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ORIGINAL CITATION: S. Séguin, P. Côté, C. Audet, Self-scheduling short-term unit commitment and loading
problem, IEEE Transactions on Power Systems, 31(1), 133–142, Jan. 2016. http://dx.doi.org/10.1109/

TPWRS.2014.2383911.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Constellation

https://core.ac.uk/display/199238718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/TPWRS.2014.2383911
http://dx.doi.org/10.1109/TPWRS.2014.2383911


1 Introduction

The planning of hydroelectric systems is complex and requires different optimization processes. A good

planning allows to produce more power with the same quantity of water, generating substantial savings for

the producer, even with a slight computational improvement [12]. Long-term, medium-term and short-term

optimization models are used in order to manage the resources. Long-term optimization follows a 2-3 year

planning horizon [5] and establishes future production potential under highly uncertain inflows in the basins.

Medium-term optimization [8] is used to plan the reservoir volumes by estimating the quantity of water

available for hydroelectric production on a weekly basis. This optimization takes into account the water

transfer function between plants, minimum and maximum levels of reservoirs, uncertainty of the inflows and

energy demands. Short-term optimization [7] is mandatory to determine how to split the available water

volume in an optimal way between the turbines of a plant. Each turbine has a different efficiency curve

which means that for the same water discharge the power will differ. The planning horizon is a week divided

in hourly periods and the problem consists of finding the optimal water discharge as well as the volume of

the reservoir for each plant in order to maximize power production and penalize start-ups of turbines. The

present work focuses on short-term optimization.

These optimization problems are difficult to solve since the hydroelectric production functions are non-

convex. They are also highly nonlinear and depend on turbine efficiency, net water head that is a nonlinear

function of the water discharge and reservoir elevation and finally, water discharge of each unit. Furthermore,

turbines have forbidden operating zones, which complicates the problem.

Short-term unit commitment and loading problem have been studied in the past and many researches are

still undergoing. Many methods have been proposed to solve the short-term unit commitment and loading

problem, including dynamic programming. In [1], a power generation loss function is used to take into account

the hydro power efficiency in the dispatch of the plants, but considers the forebay elevation insignificant

and neglects the water balance equations. Another approach [22] maximizes basinwide operating efficiency

and changes the scheduling of the units only when the energy generation or the water discharges exceed a

deadband. These assumptions will cause the optimization solution to differ from the real ones. Formulations

of interest must consider tailrace elevations, penstock losses as well as efficiency of the turbines, which are

often set aside to simplify the problem. A different manner [3] approximates the influence of the head effect

to linearize the power production function, while Ohishini [14] assumes that all units of a hydropower plant

are similar and does not consider different power outputs being produced by the units. Another widely used

method is the the lagrangian relaxation to separate the linking constraints and solve sub-problems that are

easier to compute [4]. However, this method usually causes solutions to be slightly infeasible since the linking

constraints are rarely satisfied with the first solutions. Heuristics are then used to obtain a feasible solution.

Not only are the methods different, but the choice of the objective function can vary from one method to the

other. Another formulation of the problem [11] is to minimize the sum of power losses and solve a relaxed

mixed-integer nonlinear problem. Then, a simulation phase is processed to obtain a feasible solution for the

relaxed constraints. Once again, a two-phase approach is necessary to obtain a feasible solution. In [18],

the plant efficiency is maximized since it is known that water is not used in an efficient way to meet the

demand in energy. Nonlinear approaches [6] have been considered, by linearizing the hydro power efficiency

of the plants and the water level functions, but do not consider the unit commitment of the plants. Other

techniques have been proposed, including genetic algorithms [17], ant algorithms [13] and network flows [15],

but they require parameter tuning before obtaining solutions, which is not an issue when using mixed-integer

formulations, nonlinear problems or lagrangian relaxations, just to name a few.

This paper presents a new approach for modeling the short-term unit commitment and loading problem

that requires a two-phase approach and allows to find a feasible solution at the end of the first stage. The first

optimization dispatches generation among plants and seeks to maximize total power production. For each

period and each plant, reservoir volume, water discharge and optimal number of units working is determined.

The second stage uses this solution to select the optimal unit commitment that, once again, maximizes total

power production but also penalizes unit start-ups. The models are then tested on two hydroelectric plants

in series.
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The paper is organized as follows. Section 1.1 presents the hydroelectric system studied in this paper.

