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RÉSUMÉ 
Dans les dernières années, les avantages du Cloud Computing l’ont mis au cœur 

des architectures proposées pour l’Internet des Objets (IoT). L’infrastructure homogène, 
prédictible et performante a fait du Cloud une solution adéquate pour le traitement et 
l’analyse des données en provenance des objets de l’IoT. Cependant, les avantages de 
l’utilisation du Cloud se révèlent problématiques pour les systèmes IoT sensibles au 
temps de latence, et qui exigent la distribution géographique, la prise en compte de 
l’environnement local ainsi que la mobilité des objets. Le Fog Computing est un nouveau 
concept visant l'extension du Cloud vers la périphérie de l’IoT. Ainsi, il envisage une 
couche de nœuds (Fogs) permettant de fournir aux objets connectés un support à la 
gestion de la communication, à la persistance des données et à la gestion d’accès. 

Ce projet de recherche est motivé par les opportunités prometteuses du concept 
du Fog computing. Il anticipe ces opportunités et vise à proposer une architecture 
fédératrice, jusqu’à présent inexistante, pour la collaboration dans le Fog. 

De ce fait, dans cette thèse, nous tirons parti de l'idée derrière ce nouveau concept 
afin de proposer une architecture à cette fin. Cette architecture consiste en un modèle 
référentiel qui promeut à la fois une grande abstraction dans la conception des 
applications, ainsi que la facilité et l'efficacité dans le développement et le déploiement 
au niveau des nœuds de la couche du Fog. En effet, pour renforcer ces nœuds avec des 
services dynamiques, nous proposons des moyens formels pour la génération 
dynamique de nouveaux services à travers des opérations d'agrégations, de compositions 
ou de transformations. En conséquence, les nœuds du Fog deviennent un nid où les objets 
connectés peuvent interagir et collaborer à travers des mécanismes expressifs de 
définition et d'abstraction d’objets, des analyses de données et des services. 
  



 

 II 

ABSTRACT 
Through sensors, actuators and other Internet-connected devices, applications and 

services are becoming able to perceive and react on the real world. Seamlessly integrating 
people, and devices is no longer a futuristic idea. Converging the physical world with the 
human-made realm into one network is rather a present and promising approach called 
The Internet of Things (IoT). 

A closer look at the phenomenon of IoT reveals many problems. The current trends 
are focusing on Cloud-centric approaches to deal with the heterogeneity and the scale of 
this network. The blessing of the Cloud computing becomes, however, a burden on 
latency-sensitive applications, which require processing and storage mechanisms in their 
proximity to meet low-latency, location and better context-awareness requirements. In 
addition to mobility support and high geographical distribution requirements. Fog 
computing is a new concept that focuses on extending the Cloud paradigm to the edge 
of the Internet of Things, via providing communication, computing, and access 
management support.  

This research project foresees and is driven by the promising opportunities of the 
concept behind Fog computing. In this thesis, we leverage this new concept by delivering 
a Collaboration Architecture for the Fog computing. This architecture constitutes a 
referential model to better design and to implement Fog platforms. It powers the freedom 
of abstraction to make development and deployment at the Fog nodes easier and more 
efficient. Moreover, it provides a nest where IoT-connected objects can interact and 
collaborate. To this end, we introduce expressive mechanisms to define and abstract 
objects, data analytics, and services. To leverage Fog nodes with dynamic services and 
service-based collaboration, we propose the concept of Operation: a formal way to 
dynamically generate new services through mechanisms such as aggregation, 
composition, and transformation. Finally, we deliver a comprehensive study and a 
collaboration-oriented access control model for the proposed architecture.  
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INTRODUCTION 

The pyramids of Egypt, the Panama Canal or sending a man to space are great 

achievements that could only be accomplished through collaboration. In modern life, 

problems are getting more and more complex. Like ancient achievements, these problems 

require knowledge and expertise from a wide range of disciplines and domains. In 

addition, the amount of data generated and needed for such activities is immense, and 

might not be managed by any individual organizations. All of these factors have made 

global collaborations become increasingly important in modern scientific, industrial and 

daily life activities. The rise of the Internet led us to change our perspective on ways of 

approaching our activities and means of interacting with both the digital and the real 

world. Indeed, dealing with distributed activities on a large scale has given rise to many 

modes of collaboration. 

Since the nineties, there were two levels to approaching distributed systems [112]. 

The first level addresses the human-oriented level principally via the Web. Whereas the 
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second level focuses on the low-level interoperability between systems through 

distributed objects and middleware-powered technologies - e.g., CORBA [85] and DCOM 

[79]. By the dawn of the millennium, there was an explosion of platforms and middleware 

that exploited the emerging Peer-to-Peer and Grid technologies [112]. These technologies 

aim at supporting collaboration between heterogonous and distributed applications, and 

at enabling users to contribute in more active ways. Hence, Collaborative computing can 

be defined as “a fertile mélange of technologies and techniques which facilitate people working 

together via computer-assisted means” [97]. It arose from the early groupware [23] systems 

that were intended to bridge geographic distances between people engaged in a common 

task and that provide an interface to a shared environment. Collaborative computing 

aims not only at bridging distances, it adds capabilities that enhance and assist in the 

work process [41] (e.g., smart boards). 

Contemporary systems are moving from static desktops to dynamic, mobile and 

ubiquitous models; from discrete nodes (i.e., stand-alone machines) to embedded 

architectures (e.g., embedded sensors); and from autonomous nodes to pools of 

interacting nodes that provide services (i.e., Fogs, see chapter II). This work fosters 

collaboration between Internet-connected objects in the Internet of Things (IoT). The term 

“Collaboration” in this work transcends facilitating and assisting cooperation between 

people to provide a framework where Internet-connected objects can identify, retrieve, 

and exploit the capabilities of each other. Next section emphases on the reason behind 

our interest in bringing collaboration into the IoT and the main challenges this work is 

dealing with. 
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1. MOTIVATION AND PROBLEM DESCRIPTION  

Humanity is passing through an age with almost limitless potential. In minutes or 

even seconds, information and ideas can reach and can be reached by almost any person 

across the globe. Likewise, in the Internet of Things, devices are used to collect data from 

their environment. Nonetheless, the real value of such data comes only through 

processing and analysis. As shown in the next Figure 1, the process of exploiting the data 

begins with inferring information. 

 

Figure 1. The process of exploiting data and generating wisdom 

The structuration of information into knowledge will lead to more optimized 

systems with higher performance, better user experiences and more efficient energy 

consumption [35]. The IoT will provide us with new insights into solving many problems, 

wise ways to exploit our environment, and better solutions toward generating a timeless 

knowledge, that is wisdom. 

Although we tend to think of IoT as a way of connecting singular devices, the most 

interesting applications are not coming out from individual devices, but rather from how 
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they work with each other in a collaborative manner. Hence, prior to using data for 

decision-making, the main challenge in this regard is to provide Internet connected-

objects with suitable mechanisms to discover the functionalities of each other according 

to their capabilities, their location and the information and services that they can provide. 

In addition to developing technologies and protocols to allow the use of such resources 

efficiently, securely, and with minimal human intervention [63]. 

The current architectural model and the trends in IoT are toward Cloud-centred 

architectures. Processing and analyzing the data coming from IoT-connected objects 

occur solely in the Cloud, therefore, raising challenges related to the network bandwidth, 

the communication latency, and to the ability to access local information. We foresee the 

aggregation of sensing activities and the distribution of collaborative interaction between 

connected-objects at the edge of the IoT network as opportunities to tackle the 

aforementioned challenges. Therefore, we propose to adopt and extend the idea of Fog 

computing to embrace a distributed and collaborative computing model for the IoT. Such 

model will help using resources (i.e., network and the device resources) more efficiently, 

in addition to supporting more sophisticated application scenarios. Bringing such idea to 

life requires widespread distribution, high mobility support, low latency and real-time 

services. In addition to taking into account the constraint nature of edge devices – i.e., in 

term of processing, storage, memory, and other resources. Atop of this challenges, 

research into Fog computing concept is still in its early stages. There is no standard or 

precise definition and an architectural model is yet to be provided. Hence the need to 

providing an architectural framework to ease the development and deployment of IoT 

solution at the level of Fogs. While such framework ought to be domain agnostic, the full 

or partial instantiation of its components must be easy. 
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The reader will find more details on key concepts used in this document in the 

second chapter. In addition to further emphases on the challenges that we are tackling in 

our research project regarding collaboration in a Fog-based architecture. 

2. CONTRIBUTIONS 

The homogeneity, the efficiency, and the many other advantages offered by the 

Cloud computing infrastructure have made it a reliable solution at the core of the Internet 

of Things. Relying on the Cloud to deal with the growing IoT applications and services 

has been a valid choice, however, this cloud-centric approach proved to be limited in its 

application domains. This thesis proposes an extended vision of the Fog computing 

concept. Indeed, since its inception, the Fog computing has been perceived as a simple 

extension of the Cloud, capable of offering computational, storage and networking 

capabilities between the Cloud and end devices [18]. 

In this work, we made a step forward in the context of Fog computing paradigm 

toward embracing collaboration between IoT's connected-objects. The first major 

contribution of this work consists in an IoT architecture model called CoFog. We focused 

on delivering an architecture that, on the one hand, leverages IoT objects with services, 

and on the other hand augments data representation and consumption with local 

analytics at the Fog nodes level. Up to the date of writing this document, this work is 

being the first proposition of its kind in the domain of Fog computing (the second being 

the OpenFog [87] reference architecture proposed lately in 2017). In addition, to being the 

first to propose an object-based collaborative model for the Fog, which is the second 

major contribution of this thesis. Details on this architecture are presented in Chapter IV. 
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We foresee the aggregation of services at the Fog level as an engine toward more 

sophisticated IoT applications. Hence, the CoFog architecture provides a service layer that 

provides means to define and dynamically create services based on predefined templates. 

These services can be aggregated through formal mechanisms called operations. The 

introduction of the operation concept constitutes the third contribution of this thesis. An 

operation represents a relation between a given collaboration request and services that 

may be used to answer this request. Through mathematical formulas, a service (or more) 

can be composed, transformed or aggregated to dynamically create new services. In the 

scope of this thesis, there are two types of operations: conservative and non-conservative 

operations. The second type results in new kind of data –e.g., the result of dividing two 

integers may be a real number, we say that division is a non-conservative operation. The 

first type of operations, however, conserves the same kind of data –e.g., the addition of 

two integers always results in an integer. This way, depending on the use case, a 

conservative operation can be applied recursively to obtain the desired results. Further 

details on services aggregation are the subject of the fifth chapter. 

Although providing and aggregating services are important mechanisms, the 

CoFog architecture could not be complete without the ability to discover and retrieve such 

services. Therefore, the fourth contribution of this thesis resides in its data sharing model. 

This model provides IoT-connected objects and applications with the capacity to discover 

services that are being offered in other Fog nodes. In case a Fog node does not and cannot 

provide the requested services, it forwards the request to the neighbouring nodes that are 

listed in its whitelist. This way, any Fog node in the vicinity can be used to satisfy the 

request. 

One of the most critical aspects of collaboration is security, especially access 

control. Our fifth contribution includes a comprehensive study of access control for Fog 
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computing and in particular for the collaboration in the CoFog architecture. Two of the 

major access control models has been studied and expanded to incorporate the 

collaboration aspects –i.e., the Role-based access control and the Attribute-based access 

control models. Via the evaluation of both models, we demonstrated that the extended 

attribute-based model is more suitable for collaboration, mainly due to its fine-grained 

access rules and its support for context information representation. 

After this overall presentation of the major contributions of this thesis, the next 

section presents the research methodology that we followed to achieve these goals. 

3. RESEARCH METHODOLOGY 

The context of our research project is constantly evolving with rapid research 

inputs. To keep pace with the changing research domain, we have adopted a learning 

through the act of building methodology. Such research process iterates between phases 

rather than flowing in a waterfall fashion from one phase into the next Figure 2. 

 

Figure 2. Research process phases (adapted from [67]) 

Process phases

Awareness of Problem

Design and Development

Evaluation

Conclusion

Insight
Goal 

Knowledge
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The main advantage of such methodology is that it provides an insight into the 

development and the outcomes at early stages of the research process. Hence, issues and 

flaws can be corrected as soon as they arise.  

The first phase of this research project aimed at gaining deeper awareness on the 

Internet of Things and its related problems introduced in previous sections. The first 

stage, in this two stages phase, allowed us to focus on potential collaboration-enabling 

technologies coming from related domains. It spanned the use of Cloud computing, 

Semantic Web Services and the use of Peer-to-Peer architecture in the IoT 

[30,62,63,92,112,113]. In addition to projects directly addressing different perspectives of 

the IoT vision such as the Coordination and Support Action for Global RFID-related 

Activities and Standardization [54], Internet of Things Architecture (IoT-A) [14], and The 

Internet Connected Objects for Reconfigurable Ecosystems (iCore) [77]. At the end of this 

first stage, we were fully aware of how such traditional technics and technologies have 

been adopted and adapted mainly to deal with data storage and data processing in the 

IoT. The second stage took us deep into current research propositions focusing on the 

Edge-computing and the Fog computing principles, with emphases on propositions such 

as the Edge-Centric Computing [39] and the Cloudlets [102]. This phase sharpened our 

perspective on the key problems toward the real collaboration we envision in the Fog 

Computing. The literature review has been subject to a scientific publication [1] that 

appeared on the International Workshop on Healthcare systems and Internet of Things for 

Humanity (eHealthForHumanity’2015) held in Conjunction with the 6th International 

Conference on E-Technologies MCETECH’2015 published by Springer. 

The second phase was dedicated to providing the referential architecture model. 

Findings from the first phase have been stripped down to a list of requirements, to which 

a Fog architecture must adhere to. As a proof-of-concept, a subset of the extracted 
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components has been the subject of a first platform prototype called CCE (see Appendix 

A). We have implemented this prototype targeting mobile devices and task sharing 

collaboration. The results of this second phase have been published on the First 

International Francophone Conference on Collaborative Systems (SYSCO’2012) [4]. Lessons 

learned from the development and evaluation of this prototype helped to extend, 

improve, and refine the architecture. 

Indeed, in the third phase, the verdict of Fog computing requirements has been 

translated to a set of components and modules organized in layers within the 

architecture. This architecture is called CoFog and it defines three levels –i.e., the 

middleware (Mdl), the operational (Opl) and the dependencies (Vrl) level. The first level 

is divided into two layers -i.e., the abstraction and the data transformation and unification 

layers. Similarly, the second level (Opl) is organized into two layers -i.e., the operation 

and the service layer. The third and last level (Vrl) constitutes the level of non-functional 

or technical dependencies (e.g., security, persistence, management). The operational level 

- being the core of the proposed architecture - has been the subject of a scientific 

publication [2] in the 13th International Conference on Mobile Systems and Pervasive 

Computing (MobiSPC 2016) held in conjunction with the 11th International Conference on 

Future Networks and Communications (FNC 2016). 

 The fourth phase was fully dedicated to tackling the architecture security aspect. 

We have focused on the access control dimension in order to provide an access control 

model for collaboration in the proposed CoFog architecture. We began by analyzing 

access control requirements for thing-based collaboration. We have selected, studied and 

amended both role and attribute-based access control models according to the 

architecture requirements. This comprehensive study provided us with insight into 

access control mechanisms for our formal data sharing model (Dsm). The Dsm provides 
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mechanisms to discover and select thing-based services. The results of this phase have 

been published [6] in the 6th International Conference on Ambient Systems, Networks and 

Technologies (ANT-2015), held in conjunction with the 5th International Conference on 

Sustainable Energy Information Technology (SEIT-2015). It is worth noting that the final 

reference architecture has been accepted for publication [6] in the Special issue of the  

International Journal of Ubiquitous Systems and Pervasive Networks (JUSPN). 

The fifth phase of this project has been committed to instantiating the proposed 

architecture. In order to accelerate the realization of the prototype, we have invested less 

time on some aspects, but more on the performance and extensibility. The resulting 

prototype has been subjected to validation, in addition to verifying its impact on the host 

resources. 

4. THESIS ORGANIZATION 

In this chapter, we have positioned the work in its general context, motivated and 

stated the outcome of this research project.  

The next chapter, Chapter II, presents a study and an analysis of the issues related 

to the current trends in the Internet of Things. It brings to light the problems of data 

processing and data analysis centralization in a Cloud-based architecture. Such 

architecture implies the existence of a large distance (network links) between IoT devices 

and the Cloud. In addition, this chapter introduces a set of key concepts relevant to this 

work. 

Chapter III is a review of research literature on collaborative technologies. It first 

reviews the characteristics of technologies that support or enable collaboration in the IoT. 

