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1 Introduction

Hydroelectric producers invest time and resources in developing optimization tools to gain efficiency in the
use of water, since these even small improvements lead to significant savings. Short-term optimization is used
at the power plant level to dispatch available water for production between the turbines. Each turbine has
a different efficiency. The amount of water available for production, or reservoir trajectories, is determined
from the medium-term optimization and considers demand, uncertainty in the inflows and travel time of the
water between the plants. Short-term optimization is often considered to be deterministic [1] by making the
assumption that the inflows are known [2] or by neglecting water balance constraints [3] at such a short time
scale, but does not allow planning under different forecasts. Also, [4] have shown that considering uncertainty
in short-term decision models may lead to improvements.

The focus of this paper is stochastic optimization applied to the short-term hydropower optimization
problem. By considering uncertain inflows, turbines will be used in a more efficient manner since the stochastic
model results in a compromise between high and low forecasted inflows. For example, in situations where
reservoirs are nearly full, considering uncertain inflows when important inflows are expected prevents lowering
the reservoir and forcing turbines into inefficient zones, which results in energy production loss in the future
if these high inflows do not occur.

Few papers have looked specifically into short-term hydropower models with uncertain inflows. In [5], a
short-term hydropower optimization model treats deterministic inflows. Water head variations are considered
and nonlinearities and nonconvexities of the hydropower production function are accounted for. In [6],
uncertainty of prices and inflows is considered. They use time series analysis to model the water inflows,
which is represented by a scenario tree in the stochastic programming model. Start-up costs are considered
and a multistage stochastic model is approximated by a two-stage model. A mixed-integer linear program is
used.

The net water head is assumed to vary with the water discharge only, so hydropower production functions
depend only on the water discharge. In [7], the only uncertainty considered is demand. The deterministic
model is a linear integer model, which is an approximation of a nonlinear mixed integer model. Once again, the
hydropower production function depends only on water discharge. For some hydropower systems, neglecting
the water head is not a possible avenue since many of the reservoirs have small capacities. Consequently, the
water head effect is important in a short-term optimization, even with short time steps.

Many assumptions are made when solving the short-term unit commitment model, since they are complex
to solve. They have a large amount of variables, power production functions are nonlinear and efficiency is
different for every turbine. The most common assumption is to neglect water head variations leading to
linear power production functions.

When uncertainty arises and one wants to solve optimization models, two main streams of ideas have
been applied in the optimization community. Stochastic dynamic programming has been used extensively
to solve hydropower optimization models [8, 9], as well as variants such as sampling stochastic dynamic
programming [10] or stochastic dual dynamic programming [11]. These models are well suited for long or
medium-term horizons but for short-term models, the state space is huge and it is very difficult, if not
impossible, to solve them. In order to prevent the optimization process to empty out the reservoirs in the
short-term model, values are assigned to the remaining water at the end of the planning horizon, which are
obtained with stochastic dynamic programming or stochastic dual dynamic programming for example.

The other stream is stochastic programming. A two-stage stochastic model [12] consists of two stages of
decisions. The first stage decisions need to be taken without knowing the realization of the uncertainty in
the future, while the second stage decisions are taken when the uncertainty is revealed.

Usually, uncertainty is represented by scenarios. Each scenario is a possible realization of the uncertainty.
Multiple scenario generation methods have been used in the past to approximate the distributions of the
stochastic parameters. An overview of these methods, as well as evaluating the quality of a scenario tree
is found in [13]. In [14], a periodic autoregressive process is used to fit historical data of the prices and to
generate prices for the stochastic model. The scenario tree is built by sampling the distribution fitted with
the model for the different nodes. Another method creates a discrete distribution of the uncertain parameter
by matching some specific statistical properties. In [15], the first four moments, mean, variance, skewness
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and kurtosis are matched. Multiple pitfalls arise from this method and one must ensure the scenario tree
represents possible outcomes of the uncertainty. A survey of techniques for generating scenario trees appears
in [16] and includes recombining of data paths, contamination method and matching. More recently, copulas
have been used to generate scenarios for two-stage stochastic problems [13]. This method offers the advantage
of treating dependencies better than with correlation alone. Other methods are scenario reduction [17, 18].
An initial scenario tree is required and forward selection, or backward reduction is applied in order to reduce
it and diminish computational time to solve the stochastic optimization model. The effect of the reduction
on the solution accuracy, applied to a cascaded system of hydropower reservoirs is found in [19].

Other methods to deal with uncertainty on the inflows include robust optimization techniques [20] and
probabilistic constrained programming [21]. Robust optimization solves models that have uncertain param-
eters over uncertainty sets. Therefore, the optimization seeks to find a solution that is feasible regardless of
the outcome of the uncertainty. In [22], a rolling-horizon scheme is used and robust optimization is applied
to the decision of day 1 while the rest of the horizon is considered deterministic. This is interesting as the
uncertainty is applied to the important decisions. A drawback of robust optimization is the formulation of
the uncertainty. In the historical records, some values of inflows may be very low and others very high.
Therefore, it is difficult to define what are the best bounds for the uncertainty set, as well as capturing any
nonlinear dynamics present. In probabilistic constrained programming, constraints are to be respected given
a certain probability. A cascaded hydropower reservoir is solved with probabilistic constrained programming
in [21]. As with robust optimization, parameters on security-level and probability measures are to be given
to the model, which is a difficult task in practice.