Section 2 gives an overview of the problem characteristics and presents characteristics of the short-term

optimization problem. Sections 3 presents the mathematical models developed which are a nonlinear model

and a linear integer program. They respectively aim to solve the loading problem as well as the optimal unit

commitment problem. Extensive numerical experiments are reported in Section 4 on thirty test cases for two

power plants with five turbines each, and concluding remarks are drawn in Section 5.

1.1 Saguenay-Lac-St-Jean hydroelectric system

The models presented in this paper are tested on the Saguenay-Lac-St-Jean hydroelectric system. It is

privately owned by Rio Tinto Alcan in the province of Quebec. This company operates aluminum plants

in that region and can produce 90% of the energy they need to operate them. The installed capacity is of

3100 MW and is composed of 42 turbines divided in five hydroelectric plants situated on the Péribonka and

Saguenay rivers. Five reservoirs are available and three of them have a stocking capacity of over 2000 hm3.

The hydrographic basins cover an area of about 75 000 km2. Energy prices do not need to be taken into

account for the short-term unit commitment an loading probelm since Rio Tinto Alcan does not trade their

energy on the markets. For the purpose of this paper, the models are tested on two of the five hydroelectric

plants since a deterministic model is developed to validate modeling. The plants are Chute-du-Diable and

Chute-Savane and they are both composed of five turbines.

Specific constraints related to the Saguenay-Lac-St-Jean system, which is the purpose of this study, need

to be taken into account when developing the model. In some cases, the hydroelectric functions are nonconvex

and nondifferentiable. For example, the tailrace elevation for a given number of plants can only be obtained

by simulation and there are no analytical representation of these functions. A practical, accurate and efficient

model in terms of computational time needs to be developed.

1.2 Notation

The following notation is used throughout the paper:

k ∈ {1, 2, . . . ,K} index of periods

c ∈ {1, 2, . . . , C} index of hydroelectric plants

s ∈ {1, 2, . . . , nc
k} index of surfaces corresponding to number of active turbines associated to hydroelec-

tric plant c

l ∈ {1, 2, . . . , nc
k} index of combinations associated to hydroelectric plant c and period k

t ∈ {1, 2, . . . ,mc
lk} index of turbines associated to combinations l, hydroelectric plant c and period k

vck volume of plant reservoir c at period k (hm3)

qck water discharge at plant c and period k (m3/s)

θ start-up penalty for any turbine (MWh)

βc
lk power generated by combination l ∈ nck at plant c and period k

ycsk =


1 if surface s is chosen at period k

for plant c

0 otherwise

sclkt =


1 if turbine t of combination l

for plant c is working at period k

0 otherwise

xclk =


1 if combination l of plant c

is chosen at period k

0 otherwise

dctk =


1 if turbine t of plant c is started

at period k

0 otherwise 2



χs(v
c
k, q

c
k) power output function for surface s (MWh)

δck inflow of plant c at period k (m3/s)

wk duration of period k (h)

γ conversion factor from water discharge (m3/s) to volume (hm3)

ζk conversion factor to power units (GWh)

vcmin minimal volume of plant c reservoir (hm3)

vcmax maximum volume of plant c reservoir (hm3)

qcmin minimum water discharge at plant c (m3/s)

qcmax maximum water discharge at plant c (m3/s).

2 Short-term unit commitment and loading problem

The short-term unit commitment and loading problems must determine a production plan for each turbine

in the system, for each period of the planning horizon considered. The objective is to maximize power

production and penalize unit start-ups. This section describes the characteristics of the problem and presents

an optimization model that requires a short computational time to solve.

2.1 Problem description

Power produced by a single hydroelectric generator [20] is given by the equation:

P = n(Q)× g ×Q× hn (1)

where P is the power output in kW , n(Q) is the turbine-generator overall efficiency, g is the gravitational

acceleration in m/s2, Q is the turbine water discharge in m3/s and hn the net water head in m.

For a given turbine, power is a function of the water discharge, the net water head and the efficiency.

Gross head is the difference between forebay and tailrace elevation. When water runs in the penstock,

friction causes heat dissipation, causing a diminution in energy. This phenomena causes a loss that needs to

be considered in the power output calculation. Net water head is obtained from the gross head from which

the losses are taken into account. Net water head is computed by:

hn(v, q) = hf (v)− ht(q)− ψ(q) (2)

where v is the volume of the reservoir in m, q is the total water discharge in m3/s, hf is a nonlinear function

returning forebay elevation in m, ht is a nonlinear function returning tailrace elevation in m and ψ is a

nonlinear function returning friction losses in m.