Then the review focuses on the current research state of the art on existing approaches 
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for collaboration in Fog infrastructure. In addition, the chapter discusses the limits of the 

trending approaches and gives further clarification on the problem statements. 

As opportunities arise with the Fog computing concept, Chapter IV presents the 

main aspects and perspectives to consider in a Fog computing platform. Furthermore, we 

introduce in this chapter the principles and the rationales behind the proposed 

architectural model, named CoFog. Principal functional components, operational 

behaviour, and the flow of information within the architecture’s middleware level (Mdl) 

have been described. 

Following the general descriptions and the detailed depiction of the CoFog 

architecture, Chapter V continues the description of the reference architecture. It presents 

service presentation, management and transformation component at the operational 

level (Opl). This level aims at delivering a set of different, yet homogenous and 

complementary services. Such services can be leveraged through the application of a set 

of operations. 

Chapter VI raises questions about the principal requirements of Fog computing, 

in general, and especially requirement of the collaboration in the CoFog architecture 

regarding access control mechanisms. The security problem in Fog computing is a 

complex and a multidimensional one.  Access control models are a highly important 

dimension of this problem. The answers to these questions have shaped the design of the 

proposed access control mechanism. 

Chapter VII discusses a case study and a proof-of-concept instantiation of the 

CoFog architecture. This instantiation aims at designing and implementing a Fog platform 

to tackle a real-world use-case –i.e., a Smart parking use case. The platform has been 

implemented following the architectural model to show the role and importance of the 

different components. 
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The last chapter of this thesis is dedicated to discussing the contributions alongside 

with the limitations and the prospects of this work. 
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FUNDAMENTALS AND PROBLEM 
STATEMENT 

1. THE INTERNET OF THINGS 

1.1. THE RISE OF THE THINGS 

The eighties were the years of microprocessors when we built our computers. By 

the dawn of the next decade, the technological power received a boost with the inception 

of networking and communication. For the first time, computers were connected together 

leading to the phenomenon of the Internet and the World Wide Web. Due to the arrival 

of Mobile-Internet and Social Networks with the new millennium, users started to 

become constantly connected together over the Internet. Today, the computer is 

everywhere, connected to everything and embedded in almost every object. That is, 

machines first learned to do, then they learned to think; nowadays, they are learning to 

perceive, sense, react and interact within a global network called the Internet of Things. 
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The concept of the Internet of Things (IoT) has first appeared as the title of a 

presentation by K. Ashton of the MIT Auto-ID Center back in 1999 [3]. The presentation 

promoted not just how the Radio Frequency Identification (RFID) tags might be used to 

enable computers to observe, identify, and understand the world; but to envision and to 

develop a network connecting everything needed to create an Internet of connected 

things. In the first papers of general interest on the IoT, this concept was considered as 

the mere extension of Radio Frequency Identification, uniquely identifiable objects and 

their virtual representations in an Internet-like structure [11]. Nevertheless, the idea was 

mentioned before several times in Billy Joy’s speeches and lectures [29] as the sixth Web. 

In fact, the sixth Web or the Device-to-Device Internet (D2D) describes the Internet of 

sensors that embed machine intelligence in our daily life activities. 

Since its first appearance, the hype surrounding the concept of IoT grew to 

substantial proportions. The IoT came broadly into public view in 2005 with the 

International Telecommunications Union (ITU) publishing the first report on the subject 

[94]. According to statistics data reported  in [110], it can be estimated that IoT has come 

into existence, at least physically, sometime near 2009 (Figure 3). At that point, while the 

world’s human population increased to 6.8 billion, the number of Internet-connected 

devices has known an explosive growth reaching nearly 12 billion devices. As a result, 

the ratio of connected objects per capita raised to 1.84 for the first time in human history. 
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Figure 3. The growth of the Internet-connected devices vs. the world population 

Due to its capabilities, the IoT gained significant attention in academia as well as 

in the industry. It promises a “Smart World” [114] where all the smart objects around us 

might be connected to the Internet using minimal or no direct human interaction. 

Ultimately, the goal is to create a world where our surrounding objects know what we 

like, what we want,  what we need, and act accordingly with no explicit instructions [114]. 

Hence, the IoT inherently share a significant amount of concepts with other computer 

fields. It packs different technologies and concepts ranging from sensors, actuators, data 

modelling, and storing, to Cloud and other various communication technologies [31]. 

That is, researchers are using existing and well-known technologies in different ways to 

satisfy the characteristics and the demands of IoT; we are still shaping our future vision 

of this global network. 
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With the rise of the Internet of Things, the issue of defining and setting boundaries 

to such paradigm arises too. Hence, the following sections emphasize on the definitions 

that have been proposed to capture the various facets of the IoT. In Addition, special care 

has been given to describe the status quo on IoT and its relation to current technologies 

and trends. 

1.2. DEFINITION AND VISION OF IOT 

Internet of Things research is only at its early stages. A standard definition is yet 

to be provided [29]. To capture the different aspects and meanings given to the concept 

of IoT, many definitions have been proposed. Back in 1999, Ashton [91] stated that 

passive RFID transponder, as a very simple and low-cost computer, can connect to the 

Internet through a reader. Then computers can see, smell and hear the world without the 

human-introduced data. Nonetheless, some experts say that the act of reading an RFID 

tag, capturing information about the location and status of an object, and then sharing 

the data over the Internet is not part of the Internet of Things. 

Syntactically, the expression is a two concepts combination: “Internet” and 

“Thing”. While the word “Thing” refers to a non-precisely identifiable object, “Internet” 

is the worldwide network of interconnected computer networks, based on the standard 

communication protocol TCP/IP. Therefore, semantically, “Internet of Things” rise up as 

“a worldwide network of interconnected objects uniquely addressable, based on standard 

communication protocols” [11]. Otherwise, from a data-centric perspective [74], “the Internet 

of Things refers to uniquely addressable objects and their virtual representations in an Internet-

like structure”. This vision of the Internet of Things implies that the uniquely addressable 

and Internet-connected objects use the same protocols already used to connect our 

computers to the Internet. 
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In the recent years, many organizations have been leading efforts toward the 

standardization of the IoT definition. For instance, the IEEE is leading an ongoing project 

in this direction. The current draft of the P2413 standard provides an overview of an 

architectural framework and describes the IoT as “a network of items each embedded with 

sensors which are connected to the internet” [8]. In a similar vein, the European 

Telecommunications Standards Institute (ETSI) discusses the concept under the Machine-

to-Machine (M2M) umbrella. ETSI defines M2M communication as “the communication 

between two or more entities that do not necessarily need any direct human intervention. M2M 

services intend to automate decision and communication processes.” [55]. The Internet 

Engineering Task Force (IETF) has also stated that “the basic idea is that IoT will connect 

objects around us to provide seamless communication and contextual services provided by them 

… to make the service better and accessible anytime, from anywhere” [34]. 
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Figure 4. Envisioned technological developments in the Internet of Things [42] 

Along with the aforementioned standardization bodies, many project and 

initiatives are providing definitions of the IoT. Such definitions vary depending on the 

envisioned implementation technologies [42] (Figure 4), and are mainly general and 

descriptive rather than being formal. That being said, the common aspect is that IoT 

describes the next generation of the Internet, where the physical things could be accessed 

and identified through the Internet. In addition, it provides things with the ability to 

exchange and process data according to predefined schemes. 

Beyond the definition of the IoT, the future is to move from objects with identifiers 

toward networks of objects with abilities to collaborate and interact with their 



 

 19 

environment [105]. Hence, we could not discuss the IoT paradigm without considering 

the definition and characteristics of these objects – i.e., things. Things are a building block 

of this infrastructure, and they are an active participant in the business process [105] (e.g., 

RFID tags to track product in supply chain management). From the previous section, a 

thing can be defined as an entity with a unique identifier, that may carry an embedded 

application logic (system), and that have the ability to transfer data over the network. The 

IoT already comprises a panoply of different things (tags, sensors, actuators, and other 

devices) that augment physical objects (thermostat, lamp, fridge, etc.) with sensing, 

processing, networking, and reacting capabilities [105]. From a functional perspective, 

these augmented functionalities transform everyday physical objects into Smart Objects. 

A smart object is a physical object in its association with a Digital Entity. The latter is the 

thing that acts as a digital proxy providing a unique and synchronized representation of 

the object on the IoT [63]. Nevertheless, a given digital entity can be deployed as an 

autonomous agent with no bounds to the physical world, thus providing processing 

capabilities as a set of services on the network. In this document, “thing” and “object” are 

used interchangeably unless stated otherwise. 

1.3. THE IOT TODAY 

In Santander, northern Spain, the city has spread sensors across its landscape [105]. 

The purpose of this ambitious project is to transform insensate physical objects into little 

Internet-connected things. The project has deployed sensors at the city’s main entry 

points gauging traffic flows and volumes. Another set of sensors have been deployed in 

parks and gardens to measure moisture and rainfall in an attempt to achieve more 

efficient irrigation systems. Here in Canada, a Toronto firm named Sensebridge produces 

simple pieces of jewelry that vibrate every time the customer faces north [100].  
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These are simple yet perfect examples of how IoT has come into our life. The world 

has begun to receive real working IoT applications that greatly benefit a number of 

sectors. Public and private sector organizations are moving to smarter governance 

systems. In fact, it can be clearly stated that the Internet of Things has reached and gained 

further recognition of many actors in academia and industrial domains. The boundaries 

and gap between the physical world and the virtual world are slowly being dissolved.  

1.4. IOT AS SERVICE-ORIENTED ARCHITECTURE 

To exploit the functionalities and the capabilities of IoT-connected Things, such 

smart Things have to be accessed from the Internet through in a way or another. Since 

the research in this domain still in its infancy, researchers and experts in both academia 

and industrial world are using existing and well-known technologies to this end. It is no 

doubt that the Cloud computing paradigm, through the service-oriented architectural 

model, has been the “go-to” solution to implement some of the features of IoT. 

Indeed, the term “Cloud” was first used by Amazon and was associated with 

elastic infrastructures that deliver computing resources as a service over the network 

[104]. This model and the new technology enablers have progressively allowed the 

support of various paradigms known as “Applications as a Service”, “Platforms as a Service” 

and “Infrastructure as a Service”.  Such trends help to reduce the cost of ownership and 

management of virtualized resources enabling provisioning of new services. 

Therefore, one potential and obvious trend in Cloud computing area is “Things as 

a Service”. The virtualization of connected-objects and the convergence of the Internet of 

Things and the Cloud computing foster an unprecedented area of use. This is far beyond 

virtualizing sensors’ data; it demands the ability to virtualize Internet-connected objects 
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and their ability to be composed and orchestrated. Based on such architecture, thing-

based services are offered on demand in a Cloud environment fashion [76]. 

The next section deals with the drawbacks of this tight relationship between IoT 

and its current architecture centred around the Cloud. 

2. IOT AND THE CLOUD PROBLEM 

It is clear that the Internet of Things has arrived. The recent research trends to 

tackle the many challenges and issues that arise with it are mostly toward centralized 

Cloud architectures. As shown in Figure 5, the network infrastructure (i.e., the Internet) 

is used to transmit aggregated data from the sensing infrastructure toward the decision-

making layer at the top of the architecture (i.e., the Cloud). Such architecture uses the 

efficiency and the high computational and storage power of the Cloud to process and 

store data. 

 

Figure 5. The Cloud at the heart of IoT (adapted from [71]) 
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Indeed, the Cloud has the commodity to better serve a huge number of users and 

to process the enormous quantity of data coming from the various IoT devices (sensors 

and other devices). Nonetheless, since most of data processing and analysis occur at the 

top level of the architecture, the distance between IoT objects (i.e., sensing layer) and the 

Cloud raises problems related to network bandwidth, communication latency, and to 

accessing local context and mobility information. 

In its latest Global Cloud Index report (GCI 2018 [71]), Cisco Systems estimates 

that by 2021 more than 850 Zettabytes (ZB) of data will be generated on the Internet, 

mostly by Things. The GCI report reveals that only 10% of the generated data will be 

useful (85 ZB), which will exceed the data centres traffic (21 ZB by 2021) by a factor of 

four. Certainly, the continuous torrent of heterogeneous and potentially irrelevant data 

will have a huge impact on the network bandwidth, leading it to become a bottleneck for 

the Cloud. In fact, Cortés et al. [25] conducted a study on the challenges facing real-time 

processing of tracking data generated by a healthcare sport-oriented application called 

Endomondo. This study concluded that for such a medium sized application, there is an 

average data flow of 25000 GPS tuples per second (»1Gb/s). Such an application, and 

many other examples, will challenge the capacity of the Cloud to maintain a reasonable 

and predictable communication latency and response time; for many use cases do require 

very short to real-time response. For instance, in a vehicular network (VANETs [28]), lives 

may depend on how fast the decision to applying the brakes is made. 

In addition, such Cloud-centric approach comes with many drawbacks related to 

the easiness to access local context information. The sophistication of IoT applications 

relies mainly on the analysis of data coming from the connected devices. The analysis 

uses data related to users’ and devices’ context –e.g., precise user location, local network 
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condition, users’ mobility, devices’ resources and capabilities (CPU, memory…), and so 

forth. Unfortunately, the physical distance between the Cloud and the end devices makes 

Cloud services not capable to directly accessing such local contextual information. Even 

if such information could be sent, in a way or another, to the top level of the architecture, 

many use cases do not require decisions to be made in the Cloud. For instance, in a Smart 

Home, the decision to change the intensity of the lights, depending on whether a person 

is working, reading, or watching TV, does not require the intervention of Cloud services. 

In addition, given that some decisions have to be made in the Cloud, it is not efficient to 

send the entirety of the sensed data, since not all the data are relevant to the decision 

making. 

Furthermore, there is a growing concern among users about transferring local and 

personal information to the Cloud. That is, products and devices we use in our daily 

activities are constantly leaking data. We can argue that encrypting such sensitive data 

might lighten few of these concerns, however, the encryption makes processing and 

analyzing the data extremely difficult or even impossible [116]. Hence, restraining the 

full expansion of IoT applications. On a more personal level, we share the same view as 

Albrecht et al. [119] from the Consumers Against Supermarket Privacy Invasion and 

Numbering group (CASPIEN) as they stated “… but let‘s not fool ourselves. The information 

is not ours. It belongs to Google, and IBM, and Cisco Systems and the global Mega-Corp that 

owns your local super- market. If you don’t believe us, just try removing ‘your’ data from their 

databases”. 

IoT applications require context-awareness, low latency and more interestingly 

real-time data processing. Thus, a new kind of “Cloud” flourishes at the edge of the 

network leading to “Micro-Clouds” to manage, analyze and extends the Cloud 

computing paradigm [10]. Security is a crucial aspect in such environment; as extending 
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existing security mechanisms will not be sufficient to satisfy the features of IoT [98]. In 

such infrastructure, many security threats come from the interactions between the digital 

and physical world. Things have a limited and a cost-ineffective support of security. In 

addition, they operate in unprotected and vulnerable environments (cars, medical 

devices, wearables). Cloud-based and Cloud-like security solutions are needed to protect 

things beyond enterprises’ networks [22]. 

The aforementioned problems have motivated the introduction of various novel 

concepts aiming at providing Cloud-like capabilities in the vicinity of users. In this work, 

we believe that the solution resides on providing such Cloud-like features at the edge of 

the network. Either by relying entirely on the edge capabilities or via a collaboration 

between the edge and the central Cloud. This confidence led us to focus on the Fog 

computing paradigm. Therefore, the next section gives an overview of this paradigm. 

3. THE FOG COMPUTING 

3.1. THE IDEA AND THE PARADIGM 

The need to deploy a computational infrastructure at the edge of the network is 

mainly the result of the convergence of Mobile and Cloud computing. For instance, we 

have seen the application of such approach as Cloudlets [20], Mobile Edge computing 

[102] and Edge-Centric computing [36]. Further details and analysis on the concepts 

related to computing at the edge of the network are provided in the next chapter. In this 

section, we introduce a broader paradigm called Fog computing. 

The idea of Fog computing has been presented by Bonomi et al. from Cisco Systems 

in 2012 [40]. First, this new concept was considered merely as an extension of the Cloud 

computing paradigm. As such, Fog computing would use edge devices near users to 
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provide storage, computation, and some basic networking services [19,20]. In the 

meantime, the Cloud infrastructure takes care of the global coordination of underlying 

infrastructures and the analysis of data. As the research into this domain gained more 

interest, Fog Computing has become a paradigm on its own. Its definition has been 

extended to embrace features of ubiquity, improved networking capabilities and better 

support of cooperation between devices [119]. Although it shares many similarities with 

the Mobile Edge computing paradigm, the Fog computing paradigm is broadly intended 

to deal with applications in the context of IoT. 