We contribute to the existing literature by developing an approach that takes into account inflow uncer-
tainty, head variations and the nonlinear and nonconvex relationship between discharge and power output.
Applying the theory outlined in [23], we detail/provide a nonparametric scenario generation approach that
relies on the information in the history of inflows. We expand [5] by introducing stochasticity to both the
loading and unit commitment problems.

The paper is organized as follows. Section 2 presents data available for inflows. Section 3 describes the
method to generate scenario trees. Section 4 gives an overview of the short-term hydropower problem and
details the optimization models. Numerical results are presented in Section 5 and final remarks are presented
in Section 6.

2 Scenario fan of inflows

This section presents the data available for the inflows. In the province of Quebec in Canada, consumers and
producers of hydroelectric energy, except Hydro-Quebec, are not allowed to bid on the spot markets. The
province-owned integrated utility performs all power market activities. Hence, only uncertainty related to
inflows in the reservoirs is considered in this paper.

Before presenting the method for generating the scenario trees used in the optimization models, we pause
to describe the available data sets. Precipitation forecasts are obtained from Environment Canada [24]. A
7 day deterministic precipitation forecast is issued. The 7 day forecast is split in two groups: the first 3 and
the last 4 days. We make the assumption that the error for both groups is independent from a meteorological
point of view, as the correlation in precipitations between days is negligible. This assumption is motivated by
the great variability in Canadian weather conditions from one day to the next. For example, we could have
a few days of snow, followed by no precipitations then a few days of rain. The last 15 years of historical data
of precipitation forecasts is searched for a given number (a) of precipitation forecasts that are the closest, in
precipitation forecast (mm) to the first 3 days, and they are retained. The same is conducted for the second
group. Since the error is assumed independent, the scenarios found for the first and second group are mixed
and matched to create a2 precipitation scenarios for the first 7 days. Note that the actual realizations of
precipitation on these days are used as scenarios. Then, considering that the forecast has no value after 7
days, the 62 years of available history of realizations is appended to all of the scenarios for the first 7 days
with a = 7, yielding a total of a2 × 62 = 3038 scenarios of precipitation for 30 days of prevision. Then, these
precipitation scenarios are given as input to the CEQUEAU hydrological model [25] which outputs inflow
previsions for the reservoirs.
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Figure 1: Building inflow scenarios from a 7 day deterministic precipitation forecast.

Figure 1 illustrates this process. The goal of the scenario tree generation method, in Section 3, is to create
a scenario tree from the scenario fan of inflows.

3 Scenario tree generation

The method chosen to construct a scenario tree suitable for the stochastic optimization is taken from [23, 26].
The method is applied to real hydropower data. First, the structure of the scenario tree is fixed, then
stochastic approximation is used to improve the states of the nodes, considering all the data available for
every approximation. Improvement goes on until a convergence criteria, based on the nested distance and
explained in Section 3.4, is reached.

3.1 Fixing the initial scenario tree structure: k-means clustering

The stage and the number of nodes per stage of the tree is fixed initially, more precisely, the number of
stages as well as the number of nodes per stage. Aggregation is necessary since the scenario tree structure
can be different from the data available. The aggregation is straightforward: values of inflows for each day
are summed up.

K-means clustering [27] is used to partition the data paths into clusters in order to assign initial values
to the scenario tree nodes. Note that initially no probabilities are allocated to the nodes: simply values for
the nodes. This clustering method minimizes the distance from every data point to the mean of the cluster
to which it belongs. As an example, the k-means algorithm is applied to the 3038 inflow scenarios to form a
scenario tree which has a structure as per Figure 3b.

3.2 Improvement of the clusters

The method to improve the scenario tree nodes consists of two steps. First, from the initial data paths,
a random data path, that is not in the paths available, is generated using density estimation. Next, the
distance between this random path and the closest state of the scenario tree nodes is minimized in a stochastic
approximation step in order to improve the tree. This method is repeated for a given number of iterations
and is explained in what follows.

3.2.1 Step I: density estimation

In order to generate a new random path, kernel density estimation is used. We generate a random path that
is close to the distribution of the data paths and conditional on previous stages. To do so, the conditional
probability density function is estimated. For each stage of the desired scenario tree structure a value of
inflow is generated that is close in distribution to all of the data paths and incidental to the past.

A random path ξdk = (ξd1 , . . . , ξ
d
K)T is to be generated using available data paths Xd

ik = (Xd
i1, . . . , X

d
iK)T

where i is the index of availabe data paths, d is the dimension and K is the number of stages. The conditional
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density estimator is:

f̂ (ξk|ξ1, . . . , ξk−1) =

n∑
i=1

k−1∏
j=1

κ
(
ξj−Xij

hj

)
∑n
m=1 κ

(
ξj−Xmj

hj

) × κ(ξk −Xik

hk

)
× 1

hk
, (1)

where the dimension d is dropped for clarity, n is the number of available data paths, κ is the kernel and h
is the bandwidth.

The analytical representation of the actual distribution is not computed, as only samples from Equation (1)
are necessary which can be generated quickly. In practice, this is achieved by assigning weights to every data
path available. The closer the observation is to the path, the higher is the weight. For every stage from
1, . . . , k−1, the weights of the data path at each stage are multiplied. With these weights calculated, a value
of inflow is to be generated at stage k.
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Figure 2: Generation of a random path based on three available data pahts of inflows. The generated value
of inflow for stage 1 is shown with a star marker.

