

Architectural Model for Collaboration in The Internet

of Things; A Fog Computing Based Approach

THÈSE PRÉSENTÉE À

L’UNIVERSITÉ DU QUÉBEC À CHICOUTIMI

COMME EXIGENCE PARTIELLE DE LA THÈSE DU

DOCTORAT EN SCIENCE ET TECHNOLOGIES DE L’INFORMATION

Par

Jabril ABDELAZIZ

2018

 I

RÉSUMÉ
Dans les dernières années, les avantages du Cloud Computing l’ont mis au cœur

des architectures proposées pour l’Internet des Objets (IoT). L’infrastructure homogène,
prédictible et performante a fait du Cloud une solution adéquate pour le traitement et
l’analyse des données en provenance des objets de l’IoT. Cependant, les avantages de
l’utilisation du Cloud se révèlent problématiques pour les systèmes IoT sensibles au
temps de latence, et qui exigent la distribution géographique, la prise en compte de
l’environnement local ainsi que la mobilité des objets. Le Fog Computing est un nouveau
concept visant l'extension du Cloud vers la périphérie de l’IoT. Ainsi, il envisage une
couche de nœuds (Fogs) permettant de fournir aux objets connectés un support à la
gestion de la communication, à la persistance des données et à la gestion d’accès.

Ce projet de recherche est motivé par les opportunités prometteuses du concept
du Fog computing. Il anticipe ces opportunités et vise à proposer une architecture
fédératrice, jusqu’à présent inexistante, pour la collaboration dans le Fog.

De ce fait, dans cette thèse, nous tirons parti de l'idée derrière ce nouveau concept
afin de proposer une architecture à cette fin. Cette architecture consiste en un modèle
référentiel qui promeut à la fois une grande abstraction dans la conception des
applications, ainsi que la facilité et l'efficacité dans le développement et le déploiement
au niveau des nœuds de la couche du Fog. En effet, pour renforcer ces nœuds avec des
services dynamiques, nous proposons des moyens formels pour la génération
dynamique de nouveaux services à travers des opérations d'agrégations, de compositions
ou de transformations. En conséquence, les nœuds du Fog deviennent un nid où les objets
connectés peuvent interagir et collaborer à travers des mécanismes expressifs de
définition et d'abstraction d’objets, des analyses de données et des services.

 II

ABSTRACT
Through sensors, actuators and other Internet-connected devices, applications and

services are becoming able to perceive and react on the real world. Seamlessly integrating
people, and devices is no longer a futuristic idea. Converging the physical world with the
human-made realm into one network is rather a present and promising approach called
The Internet of Things (IoT).

A closer look at the phenomenon of IoT reveals many problems. The current trends
are focusing on Cloud-centric approaches to deal with the heterogeneity and the scale of
this network. The blessing of the Cloud computing becomes, however, a burden on
latency-sensitive applications, which require processing and storage mechanisms in their
proximity to meet low-latency, location and better context-awareness requirements. In
addition to mobility support and high geographical distribution requirements. Fog
computing is a new concept that focuses on extending the Cloud paradigm to the edge
of the Internet of Things, via providing communication, computing, and access
management support.

This research project foresees and is driven by the promising opportunities of the
concept behind Fog computing. In this thesis, we leverage this new concept by delivering
a Collaboration Architecture for the Fog computing. This architecture constitutes a
referential model to better design and to implement Fog platforms. It powers the freedom
of abstraction to make development and deployment at the Fog nodes easier and more
efficient. Moreover, it provides a nest where IoT-connected objects can interact and
collaborate. To this end, we introduce expressive mechanisms to define and abstract
objects, data analytics, and services. To leverage Fog nodes with dynamic services and
service-based collaboration, we propose the concept of Operation: a formal way to
dynamically generate new services through mechanisms such as aggregation,
composition, and transformation. Finally, we deliver a comprehensive study and a
collaboration-oriented access control model for the proposed architecture.

 III

ACKNOWLEDGMENTS
I would like to acknowledge the support of the people who made this thesis

possible. I would like to express my gratitude to my advisors Professor Hamid Mcheick

whose maddening attention to detail drove me to finally learn to punctuate prose, and to

Professor Mehdi Adda whose care and insights were sometimes all that kept me going. I

would also like to thank my thesis committee members for providing insightful feedback

and constructive suggestions to improve the quality of this thesis.

Many thanks go to my friends who have supported me through the ups and

downs of my journey. To Tarik for being behind the publication of my first article; To

Hicham for sharing the many nights of work and for the countless lectures on the

mechanics of ice. To Amira, Anouck, Mahdiyeh, Mustapha, Redouane and Zahira for the

support, for periodically disturbing the loneliness of my office with words of

encouragement, and for the tasty homemade food.

Finally, I am eternally grateful to my parents and my family for their

unconditional love and full support, despite the long years of my absence.

 IV

TABLE OF CONTENTS
Résumé .. I

Abstract .. II

Acknowledgments ... III

Table of Contents.. IV

List of Figures ...IX

List of Tables ..XI

 Introduction .. 1

1. Motivation and Problem Description ... 3

2. Contributions.. 5

3. Research Methodology ... 7

4. Thesis Organization .. 10

 Fundamentals and Problem Statement.. 13

1. The Internet of Things .. 13

1.1. The rise of the things .. 13

1.2. Definition and vision of IoT ... 16

1.3. The IoT today ... 19

1.4. IoT as service-oriented architecture ... 20

2. IoT and the Cloud problem ... 21

3. The Fog Computing ... 24

3.1. The Idea and the paradigm ... 24

 V

3.2. Fog Nodes .. 27

 Related Work .. 29

1. State of the Art in the Internet of Things .. 29

1.1. Overview of the IoT challenges ... 29

1.2. Selected IoT related Projects .. 31

1.2.1. CASAGRAS ... 31

1.2.2. Cyber-Physical Systems.. 33

1.2.3. The Internet of Things Reference Model .. 33

1.2.4. The Internet Connected Objects for Reconfigurable Ecosystems 36

1.2.5. IoT at Work Architecture ... 38

2. Computing at the edge of the network... 39

2.1. Mobile Cloud Computing (MCC) ... 39

2.2. Cloudlets, Proximity Matters .. 40

2.3. Mobile Edge Computing ... 42

2.4. Edge-Centric computing ... 44

2.5. Edge Computing, Analysis .. 44

3. Service aggregation in Fog computing .. 46

4. Object and service discovery .. 47

5. Access control for collaboration ... 50

6. Chapter Conclusion... 53

 CoFog, an Architectural Model for Collaborative Fog Computing 54

1. General Concepts of the Fog Architecture .. 55

2. Overview of the Architecture ... 59

3. The Middleware Level (Mdl) ... 62

 VI

3.1. The Adaptation layer .. 63

3.1.1. Sensor description model .. 64

3.1.2. Adapter Container ... 66

3.2. Formatting and Unification... 68

4. Chapter Conclusion... 71

 The CoFog Operational Level: Service and Operation Layers 72

1. The Operational Level, an overview ... 74

2. Service modeling and management ... 76

2.1. Service template .. 76

2.2. Policy-based management ... 78

2.3. Service generation and execution... 80

3. Leveraging service with Operations .. 82

3.1. Operation definition ... 82

3.2. Request-Operation matching ... 84

4. Service discovery and data sharing model .. 86

4.1. Data sharing model .. 86

4.2. Service discovery .. 87

5. Chapter conclusion ... 90

 A Collaborative Access Control for the CoFog Architecture 91

1. Access Control Requirements for Fog Computing ... 92

2. The Collaborative access control models .. 94

2.1. Collaborative Role-Based Access Control .. 94

2.1.1. Definition: Permission .. 95

2.1.2. Definition: Operation ... 95

 VII

2.1.3. Definition: Role .. 95

2.1.4. Definition: Role Assignment ... 95

2.2. Collaborative Attribute-Based Access Control ... 97

2.2.1. Definition: Context ... 98

2.2.2. Definition: Access Control Rule ... 98

2.3. Collaboration Access Models Comparison .. 99

3. Collaboration access policy process .. 100

4. Chapter conclusion ... 101

 Instantiation of CoFog, a Proof of Concept and evaluation 103

1. Smart City: a Case Study on Smart Parking ... 104

2. Experiment Setup ... 106

2.1. Sensing Infrastructure: ... 107

2.2. Cloud Infrastructure: .. 108

2.3. Other preparations: .. 108

3. The Fog Platform: Design and Implementation .. 109

4. Performance Evaluation ... 113

4.1. Network Overload .. 113

4.2. Memory Usage ... 114

4.3. Response Time ... 117

4.4. Summary.. 118

 Conclusion And Prospects ... 119

1. Objectives Summary ... 119

2. A Word on the Contributions ... 121

3. Prospects Beyond the Limitations .. 122

 VIII

APPENDIX A .. 124

Bibliography.. 128

 IX

LIST OF FIGURES
FIGURE 1. THE PROCESS OF EXPLOITING DATA AND GENERATING WISDOM 3

FIGURE 2. RESEARCH PROCESS PHASES (ADAPTED FROM [67]) 7

FIGURE 3. THE GROWTH OF THE INTERNET-CONNECTED DEVICES VS. THE WORLD POPULATION 15

FIGURE 4. ENVISIONED TECHNOLOGICAL DEVELOPMENTS IN THE INTERNET OF THINGS [42] 18

FIGURE 5. THE CLOUD AT THE HEART OF IOT (ADAPTED FROM [71]) 21

FIGURE 6. THE FOG NODES BETWEEN THE CLOUD AND IOT OBJECTS 27

FIGURE 7. CASAGRAS IOT MODEL ARCHITECTURE 32

FIGURE 8. INTERACTION OF SUB-MODELS IN THE IOT-A REFERENCE MODEL (ADAPTED FROM [15]) 34

FIGURE 9. UML REPRESENTATION OF THE IOT DOMAIN MODEL (ADAPTED FROM [16]) 35

FIGURE 10. ICORE ARCHITECTURE MODEL (ADAPTED FROM [78]) 37

FIGURE 11. IOT@WORK ARCHITECTURE AND MAIN FUNCTIONALITIES [109]. 38

FIGURE 12. CLOUDLET TWO-LEVELS ARCHITECTURE 42

FIGURE 13. MOBILE EDGE COMPUTING SYSTEM REFERENCE ARCHITECTURE 43

FIGURE 14. PERSPECTIVES OF A THE FOG COMPUTING LAYER ARCHITECTURE 58

FIGURE 15. THE COFOG ARCHITECTURAL STRUCTURE OF A FOG NODE 61

FIGURE 16. ADAPTATION LAYER FUNCTIONAL ARCHITECTURE 63

FIGURE 17. OBJECT DESCRIPTION MODEL 65

FIGURE [17]. TEMPERATURE SENSOR YAML DESCRIPTION 66

FIGURE 19. SERIALPORT ADAPTER FOR ARDUINO SENSOR: UPSTREAM 67

FIGURE 20. FOG ANALYTICS CHANNELS 68

FIGURE 21. TIME WINDOW, AN ANALYSIS FUNCTION EXAMPLE 70

FIGURE 22. GRAPHICAL REPRESENTATION OF A STATIC SERVICE 74

FIGURE 23. GRAPHICAL REPRESENTATION OF A DYNAMIC SERVICE 75

FIGURE 24. COMPONENTS IN THE OPERATIONAL LEVEL 75

FIGURE 25. SERVICE CONTAINER: TEMPLATE INSTANTIATION 76

 X

FIGURE 26. YAML SERVICE TEMPLATE FOR A SMART TEMPERATURE SERVICE 78

FIGURE 27. POLICY-BASED MANAGEMENT FRAMEWORK 78

FIGURE 28. SERVICE EXECUTION AND DELIVERY PROCESS 81

FIGURE 29 . AN EXAMPLE OF A SIMPLE TEMPERATURE CONVERSION OPERATION 84

FIGURE 30. ALGORITHM FOR REQUEST-OPERATION MATCHING 85

FIGURE 31. DATA SHARING MODEL FOR IOT: PROPAGATION-BASED SERVICE DISCOVERY 88

FIGURE 32. SERVICE DISCOVERY REQUEST PROCESS 89

FIGURE 33. COLLRBAC AUTHORIZATION ASSIGNMENT MECHANISM. 96

FIGURE 34.COLLABORATIVE ATTRIBUTE-BASES ACCESS CONTROL MODEL 98

FIGURE 35. LOGICAL STRUCTURE FOR CLOUD-BASED SCENARIO 105

FIGURE 36. TWEAKING SUMO FOR PARKING SIMULATION 107

FIGURE 37. INSTANTIATION OF THE ARCHITECTURE 109

FIGURE 39. CLASS DIAGRAM FOR FOG NODES PLATFORM 110

FIGURE 39. DATA ACQUISITION AND FILTERING 111

FIGURE 40. LOADING SENSORS DESCRIPTION FILES 111

FIGURE 41. FILTERING AND TRANSFORMATION CHANNELS 112

FIGURE 42. NETWORK OVERLOAD: FOG VS. CLOUD SCENARIO USING RAW DATA 113

FIGURE 43. NETWORK OVERLOAD: FOG VS. CLOUD SCENARIO USING ANALYSED DATA 114

FIGURE 44. RAM CONSUMPTION IN SIMULATIONS WITH RAW DATA 115

FIGURE 45. RAM CONSUMPTION IN SIMULATIONS WITH DATA ANALYSIS 116

FIGURE 46. COMPARING RESPONSE TIME IN FOG AND CLOUD APPLICATION. 117

FIGURE [4]. THE CCE MODULAR ARCHITECTURE 124

FIGURE 49. CCE'S COLLABORATION PROCESS WORKFLOW 125

FIGURE 50. COMPARISON OF RESPONSE TIME BETWEEN LOCAL AND DISTRIBUTED EXECUTION USING CCE. 127

 XI

LIST OF TABLES
TABLE 1. COMPARISON OF DIFFERENT EDGE COMPUTING PARADIGMS .. 46

TABLE 2. COMPARISON OF FEATURES BETWEEN FOG AND CLOUD COMPUTING ... 58

TABLE 3. SUMMARY OF THE COMPARISON BETWEEN COLLRBAC AND COLLABAC ... 99

 1

INTRODUCTION

The pyramids of Egypt, the Panama Canal or sending a man to space are great

achievements that could only be accomplished through collaboration. In modern life,

problems are getting more and more complex. Like ancient achievements, these problems

require knowledge and expertise from a wide range of disciplines and domains. In

addition, the amount of data generated and needed for such activities is immense, and

might not be managed by any individual organizations. All of these factors have made

global collaborations become increasingly important in modern scientific, industrial and

daily life activities. The rise of the Internet led us to change our perspective on ways of

approaching our activities and means of interacting with both the digital and the real

world. Indeed, dealing with distributed activities on a large scale has given rise to many

modes of collaboration.

Since the nineties, there were two levels to approaching distributed systems [112].

The first level addresses the human-oriented level principally via the Web. Whereas the

 2

second level focuses on the low-level interoperability between systems through

distributed objects and middleware-powered technologies - e.g., CORBA [85] and DCOM

[79]. By the dawn of the millennium, there was an explosion of platforms and middleware

that exploited the emerging Peer-to-Peer and Grid technologies [112]. These technologies

aim at supporting collaboration between heterogonous and distributed applications, and

at enabling users to contribute in more active ways. Hence, Collaborative computing can

be defined as “a fertile mélange of technologies and techniques which facilitate people working

together via computer-assisted means” [97]. It arose from the early groupware [23] systems

that were intended to bridge geographic distances between people engaged in a common

task and that provide an interface to a shared environment. Collaborative computing

aims not only at bridging distances, it adds capabilities that enhance and assist in the

work process [41] (e.g., smart boards).

Contemporary systems are moving from static desktops to dynamic, mobile and

ubiquitous models; from discrete nodes (i.e., stand-alone machines) to embedded

architectures (e.g., embedded sensors); and from autonomous nodes to pools of

interacting nodes that provide services (i.e., Fogs, see chapter II). This work fosters

collaboration between Internet-connected objects in the Internet of Things (IoT). The term

“Collaboration” in this work transcends facilitating and assisting cooperation between

people to provide a framework where Internet-connected objects can identify, retrieve,

and exploit the capabilities of each other. Next section emphases on the reason behind

our interest in bringing collaboration into the IoT and the main challenges this work is

dealing with.

 3

1. MOTIVATION AND PROBLEM DESCRIPTION

Humanity is passing through an age with almost limitless potential. In minutes or

even seconds, information and ideas can reach and can be reached by almost any person

across the globe. Likewise, in the Internet of Things, devices are used to collect data from

their environment. Nonetheless, the real value of such data comes only through

processing and analysis. As shown in the next Figure 1, the process of exploiting the data

begins with inferring information.

Figure 1. The process of exploiting data and generating wisdom

The structuration of information into knowledge will lead to more optimized

systems with higher performance, better user experiences and more efficient energy

consumption [35]. The IoT will provide us with new insights into solving many problems,

wise ways to exploit our environment, and better solutions toward generating a timeless

knowledge, that is wisdom.

Although we tend to think of IoT as a way of connecting singular devices, the most

interesting applications are not coming out from individual devices, but rather from how

 4

they work with each other in a collaborative manner. Hence, prior to using data for

decision-making, the main challenge in this regard is to provide Internet connected-

objects with suitable mechanisms to discover the functionalities of each other according

to their capabilities, their location and the information and services that they can provide.

In addition to developing technologies and protocols to allow the use of such resources

efficiently, securely, and with minimal human intervention [63].

The current architectural model and the trends in IoT are toward Cloud-centred

architectures. Processing and analyzing the data coming from IoT-connected objects

occur solely in the Cloud, therefore, raising challenges related to the network bandwidth,

the communication latency, and to the ability to access local information. We foresee the

aggregation of sensing activities and the distribution of collaborative interaction between

connected-objects at the edge of the IoT network as opportunities to tackle the

aforementioned challenges. Therefore, we propose to adopt and extend the idea of Fog

computing to embrace a distributed and collaborative computing model for the IoT. Such

model will help using resources (i.e., network and the device resources) more efficiently,

in addition to supporting more sophisticated application scenarios. Bringing such idea to

life requires widespread distribution, high mobility support, low latency and real-time

services. In addition to taking into account the constraint nature of edge devices – i.e., in

term of processing, storage, memory, and other resources. Atop of this challenges,

research into Fog computing concept is still in its early stages. There is no standard or

precise definition and an architectural model is yet to be provided. Hence the need to

providing an architectural framework to ease the development and deployment of IoT

solution at the level of Fogs. While such framework ought to be domain agnostic, the full

or partial instantiation of its components must be easy.

 5

The reader will find more details on key concepts used in this document in the

second chapter. In addition to further emphases on the challenges that we are tackling in

our research project regarding collaboration in a Fog-based architecture.

2. CONTRIBUTIONS

The homogeneity, the efficiency, and the many other advantages offered by the

Cloud computing infrastructure have made it a reliable solution at the core of the Internet

of Things. Relying on the Cloud to deal with the growing IoT applications and services

has been a valid choice, however, this cloud-centric approach proved to be limited in its

application domains. This thesis proposes an extended vision of the Fog computing

concept. Indeed, since its inception, the Fog computing has been perceived as a simple

extension of the Cloud, capable of offering computational, storage and networking

capabilities between the Cloud and end devices [18].

In this work, we made a step forward in the context of Fog computing paradigm

toward embracing collaboration between IoT's connected-objects. The first major

contribution of this work consists in an IoT architecture model called CoFog. We focused

on delivering an architecture that, on the one hand, leverages IoT objects with services,

and on the other hand augments data representation and consumption with local

analytics at the Fog nodes level. Up to the date of writing this document, this work is

being the first proposition of its kind in the domain of Fog computing (the second being

the OpenFog [87] reference architecture proposed lately in 2017). In addition, to being the

first to propose an object-based collaborative model for the Fog, which is the second

major contribution of this thesis. Details on this architecture are presented in Chapter IV.

 6

We foresee the aggregation of services at the Fog level as an engine toward more

sophisticated IoT applications. Hence, the CoFog architecture provides a service layer that

provides means to define and dynamically create services based on predefined templates.

These services can be aggregated through formal mechanisms called operations. The

introduction of the operation concept constitutes the third contribution of this thesis. An

operation represents a relation between a given collaboration request and services that

may be used to answer this request. Through mathematical formulas, a service (or more)

can be composed, transformed or aggregated to dynamically create new services. In the

scope of this thesis, there are two types of operations: conservative and non-conservative

operations. The second type results in new kind of data –e.g., the result of dividing two

integers may be a real number, we say that division is a non-conservative operation. The

first type of operations, however, conserves the same kind of data –e.g., the addition of

two integers always results in an integer. This way, depending on the use case, a

conservative operation can be applied recursively to obtain the desired results. Further

details on services aggregation are the subject of the fifth chapter.

Although providing and aggregating services are important mechanisms, the

CoFog architecture could not be complete without the ability to discover and retrieve such

services. Therefore, the fourth contribution of this thesis resides in its data sharing model.

This model provides IoT-connected objects and applications with the capacity to discover

services that are being offered in other Fog nodes. In case a Fog node does not and cannot

provide the requested services, it forwards the request to the neighbouring nodes that are

listed in its whitelist. This way, any Fog node in the vicinity can be used to satisfy the

request.

One of the most critical aspects of collaboration is security, especially access

control. Our fifth contribution includes a comprehensive study of access control for Fog

 7

computing and in particular for the collaboration in the CoFog architecture. Two of the

major access control models has been studied and expanded to incorporate the

collaboration aspects –i.e., the Role-based access control and the Attribute-based access

control models. Via the evaluation of both models, we demonstrated that the extended

attribute-based model is more suitable for collaboration, mainly due to its fine-grained

access rules and its support for context information representation.

