𝑒
)𝛼 + (

𝜏

𝜏𝑏𝑢𝑐𝑘𝑙𝑒
)𝛽 𝑝7 =

𝑇𝑖𝑝⁡𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

𝑀𝑎𝑥⁡𝑇𝑖𝑝⁡𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
 

𝑝8 = 𝑚𝑎𝑥 {
𝑚𝑖𝑛 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒⁡𝑑𝑖𝑓𝑓. 𝑏𝑒𝑡𝑤𝑒𝑒𝑛⁡𝑟𝑜𝑡𝑜𝑟⁡𝑓𝑟𝑒𝑞. 𝑎𝑛𝑑⁡𝑡ℎ𝑒⁡𝑏𝑙𝑎𝑑𝑒⁡𝑛𝑎𝑡𝑢𝑟𝑎𝑙⁡𝑓𝑟𝑒𝑞.

|𝜔𝑚 − 𝜔𝑟𝑜𝑡𝑜𝑟|
}, 

⁡𝑚 = 1,…𝑀𝑜𝑑𝑒𝑠 

Subject to: 

𝑥𝐿𝐵⃗⃗ ⃗⃗ ⃗⃗  ≤ ⁡ 𝑥 ≤ 𝑥𝑈𝐵⃗⃗ ⃗⃗ ⃗⃗  ⃗                         (lower and upper bounds) 

𝐴𝑥 ≤ 𝑏⃗                                       (linear constraints) 

 

4.5.2 CLASSICAL LAMINATION THEORY 

The classical lamination theory (CLT) is an extension of the classical plate theory for 

isotropic and homogeneous material initially proposed by Kirchhoff (Kirchhoff, 1850) and Love 

(Love, 2013). However, the extension of this theory to composite laminates requires some 

adjustments to consider the inhomogeneity in thickness direction. The assumptions made for 

classical lamination theory are given:  



120 

a) Perfectly bonded layers between laminates; no slip between adjacent layers. 

Therefore, the displacement components are continuous through the thickness 

layer. In-plane displacements are a linear function of the depth z.  

b) The effective properties of each lamina are known. 

c) Each lamina is in a state of plane stress.  

d) The specific lamina can be isotropic, orthotropic or transversely isotropic.  

e) The normal to the mid-plane remain straight and normal to the midplane after 

deformation. 

f) The normal to the mid-plane do not change their dimensions.  

g) Transverse shear strains and normal strain are negligible. 

4.5.2.1 LAMINATED BEAMS IN PURE BENDING  

For simplicity, let us assume that the beam has a geometrical and property symmetry 

about the middle axis. Figure 18 shows a beam element of length dx subjected to a moment 

M, therefore having a radius of curvature ρ and an angle between the normals to the beam dɵ. 

From the assumptions made, an expression for the longitudinal strain at a distance z from the 

middle axis is:  

𝜖𝑥 =
(𝜌 + 𝑧)𝑑𝜃 − 𝜌𝑑𝜃

𝜌𝑑𝜃
=
𝑧

𝜌
 [4.3] 

The longitudinal stress at a distance z from the middle axis becomes:  

𝜎𝑥 = 𝐸𝑥
𝑧

𝜌
 [4.4] 

The static equilibrium gives the following expression for the bending moment:  

𝑀 = ∫ 𝜎𝑥. 𝑏. 𝑧. 𝑑𝑧
ℎ/2

−ℎ/2

 [4.5] 

By taking into account the stress 𝜎𝑥
𝑘 and elasticity modulus 𝐸𝑥

𝑘 in each layer k, we obtain:  

𝑀 =∑∫ 𝐸𝑥
𝑘

𝑧𝑘

𝑧𝑘−1

.
𝑏. 𝑧2

𝜌
𝑑𝑧

𝑁

𝑘=1

=
𝑏

3𝜌
∑𝐸𝑥

𝑘

𝑁

𝑘=1

. (𝑧𝑘−1
3 − 𝑧𝑘

3) [4.6] 
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Figure 18 : Composite beam bending with layer numbering. 
 

The bending moment can also be expressed as a function of the elasticity modulus of 

the laminated beam 𝐸𝑥
𝑙 : 

𝑀 =
𝐸𝑥
𝑙 . 𝐼𝑦

𝜌
⁡𝑤𝑖𝑡ℎ⁡𝐼𝑦 = 𝑏∫𝑧

2𝑑𝑧 [4.7] 

An expression for the elasticity modulus of the beam can be obtained:  

𝐸𝑥
𝑙 =

𝑏

3𝐼𝑦
∑𝐸𝑥

𝑘 .

𝑁

𝑘=1

(𝑧𝑘−1
3 − 𝑧𝑘

3) [4.8] 

Using this expression, the stress in the kth layer 𝜎𝑥
𝑘can be expressed as:  

𝜎𝑥
𝑘 =

𝑀. 𝑧

𝐼𝑦
(
𝐸𝑥
𝑘

𝐸𝑥
𝑙
) [4.9] 
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This relation for the stress is similar to the expression used for isotropic beams, corrected 

by the dimensionless term in bracket. The stress is therefore a discontinuous function of the 

beam depth, in contrast to the stress in an isotropic beam.  

4.5.2.2 THEORY OF LAMINATED PLATES 

A more general case of a laminated plate under plane stress condition was analysed 

and incorporated in the winDesign tool. In-plane loading (axial and shear) as well as 

moments (bending and torsion) will be considered as loadings. The layers are assumed 

perfectly bonded together.  

Coupling effects that result in a complex combination of extensional, flexural and 

torsional deformations are taken into consideration. The different notations and associated 

coordinate systems are defined in Figure 19. 

The position of the layers in the normal direction is defined with the mid-plane as a 

reference and not the neutral plane. According to assumption (a), the in-plane displacements 

can be expressed with the displacement in the middle surface (𝑢0 and 𝑣0) as:  

𝑢 = 𝑢0(𝑥, 𝑦) + 𝑧. 𝑓𝑢(𝑥, 𝑦) 

[4.10] 𝑣 = 𝑣0(𝑥, 𝑦) + 𝑧. 𝑓𝑣(𝑥, 𝑦) 

𝑤 = 𝑤0(𝑥, 𝑦) = 𝑤(𝑥, 𝑦) 

Using the expressions for the in-plane displacements, the in-plane strains are: 

 

 𝜖1
∗ =

𝜕𝑢

𝜕𝑥
= 𝜖𝑥

0 − 𝑧
𝜕2𝑤

𝜕𝑥2
 

[4.11] 
𝜖2
∗ =

𝜕𝑣

𝜕𝑦
= 𝜖𝑦

0 − 𝑧
𝜕2𝑤

𝜕𝑦2
 

𝜖6
∗ =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
= 𝛾𝑥𝑦

0 − 2𝑧
𝜕2𝑤

𝜕𝑥𝜕𝑦
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Figure 19 : Coordinate systems used in the laminated plate theory.  
 