To illustrate refer to Figure 2. There are three data paths of inflow. The random value of inflow has been
generated for stage 1 and is located with a star marker. From there, a value of inflow is to be generated for
subsequent stages, always conditional on the past. As per the figure, it is necessary to find a value of inflow
at stage 2 that is consistent with the conditional distribution. Therefore, weights are calculated as follows,
in this case for stage k:

wi(ξ1, . . . , ξk−1) =

k−1∏
j=1

κ
(
ξj−Xij

hj

)
∑n
m=1 κ

(
ξj−Xmj

hj

) , (2)

where
∑n
i=1 wi = 1 and w ≥ 0.

The value of inflow ξk at stage k is generated as follows. A data path with index i∗ is chosen randomly
among the available data paths at stage k − 1 to satisfy

i∗−1∑
i=1

wi(ξ1, . . . , ξk−1) ≤ randu ≤
i∗∑
i=1

wi(ξ1, . . . , ξk−1), (3)

where randu is chosen from the uniform random distribution on the interval [0, 1]. The cumulative sum of
the weights leads to a high probability of picking a data path near an observation.

The value of inflow ξk is obtained by setting the value at stage k

ξk = Xi∗k + randκhk
, (4)

where randκhk
is a random value sampled from the kernel estimator using the composition method [23].

This newly generated inflow value is according to the distribution of density of the current stage and
dependent on the history of all the data paths.
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Referring again to Figure 2, weights are calculated for the 3 data paths as per Equation (2). Then, a
data path is chosen randomly at stage 1 and the thick filled line has a high probability of being picked.
Consider it is the case. To generate the value of inflow at stage 2, the value of the thick filled line at stage 2
is perturbed randomly. This method is then repeated at each stage in order to generate a random data path
and is represented on Figure 3a with a thick dashed line.

It is shown that the choice of the kernel does not have an important effect on the density estimation [28].
Hence, in this paper, the logistic kernel is used:

κ(ξ) =
1

eξ + 2 + e−ξ
. (5)

The bandwidth is the smoothing factor applied to the estimation of the density. Silverman’s rule of
thumb [29] is employed to determine the optimal bandwidth:

hk = σ(Xik)n−
1

d+4 = σ(Xik)n−
1
7 , (6)

where n is the number of data paths, d is the dimension and σ is the standard deviation. In this paper, d = 3
because there are three values of inflows per scenario tree node, representing three different reservoirs.

3.2.2 Step II: stochastic approximation

Once the new random path of inflows is generated, a stochastic approximation step is conducted. This step
allows to update the value of some scenario tree states. During this step, a scenario from the scenario tree,
more precisely a path of nodes in the scenario tree is identified. This path of nodes in the scenario tree
minimizes the Wasserstein distance W between the random generated path during Step I of the algorithm,
found in Section 3.2.1, and current scenario tree nodes values.

The Wasserstein distance is minimized as follows:

W 2 = min
ω∈Ω

K∑
k=1

||Γ(ω)− ξk||2, (7)

where Ω are the scenario tree paths, Γ(ω) are the states corresponding to the nodes in the path ω in the
scenario tree, from the set of all possible scenarios Ω, and ξk is the value of inflow generated randomly at
stage k. Referring to Figure 3b, Ω = {(1, 2, 3, 5), (1, 2, 3, 6), (1, 2, 4, 7), (1, 2, 4, 8)}. Equation (7) allows to find
this path of nodes and is identified as ω = (1, 2, 4, 8) on Figure 3b.

To achieve this, a stochastic gradient descend method that minimizes the nested distance is used. Starting
from the root of the scenario tree, W is computed for the children node. The children node with the smallest
value of W becomes the parent node. W is then computed for the children node of the new parent node and
so on until a leaf node has been reached.

The identified path of scenario tree nodes values Γ(ω) that minimizes the Wasserstein distance for the
current stochastic approximation iteration p = 1, 2, . . . is updated in the following manner:

Γ(ω)p+1 = Γ(ω)p − αp∇Wp, (8)

where Γ(w) are the values of the scenario tree nodes to improve, αp is the step-size and ∇Wp the gradient of
the distance.

The step-size αp = 1
(p+30)3/4

, where p is the stochastic approximation iteration, is chosen since it is shown

that the method will converge since αp > 0,
∑
p αp =∞ and

∑
p (αp)

2 <∞.

As an illustration, consider one iteration of the algorithm and refer to Figure 3. First, a random data
path of inflows is generated using kernel density estimation. This can be seen on Figure 3a: it is the thick
dashed line. The Wasserstein distance between this new generated path of inflows and the current values
of the scenario tree nodes is minimized and a path of nodes in the scenario tree is retrieved in order to be
improved. The path of nodes minimizing this distance is shown on Figure 3b. Hence, the value of the inflows
for the thick nodes, which are 1, 2, 4 and 8 will be improved using Equation (8).

5



Stage
1 2 3 4

In
flo

w
 (

%
)

0
10
20
30
40
50
60
70
80
90

100

(a) Randomly generated path of inflows, shown with thick dashed
line, from three available data paths of inflows.