Indeed, since it was initially proposed, the idea of the Fog computing have been 

intellectually and technically seductive. The first definition of this paradigm was  

proposed by Bonomi et al. and it states that “Fog computing is a highly virtualized platform 

that provides compute, storage and networking services between end devices and traditional Cloud 

computing Data Centers, typically, but not exclusively located at the edge of the network” [5]. 

Hence the name “Fog” that comes from the analogy that its infrastructure deployment 

locations are closer to the end devices than they are to the Clouds. In this context, end or 

edge devices are referred to as “Things” which include a wide variety of sensors, 

actuators, mobile devices, embedded systems, and so forth. Another similar definition 

has been proposed in  [21] “Fog computing is a scenario where a huge number of heterogeneous 

(wireless and sometimes autonomous) ubiquitous and decentralised devices communicate and 

potentially cooperate among them and with the network to perform storage and processing tasks 

without the intervention of third-parties. These tasks can be for supporting basic network 

functions or new services and applications that run in a sandboxed environment.” [119]. As 

recently as 2016, Cisco Systems, ARM Holdings, Dell, Intel, Microsoft and Princeton 

University founded the OpenFog Consortium to promote development and interests in Fog 

computing. The efforts of this consortium have led to the publication of the OpenFog 
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Reference Architecture for Fog Computing [119] that defines Fog computing as “a horizontal, 

system-level architecture that distributes computing, storage, control and networking functions 

closer to the users along a cloud-to-thing continuum”. 

The aforementioned definitions bring into light three main characteristics of Fog 

computing: extending the Cloud, edge of the network, and edge devices. The first concept 

comes from the necessity to preserve the benefits of Cloud computing such as 

orchestration, efficiency and manageability. As an extension to the traditional Cloud-only 

model, the implementation of the Fog architecture requires an additional layer (or layers) 

of Fog nodes that can be located at various points of the network’s topology. This layer 

of Fog nodes is what represents the edge of the network in the context of Fog computing. 

As such, the distinction between Cloud “nodes” and Fog nodes could be problematic. We 

believe that the difference resides in the proximity and the capabilities of the nodes; for 

Cloud “nodes” by definition have more storage and processing power. On the contrary, 

Fog nodes have more constrained capabilities and they are, usually, closer to the edge 

devices. Furthermore, regarding the application domain, Fog nodes are more intended 

for local environments with real-time, latency-sensitive, and geo-distributed 

applications. Considering all the characteristics of Fog computing, one can clearly see that 

a Fog Layer is formed between the IoT Things and the Cloud to deal with communication, 

computing and access management. 
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3.2. FOG NODES 

As previously described, Fog nodes (a.k.a. Fogs) are to support mobility, real-time 

data analysis, and decision-making processes. They have more importance in use-cases 

where data needs to be collected, filtered and analysed locally at the edge level. 

 

Figure 6. The Fog nodes between the Cloud and IoT objects 

Hence, depending on the use-case and the deployment strategy, Fogs can be 

deployed on low-level elements of the network such as routers, gateways, and access 

points up to higher levels of the hierarchy including the Cloud (Figure 6). Before the 

deployment of a Fog node, many aspects must be addressed including compute and 

storage capabilities; connectivity and networking capabilities; and the node security and 

management aspects [88]. Indeed, in order to provide analysis, filtering, autonomous 

learning, etc. Fogs need to have general purpose compute and data storage 

functionalities. This will leads to higher level of interoperability between Fogs. In 
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addition, it is possible that sensors and other edge devices may not be able to interface 

directly with such nodes. Consequently, an abstraction layer might be needed to connect 

and exploit such devices. Furthermore, Fogs nodes will acts as gateways between the 

sensing infrastructure and the IoT upper levels. This aspect bring the role of security 

gateways as important task for such nodes. 

In light of this, our interest lies in extending the new paradigm of Fog computing 

to embrace a Thing-collaboration computing model. In such model, Things could be 

enabled to collaborate and exchange date with each other to achieve common or distinct 

goals. However, collaboration at such low level, will increase even more the complexity 

of interactions in this model [88]. This increasing complexity is due to the huge number, 

the heterogeneous and the dynamic nature of the Things involved. The heterogeneity 

between the technics and the technologies used to both offer and consume Fog services 

will add to this complexity [111]. 
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RELATED WORK 

The first step in developing a body of knowledge begins essentially by searching 

previous achievements to understand the status quo in our field of interest. This chapter 

is a background review of the state of the art on technologies supporting collaboration in 

the Internet of Things. The literature review includes works that have been already used 

in the IoT as well as potential collaboration-enabling technologies coming from related 

domains. This study of the state of the art allowed us to focus, first, on the importance 

that collaboration between Things has gained recently and, second, on key problems 

toward the real collaboration within a Fog Computing environment. 

1. STATE OF THE ART IN THE INTERNET OF THINGS 

1.1. OVERVIEW OF THE IOT CHALLENGES 

The arrival of the Internet of Things have stressed the need for more clarification 

about the requirements and the setup of global standards for this new era. In fact, the 
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Internet of Things promises to connect even the smallest device and sensor to the Internet. 

Hence, the research community will have to address the challenges of common reference 

architectures for the future networks, communication technologies, global identification, 

and the challenges of naming and global discovery. In addition to the tasks of integrating 

legacy systems and networks. 

Needless to say that in spite of following the same standard, two different devices 

might not be interoperable if they fail to grasp the semantic of the exchanged data. Hence, 

standardization is necessary but it may not be enough due to the complex and the diverse 

nature of the new network. Advanced interoperability between heterogeneous 

environments and between heterogeneous devices through different communication 

technologies is and will always be a hot topic that requires continuous research. 

Nevertheless, research in wireless sensor networks has already resulted in promising 

solutions, tools and operating systems that can run on very small and resource-

constrained devices [50]. These solutions need to be evaluated in the real world and in 

large-scale applications in order to illustrate different use-cases. Such use cases will help 

in defining new solutions to effectively sustain the mobility nature of smart things, which 

may be equipped with multiple and heterogeneous network resources. These connected 

devices are characterized by low resources in terms of both computation and energy 

capacity. Thus, the development in this area will require research for hardware 

adaptation and parallel processing in ultra-low-power and probably multi-processor 

systems. Furthermore, energy storage will also become a serious and real challenge and 

even an obstacle in the road toward the miniaturization of devices. There is a need to 

deepen the research in areas like Nano-electronics, semiconductors, high-capacity energy 

storage, sensing technologies, and new ways to harvest energy from the devices’ 

environment [127]. 
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The Internet of Things is born from the vision that things will constitute an integral 

part of the network infrastructure that wire our world. Thus, this network needs to be 

built on top of a structure that integrates seamlessly wired and wireless technologies in 

transparent ways. The low-power devices will need links in a multi-hops fashion to cover 

wide distances, in addition to power-aware protocols that could turn on or off the links 

in response to the traffic load and demand. Such a network must provide some kind of 

adaptability to the heterogeneous environment, the various and mixed contexts, and to 

the content and application needs. This picture would not be complete without 

mentioning two of the main building blocks of the Internet of Things: security and 

intelligence [58]. Capabilities such as self-configuration, self-awareness, context-

awareness and intelligent inter-machine communication are considered of high priority 

for the IoT. Self-x (self-configured, self-organized, self-aware, self-protection…) and 

intelligent things will be in a constant connection with other objects resulting in new 

security and privacy problems [80]. Moreover, huge amounts of data will be mapped 

across billions of things that are updating in real-time; a transaction for instance may need 

to make change across thousands of objects with different security policies. In order to 

prevent the unauthorized use of private information, research is needed in the area of 

dynamic trust, security, and privacy management. 

1.2. SELECTED IOT RELATED PROJECTS 

1.2.1. CASAGRAS 

The CASAGRAS [81] project, stands for “Coordination and support action for global 

RFID-related activities and standardization,” was a project financed by the European Union 

in 2008.  The project focused on shaping the foundational studies about RFID in support 
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of the Internet of Things. In its final report, the project provides an abstract architectural 

model for IoT (Figure 7). This model consists of three layers: 

- The physical layer: this layer comprises identified things (physical objects) that 

connect through object-connected data carrier technologies such as RFID. 

- Interrogators or gateways layer: this layer offers the interfaces between the 

object-connected devices and the information management systems. 

- Application and Information Management Layer: this layer provides the 

functional platform for supporting applications and services. 

 

Figure 7. CASAGRAS IoT model architecture 
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1.2.2. Cyber-Physical Systems 

The Center for Hybrid and Embedded Software Systems at the Berkeley 

University is pursuing research in the abstractions and analytical techniques of Cyber-

Physical Systems (CPS) [70]. This project mainly focuses on the integration of embedded 

computation and networking to monitor and control the physical processes, with 

feedbacks in between. The concept of CPS is similar to the IoT concept with difference in 

the application. A CPS is concerned about the collaborative activity between sensors 

and/or actuators to achieve a certain goal, whether in an intranet or extranet. To achieve 

the goal, CPS may use an IoT system. 

1.2.3. The Internet of Things Reference Model 

The IoT Architecture project (IoT-A) [70] proposed an architectural model for the 

IoT, along with an initial set of key building blocks. The project focused on developing 

an architectural reference model by tackling security, addressing and protocol interaction 

of the various components of the architecture [14]. 
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Figure 8. Interaction of sub-models in the IoT-A reference model (adapted from [15]) 

The Architectural Reference Model (ARM) proposed by IoT-A has five sub-models 

(Figure 8). The IoT Domain Model includes the main concepts of devices, IoT services, 

Virtual Entities (VE), and the relations between them (Figure 9.). 
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Figure 9. UML representation of the IoT Domain Model (adapted from [16]) 

Based on this model, the Information Model defines the structure of IoT related 

information (e.g. information about devices, services, virtual entities). The Functional 

Model identifies Functionality Groups for interacting with and managing information 
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about the IoT main concepts. The functionalities of the FGs that manage information use 

the IoT Information Model as the basis for structuring their information. 

The IoT Communication Model introduces many concepts that are in charge of 

handling the complexity of communication in heterogeneous IoT environments. The 

Trust, Security and Privacy Model introduces these relevant functionalities and their 

interdependencies and interaction. Both last models are Functionality Groups in the 

Functional Model. 

1.2.4. The Internet Connected Objects for Reconfigurable Ecosystems 

The Internet Connected Objects for Reconfigurable Ecosystems (iCore) [16] aims 

to abstract the technological heterogeneity of the vast amounts of heterogeneous objects 

and provide high-level reusability for application through virtual objects and cognitive 

technologies [77]. iCore defines three levels of virtualization that top-level applications 

can use to control real world objects (Figure 10) : the Service level, the Composite Virtual 

Objects level and the Virtual Objects levels. 
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Figure 10. iCore Architecture Model (adapted from [78]) 

The Service Level provides functionalities for planning and understanding what 

services are needed in order to achieve a goal and by means of which Composite Virtual 

Object (CVO) or Virtual Object (VO). The Composite Virtual Objects Level contains a run-

time management and execution environment that efficiently manages and executes the 

requested pool of service instances as a composition of so-called CVOs, connected to the 

abstraction of Real World Object data (via sensors and actuators) with functional 

enrichment, though the VOs in the Virtual Objects Level. 

At the Virtual Objects Level, URLs are used for both naming and addressing VOs 

as Web Resources. Yet, the architecture provides no specified naming scheme. 
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1.2.5. IoT at Work Architecture 

The IoT at Work project (IoT@Work) [78] focused on IoT technologies to provide 

a plug-and-work concept for industrial and automation environments. In its final report 

[99], IoT@Work is described as a three layers architecture with three planes to structure 

cross-cutting concerns Figure 11.  

 

Figure 11. IoT@Work architecture and main functionalities [109]. 

The layers include management and orchestration functionalities that deal with 

the configuration and the execution of applications using resources and services offered 

in the IoT infrastructure. The three layers are, from bottom to top: 

- The Device and Embedded Services layer, which includes identifiers 

assignment, devices context collecting, communication management physical 

security. 
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- The Device Resource Creation and Management Services layer, which 

abstracts and hides the details about single IoT devices. The functions here 

include service directories, network abstractions, and low-level system 

monitoring and security management. 

- The third layer of abstraction supports directly the application through 

specific middleware services. Indeed, the Application Middleware Services 

layer include a messaging bus, application resource descriptions and other 

application supporting functions. 

The crosscutting orthogonal planes that the architecture focuses on are:  

- Communication Plane: managing networks and communication, while 

delivering guarantees for the applications that need high Quality-of-Service 

(QoS). 

- Security Plane: managing system security to make sure that different 

management functions at each layer include some security mechanisms. 

- Management Plane: supporting service management and orchestration and 

linking devices to applications and services 

2. COMPUTING AT THE EDGE OF THE NETWORK     

2.1. MOBILE CLOUD COMPUTING (MCC) 

The idea behind computing at the edge of the network is not new. Rather, it is a 

convergence of experiences with both Mobile and Cloud computing [109]. Indeed, the 

main features desired in mobile devices are small size, lightweight, ease of use, and long 

battery life. Due to such requirements, mobile devices are inheritably resource-
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constrained. Nevertheless, mobile devices can overcome such constraints via remote 

execution by exploiting remote infrastructure that offers more computational resources. 

The emergence of the Cloud computing pushed forward the adoption of this remote-

execution model toward what is called Mobile Cloud Computing (MCC). MCC 

represents the convergence between Mobile and Cloud computing. 

Unfortunately, Cloud computing encourages a centralized infrastructure that 

implies a large separation between mobile devices and the Cloud. As it is the case for IoT 

today, mobile-to-cloud communication involves many network hops and results in high 

latency and high consumption of the network bandwidth. For these reasons, the problem 

of proximity between mobile devices and the Cloud has become a crucial issue and a 

burden on MCC solutions. Many novel paradigms have been proposed to deal with this 

issue [72], each of which shares the same common goal of deploying Cloud-like 

capabilities at the edge of the network. As the next sections reveals, the differences arise 

when considering the deployment, the use, and the ownership of such edge 

infrastructures. 

2.2. CLOUDLETS, PROXIMITY MATTERS 

The Cloudlet concept [13,33,39,102] was proposed mainly to promote mobile 

offload (or delegation) under what can be seen as a cyber foraging -i.e., “The idea is to 

dynamically augment the computing resources of a wireless mobile computer by exploiting wired 

hardware infrastructure” [13,101,103]. This vision was originally limited to delegating the 

storage of voluminous data and the execution of intensively computational tasks to the 

Cloud under the MCC paradigm. In recent years, this paradigm have seen an expansion 

to include delegation to offload instances at the edge of the network [101]. Indeed, the 

research community have been proposing various solutions to allow mobile devices to 
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delegate tasks to remote resources, either by migrating parts of the code (selected in 

advance) or by cloning the entire execution environment of applications. Moreover, other 

approaches propose the use of mobile agents that handle the processing of information 

on behalf of mobile devices [101]. 

The Cloudlets addresses mobile delegation through the implementation of small 

immobile computing instances at the vicinity of mobile users [98]. As shown in Figure 12, 

the paradigm of Cloudlets relies on a three-tier architecture (i.e., Clients, Cloudlets, 

Cloud) with two levels. The first level represents the Cloud infrastructure. The second 

level consists of small data centers dispersed at the edge of the Internet – i.e., Cloudlets. 

These small infrastructures have a soft state that is generated locally or cached from the 

Cloud. That is, they use persistent caching of data and code which means that such 

information times out unless refreshed. Therefore, Cloudlets can be deployed at the user 

vicinity (at Wi-Fi access points or LTE base stations) and allow devices to load small 

virtual machine (VM) instances over pre-existing more complete VM images [38]. 
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Figure 12. Cloudlet two-levels architecture 

2.3. MOBILE EDGE COMPUTING 

Mobile Edge Computing (MEC) [33] is another edge computing paradigm that has 

been drawing much attention in both academia and industrial worlds. In early 2015, the 

European Telecommunications Standards Institute (ETSI) launched the Industry 

Specification Group (ISG) for Mobile-Edge Computing in an attempt to standardize MEC 

[33]. The reference architecture (Figure 13) that has been presented lately shows the 

functional elements and the reference points between them. 
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Figure 13. Mobile Edge Computing system reference architecture 

The MEC consists of the mobile edge hosts that provide facilities for mobile edge 

application execution, to radio networks information access, and to location awareness 

services. In addition to the mobile edge management necessary to manage both the 

system and its hosts. Under this specification, MEC will provide an ecosystem of Cloud-

like capabilities within mobile base stations at the edge of the mobile network. 

Deployment locations include but are not limited to LTE/5G base stations (eNodeB), 3G 

Radio Network Controllers (RNC), and other cells of multi-Radio Access Technology 

(3G/LTE/WLAN) aggregation. 