An expression for the stress in the kth layer as a function of the mid-plane strain and the 

plate curvature is obtained from eq. 4.10 in matrix form:  

{𝜎∗}𝑘 = [𝐶∗]𝑘 . {𝜖
0} + 𝑧[𝐶∗]𝑘. {𝜅} [4.12] 

The external loads acting on a laminated plate can be related to the stress in the layer, 

and then to the laminate deformation. For example, the axial forces Nx per unit width can be 

obtained by summing the axial stresses 𝜎𝑥 acting on each layer: 

𝑁𝑥 =∑(∫ (𝜎1)𝑘. 𝑑𝑧
𝑧𝑘

𝑧𝑘−1

)

𝑁

𝑘=1

 [4.13] 

where (𝜎1)𝑘 is the stress in the kth layer in the (Selim & Alsultan) direction in the layer 

coordinate system. Similarly, an expression for the normal force in the y-direction as well as 
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the in-plane shear force  𝑁𝑥𝑦. Substituting eq. 4.12 in the force resultants gives the general 

matrix form: 

{𝑁} =∑( ∫ ([𝐶∗]𝑘. {𝜖
0} + 𝑧[𝐶∗]𝑘 . {𝜅})𝑑𝑧

𝑧𝑘

𝑧𝑘−1

)

𝑁

𝑘=1

 

[4.14] 

{𝑁} = (∑[𝐶∗]𝑘(𝑧𝑘 − 𝑧𝑘−1)

𝑁

𝑘=1

) {𝜖0} + (
1

2
∑[𝐶∗]𝑘(𝑧𝑘

2 − 𝑧𝑘−1
2

𝑁

𝑘=1

)) {𝜅} 

This is mostly rewritten in the following way:  

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = [

𝐴11 𝐴12 𝐴16
𝐴22 𝐴26

𝑠𝑦𝑚 𝐴66

] . {

𝜖𝑥
0

𝜖𝑦
0

𝛾𝑥𝑦
0

} + [

𝐵11 𝐵12 𝐵16
𝐵22 𝐵26

𝑠𝑦𝑚 𝐵66

] . {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

} [4.15] 

The A-matrix is symmetric and is called the laminate extensional stiffness matrix, its 

components are defined as:  

𝐴𝑖𝑗 =∑(𝐶𝑖𝑗
∗ )

𝑘
(𝑧𝑘 − 𝑧𝑘−1)

𝑁

𝑘=1

 [4.16] 

The B-matrix is also symmetric and is referred to the laminate coupling stiffness matrix, 

its components are defined as: 

𝐵𝑖𝑗 =
1

2
∑(𝐶𝑖𝑗

∗ )
𝑘
(𝑧𝑘
2 − 𝑧𝑘−1

2 )

𝑁

𝑘=1

 [4.17] 

Similarly, the moment resultants expression can be computed, and the result is the 

following relation:  

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = [

𝐵11 𝐵12 𝐵16
𝐵22 𝐵26

𝑠𝑦𝑚 𝐵66

] . {

𝜖𝑥
0

𝜖𝑦
0

𝛾𝑥𝑦
0

} + [

𝐷11 𝐷12 𝐷16
𝐷22 𝐷26

𝑠𝑦𝑚 𝐷66

] . {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

} [4.18] 

The D-matrix is called the laminate bending stiffness matrix and its components are 

defined as: 
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𝐷𝑖𝑗 =
1

3
∑(𝐶𝑖𝑗

∗ )
𝑘
(𝑧𝑘
3 − 𝑧𝑘−1

3 )

𝑁

𝑘=1

 [4.19] 

The relations from equations 4.14 and 4.16 are often written in partition form as: 

{
𝑁
𝑀
} = [

𝐴 𝐵
𝐵 𝐷

] {𝜖
0

𝜅
} [4.20] 

Since loading is mostly expressed “per unit width”, the force resultants N in N/m and 

moments M in N), the A-components in N/m, the B-components in N and the D-components in 

N.m.  

4.6 SUMMARY 

Many graphical user-friendly design tools have been developed for the purpose of airfoil 

preparation, rotor performance optimization and aero-elastic simulation of horizontal-axis wind 

turbines. In this chapter, we examined the state-of-art wind turbine flow solvers, numerical tools 

and design software. A numerical tool named Co-Blade which uses a combination of classical 

lamination theory (CLT) with an Euler-Bernoulli theory and shear flow theory applied to 

composite beams served as a foundation for winDesign. The latte will be the topic of discussion 

in the following chapter. 
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CHAPTER 5 

PROPOSED WIND TURBINE BLADE DESIGN TOOL – ‘WINDESIGN’ 

 
 

5.1 INTRODUCTION 

In the previous chapters, we observed that the primary objective of wind turbine design 

tools is to maximize the aerodynamic, or power extracted from the wind. However, this objective 

should be met by satisfying mechanical strength and environmental aspects. Since wind 

turbine rotor blades are a high-technology product that must be produced at moderate cost for 

the resulting energy to be competitive in price, a fast and reliable preliminary design tool was 

the core objective of our doctoral studies. In this chapter, we will focus on the newly proposed: 

winDesign, graphical tool which incorporates the novel VCH and KGA techniques.  

5.2 WIND TURBINE MULTIOBJECTIVE OPTIMIZATION  
 

5.2.1 INTRODUCTION  

Many authors carried a multi-disciplinary study (Benini & Toffolo, 2002; Bottasso et al., 

2010; Deb, 2001; Giguere & Selig, 2000; Philippe Giguère et al., 1999; M. Grujicic et al., 2010; 

Ju & Zhang, 2012; Kusiak et al., 2010; M. S. Selig & Coverstone-Carroll, 1996; L. Wang et al., 

2011), where many objectives are considered in the design of wind turbines. The most common 

technique to combine conflicting functions (such as annual energy production and cost of 

energy) is by means of an appropriate set of weights. The variations that exist among these 

contradictory functions are essential for designers and therefore pursue to sketch the Pareto 

fronts.  

It can be easily seen from Figure 20 that the number of studies conducted on the topic 

of MOEA has increased well over the last two decades. In less than 10 years, the number of 

year-wise publications has tripled, and it can be expected that the growth will continue as new 

studies, books, surveys, research papers and dissertations will be published.  
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Figure 20 : Number of published documents on multi-objective evolutionary 
algorithms. 

 

The term optimization refers to the finding of one or more feasible solutions which 

correspond to extreme values of one or multiple objectives. Optimization methods are important 

in scientific experiments, particularly in engineering design and decision making. When the 

problem is to find the optimal solution of one objective, the task is called single-objective 

optimization.  

There exist many algorithms that are gradient-based and heuristic-based that solves 

single-objective optimization problems. Beside deterministic search techniques, the field of 

optimization has evolved by the introduction of stochastic search algorithms that seek to find 

the global optimal solution with more ease. Among them, evolutionary algorithms (EA) mimic 

nature’s evolutionary principles and are now emerging as popular algorithms to solve complex 

optimization problems.   

In engineering optimization, the designers are sometimes interested in finding one or 

more optimum solutions when dealing with two or more objective functions. This is known as 

multi-objective optimization and in fact, most real-world optimization problems involve multiple 

objectives. In this case, different solutions produce trade-offs or conflicting situations among 
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the different objectives. Not enough emphasis is usually given to multi-objective optimization 

and there is a reasonable explanation for that. The majority of the methods that solve multi-

objective optimization problems (MOOP) transform multiple objectives into a single function. 