After this overall presentation of the major contributions of this thesis, the next

section presents the research methodology that we followed to achieve these goals.

3. RESEARCH METHODOLOGY

The context of our research project is constantly evolving with rapid research

inputs. To keep pace with the changing research domain, we have adopted a learning

through the act of building methodology. Such research process iterates between phases

rather than flowing in a waterfall fashion from one phase into the next Figure 2.

Figure 2. Research process phases (adapted from [67])

Process phases

Awareness of Problem

Design and Development

Evaluation

Conclusion

Insight
Goal

Knowledge

 8

The main advantage of such methodology is that it provides an insight into the

development and the outcomes at early stages of the research process. Hence, issues and

flaws can be corrected as soon as they arise.

The first phase of this research project aimed at gaining deeper awareness on the

Internet of Things and its related problems introduced in previous sections. The first

stage, in this two stages phase, allowed us to focus on potential collaboration-enabling

technologies coming from related domains. It spanned the use of Cloud computing,

Semantic Web Services and the use of Peer-to-Peer architecture in the IoT

[30,62,63,92,112,113]. In addition to projects directly addressing different perspectives of

the IoT vision such as the Coordination and Support Action for Global RFID-related

Activities and Standardization [54], Internet of Things Architecture (IoT-A) [14], and The

Internet Connected Objects for Reconfigurable Ecosystems (iCore) [77]. At the end of this

first stage, we were fully aware of how such traditional technics and technologies have

been adopted and adapted mainly to deal with data storage and data processing in the

IoT. The second stage took us deep into current research propositions focusing on the

Edge-computing and the Fog computing principles, with emphases on propositions such

as the Edge-Centric Computing [39] and the Cloudlets [102]. This phase sharpened our

perspective on the key problems toward the real collaboration we envision in the Fog

Computing. The literature review has been subject to a scientific publication [1] that

appeared on the International Workshop on Healthcare systems and Internet of Things for

Humanity (eHealthForHumanity’2015) held in Conjunction with the 6th International

Conference on E-Technologies MCETECH’2015 published by Springer.

The second phase was dedicated to providing the referential architecture model.

Findings from the first phase have been stripped down to a list of requirements, to which

a Fog architecture must adhere to. As a proof-of-concept, a subset of the extracted

 9

components has been the subject of a first platform prototype called CCE (see Appendix

A). We have implemented this prototype targeting mobile devices and task sharing

collaboration. The results of this second phase have been published on the First

International Francophone Conference on Collaborative Systems (SYSCO’2012) [4]. Lessons

learned from the development and evaluation of this prototype helped to extend,

improve, and refine the architecture.

Indeed, in the third phase, the verdict of Fog computing requirements has been

translated to a set of components and modules organized in layers within the

architecture. This architecture is called CoFog and it defines three levels –i.e., the

middleware (Mdl), the operational (Opl) and the dependencies (Vrl) level. The first level

is divided into two layers -i.e., the abstraction and the data transformation and unification

layers. Similarly, the second level (Opl) is organized into two layers -i.e., the operation

and the service layer. The third and last level (Vrl) constitutes the level of non-functional

or technical dependencies (e.g., security, persistence, management). The operational level

- being the core of the proposed architecture - has been the subject of a scientific

publication [2] in the 13th International Conference on Mobile Systems and Pervasive

Computing (MobiSPC 2016) held in conjunction with the 11th International Conference on

Future Networks and Communications (FNC 2016).

 The fourth phase was fully dedicated to tackling the architecture security aspect.

We have focused on the access control dimension in order to provide an access control

model for collaboration in the proposed CoFog architecture. We began by analyzing

access control requirements for thing-based collaboration. We have selected, studied and

amended both role and attribute-based access control models according to the

architecture requirements. This comprehensive study provided us with insight into

access control mechanisms for our formal data sharing model (Dsm). The Dsm provides

 10

mechanisms to discover and select thing-based services. The results of this phase have

been published [6] in the 6th International Conference on Ambient Systems, Networks and

Technologies (ANT-2015), held in conjunction with the 5th International Conference on

Sustainable Energy Information Technology (SEIT-2015). It is worth noting that the final

reference architecture has been accepted for publication [6] in the Special issue of the

International Journal of Ubiquitous Systems and Pervasive Networks (JUSPN).

The fifth phase of this project has been committed to instantiating the proposed

architecture. In order to accelerate the realization of the prototype, we have invested less

time on some aspects, but more on the performance and extensibility. The resulting

prototype has been subjected to validation, in addition to verifying its impact on the host

resources.

4. THESIS ORGANIZATION

In this chapter, we have positioned the work in its general context, motivated and

stated the outcome of this research project.

The next chapter, Chapter II, presents a study and an analysis of the issues related

to the current trends in the Internet of Things. It brings to light the problems of data

processing and data analysis centralization in a Cloud-based architecture. Such

architecture implies the existence of a large distance (network links) between IoT devices

and the Cloud. In addition, this chapter introduces a set of key concepts relevant to this

work.

Chapter III is a review of research literature on collaborative technologies. It first

reviews the characteristics of technologies that support or enable collaboration in the IoT.

Then the review focuses on the current research state of the art on existing approaches

 11

for collaboration in Fog infrastructure. In addition, the chapter discusses the limits of the

trending approaches and gives further clarification on the problem statements.

As opportunities arise with the Fog computing concept, Chapter IV presents the

main aspects and perspectives to consider in a Fog computing platform. Furthermore, we

introduce in this chapter the principles and the rationales behind the proposed

architectural model, named CoFog. Principal functional components, operational

behaviour, and the flow of information within the architecture’s middleware level (Mdl)

have been described.

Following the general descriptions and the detailed depiction of the CoFog

architecture, Chapter V continues the description of the reference architecture. It presents

service presentation, management and transformation component at the operational

level (Opl). This level aims at delivering a set of different, yet homogenous and

complementary services. Such services can be leveraged through the application of a set

of operations.

Chapter VI raises questions about the principal requirements of Fog computing,

in general, and especially requirement of the collaboration in the CoFog architecture

regarding access control mechanisms. The security problem in Fog computing is a

complex and a multidimensional one. Access control models are a highly important

dimension of this problem. The answers to these questions have shaped the design of the

proposed access control mechanism.

Chapter VII discusses a case study and a proof-of-concept instantiation of the

CoFog architecture. This instantiation aims at designing and implementing a Fog platform

to tackle a real-world use-case –i.e., a Smart parking use case. The platform has been

implemented following the architectural model to show the role and importance of the

different components.

 12

The last chapter of this thesis is dedicated to discussing the contributions alongside

with the limitations and the prospects of this work.

 13

FUNDAMENTALS AND PROBLEM
STATEMENT

1. THE INTERNET OF THINGS

1.1. THE RISE OF THE THINGS

The eighties were the years of microprocessors when we built our computers. By

the dawn of the next decade, the technological power received a boost with the inception

of networking and communication. For the first time, computers were connected together

leading to the phenomenon of the Internet and the World Wide Web. Due to the arrival

of Mobile-Internet and Social Networks with the new millennium, users started to

become constantly connected together over the Internet. Today, the computer is

everywhere, connected to everything and embedded in almost every object. That is,

machines first learned to do, then they learned to think; nowadays, they are learning to

perceive, sense, react and interact within a global network called the Internet of Things.

 14

The concept of the Internet of Things (IoT) has first appeared as the title of a

presentation by K. Ashton of the MIT Auto-ID Center back in 1999 [3]. The presentation

promoted not just how the Radio Frequency Identification (RFID) tags might be used to

enable computers to observe, identify, and understand the world; but to envision and to

develop a network connecting everything needed to create an Internet of connected

things. In the first papers of general interest on the IoT, this concept was considered as

the mere extension of Radio Frequency Identification, uniquely identifiable objects and

their virtual representations in an Internet-like structure [11]. Nevertheless, the idea was

mentioned before several times in Billy Joy’s speeches and lectures [29] as the sixth Web.

In fact, the sixth Web or the Device-to-Device Internet (D2D) describes the Internet of

sensors that embed machine intelligence in our daily life activities.

Since its first appearance, the hype surrounding the concept of IoT grew to

substantial proportions. The IoT came broadly into public view in 2005 with the

International Telecommunications Union (ITU) publishing the first report on the subject

[94]. According to statistics data reported in [110], it can be estimated that IoT has come

into existence, at least physically, sometime near 2009 (Figure 3). At that point, while the

world’s human population increased to 6.8 billion, the number of Internet-connected

devices has known an explosive growth reaching nearly 12 billion devices. As a result,

the ratio of connected objects per capita raised to 1.84 for the first time in human history.

 15

Figure 3. The growth of the Internet-connected devices vs. the world population

Due to its capabilities, the IoT gained significant attention in academia as well as

in the industry. It promises a “Smart World” [114] where all the smart objects around us

might be connected to the Internet using minimal or no direct human interaction.

Ultimately, the goal is to create a world where our surrounding objects know what we

like, what we want, what we need, and act accordingly with no explicit instructions [114].

Hence, the IoT inherently share a significant amount of concepts with other computer

fields. It packs different technologies and concepts ranging from sensors, actuators, data

modelling, and storing, to Cloud and other various communication technologies [31].

That is, researchers are using existing and well-known technologies in different ways to

satisfy the characteristics and the demands of IoT; we are still shaping our future vision

of this global network.

$0.00

$0.20

$0.40

$0.60

$0.80

$1.00

$1.20

$1.40

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

2004 2006 2008 2010 2012 2014 2016 2018 2020

De
vic

es
	co

st
	

Bi
llio

n

Years

Connected-devices	(billions) Population	(billions) Cost	per	devices	($)

 16

With the rise of the Internet of Things, the issue of defining and setting boundaries

to such paradigm arises too. Hence, the following sections emphasize on the definitions

that have been proposed to capture the various facets of the IoT. In Addition, special care

has been given to describe the status quo on IoT and its relation to current technologies

and trends.

1.2. DEFINITION AND VISION OF IOT

Internet of Things research is only at its early stages. A standard definition is yet

to be provided [29]. To capture the different aspects and meanings given to the concept

of IoT, many definitions have been proposed. Back in 1999, Ashton [91] stated that

passive RFID transponder, as a very simple and low-cost computer, can connect to the

Internet through a reader. Then computers can see, smell and hear the world without the

human-introduced data. Nonetheless, some experts say that the act of reading an RFID

tag, capturing information about the location and status of an object, and then sharing

the data over the Internet is not part of the Internet of Things.

Syntactically, the expression is a two concepts combination: “Internet” and

“Thing”. While the word “Thing” refers to a non-precisely identifiable object, “Internet”

is the worldwide network of interconnected computer networks, based on the standard

communication protocol TCP/IP. Therefore, semantically, “Internet of Things” rise up as

“a worldwide network of interconnected objects uniquely addressable, based on standard

communication protocols” [11]. Otherwise, from a data-centric perspective [74], “the Internet

of Things refers to uniquely addressable objects and their virtual representations in an Internet-

like structure”. This vision of the Internet of Things implies that the uniquely addressable

and Internet-connected objects use the same protocols already used to connect our

computers to the Internet.

 17

In the recent years, many organizations have been leading efforts toward the

standardization of the IoT definition. For instance, the IEEE is leading an ongoing project

in this direction. The current draft of the P2413 standard provides an overview of an

architectural framework and describes the IoT as “a network of items each embedded with

sensors which are connected to the internet” [8]. In a similar vein, the European

Telecommunications Standards Institute (ETSI) discusses the concept under the Machine-

to-Machine (M2M) umbrella. ETSI defines M2M communication as “the communication

between two or more entities that do not necessarily need any direct human intervention. M2M

services intend to automate decision and communication processes.” [55]. The Internet

Engineering Task Force (IETF) has also stated that “the basic idea is that IoT will connect

objects around us to provide seamless communication and contextual services provided by them

… to make the service better and accessible anytime, from anywhere” [34].

 18

Figure 4. Envisioned technological developments in the Internet of Things [42]

Along with the aforementioned standardization bodies, many project and

initiatives are providing definitions of the IoT. Such definitions vary depending on the

envisioned implementation technologies [42] (Figure 4), and are mainly general and

descriptive rather than being formal. That being said, the common aspect is that IoT

describes the next generation of the Internet, where the physical things could be accessed

and identified through the Internet. In addition, it provides things with the ability to

exchange and process data according to predefined schemes.

Beyond the definition of the IoT, the future is to move from objects with identifiers

toward networks of objects with abilities to collaborate and interact with their

 19

environment [105]. Hence, we could not discuss the IoT paradigm without considering

the definition and characteristics of these objects – i.e., things. Things are a building block

of this infrastructure, and they are an active participant in the business process [105] (e.g.,

RFID tags to track product in supply chain management). From the previous section, a

thing can be defined as an entity with a unique identifier, that may carry an embedded

application logic (system), and that have the ability to transfer data over the network. The

IoT already comprises a panoply of different things (tags, sensors, actuators, and other

devices) that augment physical objects (thermostat, lamp, fridge, etc.) with sensing,

processing, networking, and reacting capabilities [105]. From a functional perspective,

these augmented functionalities transform everyday physical objects into Smart Objects.

A smart object is a physical object in its association with a Digital Entity. The latter is the

thing that acts as a digital proxy providing a unique and synchronized representation of

the object on the IoT [63]. Nevertheless, a given digital entity can be deployed as an

autonomous agent with no bounds to the physical world, thus providing processing

capabilities as a set of services on the network. In this document, “thing” and “object” are

used interchangeably unless stated otherwise.

1.3. THE IOT TODAY

In Santander, northern Spain, the city has spread sensors across its landscape [105].

The purpose of this ambitious project is to transform insensate physical objects into little

Internet-connected things. The project has deployed sensors at the city’s main entry

points gauging traffic flows and volumes. Another set of sensors have been deployed in

parks and gardens to measure moisture and rainfall in an attempt to achieve more

efficient irrigation systems. Here in Canada, a Toronto firm named Sensebridge produces

simple pieces of jewelry that vibrate every time the customer faces north [100].

 20

These are simple yet perfect examples of how IoT has come into our life. The world

has begun to receive real working IoT applications that greatly benefit a number of

sectors. Public and private sector organizations are moving to smarter governance

systems. In fact, it can be clearly stated that the Internet of Things has reached and gained

further recognition of many actors in academia and industrial domains. The boundaries

and gap between the physical world and the virtual world are slowly being dissolved.

1.4. IOT AS SERVICE-ORIENTED ARCHITECTURE

To exploit the functionalities and the capabilities of IoT-connected Things, such

smart Things have to be accessed from the Internet through in a way or another. Since

the research in this domain still in its infancy, researchers and experts in both academia

and industrial world are using existing and well-known technologies to this end. It is no

doubt that the Cloud computing paradigm, through the service-oriented architectural

model, has been the “go-to” solution to implement some of the features of IoT.

Indeed, the term “Cloud” was first used by Amazon and was associated with

elastic infrastructures that deliver computing resources as a service over the network

[104]. This model and the new technology enablers have progressively allowed the

support of various paradigms known as “Applications as a Service”, “Platforms as a Service”

and “Infrastructure as a Service”. Such trends help to reduce the cost of ownership and

management of virtualized resources enabling provisioning of new services.

Therefore, one potential and obvious trend in Cloud computing area is “Things as

a Service”. The virtualization of connected-objects and the convergence of the Internet of

Things and the Cloud computing foster an unprecedented area of use. This is far beyond

virtualizing sensors’ data; it demands the ability to virtualize Internet-connected objects

 21

and their ability to be composed and orchestrated. Based on such architecture, thing-

based services are offered on demand in a Cloud environment fashion [76].

The next section deals with the drawbacks of this tight relationship between IoT

and its current architecture centred around the Cloud.

2. IOT AND THE CLOUD PROBLEM

It is clear that the Internet of Things has arrived. The recent research trends to

tackle the many challenges and issues that arise with it are mostly toward centralized

Cloud architectures. As shown in Figure 5, the network infrastructure (i.e., the Internet)

is used to transmit aggregated data from the sensing infrastructure toward the decision-

making layer at the top of the architecture (i.e., the Cloud). Such architecture uses the

efficiency and the high computational and storage power of the Cloud to process and

store data.

Figure 5. The Cloud at the heart of IoT (adapted from [71])

Cloud

Temperature

Heart beats

Acceleration

Washing Machine

Voice Commands

Smartphone

Orientation

Proximity

House

Service
Integration

and
Composition

B
us

in
es

s
Lo

g
ic

Service Repository

NetworkSensing Layer

Service
bus

Control Data

Sensors Data

Application
Frontend

Application
API

Interfaces

InterfacesServices

 22

Indeed, the Cloud has the commodity to better serve a huge number of users and

to process the enormous quantity of data coming from the various IoT devices (sensors

and other devices). Nonetheless, since most of data processing and analysis occur at the

top level of the architecture, the distance between IoT objects (i.e., sensing layer) and the

Cloud raises problems related to network bandwidth, communication latency, and to

accessing local context and mobility information.

In its latest Global Cloud Index report (GCI 2018 [71]), Cisco Systems estimates

that by 2021 more than 850 Zettabytes (ZB) of data will be generated on the Internet,

mostly by Things. The GCI report reveals that only 10% of the generated data will be

useful (85 ZB), which will exceed the data centres traffic (21 ZB by 2021) by a factor of

four. Certainly, the continuous torrent of heterogeneous and potentially irrelevant data

will have a huge impact on the network bandwidth, leading it to become a bottleneck for

the Cloud. In fact, Cortés et al. [25] conducted a study on the challenges facing real-time

processing of tracking data generated by a healthcare sport-oriented application called

Endomondo. This study concluded that for such a medium sized application, there is an

average data flow of 25000 GPS tuples per second (»1Gb/s). Such an application, and

many other examples, will challenge the capacity of the Cloud to maintain a reasonable

and predictable communication latency and response time; for many use cases do require

very short to real-time response. For instance, in a vehicular network (VANETs [28]), lives

may depend on how fast the decision to applying the brakes is made.

In addition, such Cloud-centric approach comes with many drawbacks related to

the easiness to access local context information. The sophistication of IoT applications

relies mainly on the analysis of data coming from the connected devices. The analysis

uses data related to users’ and devices’ context –e.g., precise user location, local network

 23

condition, users’ mobility, devices’ resources and capabilities (CPU, memory…), and so

forth. Unfortunately, the physical distance between the Cloud and the end devices makes

Cloud services not capable to directly accessing such local contextual information. Even

if such information could be sent, in a way or another, to the top level of the architecture,

many use cases do not require decisions to be made in the Cloud. For instance, in a Smart

Home, the decision to change the intensity of the lights, depending on whether a person

is working, reading, or watching TV, does not require the intervention of Cloud services.

In addition, given that some decisions have to be made in the Cloud, it is not efficient to

send the entirety of the sensed data, since not all the data are relevant to the decision

making.

Furthermore, there is a growing concern among users about transferring local and

personal information to the Cloud. That is, products and devices we use in our daily

activities are constantly leaking data. We can argue that encrypting such sensitive data

might lighten few of these concerns, however, the encryption makes processing and

analyzing the data extremely difficult or even impossible [116]. Hence, restraining the

full expansion of IoT applications. On a more personal level, we share the same view as

Albrecht et al. [119] from the Consumers Against Supermarket Privacy Invasion and

Numbering group (CASPIEN) as they stated “… but let‘s not fool ourselves. The information

is not ours. It belongs to Google, and IBM, and Cisco Systems and the global Mega-Corp that

owns your local super- market. If you don’t believe us, just try removing ‘your’ data from their

databases”.

IoT applications require context-awareness, low latency and more interestingly

real-time data processing. Thus, a new kind of “Cloud” flourishes at the edge of the

network leading to “Micro-Clouds” to manage, analyze and extends the Cloud

computing paradigm [10]. Security is a crucial aspect in such environment; as extending

 24

existing security mechanisms will not be sufficient to satisfy the features of IoT [98]. In

such infrastructure, many security threats come from the interactions between the digital

and physical world. Things have a limited and a cost-ineffective support of security. In

addition, they operate in unprotected and vulnerable environments (cars, medical

devices, wearables). Cloud-based and Cloud-like security solutions are needed to protect

things beyond enterprises’ networks [22].

The aforementioned problems have motivated the introduction of various novel

concepts aiming at providing Cloud-like capabilities in the vicinity of users. In this work,

we believe that the solution resides on providing such Cloud-like features at the edge of

the network. Either by relying entirely on the edge capabilities or via a collaboration

between the edge and the central Cloud. This confidence led us to focus on the Fog

computing paradigm. Therefore, the next section gives an overview of this paradigm.

3. THE FOG COMPUTING

3.1. THE IDEA AND THE PARADIGM

The need to deploy a computational infrastructure at the edge of the network is

mainly the result of the convergence of Mobile and Cloud computing. For instance, we

have seen the application of such approach as Cloudlets [20], Mobile Edge computing

[102] and Edge-Centric computing [36]. Further details and analysis on the concepts

related to computing at the edge of the network are provided in the next chapter. In this

section, we introduce a broader paradigm called Fog computing.