Thanks to this ecosystem, mobile networks will benefit from low latency, high 

bandwidth, location awareness, and access to radio network information. Furthermore, 
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if such ecosystem is opened not only to mobile network providers but also to other service 

providers, such openness could bring more contributions and more application scenarios 

from third-party companies – e.g., augmented and virtual reality. 

2.4. EDGE-CENTRIC COMPUTING 

From a human-centred perspective, Edge-Centric computing paradigm [40] shares 

the common interest of providing Cloud-like services and resources near users with the 

aforementioned paradigms. This work envisions that the solution to the growing user 

concerns about trust, privacy, autonomy, and security comes mainly from the integration 

of humans in the decision making loop. It proposes the deployment of edge computing 

systems that collaborate with each other in a peer-to-peer fashion. Hence, Cloud services 

take an auxiliary role in providing stable resources at need. The human-centred 

perspective arise with the ability to create user-centred ecosystems at the edge of the 

network. Ecosystems that allow the creation of personal spaces –i.e., spaces where the 

user can manage personal information, access control and trust mechanisms, social 

spaces –i.e., spaces where the user can control social activities, and public spaces –i.e., 

spaces with collaborative information flows where multiple actors, either humans or 

services, can interact with each other. 

2.5. EDGE COMPUTING, ANALYSIS 

The core idea of edge computing is to bring network functions and Cloud 

resources to the vicinity of users and end devices, including computing, storage (and 

caching), and communication resources. This approach evolved from the early years of 

Mobile Cloud computing which moved computing power and data storage away from 
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mobile devices. Alas, it became quickly obvious that proximity do matter, hence the 

introduction of recent edge computing paradigms. 

In addition to the Fog computing introduced in the previous chapter, the 

paradigms presented in the previous sections represent the major paradigms in the edge 

computing approach. In general, they share the common goal of deploying, in a way or 

another, various forms of edge data centers with computing and storage services. 

Furthermore, while such edge data centers can generally exist and work autonomously, 

they are still connected to the Cloud, which can potentially play the role of management 

and coordination. 

A closer look at these paradigms reveals, however, many differences. Mobile Edge 

computing focuses on infrastructures provided by mobile network operators, whereas 

Cloudlets and the Edge-Centric computing focuses on private and user-owned ones. By 

consequence, ownership, deployment location and underlying protocols and interfaces 

differ from one paradigm to another. MEC considers only radio bases and controllers as 

deployment locations. Hence, only telecommunication companies can own and operate 

MEC infrastructures. Edge-centric computing focuses on local servers managed and 

owned by users. In contrary, Cloudlets focuses on more distributed deployment 

locations, as even devices themselves can be part of the service provisioning 

infrastructure. Such ease of deployment encourage a variety of companies to create their 

own MCC nodes. 

As we introduced in the previous chapter, Fog computing paradigm is a broader 

and more general edge-computing concept that aims to accommodate IoT applications. 

Fog nodes can be deployed at different levels of the Internet architecture -i.e., either 

vertically near or far from the Cloud  data centers, or horizontally on many locations such 

as on user-managed servers, access points, routers, gateways, etc. 
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 Table 1 summarizes the main properties of the aforementioned edge paradigms 

discussed above. The Mobile Cloud computing, being a centralized approach, is 

mentioned in this table for the sake of comparison only. 

Table 1. Comparison of different edge computing paradigms 

 Mobile Cloud 
Computing Cloudlets Mobile Edge 

Computing 
Edge-Centric 
Computing Fog Computing 

Architecture 
hierarchy 

Two tiers 
(centralized) Three tiers Three tiers > Three tiers 

(distributed) 
> Three tiers 
(distributed) 

Location 

Large Data 
Center 

Between 
mobile 
devices and 
Data 
Centers, 
mobile 
devices 

Radio access 
network Edge servers 

Any location in 
the hierarchy 
(near-cloud, 
near-edge and 
edge) 

Ownership Cloud services 
providers 
(Amazon, 
Microsoft, et.) 

Local 
business 
(private) 

Mobile 
network 
operators 

Private entities, 
Individuals 

Private entities 
(Fog nodes 
owners), 
Individuals 

Cooperation 
between nodes No No No Yes Yes 

Latency High Low Low Low Low 
Context 

awareness No Could be 
equipped Yes Yes Yes 

3. SERVICE AGGREGATION IN FOG COMPUTING 

The main goal of our work is the collaboration between IoT objects. In the one 

hand, it aims at bringing service aggregation and composition to the edge of the network 

using Fog Computing. On the other hand, it focuses on providing a middleware to 

abstract the undelaying heterogeneity. In this same vein, Mobile Fog [51] presents a high-

level programming model for the Internet of Things. This model is intended for latency-

sensitive and on-demand scaling applications, but a more general approach is needed to 

deal with resources mobility. 
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Similarly, by assuming that every Thing provides its functionality as a standard 

service, the presented composition model [51] uses artificial potential fields to deliver a 

decentralized service composition. In an attempt to tackle decentralized service 

composition, Rain4Service [95] models the behaviour of rain drops to achieve service 

composition. However, this framework is not intended for deployment at the edge of the 

network. In such environment, filtering and unifying data are the main issues in order to 

be able to implement the middleware layer [9] since the use and the presentation of data 

should be adapted depending on the context of the service to provide. To this end, the 

system in [90] uses a goal-driven and context-aware filtering method. Though, in case of 

an aggregated or time-dependent sensing activity, issues like mobility support may rise. 

Sharing resources between devices at the edge of the network was the focus of 

Mobile Cloud [82]. The work proposed a framework to share resources in a local cloud; 

the different measurements of resources are mapped into time. 

4. OBJECT AND SERVICE DISCOVERY 

Finding entities and services is an essential aspect of an Internet of Things systems. 

Unlike in small-scale application, IoT applications and services cannot be configured with 

respect to a fixed set of services. Instead, there is a need to setup resolution, look-up and 

discovery for IoT services and objects with the adequate level of abstraction. Jacquet et al. 

[84] proposed a routing protocol to support routing in heterogeneous Mobile ad-hoc 

networks (MANET), where each node can have many interfaces. In the Optimized Link 

State Routing Protocol (OLSR), “a flat mechanism is employed, whereby a node sends control 

messages through all interfaces without regards to the link capacities of the other network”. OLSR 

does not scale and does not support the heterogeneous nature of MANET. Hence, the 
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Hierarchical OLSR [59] came as an extension to the former OLSR. It is aimed at reducing 

the overhead caused by sending messages regardless of the link capacities, and to make 

the routing algorithm more scalable. In spite of its ability to improve the scalability of the 

MANET, the HOLSR affects the network scalability. Indeed, in order to reach the 

destination node, data travels in normal ways up to the topological level where the 

destination node is located. Shepherd et al. [121] suggested the use of parallel processing 

across handheld devices to enhance robot sense capabilities. A message passing system, 

called DynaMP, was developed to allow communication in the “scatternet” network 

using Ad-Hoc On-Demand Distance Vector-based routing to reduce energy 

consumption. Based on the Java class loading mechanism, this environment may be 

deployed on any device with a Java virtual machine. In 2005, Harihar and Kurkovsky 

[106] attempted to pave the road to Jini [49] in the world of pervasive mobile computing. 

The work discussed the use of this platform’s networking capabilities to develop 

pervasive computing environments. As claimed by the authors, this framework has the 

ability to satisfy the demands of ubiquitous systems, namely context awareness, 

intelligent behavior, interaction, reliability and safety. Perich et al. [123] developed a 

collaborative query processing protocol. This protocol, the CQP protocol, is based on the 

Contract Net Protocol [92]principles, and it is designed to reduce the computational and 

energy consumption of the devices implicated in collaboration [96]. The features of the 

protocol enable any device, irrespective of its limited computing, memory, and battery 

resources, to locate and obtain data source streams on other peer-devices in order to 

answer its queries. 

Many attempts have been made to connect physical objects to networks. Diya et al. 

[96] proposed an infrastructure framework for Mobile Collaborative Environments. The 

MCE is based on socket communication that allows any device to connect easily with the 
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other devices on the network. Yet, this approach is still a server-centric one. The server 

IP and listening port must be known to the client in order to allow transmission of code 

files between both ends. In 2007, Jeong et al. [30] presented a distributed health-care 

environment, based on a distributed object group framework (DOGF). It provides 

functions of object group management, real-time object exchange and security services 

for distributed applications. TMO scheme and TMOSM have been used for the 

interactions between distributed components. In 2008, Silva et al. [60] introduced a grid-

based framework to support distributed task execution. Indeed, in order to speed up the 

execution of common computing tasks, SPADE allows mobile devices to takes 

advantages of idle remote computer in a Grid way. This tool requires that the application, 

subject of collaboration, be pre-installed and registered in the server. Hence, the user 

must manually give the location, the parameters and the appellation of this application. 

Furthermore, the user provides input files that have to be uploaded to the server. 

In order to avoid connecting physical objects directly to the Internet, some 

approaches suggested abstracting those objects as services by adopting the Service 

Oriented Paradigm [108]. For instance, the work presented by Guinard et al. [43,44,89] 

describes the architecture of the Web of Things (WoT) based on the principles of the 

traditional Web such as scalability and modularity. They promote the reuse and the 

adaptation of existing Web technologies such as REST architectural style [44] to interact 

with IoT objects. An information sharing architecture for collaborative IoT is presented 

in [37]. The authors suggested the concept of a user-centric architecture to the IoT that 

seamlessly integrates IoT objects, Web protocols, Web applications, and Social platforms, 

etc. Adda and Saad [118] presented a data sharing framework for the collaborative IoT. 

The framework introduced a formal theoretical model, the IOTCollab domain specific 

language, and an IDE that implements this model.  
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The Web of Things has been the focus of many other research projects. For 

instance, the Constrained Application Protocol (CoAP) [7] allows the connection of 

resource-constrained devices to the World Web. Using a publish/subscribe mechanism, 

a CoAP client can receive the last update of resources in URI path representation. 

Moreover, since the protocol is based on UDP, it supports group communication using 

IP multicast. In addition, this project included a study that have been conducted among 

academics, professionals, and hobbyists to show the needs and the correctness of the 

development road of the CoAP protocol [64]. As a result, a prototype of the full CoAP 

experience has been released as an add-on for the Firefox browser. Similarly, the Xively 

project [65] proposes and constitutes a Platform as a Service (SaaP) intended to simplify 

the connection of applications, objects, devices, and users to the Web. The ThingSpeak 

project [124] proposes an open source application platform and API that aims to facilitate 

data storage and retrieval from IoT devices on the Web. Finally, the IoTivity framework 

[115] is a promising open source framework for a collaborative WoT, that allow smart 

things to discover, expose their capabilities and work together. In spite of the limited set 

of their supported protocols, one of the advantages of the aforementioned platforms is 

their openness to different hardware profiles 

5. ACCESS CONTROL FOR COLLABORATION 

The Internet of Things promotes a widespread adoption of smart devices. Thus, 

more data are being collected on people than ever before. The repercussion of any gap in 

security will have huge effects on personal security and privacy. Authorization and 

access control are a highly important dimension of the security problem. 
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Therefore, Kerschbaum [56] proposed an attributes-based access control model for 

mobile physical objects. This later extends the attributes to include information about the 

objects’ trajectory in a supply chains. In addition to a trajectory-based policy that has been 

integrated to provide a mutual access authorization and control. 

Shi et al. [61] extended the attribute-based access control model to prevent 

unauthorized access to the search engine of an EPCglobal network. In fact, the Secure 

Discovery Service (SecDS) system provides a variety of fine-grained access control policy 

implementations to protect the sharing of product information in RFID supply-chain 

networks. From a service-oriented perspective, Zhang and Liu [107] proposed a 

workflow-oriented and attribute-based access control model to treat access control issues. 

Attributes related to the subject, the resources, the environment, and the task to have 

authorization for, all these parameters have been taken into consideration to grant 

permissions to subjects. 

Similarly, extending the role-based access control model (RBAC) was claimed by 

Zhang and Tian [126] to enhance the security in a service-based IoT infrastructure. The 

paper introduced the incorporation of contextual information in RBAC as a way to 

produce more efficient mechanism for access control for web service application.  

Following the same vision, Liu et al. [45] proposed a authentication and an access 

control model for the IoT. The adopted access policy inherits from the RBAC mechanism, 

while the authentication process was based on Elliptic Curve Cryptography keys. 

Mahalle et al. [73] based their suggested access control model on devices capability 

and identity. The Identity Authentication and Capability-based Access Control (IACAC) 

scheme creates the capability based on the identity to grant access on the local network. 

This scheme still not fully suitable for small devices within the IoT. 
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Following the same vein, [75] promoted the use of capability-based security 

approach to managing access control in the Internet of Things. Indeed, a capability 

defines the resources, the subject and the granted rights and authorisations. Key features 

supported by the Capability Based Access Control (CapBAC) include delegation and 

revocation of capability, as well as information granularity and standard capability 

representation through XML-based languages. 

In Lee et al. [46,47], authors propose a model that combines location and time with 

security level to control access to the information within the IoT. The model is named 

Location-Temporal Access Control Model (LTAC). LTAC is meant to give access to 

requested operations on a defined node only if the requesting node is located in an 

appropriate location within the appropriate time interval regarding the object. 

Oh and Kim [69], in addition to the context of the thing subject to the access 

demand, they included the identity and the internet address of the requester to the 

process of access control. Considering the web of things and REST-compliant resource-

oriented web characteristics, they provide a decentralized access permission control 

structure. By exploiting smartphone built-in sensors, the Context-Aware Platform using 

Integrated user Mobile sensors platform (CAPIM )[86] is a user authentication and 

session management based on Public Key Infrastructure (PKI). This platform has been 

used to manage access to secure area within a building. 
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6. CHAPTER CONCLUSION 

Current solutions for the Collaborative Internet of Things stand on a set of 

inappropriate models and do not provide the appropriate interoperability, privacy and 

security handling. Each middleware solution focuses on different aspects in the IoT, such 

as device management, interoperability, platform portability, context-awareness, 

security, and privacy, and many more. Even though some solutions address multiple 

aspects, an ideal solution that addresses most of the required aspects is yet to be designed.  

An Internet of Things collaboration model must be designed to provide service 

and object connectivity structures to transport data from one entity to another. These may 

be in the form of Service-Oriented Architecture (SOA) and universal data appliance 

protocols that can be a basis for developing federated networks and services. This would 

allow people to design "plug-and-play" applications. 

Today’s IoT-intended approaches do not emphasize the provision of security and 

authentication at the entities and devices level. Authenticated access to naming and 

identification data should be deployed as part of the look-up and resolution processes. 

Such authentication ensures granting access to identification data only to applications 

that have the rights to do so. In addition to preventing risks associated with naming 

assignments, such as forging identifiers. 

In this chapter we have shown the state-of-the-art of current approaches in the 

area of IoT. In addition, we have highlighted important research directions toward 

solving IoT problems. Hence, in the next chapter, we discuss the limitations of existing 

collaborative Internet of Things approaches and technologies and will describe 

specifically the problem statements..  
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COFOG, AN ARCHITECTURAL MODEL 
FOR COLLABORATIVE FOG COMPUTING 

The Internet of Things is paving the road to a future where autonomous objects 

sense, actuate, interact and react with each other. That is, the human part in machine 

communication is blurring into a more sophisticated device-to-device communication 

model. In this model, connected objects will be able to reach other objects in order to 

provide aggregated and collaboration-based services. Thus, leading to more 

sophisticated applications with added value.  

As we have introduced in the previous chapters, Fog computing has gained more 

interest lately. As opportunities arise with Fog computing, it is crucial to come up with 

an architectural model that suits the application scenarios intended for this paradigm. 

Hence, in this chapter we present the main aspects and perspectives to consider in Fog 

computing. Beside the principles and the rationales behind the conception of the 



 

 55 

architectural model, the chapter provides an overview of the architecture and its main 

supported features and benefits. 

1. GENERAL CONCEPTS OF THE FOG ARCHITECTURE 

Fog computing platforms tie together connected devices and other Internet and 

web-based services. They contribute to defining a reference architecture for the IoT, 

whilst taking into consideration diverse technologies and a wide range of standards. The 

Fog infrastructure must allow devices, users and applications to connect to its services. It 

should be able to coordinate and manage connectivity issues, in addition to ensuring the 

security and the privacy of exchanged data. The Fog infrastructure must comply to these 

requirements while overcoming the interoperability issues between the enormous 

number of connected devices. 

Additionally, Fog platforms needs to reduce the complexity of collecting and 

processing massive amounts of data. This requires considering issues such as openness 

and scalability while offering features such as self-governance, self-management and 

context-awareness. We highlight here the openness since it guarantees and encourages 

building solutions upon open-source technologies. Hence, reducing the cost and opening 

the doors to more innovative ideas and creative solutions. The following list summarizes 

the fundamentals that we believe the Fog infrastructure ought to incorporate: 

- Abstraction of physical objects to enable uniform access to heterogeneous 

resources via multiple communication protocols such as CoAP, MQTT, 

REST,etc.  