Therefore, most of the effort has been invested in improving the single-objective optimization 

algorithms. The studies concentrate on the conversion of multi-objective into single-objective 

problems, the convergence, constraint-handling approaches and speed of these single-

objective techniques.  

Let us discuss the fundamental difference between single and multi-objective 

optimization by taking two conflicting objective functions as an example. Obviously, each 

objective function possesses a unique and different optimal solution. For instance, if one is 

interested in buying a house, the decision-making has to take into consideration the cost and 

the comfort. If the buyer is willing to sacrifice comfort, they will get a house with the lowest 

price. However, if money is not an issue, the buyer is able to afford a house with the best 

comfort. Between these two extremes, there exist many house choices at various costs and 

comfort. Now the big question is among these trade-offs, which solution is the best with respect 

to both objectives? Ironically, no house among the trade-off choices is the best with respect to 

both cost and comfort. Without any further information about these solutions (in our case 

example the houses), no solution from the set of trade-offs can be said to be better than any 

other. This is the fundamental difference between a multi-objective and a single-objective 

optimization problem. From a practical standpoint, after a set of trade-off solutions are found, 

the user will use higher-level information to determine the convenient solution.  

5.2.2 MATHEMATICAL FORMULATION 

In order to undertake the design of a horizontal wind turbine under multi-objective 

optimization, there are numerous issues to be considered. The motif of this section is to present 

the results of a case study on a multi-objective optimization wind turbine design problem using 

winDesign.   
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A multi-objective optimization problem is composed of a number of objective functions 

which are to be maximized or minimized. Similarly, to single-objective problems, the MOOP is 

subjected to a set of design constraints which any optimal solution must satisfy. We can state 

the general form of a multi-objective optimization problem as: 

Minimize or Maximize   𝑓𝑚(𝒙⃗⃗ ),                                                       m = 1, 2… M 

Subject to                    𝑔𝑗(𝒙⃗⃗ ) ≥ 0                                                       j = 1, 2 … J 

                                    ℎ𝑘(𝒙⃗⃗ ) = 0                                                   k = 1, 2 … K  

                                   𝒙⃗⃗ 𝑖
𝐿 ≤ 𝒙⃗⃗ 𝑖 ≤ 𝒙⃗⃗ 𝑖

𝑈                                                 i = 1, 2 … N 

[5.1] 

The solution 𝒙⃗⃗  is a vector of n variables 𝒙⃗⃗ = (𝑥1, 𝑥2, … 𝑥𝑛)
T. Often, the user will restrict 

the design variables between lower and upper bounds 𝒙⃗⃗ 𝑖
𝐿 and 𝒙⃗⃗ 𝑖

𝑈 respectively. In the above 

problem, there is J inequality and K equality constraints that can be linear and/or nonlinear 

functions. A solution 𝒙⃗⃗  is said to be feasible when all the constraints (J + K + 2N) are satisfied. 

Because of the presence of M objective functions that need to be minimized and/or maximized, 

it is regularly convenient to apply the duality principle. The latter suggests that we can convert 

a maximization problem into a minimization one by multiplying the objective function by -1. This 

is a practical method because many optimization algorithms are developed to solve one type 

e.g. minimization problems. A major difficulty arises when any of the objective or constraint 

functions are nonlinear; the resulting MOOP becomes a nonlinear multi-objective problem. Until 

now, the techniques to solve such problems do not have convergence proofs. Unfortunately, 

most real-world MOOP are nonlinear in nature, and thus creates a major challenge for scholars.  

As stated earlier, the task in multi-objective optimization problems is to find a set of 

solution called the Pareto-optimal solution set, in which any two solutions must be non-

dominated with respect to each other. In addition, any solution in the search space must be 

dominated by at least one point in the Pareto-set. Therefore, the ultimate goal in multi-objection 
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optimization is to find a set of solutions as close as possible to the Pareto-optimal front and as 

diverse as possible. The concept of domination is used in most MOOP algorithms. Without 

going into deep details, a solution 𝒙⃗⃗ 1 is said to dominate 𝒙⃗⃗ 2⁡if both conditions are satisfied: 

1. The solution 𝒙⃗⃗ 1 is no worse than 𝒙⃗⃗ 2 in all objectives, 

2. The solution 𝒙⃗⃗ 1 is strictly better than 𝒙⃗⃗ 2 in at least one objective. 

To gain more knowledge on the procedures to find the non-dominated set in a given set 

P of size N, the reader is referred to Deb 2001 (Deb, 2001).  

5.2.3 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS  

The classical way to solve multi-objective problems is to scalarize multiples objectives 

with a relative preference vector. Since only a single optimized solution can be found in one 

simulation, evolutionary algorithms shined as interesting methods to solve MOOP. The main 

reason is unlike classical methods, EA’s use a population of solutions in each iteration and 

therefore the outcome of an EA is a population of solutions. This ability to find multiple solutions 

in one single run made EA’s an ideal approach to solve multi-objective optimization problems.  

According to the available literature, the first real application of evolutionary algorithms 

in the determination of trade-off solutions for a MOOP was proposed in the doctoral dissertation 

of David Schaffer (Schaffer, 1985). He developed the vector-evaluated genetic algorithm 

(VEGA) which demonstrated the ability of genetic algorithm to capture multiple trade-off 

solutions. Not much attention was given until another half a decade when David E. Goldberg 

published his book in 1989 (David E. Goldberg, 1989) on a multi-objective evolutionary 

algorithm (MOEA) using the concept of dominance.  

From the latter derived many MOEA’s such as Srinivas and Deb’s non-dominated sorting 

(NSGA) (Srinivas & Deb, 1994) and the niched Pareto-GA by Horn et al. (Horn et al., 1994). 

Other techniques different than the domination-based MOEA’s where proposed by Kursawe in 
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1990 (Kursawe’s diploidy approach (Kursawe, 1990)) and Hajela and Lin’s weighted-based 

approach (Hajela & Lin, 1992) just to name a few.  

5.3 WINDESIGN – GENERAL STRUCTURE  

5.3.1 MONOOBJECTIVE OPTIMIZATION – WINDESIGN  

The reader is referred to our publication published in the Transactions of the Canadian 

Society for Mechanical Engineering (Chehouri, Younes, Ilinca, Perron, & Lakiss, 2015). The 

fitness function expressed in Eq. 4.3 is composed of the product of all 8 penalties with the blade 

mass. In other words, their blade mass minimization problem is “tampered” by the exceeded 

constraints, making the objective function linearly depend on them. If we take a look at the 

constraints p1 to p5, we notice that they are based on the “maximum stress failure envelope”. 

Failure is predicted in a lamina, if any of the normal or shear stresses in the local axes of a 

lamina is equal to or exceeds the corresponding ultimate strengths of the unidirectional lamina 

therefore this criterion ignores the interaction of stresses. For this reason, our motive in this 

section is to introduce a quadratic failure criterion such as the Tsai-Wu failure criteria (Eq. 5.1) 

for anisotropic materials (Tsai & Wu, 1971) in our proposed optimization scheme.  