1 2

4

8

7

3

6

5

Stage 1 Stage 2 Stage 3 Stage K

(b) Scenario tree. The path of nodes in the sce-
nario tree that minimizes the Wasserstein dis-
tance is shown in bold.

Figure 3: Illustration of the 2 steps of the algorithm. Generation of a random path of inflows from available
data paths of inflows and stochastic approximation to improve the value of some scenario tree nodes.

3.3 Probabilities

During the first stochastic approximation iteration, assigned probabilities of the nodes are 0 since, as explained
in Section 3.1, the scenario tree is initialized with values for the nodes only.

Node probabilities are updated every stochastic approximation iteration. A counter is assigned to each
node and initialized at 0. Every time a path of nodes minimizing the Wasserstein distance is retrieved, the
corresponding counters of the nodes in this path are incremented by 1.

Once the stochastic approximation iterations are completed, probabilities are computed by dividing the
counter value with the number of stochastic approximation iterations, which yields sums of child nodes
probabilities equal to 1, as in Figure 4.
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Figure 4: A scenario tree with node probabilities (over the node) and scenario i probabilities (indicated
with πi).

In a multistage stochastic program model, each path from the root to a leaf node represents a scenario.
The unconditional probabilities of a scenario is obtained by multiplying the unconditional probabilities of all
the nodes in the scenario, yielding probabilities πj , where j is the scenario in Figure 4.
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An interesting feature of the scenario tree generation method is that the extreme (low and high) scenarios
are accounted for, according their occurence in the historical data set. The law of large numbers insures that
the probabilities are asymptotically consistent.

3.4 Termination criterion

The scenario tree generation algorithm terminates when the nested distance has converged to a certain ε for
the 10 last iterations. Thus, Step I and Step II of the algorithm are repeated until convergence is obtained.

The main advantage of the scenario tree generation method presented in this section is that all of the data
paths are used at every iteration to improve the value of the scenario tree nodes. By doing so, the underlying
discrete distribution of the available data paths, approximated by a scenario tree, is improved consistently
with the data.

4 Stochastic short-term hydropower model

The two phase deterministic optimization models taken from [5] are updated to consider stochastic inflows.
This section presents the modeling of the short-term problem as well as the mathematical formulations.

4.1 Modeling of the short-term problem

The modeling of the problem considers head-dependency, as well as efficiencies of each turbine. Power P (kW )
produced by a single turbine is defined as

P (hn, Q) = η(Q)×G×Q× hn, (9)

where G is the gravitational acceleration (m/s2), Q is the water flow (m3/s), η(Q) is the efficiency of the
turbine and hn is the net water-head (m). The net water-head is a function of the forebay elevation hf (m),
the tailrace elevation ht (m) and losses in the penstock ϕ (m) that is given by:

hn(Q, v) = hf (v)− ht(Q)− ϕ(Q), (10)

where v is the volume of the reservoir (hm3). For notation purposes and since there is a relation between
net water head and volume, we consider that power is a function of the volume and water flow. We propose
a modeling with combinations of units instead of single units. To achieve this, a dynamic programming
algorithm, where each sub-problem is a turbine, is used to calculate the power produced by a combination of
units. As an example, if a power plant has a total of 5 turbines and requires three active turbines, there is a
total of 10 combinations of 3 turbines, 5 combinations of 4 turbines and 1 combination of 5 turbines. Water
flows are discretized and the dynamic programming algorithm is executed for each possible combinations, 16
in this case, for each power plant and discretizations of reservoir volumes and water flows.

4.1.1 Dynamic programming algorithm

The objective of the problem is to maximize the power output and it is found recursively. Given state sj ,
the dynamic programming algorithm seeks to choose decision variables qj that solves:

f∗j(sj) = max
qj

P (sj , v) + f∗j+1(sj − qj), (11)

where j = n−1, n−2, . . . , 1, n is the number of turbines at the power plant, sj ∈ {1, 2, . . . , r} is the remaining

water to dispatch given the number of discretizations r and qj ∈ {1, 2, . . . ,min{qj , Q}} the water flow with

qj maximum water flow. The optimal water flow is q∗j = sj that maximizes f∗j(sj). For j = n, the optimal
power output is given by f∗j(sj) = P (sj).
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Figure 5: Maximum output surfaces.

4.1.2 Maximum power output surfaces

We then build one surface of the maximum power output for each power plant. For a plant with 5 turbines
requiring at least 3 working, three surfaces are built, more precisely one for 3 turbines working, one for 4
turbines working and one for 5 turbines working. The maximum power output for every possible combination
of number of working turbines is retained for every discretization of volume and water flow. Such surfaces can
be viewed in Figure 5. To obtain them, the dynamic programming algorithm is executed for every number
of turbines in the combination, every discretization of the reservoir volume, every discretization of the water
flow and every power plant. The surfaces of maximum power outputs are then modeled using polynomial
equations in the objective-function of the optimization problem. Modeling of the hydropower production
functions is done by constraining these functions with two surfaces.

A two-phase optimization strategy is used to penalize the startup of turbines. The first phase, namely the
loading problem, optimizes values of water discharges, volumes and number of turbines in the combination
for every plant and node. The second phase, namely the unit commitment problem, uses the solution of
the first optimization model to determine the exact combination of turbines working at each plant and node
in the scenario tree. Startups of turbines are penalized with a fixed cost. Multistage stochastic models are
developed for both optimization phases, in order to consider uncertainty in the inflows of the reservoirs.