- Virtualization that provides services, such as look-up mechanisms, that bridge 

physical network edges and offer a set of consumable services. 



 

 56 

- Data management primitives that enable data definition, storage, cashing, 

interrogation, in addition to functionalities of data aggregation and event-

based management.  

- Semantic representation for modelling knowledge about devices, data and 

services. 

- Security and policy framework that implements access control mechanisms 

and identity management for authentication and authorizations policies. 

- Networking communication both internal and across platforms leveraging 

means for self-management, self-configuration, self-healing and optimization.  

- Open APIs to support platform extensibility, quick development of Fog 

applications and tools upon the top of the platform. 

- Data analysis to provide real-time processing based on user-defined rules for 

simple or more complexes capabilities such as decision-making, data 

visualization and reporting. 

- Development toolkits for fast and comprehensive development and 

integration of devices, services and applications. 

Fog computing is intended to provide an intelligence layer composed of many Fog 

nodes (a.k.a. Fogs). This layer will bring some of the Cloud computing capabilities to the 

edge of the Internet in a distributed and decentralized fashion. This layer can behave as 

a tier in a multitier-hierarchical architecture, where the Cloud plays the top role of 

coordination and analysis. Or, the elements of this layer can behave in a decentralized 

way: The Fogs can provide services, take decisions, grow and scale in-demand, and 

provide collaborative means even without the need of a central tier (i.e., the Cloud).  
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The Fog nodes will be available in large numbers and widely spread across large 

geographical areas. However, we foresee that a given node will essentially make use of 

local devices, and serves local users (user applications, mobile devices …). Still, it can use 

neighbouring nodes or remotely use distant (geographically) ones, in addition to nodes 

at a higher level in the network. Indeed, Fogs can be created at a local (low) level (e.g. 

routers, network switching hub, local servers) or deployed in a higher level as on Internet 

service providers (ISP) infrastructures (e.g. gateways). Thus, gaining the ability to better 

adjust to their locations functionalities and to the needs of their users and applications. 

On the one hand, Fogs will gain the ability to access local and nearby resources such as 

mobile devices, sensors, actuators, user-managed servers, and access to local information 

such as network-related data and real world-related data. On the other hand, it is crucial 

for Fogs to deal with the mobility nature of resources and the scalability of the entire 

ecosystem. 

Figure 14 is intended to help understand the requirements and the rationales of 

Fogs. It depicts an abstraction of the composition of a typical Fog Computing architecture. 
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Figure 14. Perspectives of a the Fog computing layer architecture 

Fog-based applications will benefit from low latency and predictable delays as 

they are using their surroundings capabilities: computational, sensing, etc. Furthermore, 

with their ability to access physical aspects of the environment, Fogs promote more 

context-aware applications and use-cases, in addition to a better quality of service (QoS) 

and more availability since services are hosted locally by the network infrastructure. 

On a final note, Table 2 summarizes the overall functionalities and features of Fog 

Computing compared with those of the Cloud.  

Table 2. Comparison of features between Fog and Cloud Computing 
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 Fogs Cloud 

Application Context-aware, simple 
analysis, augmented 
reality, connected vehicles 

Advanced analysis, 
global coordination, 
centralized control 

Latency Low Average to high 

Storage Transient, short duration Long term 

Availability Higher (local services) High 

Scalability High Average 

Mobility support High - 

Architecture Decentralized, distributed, 
n-tier Centralized 

Hardware Heterogeneous user 
devices, sensors, tags, 
actuator, user-managed 
servers, edge network 

Servers, data centers 

Local awareness High - 

Geographic span Local Global 

 

This section presented the core principles and intentions that guided the definition 

of the Fog architecture. In light of this, next section covers the main layers and features 

of our CoFog architecture. 

2. OVERVIEW OF THE ARCHITECTURE 

Although motivated by the issues of Cloud-centric vision of IoT, Fog Computing 

has many different characteristics. It presents many new challenges, such security and 

privacy, programming abstractions and models, computing and storage constraints, 

resource provisioning and management, and distributed Fog management. The proposed 

architectural model for Fog Computing aims at allowing flexible design choices and user-

specific schemes. 
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Figure 15 depicts the logical separation of the architectural components and the 

main functional aspects of the architecture. The architecture defines four layers that 

facilitate the use of real-world resources, existing services and APIs, and the internal 

functionalities. Many Fog application scenarios need strong requirements of low-latency 

and dynamic adjustment to changing contexts. Such scenarios can benefit from the 

instantiation of the architecture capabilities in order to execute and achieve their tasks. 

From bottom to top, we propose the following levels: 



 

 61 

 

Figure 15. The CoFog architectural structure of a Fog node 

- The Middleware Level ensures the abstraction of the physical objects, in 

addition to functional leverage through resource Adapters and data 

Unification and Formatting. More details on the purpose and functionalities 

of the Middleware and its two composing layers are presented in the next 

section. 
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- The Operation and the Service Layers constitute the Operational Level. This 

is the brain of the whole architecture. It provides runtime management and 

execution environment for the pool of requested services. In addition to 

dynamic creation of services using Service Knowledge and defined 

Operations. The next chapter presents more details on the internal functioning 

of the Service Discovery, Service delivery, Operation definition and execution, 

etc.In addition to these two levels, Security constitutes the third plane of this 

architecture.  

- The Security Level crosscuts all the architecture layers. The Policy 

Enforcement Point (PEP) is meant to monitor resource-data links and intercept 

service requests. Intercepted events are evaluated by the Policy Decision Point 

(PDP) against access policies and rules. The result of a policy evaluation may 

allow or deny the execution requests. Chapter VI details the access control 

model designed for this architecture. It is noteworthy that due to its vertical 

arrangement in this architecture, security requirements may be enforced 

across the different levels.   

3. THE MIDDLEWARE LEVEL (MDL) 

The Internet of Things is a nest for a huge number of heterogeneous devices and a 

source of huge amounts of data. The underlying swarm of data sources comprises huge 

heterogeneity of networked devices that range from simple physical sensors and 

actuators to virtual objects and classical web services. Abstraction is needed to make data 

and data sources uniformly usable across divers set of application domains without 

requiring prior knowledge about embedded systems. That makes the Middleware Level 
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a very important part of the architecture. As depicted in the figure above (Fig. 10), the 

Middleware Level comprises two layers: The Adaptation, and the Filtering and 

Unification layers. 

3.1. THE ADAPTATION LAYER 

The Adaptation layer grantees an abstract interfacing with the underlying 

resource infrastructure.  It provides generic means to define sensors (devices) and virtual 

objects. In addition, the layer hosts a set of sensors’ Adapters and offers mechanisms to 

manage and hold this set of adapters’ definitions and configurations. The general 

functionalities of the Adaptation Layer are presented in Figure 16.  

 

Figure 16. Adaptation layer functional architecture 

This figure shows the core components of the level, which are reflected and 

instantiated in the use case of Chapter VII. At the heart of the Adaptation layer we find 

the Adapter Container. This component hosts the execution environment of the deployed 

Adapters. In addition to the Adapter Factory that is responsible of instantiating the 

appropriate adapters for each connected data source (sensor, API, etc.). Moreover, the 
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level contains the Adapter Templates that constitutes the core of the informational model 

describing the set of sensors. The Adapter Container also hosts various default and 

optional functionalities. In the following sections, we present core concerns of the 

Adaptation level in more detail and show how the key components have to be reflected 

in prospective use cases. 

3.1.1. Sensor description model 

The huge amount of sensors that are and will be deployed in the IoT imposes the 

need for an abstract information model to describe the heterogeneity of these devices. 

Consequently, the information model was developed as a generic model. As such, it can 

be used to describe a wide range of IoT devices, either within simple infrastructures such 

as sensors and actuators or within more complex technological infrastructures like 

smartphones or traditional web services. The definition of appropriate metadata into 

ontologies gives the ability to create semantically enriched representations, which reflects 

in the virtual world the specification, the capabilities and the commands of 

heterogeneous IoT objects [32,48]. In addition, the need to describe virtual data-sources 

(non-physical object) necessitates the definition of relevant metadata that will describe 

the features of such objects. Thus, the Object Description Model includes a set of metadata 

used to describe properties and associations of both physical and virtual objects, and that 

in one common data structure. The next figure (Figure 17) presents this designed 

informational model. 
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Figure 17. Object Description Model 

As illustrated in Figure 18, the above-mentioned model can be instantiated as 

YAML [17] description file. This file encapsulates information about the hardware 

sensors, its generated data, and the protocol that can be used for communication 

purposes. 
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Figure 18. Temperature sensor YAML description 

3.1.2. Adapter Container 

The Adapter Container is the core component acting, in a way, as the abstraction 

component between the heterogeneous physical world and the homogeneous 

Operational Level. The key back-end interfaces of the Adapter Container with the 

underlying heterogeneity are the Adapters.  

 
  Identifier: c7d6f5a1-2910-436a-a939-d6fdeedceae 
  Type: simple 
  Purpose: > 
      This is a simple 
      sensor for temperature 
  Data: 
    Purpose: Temperature in Celsius 
    Type: Double  
    Frequency: 
      Start: 2017-10-01 21:59:43.10 
      End:  2017-11-30 01:59:43.10 
      Rate: 30 
  Context: 
    Location: 
      Latitude: 46.804334 
      Longitude:  -71.980912 
      Altitude: ~ 
  Link: 
    Type: SerialPort 
    Port Name: "/dev/tty.usbserial-A9007UX1” 
    Time Out: 2000 
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Figure 19. SerialPort Adapter for Arduino sensor: upstream 

Adapters are instantiated by the Adapter Factory using the Object Description Model 

as input. This description provides the Adapter with required information about the object 

it represents, the data it generates and the type of Link needed to ensure communication 

with that object. Adapters may also incorporate object-management functionalities for 

updating information such as geo-positioning data, data rate, etc. Upon its creation, 

Adapter instances are deployed and run by the Adapter Execution Pool. Those instances are 

responsible for delivering data to the upper services to be formalized and analyzed 

(Figure 19). Furthermore, they are in charge of using and updating the represented 

objects. 

The Adapter Container manages the execution and the life-cycle of the deployed 

Adapters within its run-time environment. Such duty includes the identification, 

allocation and the destruction of Adapters. The Fog ecosystems interact with a large 

number of physical and virtual data sources. Which implies that each object instance has 
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to be uniquely distinguishable. Thus, the system behaves as an identification authority 

for the entities it contains. Object identifiers have to be unique and give an informative 

description of the referred Object. The architecture provides an umbrella under which 

object are stored, in addition to a naming schema that defines the rules for naming the 

resources. 

3.2. FORMATTING AND UNIFICATION 

The Formatting and Unification Layer is responsible for delivering information 

description methods and data filtering mechanisms. It offers a unified and homogeneous 

view aiming the standardization of the filtered data. The resulting data are consumed 

through services. Thus, inheritably loose coupled and discoverable.  

Indeed, the main difference between data analytics at the Cloud level and at the 

edge level of the network is the quantity of data. That is, while data analytics at the edge 

of the network is performed continually on flowing streams of data, analytics at the 

Cloud level is dedicated to large amounts of data at rest. Hence, we consider the analytics 

at the Fog node as a successive processing channels [18] of real-time flows of data. 

 

Figure 20. Fog analytics channels 
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The Formatting & Unification layer handles the heterogeneity of the infrastructure 

from a data semantic perspective. Indeed, various aggregation algorithms can be 

implemented at the very edges of the network in order to provide enriched data. The Fog 

data-stream analytics can be broken into three simple stages, illustrated in Figure 20. 

- Raw data input: the raw data coming directly from the object data-source (i.e. 

sensors) through the associated Adapter into the analytics unit. 

- Analytics Unit (AU): the AU acts on the raw data by filtering them, combine 

or separate them as needed. For instance, it may organize them by time 

windows or execute divers analytical functions. 

- Output data streams: the data that is organized, well formatted and ready for 

delivery to the top layer of the system. 

Each Processing Channel within the Analytics Unit can perform a real-time analysis 

function such as: 

- Filtering: Objects in the IoT are likely to generate an enormous quantity of 

data. However, most of these data can potentially be irrelevant. For example, 

a temperature sensor can be configured to send data on a regular basis, simply 

to confirm its reachability but not upon temperature changes. Hence, most of 

this data is not really relevant and can be ignored. That is, the filtering function 

is in charge of identifying important data. 

- Time windowing: Time context is a crucial aspect in real-time data streaming. 

Such operation can be used to correlate average data values from a sensor’s 

real-time data on a time-window basis. Figure 21 illustrates a Processing Chanel 

that reports every half-hour, the input data from a temperature sensor stream 

in a one-hour window. 
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Figure 21. Time window, an analysis function example 

- Formatting: Similar to advanced data analytics in the Cloud (data integration, 

data warehousing), Fog nodes must implement some simplified variation of 

data transformation. Such function is used to convert filtered data from one 

format or structure into a form that can be used for other purposes. Such 

operation can be as simple as converting temperature data from Celsius to 

Fahrenheit. 
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4. CHAPTER CONCLUSION 

This chapter has given an overview of the proposed architecture. This architecture 

constitutes an approach to solving interoperability issues close to the physical level. It 

offers an abstraction from any domain-specific scenarios to concentrate on domain-

agnostic perspectives that Fog Computing based solution may have in common. Yet, the 

adoption of such an architectural model could be achieved in a strait straightforward 

fashion, as shown in Chapter VI. We have covered the functional building blocks of the 

first level, the Middleware, in addition to the description of the operational behaviour 

and the flow of information within both the Adaptation and the Formatting & Unification 

layers. 

In the next chapter, we continue the presentation of the upper level of the 

proposed architecture. The Operational Level is intended for service presentation, 

management and transformation. An environment embracing such model will provide 

means for early data analysis, hence low latency and real-time responses. In addition, to 

providing an ecosystem for direct collaboration between services leading to more 

sophisticated applications. 
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THE COFOG OPERATIONAL LEVEL: 
SERVICE AND OPERATION LAYERS 

Cloud Computing takes advantage of a fairly predictable environment of 

homogenous computing, storage, and networking components to offer higher service 

aggregation without degrading performance. In other words, the Cloud offers an efficient 

alternative to owning data and processing centres. Thus, it liberates the end users from 

the specification of many details. However, Cloud Computing fails to meet the 

requirements of IoT in term of latency-sensitive applications, mobility support, wide geo-

distribution and high location awareness. On the contrary, while Fog Computing might 

compliment the Cloud at the edge of the Internet, it bestows new breed of services and 

applications meeting the previously cited requirements. Therefore, Fog applications do 

not ultimately fit the Cloud Computing paradigm, and they include: 

- Applications that require very low and predictable latency: shop-floor 

monitoring, gaming, video conference. 
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- Applications with high geo-distribution nature: wind farms, pipeline 

monitoring, environmental-sensing networks. 

- Services for fast and mobile participant: smart connected vehicle, connected 

rail. 

- Large-scale distributed control systems: smart grid, connected rail, smart 

traffic systems, pollution monitoring. 

The application area of the Fog paradigm is large and crosscuts multiple 

application fields. Therefore, it needs a common platform that supports a wide range of 

application domains, rather than single solutions for each domain. Hence, analogous to 

the Cloud, the Fog architecture must provide a service layer that leverages resource 

virtualization with dynamic-service orchestration [7]. Such ability enhances the 

scalability and the automation of service management. In addition, the service layer must 

offer a highly abstract and generic APIs in order to accelerate and ease the deployment 

of Fog service-based systems. 

In the previous chapter, we have introduced our proposed architectural 

framework. In this chapter, we present the architecture’s Operational Level. We provide 

an overview of its principles, components, and the main supported features. In addition, 

this chapter comprises sections dedicated to more details on each component of this level, 

along with tools for Service and Operation definition and management. 
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1. THE OPERATIONAL LEVEL, AN OVERVIEW 

Fog nodes provide a large number of services with a wide range of capabilities. 

Orchestrating such services, on a large number of nodes, requires dynamic and policy-

based life-cycle management. This orchestration is achieved in the Service Layer via the 

following components: 

- A Service Template Repository that facilitates the introduction of new types of 

services.  

- A Service Factory in charge of the process of service instantiation that satisfies 

a given Service Request. 

- A Service Container capable of bearing the management functionalities and the 

performance requirements of edge devices. 

Furthermore, the Operational Level augments device-based static services with 

more complex dynamic services. That is, static services leverage virtualized devices by 

presenting their data and capabilities as usable services (Figure 22). 