⁡𝑓1𝜎1 + 𝑓2𝜎2 + 𝑓11𝜎1
2 + 𝑓22𝜎2

2 + 𝑓66𝜏6
2 + 2𝑓12𝜎1𝜎2 = 1 [5.1] 

with fij and fi are constants that can be evaluated at boundary conditions. Their 

expressions can be found in detail in (Tsai & Wu, 1971).  

We define our main objective as the minimization of the blade mass solely. However, the 

Tsai-Wu failure criterion is dependent of the principal stresses, hence, the failure criteria in our 

case the Tsai-Wu failure criterion is a nonlinear constraint and the formulation of such 

minimization problem can now be described in (Eq. 5.2): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡𝑓(𝑥⃑) = 𝐵𝑙𝑎𝑑𝑒𝑀𝑎𝑠𝑠 [5.2] 

Tsai-Wu (𝑥 ) -1 ≤ 0       (
𝜎

𝜎𝑏𝑢𝑐𝑘𝑙𝑒
)
𝛼
+ (

𝜏

𝜏𝑏𝑢𝑐𝑘𝑙𝑒
)
𝛽
− 1 ≤ 0⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑇𝑖𝑝⁡𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

𝑀𝑎𝑥⁡𝑇𝑖𝑝⁡𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
− 1 ≤ 0  

𝑚𝑎𝑥 {
𝑚𝑖𝑛 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒⁡𝑑𝑖𝑓𝑓. 𝑏𝑒𝑡𝑤𝑒𝑒𝑛⁡𝑟𝑜𝑡𝑜𝑟⁡𝑓𝑟𝑒𝑞. 𝑎𝑛𝑑⁡𝑡ℎ𝑒⁡𝑏𝑙𝑎𝑑𝑒⁡𝑛𝑎𝑡𝑢𝑟𝑎𝑙⁡𝑓𝑟𝑒𝑞.

|𝜔𝑚 − 𝜔𝑟𝑜𝑡𝑜𝑟|
} − 1 ≤ 0  
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Subject to: 

𝑥𝐿𝐵⃗⃗ ⃗⃗ ⃗⃗  ≤ ⁡𝑥 ≤ 𝑥𝑈𝐵⃗⃗ ⃗⃗ ⃗⃗  ⃗                                                                     (lower and upper bounds) 

𝐴𝑥 ≤ 𝑏⃗                                                                                            (linear constraints) 

 

From the first optimization problem as per Eq. 4.3, after 17 iterations with 1017 

evaluations, a blade mass of 44186 kg is obtained. If we consider our optimization problem 

introduced in (Eq. 5.2), after 45 iterations with 2700 evaluations, we obtain a total blade mass 

of 72348 kg. A much more realistic blade mass (30 % more than the first mass) is obtained, 

according to the predicted blade mass for SNL-100 as per Jackson and al. (Jackson et al., 

2005). The Tsai-Wu failure criterion written in (Eq. 5.1) permits the evaluation of a “static failure” 

variable f. The value of f can be greater or less than one. If its value exceeds one, it indicates 

that the composite component has reached static failure.  

In the two previous simulation results, a comparison between two different objective 

function formulations was made. However, an additional study can be carried out to show the 

effectiveness of our minimization formulation under the quadratic failure constraint in contrast 

of that written in (Eq. 4.3) under the maximum stress theory, particularly with the advantage in 

stating the failure limits as nonlinear constraints rather than linearly depend. To show the 

difference between both interpretations, we modify the optimization problem of (Eq. 5.2), by 

substituting the penalties to nonlinear constraints of the form c(x) – 1 < 0. The mathematical 

formulation is presented in Eq. 5.3.  

After 44 iterations with 2730 evaluations we obtain a blade mass of 55528.7 kg. This 

means that a larger blade mass in comparison with (Eq. 4.3) is obtained, however it is 

remarkably smaller than the blade mass from the optimization formulation under the quadratic 

failure constraint of (Eq. 5.2). In summary, we can reproduce the results for the optimizations 

under failure constraints in Table XIV. 



133 

Table 14 : Blade mass for different optimization formulations. 

Optimization 
formulation 

Objective function 
f(x)= BladeMass  

Nonlinear 
constraints? 

Tsai-Wu 
criterion? 

BladeMass 
(kg) 

(4.3) NO NO NO 44 186 

(5.2) YES YES NO 55 528 

(5.3) YES YES YES 72 348 

Sandia 100 m 

Baseline Blade 
NA NA NA 114,172 

 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡𝑓(𝑥⃑) = 𝐵𝑙𝑎𝑑𝑒𝑀𝑎𝑠𝑠 [5.3] 

𝑝1 =
𝜎11,𝑚𝑎𝑥

𝜎11,𝑓𝑇
− 1 < 0   ⁡⁡⁡⁡𝑝2 =

𝜎11,𝑚𝑖𝑛

𝜎11,𝑓𝐶
− 1 < 0       𝑝3 =

𝜎22,𝑚𝑎𝑥

𝜎22,𝑓𝑇
− 1 < 0         𝑝4 =

𝜎22,𝑚𝑖𝑛

𝜎22,𝑓𝐶
− 1 < 0 

𝑝5 =
|𝜏12,𝑚𝑎𝑥|

𝜏12,𝑦
− 1 < 0   ⁡⁡⁡⁡⁡𝑝6 = (

𝜎

𝜎𝑏𝑢𝑐𝑘𝑙𝑒
)𝛼 + (

𝜏

𝜏𝑏𝑢𝑐𝑘𝑙𝑒
)𝛽 − 1 < 0       𝑝7 =

𝑇𝑖𝑝⁡𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

𝑀𝑎𝑥⁡𝑇𝑖𝑝⁡𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
− 1 < 0 

𝑚𝑎𝑥 {
𝑚𝑖𝑛 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒⁡𝑑𝑖𝑓𝑓. 𝑏𝑒𝑡𝑤𝑒𝑒𝑛⁡𝑟𝑜𝑡𝑜𝑟⁡𝑓𝑟𝑒𝑞. 𝑎𝑛𝑑⁡𝑡ℎ𝑒⁡𝑏𝑙𝑎𝑑𝑒⁡𝑛𝑎𝑡𝑢𝑟𝑎𝑙⁡𝑓𝑟𝑒𝑞.

|𝜔𝑚 −𝜔𝑟𝑜𝑡𝑜𝑟|
} − 1 ≤ 0 

Subject to: 

𝑥𝐿𝐵⃗⃗ ⃗⃗ ⃗⃗  ≤ ⁡𝑥 ≤ 𝑥𝑈𝐵⃗⃗ ⃗⃗ ⃗⃗  ⃗                                                                     (lower and upper bounds) 

      𝐴𝑥 ≤ 𝑏⃗                                                                                            (linear constraints) 

 

5.3.2 MULTIOBJECTIVE OPTIMIZATION – WINDESIGN  

In this section, we solve a numerical example for the design of a wind turbine blade using 

winDesign.  

The two conflicting objective functions are the blade mass and the annual energy. 

Solving such MOOP can be achieved by the method of scalarizing. It consists of formulating a 

single-objective optimization problem such that optimal solutions to the single-objective 

optimization problem are Pareto optimal solutions to the MOOP. A general formulation for a 

scalarization of a multiobjective optimization is given as:  

min∑𝑤𝑖𝑓𝑖(𝒙⃗⃗ )

M

𝑖=1

 [5.4] 
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where the weights of the objectives 𝑤𝑖 > 0 are the parameters of the scalarization.  