4.2 Phase I: loading problem

Optimization variables of this nonlinear stochastic multistage mixed integer problem are water flows, volumes
and number of working turbines, for each node and plant in the scenario tree. The model must choose one
surface of number of working turbines among available, but we have shown [5] that relaxing these variables
leads to an integer solution. Therefore, we solve a nonlinear stochastic multistage continuous problem.

The objective is to maximize total energy production in stage 0, expected energy production in future
stages and expected value of the water remaining in the reservoir at the end of the planning horizon:

max
∑
c∈C

nc
0∑

s=1

χcs0y
c
s0ζ0 +

∑
j∈J

∑
c∈C

πcjP
c
j +

∑
c∈C

∑
j∈E

πcjΦ
c
j(V

c
j ) (12)

subject to: χcsi ≤ ΨAc
s (qci , v

c
i ), ∀c ∈ C,∀i ∈ N, ∀s ∈ nci (13)

χcsi ≤ ΨBc
s (qci , v

c
i ), ∀c ∈ C,∀i ∈ N, ∀s ∈ nci (14)
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δci = vci+1 − vci + γwiq
c
i

−
uc∑
m=1

γwmqm, ∀i ∈ N, ∀c ∈ C (15)

nc
i∑

s=1

ycsi ≤ 1, ∀i ∈ N (16)

ycs0 = ŷcs0, ∀s ∈ nci ,∀c ∈ C,∀i ∈ N (17)

vcmin ≤ vci ≤ vcmax, ∀i ∈ N, ∀c ∈ C (18)

qcmin ≤ qci ≤ qcmax, ∀i ∈ N, ∀c ∈ C (19)

qci ≥ 0,∀i ∈ N, ∀c ∈ C (20)

vci ≥ 0,∀i ∈ N, ∀c ∈ C (21)

ycsi ≥ 0, ∀s ∈ nci ,∀i ∈ N, ∀c ∈ C. (22)

Hydropower production surfaces are constrained by (13)–(14). Water balance constraints are represented
by (15) and the choice of a single number of active turbines is shown in (16). Constraints (17) are the
initial number of active turbines while constraints (18)–(19) are the bounds on reservoir volumes and water
discharges. Finally, constraints (20)–(22) impose nonnegativity.

The above short-term loading problem is described in more details in [5]. We now show how to integrate
a water-value function for the remaining water at the end of the planning horizon.

Water-value function The water-value function is the expected energy production in the future at the end
of the planning horizon. In a deterministic framework, inflows are known with certainty, thus volume in
the reservoir at the end of the horizon is easier to determine. In a stochastic framework, it is not possible
to give a goal for the volume at the end of the horizon since it may not be feasible for every scenario. On
the other hand, neglecting this feature will cause the optimization to empty the reservoir at the end of the
horizon, since the objective is to maximize energy. Hence, maximizing the expected value of future energy
production, or water-value function, will prevent the optimization of doing this. The water-value functions
are computed with a stochastic dynamic algorithm [30] at Rio Tinto. A planning horizon of one year, with
weekly time steps is used.

4.3 Phase II: unit commitment

This linear stochastic multistage integer model is solved using solution found in Phase I. The purpose of this
model is to determine the on-off schedule of the turbine combinations (found in Phase I). Given water flows
and reservoir volumes found in the loading problem, the dynamic programming algorithm is used to calculate
power outputs for every possible combination of turbines, given the number of working turbines found in
Phase I, and are stored in parameter βcli. The model maximizes the energy production and penalizes turbine
startups. Initial combination of turbines working at stage 0 is given in x̂cl0.

The objective is to maximize energy production at stage 0 and future energy production and penalize
startup of turbines at stage 0 as well as future expected startups:

max
∑
c∈C

nc
0∑

l=1

βcl0x
c
l0ζ0 −

∑
c∈C

T c∑
t=1

dct0θζ0 +
∑
j∈J

∑
c∈C

πcjE
c
j −

∑
j∈J

∑
c∈C

πcjG
c
j (23)

subject to:

nc
i∑

l=1

xcli = 1, ∀i ∈ N, ∀c ∈ C (24)

xclif
c
lit − xcli−1f

c
li−1t ≤ dcti, ∀l ∈ nci ,∀i ∈ N, ∀c ∈ C,∀t ∈ T c (25)

xcl0 = x̂cl0, ∀l ∈ nci ,∀i ∈ N, ∀c ∈ C (26)

xcli, d
c
it ∈ B, ∀l ∈ nci ,∀i ∈ N, ∀t ∈ T c,∀c ∈ C. (27)
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The choice of a single turbine combination is given by (24). Constraints that allow to penalize a startup
by flagging them is shown in constraints (25). The initial combinations are given in (26) and imposition of
binary variables are constraints (27).

This two phase optimization process allows to find a solution efficiently. Also, even though an approxi-
mation of the energy produced is conducted in the first phase, the actual energy production is retrieved in
the second phase, seeing that the actual hydropower production functions are used to compute the actual
energy production given a water discharge and volume, which are solutions of the first phase.

5 Results

This section details the system on which the stochastic hydropower models are tested and results are pre-
sented.