The idea of Fog computing has been presented by Bonomi et al. from Cisco Systems

in 2012 [40]. First, this new concept was considered merely as an extension of the Cloud

computing paradigm. As such, Fog computing would use edge devices near users to

 25

provide storage, computation, and some basic networking services [19,20]. In the

meantime, the Cloud infrastructure takes care of the global coordination of underlying

infrastructures and the analysis of data. As the research into this domain gained more

interest, Fog Computing has become a paradigm on its own. Its definition has been

extended to embrace features of ubiquity, improved networking capabilities and better

support of cooperation between devices [119]. Although it shares many similarities with

the Mobile Edge computing paradigm, the Fog computing paradigm is broadly intended

to deal with applications in the context of IoT.

Indeed, since it was initially proposed, the idea of the Fog computing have been

intellectually and technically seductive. The first definition of this paradigm was

proposed by Bonomi et al. and it states that “Fog computing is a highly virtualized platform

that provides compute, storage and networking services between end devices and traditional Cloud

computing Data Centers, typically, but not exclusively located at the edge of the network” [5].

Hence the name “Fog” that comes from the analogy that its infrastructure deployment

locations are closer to the end devices than they are to the Clouds. In this context, end or

edge devices are referred to as “Things” which include a wide variety of sensors,

actuators, mobile devices, embedded systems, and so forth. Another similar definition

has been proposed in [21] “Fog computing is a scenario where a huge number of heterogeneous

(wireless and sometimes autonomous) ubiquitous and decentralised devices communicate and

potentially cooperate among them and with the network to perform storage and processing tasks

without the intervention of third-parties. These tasks can be for supporting basic network

functions or new services and applications that run in a sandboxed environment.” [119]. As

recently as 2016, Cisco Systems, ARM Holdings, Dell, Intel, Microsoft and Princeton

University founded the OpenFog Consortium to promote development and interests in Fog

computing. The efforts of this consortium have led to the publication of the OpenFog

 26

Reference Architecture for Fog Computing [119] that defines Fog computing as “a horizontal,

system-level architecture that distributes computing, storage, control and networking functions

closer to the users along a cloud-to-thing continuum”.

The aforementioned definitions bring into light three main characteristics of Fog

computing: extending the Cloud, edge of the network, and edge devices. The first concept

comes from the necessity to preserve the benefits of Cloud computing such as

orchestration, efficiency and manageability. As an extension to the traditional Cloud-only

model, the implementation of the Fog architecture requires an additional layer (or layers)

of Fog nodes that can be located at various points of the network’s topology. This layer

of Fog nodes is what represents the edge of the network in the context of Fog computing.

As such, the distinction between Cloud “nodes” and Fog nodes could be problematic. We

believe that the difference resides in the proximity and the capabilities of the nodes; for

Cloud “nodes” by definition have more storage and processing power. On the contrary,

Fog nodes have more constrained capabilities and they are, usually, closer to the edge

devices. Furthermore, regarding the application domain, Fog nodes are more intended

for local environments with real-time, latency-sensitive, and geo-distributed

applications. Considering all the characteristics of Fog computing, one can clearly see that

a Fog Layer is formed between the IoT Things and the Cloud to deal with communication,

computing and access management.

 27

3.2. FOG NODES

As previously described, Fog nodes (a.k.a. Fogs) are to support mobility, real-time

data analysis, and decision-making processes. They have more importance in use-cases

where data needs to be collected, filtered and analysed locally at the edge level.

Figure 6. The Fog nodes between the Cloud and IoT objects

Hence, depending on the use-case and the deployment strategy, Fogs can be

deployed on low-level elements of the network such as routers, gateways, and access

points up to higher levels of the hierarchy including the Cloud (Figure 6). Before the

deployment of a Fog node, many aspects must be addressed including compute and

storage capabilities; connectivity and networking capabilities; and the node security and

management aspects [88]. Indeed, in order to provide analysis, filtering, autonomous

learning, etc. Fogs need to have general purpose compute and data storage

functionalities. This will leads to higher level of interoperability between Fogs. In

 28

addition, it is possible that sensors and other edge devices may not be able to interface

directly with such nodes. Consequently, an abstraction layer might be needed to connect

and exploit such devices. Furthermore, Fogs nodes will acts as gateways between the

sensing infrastructure and the IoT upper levels. This aspect bring the role of security

gateways as important task for such nodes.

In light of this, our interest lies in extending the new paradigm of Fog computing

to embrace a Thing-collaboration computing model. In such model, Things could be

enabled to collaborate and exchange date with each other to achieve common or distinct

goals. However, collaboration at such low level, will increase even more the complexity

of interactions in this model [88]. This increasing complexity is due to the huge number,

the heterogeneous and the dynamic nature of the Things involved. The heterogeneity

between the technics and the technologies used to both offer and consume Fog services

will add to this complexity [111].

 29

RELATED WORK

The first step in developing a body of knowledge begins essentially by searching

previous achievements to understand the status quo in our field of interest. This chapter

is a background review of the state of the art on technologies supporting collaboration in

the Internet of Things. The literature review includes works that have been already used

in the IoT as well as potential collaboration-enabling technologies coming from related

domains. This study of the state of the art allowed us to focus, first, on the importance

that collaboration between Things has gained recently and, second, on key problems

toward the real collaboration within a Fog Computing environment.

1. STATE OF THE ART IN THE INTERNET OF THINGS

1.1. OVERVIEW OF THE IOT CHALLENGES

The arrival of the Internet of Things have stressed the need for more clarification

about the requirements and the setup of global standards for this new era. In fact, the

 30

Internet of Things promises to connect even the smallest device and sensor to the Internet.

Hence, the research community will have to address the challenges of common reference

architectures for the future networks, communication technologies, global identification,

and the challenges of naming and global discovery. In addition to the tasks of integrating

legacy systems and networks.

Needless to say that in spite of following the same standard, two different devices

might not be interoperable if they fail to grasp the semantic of the exchanged data. Hence,

standardization is necessary but it may not be enough due to the complex and the diverse

nature of the new network. Advanced interoperability between heterogeneous

environments and between heterogeneous devices through different communication

technologies is and will always be a hot topic that requires continuous research.

Nevertheless, research in wireless sensor networks has already resulted in promising

solutions, tools and operating systems that can run on very small and resource-

constrained devices [50]. These solutions need to be evaluated in the real world and in

large-scale applications in order to illustrate different use-cases. Such use cases will help

in defining new solutions to effectively sustain the mobility nature of smart things, which

may be equipped with multiple and heterogeneous network resources. These connected

devices are characterized by low resources in terms of both computation and energy

capacity. Thus, the development in this area will require research for hardware

adaptation and parallel processing in ultra-low-power and probably multi-processor

systems. Furthermore, energy storage will also become a serious and real challenge and

even an obstacle in the road toward the miniaturization of devices. There is a need to

deepen the research in areas like Nano-electronics, semiconductors, high-capacity energy

storage, sensing technologies, and new ways to harvest energy from the devices’

environment [127].

 31

The Internet of Things is born from the vision that things will constitute an integral

part of the network infrastructure that wire our world. Thus, this network needs to be

built on top of a structure that integrates seamlessly wired and wireless technologies in

transparent ways. The low-power devices will need links in a multi-hops fashion to cover

wide distances, in addition to power-aware protocols that could turn on or off the links

in response to the traffic load and demand. Such a network must provide some kind of

adaptability to the heterogeneous environment, the various and mixed contexts, and to

the content and application needs. This picture would not be complete without

mentioning two of the main building blocks of the Internet of Things: security and

intelligence [58]. Capabilities such as self-configuration, self-awareness, context-

awareness and intelligent inter-machine communication are considered of high priority

for the IoT. Self-x (self-configured, self-organized, self-aware, self-protection…) and

intelligent things will be in a constant connection with other objects resulting in new

security and privacy problems [80]. Moreover, huge amounts of data will be mapped

across billions of things that are updating in real-time; a transaction for instance may need

to make change across thousands of objects with different security policies. In order to

prevent the unauthorized use of private information, research is needed in the area of

dynamic trust, security, and privacy management.

1.2. SELECTED IOT RELATED PROJECTS

1.2.1. CASAGRAS

The CASAGRAS [81] project, stands for “Coordination and support action for global

RFID-related activities and standardization,” was a project financed by the European Union

in 2008. The project focused on shaping the foundational studies about RFID in support

 32

of the Internet of Things. In its final report, the project provides an abstract architectural

model for IoT (Figure 7). This model consists of three layers:

- The physical layer: this layer comprises identified things (physical objects) that

connect through object-connected data carrier technologies such as RFID.

- Interrogators or gateways layer: this layer offers the interfaces between the

object-connected devices and the information management systems.

- Application and Information Management Layer: this layer provides the

functional platform for supporting applications and services.

Figure 7. CASAGRAS IoT model architecture

 33

1.2.2. Cyber-Physical Systems

The Center for Hybrid and Embedded Software Systems at the Berkeley

University is pursuing research in the abstractions and analytical techniques of Cyber-

Physical Systems (CPS) [70]. This project mainly focuses on the integration of embedded

computation and networking to monitor and control the physical processes, with

feedbacks in between. The concept of CPS is similar to the IoT concept with difference in

the application. A CPS is concerned about the collaborative activity between sensors

and/or actuators to achieve a certain goal, whether in an intranet or extranet. To achieve

the goal, CPS may use an IoT system.

1.2.3. The Internet of Things Reference Model

The IoT Architecture project (IoT-A) [70] proposed an architectural model for the

IoT, along with an initial set of key building blocks. The project focused on developing

an architectural reference model by tackling security, addressing and protocol interaction

of the various components of the architecture [14].

 34

Figure 8. Interaction of sub-models in the IoT-A reference model (adapted from [15])

The Architectural Reference Model (ARM) proposed by IoT-A has five sub-models

(Figure 8). The IoT Domain Model includes the main concepts of devices, IoT services,

Virtual Entities (VE), and the relations between them (Figure 9.).

 35

Figure 9. UML representation of the IoT Domain Model (adapted from [16])

Based on this model, the Information Model defines the structure of IoT related

information (e.g. information about devices, services, virtual entities). The Functional

Model identifies Functionality Groups for interacting with and managing information

 36

about the IoT main concepts. The functionalities of the FGs that manage information use

the IoT Information Model as the basis for structuring their information.

The IoT Communication Model introduces many concepts that are in charge of

handling the complexity of communication in heterogeneous IoT environments. The

Trust, Security and Privacy Model introduces these relevant functionalities and their

interdependencies and interaction. Both last models are Functionality Groups in the

Functional Model.

1.2.4. The Internet Connected Objects for Reconfigurable Ecosystems

The Internet Connected Objects for Reconfigurable Ecosystems (iCore) [16] aims

to abstract the technological heterogeneity of the vast amounts of heterogeneous objects

and provide high-level reusability for application through virtual objects and cognitive

technologies [77]. iCore defines three levels of virtualization that top-level applications

can use to control real world objects (Figure 10) : the Service level, the Composite Virtual

Objects level and the Virtual Objects levels.

 37

Figure 10. iCore Architecture Model (adapted from [78])

The Service Level provides functionalities for planning and understanding what

services are needed in order to achieve a goal and by means of which Composite Virtual

Object (CVO) or Virtual Object (VO). The Composite Virtual Objects Level contains a run-

time management and execution environment that efficiently manages and executes the

requested pool of service instances as a composition of so-called CVOs, connected to the

abstraction of Real World Object data (via sensors and actuators) with functional

enrichment, though the VOs in the Virtual Objects Level.

At the Virtual Objects Level, URLs are used for both naming and addressing VOs

as Web Resources. Yet, the architecture provides no specified naming scheme.

 38

1.2.5. IoT at Work Architecture

The IoT at Work project (IoT@Work) [78] focused on IoT technologies to provide

a plug-and-work concept for industrial and automation environments. In its final report

[99], IoT@Work is described as a three layers architecture with three planes to structure

cross-cutting concerns Figure 11.

Figure 11. IoT@Work architecture and main functionalities [109].

The layers include management and orchestration functionalities that deal with

the configuration and the execution of applications using resources and services offered

in the IoT infrastructure. The three layers are, from bottom to top:

- The Device and Embedded Services layer, which includes identifiers

assignment, devices context collecting, communication management physical

security.

Physical	IoT	Infrastructure	
&	Network	

Device	and	network	
embedded	services	

Aggregate	 service	&	
management	

Application	supporting	
service

Automation	Applications
Co
m
m
un
ica

tio
n	
Pl
an
e

Se
cu
rit
y	
Pl
an
e

M
an
ag
em

en
t	P

la
ne

 39

- The Device Resource Creation and Management Services layer, which

abstracts and hides the details about single IoT devices. The functions here

include service directories, network abstractions, and low-level system

monitoring and security management.

- The third layer of abstraction supports directly the application through

specific middleware services. Indeed, the Application Middleware Services

layer include a messaging bus, application resource descriptions and other

application supporting functions.

The crosscutting orthogonal planes that the architecture focuses on are:

- Communication Plane: managing networks and communication, while

delivering guarantees for the applications that need high Quality-of-Service

(QoS).

- Security Plane: managing system security to make sure that different

management functions at each layer include some security mechanisms.

- Management Plane: supporting service management and orchestration and

linking devices to applications and services

2. COMPUTING AT THE EDGE OF THE NETWORK

2.1. MOBILE CLOUD COMPUTING (MCC)

The idea behind computing at the edge of the network is not new. Rather, it is a

convergence of experiences with both Mobile and Cloud computing [109]. Indeed, the

main features desired in mobile devices are small size, lightweight, ease of use, and long

battery life. Due to such requirements, mobile devices are inheritably resource-

 40

constrained. Nevertheless, mobile devices can overcome such constraints via remote

execution by exploiting remote infrastructure that offers more computational resources.

The emergence of the Cloud computing pushed forward the adoption of this remote-

execution model toward what is called Mobile Cloud Computing (MCC). MCC

represents the convergence between Mobile and Cloud computing.

Unfortunately, Cloud computing encourages a centralized infrastructure that

implies a large separation between mobile devices and the Cloud. As it is the case for IoT

today, mobile-to-cloud communication involves many network hops and results in high

latency and high consumption of the network bandwidth. For these reasons, the problem

of proximity between mobile devices and the Cloud has become a crucial issue and a

burden on MCC solutions. Many novel paradigms have been proposed to deal with this

issue [72], each of which shares the same common goal of deploying Cloud-like

capabilities at the edge of the network. As the next sections reveals, the differences arise

when considering the deployment, the use, and the ownership of such edge

infrastructures.

2.2. CLOUDLETS, PROXIMITY MATTERS

The Cloudlet concept [13,33,39,102] was proposed mainly to promote mobile

offload (or delegation) under what can be seen as a cyber foraging -i.e., “The idea is to

dynamically augment the computing resources of a wireless mobile computer by exploiting wired

hardware infrastructure” [13,101,103]. This vision was originally limited to delegating the

storage of voluminous data and the execution of intensively computational tasks to the

Cloud under the MCC paradigm. In recent years, this paradigm have seen an expansion

to include delegation to offload instances at the edge of the network [101]. Indeed, the

research community have been proposing various solutions to allow mobile devices to

 41

delegate tasks to remote resources, either by migrating parts of the code (selected in

advance) or by cloning the entire execution environment of applications. Moreover, other

approaches propose the use of mobile agents that handle the processing of information

on behalf of mobile devices [101].

The Cloudlets addresses mobile delegation through the implementation of small

immobile computing instances at the vicinity of mobile users [98]. As shown in Figure 12,

the paradigm of Cloudlets relies on a three-tier architecture (i.e., Clients, Cloudlets,

Cloud) with two levels. The first level represents the Cloud infrastructure. The second

level consists of small data centers dispersed at the edge of the Internet – i.e., Cloudlets.

These small infrastructures have a soft state that is generated locally or cached from the

Cloud. That is, they use persistent caching of data and code which means that such

information times out unless refreshed. Therefore, Cloudlets can be deployed at the user

vicinity (at Wi-Fi access points or LTE base stations) and allow devices to load small

virtual machine (VM) instances over pre-existing more complete VM images [38].

 42

Figure 12. Cloudlet two-levels architecture

2.3. MOBILE EDGE COMPUTING

Mobile Edge Computing (MEC) [33] is another edge computing paradigm that has

been drawing much attention in both academia and industrial worlds. In early 2015, the

European Telecommunications Standards Institute (ETSI) launched the Industry

Specification Group (ISG) for Mobile-Edge Computing in an attempt to standardize MEC

[33]. The reference architecture (Figure 13) that has been presented lately shows the

functional elements and the reference points between them.

Cloudlet 1Cloudlet n

Cloud computing

Internet Infrastructure

Offload VM Instances

Cloud data

cache

Mobile devices

Mobile devices

...

Clients

Clients

Cloud Service ProvidersInternet Service Providers

Mobile Network

 43

Figure 13. Mobile Edge Computing system reference architecture

The MEC consists of the mobile edge hosts that provide facilities for mobile edge

application execution, to radio networks information access, and to location awareness

services. In addition to the mobile edge management necessary to manage both the

system and its hosts. Under this specification, MEC will provide an ecosystem of Cloud-

like capabilities within mobile base stations at the edge of the mobile network.

Deployment locations include but are not limited to LTE/5G base stations (eNodeB), 3G

Radio Network Controllers (RNC), and other cells of multi-Radio Access Technology

(3G/LTE/WLAN) aggregation.

Thanks to this ecosystem, mobile networks will benefit from low latency, high

bandwidth, location awareness, and access to radio network information. Furthermore,

 44

if such ecosystem is opened not only to mobile network providers but also to other service

providers, such openness could bring more contributions and more application scenarios

from third-party companies – e.g., augmented and virtual reality.

2.4. EDGE-CENTRIC COMPUTING

From a human-centred perspective, Edge-Centric computing paradigm [40] shares

the common interest of providing Cloud-like services and resources near users with the

aforementioned paradigms. This work envisions that the solution to the growing user

concerns about trust, privacy, autonomy, and security comes mainly from the integration

of humans in the decision making loop. It proposes the deployment of edge computing

systems that collaborate with each other in a peer-to-peer fashion. Hence, Cloud services

take an auxiliary role in providing stable resources at need. The human-centred

perspective arise with the ability to create user-centred ecosystems at the edge of the

network. Ecosystems that allow the creation of personal spaces –i.e., spaces where the

user can manage personal information, access control and trust mechanisms, social

spaces –i.e., spaces where the user can control social activities, and public spaces –i.e.,

spaces with collaborative information flows where multiple actors, either humans or

services, can interact with each other.

2.5. EDGE COMPUTING, ANALYSIS

The core idea of edge computing is to bring network functions and Cloud

resources to the vicinity of users and end devices, including computing, storage (and

caching), and communication resources. This approach evolved from the early years of

Mobile Cloud computing which moved computing power and data storage away from

 45

mobile devices. Alas, it became quickly obvious that proximity do matter, hence the

introduction of recent edge computing paradigms.

In addition to the Fog computing introduced in the previous chapter, the

paradigms presented in the previous sections represent the major paradigms in the edge

computing approach. In general, they share the common goal of deploying, in a way or

another, various forms of edge data centers with computing and storage services.

Furthermore, while such edge data centers can generally exist and work autonomously,

they are still connected to the Cloud, which can potentially play the role of management

and coordination.

A closer look at these paradigms reveals, however, many differences. Mobile Edge

computing focuses on infrastructures provided by mobile network operators, whereas

Cloudlets and the Edge-Centric computing focuses on private and user-owned ones. By

consequence, ownership, deployment location and underlying protocols and interfaces

differ from one paradigm to another. MEC considers only radio bases and controllers as

deployment locations. Hence, only telecommunication companies can own and operate

MEC infrastructures. Edge-centric computing focuses on local servers managed and

owned by users. In contrary, Cloudlets focuses on more distributed deployment

locations, as even devices themselves can be part of the service provisioning

infrastructure. Such ease of deployment encourage a variety of companies to create their

own MCC nodes.

As we introduced in the previous chapter, Fog computing paradigm is a broader

and more general edge-computing concept that aims to accommodate IoT applications.

Fog nodes can be deployed at different levels of the Internet architecture -i.e., either

vertically near or far from the Cloud data centers, or horizontally on many locations such

as on user-managed servers, access points, routers, gateways, etc.

 46

 Table 1 summarizes the main properties of the aforementioned edge paradigms

discussed above. The Mobile Cloud computing, being a centralized approach, is

mentioned in this table for the sake of comparison only.

Table 1. Comparison of different edge computing paradigms

 Mobile Cloud
Computing Cloudlets Mobile Edge

Computing
Edge-Centric
Computing Fog Computing

Architecture
hierarchy

Two tiers
(centralized) Three tiers Three tiers > Three tiers

(distributed)
> Three tiers
(distributed)

Location

Large Data
Center

Between
mobile
devices and
Data
Centers,
mobile
devices

Radio access
network Edge servers

Any location in
the hierarchy
(near-cloud,
near-edge and
edge)

Ownership Cloud services
providers
(Amazon,
Microsoft, et.)

Local
business
(private)

Mobile
network
operators

Private entities,
Individuals

Private entities
(Fog nodes
owners),
Individuals

Cooperation
between nodes No No No Yes Yes

Latency High Low Low Low Low
Context

awareness No Could be
equipped Yes Yes Yes

3. SERVICE AGGREGATION IN FOG COMPUTING

The main goal of our work is the collaboration between IoT objects. In the one

hand, it aims at bringing service aggregation and composition to the edge of the network

using Fog Computing. On the other hand, it focuses on providing a middleware to

abstract the undelaying heterogeneity. In this same vein, Mobile Fog [51] presents a high-

level programming model for the Internet of Things. This model is intended for latency-

sensitive and on-demand scaling applications, but a more general approach is needed to

deal with resources mobility.