 

Figure 22. Graphical representation of a static service 

Whereas, dynamic services augment the existing devices virtualization and/or the 

provided static services. The definition of such mechanism is provided by the Operation 

Layer through a set of Operations, and based on the service request and contextual 

information (Figure 23). 
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Figure 23. Graphical representation of a dynamic service 

Services are accessed via Service Requests. The Service Request Analyzer function 

matches such incoming requests with the corresponding service template. Thus, 

constructing contextual constraints as expressed by the request, and eventually handing 

on the resulting service specification to the Service Container for execution. 

 

Figure 24. Components in the Operational Level 

Finally, the discovery of services is based on a Data Sharing Model. This model 

relays on a propagation query-response process. To summarize, Figure 24 illustrates an 

overview of the main functions of the Operational Level and the architecture entities they 

interface with. Next sections present more details on the various components of this level, 

alongside their operational behaviours. 
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2. SERVICE MODELING AND MANAGEMENT 

2.1. SERVICE TEMPLATE 

A Fog node, in its approach of functioning, supports and offers an arbitrary 

number of service-types along with their instances, and this, in one or more application 

domains. Therefore, to introduce a new type of services, a Service Template is added to the 

Service Template Repository. This way enables the platform to support a hypothetically 

wide range of Service Requests. Such requests, when issued, they express the goals and the 

needs that users and applications ask the platform to fulfil. Hence, the reception of a 

service request result in the selection and instantiation of a service template according to 

the request provided parameters. 

 

Figure 25. Service container: template instantiation 

As shown in Figure 25, the Service Container component is responsible for 

performing the template instantiation (Service Factory), and produces a service execution 

order (Service Execution Pool). In this perspective, a service is considered as a faithful 

representation of one or many virtualized data sources (sensors, API, web services) 
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and/or data consumers (actuators, controllers). Thus, a service template must comprise 

mainly a set of this service type’s identifiers, parameters, capabilities and commands; and 

it is defined as follows: 

A service 𝑆 is couple <data, context>, where: 

- 𝑑𝑎𝑡𝑎 =	< d, frq, {opt} > such as: 

- d = {t, u}, where t is the data type and u is the unit of this data type, 

- frq = <start, end, cron>, where start represents the start date, end the end date, 

and cron is a Unix Crontab-like expression that defines the frequency at which 

the data is collected, 

- {opt} might be used to specify other options in the form of a set of couples 

<attribute, value>. 

- 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =	< lat, lon, {opt} > where: 

- lat and long represent, respectively, the latitude and the longitude of the 

geographical location of the IoT object, 

- {opt} might be used for including other context-related information in the form 

of a set of couples <attribute, value>. 

For instance, Service Templates may be stored in a YAML [17] format and queried 

by the Service Request Analyzer component. As illustrated in Figure 26, this description 

includes service’s parameters and features that need to be met. 
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Figure 26. YAML service template for a Smart Temperature Service 

2.2. POLICY-BASED MANAGEMENT 

The Service Container provides a policy-based management framework. This 

framework is convenient to administer business policies, manage, and monitor the Fog 

platform. For instance, in a concrete scenario, administrators can interact with such 

orchestration framework via an intuitive user interface. 

 

Figure 27. Policy-based management framework 
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Service Template: 
  Name: Smart Temp 
  Description: > 
      Smart temperature service 
  Data: 
    - Type: Temperature 
    - Unite: Celsius 
    - Frequency: 
      - Start: 2017-10-01 21:59:43.10 
      - End:  2017-11-30 01:59:43.10 
      - Cron: 30 * * * * 
  Context: 
    - Location: 
      -  
        Latitude: 46.804334 
        Longitude:  -71.980912 
        Altitude: ~ 
  Command: 
   - name: getTemperatureC 
   - parameters: ~ 
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Furthermore, by defining Generic Policies, the framework can be extended to 

support a wide variety of policies. The following are few examples of the functions that 

policies may include: 

- Policies to specify thresholds for load balancing such as the maximum number 

of users, connections, CPU load, etc. 

- Policies to specify QoS requirements (network, storage and computing) 

associated with services such as minimum delay, maximum rate, etc. 

- Policies to configure service instance in a specific setting. 

- Policies to associate power management capabilities of the Fog node. 

- Policies that specify how and what services must be chained before delivery – 

e.g., healthcare services before gaming. 

Business policies specified via the use of the framework are pushed to a Policy 

Directory (Figure 27). The Service Container’s policy management may be triggered by an 

incoming service request, service instantiation, etc. Hence, relevant policies are gathered 

from the policy repository - i.e., those which are related to the service. In addition to 

retrieving meta-data about currently active service instances. Both these two sets of data 

provision the life-cycle management of services on a Fog node. The Service Container may 

also reach out to the policy repository to identify the Fog node and network configuration 

policies while provisioning the new instance. Such management functionality provides 

better resiliency, scalability, and faster orchestration for geographically distributed 

deployments. 
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2.3. SERVICE GENERATION AND EXECUTION  

Based on the logical description of the requested service, the Request Analyzer 

instructs the Service Container on which service instances to construct, deploy and execute. 

Therefore, the analyzer should obtain all information and context constraints from the 

Service Template Repository, before issuing service execution instructions. The advantage 

of this architectural resides not only in enhancing the modularity and reusability 

qualities, but also in the fact that service-related dependencies are analyzed prior to 

spending valuable real-time execution resources. 

As mentioned in the previous section, internal management of the Service Container 

is based on a set of policies. Hence, the instantiation of a service is subject to the 

satisfaction of the adequate policies. Upon the satisfaction of such policies, the Service 

Container send an instantiation order to the Service Factory with the Service Template. The 

enriched data provided by the instantiated service may be presented for example via a 

RESTful HTTP Request-Response or an MQTT Publish-Subscribe interface. 

That is, the “normal” service delivery is based on the presence of the requested 

service among predefined services. However, the smartness of a Fog node resides on its 

capability to provide dynamically constructed services. Therefore, triggered by the 

absence of a service, the Operation Manager tries to fulfil the service request by using a set 

of Operations. This process is the topic of the next section. 
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Figure 28. Service execution and delivery process 

It is worth mentioning that security, as a non-functional requirement, can be 

plugged in a given point of the service creation process. For instance, as illustrated in 

Figure 28, the access control model is deployed at the level of the Request Analyzer.  
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Thus, the Policy Enforcement Point (PEP) can intercept service execution requests. 

The interception of these request generate events that are signalled to a Policy Decision 

Point (PDP) component. This late component evaluates security policies and return 

enforcement actions to the PEP. The result of the policy evaluation may allow, deny, 

modify, or delay the execution requests in case policies controlling the respective request 

are already deployed. More information on the access control model are presented in the 

next chapter. 

3. LEVERAGING SERVICE WITH OPERATIONS 

3.1. OPERATION DEFINITION 

As mentioned earlier in this chapter, the Operation Layer provides mechanisms to 

leverage static services. Indeed, given a set of available web services, a service request 

and contextual information, the main problem of the Service Layer is to automatically find 

a web service satisfying the request. However, is it possible that the requested service do 

not exist. In such case, the data from one or many sources (sensor date, classical web 

services, etc.) are subjected to more treatments, thus ensuring the creation of the desired 

service. This is achieved by means of a set of operations that are applied to existing 

services. Those operations may be any transformation, aggregation, or composition 

primitive. The key element for an automatic Operation execution is through a semantic 

representation of such applications. This machine-readable representation allows the 

operation execution-engine to find a correct, consistent and optimal response to the 

request. 

First, to formalize the notion of Operation and its composition, let ℐ<, 	ℐ=, 	 ⋯ ℐ?	|	𝑛 ∈

ℕ  be the sets of input parameters, 𝒪<	, 	𝒪=, 	 ⋯𝒪D	|	𝑚 ∈ ℕ  the sets of output parameters, 
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and ℛ a Relation of degree 𝑛 +𝑚. An Operation (op) defines a set of inputs ℐ	 ⊆

	ℐ1 × 	ℐ2 × 	⋯ℐ𝑛, a set of outputs 𝒪	 ⊆ 𝒪<	 × 	𝒪= × 	⋯𝒪D, and a formula that maps the 

relation ℛ  to the (𝑛 +𝑚)-ary relation of all (𝑛 +𝑚)-tuples from ℛ. 

𝑜𝑝	: = 	ℛ	|		ℐ< × 	ℐ= × 	⋯ ℐ? → 	𝒪<	 × 	𝒪= × 	⋯𝒪D  

Equation 1. The operation's formal definition 

We assume that for every Operation (𝑜𝑝) invocation with input parameters such 

as for every parameter 𝛼 ∈ ℐP	|	i: 1 → n, the relation ℛ returns all the output parameters 

where for every output parameter 	𝛽 ∈ 	 𝒪𝑗	|	j: 1 → m. 
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Where ℐ< × 	ℐ= × 	⋯ ℐ? is the domains of input parameters, and 𝒪<	 × 	𝒪= × 	⋯𝒪D 

is the range of output parameters. 

For instance, let 𝑅 be the operation that convert temperature from Celsius to 

Fahrenheit (cTof). This relation is a binary relation over 𝐶	 × 	𝐹, that maps ℃ to ℉. Such 

relation is the function 	𝑓: 𝐶 → 𝐹	|	𝑓(𝑥) = 1.8𝑥 + 32, and would be stored for example in 

YAML format as follows (Figure 29):  

Operation: 
  Name: cTof 
  Summary: > 
    Simple Celsius to F conversion 
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  Input: 
    - x: {Type: Temperature, Unit: Celsius} 
  Output: 
    - y: {Type: Temperature, Unit: Fahrenheit} 
  Formula: $y = 1.8 * $x + 32 

Figure 29 . An example of a simple temperature conversion operation 

We distinguish between two kinds of operations: conservative and non-

conservative. A conservative operation (e.g. the cTof operation) is simply any operation 

for which the result data type belongs to the set of already defined data format. In 

contrast, a non-conservative operation results in a new data format. 

3.2. REQUEST-OPERATION MATCHING 

The elegance of a Fog node resides on its capability to dynamically construct 

services. As illustrated in Figure 28, the absence of a service that fulfils a given request, 

activates the Operation Manager in order to match the request with the corresponding 

Operation. Matching between an Operation and a Service Request consists essentially of 

matching all the output parameters of the Operation and the parameters of the request. 

Hence, request parameters are matched against all the Operations stored in the Operation 

Repository at the level of the Fog node. 

The next figure illustrates in details the pseudo-code of the matching algorithm : 
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Figure 30.  Algorithm for Request-Operation matching 

That is, a match is recognized if and only if for each parameter of the request, there 

is a matching output in the Operation. Thus, the degree of success depends solely on the 

1 procedure MatchRequestOperation (sRequest, operationList)

2 matchList ¬ empty list

3 for ∀Opi ∊ operationList do

4       if isMatch(sRequest, Opi) then

5 matchList ¬ matchList + {Opi}

6       end if

7    end for

8 end procedure

9

10 procedure isMatch(sRequest, Op)

11 reqParam ¬ fetchParam(sRequest)

12 opOutput ¬ fetchOutput(Op)

13 matchDegree ¬ 0

14   for ∀Pri ∊ reqParam do

15      for ∀OpOuti in opOutput do

16 if Pri equals OpOuti then

17 matchDegree ¬ matchDegree + 1

18 end if

19 end for

20   end for

21   if matchDegree / length(reqParam) equals 1 then

22       return true

23 end if

24 return false

25 end procedure
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degree of matching: if one of the request output is not matched by any of the Operation 

outputs, the match fails. 

4. SERVICE DISCOVERY AND DATA SHARING MODEL 

Fog services discovery mechanisms enable the search and the discovery of the 

available services across the Fog nodes. A Fog node uses the Discovery Component to 

either send discovery request or perform discovery request processing. This section gives 

further details on such processes. 

4.1. DATA SHARING MODEL 

The service discovery mechanism is  based on a data sharing model (Mds) [117]. 

Service-discovery process in such model is composed of three phases: 

- Service Discovery: it uses whitelists and blacklists to enforce a propagation-

like query-response mechanism. Such mechanism allows a decentralized 

discovery of services. 

- Service Selection: the selection of a service passes through 1) a preselection 

step where both the service request and the service response are compared 

against each other to determine the rate of correspondence between them, 2) 

and a selection step where a global rating value is associated to each 

preselected service. The first service with the highest rating value is then 

selected. 

- Service Consumption: this is the final phase and it refers to the delivery of the 

service. The consumption of a given service is subjected to the attributes 

defining such service. For instance, consuming a temperature service must 
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start and finish following the 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑	values defined in the 𝑓𝑟𝑞 attribute 

provided by the service definition. 

4.2. SERVICE DISCOVERY 

The service discovery in the data sharing model relays on a propagation-like 

query-response model. To make the discovery process faster and more accurate, 

discovery requests are structured by specifying the set of nodes it crosses. In addition, 

the service template is also added as a search constraint that will be taken into account 

by the Discovery Component. Next to search constraints, the discovery mechanisms 

consider the access rights regarding the client that performs the discovery request. 

Specifically, the selection process uses a Whitelist-Blacklist mechanism to enforce a 

simple and a kind of “friends of my friends are my friends” selection policy. While the 

whitelist contains actors that a given actor trusts, the blacklist contains actors that are to 

be avoided in the collaboration process. The propagation strategy is depicted in Figure 

31. 
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Figure 31.  Data sharing model for IoT: Propagation-based service discovery 

In this context, it is worth mentioning that an actor represents any object, service 

or application that might invoke a service discovery request. Actors are defined as follow: 

An actor 𝐴 is represented by a set {< 𝑂<, 𝑆<, 𝑟< >,< 𝑂=, 𝑆=, 𝑟= >,… 	< 𝑂?, 𝑆?, 𝑟? >} , 

where: 

- i	 ∈ [1, n], 𝑛 is the number of objects an actor represents. 

- 𝑂P 	∈ 	𝑈t  ;𝑈t the universe of all IoT objects 

- 𝑆P 	 ∈ 	𝑈u ; 𝑈u the universe of all IoT services 

The processing of a discovery request is depicted in Figure 32. First, an actor 

formulates a service request that describes the needed service. Using its Discovery 

Component, this request is forwarded to all actors present  in the Whitelist.  
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Figure 32. Service discovery request process 

Upon the reception of such request, the Request Analyzer forward the request to 

the local Discovery Component. At this level, the request may be ignored if the request’s 

Actor is listed in the Blacklist. From this point, the Service Container handles the 

discovery request as a service request, in the same fashion depicted in section 2. In 

addition, it forwards the request to all actors in his whitelist, along with sending back a 

discovery response describing the service that matches the requested service. 
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5. CHAPTER CONCLUSION 

This chapter presented service definition, management and transformation 

components at the Operational Level.. Services that can be leveraged through the 

application of a set of Operations. The next chapter, raises questions about the principal 

requirements of Fog Computing regarding security in general and access control 

mechanisms in particular. The answers to these questions have shaped the design of the 

proposed access control mechanism, which is presented in the next chaptre. 
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A COLLABORATIVE ACCESS CONTROL 
FOR THE COFOG ARCHITECTURE 

Security issues are at the core of collaborative Fog Computing. An infrastructure 

intended to enable collaboration among devices must target primarily easiness and 

transparency. However, the security aspect of that same system seeks privacy, 

authenticity and data integrity. That is, there is a compromise between openness 

necessary for the collaboration, and the restriction required by a secure system. This 

compromise gives security problems a multidimensional nature [24]. Among the many 

dimensions of the security problem, Access Control (AC) is highly important and one of 

the most critical aspects. Similar to conventional infrastructures, the main function of AC 

mechanisms is to guaranty right rights to the right subject (user) on the right object. In 

contrast with the conventional infrastructures, the Internet of Things has its own set of 

inherited and specific issues and challenges. In this chapter, we present the 

comprehensive study that helped us designing an access control mechanism for the 



 

 92 

proposed Fog Computing architecture. We raise questions about the main considerations 

regarding the requirements of Fog Computing, and the criteria that access control models 

must meet to be suitable for collaboration in such an environment. The answers to these 

questions have shaped the design of the proposed access control model 

1. ACCESS CONTROL REQUIREMENTS FOR FOG COMPUTING 

The case here transcends the authentication of subjects and their roles. The Internet 

of Things is a demanding environment; an access control mechanism must address the 

requirements of collaboration in this environment. We can summarize those 

requirements as follows. 

- The first thing to come to mind when dealing with the Internet of Things is the 

scale. The huge number of objects involved makes the coordination and the 

performance of tasks difficult, it must not affect the scalability of the access 

control model. 

- The actors in such network are highly dynamic. The Internet of Things is by 

nature dynamic: new devices are continually deployed and the already 

connected ones are probably physically on the move. The access control model 

should support changing policies at runtime according to the actors’ 

dynamics. 