5.1 Hydroelectric system studied

The hydroelectric system studied is situated in the Saguenay Lac-St-Jean region in the province of Quebec,
Canada and is owned by Rio Tinto. For the purpose of this paper, three hydroelectric plants, which are
Chute-du-Diable, Chute-Savane and Isle-Maligne are considered. The two first plants have 5 turbines each
and the latter has 12. Figure 6 represents the system studied. Triangles represent reservoirs and squares
power plants.

Chute-du-diable

Chute-savane

Lac-St-Jean

Isle-MalignePetite décharge

Figure 6: Hydroelectric system studied.

Chute-du-Diable, Chute-Savane and Isle-Maligne plants reservoir are quite small, respectively 452 hm3,
119hm3 and 171hm3. In the optimization model, there is no water value function associated to these plants
since they have small reservoirs. Instead, a full reservoir constraint at the last period is imposed as a goal
in the model. The only water-value function used is for the Lac-St-Jean reservoir, therefore volume of this
reservoir at the last period is an optimization variable. The capacity of this reservoir is of 5596 hm3. Water
flow in Petite décharge is limited by a function dependent on the volume of Lac-St-Jean.

5.2 Rolling horizon procedure

A rolling horizon methodology is retained to validate the optimization models developed in this paper. The
planning horizon of the rolling-horizon is of 31 days. For every day of the rolling-horizon, the forecast is for
30 days. For day 1 of the rolling-horizon, previsions are from days 2 to 31, for day 2 of the rolling-horizon,
previsions are from days 3 to 32, and so on. The stochastic optimization models presented in Section 4 are
solved every day, but only the solution for the first stage is retained. Forecasts are updated daily. Once the
forecast is updated, the scenario tree is generated for the corresponding day. The two-phase optimization
process is launched and the first stage solution is retained, that is: volume, water discharge and turbine
combination. Then, considering the actual realization of the inflow, the water balance constraints are used
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to determine the actual volume of the reservoirs at the end of the period. More precisely, the water discharge
from the optimization is combined with the actual realization of the inflow in order to calculate the reservoir
volumes. The same process is repeated for the 31 days. In the end, a production plan for 31 days is available,
which consists of the reservoir volumes, total water discharges at the plants and turbine combinations in use.
See [31] for a different approach to rolling-horizon evaluation of short-term hydropower operation.

The solution obtained from the scenario tree generation is compared to the solution obtained from the
median scenario of the inflows. Therefore, we compare our method to a rolling median. Every day, the
median scenario is found throughout all available scenarios and a scenario tree of 1 node per stage is solved
in a deterministic fashion.

5.3 Numerical results

The scenario tree generation method is coded in Matlab [32]. The optimization models are coded through
AMPL [33]. The optimization software for the loading problem, which is the relaxation of a nonlinear mixed-
integer problem, is IPOPT [34] and the unit commitment model, a linear integer problem, is solved with
XPRESS [35].

Six test cases, which consist of monthly periods are available. The biggest problems to solve have 7 stages
with 48 scenarios, 1123 nonlinear variables, 33 linear variables and 1237 constraints for the loading problem
and 3475 binary variables and 825 constraints for the unit commitment problem.

Different stages, more precisely 5, 6 or 7 as well as different number of scenarios, namely 16, 32 or 48 are
tested.

5.3.1 Computational time
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Figure 7: Average computational time of scenario tree generation and optimization for one day in the rolling-
horizon.

The average time to construct the scenario tree and to optimize is shown on Figure 7. The average time
is in seconds, for a single day in the rolling horizon procedure, more precisely for one problem including
construction of the scenario tree and optimization of the two phase process. It takes less than 5 seconds to
build the scenario trees for all test cases, while the optimization requires more time given higher numbers of
scenarios. Less than 42 seconds, for a single day in the rolling-horizon are necessary to construct the scenario
tree and optimize the two-phase process, which is acceptable in the real operating environment.

5.3.2 Results

Table 1 illustrates the difference in energy, in TWh, produced throughout the 31 days rolling horizon combined
with the value of water remaining in the reservoir at the end of the planning horizon. This implies that the
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difference in energy can be compared to annual production but absolute numbers are unfortunately not thus
interpretable. A positive value indicates the scenario tree method produces more than the median scenario
and a negative value indicates the contrary. For 4 of the test cases, the stochastic solution produces more
energy. For 1 test case, the median scenario solution produces more energy. Finally, for the August case, the
stochastic solution produces more energy with a 5 stage or 6 stage scenario tree, and the median scenario with
a 7 stage. For the 4 test cases for which the scenario tree produces more energy than the median scenario,
average improvements are 0.0679812% for June, 0.0273551% for July, 0.1620522% for September 2011 and
0.0251653% for September 2010. Despite the low percentages, this represents huge savings for the producer.
As an example, the current value of a 1 GWh improvement, in the province of Quebec, is around 20,000$.
Therefore, for June, the 0.0679812% higher production translates into 10,932,489$.

5.3.3 In sample stability test

An in sample stability test allows to verify if the scenario tree generation method is consistent. It is taken
from [36]. Since the scenario tree is generated from random samples, one wants to verify if the solution given
by the optimization, with a different scenario tree each time, give more or less the same solution. If so, then
the scenario tree method is consistent.

Table 1: Results for 6 test cases (5 are data sets from the year 2011 and 1 from 2010). Energy produced
by the stochastic solution and the median scenario rolling horizon is given. Also, the difference in energy
between both solutions is shown.