 47

Similarly, by assuming that every Thing provides its functionality as a standard

service, the presented composition model [51] uses artificial potential fields to deliver a

decentralized service composition. In an attempt to tackle decentralized service

composition, Rain4Service [95] models the behaviour of rain drops to achieve service

composition. However, this framework is not intended for deployment at the edge of the

network. In such environment, filtering and unifying data are the main issues in order to

be able to implement the middleware layer [9] since the use and the presentation of data

should be adapted depending on the context of the service to provide. To this end, the

system in [90] uses a goal-driven and context-aware filtering method. Though, in case of

an aggregated or time-dependent sensing activity, issues like mobility support may rise.

Sharing resources between devices at the edge of the network was the focus of

Mobile Cloud [82]. The work proposed a framework to share resources in a local cloud;

the different measurements of resources are mapped into time.

4. OBJECT AND SERVICE DISCOVERY

Finding entities and services is an essential aspect of an Internet of Things systems.

Unlike in small-scale application, IoT applications and services cannot be configured with

respect to a fixed set of services. Instead, there is a need to setup resolution, look-up and

discovery for IoT services and objects with the adequate level of abstraction. Jacquet et al.

[84] proposed a routing protocol to support routing in heterogeneous Mobile ad-hoc

networks (MANET), where each node can have many interfaces. In the Optimized Link

State Routing Protocol (OLSR), “a flat mechanism is employed, whereby a node sends control

messages through all interfaces without regards to the link capacities of the other network”. OLSR

does not scale and does not support the heterogeneous nature of MANET. Hence, the

 48

Hierarchical OLSR [59] came as an extension to the former OLSR. It is aimed at reducing

the overhead caused by sending messages regardless of the link capacities, and to make

the routing algorithm more scalable. In spite of its ability to improve the scalability of the

MANET, the HOLSR affects the network scalability. Indeed, in order to reach the

destination node, data travels in normal ways up to the topological level where the

destination node is located. Shepherd et al. [121] suggested the use of parallel processing

across handheld devices to enhance robot sense capabilities. A message passing system,

called DynaMP, was developed to allow communication in the “scatternet” network

using Ad-Hoc On-Demand Distance Vector-based routing to reduce energy

consumption. Based on the Java class loading mechanism, this environment may be

deployed on any device with a Java virtual machine. In 2005, Harihar and Kurkovsky

[106] attempted to pave the road to Jini [49] in the world of pervasive mobile computing.

The work discussed the use of this platform’s networking capabilities to develop

pervasive computing environments. As claimed by the authors, this framework has the

ability to satisfy the demands of ubiquitous systems, namely context awareness,

intelligent behavior, interaction, reliability and safety. Perich et al. [123] developed a

collaborative query processing protocol. This protocol, the CQP protocol, is based on the

Contract Net Protocol [92]principles, and it is designed to reduce the computational and

energy consumption of the devices implicated in collaboration [96]. The features of the

protocol enable any device, irrespective of its limited computing, memory, and battery

resources, to locate and obtain data source streams on other peer-devices in order to

answer its queries.

Many attempts have been made to connect physical objects to networks. Diya et al.

[96] proposed an infrastructure framework for Mobile Collaborative Environments. The

MCE is based on socket communication that allows any device to connect easily with the

 49

other devices on the network. Yet, this approach is still a server-centric one. The server

IP and listening port must be known to the client in order to allow transmission of code

files between both ends. In 2007, Jeong et al. [30] presented a distributed health-care

environment, based on a distributed object group framework (DOGF). It provides

functions of object group management, real-time object exchange and security services

for distributed applications. TMO scheme and TMOSM have been used for the

interactions between distributed components. In 2008, Silva et al. [60] introduced a grid-

based framework to support distributed task execution. Indeed, in order to speed up the

execution of common computing tasks, SPADE allows mobile devices to takes

advantages of idle remote computer in a Grid way. This tool requires that the application,

subject of collaboration, be pre-installed and registered in the server. Hence, the user

must manually give the location, the parameters and the appellation of this application.

Furthermore, the user provides input files that have to be uploaded to the server.

In order to avoid connecting physical objects directly to the Internet, some

approaches suggested abstracting those objects as services by adopting the Service

Oriented Paradigm [108]. For instance, the work presented by Guinard et al. [43,44,89]

describes the architecture of the Web of Things (WoT) based on the principles of the

traditional Web such as scalability and modularity. They promote the reuse and the

adaptation of existing Web technologies such as REST architectural style [44] to interact

with IoT objects. An information sharing architecture for collaborative IoT is presented

in [37]. The authors suggested the concept of a user-centric architecture to the IoT that

seamlessly integrates IoT objects, Web protocols, Web applications, and Social platforms,

etc. Adda and Saad [118] presented a data sharing framework for the collaborative IoT.

The framework introduced a formal theoretical model, the IOTCollab domain specific

language, and an IDE that implements this model.

 50

The Web of Things has been the focus of many other research projects. For

instance, the Constrained Application Protocol (CoAP) [7] allows the connection of

resource-constrained devices to the World Web. Using a publish/subscribe mechanism,

a CoAP client can receive the last update of resources in URI path representation.

Moreover, since the protocol is based on UDP, it supports group communication using

IP multicast. In addition, this project included a study that have been conducted among

academics, professionals, and hobbyists to show the needs and the correctness of the

development road of the CoAP protocol [64]. As a result, a prototype of the full CoAP

experience has been released as an add-on for the Firefox browser. Similarly, the Xively

project [65] proposes and constitutes a Platform as a Service (SaaP) intended to simplify

the connection of applications, objects, devices, and users to the Web. The ThingSpeak

project [124] proposes an open source application platform and API that aims to facilitate

data storage and retrieval from IoT devices on the Web. Finally, the IoTivity framework

[115] is a promising open source framework for a collaborative WoT, that allow smart

things to discover, expose their capabilities and work together. In spite of the limited set

of their supported protocols, one of the advantages of the aforementioned platforms is

their openness to different hardware profiles

5. ACCESS CONTROL FOR COLLABORATION

The Internet of Things promotes a widespread adoption of smart devices. Thus,

more data are being collected on people than ever before. The repercussion of any gap in

security will have huge effects on personal security and privacy. Authorization and

access control are a highly important dimension of the security problem.

 51

Therefore, Kerschbaum [56] proposed an attributes-based access control model for

mobile physical objects. This later extends the attributes to include information about the

objects’ trajectory in a supply chains. In addition to a trajectory-based policy that has been

integrated to provide a mutual access authorization and control.

Shi et al. [61] extended the attribute-based access control model to prevent

unauthorized access to the search engine of an EPCglobal network. In fact, the Secure

Discovery Service (SecDS) system provides a variety of fine-grained access control policy

implementations to protect the sharing of product information in RFID supply-chain

networks. From a service-oriented perspective, Zhang and Liu [107] proposed a

workflow-oriented and attribute-based access control model to treat access control issues.

Attributes related to the subject, the resources, the environment, and the task to have

authorization for, all these parameters have been taken into consideration to grant

permissions to subjects.

Similarly, extending the role-based access control model (RBAC) was claimed by

Zhang and Tian [126] to enhance the security in a service-based IoT infrastructure. The

paper introduced the incorporation of contextual information in RBAC as a way to

produce more efficient mechanism for access control for web service application.

Following the same vision, Liu et al. [45] proposed a authentication and an access

control model for the IoT. The adopted access policy inherits from the RBAC mechanism,

while the authentication process was based on Elliptic Curve Cryptography keys.

Mahalle et al. [73] based their suggested access control model on devices capability

and identity. The Identity Authentication and Capability-based Access Control (IACAC)

scheme creates the capability based on the identity to grant access on the local network.

This scheme still not fully suitable for small devices within the IoT.

 52

Following the same vein, [75] promoted the use of capability-based security

approach to managing access control in the Internet of Things. Indeed, a capability

defines the resources, the subject and the granted rights and authorisations. Key features

supported by the Capability Based Access Control (CapBAC) include delegation and

revocation of capability, as well as information granularity and standard capability

representation through XML-based languages.

In Lee et al. [46,47], authors propose a model that combines location and time with

security level to control access to the information within the IoT. The model is named

Location-Temporal Access Control Model (LTAC). LTAC is meant to give access to

requested operations on a defined node only if the requesting node is located in an

appropriate location within the appropriate time interval regarding the object.

Oh and Kim [69], in addition to the context of the thing subject to the access

demand, they included the identity and the internet address of the requester to the

process of access control. Considering the web of things and REST-compliant resource-

oriented web characteristics, they provide a decentralized access permission control

structure. By exploiting smartphone built-in sensors, the Context-Aware Platform using

Integrated user Mobile sensors platform (CAPIM)[86] is a user authentication and

session management based on Public Key Infrastructure (PKI). This platform has been

used to manage access to secure area within a building.

 53

6. CHAPTER CONCLUSION

Current solutions for the Collaborative Internet of Things stand on a set of

inappropriate models and do not provide the appropriate interoperability, privacy and

security handling. Each middleware solution focuses on different aspects in the IoT, such

as device management, interoperability, platform portability, context-awareness,

security, and privacy, and many more. Even though some solutions address multiple

aspects, an ideal solution that addresses most of the required aspects is yet to be designed.

An Internet of Things collaboration model must be designed to provide service

and object connectivity structures to transport data from one entity to another. These may

be in the form of Service-Oriented Architecture (SOA) and universal data appliance

protocols that can be a basis for developing federated networks and services. This would

allow people to design "plug-and-play" applications.

Today’s IoT-intended approaches do not emphasize the provision of security and

authentication at the entities and devices level. Authenticated access to naming and

identification data should be deployed as part of the look-up and resolution processes.

Such authentication ensures granting access to identification data only to applications

that have the rights to do so. In addition to preventing risks associated with naming

assignments, such as forging identifiers.

In this chapter we have shown the state-of-the-art of current approaches in the

area of IoT. In addition, we have highlighted important research directions toward

solving IoT problems. Hence, in the next chapter, we discuss the limitations of existing

collaborative Internet of Things approaches and technologies and will describe

specifically the problem statements..

 54

COFOG, AN ARCHITECTURAL MODEL
FOR COLLABORATIVE FOG COMPUTING

The Internet of Things is paving the road to a future where autonomous objects

sense, actuate, interact and react with each other. That is, the human part in machine

communication is blurring into a more sophisticated device-to-device communication

model. In this model, connected objects will be able to reach other objects in order to

provide aggregated and collaboration-based services. Thus, leading to more

sophisticated applications with added value.

As we have introduced in the previous chapters, Fog computing has gained more

interest lately. As opportunities arise with Fog computing, it is crucial to come up with

an architectural model that suits the application scenarios intended for this paradigm.

Hence, in this chapter we present the main aspects and perspectives to consider in Fog

computing. Beside the principles and the rationales behind the conception of the

 55

architectural model, the chapter provides an overview of the architecture and its main

supported features and benefits.

1. GENERAL CONCEPTS OF THE FOG ARCHITECTURE

Fog computing platforms tie together connected devices and other Internet and

web-based services. They contribute to defining a reference architecture for the IoT,

whilst taking into consideration diverse technologies and a wide range of standards. The

Fog infrastructure must allow devices, users and applications to connect to its services. It

should be able to coordinate and manage connectivity issues, in addition to ensuring the

security and the privacy of exchanged data. The Fog infrastructure must comply to these

requirements while overcoming the interoperability issues between the enormous

number of connected devices.

Additionally, Fog platforms needs to reduce the complexity of collecting and

processing massive amounts of data. This requires considering issues such as openness

and scalability while offering features such as self-governance, self-management and

context-awareness. We highlight here the openness since it guarantees and encourages

building solutions upon open-source technologies. Hence, reducing the cost and opening

the doors to more innovative ideas and creative solutions. The following list summarizes

the fundamentals that we believe the Fog infrastructure ought to incorporate:

- Abstraction of physical objects to enable uniform access to heterogeneous

resources via multiple communication protocols such as CoAP, MQTT,

REST,etc.

- Virtualization that provides services, such as look-up mechanisms, that bridge

physical network edges and offer a set of consumable services.

 56

- Data management primitives that enable data definition, storage, cashing,

interrogation, in addition to functionalities of data aggregation and event-

based management.

- Semantic representation for modelling knowledge about devices, data and

services.

- Security and policy framework that implements access control mechanisms

and identity management for authentication and authorizations policies.

- Networking communication both internal and across platforms leveraging

means for self-management, self-configuration, self-healing and optimization.

- Open APIs to support platform extensibility, quick development of Fog

applications and tools upon the top of the platform.

- Data analysis to provide real-time processing based on user-defined rules for

simple or more complexes capabilities such as decision-making, data

visualization and reporting.

- Development toolkits for fast and comprehensive development and

integration of devices, services and applications.

Fog computing is intended to provide an intelligence layer composed of many Fog

nodes (a.k.a. Fogs). This layer will bring some of the Cloud computing capabilities to the

edge of the Internet in a distributed and decentralized fashion. This layer can behave as

a tier in a multitier-hierarchical architecture, where the Cloud plays the top role of

coordination and analysis. Or, the elements of this layer can behave in a decentralized

way: The Fogs can provide services, take decisions, grow and scale in-demand, and

provide collaborative means even without the need of a central tier (i.e., the Cloud).

 57

The Fog nodes will be available in large numbers and widely spread across large

geographical areas. However, we foresee that a given node will essentially make use of

local devices, and serves local users (user applications, mobile devices …). Still, it can use

neighbouring nodes or remotely use distant (geographically) ones, in addition to nodes

at a higher level in the network. Indeed, Fogs can be created at a local (low) level (e.g.

routers, network switching hub, local servers) or deployed in a higher level as on Internet

service providers (ISP) infrastructures (e.g. gateways). Thus, gaining the ability to better

adjust to their locations functionalities and to the needs of their users and applications.

On the one hand, Fogs will gain the ability to access local and nearby resources such as

mobile devices, sensors, actuators, user-managed servers, and access to local information

such as network-related data and real world-related data. On the other hand, it is crucial

for Fogs to deal with the mobility nature of resources and the scalability of the entire

ecosystem.

Figure 14 is intended to help understand the requirements and the rationales of

Fogs. It depicts an abstraction of the composition of a typical Fog Computing architecture.

 58

Figure 14. Perspectives of a the Fog computing layer architecture

Fog-based applications will benefit from low latency and predictable delays as

they are using their surroundings capabilities: computational, sensing, etc. Furthermore,

with their ability to access physical aspects of the environment, Fogs promote more

context-aware applications and use-cases, in addition to a better quality of service (QoS)

and more availability since services are hosted locally by the network infrastructure.

On a final note, Table 2 summarizes the overall functionalities and features of Fog

Computing compared with those of the Cloud.

Table 2. Comparison of features between Fog and Cloud Computing

Sensors,	Actuators,	 Traditional	 Services,	API,	 …

Security,	Privacy,	Local	Storage,…

Fog	Node	Management

Cloud	 services

Advanced	data	analysis,		Data	Storage	…

Fo
g	
La
ye
r

Resource	 Adaptation

Data	Abstraction

Service	Management User	Applications

Mobile	Devices
User-Managed	

Servers

Cl
ou
d

Local,
High	
Heterogeneity,
Low	Latency

Global,
Low	
Heterogeneity,
High	Latency

 59

 Fogs Cloud

Application Context-aware, simple
analysis, augmented
reality, connected vehicles

Advanced analysis,
global coordination,
centralized control

Latency Low Average to high

Storage Transient, short duration Long term

Availability Higher (local services) High

Scalability High Average

Mobility support High -

Architecture Decentralized, distributed,
n-tier Centralized

Hardware Heterogeneous user
devices, sensors, tags,
actuator, user-managed
servers, edge network

Servers, data centers

Local awareness High -

Geographic span Local Global

This section presented the core principles and intentions that guided the definition

of the Fog architecture. In light of this, next section covers the main layers and features

of our CoFog architecture.

2. OVERVIEW OF THE ARCHITECTURE

Although motivated by the issues of Cloud-centric vision of IoT, Fog Computing

has many different characteristics. It presents many new challenges, such security and

privacy, programming abstractions and models, computing and storage constraints,

resource provisioning and management, and distributed Fog management. The proposed

architectural model for Fog Computing aims at allowing flexible design choices and user-

specific schemes.

 60

Figure 15 depicts the logical separation of the architectural components and the

main functional aspects of the architecture. The architecture defines four layers that

facilitate the use of real-world resources, existing services and APIs, and the internal

functionalities. Many Fog application scenarios need strong requirements of low-latency

and dynamic adjustment to changing contexts. Such scenarios can benefit from the

instantiation of the architecture capabilities in order to execute and achieve their tasks.

From bottom to top, we propose the following levels:

 61

Figure 15. The CoFog architectural structure of a Fog node

- The Middleware Level ensures the abstraction of the physical objects, in

addition to functional leverage through resource Adapters and data

Unification and Formatting. More details on the purpose and functionalities

of the Middleware and its two composing layers are presented in the next

section.

Discovery	Request

Fo
rm

at
tin

g	a
nd
	

Un
ifi
ca
tio

n	
La
ye
r

Adapters	Container
Resource	 Definition	

Templates

Adapter	

Abstraction

Data	Knowledge

Op
er
at
io
n	

La
ye
r

Se
rv
ic
e	
La
ye
r

Service	Container
Service	

Knowledge

Discovery	

Component

Request

Request	Analyzer

Service	Request

Operation	 Execution	

Ad
ap
ta
tio

n	
La
ye
r

Analytics	Unit

M
id
dl
ew

ar
e

Physical	Object
Applications,	

APIs
Traditional	

Services

Operation	

repository

Op
er
at
io
na
l	L
ev
el

P
o
lic
y
-b
a
se
d
	M

a
n
a
g
e
m
e
n
t,
	S
e
cu
ri
ty
,	
C
o
n
te
xt
	M

a
n
a
g
e
m
e
n
t,
	T
e
m
p
o
ra
ry
	D
a
ta
	S
to
ra
g
e

PDP

PEP

PDP

PEP

 62

- The Operation and the Service Layers constitute the Operational Level. This

is the brain of the whole architecture. It provides runtime management and

execution environment for the pool of requested services. In addition to

dynamic creation of services using Service Knowledge and defined

Operations. The next chapter presents more details on the internal functioning

of the Service Discovery, Service delivery, Operation definition and execution,

etc.In addition to these two levels, Security constitutes the third plane of this

architecture.

- The Security Level crosscuts all the architecture layers. The Policy

Enforcement Point (PEP) is meant to monitor resource-data links and intercept

service requests. Intercepted events are evaluated by the Policy Decision Point

(PDP) against access policies and rules. The result of a policy evaluation may

allow or deny the execution requests. Chapter VI details the access control

model designed for this architecture. It is noteworthy that due to its vertical

arrangement in this architecture, security requirements may be enforced

across the different levels.

3. THE MIDDLEWARE LEVEL (MDL)

The Internet of Things is a nest for a huge number of heterogeneous devices and a

source of huge amounts of data. The underlying swarm of data sources comprises huge

heterogeneity of networked devices that range from simple physical sensors and

actuators to virtual objects and classical web services. Abstraction is needed to make data

and data sources uniformly usable across divers set of application domains without

requiring prior knowledge about embedded systems. That makes the Middleware Level

 63

a very important part of the architecture. As depicted in the figure above (Fig. 10), the

Middleware Level comprises two layers: The Adaptation, and the Filtering and

Unification layers.

3.1. THE ADAPTATION LAYER

The Adaptation layer grantees an abstract interfacing with the underlying

resource infrastructure. It provides generic means to define sensors (devices) and virtual

objects. In addition, the layer hosts a set of sensors’ Adapters and offers mechanisms to

manage and hold this set of adapters’ definitions and configurations. The general

functionalities of the Adaptation Layer are presented in Figure 16.

Figure 16. Adaptation layer functional architecture

This figure shows the core components of the level, which are reflected and

instantiated in the use case of Chapter VII. At the heart of the Adaptation layer we find

the Adapter Container. This component hosts the execution environment of the deployed

Adapters. In addition to the Adapter Factory that is responsible of instantiating the

appropriate adapters for each connected data source (sensor, API, etc.). Moreover, the

Adapter
Templates

Object Description
Model

Adapter
Factory

fetch(sens_type)

Adapter
Execution
Pool

load

deploy

Adapter
Container

To upper layers

 64

level contains the Adapter Templates that constitutes the core of the informational model

describing the set of sensors. The Adapter Container also hosts various default and

optional functionalities. In the following sections, we present core concerns of the

Adaptation level in more detail and show how the key components have to be reflected

in prospective use cases.

3.1.1. Sensor description model

The huge amount of sensors that are and will be deployed in the IoT imposes the

need for an abstract information model to describe the heterogeneity of these devices.

Consequently, the information model was developed as a generic model. As such, it can

be used to describe a wide range of IoT devices, either within simple infrastructures such

as sensors and actuators or within more complex technological infrastructures like

smartphones or traditional web services. The definition of appropriate metadata into

ontologies gives the ability to create semantically enriched representations, which reflects

in the virtual world the specification, the capabilities and the commands of

heterogeneous IoT objects [32,48]. In addition, the need to describe virtual data-sources

(non-physical object) necessitates the definition of relevant metadata that will describe

the features of such objects. Thus, the Object Description Model includes a set of metadata

used to describe properties and associations of both physical and virtual objects, and that

in one common data structure. The next figure (Figure 17) presents this designed

informational model.