The focus of this paper are Chute-du-Diable and Chute-Savane plants in the Saguenay-Lac-St-Jean hy-

droelectric system. Chute-Savane is situated upstream of the Lac-St-Jean, hence the tailrace elevation of

this plant is affected by the level of the lake. A particularity of the system is that there is no analytical

representation of the tailrace elevation for this plant. The value can only be calculated by a computer simu-

lation. Since power depends on net water head and water discharge, there is no analytical representation of

the power output functions. This particularity also deprives us of their derivatives.

Each turbine possesses its own efficiency curve, causing them to produce different power outputs for the

same water discharge and net water head. Also, efficiency depends on water discharge of the turbine. Fig. 1
illustrates the efficiency of a turbine as a function of water discharge for a given net water head at the

Chute-du-Diable plant.

In Fig. 1, the water discharge of 48 m3/s generates the greatest energy and is called maximum flow rate.

It also refers to maximum power output that can be produced by the unit. This limit is fixed by the turbine

manufacturer. Each turbine is designed to operate at a certain water discharge and when the actual discharge

is near this value, power produced by the unit is at its maximum efficiency. When the limit is reached, water
3
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Figure 1: Turbine efficiency as a function of water discharge

needs to be spilled, causing power and efficiency to decrease. Turbines should always be used within their

efficiency zones for these reasons.

Another particularity that complicates the problem is the forbidden zones of operations of the turbines [9].

Under certain operating conditions, a vortex may occur in the turbine and create pressure variations. These

variations affect power output as well as overall efficiency and vibrations created by these vortices can damage

the components of the hydroelectric turbines. These zones are forbidden and turbine are not operated when

these conditions are met.

Also, unit restarts should be limited since they shorten equipment life [2]. Each restart can be defined

as a number of working hours which causes maintenance of the generating units to occur sooner. Likewise,

equipment service life is reduced since it corresponds to working hours. There is also a cost associated to a

unit start-up. They take into account the history of expenses in maintenance and repairs in relation with

the number of start-ups.

These values are laboriously calculated by Rio Tinto Alcan and become parameters in the optimization

models.

One could formulate the power production optimization problem as a linear integer program by discretizing

unit water discharge, volumes and total water discharge for each turbine, power plant and period in order

to maximize total power production. However, the number of optimization variables would be extremely

large. For instance, if total water discharge is discretized from 0 to 900 m3/s, unit water discharge from 0 to

150 m3/s both with steps of 5 m3/s, with 168 hourly periods for a week and volumes from 46 to 394 hm3

discretized in 100 slices, then the number of binary variables would be of the order of 108. Water discharges

are discretized every 5 m3/s since it is operationally impossible to obtain a finer precision, and volumes in

100 slices give a good final precision for the Saguenay-Lac-St-Jean hydroelectric system. This suggests that

the number of variables required is unrealistic for a real-time application.

2.2 Problem modeling

Power output of a single turbine is a function of two variables of the water discharge and the volume.

However, there is a relation between the net water head and the volume of the reservoir. For the remainder

of the paper, volume will be used to simplify notation. Total power output of a plant depends on total water

discharge, number of working units and active turbines. Efficiency curves are specific for each turbine, hence

unit power output is different for the same water discharge. Depending on the number of units working, but

also on which units are employed, total power output is different. Instead of working directly with turbines

in the model, fewer variables are needed if active turbines are grouped in combinations. For example, for the

Chute-du-Diable plant, five turbines are available, but operational restrictions require a minimum of three
4



active turbines. Table 1 lists the sixteen possible combinations. In each column, the numbers represent the

actual active turbines.

Table 1: Turbine combinations at Chute-du-Diable

3 active turbines 4 active turbines 5 active turbines

123 145 1234 12345
124 234 1235
125 235 1245
134 245 1345
135 345 2345

For a given water discharge, water volume and active turbines combination, the optimal dispatch of the

water between the turbines is obtained by a dynamic programming algorithm. For each discretization of the

water discharge and the volume, this algorithm needs to be processed. This means that for every possible

combo of water discharge and volume, the algorithm calculates the power output that can be obtained for

every combination of active turbines. These values are then used as parameters for the optimization models.