- The actors are also resource-restrained. Hence, the access control model 

should perform with a reasonable resource cost. 

- The access control has to be suitable for groups and fine-grained access. That 

is, the level of granularity should not be a difficulty in defining security 

policies. 
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- High abstraction of access policies is a requirement. A generic access control 

model supports more expressive policy definitions. This is a core requirement 

since the access authorizations are based on a variety of information: data type, 

frequency, location, service and so forth. 

- In addition, high-level definition of authorizations provides better handling of 

the environmental complexity. 

- Although, depending on the design decisions derived from the 

aforementioned requirements, the access control must provide a suitable and 

easy to use interfaces for both consumers and devices. 

The aforementioned list of requirements is recommended for a Fog environment 

in the Internet of Things. However, one must admit that listing all the requirements for a 

practical collaboration is simply pointless, for it is hard to predict all the possibilities and 

variations within Fog Computing. Instead, we can generalize the criteria in designing an 

access control model for Fog Computing systems. Such criteria have been deducted from 

the above requirements and are listed as follows. 

- Scalability: To ensure the scalability of the system, the access model should 

support extensible polices specification and definition mechanisms. 

- Dynamism support: The access control model needs to be active in its handling 

of the management of actors, the assignment of access rights and 

authorizations. 

- Contextual information: Context-awareness is a building block of applications 

powered by the IoT. Contextual information plays a significant role in any 

collaboration and in the process of authorization. Moreover, it is important to 
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know to which extent the access control model is utilizing such information to 

better secure the whole system. 

- Granularity: Often, in the scenario of collaboration, subjects need specific 

permissions on an object, over a specific period of time, and at a particular step 

of the collaboration procedure. In such cases, it is not sufficient to have a set of 

rules for a set of subjects. Thus, while preserving an adequate level of 

complexity, a fine-grained capable access control model is needed. 

- Least authority principle: This well-known principal of security is still valid in 

the context of Fog Computing. It helps reduce the risk of breaches and the 

complicity of the model by eliminating unnecessary subject privileges. 

- Separation of duties: In this context, the access control model must ensure that 

a subject has been given only the responsibilities for the current request 

function. 

2. THE COLLABORATIVE ACCESS CONTROL MODELS 

We have evaluated a set of access control models that have been proposed and 

used for the Internet of Things (see Chapter III). This section presents the adaptation of 

the Role-based and the Attribute-based access control models to fulfil the criteria 

illustrated in the previous section. The access control model is designed following the 

service-based data sharing model (Dsm) approach presented in the previous chapter. 

2.1. COLLABORATIVE ROLE-BASED ACCESS CONTROL 

The Role-Based Access Control model (a.k.a. RBAC) was formalized by Ferraiolo 

and Kuhn [24] in 1992. It was designed to overcome the burden of traditional Access 
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Control Lists [24] by reducing the cost of access management. Nowadays, the RBAC is 

still predominant and constitutes the base model upon which many advanced access 

control systems are proposed. The Collaborative role-based access control (CollRBAC) is 

an adaptation of the RBAC model to support collaborative Fog computing environment 

in the IoT. The following are concept definitions and redefinitions required for such 

adaptation. 

2.1.1. Definition: Permission 

Given 𝑈t the universe of all IoT objects, 𝑈u the universe of all services, and UOP the 

universe of all operations, a permission is defined as a triplet < 𝑂P, 𝑆P, 𝑂𝑝P > such that: 

- 𝑂P 	∈ 	𝑈t 

- 𝑆P 	 ∈ 	𝑈u 

- 𝑂𝑝P 	∈ 	𝑈tv  

2.1.2. Definition: Operation 

An Operation 𝑂𝑝P 	∈ 	𝑈tv  is essentially any access with read or write to the data 

provided by a given service or the metadata governing the generation of such data. 

2.1.3. Definition: Role 

Given 𝑈vwxD	the universe of all permissions, a role 𝑅 is defined as a finite set of 

permissions such as: 𝑅 = {𝑃𝑒𝑟𝑚P|𝑃𝑒𝑟𝑚P 	∈ 	𝑈vwxD} 

2.1.4. Definition: Role Assignment 

Given 𝑈z{|w	the universe of all Roles, and 𝑈}~��the universe of all users, the user-

role assignment application 𝔸� is a non-injective and non-surjective application 

𝔸�:	𝑈}�wx → 	𝑈z{|w . 
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Figure 33. CollRBAC authorization assignment mechanism. 

The essence of CollRBAC is that instead of assigning them directly to individual 

users, permissions are assigned to roles. A permission grants access to a role 𝑅 for a 

unique operation 𝑂𝑝 on a unique service	𝑆 of an object 𝑂 (Figure 33.). Hence, roles are 

created for various task functions, and users are assigned to roles based on their 

qualifications and responsibilities. 

The procedure of specifying user authorizations is divided into two logically 

independent phases. The first phase, which assigns users to roles: the user-role 

application assigns a set of roles {𝑅} to the appropriate user 𝑈P such as: 

𝑎𝑠𝑠𝑖𝑔𝑛𝑅𝑜𝑙𝑒(𝑅, 𝑈P) ∶ 𝑈P ∈ 𝑈}�wx ∧ 	𝑅 ∈ 𝑈z{|w ∶ 𝑈P = 𝑈P 	∪ {	𝑅	} 
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The second phase which assigns access rights for operations on objects to roles 

such as: 

𝑔𝑟𝑎𝑛𝑡𝑃𝑒𝑟𝑚(𝑅P, {𝑃𝑒𝑟𝑚}) ∧ ∀	𝑃𝑒𝑟𝑚P ∈ {𝑃𝑒𝑟𝑚},𝑃𝑒𝑟𝑚P ∈ 𝑈vwxD → 𝑅 = 𝑅 ∪ �𝑅P, {𝑃𝑒𝑟𝑚}� 

- 𝑔𝑟𝑎𝑛𝑡𝑃𝑒𝑟𝑚 associates a set of permissions {𝑃𝑒𝑟𝑚}	to the corresponding role 𝑅 

within the framework. 

𝑟𝑒𝑣𝑜𝑘𝑒𝑃𝑒𝑟𝑚(𝑅P, 𝑃𝑒𝑟𝑚P) ∧ ∀	𝑃𝑒𝑟𝑚P ∈ 𝑈vwxD → 𝑅 = 𝑅 − {𝑅P, 𝑃𝑒𝑟𝑚P} 

- 𝑟𝑒𝑣𝑜𝑘𝑒𝑃𝑒𝑟𝑚 detaches a permission 𝑃𝑒𝑟𝑚P	from a given role. 

2.2. COLLABORATIVE ATTRIBUTE-BASED ACCESS CONTROL 

The Attribute Based Access Control model [66] (ABAC) uses proprieties associated 

to both the subject and the object of the access request, in addition to the environmental 

properties in order to grant authorizations. Upon the reception of a service request, an 

access permission system allow or deny access to the requested service. When an access 

request is made, Attributes and Access Control Rules are evaluated by the Policy 

Enforcement and Decision mechanism to provide the access decision (Figure 34). 



 

 98 

 

Figure 34.Collaborative Attribute-Bases Access Control Model 

The following definitions extend the existing concepts required for the adaptation 

of ABAC to a collaborative Fog environment. 

2.2.1. Definition: Context 

Context is the set of attributes describing the state of the environment, the user 

and the service subject of the current demand. Contextual attributes are for example 

location, time and so forth. 

2.2.2. Definition: Access Control Rule 

Given a service request	𝑅𝑠𝑑, and the context of this request	𝐶𝑡𝑥, the access control 

rule determines whether the user who sent the request has the right to access a given 

service 𝑆. 

The access rule function, denoted by	𝑓(), is defined as follows:  

𝑓( ): 𝑅𝑠𝑑. 𝐴. {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒}	× 	𝑆. {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒} × 	𝐶𝑡𝑥. {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒} → [𝑡𝑟𝑢𝑒|	𝑓𝑎𝑙𝑠𝑒] 
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The function returns a Boolean value that is equal to true when the access is 

granted, otherwise the value is equal to false. 

2.3. COLLABORATION ACCESS MODELS COMPARISON 

We have evaluated the proposed access control models against the set of criteria 

deduced from the Fog requirements. Both models are adapting features of trusted and 

the largely known RBAC and ABAC models. Thus, they inherently support the well-

known principles of Least Privilege and Separation of Duties. However, when it comes 

to the collaboration dimension, every model shows its particularities. Table 3 illustrates 

this comparison. 

Table 3. Summary of the comparison between CollRbac and CollAbac 

 CollRbac CollAbac 

Least Privilege 
Principle Yes Yes 

Separation Of 
Duties Yes Yes 

Scalability Scalable to a certain extent. With the 
growth of actors in the collaborative 
network, the huge number of objects 
and services may lead to an explosion 
of roles. 

Providing subject with attributes may 
have an overload on the framework. 
Services and context attributes are 
basic building blocks. Thus, no 
specialized mechanism are to be 
deployed for this purpose. 

Dynamism 
Support 

In relation with the scalability 
criterion, the constant movement of 
actors in the network may lead to an 
overload on the access-roles 
management process. 

The active nature of the ABAC, makes 
it able to handle the dynamism of a 
collaborative system. 

Contextual 
Information 

Does not consider contextual 
information in the decision making 
mechanism 

The context attributes provide a fairly 
representation of the contextual 
information. 

Granularity Low: lacks the ability to specify a 
fine-grained control on individual 
users in certain roles and on 
individual object instances. 

High through attributes 
representation. 
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Flexibility Low, regarding the responsiveness to 
the environment. High due to its high granularity. 

 

Indeed, from a collaborative perspective, the fact that access rules assignment is 

an application between groups of users on a set of objects is not fully sufficient. Often, a 

service in an instance of an actor might need specific permissions on an object at a 

particular time interval during the collaboration. Although the CollRbac access control 

has been augmented by the notion of operation, in comparison with the CollAbac it fails 

to provide the needed high level of fine-grained control. In addition, a comparison of the 

authorization mechanisms shows that CollAbac requires more complex trust 

relationships. In other words, CollAbac authorizations are derived directly from many 

sources such as the subject attributes, service context, and service data context. 

3. COLLABORATION ACCESS POLICY PROCESS 

As illustrated in Figure 34, CollAbac mechanism passes throughout the policy 

enforcement and decision. Indeed, within the authorization mechanism exist two main 

functions: the policy enforcement point (PEP) and the policy decision point (PDP). Given 

𝑅𝑠𝑑 a request to access a service’s data, the PEP extract the request’s service attributes; a 

valid service request is a request that matches the demanded service definition. This 

match is founded on the satisfaction of the following conditions: 

- 𝑅𝑠𝑑. 𝑑a𝑡𝑎. 𝑑. 𝑡 = 𝑆. 𝑑𝑎𝑡𝑎. 𝑑. 𝑡, 

- 𝑅𝑠𝑑. 𝑑𝑎𝑡𝑎. 𝑑. 𝑢 = 𝑆. 𝑑𝑎𝑡𝑎. 𝑑. 𝑢, 

- 𝑅𝑠𝑑. 𝑑𝑎𝑡𝑎. 𝑓𝑟𝑞. 𝑠𝑡𝑎𝑟 ≥ 𝑆. 𝑑𝑎𝑡𝑎. 𝑓𝑟𝑞. 𝑠𝑡𝑎𝑟𝑡, 

- 𝑅𝑠𝑑. 𝑑𝑎𝑡𝑎. 𝑓𝑟𝑞. 𝑒𝑛𝑑 ≤ 𝑆. 𝑑𝑎𝑡𝑎. 𝑓𝑟𝑞. 𝑒𝑛𝑑, 

- 𝑅𝑠𝑑. 𝑑𝑎𝑡𝑎. 𝑓𝑟𝑞. 𝑐𝑟𝑜𝑛 ⊆ 𝑆. 𝑑𝑎𝑡𝑎. 𝑓𝑟𝑞. 𝑐𝑟𝑜𝑛, 
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- ∀op𝑡P 	 ∈ 	𝑅𝑠𝑑. 𝑑𝑎𝑡𝑎. {𝑜𝑝𝑡}, ∃	𝑜𝑝𝑡� ∈ 	𝑆. 𝑑𝑎𝑡𝑎. {𝑜𝑝𝑡} ∶ 𝑜𝑝𝑡P. 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 =

𝑜𝑝𝑡�. 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∧ 𝑜𝑝𝑡P. 𝑣𝑎𝑙𝑢𝑒(⊆	∨	=)	𝑜𝑝𝑡�. 𝑣𝑎𝑙𝑢𝑒 , 

Upon the validation of the request, the PDP makes the determination of whether 

or not to authorize the access. Such authorization is based on the extracted attributes and 

the application of the access rule function 𝑓(). 

- 𝑓() ∶ 𝑅𝑠𝑑. 𝑐𝑜𝑛𝑡𝑒𝑥𝑡		 × 	𝑆. 𝑐𝑜𝑛𝑡𝑒𝑥𝑡	 × 	𝑅𝑠𝑑. 𝐴. {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒} → [𝑡𝑟𝑢𝑒|	𝑓𝑎l𝑠𝑒] 

- ∀𝑜𝑝𝑡P 	 ∈ 		𝑅𝑠𝑑. 𝑐𝑜𝑛𝑡𝑒𝑥𝑡. {𝑜𝑝𝑡}, ∃	𝑜𝑝𝑡� 	 ∈ 	𝑆. 𝑐𝑜𝑛𝑡𝑒𝑥𝑡. {𝑜𝑝𝑡} ∶ 	 𝑜𝑝𝑡P. 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒	 =

	𝑜𝑝𝑡�. 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒	 ∧ 	𝑜𝑝𝑡P. 𝑣𝑎𝑙𝑢𝑒	(⊆	∨	=)	𝑜𝑝𝑡�. 𝑣𝑎𝑙𝑢𝑒. 

Said differently, if the function returns true then grant subject 𝑅𝑠𝑑. 𝐴 access to the 

service	𝑆. 

4. CHAPTER CONCLUSION 

The Internet of Things emerges as a new paradigm to provide communication, 

data consumption, and data analysis solutions for smart devices. The adoption of the IoT 

model has led malicious attacks to shift their targets from desktops and servers to IoT 

devices and objects. The main reason behind this behaviour lays on the weak protection 

of smart devices and sensors, in comparison to sophisticated servers.  In addition, the 

nearness of such devices to the users makes them prone to leaking valuable information 

with catastrophic consequences. In this chapter, we proposed an Access Control 

approach for Fog Computing based on two well knows models: RBAC and ABAC. Across 

all the layers of the architecture, the Policy Enforcement Points component may be 

deployed to enforce access policies. The result of a policy evaluation may allow, deny, 

modify, or delay the execution requests in case policies controlling the respective request 
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are deployed. This mechanism leverages the security of data through the architecture and 

the access authorizations of its components. 
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INSTANTIATION OF COFOG, A PROOF 
OF CONCEPT AND EVALUATION 

The Internet of Things is a tool for humanity, which is proving its worth in almost 

every area that touches our daily life activities. It is and will improve the efficiency of all 

applications where it is used. In order to show the importance and the added value of 

our approach, this chapter discusses a Fog-based smart parking system that instantiates 

the CoFog architectural framework. Simulations applied through this case study show the 

differences between the traditional Cloud-centric approach, and the Fog-based approach 

using the proposed architectural framework. 

The CoFog architecture provides a generic Fog framework designed for any 

application in the Fog environment. Hence, no matter the size and the complexity of the 

targeted application scenario, it should be moderately easy to adapt the whole or part of 

the components of the different layers. Therefore, the case study described in this chapter 

toke the form of a feasibility study. Therefore, it has been led in three phases: the 
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instantiation, the design and implementation, and the evaluation phases. The 

instantiation phase answered the question about how to adapt the architecture to a real 

use case. The design and implementation phase showed how the different components 

of the architecture could translate to classes and modules of the targeted platform. The 

later phase focused on the execution and the evaluation of the footprint of the developed 

application on the host system. 

1. SMART CITY: A CASE STUDY ON SMART PARKING 

Smart Cities are one of the fundamental use-cases of the Internet of Things. A 

Smart City, itself, is a combination of various use-cases ranging from Smart Waste 

management systems to managing Energy Grid systems in large city areas. In this section, 

we present a case study on a Fog-based Smart Parking Management System. This case 

study aims at demonstrating how the proposed reference architecture may be used in the 

context of Automotive and Smart Mobility scenarios. We believe that smart devices and 

Fog Computing can, indeed, offer parking providers a digital backbone to consolidate 

parking space availability across multiple locations. In addition, to providing services to 

publish real-time status and to improve reservation, use, visibility and efficiency of 

parking spaces. The Fog-based Smart Parking proof-of-concept, implements services for 

the delivery of on-trip information to a car driver. Such services are based on the data 

coming from the parking sensors.  