We propose to use the following fitness function to minimize the mass and maximize the 

annual energy production: 

min (𝛼
𝑀(𝒙⃗⃗ )

𝑀0

+ (𝛼 − 1)
𝐴𝐸𝑃(𝒙⃗⃗ )

𝐴𝐸𝑃0
) [5.5] 

 
For a value of alpha near zero, the mass ratio is eliminated, and the fitness function 

becomes min ((𝛼 − 1)
𝐴𝐸𝑃(𝒙⃗⃗ )

𝐴𝐸𝑃0
), which translates into the maximization of the normalized energy. 

Likely, for an alpha value close to 1, the energy ratio disappears, and the problem is now a 

minimization of the mass. If we run the optimization problem for different values of alpha 

between 0 and 1, we can find Pareto optimal solution to the MOOP. The reference mass and 

energy are taken respectively from the case study of alpha equals 0. 

Let us consider the following mechanical properties during the structural analysis. In our 

study, these properties are derived from Sandia 100 m blade SNL-100 (Griffith & Ashwill, 2011). 

Table A.1 is a list the mechanical properties utilized in the structural design of the blade. 

Likewise, in Table A.2, we list the configurations (input, model, turbine data and algorithm) for 

the input file needed by the WT-Perf solver. The general flowchart of multi-objective 

optimization algorithm can be summarized in Figure 22. The complete inputs for the multi-

objective optimization algorithm are listed in Table A.3. 

The objective is maximum AEP and minimum mass, and the winDesign algorithm 

provides the Pareto optimal front solutions as displayed in Figure 21. The blade mass 

increases obviously with the increase of AEP. Three blades of the Pareto set are chosen to 

conduct a comparison with the reference blade. It can be seen that AEP increases by 5.19% 

for blade 2, while the mass is reduced by 13.45%. 
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Figure 21 : Pareto-front for the given numerical example (Annex A, Eq. 5.5) 

 
5.4 SUMMARY 

In this chapter, we were able to present the fundamental principles of multi-objective 

optimization in wind turbine design. We briefly discussed the fundamentals and terminology of 

wind turbine multi-objective optimization. The most common optimization algorithms used to 

solve multi-objective wind turbine optimization problems were presented.  

The developed winDesign numerical tool is capable of provide the following benefits for 

wind turbine blade designers in a preliminary stage:  

• Design and simulation of composite wind turbine blades under various turbine 

configurations (Figure B.1), environmental properties (Figure B.2), optimization 

objectives (Figure B.3), analysis options (Figure B.4), and design constraints. 
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Figure 22 : Flowchart of the multi-objective optimization algorithm. 

 
• Ability to present the fundamental principles of multi-objective optimization in wind 

turbine design. The proposed winDesign tool can perform a Pareto optimization 

where optimal decisions need to be taken in the presence of trade-offs between two 

conflicting objectives: AEP and the weight of the blade. 
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• Structural analysis and design of composite blades for wind turbines in order to 

accelerate the preliminary design phase.  

• A large variety of 2D & 3D visualizations through a graphical user interface to provide 

instant visual feedback inspired from Co-Blade. 

• For a given external blade shape, the design load is computed by means of WT-Perf, 

winDesign can determine an optimal composite layup, chord and twist distributions 

which either minimizes blade mass or maximizes the annual energy production while 

simultaneously satisfying constraints on maximum stress, buckling, tip deflection and 

natural frequencies.   
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CHAPTER 6 

CONCLUSION & FUTURE WORKS 

 
 

6.1 VCH METHOD: CHALLENGES AHEAD & UPCOMING SUCCESS 

The diversity and popularity of evolutionary algorithms does not imply that there are no 

problems that need urgent attention. From one point of view, these optimization algorithms are 

very good at obtaining optimal solutions in a practical time. On the other, they still lack in 

balance of accuracy, computational efforts, global convergence and the tuning and control of 

their parameters. Nature has evolved over millions of years, providing a rich source of 

inspiration for researchers to develop diverse algorithms with different degrees of success and 

popularity. Such diversity and accomplishment does not signify that we should focus solely on 

developing more algorithms for the sake of algorithm development, or even worse for the sake 

of publication. This attitude distracts from the search for solutions for more challenging and 

truly important problems in optimization and new algorithms may be proposed only if they: 

• deliver truly novel ideas 

• demonstrate to be efficient techniques that solve challenging optimization 

problems (that are not solved by existing methods) 

• verify to the “3-self” (self-adaptive, self-evolving and self-organizing algorithms) 

It is vital to state that during the development of this technique, several other versions of 

the same approach were examined without much success. For example, different reproduction 

probabilities (crossover and mutation) were tested. The authors avoided a high mutation rate 

to prevent the method of becoming a random search but choose to keep it at 0.05 for a more 

robust global search and exploration. More than a few other crossover techniques were 

examined but the objective of this study was not to present a comparative study on their 

performance but rather present the parameter-free constraint-handling technique using the 

violation factor. It is still unclear how to achieve optimal balance of exploitation and exploration 
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by proper parameter tuning of the evolutionary operators of GA in general and in the VCH 

algorithm specifically. The crossover operator ensured an efficient exploitation in the local 

search within a subspace and can provide good convergence in local subspace. The selection 

and mutation operators enabled the GA to have a higher ability for exploration. It could be 

argued that the VCH technique is competent because it does not require any fine-tuning of the 

GA, which is normally performed by trial and error and is time consuming. 

 It is worth mentioning that for many of them, it is unclear if the authors implemented a 

stopping criterion or not. In our study however, a severe criterion was introduced based on the 

minimum relative error of the design variables. Moreover, the user–defined tolerance has to be 

respected for a number of generations before the execution is terminated. 

The main challenges that still require further examination are: The proof of convergence 

of some EA, control and tuning of parameters, the solution of large scale applications (e.g., the 

traveling salesman problem) and finally tackling Nondeterministic Polynomial (NP)-hard 

problems. Solving these issues is becoming more imperative than ever before. Among these 

matters is the open question of constraint-handling in GA specifically to solve engineering 

optimization problems. The insights gained by the proposed VCH technique should have an 

impact on the manner constrained problems are solved. 

Lastly, the authors suggest in the upcoming work, further numerical simulations could 

be investigated for more complex optimization problems. It would be motivating to explore the 

integration of VCH technique in other EA’s such as Particle Swarm Optimization (PSO), ant 

Colony Optimization (ACO), Bee Colony Optimization (BCO) and Differential Evolution (DE). 

Parameter tuning of the evolutionary operators in GA is an active area of research and could 

be examined in future work. Present work is aimed at introducing the proposed constraint-

handling technique in a multi objective platform for the optimization of the composite lay-out of 

wind turbine blades using a genetic algorithm as discussed in (Chehouri, Younes, Ilinca, & 

Perron, 2015) 
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The VCH method is a penalty-free constraint-handling method that only uses the 

violation factor to perform the sorting of the population with both feasible and infeasible 

individuals.  In the proposed VCH method, at a given iteration, the individuals of the population 

are never compared in terms of both objective function value and constraint violation 

information. Essentially, the main motif is to keep the fitness function equivalent to the 

designer’s objective function and therefore the conversion of the constrained problem into an 

unconstrained one is no longer required. 