A model using combinations of active turbines needs to determine which one to use at each period as well

as the volume and the total water discharge. In the linear integer model discussed at the end of Section 2.1,

the unit water discharge discretization is replaced by the number of combinations. Although the number

of variables is significantly less than with the linear model using turbines, it remains too important to be

computationally solvable in a reasonable amount of time.

For a given volume and turbine, the power output depends on the water discharge. The same applies to

combinations: if turbines in the combination differ, then the total power output will be different. Fig. 2(a)

shows curves of the power output depending on the water discharge for all possible combinations at Chute-

du-Diable power plant, for a volume of 376 hm3 and Fig. 2(b) is a close-up. The values are computed by the

dynamic programming algorithm.
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Figure 2: Power output at Chute-du-Diable

Observe that the power output decreases when the maximum efficiency of the turbine combination has

been reached. As seen on Fig. 2(a), from 0% to 55%, three turbines are in the combination, from 55% to

75% four turbines are in the combination and five from 0% to 90%. When an extra turbine is added in

the combination, maximum efficiency has been reached. These curves could be used to model the problem.

Fig. 2(a) shows total power output that can be obtained by a combination for each water discharge. The

objective of the problem is to maximize total power generation and a new function corresponding to the

maximum envelope of all combinations can be created. This new function returns the maximum power that

can be generated for a given water discharge, a reservoir volume and a given number of units. It is represented

by the bold curve on Fig. 2(a).
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For each water discharge, maximum power output is used, whatever the combination, which means that

from one value of water discharge to the other, the combination can differ. This can be generalized for

the discretization of volumes. One hundred discretizations are done, between the minimum and maximum

reservoir volume and are shown in Fig. 3(a). The interest for this function is that it gives us an upper bound

on the optimal value of the problem for a volume and a given water discharge.
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Figure 3: Power output at Chute-du-Diable

The changes in the number of active turbines in the combination cause a problem for modeling this

surface since they correspond to nondifferentiable zones. The contour plot shown in Fig. 3(b) illustrates this

property. A way to overcome these difficulties is to create a surface for each number of active turbines in the

combination. In this case, surfaces with three turbines working, four turbines and five turbines are created,

as shown in Fig. 4.
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Figure 4: Power output with different number of active turbines

These surfaces are easy to model. The mathematical model must determine one surface per period, giving

us at the same time the optimal number of active turbines. These surfaces are valid if the turbines of the

plant are available at a given period. Hence, if a turbine is unavailable for a given period, surfaces need to be

recalculated without considering the unavailable turbine. Thus, for each plant and each period, the number

of surfaces may vary, as well as the surfaces themselves. For instance, if one turbine is unavailable, only the

surfaces with three or four active turbines are possible, and if two turbines are unavailable, then only one

surface is possible. The dynamic programming algorithm is computed for every number of active turbines in

the combination as well as for every combination of unavailable turbines and power outputs are stored in a

database. Models then consult the database, depending on possible number of active turbines and available

turbines. Unavailable turbines cause the number of combinations as well as the number of surfaces to be

reduced.
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The volume of available water for production is obtained from the medium-term optimization and is an

input to the loading problem, as well as the initial combination of working turbines. The turbines working

at the end of a week need to be the initial combination at the beginning of the next week. This initial

combination is denoted ŷcsk and is a parameter for the short-term unit commitment and loading optimization

models.

The use of theses surfaces does not allow us to penalize the start-up of turbines, hence the optimization

needs to use a two-stage approach. The first stage is a nonlinear mixed-integer model and returns the water

discharge, reservoir volume as well as the number active turbines. The second stage is a linear integer model

that determines exactly the combination of turbines to use at each period in order to minimize the start-up

of turbine so that power is maximized.

3 Mathematical models

This section presents the mathematical models used to solve the short-term unit commitment and loading

problem. The first one distributes generation among plants and the second determines the optimal unit

commitment.

3.1 Loading problem

The first optimization consists of a nonlinear mixed-integer program that determines the water discharge,

reservoir volume and number of active turbines at each period for each power plant. This model is valid

for hydroelectric plants in series. The function χs(v
c
k, q

c
k) corresponds to power output of a given number of

active turbines, for a given water discharge and volume. The initial number of active turbines ŷcs1 is known.

Power output is computed with a dynamic programming algorithm, as explained in Section 2.2. The number

of surfaces per plant and period is given by nck.