June 2011 July 2011 August 2011

Nb. Stoch. Median Diff. Stoch. Median Diff. Stoch. Median Diff.
Sc. (TWh) (TWh) (TWh) (TWh) (TWh) (TWh) (TWh) (TWh) (TWh)

5 stages

16 804.5143 804.0265 0.4878 740.2678 740.0631 0.2047 710.1115 710.0795 0.0320
32 804.7050 804.0251 0.6799 740.2783 740.0631 0.2152 710.1108 710.0794 0.0314
48 804.6894 804.0249 0.6645 740.2496 740.0631 0.1865 710.0988 710.0794 0.0194

6 stages

16 804.5059 804.1495 0.3564 740.2698 740.0665 0.2033 710.0783 710.0733 0.0050
32 804.6796 804.1479 0.5317 740.2652 740.0665 0.1987 710.1139 710.0733 0.0406
48 804.6715 804.1481 0.5234 740.2608 740.0665 0.1943 709.9826 710.0732 -0.0906

7 stages

16 804.5171 804.0881 0.4290 740.2676 740.0578 0.2098 710.0693 710.0867 -0.0174
32 804.7166 804.0881 0.6285 740.2566 740.0578 0.1988 710.0732 710.0867 -0.0135
48 804.7063 804.0879 0.6184 740.2686 740.0578 0.2108 710.0806 710.0867 -0.0061

September 2010 September 2011 October 2011

Nb. Stoch. Median Diff. Stoch. Median Diff. Stoch. Median Diff.
Sc. (TWh) (TWh) (TWh) (TWh) (TWh) (TWh) (TWh) (TWh) (TWh)

5 stages

16 729.5792 729.3811 0.1981 733.0375 731.6799 1.3576 704.7842 704.8494 -0.0652
32 729.5841 729.3821 0.2020 733.0530 731.6799 1.3731 704.7847 704.8494 -0.0647
48 729.5810 729.3804 0.2006 733.0818 731.6799 1.4019 704.7877 704.8496 -0.0619

6 stages

16 729.5856 729.3917 0.1939 732.9971 731.7773 1.2198 704.7690 704.8636 -0.0946
32 729.5779 729.3929 0.1850 733.0188 731.7773 1.2415 704.7928 704.8636 -0.0708
48 729.5800 729.3924 0.1876 733.0937 731.7774 1.3163 704.7326 704.8634 -0.1308

7 stages

16 729.5854 729.4151 0.1703 732.9428 731.9647 0.9781 704.7608 704.8566 -0.0958
32 729.5775 729.4156 0.1619 732.9599 731.9647 0.9952 704.7879 704.8566 -0.0687
48 729.5834 729.4139 0.1695 732.9702 731.9648 1.0054 704.7873 704.8567 -0.0694
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As an example, July 2011 and June 2011 data sets were chosen for this verification. For both data sets,
6 scenario trees were generated with the same number of stages and scenarios. Then, the optimization was
conducted on all of these scenario trees to verify the effect on the objective function value. Table 2 gives,
for these two data sets and 6 instances each, the values of the objective function, for the scenario tree and
median scenario methods.

Table 2: Objective function values for 6 random scenario trees with the same number of stages and scenarios,
on two data sets.

Data Inst. Stoch. Median Diff.
(TWh) (TWh) (TWh)

July 1 740.2652 740.0665 0.1987
2 740.2759 740.0665 0.2094
3 740.2725 740.0665 0.2060
4 740.2581 740.0665 0.1916
5 740.2799 740.0665 0.2134
6 740.2878 740.0665 0.2213

June 1 804.6715 804.1481 0.5234
2 804.6707 804.1484 0.5223
3 804.6709 804.1474 0.5235
4 804.6824 804.1489 0.5335
5 804.6769 804.1486 0.5283
6 804.6571 804.1472 0.5099

Results show that the scenario tree generation method is consistent, as the difference between the objective
functions of the stochastic and median scenario methods present slight variations. For the July test case, the
median is 0.2077 TWh, the mean 0.2067 TWh and the variance 0.9308 TWh and for the June test case, the
median and the mean are 0.5235 TWh and the variance 0.0516 TWh.

5.3.4 Interpretation of the results

The following figures illustrate the 31 day rolling horizon backtesting solution more precisely: water discharge
and reservoir levels for the power plants and reservoirs studied in this paper.

Figure 8 pictures June 2011 data set with 5 stages and 16 scenarios. Solutions obtained from the scenario
tree method and the median scenario are quite similar. Also note that when a method turbines more water,
it is penalized accordingly so it is not advantaged. The difference between the volumes at the end of the 31
day planning horizon is taken into account and transformed into energy, then added to the method that is
disadvantaged.

Figure 9 also illustrates the June 2011 data set with 7 stages and 16 scenarios. Again, results are very
similar.