Genetic algorithms try to mimic the principle of the survival of the fittest, where newer 

generations are evolved in attempt to produce descendants with a better ‘fitness’. Because at 

all times the fitness function is equal to the objective function to be minimized, our proposed 

VCH technique is more conforming with the biological fundamentals of genetic algorithms. A 

major drawback of many techniques in the literature is that the constraint handling method 

requires a feasible initial population. For some problems, finding a feasible solution is NP-hard, 

and even impossible for the problems with conflicting constraints. In the VCH approach, it is 

not required to have a feasible initial population. There are available techniques that ensure 

feasibility of the population when dealing with linear constraints such as [53, 54] by means of 

mathematical programming. 

Compared to other constraint-handling techniques based on penalty functions, the VCH 

method was able to provide a consistent performance and demonstrated to be simpler, faster 

and delivered reliable optimal solutions without any violation of the constraints. As the 

population evolves, the VCH method will lead the search to reach faster feasible regions. This 

was revealed in Figure 13, with the convergence of the average constraint violation of the 

elites towards zero (no violation) as the population evolves.  

The VCH method allows the closest solutions to the feasible region in favorable areas 

of the search space to remain in the population. Specific methods such as the reduced gradient 

method, cutting plane method and the gradient projection method are appropriate. However, 
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they are only fitting either to problems having convex feasible regions or with few design 

variables. Furthermore, the overall results suggest that the proposed approach is highly 

competitive and was even able to contest (some cases improve) the results produced by other 

methods, some of which are more difficult constraint-handling techniques applied to genetic 

algorithms. The VCH algorithm was tested on several benchmark examples and demonstrated 

its ability to solve problems with a large number of constraints. 

6.2 KGA TECHNIQUE: FEASIBLE SCIENTIFC IMPACT 

The fields of optimization and computational intelligence have grown rapidly in the past 

few decades. Classical methods are not efficient in solving current problems in engineering 

and management. The development of optimization algorithms can be mainly divided into 

deterministic and stochastic approaches.  

Most conventional algorithms are deterministic, such as gradient-based algorithms that 

use the function values and their derivatives. These methods work extremely well for smooth 

unimodal problems, but in the case of some discontinuities, non-gradient algorithms are 

preferred (X.-S. Yang, 2014). Nelder-Mead downhill simplex (Nelder & Mead, 1965) and 

Hooke-Jeeves pattern search technique (Hooke & Jeeves, 1961) are a few examples of 

deterministic gradient-free algorithms. For stochastic algorithms, we have two types: heuristic 

and meta-heuristic. Although there is no agreed definition of each type in the literature, the aim 

of stochastic methods is to find feasible solutions in a satisfactory timescale. There is no 

guarantee that the best solutions can be found, however it is expected that the algorithm will 

provide nearly optimal solutions most of the time.   

Evolutionary algorithms (EA’s) are stochastic optimization algorithms based on the 

principle of natural selection and biological evolution. They are population-based meta-heuristic 

optimization algorithms that make use of biological evolution operators such as selection, 

recombination and mutation.  
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In our doctoral studies, we only dealt with genetic algorithms (GA’s). They were originally 

proposed by Holland (Holland, 1975), inspired by the principle of natural selection of biological 

systems or ‘Darwinian evolution’. GA’s have demonstrated their capability to solve a wide range 

of optimization problems such as revenue management, optimal engineering system designs, 

scheduling applications, image processing, quality control etc. John Holland essentially formed 

the foundation of modern evolutionary computing by fundamentally defining three key genetic 

operators: crossover, mutation, and selection. These evolutionary operators provide a way to 

generate offspring from parent solutions. 

In the last few years, evolutionary algorithms have been applied to clustering problems, 

due to their ability to solve different problems with little changes. These algorithms are able to 

manage constraints of any type (linear/nonlinear and equality/inequality) in an efficient way. In 

this study, a new selection process for genetic algorithms called K-means genetic algorithm 

selection (KGA) process has been introduced. Two different versions of the KGA technique are 

presented: using a fixed number of clusters K (KGAf) and via an optimal number Kopt (KGAo). 

In the latter, the optimal number of clusters is determined using two validity indexes: silhouette 

and Davies-Bouldin. The KGA techniques are composed of 4 stages: clustering, membership 

phase, fitness scaling and selection. Clustering the population aids the search algorithm to 

preserve a constant selection pressure throughout the evolution. A membership probability 

number is assigned to each individual following the k-mean clustering phase. Fitness scaling 

converts the membership scores in a range suitable for the selection function which selects the 

parents of the next generation. The performance of each KGA technique (KGAo-S, KGAo-DB 

and KGAf) is tested on 7 benchmark problems for two separate dimensions of the search 

spaces D = 10 and 20. The computational results reveal that the proposed selection process 

is superior or competitive with the standard genetic algorithm for the problems considered.  

The current study was limited to single-objective optimization problems. Future 

research could test the performance of KGA techniques in solving constrained optimization 

problems and/or multiobjective formulations (Chehouri, Younes, Perron, & Ilinca, 2016). Also, 
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the stability of the novel selection processes should also be considered in future work. It would 

be compelling to integrate the KGA processes in further population-based optimization 

algorithms such as particle swarm optimization (PSO) (Kennedy, 2011), ant colony optimization 

(ACO) (Dorigo, Birattari, & Stutzle, 2006) and firefly algorithm (FA) (X.-S. Yang, 2010). Lastly, 

larger scale examples should be tested and further research on the impact of GA parameters 

(such as population size, probabilities of crossover and mutation) on the KGA process will be 

examined.  

6.3 WINDESIGN TOOL: MOVING TOWARDS WINDESIGN 2.0 
 

6.3.1 AIM & FOCUS  

Within the last 20 years, wind energy conversion systems have reached maturity. The 

obvious growing world-wide wind energy market will culminate to further improvements. The 

continuous effort for the advancement in horizontal wind turbine performance strategies and 

techniques will result to additional cost reductions. The ultimate aim of any wind turbine 

manufacture is to design a wind turbine able to compete with fossil fuel. The numbers of 

publications that apply optimization techniques in the attempt to reach an optimal blade design 

have demonstrated a significant increase in the recent decade alone.  

Despite the fact that a minimal cost of energy was chosen as the single main objective 

in most of the research publications, many have argued that it is more stimulating to evaluate 

the wind turbine design as an optimization problem consisting of more than one objective. 

Using multi-objective optimization algorithms, the designer is able to identify a trade-off curve 

called Pareto-front that reveals the weaknesses, anomalies and rewards of certain targets.  

We can anticipate that future optimization problems will be set as multi-disciplinary 

formulations. Consequently, solving such difficult optimization problem will require further 

developments in the optimization algorithm itself. Since traditional optimization techniques 

cannot overcome many of their drawbacks such as rapid divergence and sensitivity to the initial 
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solution, population based, and nature-inspired algorithms will continue to emerge as worthy 

alternatives.  

To include the significance of the aerodynamic load, the cost of energy is mostly 

evaluated because a shape optimization does not imply a minimum cost of energy but rather 

care must be taken in choosing a proper cost model with a high fidelity to prevent the loads on 

wind turbine components to become extreme.  