 65

Figure 17. Object Description Model

As illustrated in Figure 18, the above-mentioned model can be instantiated as

YAML [17] description file. This file encapsulates information about the hardware

sensors, its generated data, and the protocol that can be used for communication

purposes.

 66

Figure 18. Temperature sensor YAML description

3.1.2. Adapter Container

The Adapter Container is the core component acting, in a way, as the abstraction

component between the heterogeneous physical world and the homogeneous

Operational Level. The key back-end interfaces of the Adapter Container with the

underlying heterogeneity are the Adapters.

 Identifier: c7d6f5a1-2910-436a-a939-d6fdeedceae
 Type: simple
 Purpose: >
 This is a simple
 sensor for temperature
 Data:
 Purpose: Temperature in Celsius
 Type: Double
 Frequency:
 Start: 2017-10-01 21:59:43.10
 End: 2017-11-30 01:59:43.10
 Rate: 30
 Context:
 Location:
 Latitude: 46.804334
 Longitude: -71.980912
 Altitude: ~
 Link:
 Type: SerialPort
 Port Name: "/dev/tty.usbserial-A9007UX1”
 Time Out: 2000

 67

Figure 19. SerialPort Adapter for Arduino sensor: upstream

Adapters are instantiated by the Adapter Factory using the Object Description Model

as input. This description provides the Adapter with required information about the object

it represents, the data it generates and the type of Link needed to ensure communication

with that object. Adapters may also incorporate object-management functionalities for

updating information such as geo-positioning data, data rate, etc. Upon its creation,

Adapter instances are deployed and run by the Adapter Execution Pool. Those instances are

responsible for delivering data to the upper services to be formalized and analyzed

(Figure 19). Furthermore, they are in charge of using and updating the represented

objects.

The Adapter Container manages the execution and the life-cycle of the deployed

Adapters within its run-time environment. Such duty includes the identification,

allocation and the destruction of Adapters. The Fog ecosystems interact with a large

number of physical and virtual data sources. Which implies that each object instance has

Sensor
Configuration

Serial Port Link

Physical infrastructure

Adapter

Arduino
Sensor

Data
Description

Fog node

Synchronization
process

To upper layers

 68

to be uniquely distinguishable. Thus, the system behaves as an identification authority

for the entities it contains. Object identifiers have to be unique and give an informative

description of the referred Object. The architecture provides an umbrella under which

object are stored, in addition to a naming schema that defines the rules for naming the

resources.

3.2. FORMATTING AND UNIFICATION

The Formatting and Unification Layer is responsible for delivering information

description methods and data filtering mechanisms. It offers a unified and homogeneous

view aiming the standardization of the filtered data. The resulting data are consumed

through services. Thus, inheritably loose coupled and discoverable.

Indeed, the main difference between data analytics at the Cloud level and at the

edge level of the network is the quantity of data. That is, while data analytics at the edge

of the network is performed continually on flowing streams of data, analytics at the

Cloud level is dedicated to large amounts of data at rest. Hence, we consider the analytics

at the Fog node as a successive processing channels [18] of real-time flows of data.

Figure 20. Fog analytics channels

01000011
01101111
01000110
01101111
01100111

Raw data

Output
stream

Processing
ChannelsInput streams

Analytics Units

 69

The Formatting & Unification layer handles the heterogeneity of the infrastructure

from a data semantic perspective. Indeed, various aggregation algorithms can be

implemented at the very edges of the network in order to provide enriched data. The Fog

data-stream analytics can be broken into three simple stages, illustrated in Figure 20.

- Raw data input: the raw data coming directly from the object data-source (i.e.

sensors) through the associated Adapter into the analytics unit.

- Analytics Unit (AU): the AU acts on the raw data by filtering them, combine

or separate them as needed. For instance, it may organize them by time

windows or execute divers analytical functions.

- Output data streams: the data that is organized, well formatted and ready for

delivery to the top layer of the system.

Each Processing Channel within the Analytics Unit can perform a real-time analysis

function such as:

- Filtering: Objects in the IoT are likely to generate an enormous quantity of

data. However, most of these data can potentially be irrelevant. For example,

a temperature sensor can be configured to send data on a regular basis, simply

to confirm its reachability but not upon temperature changes. Hence, most of

this data is not really relevant and can be ignored. That is, the filtering function

is in charge of identifying important data.

- Time windowing: Time context is a crucial aspect in real-time data streaming.

Such operation can be used to correlate average data values from a sensor’s

real-time data on a time-window basis. Figure 21 illustrates a Processing Chanel

that reports every half-hour, the input data from a temperature sensor stream

in a one-hour window.

 70

Figure 21. Time window, an analysis function example

- Formatting: Similar to advanced data analytics in the Cloud (data integration,

data warehousing), Fog nodes must implement some simplified variation of

data transformation. Such function is used to convert filtered data from one

format or structure into a form that can be used for other purposes. Such

operation can be as simple as converting temperature data from Celsius to

Fahrenheit.

[2017-11-20 03:03:01.10]: -13.21

[2017-11-20 03:33:00.00]: -13.61

[2017-11-20 04:02:59.30]: -14.01

[2017-11-20 04:31:01.17]: -14.51

[2017-11-20 05:01:01.10]: -13.45

[2017-11-20 05:31:01.10]: -13.09

[2017-11-20 06:03:08.00]: -11.66

report

report

report

report

report

report
[2017-11-20 03:33:20.00]: -13.41

[2017-11-20 04:02:00.06]: -13.81

[2017-11-20 04:32:04.01]: -14.26

[2017-11-20 05:01:01.10]: -13.98

[2017-11-20 05:31:01.10]: -13.26

[2017-11-20 06:03:58.00]: -12.37

 71

4. CHAPTER CONCLUSION

This chapter has given an overview of the proposed architecture. This architecture

constitutes an approach to solving interoperability issues close to the physical level. It

offers an abstraction from any domain-specific scenarios to concentrate on domain-

agnostic perspectives that Fog Computing based solution may have in common. Yet, the

adoption of such an architectural model could be achieved in a strait straightforward

fashion, as shown in Chapter VI. We have covered the functional building blocks of the

first level, the Middleware, in addition to the description of the operational behaviour

and the flow of information within both the Adaptation and the Formatting & Unification

layers.

In the next chapter, we continue the presentation of the upper level of the

proposed architecture. The Operational Level is intended for service presentation,

management and transformation. An environment embracing such model will provide

means for early data analysis, hence low latency and real-time responses. In addition, to

providing an ecosystem for direct collaboration between services leading to more

sophisticated applications.

 72

THE COFOG OPERATIONAL LEVEL:
SERVICE AND OPERATION LAYERS

Cloud Computing takes advantage of a fairly predictable environment of

homogenous computing, storage, and networking components to offer higher service

aggregation without degrading performance. In other words, the Cloud offers an efficient

alternative to owning data and processing centres. Thus, it liberates the end users from

the specification of many details. However, Cloud Computing fails to meet the

requirements of IoT in term of latency-sensitive applications, mobility support, wide geo-

distribution and high location awareness. On the contrary, while Fog Computing might

compliment the Cloud at the edge of the Internet, it bestows new breed of services and

applications meeting the previously cited requirements. Therefore, Fog applications do

not ultimately fit the Cloud Computing paradigm, and they include:

- Applications that require very low and predictable latency: shop-floor

monitoring, gaming, video conference.

 73

- Applications with high geo-distribution nature: wind farms, pipeline

monitoring, environmental-sensing networks.

- Services for fast and mobile participant: smart connected vehicle, connected

rail.

- Large-scale distributed control systems: smart grid, connected rail, smart

traffic systems, pollution monitoring.

The application area of the Fog paradigm is large and crosscuts multiple

application fields. Therefore, it needs a common platform that supports a wide range of

application domains, rather than single solutions for each domain. Hence, analogous to

the Cloud, the Fog architecture must provide a service layer that leverages resource

virtualization with dynamic-service orchestration [7]. Such ability enhances the

scalability and the automation of service management. In addition, the service layer must

offer a highly abstract and generic APIs in order to accelerate and ease the deployment

of Fog service-based systems.

In the previous chapter, we have introduced our proposed architectural

framework. In this chapter, we present the architecture’s Operational Level. We provide

an overview of its principles, components, and the main supported features. In addition,

this chapter comprises sections dedicated to more details on each component of this level,

along with tools for Service and Operation definition and management.

 74

1. THE OPERATIONAL LEVEL, AN OVERVIEW

Fog nodes provide a large number of services with a wide range of capabilities.

Orchestrating such services, on a large number of nodes, requires dynamic and policy-

based life-cycle management. This orchestration is achieved in the Service Layer via the

following components:

- A Service Template Repository that facilitates the introduction of new types of

services.

- A Service Factory in charge of the process of service instantiation that satisfies

a given Service Request.

- A Service Container capable of bearing the management functionalities and the

performance requirements of edge devices.

Furthermore, the Operational Level augments device-based static services with

more complex dynamic services. That is, static services leverage virtualized devices by

presenting their data and capabilities as usable services (Figure 22).

Figure 22. Graphical representation of a static service

Whereas, dynamic services augment the existing devices virtualization and/or the

provided static services. The definition of such mechanism is provided by the Operation

Layer through a set of Operations, and based on the service request and contextual

information (Figure 23).

ServiceAdapter

device

Processing Channel

 75

Figure 23. Graphical representation of a dynamic service

Services are accessed via Service Requests. The Service Request Analyzer function

matches such incoming requests with the corresponding service template. Thus,

constructing contextual constraints as expressed by the request, and eventually handing

on the resulting service specification to the Service Container for execution.

Figure 24. Components in the Operational Level

Finally, the discovery of services is based on a Data Sharing Model. This model

relays on a propagation query-response process. To summarize, Figure 24 illustrates an

overview of the main functions of the Operational Level and the architecture entities they

interface with. Next sections present more details on the various components of this level,

alongside their operational behaviours.

device

Operation ServiceAdapter Processing Channel

Service Template
Repository

Service
Factory

Service
Execution
Pooldeploy

Service
Container

Service Request
Analyzer

Policy
Directory

discovery request Discovery
Component WL

BL

Service Request

Operation
Execution

Operation
Repository Data Knowledge

Service Layer
O

peration Layer

 76

2. SERVICE MODELING AND MANAGEMENT

2.1. SERVICE TEMPLATE

A Fog node, in its approach of functioning, supports and offers an arbitrary

number of service-types along with their instances, and this, in one or more application

domains. Therefore, to introduce a new type of services, a Service Template is added to the

Service Template Repository. This way enables the platform to support a hypothetically

wide range of Service Requests. Such requests, when issued, they express the goals and the

needs that users and applications ask the platform to fulfil. Hence, the reception of a

service request result in the selection and instantiation of a service template according to

the request provided parameters.

Figure 25. Service container: template instantiation

As shown in Figure 25, the Service Container component is responsible for

performing the template instantiation (Service Factory), and produces a service execution

order (Service Execution Pool). In this perspective, a service is considered as a faithful

representation of one or many virtualized data sources (sensors, API, web services)

Service Template
Repository

Service
Factory

Service
Execution
Pooldeploy

Service
Container

Service Request
Analyzer

Service Request

 77

and/or data consumers (actuators, controllers). Thus, a service template must comprise

mainly a set of this service type’s identifiers, parameters, capabilities and commands; and

it is defined as follows:

A service 𝑆 is couple <data, context>, where:

- 𝑑𝑎𝑡𝑎 =	< d, frq, {opt} > such as:

- d = {t, u}, where t is the data type and u is the unit of this data type,

- frq = <start, end, cron>, where start represents the start date, end the end date,

and cron is a Unix Crontab-like expression that defines the frequency at which

the data is collected,

- {opt} might be used to specify other options in the form of a set of couples

<attribute, value>.

- 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =	< lat, lon, {opt} > where:

- lat and long represent, respectively, the latitude and the longitude of the

geographical location of the IoT object,

- {opt} might be used for including other context-related information in the form

of a set of couples <attribute, value>.

For instance, Service Templates may be stored in a YAML [17] format and queried

by the Service Request Analyzer component. As illustrated in Figure 26, this description

includes service’s parameters and features that need to be met.

 78

Figure 26. YAML service template for a Smart Temperature Service

2.2. POLICY-BASED MANAGEMENT

The Service Container provides a policy-based management framework. This

framework is convenient to administer business policies, manage, and monitor the Fog

platform. For instance, in a concrete scenario, administrators can interact with such

orchestration framework via an intuitive user interface.

Figure 27. Policy-based management framework

Policy
Directory

Service Container

Service
Factory

User
Interface

Service Template:
 Name: Smart Temp
 Description: >
 Smart temperature service
 Data:
 - Type: Temperature
 - Unite: Celsius
 - Frequency:
 - Start: 2017-10-01 21:59:43.10
 - End: 2017-11-30 01:59:43.10
 - Cron: 30 * * * *
 Context:
 - Location:
 -
 Latitude: 46.804334
 Longitude: -71.980912
 Altitude: ~
 Command:
 - name: getTemperatureC
 - parameters: ~

 79

Furthermore, by defining Generic Policies, the framework can be extended to

support a wide variety of policies. The following are few examples of the functions that

policies may include:

- Policies to specify thresholds for load balancing such as the maximum number

of users, connections, CPU load, etc.

- Policies to specify QoS requirements (network, storage and computing)

associated with services such as minimum delay, maximum rate, etc.

- Policies to configure service instance in a specific setting.

- Policies to associate power management capabilities of the Fog node.

- Policies that specify how and what services must be chained before delivery –

e.g., healthcare services before gaming.

Business policies specified via the use of the framework are pushed to a Policy

Directory (Figure 27). The Service Container’s policy management may be triggered by an

incoming service request, service instantiation, etc. Hence, relevant policies are gathered

from the policy repository - i.e., those which are related to the service. In addition to

retrieving meta-data about currently active service instances. Both these two sets of data

provision the life-cycle management of services on a Fog node. The Service Container may

also reach out to the policy repository to identify the Fog node and network configuration

policies while provisioning the new instance. Such management functionality provides

better resiliency, scalability, and faster orchestration for geographically distributed

deployments.

 80

2.3. SERVICE GENERATION AND EXECUTION

Based on the logical description of the requested service, the Request Analyzer

instructs the Service Container on which service instances to construct, deploy and execute.

Therefore, the analyzer should obtain all information and context constraints from the

Service Template Repository, before issuing service execution instructions. The advantage

of this architectural resides not only in enhancing the modularity and reusability

qualities, but also in the fact that service-related dependencies are analyzed prior to

spending valuable real-time execution resources.

As mentioned in the previous section, internal management of the Service Container

is based on a set of policies. Hence, the instantiation of a service is subject to the

satisfaction of the adequate policies. Upon the satisfaction of such policies, the Service

Container send an instantiation order to the Service Factory with the Service Template. The

enriched data provided by the instantiated service may be presented for example via a

RESTful HTTP Request-Response or an MQTT Publish-Subscribe interface.

That is, the “normal” service delivery is based on the presence of the requested

service among predefined services. However, the smartness of a Fog node resides on its

capability to provide dynamically constructed services. Therefore, triggered by the

absence of a service, the Operation Manager tries to fulfil the service request by using a set

of Operations. This process is the topic of the next section.

 81

Figure 28. Service execution and delivery process

It is worth mentioning that security, as a non-functional requirement, can be

plugged in a given point of the service creation process. For instance, as illustrated in

Figure 28, the access control model is deployed at the level of the Request Analyzer.

Black
List

Subject in?

Service
Container

Access
Control

Operation
Manager

Service
Request

false

true

Operation
Repository

Service Runtime

Service
Denied

Service
Delivery

Service
Error

structured
data

Data
Knowledge

Analytics Unit

Service Request
Analyzer

instantiate service

Authorize?

Service Template
Repository

Service Factory

deploy

true

matches
any?

false

matches
any?

conservative
?

true

false

true

false
Execute

Operation

false
Policy

Directory

 82

Thus, the Policy Enforcement Point (PEP) can intercept service execution requests.

The interception of these request generate events that are signalled to a Policy Decision

Point (PDP) component. This late component evaluates security policies and return

enforcement actions to the PEP. The result of the policy evaluation may allow, deny,

modify, or delay the execution requests in case policies controlling the respective request

are already deployed. More information on the access control model are presented in the

next chapter.

3. LEVERAGING SERVICE WITH OPERATIONS

3.1. OPERATION DEFINITION

As mentioned earlier in this chapter, the Operation Layer provides mechanisms to

leverage static services. Indeed, given a set of available web services, a service request

and contextual information, the main problem of the Service Layer is to automatically find

a web service satisfying the request. However, is it possible that the requested service do

not exist. In such case, the data from one or many sources (sensor date, classical web

services, etc.) are subjected to more treatments, thus ensuring the creation of the desired

service. This is achieved by means of a set of operations that are applied to existing

services. Those operations may be any transformation, aggregation, or composition

primitive. The key element for an automatic Operation execution is through a semantic

representation of such applications. This machine-readable representation allows the

operation execution-engine to find a correct, consistent and optimal response to the

request.

First, to formalize the notion of Operation and its composition, let ℐ<, 	ℐ=, 	 ⋯ ℐ?	|	𝑛 ∈

ℕ be the sets of input parameters, 𝒪<	, 	𝒪=, 	 ⋯𝒪D	|	𝑚 ∈ ℕ the sets of output parameters,

 83

and ℛ a Relation of degree 𝑛 +𝑚. An Operation (op) defines a set of inputs ℐ	 ⊆

	ℐ1 × 	ℐ2 × 	⋯ℐ𝑛, a set of outputs 𝒪	 ⊆ 𝒪<	 × 	𝒪= × 	⋯𝒪D, and a formula that maps the

relation ℛ to the (𝑛 +𝑚)-ary relation of all (𝑛 +𝑚)-tuples from ℛ.

𝑜𝑝	: = 	ℛ	|		ℐ< × 	ℐ= × 	⋯ ℐ? → 	𝒪<	 × 	𝒪= × 	⋯𝒪D

Equation 1. The operation's formal definition

We assume that for every Operation (𝑜𝑝) invocation with input parameters such

as for every parameter 𝛼 ∈ ℐP	|	i: 1 → n, the relation ℛ returns all the output parameters

where for every output parameter 	𝛽 ∈ 	 𝒪𝑗	|	j: 1 → m.

⎝

⎜
⎛i<

<

i=<
⋮
iZ<⎠

⎟
⎞
	 × 	

⎝

⎜
⎛i<

=

i==
⋮
iZ=⎠

⎟
⎞
× 	⋯

⎝

⎜
⎛i<

𝓃

i=𝓃
⋮
iZ𝓃⎠

⎟
⎞
→ 	

⎝

⎜
⎛𝑜<

<

𝑜=<
⋮
𝑜Z<⎠

⎟
⎞
	 × 	

⎝

⎜
⎛𝑜<

=

𝑜==
⋮
𝑜Z=⎠

⎟
⎞
× 	⋯

⎝

⎜
⎛𝑜<

𝓂

𝑜=𝓂
⋮
𝑜Z𝓂⎠

⎟
⎞
	

Where ℐ< × 	ℐ= × 	⋯ ℐ? is the domains of input parameters, and 𝒪<	 × 	𝒪= × 	⋯𝒪D

is the range of output parameters.

For instance, let 𝑅 be the operation that convert temperature from Celsius to

Fahrenheit (cTof). This relation is a binary relation over 𝐶	 × 	𝐹, that maps ℃ to ℉. Such

relation is the function 	𝑓: 𝐶 → 𝐹	|	𝑓(𝑥) = 1.8𝑥 + 32, and would be stored for example in

YAML format as follows (Figure 29):

Operation:
 Name: cTof
 Summary: >
 Simple Celsius to F conversion

 84

 Input:
 - x: {Type: Temperature, Unit: Celsius}
 Output:
 - y: {Type: Temperature, Unit: Fahrenheit}
 Formula: $y = 1.8 * $x + 32

Figure 29 . An example of a simple temperature conversion operation

We distinguish between two kinds of operations: conservative and non-

conservative. A conservative operation (e.g. the cTof operation) is simply any operation

for which the result data type belongs to the set of already defined data format. In

contrast, a non-conservative operation results in a new data format.

3.2. REQUEST-OPERATION MATCHING

The elegance of a Fog node resides on its capability to dynamically construct

services. As illustrated in Figure 28, the absence of a service that fulfils a given request,

activates the Operation Manager in order to match the request with the corresponding

Operation. Matching between an Operation and a Service Request consists essentially of

matching all the output parameters of the Operation and the parameters of the request.

Hence, request parameters are matched against all the Operations stored in the Operation

Repository at the level of the Fog node.

The next figure illustrates in details the pseudo-code of the matching algorithm :

 85

Figure 30. Algorithm for Request-Operation matching

That is, a match is recognized if and only if for each parameter of the request, there

is a matching output in the Operation. Thus, the degree of success depends solely on the

1 procedure MatchRequestOperation (sRequest, operationList)

2 matchList ¬ empty list

3 for ∀Opi ∊ operationList do

4 if isMatch(sRequest, Opi) then

5 matchList ¬ matchList + {Opi}

6 end if

7 end for

8 end procedure

9

10 procedure isMatch(sRequest, Op)

11 reqParam ¬ fetchParam(sRequest)

12 opOutput ¬ fetchOutput(Op)

13 matchDegree ¬ 0

14 for ∀Pri ∊ reqParam do

15 for ∀OpOuti in opOutput do

16 if Pri equals OpOuti then

17 matchDegree ¬ matchDegree + 1

18 end if

19 end for

20 end for

21 if matchDegree / length(reqParam) equals 1 then

22 return true

23 end if

24 return false

25 end procedure

 86

degree of matching: if one of the request output is not matched by any of the Operation

outputs, the match fails.