Maximize total power production:

max
∑
c∈C

∑
k∈K

∑
s∈nc

χs(v
c
k, q

c
k)ycskζk (3)

subject to:

δ1
k = v1

k+1 − v1
k + γwkq

1
k, ∀k ∈ K\{1} (4)

δck = vck+1 − vck + γwkq
c
k + γwkq

c−1
k , ∀k ∈ K\{1}, ∀c = 2, 3, . . . , C (5)∑

s∈nc
k

ycsk = 1, ∀c ∈ C, ∀k ∈ K\{1} (6)

ycs1 = ŷcs1, ∀c ∈ C, ∀s ∈ nck (7)

vcmin ≤ vck ≤ vcmax, ∀c ∈ C, ∀k ∈ K (8)

qcmin ≤ qck ≤ qcmax, ∀c ∈ C, ∀k ∈ K (9)

qck ≥ 0,∀c ∈ C, ∀k ∈ K (10)

vck ≥ 0,∀c ∈ C, ∀k ∈ K (11)

ycsk ∈ B, ∀c ∈ C, ∀k ∈ K, ∀s ∈ nck (12)

qck, v
c
k ∈ R, ∀c ∈ C, ∀k ∈ K. (13)

Constraints (4) and (5) assure that water balance of the plants are met. The values of vc1 and vck+1 are

known and obtained from the medium-term optimization model. Constraints (6) forces the model to choose

only one surface at each period for each plant and constraint (7) feeds the model with the turbines already

working at the beginning of the planning horizon. Constraints (8) and (9) represent the physical limits for

volume of the reservoirs as well as the water discharge operational limits. Non-negativity of the variables

are taken into account by constraints (10) and (11). Finally, (12) imposes binary variables and (13) real
variables.
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In practice, nonlinear mixed-integer programs require a large amount of computing time when solving

since some variables, in this case those associated to the surfaces, are integer variables. Luckily, we can prove

that solving the continuous relaxation of the surface variables yck of this problem is sufficient to obtain an

integer solution on these variables. Solving the relaxed nonlinear problem will return a solution with integer

variables, even though imposing integer variables has been omitted.

Proposition 3.1 Solving the relaxation of integer program (3)–(13) leads to an integer solution.

Proof. The proof of the result is done by showing that the matrix of constraints is totally unimodular.

Problem (3)–(13) can be re-written as follows:

max
∑
ω∈Ω

∑
c∈C

∑
k∈K

∑
s∈nc

ηωy
c
skζk (14)

subject to: ∑
s∈nc

k

ycsk = 1, ∀c ∈ C, ∀k ∈ K\{1} (15)

ycs1 = ŷcs1, ∀c ∈ C, ∀s ∈ nck (16)

ycsk ∈ B, ∀c ∈ C, ∀k ∈ K, ∀s ∈ nck. (17)

where ηw is the power for ω the feasible set with respect to constraints (4) and (5) and ŷcsk is the initial

combination of turbines working from the medium-term optimization.

Denote the matrix of coefficients of the constraints for problem (14)–(17) by A. Wolsey [21] shows A is

totally unimodular if and only if the following three conditions are satisfied:

1. aij ∈ {+1,−1, 0} ∀i, j.
2. Each column of A contains at most two nonzero coefficients (

∑m
i=1 |aij | ≤ 2).

3. There exists a partition (M1,M2) of the set M of rows of A such that each column j containing two

nonzero coefficients satisfies
∑

i∈M1
aij −

∑
i∈M2

aij = 0.

Condition 1. is satisfied by Equations (15)–(16). Each column of the matrix A has a single element,

which imply that Conditions 2. and 3. are satisfied.

Therefore, A is totally unimodular and there is an integer optimal solution of the continuous relaxation.

The following nonlinear relaxed program can be solved, where ycsk are continuous variable associated to

the surfaces.

Maximize total power produced at each period:

max
∑
c∈C

∑
k∈K

∑
s∈nc

χs(v
c
k, q

c
k)ycskζk (18)

subject to:

(4)− (5) (19)∑
s∈nc

ycsk ≤ 1, ∀c ∈ C, ∀k ∈ K (20)

(7)− (11) (21)

ycsk ≥ 0, ∀c ∈ C, ∀k ∈ K, ∀s ∈ nck (22)

ycsk ∈ R, ∀c ∈ C, ∀k ∈ K, ∀s ∈ nck. (23)

Constraints remain the same, except for (20) that becomes an inequality and (22) and (23) that are the

non-negativity constraints for continuous variables associated to the choice of the surface.
8



3.2 Unit commitment

The solution produced by the nonlinear relaxed program is an input to the unit commitment problem. The

unit commitment model is a linear integer program and it determines the exact combination of turbines to

use in order to maximize total power production at each period and penalize start-up of turbines. The initial

combination of working turbines x̂clk is known. The number of combinations for a given period and power

plant is given by nck and turbines in the combination for a given period and plant by mc
lk.