Furthermore, in order that the metric of minimum cost of energy be appropriate and 

suitable in severe operation conditions e.g. Nordic regions, additional requirements such as 

high gust and icing conditions need to be included. For this reason, it is crucial to perform the 

optimization under uncertainty due to the stochastic behavior of stochastic environment inputs 

like gust. In this case, an appropriate design method would be a robust design optimization 

(RDO) where in addition to the minimum or maximum objects (e.g. minimum cost of energy) 

the sensitivity of the objectives to the uncertainties of the design variables is minimized.  

Another reason why the contemporary tendency is to construct a robust optimization 

technique is due to the nature of the wind turbine optimization problem. In the case of 

performance optimization of wind turbine, there are both continuous (e.g. chord, twist, pitch, 

yaw etc.) and discontinuous (number of blades, airfoil family etc.). Likewise, the design 

variables are interdependent; implicating that they have competing objectives within the metric 

of cost of energy. As a result, to ensure that the algorithm converges, a gradient method 

approach is inadequate. 

6.3.2 CURRENT TRENDS & FUTURE CHALLENGES 

Nevertheless, there are two major issues in the optimization of wind turbine blade 

construction that have not yet been satisfactorily resolved:  

1. Complete load calculation  

2. Composite structural optimization 
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Load Calculation: As we have reviewed, there are two methods to compute the loads on 

a wind turbine blade. The basic method is to translate the aerodynamic load into a concentrated 

force for numerical simulation using classical momentum blade element theory. Since it is 

incapable of revealing the pressure distribution of the blade surface, some researchers have 

chosen to substitute the inverse design tool with computational fluid dynamics software and to 

load the distribution into a finite element solver to investigate the mechanical strength. The 

focal difficulty that the researchers have reported with the latter technique is that incorporating 

it in the optimization scheme will dramatically increase the computational time of the 

optimization process. Advancements in computational simulations and optimization algorithms 

such as heuristic, Pareto-optimization techniques and parallel techniques are a promising area 

of research that will facilitate the complete load calculation on wind turbine components.  

Composite Structural Optimization: Few researchers have taken the weight (blade mass) 

as an objective function; the main reason is that the parameterization for the finite element 

model of the wind turbine blade is not wholly established. The uses of composite materials in 

the manufacture of wind turbine blade have become more popular with the increasing size of 

wind turbine blades. The popularity arises from its lower weight, high stiffness and good 

resistance to loads. However, the concern with the use of traditional 2D laminates are its low 

through-thickness properties (stiffness, strength and fatigue performance), the failure to 

withstand high interlaminar shear stresses and its poor interlaminar fracture toughness making 

it difficult to conceive a new generation of wind turbine blades. While these properties can be 

improved by the use of tougher resins or fibres, these alternatives are expensive and not 

reliable that is why over the past 40 years considerable attention has been given to the 

development of reinforced 3D composite textile architectures essentially woven, braided, 

stitched and knitted composites. 

The importance of composite materials is well recognized in the recent years and its 

applications continue to surge (El Hage, Younes, Aboura, Benzeggagh, & Zoaeter, 2009; Ali 

Hallal, Rafic Younes, & Farouk Fardoun, 2013; Hallal, Younes, Fardoun, & Nehme, 2012; 
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Hallal, Younes, Nehme, & Fardoun, 2011; Nehme et al., 2011; Younes, Hallal, Fardoun, & 

Chehade, 2012). We can predict that the development of new weaving architectures will 

continue to expand the scope of these materials. The multitude of complex architectures in 

terms of geometric designs pose on the one hand the problem of the mechanical behavior of 

the new materials and on the other hand, the choice of the geometric parameters of the 

weaving patterns that will provide the best compromise between cost, performance and mass. 

Wind turbine blades are an important application for this problem for the sake of producing 

clean energy with maximum efficiency and reduced mass of materials. Initially, we noted that 

the focus was on the reduction in weight of the composite relative to those of metals and its 

alloys. Therefore, the optimization studies were oriented towards the compromise between 

design and weight. Later, there was the birth of design over cost. The main purpose of the cost 

approach was and will continue to be to achieve a reduction in total cost during the life cycle of 

a structure.  

The tendency to reduce the weight of wind turbine blades for a given airfoil shape is 

essential for the production of clean sustainable wind energy. Given the global trend towards 

renewable energy, saw the beginning of a development of local industries for the manufacturing 

of these blades, it becomes important to follow international trends in the integration of 3D 

textiles composites (Ali Hallal et al., 2013; A. Hallal, R. Younes, & F. Fardoun, 2013). The 

advantage of composite materials in the manufacturing of wind blades is to enable the 

realization of all shapes and sizes, as well as get the exact mechanical and elastic properties. 

For example, one can vary the amount of material layup along the blade e.g. a profile having 

very thin skin near the tip to become a solid profile at the blade root. That's why one way of 

achieving cost reduction is going to be threw the examination and development of new 

composite textiles with new manufacturing techniques - another promising research area. 

 In addition, classical failure mechanisms and linear buckling models are no longer 

sufficient. Current optimization tools require the introduction of new criterions in the optimization 

structure to assess complex effects such as cross sectional shear distortion and  large 
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deformations (J. Yang, Peng, Xiao, Zeng, & Yuan, 2012) from the bending moment (crushing 

pressure due to Brazier effect (Brøndsted & Nijssen, 2013)). The prominence of composite 

materials has led to the use of unidirectional laminate in the spar cap, bi-axial laminates in the 

webs and tri-axial laminates at the root of the blade.  

Currently turbine manufacturers are seeking greater cost effectiveness through 

increased turbine size rather than minor increases through enhanced blade efficiency. This is 

likely to change as larger models become difficult to construct, transport and assemble 

Therefore, it is probable that the general shape will remain the same and will continue to 

increase in length-size until a physical plateau is reached. Minor changes to the external blade 

shape may then occur as manufacturers integrate new aerofoils, tip designs and materials.  
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ANNEX 

ANNEX A: INPUTS FOR WINDESIGN 

 

 

 
Table A 1. Mechanical properties derived from Sandia SNL-100 

E11 E22 G12 υ12 ρ Material Name 

(Pa) 
 

(Pa) 
 

(Pa) 
 

(-) 
 

(kg/m3) 
 

(-) 
 

2.80E+10 1.40E+10 7.00E+09 0.4 1850 (blade-root) 

2.80E+10 1.40E+10 7.00E+09 0.4 1850 (blade-shell) 

4.20E+10 1.40E+10 3.00E+09 0.28 1920 (spar-uni) 

2.60E+08 2.60E+08 2.00E+07 0.3 200 (spar-core) 

2.60E+08 2.60E+08 2.00E+07 0.3 200 (LEP-core) 

2.60E+08 2.60E+08 2.00E+07 0.3 200 (TEP-core) 

1.40E+10 1.40E+10 1.20E+10 0.5 1780 (web-shell) 

2.60E+08 2.60E+08 2.00E+07 0.3 200 (web-core) 

 
 
 

Table A 2. Input file for aerodynamic solver 

Input Configuration 

False Echo: Echo input parameters to "<rootname>.ech"? 