The sensors deployed on parking spaces across the city, send data about wither a 

parking space is free or not. Those sensors may be heterogeneous and the data generated 

is formatted differently. This data pass through transformation and filtering processes. 
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As a result, the car driver receives information on the available parking sites around the 

position where the car is located at the moment.  

In this case study, we compare the performance of applications based on our Fog 

infrastructure, versus the typical Cloud implementation. Figure 35 illustrates the logical 

network topology for simulating both Fog-based and Cloud-based scenarios.  

 

Figure 35. Logical structure for Cloud-based scenario 
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Local area Local area

Sensing Infrastructure
Fog L

ayer
C

loud

sensors

fog node

router

client 
application

gateway

physical link (Serial Port, LAN, Wifi, …)

logical connection



 

 106 

of such tree-like topology are the edge devices (i.e., parking proximity sensors), and the 

root node represents the Cloud Computing infrastructure. Intermediate nodes in the tree 

represent intermediate network devices between the cloud and the edge –e.g., routers 

and gateways. Such devices –i.e., Fog nodes, are able to host applications by utilizing 

their compute, network and storage capacities.  

This next sections gives further details on the experimental setup used to simulate 

both scenarios. In addition to design decisions that have been made to implement the 

reference architecture. 

2. EXPERIMENT SETUP 

In the Cloud-based scenario, Cloud servers receives continuous update from the 

parking’s sensing infrastructure. This data is then filtered, transformed and queued in 

order to be analysed. Upon receiving a request from the client application, parking 

services on the Cloud respond by delivering the appropriate and nearest available 

parking spot for the vehicle. In contrast, although both scenarios share the same network 

logical infrastructure, Fog-based applications do not need a direct communication with 

the Cloud. Indeed, in the Fog-based scenario, Fog nodes handle the workload for a certain 

geographical region. Hence, applications communicate directly with the Fog nodes in 

their local area. 

In order to realize the intended scenarios as a set of computer simulations, many 

preparations had to be performed with regard to the following points. 
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2.1. SENSING INFRASTRUCTURE: 

The first goal regarding the sensing infrastructure is to simulate parking data as 

close to reality as possible. Hence, traffic data fed to simulation was obtained from the 

Simulation of Urban Mobility traffic simulator (SUMO) [93]. Despite being a traffic 

simulator, SUMO can be tweaked via configuration files to provide parking-like data 

(Figure 36). 

 

Figure 36. Tweaking SUMO for parking simulation 

Many Lane Area Detectors (E2)1 were defined and inserted in the parking space 

network. Such detectors act similar to tracking cameras –i.e., they save information about 

vehicles that cross over a certain position. 

                                                
1 http://sumo.dlr.de/wiki/NETEDIT#Lane_Area_Detectors_.28E2.29 
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2.2. CLOUD INFRASTRUCTURE: 

The Cloud simulation environment was implemented using CloudSim Toolkit for 

Modeling and Simulation of Clouds [122]. The CloudSim framework provides users with 

means to model and simulate the execution of Cloud-based services. Therefore, by 

extending the basic entities in the original simulator (i.e., Datacentre, Host, Storage, and 

Cloudlet), it was possible to build a simulation backbone for the Cloud-based scenario. A 

set of features can be associated with each entity (e.g., CPU, RAM capacity, uplink 

network bandwidth), which provide resourceful measurements to be utilized for final 

comparisons. 

2.3. OTHER PREPARATIONS: 

To isolate the sensing activities, the SUMO simulator was deployed in a separate 

machine. We assumed that such separated execution of the Fog node and the sensing 

infrastructure, gives better understanding about the overload and response delay proper 

to the Fog node deployment. Furthermore, it includes factors like network link and data 

transmission delays between sensors and the fog node, leading to more realistic results. 

In addition, to create a constrained execution environment for the Fog nodes, a 

platform virtualization software has been used. The Fog platform has been deployed on 

a virtual machine using VMware Fusion hypervisor [3][122], whilst the host machine is 

setup to connect to the network via Wi-Fi. 
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3. THE FOG PLATFORM: DESIGN AND IMPLEMENTATION 

The implementation of the reference architecture as a suitable platform for the case 

study, has been realized through the instantiation of each layer as a module of the 

platform (Figure 37). 

 

Figure 37. Instantiation of the Architecture 
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Hence, Figure 38 illustrates the resulting class diagram following the 

aforementioned decomposition. 

 

Figure 38. Class diagram for Fog nodes platform 

As depicted in Figure 38, a number of TraCIAdpater adapters has been designed to 

intercept the upstream of data originated from the SUMO simulator via a Connector 

(Figure 39). 
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Figure 39. Data acquisition and filtering 

In addition to intercepting data, a given adapter is instantiated using the 

corresponding sensor description file (Figure 40). Thus, incorporating all information 

about such sensor. 

// Load Sensor from description 
FileReader sensorDescriptionFile =  

new FileReader("sensrep/parking_detector.yml"); 
// Create Adapter 

TraCIAdapter pSensorAdapter =  

ApdapterFactory.createAdapter( 

TcpDevice.loadFromDescription(sensorDescriptionFile)); 

Figure 40. Loading sensors description files 

As shown in Figure 39, acquired data passes through two Processing Channels: 

Parking Data Transformation and Parking Data Filtering (Appendix B), and they are defined 

as follows: 

- Parking Data Transformation: this channel translates data from data about the 

halting time of vehicles, to whether or not a vehicle is present at a given 

moment. The new data format is more useful at the service level. 
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- Parking Data Filtering: this channel act as a filtering barrier that sends only the 

change in new data values. Hence, reducing the amount of data to be sent on 

the network. 

The execution of the operations is straightforward as shown in Figure 41. 

// Execute nested data filtering and transformation 
Datum<String> nd =  

new ParkingDataTransformation().execute( 
new ParkingDataFilter().execute(d)); 

Figure 41. Filtering and Transformation channels 
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4. PERFORMANCE EVALUATION 

The simulation of the Smart Parking system was carried out using the setup 

described in the first section of this chapter. This section presents and evaluates the 

results obtained, and demonstrates how different execution configurations affects the 

network overload and services latency. Indeed, to stress performance measurements –

i.e., network overload, memory usage, and response time, each scenario has been 

simulated with and without data analytics. In addition, the simulations have been 

executed using five configurations, each of which having three, ten, fifteen, twenty and 

thirty connected sensors respectively. 

4.1. NETWORK OVERLOAD 

The next two figures illustration the data overload on the network during the 

execution of both Cloud scenario and the scenario using only Fog nodes.  

 

Figure 42. Network overload: Fog vs. Cloud scenario using raw data 
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Contrary to Figure 42, Figure 43 provides network overload measurement when 

data analytics operations are included in the simulation. Overall, the increase of 

connected-sensor number results in a significant growth of the load on the network. Still, 

the burden on the network while using the Cloud is largely significant than while using 

the Fog. 

 

Figure 43. Network overload: Fog vs. Cloud scenario using analysed data 

An additional observation lays in the decrease of data overload induced by the use 
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Figure 44. RAM consumption in simulations with raw data 

The collected measurement data for the five configurations shows a slightly 

increase in memory consumption in both scenarios. In the first set of executions, where 
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Figure 45. RAM consumption in simulations with data analysis 

The aforementioned finding are direct consequences to the Fog node executing 

data acquisition and data analysis in the meantime. Besides, we noticed that executing 

the same simulation over the set of configurations, does not lead to drastic escalation of 

its memory usage. Thus, while the design itself demonstration a certain degree of 

scalability, the platform implementation need more refinement. 
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4.3. RESPONSE TIME 

The nearness of Fog nodes to user applications is a major fact in reducing latency. 

Indeed, Figure 46 illustrates the average response time between the user application and 

the Cloud server, and between the application and the Fog node.  

 

Figure 46. Comparing response time in Fog and Cloud application. 

As the figure depicts, the results show that end-to-end network latency has been 
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4.4. SUMMARY 

In this chapter, we introduced to the Smart Parking case study and how it 

constitutes a suitable use case to implement and validate the proposed architecture. Thus, 

showing the effectiveness of the proposed architecture. This case study was also used to 

show and compare the differences in using two scenarios: a traditional Cloud-based 

scenario and a Fog-based scenario using the proposed reference architecture. We 

presented the apparatuses used to deploy and run the simulation of each scenario, using 

five different configurations. In addition, this chapter emphasis on the platform design 

process and the implemented classes and components deduced from the reference 

architecture. 

The findings of this simulation procedures reinforce our belief that a suitable 

adoption of the proposed architectural framework can indeed leverage many dimensions 

of the Fog Computing issues. These findings, either points of strength or limitations, 

along with future work of improvement are discussed in the next chapter.   
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CONCLUSION AND PROSPECTS 

The Internet of Things has become, indeed, a reality. It fuels relentless 

transformation and convergence, comprises a new era of smart products, green 

initiatives, virtual reality, and augmented connectivity. This thesis anticipates the raising 

opportunities with this new paradigm, and presents an architectural model for 

collaboration in Fog Computing. We have demonstrated that, with automatic, resource-

aware and domain-agnostic service-based collaboration, it is feasible to provide 

augmented services and support real-time applications at the edge of the Internet. This 

chapter reflects on the contributions of this work, discusses prospects and future research 

directions, and concludes. 

1. OBJECTIVES SUMMARY  

Can we transform the edge of the Internet into a nest of collaborative objects of the 

IoT? The work presented in this thesis answers this question with the affirmation, and 
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transcends the theoretical proposition into providing a a proof-of-concept 

implementation. Indeed, following the idea of spreading intelligence to the edge of the 

Internet, our interest laid in extending the Fog Computing paradigm to embrace a thing 

collaborative model. In such computing model, objects would be enabled to exploit and 

collaborate with each other, in order to achieve common or distinct goals. We focused on 

delivering a architectural model that, in one hand, leverages the devices with services, 

and in the other augments data representation and consumption with local analytics. In 

addition, we have foreseen that aggregating sensing activities at a Fog level, constitutes 

an important building block to support more advanced collaborative scenarios. 

Therefore, powering Fog nodes with dynamic service creation was amongst our fixed 

objectives. Through composition, aggregation, transformation and other processes, new 

services would be dynamically created based on available services. A platform that 

follows such architectural model, would not see its full potential achieved, without 

objects being able to interact with each other. Hence, the goal of providing means of 

finding external functionalities has to follow some registration and look-up mechanism 

in a distributed fashion. Last but not the least, among the many facets of the non-

functional requirements of the architecture, we focused our interest on security, chiefly 

access control management. In order to guaranty right access rights to the right subject 

on the right object, an access control model that adapt to the particularities of Fog 

Computing environment had to be provided. Hence, a comprehensive study has been 

planned to better select a suitable approach to tackle this problem in a constrained 

environment. 
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2. A WORD ON THE CONTRIBUTIONS 

Indeed, the fundamental novelty of our research work is the introduction of an 

architectural model for collaboration in Fog Computing. The originality of this 

architecture resides in the benefits it bestows on Fog-based platforms and applications: 

- The architectural design allows platforms to implement all or parts of the 

architecture. Hence, the ability to be deployed in variety of environments 

spanning from core servers to edge endpoints –e.g., routers [2].The 

architectural design allows platforms to implement all or parts of the 

architecture. Hence, the ability to be deployed in a variety of environments 

spanning from core servers to edge endpoints –e.g., routers [2]. 

- The high level of abstraction and the flexible virtualization mechanism of 

heterogeneous physical resources provide platforms with means to exploit 

physical devices, APIs, web services and other data sources. Furthermore, the 

analytics Units offer a given platform the possibility to not only capture data, 

but also the capabilities of performing local and direct analytics on real time 

data. Thus, among other advantages, freeing the network from the burden of 

the continuous torrents of data toward the Cloud. 

- The mechanism of Operations leverages the platforms services with 

automatic, dynamic and on-demand service instantiation. It opens the doors 

wide for autonomous collaboration and more sophisticated applications 

[2].The mechanism of Operations leverages the platforms services with 

automatic, dynamic and on-demand service composition and instantiation. It 

opens the doors wide for autonomous collaboration and more sophisticated 

applications. 
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- The  IOTCollab Access Control Model [2] is[6] is a new way to perceive access 

control for collaboration. Its design supports the scalability and the dynamic 

nature of Fog Computing. While providing fine-grained and contextual-aware 

rules needed for the constrained devices of IoT. 

3. PROSPECTS BEYOND THE LIMITATIONS 

We have only started scratching the surface of the possibilities of Fog Computing 

and the Internet of Things in general. While this work has taken major steps into 

unlocking some of these possibilities, the presented architectural framework exhibits 

limitations that would be interesting to explore in the future. In this section, we revisit 

these limitations and highlight some of the exciting avenues for future research. 

In Chapter IV, we introduce the concept of Operation. Although its definition is 

formally abstracted, this concept need more expansion. In other words, the definition of 

formulas, within Operation, is limited to straightforward mathematical operations. 

Therefore, restraining the potential of such a concept. A future research direction would 

be toward defining a complete framework to express more sophisticated formulas. In 

addition, matching between a given request and a potential Operation, is based on strictly 

comparing request parameters against operation’s outputs. Hence, it does not take into 

account the cases where request parameters constitute a subset of the operation outputs. 

An avenue for future work is to leverage this algorithm with Ontology based matching. 

Although Things and applications in different Fog nodes have the ability to 

collaborate, the decision of when and what service to collaborate with is configured 

manually. Smart objects need to be fully autonomous in taking such decision, one 

direction of future research is to explore context-based inference mechanism.  
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As stated in the beginning of this chapter, the absence of another architecture to 

compare with. The case study was limited to an instantiation and an evaluation 

(simulation) at a small scale. Hence, a future work direction must be a large scale 

evaluation with real world sensors and data. In addition, the case study proved the 

adaptability and the easiness to instantiate the architecture in spite of the small scale of 

the application. Nevertheless, it is will be of great value to work more toward the 

automatization of the instantiation procedures. This automatization could, for example, 

take the form of a complete guide with detailed workflows. 

To summarize, we believe that future IoT systems will rely on the edge of the 

Internet to deliver assistance that touches our everyday lives, similar to how the Cloud 

provides us with indispensable services. This thesis has made multiple strides in that 

direction. It also builds on a deep understanding that Fog Computing introduces new 

systems and new services that require redesigning the entire networking and computing 

stack, from the hardware to the applications. We believe that this approach will become 

a necessity, since devices are becoming ever-more ubiquitous and as their services keep 

expanding in the upcoming near future. 
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APPENDIX A 
The Mobile Collaborative Computing Environment 

 
The Mobile Collaborative Computing Environment (CCE) introduces a new way 

to perceiving mobile collaboration between devices. This model exploits the increasing 

capabilities and the decreasing costs of handhelds to address the portability, 

heterogeneity, and error handling in a device collaborative-based network. The 

collaborative environment was designed as a generic structure of layers. Therefore, the 

model is extensible to house different devices (smartphones, tablets, desktops…) and 

network infrastructures (LANs, Wi-Fi, Bluetooth, etc.). As illustrated in Figure 47, the 

environment is organized in two main layers: the Components Layer and the 

Collaboration Middleware. 

 

Figure 47. The CCE modular architecture 

The first layer provides components to be used by the overlaying application layer, 

it contains: 

- The Job Component that provides an execution environment where the 

received tasks are executed and managed, 
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- The Distribution Component implements a scheduling policy based on 

devices configuration to ensure appropriate task scheduling, 

- The Task Tracking Component that distributes the task to be executed on 

available collaborators. 

The second layer, the Collaboration Middleware is a platform-agnostic set of 

modules that abstracts the underlying operating system and networks architecture. It 

provides the minimum required to allow mobile collaboration to occur between mobile 

peers. Thus, the collaboration occurs between handhelds of many categories following 

the process depicted in Figure 48. 

 

Figure 48. CCE's collaboration process workflow 

The key points of strength of this collaborative environment lie in its: 
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- Portability: regardless of the architecture and the operating system of the 

device, the model ensures the communication between the top and the bottom 

of the system; 

- Scalability: the model enables the collaborative network to scale with the 

dynamic change of users. 

- Robustness: the decentralized network provides resistance and fault tolerance;  

- Dynamic: collaboration networks construction and collaborators join are 

dynamic. 

A simple prototype has been developed and deployed to illustrate the 

collaboration process over the network. This prototype tokes the form of an Android 

distributed-application calculating the value of 𝜋. Indeed, the application was deployed 

on three mobile devices running Android, using UDP protocol for transmitting 

collaboration messages and results. Each device acted as an independent node in charge 

of executing a portion of the algorithm. The following chart (Figure 49) shows the 

comparison between local and collaborative calculation time. 
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Figure 49. Comparison of response time between local and distributed execution using 
CCE. 
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