Without any surprise, the numerical experiment reveal that the solutions to the cases with more stages are
closer to the operational ones because the hydropower sytem operation is more realistic. For example, Figures
8 and 9 show that the solutions with 5 and 7 stages lead to a similar improvement, but the implementation
with 7 stages is preferable. Figures 9a, 9b and 9d present reservoir volumes that are more stable than Figure
8a, 8b and 8d.
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Figure 8: June 2011, 5 stages, 16 scenarios.
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Figure 9: June 2011, 7 stages, 16 scenarios.
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The October data set is the only one for which the median scenario produces more energy for all number
of stages. The interest of a stochastic method is to account for uncertainty in the future. As we compare
our method with the median scenario, if the actual realization of the inflows is close the the median scenario,
the stochastic solution will not produce more energy, as the median scenario depicts correctly the future.
In practice, this may happen during the fall period, for example when low variability exists in the weather
and storms have less chances of developing. This can be seen on Figure 10. Each subfigure corresponds to a
reservoir. The minimum and maximum scenarios are illustrated with the dashed lines. The median scenario
is the full line and the actual realization of the inflows is plus sign line. Figure 8a is Chute-du-Diable. The
top figure is the day 1 October forecast and the bottom figure is the day 1 September forecast. For the 15 first
days, the October forecast median scenario is very close to the inflow realization and therefore, as we keep the
day 1 decision only, the median scenario produces more energy. The other subfigures are represented in the
same fashion. Again, Figures 10b and 10c show that for Chute-Savane and Lac-St-Jean, the actual inflows in
October are very close to the median scenario, therefore there is no gain in using a stochastic optimization
model, as the deterministic median scenario allows to obtain a good solution. For this unusual October case,
solving the short-term unit commitment and loading problem with a median scenario is acceptable. This
affirmation is to be used with caution as situations like these have a low probability of occurring. These results
show that there is certainly a gain in using a stochastic model for the short-term hydropower optimization
model, as relying on the median scenario offers a less robust solution than multiple scenarios.
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Figure 10: Comparison of September (upper figures in each subfigure) and October (lower figures in each
subfigure) day 1 data sets. The dashed lines are the minimum and maximum scenarios. The median scenario
is the full line. The actual realization of the inflows is the plus sign line.
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6 Conclusion

This paper presents a stochastic short-term hydropower optimization method which emphasizes inflow sce-
nario trees. The optimization method considers inflow uncertainty, head variations and nonlinear and noncon-
vex relationship between discharge and power output. The scenario tree generation method first uses kernel
density estimation to generate random values of inflows. Then, the path of nodes, from root to leaf, that
minimizes the Wasserstein distance is found in the scenario tree and the corresponding nodes are updated
using stochastic approximation. The process is repeated until the termination criterion, which is the conver-
gence of the tree in Wasserstein distance, has been reached. A stability test has shown that the scenario tree
generation method is consistent. A highlight of this method is that is uses all data available at each iteration
to improve the values of the scenario tree nodes. The scenario trees are inputs to a two phase optimization
process. The first phase, loading problem, allows to find water discharge, volume and number of turbines
working in each plant. The second phase, unit commitment, chooses the exact combination of turbines to use,
to maximize energy production and penalize unit startups. A major feature of this modeling of the problem
is that the water head is not neglected. For this paper, the models are tested on three hydropower plants.
A rolling horizon procedure is retained on a 31 day planning horizon. The stochastic solution is compared
to the median scenario. Furthermore, fast computation time allows this method to be scaled in order to be
applied in full to the Saguenay-Lac-St-Jean hydroelectric system.
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A Notation

The following notation is used throughout the paper:

i ∈ {0, 1, . . . , N} index of the nodes
e ∈ {1, 2, . . . , E} index of leaf nodes
c ∈ {1, 2, . . . , C} index of hydroelectric plants
r ∈ {1, 2, . . . , uc} index of hydroelectric plants upstream of plant c
j ∈ {1, 2, . . . , J} index of scenarios
s ∈ {1, 2, . . . , nc

i} index of surfaces corresponding to number
of active turbines associated to
hydroelectric plant c and node i

l ∈ {1, 2, . . . , nc
i} index of combinations associated to

hydroelectric plant c and node i
t ∈ {1, 2, . . . , T c} index of turbines of hydroelectric plant c
πc
j probability of scenario j for plant c
vci volume of plant reservoir c at node

i (hm3)
qci water discharge at plant c and node

i (m3/s)
θ start-up penalty for any turbine (MW )
βc
li power generated by combination l ∈ nc

i

at plant c and node i

ycsi =


1 if surface s is chosen at node i

for plant c

0 otherwise

fc
lit =


1 if turbine t of combination l

for plant c is working at node i

0 otherwise

xcli =


1 if combination l of plant c

is chosen at node i

0 otherwise

dcti =


1 if turbine t of plant c is started

at node i

0 otherwise

χc
si power for surface s at node i and plant c (MW )

ΨAc
s (qci , v

c
i ) power production function without spillage for surface s and plant c

ΨBc
s (qci , v

c
i ) power production function with spillage for surface s and plant c

δci inflow of plant c at node i (m3/s)
wi duration of node i (h)
V c
j final volume for plant c and scenario j
P c
j expected value of energy produced by scenario j and plant c (loading problem)
Ec

j expected value of energy produced by scenario j and plant c (unit commitment problem)
Gc

j expected value of startups, in energy units, produced by scenario j and plant c
γ conversion factor from water discharge (m3/s) to (hm3/h)
Φc

j(V
c
j ) water-value function for plant c and scenario j

ζi conversion factor to energy units (GWh)
vcmin minimal volume of plant c reservoir (hm3)
vcmax maximum volume of plant c reservoir (hm3)
qcmin minimum water discharge at plant c (m3/s)
qcmax maximum water discharge at plant c (m3/s).
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