4. SERVICE DISCOVERY AND DATA SHARING MODEL

Fog services discovery mechanisms enable the search and the discovery of the

available services across the Fog nodes. A Fog node uses the Discovery Component to

either send discovery request or perform discovery request processing. This section gives

further details on such processes.

4.1. DATA SHARING MODEL

The service discovery mechanism is based on a data sharing model (Mds) [117].

Service-discovery process in such model is composed of three phases:

- Service Discovery: it uses whitelists and blacklists to enforce a propagation-

like query-response mechanism. Such mechanism allows a decentralized

discovery of services.

- Service Selection: the selection of a service passes through 1) a preselection

step where both the service request and the service response are compared

against each other to determine the rate of correspondence between them, 2)

and a selection step where a global rating value is associated to each

preselected service. The first service with the highest rating value is then

selected.

- Service Consumption: this is the final phase and it refers to the delivery of the

service. The consumption of a given service is subjected to the attributes

defining such service. For instance, consuming a temperature service must

 87

start and finish following the 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑	values defined in the 𝑓𝑟𝑞 attribute

provided by the service definition.

4.2. SERVICE DISCOVERY

The service discovery in the data sharing model relays on a propagation-like

query-response model. To make the discovery process faster and more accurate,

discovery requests are structured by specifying the set of nodes it crosses. In addition,

the service template is also added as a search constraint that will be taken into account

by the Discovery Component. Next to search constraints, the discovery mechanisms

consider the access rights regarding the client that performs the discovery request.

Specifically, the selection process uses a Whitelist-Blacklist mechanism to enforce a

simple and a kind of “friends of my friends are my friends” selection policy. While the

whitelist contains actors that a given actor trusts, the blacklist contains actors that are to

be avoided in the collaboration process. The propagation strategy is depicted in Figure

31.

 88

Figure 31. Data sharing model for IoT: Propagation-based service discovery

In this context, it is worth mentioning that an actor represents any object, service

or application that might invoke a service discovery request. Actors are defined as follow:

An actor 𝐴 is represented by a set {< 𝑂<, 𝑆<, 𝑟< >,< 𝑂=, 𝑆=, 𝑟= >,… 	< 𝑂?, 𝑆?, 𝑟? >} ,

where:

- i	 ∈ [1, n], 𝑛 is the number of objects an actor represents.

- 𝑂P 	∈ 	𝑈t ;𝑈t the universe of all IoT objects

- 𝑆P 	 ∈ 	𝑈u ; 𝑈u the universe of all IoT services

The processing of a discovery request is depicted in Figure 32. First, an actor

formulates a service request that describes the needed service. Using its Discovery

Component, this request is forwarded to all actors present in the Whitelist.

A1
A22

Ak2

A12 A1n-1

A2n

Akn

A1n

A2n-1

Akn-1
…

…

…

…

… …

Service request

Forwarded request

Service response

Forwarded response Potential actors

White listed actorsA Actor

 89

Figure 32. Service discovery request process

Upon the reception of such request, the Request Analyzer forward the request to

the local Discovery Component. At this level, the request may be ignored if the request’s

Actor is listed in the Blacklist. From this point, the Service Container handles the

discovery request as a service request, in the same fashion depicted in section 2. In

addition, it forwards the request to all actors in his whitelist, along with sending back a

discovery response describing the service that matches the requested service.

Black List

Subject Exists?

Ignore

Service
Manager

Access
Control

Operation
Manager

Service
Knowledge

Discovery Component

Service
Discovery
Request

Yes
No

Attributes

Matches Any?

Authorize?

Yes

Yes

No

No

Operation
Knowledge

Operation
Exists?

Yes

Service
Response

Discovery
Component

Service
Discovery
Response

White List

Forward to

No

Send

Request
Handler

 90

5. CHAPTER CONCLUSION

This chapter presented service definition, management and transformation

components at the Operational Level.. Services that can be leveraged through the

application of a set of Operations. The next chapter, raises questions about the principal

requirements of Fog Computing regarding security in general and access control

mechanisms in particular. The answers to these questions have shaped the design of the

proposed access control mechanism, which is presented in the next chaptre.

 91

A COLLABORATIVE ACCESS CONTROL
FOR THE COFOG ARCHITECTURE

Security issues are at the core of collaborative Fog Computing. An infrastructure

intended to enable collaboration among devices must target primarily easiness and

transparency. However, the security aspect of that same system seeks privacy,

authenticity and data integrity. That is, there is a compromise between openness

necessary for the collaboration, and the restriction required by a secure system. This

compromise gives security problems a multidimensional nature [24]. Among the many

dimensions of the security problem, Access Control (AC) is highly important and one of

the most critical aspects. Similar to conventional infrastructures, the main function of AC

mechanisms is to guaranty right rights to the right subject (user) on the right object. In

contrast with the conventional infrastructures, the Internet of Things has its own set of

inherited and specific issues and challenges. In this chapter, we present the

comprehensive study that helped us designing an access control mechanism for the

 92

proposed Fog Computing architecture. We raise questions about the main considerations

regarding the requirements of Fog Computing, and the criteria that access control models

must meet to be suitable for collaboration in such an environment. The answers to these

questions have shaped the design of the proposed access control model

1. ACCESS CONTROL REQUIREMENTS FOR FOG COMPUTING

The case here transcends the authentication of subjects and their roles. The Internet

of Things is a demanding environment; an access control mechanism must address the

requirements of collaboration in this environment. We can summarize those

requirements as follows.

- The first thing to come to mind when dealing with the Internet of Things is the

scale. The huge number of objects involved makes the coordination and the

performance of tasks difficult, it must not affect the scalability of the access

control model.

- The actors in such network are highly dynamic. The Internet of Things is by

nature dynamic: new devices are continually deployed and the already

connected ones are probably physically on the move. The access control model

should support changing policies at runtime according to the actors’

dynamics.

- The actors are also resource-restrained. Hence, the access control model

should perform with a reasonable resource cost.

- The access control has to be suitable for groups and fine-grained access. That

is, the level of granularity should not be a difficulty in defining security

policies.

 93

- High abstraction of access policies is a requirement. A generic access control

model supports more expressive policy definitions. This is a core requirement

since the access authorizations are based on a variety of information: data type,

frequency, location, service and so forth.

- In addition, high-level definition of authorizations provides better handling of

the environmental complexity.

- Although, depending on the design decisions derived from the

aforementioned requirements, the access control must provide a suitable and

easy to use interfaces for both consumers and devices.

The aforementioned list of requirements is recommended for a Fog environment

in the Internet of Things. However, one must admit that listing all the requirements for a

practical collaboration is simply pointless, for it is hard to predict all the possibilities and

variations within Fog Computing. Instead, we can generalize the criteria in designing an

access control model for Fog Computing systems. Such criteria have been deducted from

the above requirements and are listed as follows.

- Scalability: To ensure the scalability of the system, the access model should

support extensible polices specification and definition mechanisms.

- Dynamism support: The access control model needs to be active in its handling

of the management of actors, the assignment of access rights and

authorizations.

- Contextual information: Context-awareness is a building block of applications

powered by the IoT. Contextual information plays a significant role in any

collaboration and in the process of authorization. Moreover, it is important to

 94

know to which extent the access control model is utilizing such information to

better secure the whole system.

- Granularity: Often, in the scenario of collaboration, subjects need specific

permissions on an object, over a specific period of time, and at a particular step

of the collaboration procedure. In such cases, it is not sufficient to have a set of

rules for a set of subjects. Thus, while preserving an adequate level of

complexity, a fine-grained capable access control model is needed.

- Least authority principle: This well-known principal of security is still valid in

the context of Fog Computing. It helps reduce the risk of breaches and the

complicity of the model by eliminating unnecessary subject privileges.

- Separation of duties: In this context, the access control model must ensure that

a subject has been given only the responsibilities for the current request

function.

2. THE COLLABORATIVE ACCESS CONTROL MODELS

We have evaluated a set of access control models that have been proposed and

used for the Internet of Things (see Chapter III). This section presents the adaptation of

the Role-based and the Attribute-based access control models to fulfil the criteria

illustrated in the previous section. The access control model is designed following the

service-based data sharing model (Dsm) approach presented in the previous chapter.

2.1. COLLABORATIVE ROLE-BASED ACCESS CONTROL

The Role-Based Access Control model (a.k.a. RBAC) was formalized by Ferraiolo

and Kuhn [24] in 1992. It was designed to overcome the burden of traditional Access

 95

Control Lists [24] by reducing the cost of access management. Nowadays, the RBAC is

still predominant and constitutes the base model upon which many advanced access

control systems are proposed. The Collaborative role-based access control (CollRBAC) is

an adaptation of the RBAC model to support collaborative Fog computing environment

in the IoT. The following are concept definitions and redefinitions required for such

adaptation.

2.1.1. Definition: Permission

Given 𝑈t the universe of all IoT objects, 𝑈u the universe of all services, and UOP the

universe of all operations, a permission is defined as a triplet < 𝑂P, 𝑆P, 𝑂𝑝P > such that:

- 𝑂P 	∈ 	𝑈t

- 𝑆P 	 ∈ 	𝑈u

- 𝑂𝑝P 	∈ 	𝑈tv

2.1.2. Definition: Operation

An Operation 𝑂𝑝P 	∈ 	𝑈tv is essentially any access with read or write to the data

provided by a given service or the metadata governing the generation of such data.

2.1.3. Definition: Role

Given 𝑈vwxD	the universe of all permissions, a role 𝑅 is defined as a finite set of

permissions such as: 𝑅 = {𝑃𝑒𝑟𝑚P|𝑃𝑒𝑟𝑚P 	∈ 	𝑈vwxD}

2.1.4. Definition: Role Assignment

Given 𝑈z{|w	the universe of all Roles, and 𝑈}~��the universe of all users, the user-

role assignment application 𝔸� is a non-injective and non-surjective application

𝔸�:	𝑈}�wx → 	𝑈z{|w .

 96

Figure 33. CollRBAC authorization assignment mechanism.

The essence of CollRBAC is that instead of assigning them directly to individual

users, permissions are assigned to roles. A permission grants access to a role 𝑅 for a

unique operation 𝑂𝑝 on a unique service	𝑆 of an object 𝑂 (Figure 33.). Hence, roles are

created for various task functions, and users are assigned to roles based on their

qualifications and responsibilities.

The procedure of specifying user authorizations is divided into two logically

independent phases. The first phase, which assigns users to roles: the user-role

application assigns a set of roles {𝑅} to the appropriate user 𝑈P such as:

𝑎𝑠𝑠𝑖𝑔𝑛𝑅𝑜𝑙𝑒(𝑅, 𝑈P) ∶ 𝑈P ∈ 𝑈}�wx ∧ 	𝑅 ∈ 𝑈z{|w ∶ 𝑈P = 𝑈P 	∪ {	𝑅	}

 97

The second phase which assigns access rights for operations on objects to roles

such as:

𝑔𝑟𝑎𝑛𝑡𝑃𝑒𝑟𝑚(𝑅P, {𝑃𝑒𝑟𝑚}) ∧ ∀	𝑃𝑒𝑟𝑚P ∈ {𝑃𝑒𝑟𝑚},𝑃𝑒𝑟𝑚P ∈ 𝑈vwxD → 𝑅 = 𝑅 ∪ �𝑅P, {𝑃𝑒𝑟𝑚}�

- 𝑔𝑟𝑎𝑛𝑡𝑃𝑒𝑟𝑚 associates a set of permissions {𝑃𝑒𝑟𝑚}	to the corresponding role 𝑅

within the framework.

𝑟𝑒𝑣𝑜𝑘𝑒𝑃𝑒𝑟𝑚(𝑅P, 𝑃𝑒𝑟𝑚P) ∧ ∀	𝑃𝑒𝑟𝑚P ∈ 𝑈vwxD → 𝑅 = 𝑅 − {𝑅P, 𝑃𝑒𝑟𝑚P}

- 𝑟𝑒𝑣𝑜𝑘𝑒𝑃𝑒𝑟𝑚 detaches a permission 𝑃𝑒𝑟𝑚P	from a given role.

2.2. COLLABORATIVE ATTRIBUTE-BASED ACCESS CONTROL

The Attribute Based Access Control model [66] (ABAC) uses proprieties associated

to both the subject and the object of the access request, in addition to the environmental

properties in order to grant authorizations. Upon the reception of a service request, an

access permission system allow or deny access to the requested service. When an access

request is made, Attributes and Access Control Rules are evaluated by the Policy

Enforcement and Decision mechanism to provide the access decision (Figure 34).

 98

Figure 34.Collaborative Attribute-Bases Access Control Model

The following definitions extend the existing concepts required for the adaptation

of ABAC to a collaborative Fog environment.

2.2.1. Definition: Context

Context is the set of attributes describing the state of the environment, the user

and the service subject of the current demand. Contextual attributes are for example

location, time and so forth.

2.2.2. Definition: Access Control Rule

Given a service request	𝑅𝑠𝑑, and the context of this request	𝐶𝑡𝑥, the access control

rule determines whether the user who sent the request has the right to access a given

service 𝑆.

The access rule function, denoted by	𝑓(), is defined as follows:

𝑓(): 𝑅𝑠𝑑. 𝐴. {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒}	× 	𝑆. {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒} × 	𝐶𝑡𝑥. {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒} → [𝑡𝑟𝑢𝑒|	𝑓𝑎𝑙𝑠𝑒]

Subject
AttributesActor

Environment
Attributes

Service
Attributes

Access Control Rules

Policy Enforcement
and Decision

!()
true

false

Service

Rsd

 99

The function returns a Boolean value that is equal to true when the access is

granted, otherwise the value is equal to false.

2.3. COLLABORATION ACCESS MODELS COMPARISON

We have evaluated the proposed access control models against the set of criteria

deduced from the Fog requirements. Both models are adapting features of trusted and

the largely known RBAC and ABAC models. Thus, they inherently support the well-

known principles of Least Privilege and Separation of Duties. However, when it comes

to the collaboration dimension, every model shows its particularities. Table 3 illustrates

this comparison.

Table 3. Summary of the comparison between CollRbac and CollAbac

 CollRbac CollAbac

Least Privilege
Principle Yes Yes

Separation Of
Duties Yes Yes

Scalability Scalable to a certain extent. With the
growth of actors in the collaborative
network, the huge number of objects
and services may lead to an explosion
of roles.

Providing subject with attributes may
have an overload on the framework.
Services and context attributes are
basic building blocks. Thus, no
specialized mechanism are to be
deployed for this purpose.

Dynamism
Support

In relation with the scalability
criterion, the constant movement of
actors in the network may lead to an
overload on the access-roles
management process.

The active nature of the ABAC, makes
it able to handle the dynamism of a
collaborative system.

Contextual
Information

Does not consider contextual
information in the decision making
mechanism

The context attributes provide a fairly
representation of the contextual
information.

Granularity Low: lacks the ability to specify a
fine-grained control on individual
users in certain roles and on
individual object instances.

High through attributes
representation.

 100

Flexibility Low, regarding the responsiveness to
the environment. High due to its high granularity.

Indeed, from a collaborative perspective, the fact that access rules assignment is

an application between groups of users on a set of objects is not fully sufficient. Often, a

service in an instance of an actor might need specific permissions on an object at a

particular time interval during the collaboration. Although the CollRbac access control

has been augmented by the notion of operation, in comparison with the CollAbac it fails

to provide the needed high level of fine-grained control. In addition, a comparison of the

authorization mechanisms shows that CollAbac requires more complex trust

relationships. In other words, CollAbac authorizations are derived directly from many

sources such as the subject attributes, service context, and service data context.

3. COLLABORATION ACCESS POLICY PROCESS

As illustrated in Figure 34, CollAbac mechanism passes throughout the policy

enforcement and decision. Indeed, within the authorization mechanism exist two main

functions: the policy enforcement point (PEP) and the policy decision point (PDP). Given

𝑅𝑠𝑑 a request to access a service’s data, the PEP extract the request’s service attributes; a

valid service request is a request that matches the demanded service definition. This

match is founded on the satisfaction of the following conditions:

- 𝑅𝑠𝑑. 𝑑a𝑡𝑎. 𝑑. 𝑡 = 𝑆. 𝑑𝑎𝑡𝑎. 𝑑. 𝑡,

- 𝑅𝑠𝑑. 𝑑𝑎𝑡𝑎. 𝑑. 𝑢 = 𝑆. 𝑑𝑎𝑡𝑎. 𝑑. 𝑢,

- 𝑅𝑠𝑑. 𝑑𝑎𝑡𝑎. 𝑓𝑟𝑞. 𝑠𝑡𝑎𝑟 ≥ 𝑆. 𝑑𝑎𝑡𝑎. 𝑓𝑟𝑞. 𝑠𝑡𝑎𝑟𝑡,

- 𝑅𝑠𝑑. 𝑑𝑎𝑡𝑎. 𝑓𝑟𝑞. 𝑒𝑛𝑑 ≤ 𝑆. 𝑑𝑎𝑡𝑎. 𝑓𝑟𝑞. 𝑒𝑛𝑑,

- 𝑅𝑠𝑑. 𝑑𝑎𝑡𝑎. 𝑓𝑟𝑞. 𝑐𝑟𝑜𝑛 ⊆ 𝑆. 𝑑𝑎𝑡𝑎. 𝑓𝑟𝑞. 𝑐𝑟𝑜𝑛,

 101

- ∀op𝑡P 	 ∈ 	𝑅𝑠𝑑. 𝑑𝑎𝑡𝑎. {𝑜𝑝𝑡}, ∃	𝑜𝑝𝑡� ∈ 	𝑆. 𝑑𝑎𝑡𝑎. {𝑜𝑝𝑡} ∶ 𝑜𝑝𝑡P. 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 =

𝑜𝑝𝑡�. 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∧ 𝑜𝑝𝑡P. 𝑣𝑎𝑙𝑢𝑒(⊆	∨	=)	𝑜𝑝𝑡�. 𝑣𝑎𝑙𝑢𝑒 ,

Upon the validation of the request, the PDP makes the determination of whether

or not to authorize the access. Such authorization is based on the extracted attributes and

the application of the access rule function 𝑓().

- 𝑓() ∶ 𝑅𝑠𝑑. 𝑐𝑜𝑛𝑡𝑒𝑥𝑡		 × 	𝑆. 𝑐𝑜𝑛𝑡𝑒𝑥𝑡	 × 	𝑅𝑠𝑑. 𝐴. {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒} → [𝑡𝑟𝑢𝑒|	𝑓𝑎l𝑠𝑒]

- ∀𝑜𝑝𝑡P 	 ∈ 		𝑅𝑠𝑑. 𝑐𝑜𝑛𝑡𝑒𝑥𝑡. {𝑜𝑝𝑡}, ∃	𝑜𝑝𝑡� 	 ∈ 	𝑆. 𝑐𝑜𝑛𝑡𝑒𝑥𝑡. {𝑜𝑝𝑡} ∶ 	 𝑜𝑝𝑡P. 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒	 =

	𝑜𝑝𝑡�. 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒	 ∧ 	𝑜𝑝𝑡P. 𝑣𝑎𝑙𝑢𝑒	(⊆	∨	=)	𝑜𝑝𝑡�. 𝑣𝑎𝑙𝑢𝑒.

Said differently, if the function returns true then grant subject 𝑅𝑠𝑑. 𝐴 access to the

service	𝑆.

4. CHAPTER CONCLUSION

The Internet of Things emerges as a new paradigm to provide communication,

data consumption, and data analysis solutions for smart devices. The adoption of the IoT

model has led malicious attacks to shift their targets from desktops and servers to IoT

devices and objects. The main reason behind this behaviour lays on the weak protection

of smart devices and sensors, in comparison to sophisticated servers. In addition, the

nearness of such devices to the users makes them prone to leaking valuable information

with catastrophic consequences. In this chapter, we proposed an Access Control

approach for Fog Computing based on two well knows models: RBAC and ABAC. Across

all the layers of the architecture, the Policy Enforcement Points component may be

deployed to enforce access policies. The result of a policy evaluation may allow, deny,

modify, or delay the execution requests in case policies controlling the respective request

 102

are deployed. This mechanism leverages the security of data through the architecture and

the access authorizations of its components.

 103

INSTANTIATION OF COFOG, A PROOF
OF CONCEPT AND EVALUATION

The Internet of Things is a tool for humanity, which is proving its worth in almost

every area that touches our daily life activities. It is and will improve the efficiency of all

applications where it is used. In order to show the importance and the added value of

our approach, this chapter discusses a Fog-based smart parking system that instantiates

the CoFog architectural framework. Simulations applied through this case study show the

differences between the traditional Cloud-centric approach, and the Fog-based approach

using the proposed architectural framework.

The CoFog architecture provides a generic Fog framework designed for any

application in the Fog environment. Hence, no matter the size and the complexity of the

targeted application scenario, it should be moderately easy to adapt the whole or part of

the components of the different layers. Therefore, the case study described in this chapter

toke the form of a feasibility study. Therefore, it has been led in three phases: the

 104

instantiation, the design and implementation, and the evaluation phases. The

instantiation phase answered the question about how to adapt the architecture to a real

use case. The design and implementation phase showed how the different components

of the architecture could translate to classes and modules of the targeted platform. The

later phase focused on the execution and the evaluation of the footprint of the developed

application on the host system.