The optimization problem maximizes power produced and penalizes turbine start-ups:

max
∑
c∈C

∑
k∈K

∑
l∈nc

k

βc
lkx

c
lkζk −

∑
c∈C

∑
k∈K

∑
t∈mc

lk

∑
l∈nc

k

dctkθ (24)

subject to: ∑
l∈nc

k

xclk = 1, ∀c ∈ C, ∀k ∈ K\{1} (25)

xclks
c
lkt − xclk−1s

c
lk−1t ≤ dctk, ∀c ∈ C, ∀k ∈ K, ∀l ∈ nck, ∀t ∈ mc

lk (26)

xcl1 = x̂cl1, ∀c ∈ C, ∀l ∈ nck (27)

xclk ∈ B, ∀c ∈ C, ∀k ∈ K, ∀l ∈ nck (28)

dckt ∈ B, ∀c ∈ C, ∀k ∈ K, ∀l ∈ nck, ∀t ∈ mc
lk. (29)

The constraints (25) ensure that only one combination is chosen at each period. Constraints (26) are

the linking constraints between start-up variables and combination choice. Constraints (27) force the initial

combination of turbines working. Finally, constraints (28) and (29) are the declaration of binary variables.

4 Computational results

The mathematical models of Sections 3.1 and 3.2 are tested on two of the five hydroelectric plants that

compose the Saguenay-Lac-St-Jean hydroelectric system. These two plants, Chute-du-Diable and Chute-

Savane, are in series and both have five turbines. They were chosen since they are the smallest sub-system

with two plants in series and the motivation is to validate the optimization developed before expanding to

the whole hydroelectric system. Also, the models developed are deterministic and the aim of subsequent

studies will be to consider uncertainty in the weather forecasts. Chute-du-Diable has an installed capacity of

224 MW , a gross elevation of 33.5 m and a reservoir of 47 km2. Chute-Savane has an installed capacity of

245 MW, a gross elevation of 33.5 m and a reservoir of 18.5 km2.

The planning horizon of the models is partitioned into 168 hourly periods for one week. Thirty weekly

scenarios are tested, all provided from the historical database. Since data is available every two minutes, a

mean per hour for the water discharge and the volume of the reservoirs is calculated in order to compare

results. Initial volume, final volume and initial combination of working turbines are provided to the model

to make the best possible comparison. The same starting point, in the middle of volume and water discharge

discretizations is given to the model as an initial solution.

Inflows of the basins are assumed known and the computed model is deterministic. Once again, data is

available every two minutes, so a mean per hour for the water inflow in the basin is calculated to feed the

mathematical model.

The Ipopt [19] nonlinear solver is used for the first nonlinear program and Xpress-MP [16] for the second

linear program. Numerical experiments are conducted with an Intel Xeon Processor E5-2650, with 8 cores

at 2 GHz and 61 Go of RAM memory. The nonlinear program has a total of 1680 real variables and 674

constraints. For the second linear integer program, 7056 binary variables and 26918 constraints are necessary.

The number of constraints and variables are obtained for the worst case, meaning 16 combinations of active

turbines are possible at every period. The number of variables and constraints for the second model will be

less if some turbines are unavailable due to maintenance or repair at certain periods.
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Numerical comparisons of our approach versus the real values show an improvement on 27 out of the 30

test cases, ranging from 0.002 GWh to 2.145 GWh. The average improvement over all cases is of 0.4 GWh.

In the province of Quebec, a 1 MWh earning represents roughly 40$ in savings for the producer. In this

particular case, an improvement of 0.4 GWh translates into 832 000$ savings for a year.

Our approach is slightly sensitive to the starting point value. We observed that for the three cases in

which our approach did not improve the solution, a better solution was found by changing the starting point.

In future work we plan to study more thoroughly this behaviour.