True DimenInp: Turbine parameters are dimensional? 

True Metric: Turbine parameters are Metric (MKS vs FPS)? 

Model Configuration 

1 NumSect: Number of circumferential sectors. 

1000 MaxIter: Max number of iterations for induction factor. 

1.00E+06 ATol: Error tolerance for induction iteration. 

1.00E+06 SWTol: Error tolerance for skewed-wake iteration. 

Algorithm Configuration 

True TipLoss: Use the Prandtl tip-loss model? 

True HubLoss: Use the Prandtl hub-loss model? 

True Swirl: Include Swirl effects? 

True SkewWake: Apply skewed-wake correction? 
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True AdvBrake: Use the advanced brake-state model? 

True IndProp: Use PROP-PC instead of PROPX induction algorithm? 

True AIDrag: Use the drag term in the axial induction calculation? 

True TIDrag: Use the drag term in the tangential induction calculation? 

Turbine Data 

3 NumBlade: Number of blades. 

10 RotorRad: Rotor radius [length]. 

0.5 HubRad: Hub radius [length or div by radius]. 

0 PreCone: Precone angle, positive downstream [deg]. 

0 Tilt: Shaft tilt [deg]. 

0 Yaw: Yaw error [deg]. 

30 HubHt: Hub height [length or div by radius]. 

30 NumSeg: Number of blade segments (entire rotor radius). 

 
 
 

Table A 3. Input file for the Multi-Objective Algorithm 

WT-Perf Settings 

1000 MaxIter: Max number of iterations for induction factor. 

1.00E-06 ATol: Error tolerance for induction iteration. 

1.00E-06 SWTol: Error tolerance for skewed-wake iteration. 

True TipLoss: Use the Prandtl tip-loss model? 

True HubLoss: Use the Prandtl hub-loss model? 

True Swirl: Include Swirl effects? 

True SkewWake: Apply skewed-wake correction? 

True AdvBrake: Use the advanced brake-state model? 

True IndProp: Use PROP-PC instead of PROPX induction algorithm? 

True AIDrag: Use the drag term in the axial induction calculation? 

True TIDrag: Use the drag term in the tangential induction calculation? 

3 NumBlade: Number of blades. 

0 Yaw: Yaw error [deg]. 

30 HubHt: Hub height [length or div by radius]. 
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0.00001464 KinVisc: Kinematic air viscosity 

0 ShearExp: Wind shear exponent (1/7 law = 0.143). 

False UseCm: Are Cm data included in the airfoil tables? 

True TabDel: Make output tab-delimited (fixed-width otherwise). 

True KFact: Output dimensional parameters in K (e.g., kN instead on N) 

True WriteBED: Write out blade element data to "<rootname>.bed"? 

True InputTSR: Input speeds as TSRs? 

"mps" SpdUnits: Wind-speed units (mps, fps, mph) 

0 NumCases: Number of cases to run.  Enter zero for parametric analysis. 

WS or TSR RotSpd  Pitch Remove following block of lines if NumCases is zero. 

3 ParRow: Row parameter    (1-rpm, 2-pitch, 3-tsr/speed). 

1 ParCol: Column parameter (1-rpm, 2-pitch, 3-tsr/speed). 

2 ParTab: Table parameter (1-rpm, 2-pitch, 3-tsr/speed). 

True OutPwr: Request output of rotor power? 

True OutCp: Request output of Cp? 

True OutTrq: Request output of shaft torque? 

True OutFlp: Request output of flap bending moment? 

True OutThr: Request output of rotor thrust? 

0.0 0.0 0.0 PitSt, PitEnd, PitDel: First, last, delta blade pitch (deg). 

80 80 0.00 OmgSt, OmgEnd, OmgDel: First, last, delta rotor speed (rpm). 

Analysis Options 

t SELF_WEIGHT: Include self-weight as a body force? 

t BUOYANCY: Include buoyancy as a body force? 

true CENTRIF: Include centrifugal force as a body force? 

true DISP_CF: Apply correction factors to the beam displacements? 

0 N_MODES: Number of modes to be computed 

50 N_ELEMS: Number of blade finite elements to be used in the modal analysis 

Optimization Options 

t OPTIMIZE: Perform optimization of composite layup? 

GS OPT_METHOD: Optimization algorithm for the optimization of composite layup 

false OPT_PITAXIS: Optimize the pitch axis? 
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0.375 PITAXIS_VAL: Pitch axis value outboard of max chord (ignored if OPT_PITAXIS = false) 

3 INB_STN: 
Inboard station where the leading and trailing edge panels, spar caps, and 

shear webs begin 

8 TRAN_STN: Station where the root transition ends 

28 OUB_STN: 
Outboard station where the leading and trailing edge panels, spar caps, 

and shear webs end 

4 NUM_CP: Number of control points between INB_STN and OUB_STN 

false READ_INITX: Read the initial values for the design variables from INITX_FILE? 

none INITX_FILE: Input file for the intitial values of the design variables. 

false WRITE_STR: Write structural input files at each function evaluation? 

f WRIT E_F_ALL: Write the fitness value and penalty factors at each function evaluation? 

f WRIT E_X_ALL: Write the design variables at each function evaluation? 

f WRITE_X_ITER: Write the design variables at each iteration? 

100 NumGens Max number of generations for GA iterations 

100 PopSize Number of individuals per generation 

1 EliteCount Number of elite individuals per generation 

0.5 CrossFrc Fraction of individuals created by crossover 

1.00E-06 GATol Error tolerance for the GA fitness value 

Environmental Data 

1.225 FLUID_DEN: Fluid density (kg/m^3) 

9.81 GRAV: Gravitational acceleration (m/s^2) 

6.03 U_mean: Long term mean flow (m/s) 

1.91 Weib_k: Shape factor 

6.8 Weib_c: Scale factor 

Blade Data 

30 NUM_SEC: Number of blade cross sections 

10 BLD_LENGTH: Blade length (m) 

0.5 HUB_RAD: Hub radius (m) 

0 SHAFT_TILT: Shaft tilt angle (deg) 

0 PRE_CONE: Pre-cone angle (deg) 

180 AZIM: Azimuth angle (deg) 
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100 MAX_ROT Maximum rotational speed (rpm) 

10 MIN_ROT Minimum rotational speed (rpm) 

cosine INTERP_AF: Interpolate airfoil coordinates? (choose "none", "cosine", or 

1 ElmSpc Blade element radial spacing (0 equal, 1 cosinus) 

60 N_AF: Number of points in interpolated airfoil coordinates (ignored 

mats-Wind.inp MATS_FILE: Input file for material properties 

0.13 RootTranSt Start of root transition region 

3 RootTranSt_index Index of start of root transition region 

0.288 RootTranEnd End of root transition region 

8 RootTranEnd_index Index of end of root transition region 

3 9 19 26 30 CP_Index Index of control points (Chord and Twist) 
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ANNEX B: WINDESIGN LAYOUT 
 

 

 
Figure B 1. winDesign turbine configurations input window.   
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Figure B 2. winDesign optimization objectives input window.   
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Figure B 3. winDesign analysis options input window.  



175 

 

 
Figure B 4. winDesign environmental properties input window.   