1. SMART CITY: A CASE STUDY ON SMART PARKING

Smart Cities are one of the fundamental use-cases of the Internet of Things. A

Smart City, itself, is a combination of various use-cases ranging from Smart Waste

management systems to managing Energy Grid systems in large city areas. In this section,

we present a case study on a Fog-based Smart Parking Management System. This case

study aims at demonstrating how the proposed reference architecture may be used in the

context of Automotive and Smart Mobility scenarios. We believe that smart devices and

Fog Computing can, indeed, offer parking providers a digital backbone to consolidate

parking space availability across multiple locations. In addition, to providing services to

publish real-time status and to improve reservation, use, visibility and efficiency of

parking spaces. The Fog-based Smart Parking proof-of-concept, implements services for

the delivery of on-trip information to a car driver. Such services are based on the data

coming from the parking sensors.

The sensors deployed on parking spaces across the city, send data about wither a

parking space is free or not. Those sensors may be heterogeneous and the data generated

is formatted differently. This data pass through transformation and filtering processes.

 105

As a result, the car driver receives information on the available parking sites around the

position where the car is located at the moment.

In this case study, we compare the performance of applications based on our Fog

infrastructure, versus the typical Cloud implementation. Figure 35 illustrates the logical

network topology for simulating both Fog-based and Cloud-based scenarios.

Figure 35. Logical structure for Cloud-based scenario

As described in the figure above (Figure 35), the network topology used for the

simulation is organized as a hierarchical topology of Fog nodes and devices. The leaves

Local area Local area

Sensing Infrastructure
Fog L

ayer
C

loud

sensors

fog node

router

client
application

gateway

physical link (Serial Port, LAN, Wifi, …)

logical connection

 106

of such tree-like topology are the edge devices (i.e., parking proximity sensors), and the

root node represents the Cloud Computing infrastructure. Intermediate nodes in the tree

represent intermediate network devices between the cloud and the edge –e.g., routers

and gateways. Such devices –i.e., Fog nodes, are able to host applications by utilizing

their compute, network and storage capacities.

This next sections gives further details on the experimental setup used to simulate

both scenarios. In addition to design decisions that have been made to implement the

reference architecture.

2. EXPERIMENT SETUP

In the Cloud-based scenario, Cloud servers receives continuous update from the

parking’s sensing infrastructure. This data is then filtered, transformed and queued in

order to be analysed. Upon receiving a request from the client application, parking

services on the Cloud respond by delivering the appropriate and nearest available

parking spot for the vehicle. In contrast, although both scenarios share the same network

logical infrastructure, Fog-based applications do not need a direct communication with

the Cloud. Indeed, in the Fog-based scenario, Fog nodes handle the workload for a certain

geographical region. Hence, applications communicate directly with the Fog nodes in

their local area.

In order to realize the intended scenarios as a set of computer simulations, many

preparations had to be performed with regard to the following points.

 107

2.1. SENSING INFRASTRUCTURE:

The first goal regarding the sensing infrastructure is to simulate parking data as

close to reality as possible. Hence, traffic data fed to simulation was obtained from the

Simulation of Urban Mobility traffic simulator (SUMO) [93]. Despite being a traffic

simulator, SUMO can be tweaked via configuration files to provide parking-like data

(Figure 36).

Figure 36. Tweaking SUMO for parking simulation

Many Lane Area Detectors (E2)1 were defined and inserted in the parking space

network. Such detectors act similar to tracking cameras –i.e., they save information about

vehicles that cross over a certain position.

1 http://sumo.dlr.de/wiki/NETEDIT#Lane_Area_Detectors_.28E2.29

 108

2.2. CLOUD INFRASTRUCTURE:

The Cloud simulation environment was implemented using CloudSim Toolkit for

Modeling and Simulation of Clouds [122]. The CloudSim framework provides users with

means to model and simulate the execution of Cloud-based services. Therefore, by

extending the basic entities in the original simulator (i.e., Datacentre, Host, Storage, and

Cloudlet), it was possible to build a simulation backbone for the Cloud-based scenario. A

set of features can be associated with each entity (e.g., CPU, RAM capacity, uplink

network bandwidth), which provide resourceful measurements to be utilized for final

comparisons.

2.3. OTHER PREPARATIONS:

To isolate the sensing activities, the SUMO simulator was deployed in a separate

machine. We assumed that such separated execution of the Fog node and the sensing

infrastructure, gives better understanding about the overload and response delay proper

to the Fog node deployment. Furthermore, it includes factors like network link and data

transmission delays between sensors and the fog node, leading to more realistic results.

In addition, to create a constrained execution environment for the Fog nodes, a

platform virtualization software has been used. The Fog platform has been deployed on

a virtual machine using VMware Fusion hypervisor [3][122], whilst the host machine is

setup to connect to the network via Wi-Fi.

 109

3. THE FOG PLATFORM: DESIGN AND IMPLEMENTATION

The implementation of the reference architecture as a suitable platform for the case

study, has been realized through the instantiation of each layer as a module of the

platform (Figure 37).

Figure 37. Instantiation of the Architecture

Discovery	Request

Fo
rm

at
tin

g	a
nd
	

Un
ifi
ca
tio

n	
La
ye
r

Adapters	Container
Resource	 Definition	

Templates

Adapter	

Abstraction

Data	Knowledge

Op
er
at
io
n	

La
ye
r

Se
rv
ic
e	
La
ye
r

Service	Container
Service	

Knowledge

Discovery	

Component

Request

Request	Analyzer

Service	Request

Operation	 Execution	

Ad
ap
ta
tio

n	
La
ye
r

Analytics	Unit

Physical	Object
Applications,	

APIs
Traditional	

Services

Operation	

repository

P
o
lic
y
-b
a
se
d
	M

a
n
a
g
e
m
e
n
t,
	S
e
cu
ri
ty
,	
C
o
n
te
xt
	M

a
n
a
g
e
m
e
n
t,
	T
e
m
p
o
ra
ry
	D
a
ta
	S
to
ra
g
e

PDP

PEP

PDP

PEP

M
id
dl
ew

ar
e

Op
er
at
io
na
l	L
ev
el

 110

Hence, Figure 38 illustrates the resulting class diagram following the

aforementioned decomposition.

Figure 38. Class diagram for Fog nodes platform

As depicted in Figure 38, a number of TraCIAdpater adapters has been designed to

intercept the upstream of data originated from the SUMO simulator via a Connector

(Figure 39).

 111

Figure 39. Data acquisition and filtering

In addition to intercepting data, a given adapter is instantiated using the

corresponding sensor description file (Figure 40). Thus, incorporating all information

about such sensor.

// Load Sensor from description
FileReader sensorDescriptionFile =

new FileReader("sensrep/parking_detector.yml");
// Create Adapter

TraCIAdapter pSensorAdapter =

ApdapterFactory.createAdapter(

TcpDevice.loadFromDescription(sensorDescriptionFile));

Figure 40. Loading sensors description files

As shown in Figure 39, acquired data passes through two Processing Channels:

Parking Data Transformation and Parking Data Filtering (Appendix B), and they are defined

as follows:

- Parking Data Transformation: this channel translates data from data about the

halting time of vehicles, to whether or not a vehicle is present at a given

moment. The new data format is more useful at the service level.

SUMO
parking simulation

E2Detector1
E2Detector2
…

E2DetectorN

XML data

Connector TraCIAdapter1

TraCIAdapter2

TraCIAdapterN

…

Output stream

Output stream

…

Processing Channels

 112

- Parking Data Filtering: this channel act as a filtering barrier that sends only the

change in new data values. Hence, reducing the amount of data to be sent on

the network.

The execution of the operations is straightforward as shown in Figure 41.

// Execute nested data filtering and transformation
Datum<String> nd =

new ParkingDataTransformation().execute(
new ParkingDataFilter().execute(d));

Figure 41. Filtering and Transformation channels

 113

4. PERFORMANCE EVALUATION

The simulation of the Smart Parking system was carried out using the setup

described in the first section of this chapter. This section presents and evaluates the

results obtained, and demonstrates how different execution configurations affects the

network overload and services latency. Indeed, to stress performance measurements –

i.e., network overload, memory usage, and response time, each scenario has been

simulated with and without data analytics. In addition, the simulations have been

executed using five configurations, each of which having three, ten, fifteen, twenty and

thirty connected sensors respectively.

4.1. NETWORK OVERLOAD

The next two figures illustration the data overload on the network during the

execution of both Cloud scenario and the scenario using only Fog nodes.

Figure 42. Network overload: Fog vs. Cloud scenario using raw data

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

3 10 15 20 30

Am
ou

nt
	o
f	d

at
a	
in
	M

b

Configurations

Fog	scenario Cloud	scenario

 114

Contrary to Figure 42, Figure 43 provides network overload measurement when

data analytics operations are included in the simulation. Overall, the increase of

connected-sensor number results in a significant growth of the load on the network. Still,

the burden on the network while using the Cloud is largely significant than while using

the Fog.

Figure 43. Network overload: Fog vs. Cloud scenario using analysed data

An additional observation lays in the decrease of data overload induced by the use

of data analytics. Processing channels in the Fog-based simulations, in this case the

Parking Data Filtering channel, considerably reduce the volume of data sent on the

network.

4.2. MEMORY USAGE

To illustrate the footprint on memory of each scenario, Figure 44 and Figure 45

present simulations RAM consumption during the execution of both scenarios.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3 10 15 20 30

Am
ou

nt
	o
f	d

at
a	
in
	M

b

Configurations

Fog	scenario Cloud	scenario

 115

Figure 44. RAM consumption in simulations with raw data

The collected measurement data for the five configurations shows a slightly

increase in memory consumption in both scenarios. In the first set of executions, where

simulations use and provide only raw data, we did not notice significant difference gape

between both scenarios. However, adding analytics functions, especially to the Fog node,

result in a significant increase in the workload of the later.

0

5

10

15

20

25

30

3 10 15 20 30

M
em

ot
y	i
n	
M
b

Configurations

Fog	scenario Cloud	scenario

 116

Figure 45. RAM consumption in simulations with data analysis

The aforementioned finding are direct consequences to the Fog node executing

data acquisition and data analysis in the meantime. Besides, we noticed that executing

the same simulation over the set of configurations, does not lead to drastic escalation of

its memory usage. Thus, while the design itself demonstration a certain degree of

scalability, the platform implementation need more refinement.

0

5

10

15

20

25

30

35

40

3 10 15 20 30

M
em

ot
y	i
n	
M
b

Configurations

Fog	scenario Cloud	scenario

 117

4.3. RESPONSE TIME

The nearness of Fog nodes to user applications is a major fact in reducing latency.

Indeed, Figure 46 illustrates the average response time between the user application and

the Cloud server, and between the application and the Fog node.

Figure 46. Comparing response time in Fog and Cloud application.

As the figure depicts, the results show that end-to-end network latency has been

reduced when relaying on our Fog approach. In contrary, in the case of using Cloud-

based strategy, one can notice a significant increase in latency. Cloud Data Centers

constitute a bottleneck for simulation data.

0

200

400

600

800

1000

1200

1400

3 10 15 20 30

Te
m
ps
	d
e	
ré
po

ns
e	
en

	m
s

Configurations

Fog	scenario Cloud	scenario

 118

4.4. SUMMARY

In this chapter, we introduced to the Smart Parking case study and how it

constitutes a suitable use case to implement and validate the proposed architecture. Thus,

showing the effectiveness of the proposed architecture. This case study was also used to

show and compare the differences in using two scenarios: a traditional Cloud-based

scenario and a Fog-based scenario using the proposed reference architecture. We

presented the apparatuses used to deploy and run the simulation of each scenario, using

five different configurations. In addition, this chapter emphasis on the platform design

process and the implemented classes and components deduced from the reference

architecture.

The findings of this simulation procedures reinforce our belief that a suitable

adoption of the proposed architectural framework can indeed leverage many dimensions

of the Fog Computing issues. These findings, either points of strength or limitations,

along with future work of improvement are discussed in the next chapter.

 119

CONCLUSION AND PROSPECTS

The Internet of Things has become, indeed, a reality. It fuels relentless

transformation and convergence, comprises a new era of smart products, green

initiatives, virtual reality, and augmented connectivity. This thesis anticipates the raising

opportunities with this new paradigm, and presents an architectural model for

collaboration in Fog Computing. We have demonstrated that, with automatic, resource-

aware and domain-agnostic service-based collaboration, it is feasible to provide

augmented services and support real-time applications at the edge of the Internet. This

chapter reflects on the contributions of this work, discusses prospects and future research

directions, and concludes.

1. OBJECTIVES SUMMARY

Can we transform the edge of the Internet into a nest of collaborative objects of the

IoT? The work presented in this thesis answers this question with the affirmation, and

 120

transcends the theoretical proposition into providing a a proof-of-concept

implementation. Indeed, following the idea of spreading intelligence to the edge of the

Internet, our interest laid in extending the Fog Computing paradigm to embrace a thing

collaborative model. In such computing model, objects would be enabled to exploit and

collaborate with each other, in order to achieve common or distinct goals. We focused on

delivering a architectural model that, in one hand, leverages the devices with services,

and in the other augments data representation and consumption with local analytics. In

addition, we have foreseen that aggregating sensing activities at a Fog level, constitutes

an important building block to support more advanced collaborative scenarios.

Therefore, powering Fog nodes with dynamic service creation was amongst our fixed

objectives. Through composition, aggregation, transformation and other processes, new

services would be dynamically created based on available services. A platform that

follows such architectural model, would not see its full potential achieved, without

objects being able to interact with each other. Hence, the goal of providing means of

finding external functionalities has to follow some registration and look-up mechanism

in a distributed fashion. Last but not the least, among the many facets of the non-

functional requirements of the architecture, we focused our interest on security, chiefly

access control management. In order to guaranty right access rights to the right subject

on the right object, an access control model that adapt to the particularities of Fog

Computing environment had to be provided. Hence, a comprehensive study has been

planned to better select a suitable approach to tackle this problem in a constrained

environment.

 121

2. A WORD ON THE CONTRIBUTIONS

Indeed, the fundamental novelty of our research work is the introduction of an

architectural model for collaboration in Fog Computing. The originality of this

architecture resides in the benefits it bestows on Fog-based platforms and applications:

- The architectural design allows platforms to implement all or parts of the

architecture. Hence, the ability to be deployed in variety of environments

spanning from core servers to edge endpoints –e.g., routers [2].The

architectural design allows platforms to implement all or parts of the

architecture. Hence, the ability to be deployed in a variety of environments

spanning from core servers to edge endpoints –e.g., routers [2].

- The high level of abstraction and the flexible virtualization mechanism of

heterogeneous physical resources provide platforms with means to exploit

physical devices, APIs, web services and other data sources. Furthermore, the

analytics Units offer a given platform the possibility to not only capture data,

but also the capabilities of performing local and direct analytics on real time

data. Thus, among other advantages, freeing the network from the burden of

the continuous torrents of data toward the Cloud.

- The mechanism of Operations leverages the platforms services with

automatic, dynamic and on-demand service instantiation. It opens the doors

wide for autonomous collaboration and more sophisticated applications

[2].The mechanism of Operations leverages the platforms services with

automatic, dynamic and on-demand service composition and instantiation. It

opens the doors wide for autonomous collaboration and more sophisticated

applications.

 122

- The IOTCollab Access Control Model [2] is[6] is a new way to perceive access

control for collaboration. Its design supports the scalability and the dynamic

nature of Fog Computing. While providing fine-grained and contextual-aware

rules needed for the constrained devices of IoT.

3. PROSPECTS BEYOND THE LIMITATIONS

We have only started scratching the surface of the possibilities of Fog Computing

and the Internet of Things in general. While this work has taken major steps into

unlocking some of these possibilities, the presented architectural framework exhibits

limitations that would be interesting to explore in the future. In this section, we revisit

these limitations and highlight some of the exciting avenues for future research.

In Chapter IV, we introduce the concept of Operation. Although its definition is

formally abstracted, this concept need more expansion. In other words, the definition of

formulas, within Operation, is limited to straightforward mathematical operations.

Therefore, restraining the potential of such a concept. A future research direction would

be toward defining a complete framework to express more sophisticated formulas. In

addition, matching between a given request and a potential Operation, is based on strictly

comparing request parameters against operation’s outputs. Hence, it does not take into

account the cases where request parameters constitute a subset of the operation outputs.

An avenue for future work is to leverage this algorithm with Ontology based matching.

Although Things and applications in different Fog nodes have the ability to

collaborate, the decision of when and what service to collaborate with is configured

manually. Smart objects need to be fully autonomous in taking such decision, one

direction of future research is to explore context-based inference mechanism.

 123

As stated in the beginning of this chapter, the absence of another architecture to

compare with. The case study was limited to an instantiation and an evaluation

(simulation) at a small scale. Hence, a future work direction must be a large scale

evaluation with real world sensors and data. In addition, the case study proved the

adaptability and the easiness to instantiate the architecture in spite of the small scale of

the application. Nevertheless, it is will be of great value to work more toward the

automatization of the instantiation procedures. This automatization could, for example,

take the form of a complete guide with detailed workflows.

To summarize, we believe that future IoT systems will rely on the edge of the

Internet to deliver assistance that touches our everyday lives, similar to how the Cloud

provides us with indispensable services. This thesis has made multiple strides in that

direction. It also builds on a deep understanding that Fog Computing introduces new

systems and new services that require redesigning the entire networking and computing

stack, from the hardware to the applications. We believe that this approach will become

a necessity, since devices are becoming ever-more ubiquitous and as their services keep

expanding in the upcoming near future.

 124

APPENDIX A
The Mobile Collaborative Computing Environment

The Mobile Collaborative Computing Environment (CCE) introduces a new way

to perceiving mobile collaboration between devices. This model exploits the increasing

capabilities and the decreasing costs of handhelds to address the portability,

heterogeneity, and error handling in a device collaborative-based network. The

collaborative environment was designed as a generic structure of layers. Therefore, the

model is extensible to house different devices (smartphones, tablets, desktops…) and

network infrastructures (LANs, Wi-Fi, Bluetooth, etc.). As illustrated in Figure 47, the

environment is organized in two main layers: the Components Layer and the

Collaboration Middleware.

Figure 47. The CCE modular architecture

The first layer provides components to be used by the overlaying application layer,

it contains:

- The Job Component that provides an execution environment where the

received tasks are executed and managed,

 125

- The Distribution Component implements a scheduling policy based on

devices configuration to ensure appropriate task scheduling,

- The Task Tracking Component that distributes the task to be executed on

available collaborators.

The second layer, the Collaboration Middleware is a platform-agnostic set of

modules that abstracts the underlying operating system and networks architecture. It

provides the minimum required to allow mobile collaboration to occur between mobile

peers. Thus, the collaboration occurs between handhelds of many categories following

the process depicted in Figure 48.

Figure 48. CCE's collaboration process workflow

The key points of strength of this collaborative environment lie in its:

 126

- Portability: regardless of the architecture and the operating system of the

device, the model ensures the communication between the top and the bottom

of the system;

- Scalability: the model enables the collaborative network to scale with the

dynamic change of users.

- Robustness: the decentralized network provides resistance and fault tolerance;

- Dynamic: collaboration networks construction and collaborators join are

dynamic.

A simple prototype has been developed and deployed to illustrate the

collaboration process over the network. This prototype tokes the form of an Android

distributed-application calculating the value of 𝜋. Indeed, the application was deployed

on three mobile devices running Android, using UDP protocol for transmitting

collaboration messages and results. Each device acted as an independent node in charge

of executing a portion of the algorithm. The following chart (Figure 49) shows the

comparison between local and collaborative calculation time.

 127

Figure 49. Comparison of response time between local and distributed execution using
CCE.

0

10

20

30

40

50

60

1,000 2,500 5,000 15,000 30,000

Re
sp
on
se

tim
e	
(s
)

Number of	! digits

Local	Time	(s) Coll.	Time	(s)

 128

BIBLIOGRAPHY
1. Jabril Abdelaziz, Mehdi Adda, and Hamid Mcheick. 2015. A Survey on

Collaborative Internet of Things. International Workshop on Healthcare systems and Internet

of Things for Humanity (eHealthForHumanity’2015) Conjunction with the 6th conference

MCETECH’2015 - Springer, Bibliothèque et Archives nationales du Québec (BAnQ), 12–

31.

2. Jabril Abdelaziz, Mehdi Adda, and Hamid Mcheick. 2016. Toward Service

Aggregation for Edge Computing. Procedia Computer Science 94: 424–428.

3. Jabril Abdelaziz, Mehdi Adda, and Hamid Mcheick. 2018. An Architectural

Model for Fog Computing. Journal of Ubiquitous Systems and Pervasive Networks 10, 1: 21–

25.

4. Jabril Abdelaziz and Hamid Mcheick. 2012. Toward A Collaborative

Computing Environment. SYSCO 2012 : 1ère conférence francophone sur les Systèmes

Collaboratifs, 1–5.

5. Mervat Abu-Elkheir, Mohammad Hayajneh, and Najah Ali. 2013. Data

Management for the Internet of Things: Design Primitives and Solution. Sensors 13, 11:

15582–15612.

6. Mehdi Adda, Jabril Abdelaziz, Hamid Mcheick, and Rabeb Saad. 2015.

Toward an Access Control Model for IOTCollab. Procedia Computer Science 52, 1: 428–435.

7. Mehdi Adda and Rabeb Saad. 2014. A Data Sharing Strategy and a DSL for

Service Discovery, Selection and Consumption for the IoT. Procedia Computer Science 37:

92–100.

8. Charu C. Aggarwal, Naveen Ashish, and Amit Sheth. 2013. Managing and

Mining Sensor Data. Springer US, Boston, MA.