The computational time to solve the unit commitment model is very low. The loading problem takes an

average of 1.41 seconds and the longest time is 7.71 seconds. This case has the particularity of being the only

one with certain periods having two turbines down for maintenance, which causes these periods of having

only one possible surface to optimize.

Results obtained with the same initial solution are shown in Table 2. For each hydroelectric plant, to-

tal power, with penalties due to start-ups, both for solution obtained with the optimizer and the historical

database are listed. Also, the difference between optimized solutions and the historical database are com-

puted. A positive value indicates that the optimizer produces a better solution than reality and a negative

value indicates the opposite. Also, the total difference of start-ups of turbines is listed. It is not necessary to

list for both power plants since they are, most of the time, equally divided between both of them. A positive

difference indicates optimized solution has more starts than real case and a negative difference indicates real

case has more starts.

Fig. 5 is a histogram comparing power gain between optimized solution and real test cases. In twelve out

of the thirty test cases, the optimized solution improved the quantity of power produced between 0 and 0.2

Table 2: Total power production with same initial solution

Chute-du-Diable Chute-Savane Total Diff.

# Optimized Real Optimized Real Optimized Real #
GWh GWh GWh GWh GWh GWh GWh start

1 27,12 26,82 38,09 37,93 65,21 64,75 0,46 0
2 31,96 31,97 35,41 35,25 67,37 67,21 0,16 1
3 33,42 33,21 36,55 36,21 69,97 69,42 0,55 -1
4 22,52 22,07 24,73 23,80 47,25 45,87 1,38 0
5 25,01 25,05 28,31 28,12 53,32 53,17 0,15 -3
6 29,36 29,07 31,68 30,98 61,03 60,05 0,98 2
7 22,74 22,87 30,00 29,96 52,74 52,82 -0,08 5
8 32,26 31,56 30,18 29,67 62,44 61,23 1,21 3
9 27,29 26,78 38,38 38,42 65,67 65,20 0,47 1
10 32,06 31,91 36,10 35,52 68,16 67,42 0,74 0
11 36,67 36,68 38,41 38,39 75,07 75,07 0,00 0
12 28,68 28,30 36,59 36,14 65,27 64,44 0,83 0
13 33,94 33,93 38,80 38,72 72,73 72,65 0,08 0
14 26,52 26,15 36,76 36,59 63,28 62,74 0,54 1
15 24,04 23,54 35,29 35,35 59,33 58,88 0,45 1
16 33,80 33,53 37,85 37,63 71,66 71,16 0,50 0
17 31,13 31,13 36,54 36,43 67,67 67,56 0,11 0
18 30,18 29,89 31,84 31,94 62,01 61,83 0,18 2
19 29,10 28,70 31,26 31,37 60,36 60,06 0,29 4
20 28,57 28,26 31,33 31,32 59,90 59,58 0,32 3
21 27,04 26,96 29,80 29,71 56,84 56,67 0,17 1
22 28,17 27,83 30,68 30,27 58,84 58,10 0,75 -4
23 25,05 25,11 27,77 27,57 52,82 52,68 0,14 0
24 33,64 32,67 36,97 35,80 70,61 68,47 2,15 -1
25 20,54 20,64 22,90 22,78 43,44 43,42 0,02 2
26 31,91 31,87 35,14 35,14 67,06 67,01 0,05 -2
27 20,34 20,48 23,41 23,25 43,74 43,73 0,02 3
28 29,48 29,62 32,83 32,79 62,31 62,41 -0,11 -2
29 33,34 33,34 36,68 36,56 70,02 69,90 0,12 1
30 29,08 29,27 31,83 31,85 60,91 61,12 -0,21 3
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GWh. For ten other cases, the improvement is between 0.2 and 1.0 GWh. Three cases exceed 1.0 GWh and

the largest gain is close to 2.2 GWh. In 27 of these cases the improvement is positive, and in the other 3 the

improvement is slightly negative.

Figure 5: Histogram of differences of power

4.1 Interpretation of the results

We illustrate the differences between the real and the optimized solutions by analyzing two of the test cases.

These cases were selected since one of them proposes a very different production plan than the decisions

actually taken at the moment. In fact, they also show that even though the strategy is very different, more

power can be produced in the end. Also, fifteen of the cases have more starts with the optimized solution

than the real cases, and thirteen generate more power. It is important to notice that not all constraints of

the database results are modeled in the optimization problem. In fact, some constraints concerning power

production stated in contracts are neglected in this paper, but do not have a major impact on the general

results presented in this section. Solutions can be slightly different, but overall results are comparable.