 129

9. Tanveer Ahmed, Abhinav Tripathi, and Abhishek Srivastava. 2014.

Rain4Service: An Approach towards Decentralized Web Service Composition. 2014 IEEE

International Conference on Services Computing, IEEE, 267–274.

10. Katherine Albrecht and Katina Michael. 2013. Connected: To Everyone and

Everything. IEEE Technology and Society Magazine 32, 4: 31–34.

11. Kevin Ashton. 2009. That “Internet of Things” Thing: In the Real World

Things Matter More than Ideas. RFID Journal.

12. Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of

Things: A survey. Computer Networks 54, 15: 2787–2805.

13. Paramvir Bahl, Richard Y. Han, Li Erran Li, and Mahadev Satyanarayanan.

2012. Advancing the state of mobile cloud computing. Proceedings of the third ACM

workshop on Mobile cloud computing and services - MCS ’12, ACM Press, 21–21.

14. Martin Bauer, Mathieu Boussard, Nicola Bui, et al. 2013. IoT Reference

Architecture. In Enabling Things to Talk. Springer Berlin Heidelberg, Berlin, Heidelberg,

163–211.

15. Martin Bauer, Nicola Bui, Jourik De Loof, et al. 2013. IoT Reference Model.

In Enabling Things to Talk. Springer Berlin Heidelberg, Berlin, Heidelberg, 113–162.

16. Martin Bauer, Nicola Bui, Jourik De Loof, et al. 2013. IoT Reference Model.

In A. Bassi, M. Bauer, M. Fiedler, et al., eds., Enabling Things to Talk. Springer Berlin

Heidelberg, Berlin, Heidelberg, 113–162.

17. Oren Ben-Kiki, Clark Evans, and Ingy döt Net. 2009. YAML Ain’t Markup

Language (v1.2). Retrieved February 13, 2018 from http://www.yaml.org/spec/.

18. Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. 2014. Fog

Computing: A Platform for Internet of Things and Analytics. In 169–186.

 130

19. Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. 2014. Fog

Computing: A Platform for Internet of Things and Analytics. In 169–186.

20. Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog

computing and its role in the internet of things. Proceedings of the first edition of the MCC

workshop on Mobile cloud computing - MCC ’12, ACM Press, 13.

21. Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog

computing and its role in the internet of things. Proceedings of the first edition of the MCC

workshop on Mobile cloud computing - MCC ’12, ACM Press, 13–13.

22. John Carney. 2011. Why Integrate Physical and Logical Security? San Jose, CA,

USA.

23. Peter H. Carstensen and Kjeld Schmidt. 1999. Computer Supported

Cooperative Work: New challenges to systems design. In Handbook in Human

Factors/Ergonomics. Asakura Publishing, 619--636.

24. David Ferraiolo Richard Kuhn Ramaswamy Chandramouli. 2007. Role-

Based Access Control. Artech House, Boston.

25. Cisco Inc. 2018. Cisco GCI : Forecast and Methodology, 2016–2021. San Jose,

CA, USA.

26. Dragos-George Comaneci and Ciprian Dobre. 2011. Electronic ID: Services

and Applications for Context-Aware Integrated Mobile Services. 2011 Developments in E-

systems Engineering, IEEE, 502–507.

27. R. W. Conway, W. L. Maxwell, and H. L. Morgan. 1972. On the

implementation of security measures in information systems. Communications of the ACM

15, 4: 211–220.

 131

28. Rudyar Cortés, Xavier Bonnaire, Olivier Marin, and Pierre Sens. 2015.

Stream Processing of Healthcare Sensor Data: Studying User Traces to Identify

Challenges from a Big Data Perspective. Procedia Computer Science 52: 1004–1009.

29. Directorate-General for the Information Society and Media. 2010. Vision and

challenges for realising the internet of things. EU Publications.

30. Hani Y Diya, Hassan A Artail, and Haidar Safa. 2005. A Framework for

Mobile Collaborative Environments. The Third World Enformatika Conference, WEC’05,

163–166.

31. A Dohr, R Modre-Opsrian, M Drobics, D Hayn, and G Schreier. 2010. The

Internet of Things for Ambient Assisted Living. 2010 Seventh International Conference on

Information Technology: New Generations, IEEE, 804–809.

32. B P Douglass. 2003. Real-time Design Patterns: Robust Scalable Architecture for

Real-time Systems. Addison-Wesley Professional.

33. ETSI. 2017. Mobile Edge Computing (MEC); General principles for Mobile Edge

Service APIs. .

34. ETSI Technical Committee Machine-to-Machine and communications

(M2M). 2013. Machine-to-Machine communications (M2M), Functional architecture

(Technical Specification Standard). .

35. Dave Evans. 2011. The Internet of Things How the Next Evolution of the Internet

Is Changing Everything, A white paper. San Jose, CA, USA.

36. Jose Oscar Fajardo, Fidel Liberal, Ioannis Giannoulakis, et al. 2016.

Introducing Mobile Edge Computing Capabilities through Distributed 5G Cloud Enabled

Small Cells. Mobile Networks and Applications 21, 4: 564–574.

37. Roy T. Fielding and Richard N. Taylor. 2002. Principled design of the

modern Web architecture. ACM Transactions on Internet Technology 2, 2: 115–150.

 132

38. Ying Gao, Wenlu Hu, Kiryong Ha, Brandon Amos, Padmanabhan Pillai†,

and Mahadev Satyanarayanan. 2015. Are Cloudlets Necessary? .

39. Pedro Garcia Lopez, Alberto Montresor, Dick Epema, et al. 2015. Edge-

centric Computing: Vision and Challenges. ACM SIGCOMM Computer Communication

Review 45, 5: 37–42.

40. Pedro Garcia Lopez, Alberto Montresor, Dick Epema, et al. 2015. Edge-

centric Computing. ACM SIGCOMM Computer Communication Review 45, 5: 37–42.

41. Jonathan Grudin. 1991. CSCW: the convergence of two development

contexts. Proceedings of the SIGCHI conference on Human factors in computing systems

Reaching through technology - CHI ’91, ACM Press, 91–97.

42. Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements, and future

directions. Future Generation Computer Systems 29, 7: 1645–1660.

43. Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde.

2011. Architecting the Internet of Things. Springer Berlin Heidelberg, Berlin, Heidelberg,

Heidelberg.

44. Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde.

2011. From the Internet of Things to the Web of Things: Resource-oriented Architecture

and Best Practices. In Architecting the Internet of Things. Springer Berlin Heidelberg, Berlin,

Heidelberg, 97–129.

45. Guoping Zhang and Jiazheng Tian. 2010. An extended role based access

control model for the Internet of Things. 2010 International Conference on Information,

Networking and Automation (ICINA), IEEE, V1-319-V1-323.

 133

46. S. Gusmeroli, S. Piccione, and D. Rotondi. 2012. IoT Access Control Issues:

A Capability Based Approach. 2012 Sixth International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing, IEEE, 787–792.

47. Sergio Gusmeroli, Salvatore Piccione, and Domenico Rotondi. 2013. A

capability-based security approach to manage access control in the Internet of Things.

Mathematical and Computer Modelling 58, 5–6: 1189–1205.

48. D Hanes, G Salgueiro, P Grossetete, R Barton, and J Henry. 2017. IoT

Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things.

Pearson Education.

49. Karthik Harihar and Stan Kurkovsky. 2005. Using Jini to enable pervasive

computing environments. Proceedings of the 43rd annual southeast regional conference on -

ACM-SE 43, ACM Press, 188.

50. Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate

Ottenwälder, and Boris Koldehofe. 2013. Mobile fog. Proceedings of the second ACM

SIGCOMM workshop on Mobile cloud computing - MCC ’13, ACM Press, 15.

51. Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate

Ottenwälder, and Boris Koldehofe. 2013. Mobile fog: a programming model for large-

scale applications on the internet of things. Proceedings of the second ACM SIGCOMM

workshop on Mobile cloud computing - MCC ’13, ACM Press, 15.

52. Amine M. Houyou, Hans-Peter Huth, Christos Kloukinas, Henning Trsek,

and Domenico Rotondi. 2012. Agile manufacturing: General challenges and an

IoT@Work perspective. Proceedings of 2012 IEEE 17th International Conference on Emerging

Technologies & Factory Automation (ETFA 2012), IEEE, 1–7.

53. Vincent C. Hu, David Ferraiolo, Rick Kuhn, et al. 2014. Guide to Attribute

Based Access Control (ABAC) Definition and Considerations. Gaithersburg, MD, MD.

 134

54. Ian Smith, Ken Sakamura, Anthony Furness, et al. 2009. CASAGRAS Project

“Final Report, RFID and the Inclusive Model for the Internet of Things.” .

55. IEEE-SA. 2015. Standard for an Architectural Framework for the Internet of

Things (IoT). .

56. IoTivity Project. 2017. IoT Interoperability Framework. The Open

Connectivity Foundation. Retrieved from https://www.iotivity.org/.

57. ITU Strategy and Policy Unit (SPU). 2006. ITU Internet Reports, The Internet

of Things. Geneva, Switzerland.

58. ITU Strategy and Policy Unit (SPU). 2006. ITU Internet Reports, The Internet

of Things. Geneva, Switzerland.

59. P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L.

Viennot. 2003. Optimized link state routing protocol for ad hoc networks. Proceedings.

IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st

Century., IEEE, 62–68.

60. Chang-won Jeong, Dong-ho Kim, and Su-chong Joo. 2007. Mobile

Collaboration Framework for u-Healthcare Agent Services and Its Application Using

PDAs. In Agent and Multi-Agent Systems: Technologies and Applications. Springer Berlin

Heidelberg, 747–756.

61. Florian Kerschbaum. 2010. An access control model for mobile physical

objects. Proceeding of the 15th ACM symposium on Access control models and technologies -

SACMAT ’10, ACM Press, 193.

62. F. Khodadadi, A.V. Dastjerdi, and R. Buyya. 2016. Internet of Things: an

overview. In Internet of Things. Elsevier, 3–27.

 135

63. Gerd Kortuem, Fahim Kawsar, Vasughi Sundramoorthy, and Daniel Fitton.

2010. Smart objects as building blocks for the Internet of things. IEEE Internet Computing

14, 1: 44–51.

64. Matthias Kovatsch. 2013. CoAP for the Web of Things: From Tiny Resource-

constrained Devices to theWeb Browser. Proceedings of the 2013 ACM conference on

Pervasive and ubiquitous computing adjunct publication - UbiComp ’13 Adjunct, 1495–1504.

65. Matthias Kovatsch. 2013. CoAP for the Web of Things: From Tiny Resource-

constrained Devices to theWeb Browser. Proceedings of the 2013 ACM conference on

Pervasive and ubiquitous computing adjunct publication - UbiComp ’13 Adjunct, 1495–1504.

66. Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker.

2012. Recent Development and Applications of SUMO – Simulation of Urban MObility.

International Journal On Advances in Systems and Measurements 5, 4: 128–138.

67. Bill Kuechler and Vijay Vaishnavi. 2008. On theory development in design

science research: anatomy of a research project. European Journal of Information Systems 17,

5: 489–504.

68. Butler W. Lampson. 1974. Protection. ACM SIGOPS Operating Systems

Review 8, 1: 18–24.

69. Chao Lee, Yunchuan Guo, and Lihua Yin. 2013. A Location Temporal based

Access Control Model for IoTs. AASRI Procedia, Elsevier B.V., 15–20.

70. Edward A. Lee. 2015. Architectural Support for Cyber-Physical Systems.

ACM SIGPLAN Notices 50, 4: 1–1.

71. Shancang Li, Li Da Xu, and Shanshan Zhao. 2015. The internet of things: a

survey. Information Systems Frontiers 17, 2: 243–259.

72. David Linthicum. 2016. Responsive Data Architecture for the Internet of

Things. Computer 49, 10: 72–75.

 136

73. Yi Liu, Ke Xu, and Junde Song. 2013. A Task-Attribute-Based Workflow

Access Control Model. 2013 IEEE International Conference on Green Computing and

Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing,

IEEE, 1330–1334.

74. Maarten Botterman. 2009. Internet of Things: an early reality of the Future

Internet. Prague.

75. Parikshit N Mahalle, Bayu Anggorojati, Neeli R Prasad, and Ramjee Prasad.

2013. Identity Authentication and Capability Based Access Control (IACAC) for the

Internet of Things. Journal of Cyber Security and Mobility 1, 4: 309–348.

76. P M Mell and Timothy Grance. 2011. The NIST definition of cloud computing.

Gaithersburg, MD.

77. Stéphane Ménoret, Marc Roelands, Raffaele Giaffreda, and Swaytha

Sasidharan. 2014. iCore, Final architecture reference model. .

78. Stéphane Ménoret, Marc Roelands, Raffaele Giaffreda, and Swaytha

Sasidharan. 2014. iCore, Final architecture reference model. .

79. Microsoft Corporation. 2008. Distributed Component Object Model

Specification (DCOM v6.1). Retrieved March 4, 2018 from

https://msdn.microsoft.com/library/cc201989.aspx.

80. Mischa Möstl, Johannes Schlatow, Rolf Ernst, Henry Hoffmann, Arif

Merchant, and Alexander Shraer. 2016. Self-aware systems for the internet-of-things.

Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis - CODES ’16: 1–9.

81. Andy Mulholland, Russ Daniels, Tim Hall, Mary Johnson, and Pete

Chargin. 2008. The Cloud and SOA, Creating an Architecture for Today and for the Future. .

 137

82. Nanjangud Narendra, Karthikeyan Ponnalagu, Aditya Ghose, and Srikanth

Tamilselvam. 2015. Goal-Driven Context-Aware Data Filtering in IoT-Based Systems.

2015 IEEE 18th International Conference on Intelligent Transportation Systems, IEEE, 2172–

2179.

83. Etri Ning, Kong Cnnic, Noel Crespi, Telecom Sudparis, and Ilyoung Chong.

2012. The internet of things : concept and problem statement. .

84. Takayuki Nishio, Ryoichi Shinkuma, Tatsuro Takahashi, and Narayan B.

Mandayam. 2013. Service-oriented heterogeneous resource sharing for optimizing

service latency in mobile cloud. Proceedings of the first international workshop on Mobile cloud

computing & networking - MobileCloud ’13: 19.

85. Object Management Group. 2012. Common Object Request Broker Architecture

(CORBA v3.3). Framingham, MA.

86. Se Won Oh and Hyeon Soo Kim. 2014. Decentralized access permission

control using resource-oriented architecture for the Web of Things. 16th International

Conference on Advanced Communication Technology, Global IT Research Institute (GIRI),

749–753.

87. OpenFogConsortium. 2017. OpenFog Reference Architecture for Fog

Computing. .

88. OpenFogConsortium. 2017. OpenFog Reference Architecture for Fog

Computing. .

89. Jordan Pascual-Espada. 2012. Service Orchestration on the Internet of

Things. International Journal of Interactive Multimedia and Artificial Intelligence 1, 7: 76.

90. Charith Perera, Prem Prakash Jayaraman, Arkady Zaslavsky, Dimitrios

Georgakopoulos, and Peter Christen. 2014. MOSDEN: An Internet of Things Middleware

 138

for Resource Constrained Mobile Devices. 2014 47th Hawaii International Conference on

System Sciences, IEEE, 1053–1062.

91. Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios

Georgakopoulos. 2013. Context Aware Computing for The Internet of Things: A Survey.

1–41.

92. Filip Perich, Anupam Joshi, Yelena Yesha, and Tim Finin. 2005.

Collaborative joins in a pervasive computing environment. The VLDB Journal 14, 2: 182–

196.

93. Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and

Rajkumar Buyya. 2016. ContainerCloudSim: An environment for modeling and

simulation of containers in cloud data centers. Software: Practice and Experience.

94. Jason Pontin. 2005. ETC: Bill Joy’s Six Webs. MIT Technology Review.

95. Elli Rapti, Anthony Karageorgos, and Vassilis C. Gerogiannis. 2015.

Decentralised service composition using potential fields in internet of things applications.

Procedia Computer Science 52, 1: 700–706.

96. Smith Reid Garfield. 1980. The Contract Net Protocol: High-Level

Communication and Control in a Distributed Problem Solver. IEEE Transactions on

Computers C–29, 12: 1104–1113.

97. Wayne Robbins and Schahram Dustdar. Collaborative Computing — Area

Overview. In Encyclopedia of Multimedia. Springer-Verlag, New York, 59–70.

98. Rodrigo Roman, Javier Lopez, and Masahiro Mambo. 2016. Mobile edge

computing, Fog et al.: A survey and analysis of security threats and challenges. Future

Generation Computer Systems 78: 680–698.

99. D. Rotondi, S. Piccione, G. Altomare, et al. 2013. Internet of Things at Work:

Final framework architecture specification. .

 139

100. Luis Sanchez, Luis Muñoz, Jose Antonio Galache, et al. 2014.

SmartSantander: IoT experimentation over a smart city testbed. Computer Networks 61:

217–238.

101. Mahadev Satyanarayanan. 2015. A Brief History of Cloud Offload: A

Personal Journey from Odyssey Through Cyber Foraging to Cloudlets. ACM SIGMOBILE

Mobile Computing and Communications Review 18, 4: 19–23.

102. Mahadev Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. 2009. The

Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing 8, 4: 14–

23.

103. Mahadev Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. 2009. The

Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing 8, 4: 14–

23.

104. Sensebridge Research and Collaboration Group. 2017. The Heart Spark

heart beat tracker. Noisebridge. Retrieved from https://sensebridge.net/.

105. Alexandru Serbanati, Carlo Maria, and Ugo Biader. 2011. Building Blocks

of the Internet of Things: State of the Art and Beyond. In Deploying RFID - Challenges,

Solutions, and Open Issues. InTech.

106. Rob Shepherd, John Story, and Saad Mansoor. 2004. Parallel Computation

in Mobile Systems Using Bluetooth Scatternets and Java. International Conference on

Parallel and Distributed Computing and Networks, 159–164.

107. Jie Shi, Darren Sim, Yingjiu Li, and Robert Deng. 2012. SecDS: A Secure EPC

Discovery Services System in EPCglobal Network. Proceedings of the second ACM

conference on Data and Application Security and Privacy - CODASKY ’12, ACM Press, 267.

108. João Nuno Silva, Luís Veiga, and Paulo Ferreira. 2008. SPADE: scheduler

for parallel and distributed execution from mobile devices. Proceedings of the 6th

 140

international workshop on Middleware for pervasive and ad-hoc computing - MPAC ’08, ACM

Press, 25–30.

109. Jatinder Singh, Thomas Pasquier, Jean Bacon, Julia Powles, and David

Eyers. 2016. Big ideas paper : Policy-driven middleware for a legally-compliant Internet

of Things. Middleware, ’16.

110. Statista. 2018. Global statistics and survies - Statista Portal. Retrieved

January 20, 2018 from https://www.statista.com.

111. Ivan Stojmenovic and Sheng Wen. 2014. The Fog Computing Paradigm:

Scenarios and Security Issues. Proceedings of the 2014 Federated Conference on Computer

Science and Information Systems 2: 1–8.

112. Ian J. Taylor and Andrew Harrison. 2009. From P2P and Grids to Services on

the Web. Springer London, London.

113. Thiago Teixeira, Sara Hachem, Valérie Issarny, and Nikolaos Georgantas.

2011. Service Oriented Middleware for the Internet of Things: A Perspective. In In

Towards a Service-Based Internet. 220–229.

114. Frederic Thiesse and Florian Michahelles. 2006. An overview of EPC

technology. Sensor Review 26, 2: 101–105.

115. ThingSpeak. 2017. IoT analytics Platform Service. ioBridge Inc. Retrieved

September 3, 2017 from https://thingspeak.com/.

116. Chai K Toh. 2002. Ad Hoc Mobile Wireless Networks: Protocols and Systems.

Pearson Education.

117. William Tolone, Gail-Joon Ahn, Tanusree Pai, and Seng-Phil Hong. 2005.

Access control in collaborative systems. ACM Computing Surveys 37, 1: 29–41.

 141

118. Dieter Uckelmann, Mark Harrison, and Florian Michahelles. 2011.

Architecting the Internet of Things. Springer Berlin Heidelberg, Berlin, Heidelberg,

Heidelberg.

119. Luis M. Vaquero and Luis Rodero-Merino. 2014. Finding your Way in the

Fog. ACM SIGCOMM Computer Communication Review 44, 5: 27–32.

120. O Vermesan and P Friess. 2013. Internet of Things: Converging Technologies

for Smart Environments and Integrated Ecosystems. River Publishers.

121. Luis Villasenor-Gonzalez, Ying Ge, and Louise Lamont. 2005. HOLSR: A

hierarchical proactive routing mechanism for mobile ad hoc networks. IEEE

Communications Magazine 43, 118–125.

122. VMware. 2017. VMware Fusion [Software Hypervisor]. VMware, Inc.

Retrieved November 25, 2017 from www.vmware.com/products/fusion/.

123. Jim Waldo. 2000. The Jini Specifications. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

124. Xively.com. 2018. IoT Platform for Connected Objects. LogMeIn Inc.

Retrieved from https://www.xively.com/.

125. Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie

Young. 2015. Mobile Edge Computing A key technology towards 5G. .

126. Guoping Zhang; and Jing Liu. 2011. A Model of Workflow-oriented

Attributed Based Access Control. International Journal of Computer Network and Information

Security (IJCNIS) 3, 1: 47–53.

127. Wang et al. - 2017 - A Survey on Mobile Edge Networks Convergence of

C.pdf. .