Case 1 fills the reservoir during the week and case 6 has similar volumes at the beginning and the end of

the week.

Since power is a two variable function of the net water head and water discharge, both graphs are

presented. For Chute-du-Diable and Chute-Savane, a graph of the water discharge comparing optimized

solution and reality as well as a graph comparing water heads are displayed for all four cases.

Let us analyze case 1 in details. Fig. 6(a) shows the results for Chute-du-Diable power plant. The graphic

on top shows the total water discharge of the plant in m3/s and the graphic below shows the net water head

in m. The period for both graphs is 2 minutes, as in the historic database. The optimized result over the

entire week are transposed every 2 minutes to allow a visual comparison. Even though a mean per hour of the

2 minute inflows has been computed for the optimization, the total volume is equivalent for 2 minutes real

results and 1 hour optimized solutions. For each graph, the optimized solution is presented with a dashed

line and the real cases with a filled line. Fig. 6(b) shows the results for Chute-Savane. The top graphic of

Fig. 6(a) shows the optimized solution in which the total water discharge at the plant is 670 m3/s during the

whole planning horizon. Graphic on the bottom, on Fig. 6(a), illustrates the water head is similar throughout

all the week for database and optimizer solution. Fig. 6(b) on top shows database solution give a constant

water discharge of about 780 m3/s with a higher discharge at the beginning of the week, and that optimized

solution has also a constant solution with a peak of the water discharge around period 1000. As for the

graphic on the bottom, the optimized water head is higher than database results throughout the week. The

solution provided by the optimizer produces an improvement of 0.462 GWh.

For case 6, the solutions for both power plants have strategies different than decisions made at that

moment. Chute-du-Diable’s reservoir is lowered then filled and Chute-Savane is filled, then lowered and filled

once again. Results are presented on Fig. 7.
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Figure 6: Case 1 water discharge and water head
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Figure 7: Case 6 water discharge and water head

These two cases were selected to illustrate important differences. Case 1 fills the reservoir throughout the

week and case 6 keeps reservoir at the same level. These graphs show that the optimized strategy differ from

what was done in reality, and improve the production. Case 1 produces 0.462 GWh more and case 6, 0.982

GWh more. The three cases that did not find a better solution with an identical starting point share the

same characteristic that reservoir level is lowered during the weekly planning. More work needs to be done

in order to find a strategy that provides a good starting point. It is difficult to compare with the historical

database since we are not aware of what really happened during the week. For example, maybe unexpected

circumstances forced the operation of the turbines to be taken off schedule. These test show that even though

we do not have a perfect understanding of those weekly planning horizons, our models allow us to produce

a solution within a very satisfying computational time of a few seconds.
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We solved the short-term unit commitment and loading problem with a deterministic model, which means

that no uncertainties are taken into account on the inflows of the basin. By doing so, it gives more liberty

to the optimization to vary the reservoir volumes, knowing exactly water inflows that will occur at the

next period. This is why reservoir heights vary in a more important way compared to what happened in

reality. We had to compare our model with some data in order to assess the quality of the proposed solution.

Computational results show that the model proposed could be modified and extended to take into account

the uncertainties related to the weather forecasts.

5 Conclusion

Short-term unit commitment and loading problem are complex to solve since a great number of variables are

needed (depending on the modeling of the problem), the hydroelectric production functions are nonconvex

and nonlinear and we don’t have analytical representations of them. We have proposed a model with a

reasonable number of variables, embedded into a two-stage optimization approach. The first stage solves

the relaxation of a nonlinear mixed-integer program in order to find volume, water discharge and number of

active turbines at each period. The second stage solves a linear integer model to find the exact combination

of turbines that maximizes total power but also penalizes start-up of turbines. Dynamic programming is used

to calculate total power output that can be generated by a certain combination of active turbines, as well as

a given volume and water discharge. This data is then used as parameters for both models. The approach

proposed in this paper allows us to find a solution in a computational time that is more than satisfying for

needs of operation. Also, very little work has been done on the starting point and still, twenty-seven of the

thirty test cases give a better solution at first. Multistarts or variable neighborhood searches [10] will be

the subject of future research. Also, other developments based on this method will involve using uncertainty

related to inflows in order to create a stochastic programming model.
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