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Kurzfassung

Die vierte Generation der Mobilkommunikationsnetze hat flächendeckende Verbreitung

erreicht, und die kommende fünfte Generation (5G) bildet einen signifikanten Anteil

der aktuellen Forschung. 5G Netzwerke sind darauf ausgelegt, in mehreren Aspekten

höhere Leistung zu erreichen, und neuartige Services zu unterstützen. Je nach An-

wendungsgebiet sind hierbei eine hohe Datenrate, geringe Latenz, hohe Zuverlässigkeit

oder die Unterstützung einer sehr hohen Anzahl verbundener Geräte nötig. Da die

erreichte Datenrate einer einfachen Punkt-zu-Punkt Verbindung bereits nahe an ihrem

theoretischen Optimum liegt, müssen in 5G mehr Ressourcen aufgewendet werden um

eine weitere Leistungssteigerung des Netzwerks zu erreichen. Mögliche Technologien

für zukünftige Mobilkommunikationsnetze sind unter anderem die Nutzung von sehr

großen Antennenarrays mit hunderten Antennenelementen oder eine Erweiterung des

verwendeten Frequenzbandes in den Millimeterwellenbereich. Diese und andere Tech-

nologien verlangen signifikante Modifikationen der Netzwerkarchitektur, und damit

hohe Investitionen des Netzwerkbetreibers. Eine bereits etablierte Technologie um

die Leistungsfähigkeit eines Mobilkommunikationsnetzes zu erhöhen ist eine räumliche

Verdichtung der Mobilfunkzellen. Dies wird erreicht indem die existierenden Zellen mit

hoher Sendeleistung durch eine größere Zahl kleiner Zellen unterstützt werden, was in

einem sogenannten ”Heterogenen Netzwerk” (HetNet) resultiert. Dieser Ansatz erwei-

tert die bereits existierende Architektur des Netzes und unterstützt die beschriebenen

weiterführenden Technologien, welche komplexere Hardware benötigen. Heterogene

Netze sind daher eine gute Übergangstechnologie für 5G und zukünftige Generationen

von Mobilkommunikationsnetzen.

Die signifikanteste Herausforderung von HetNets ist dass die Verdichtung des Netz-

werks für dessen Leistungsfähigkeit nur bis zu einem bestimmten Level förderlich ist.

Die erreichten Datenraten sind begrenzt durch die räumlich sehr nahen benachbarten

Zellen, und der ökonomische Betrieb des Netzwerks wird eingeschränkt durch den ho-

hen Energieverbrauch und Hardwarekosten, die durch eine große Anzahl an Zellen

entstehen. Diese Dissertation behandelt die Herausforderung, durch eine Verdichtung

des Netzwerks zuverlässige Leistungssteigerung zu erzielen und gleichzeitig die Service-

qualität und den ökonomischen Betrieb sicherzustellen.

Dieses grundlegende Problem wird auf mehreren Ebenen adressiert, die sich unter-

scheiden im Bezug auf den Zeithorizont in dem Maßnahmen zur Netzwerkoptimierung

eingeleitet, die nötigen Informationen gesammelt, und die Optimierungen durchgeführt

werden. Diese Zeithorizonte werden unterschieden in die Phasen der Planung, Konfigu-

ration und Operation. Optimierungsverfahren für die Energie- und Ressourceneffizienz

des Netzwerks werden hauptsächlich entwickelt für die Konfigurationsphase. Da ein
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Netzwerk mit gleichmäßiger Lastverteilung als Basis für weitere Optimierungen dient,

werden für die Planungs- und Operationsphase Verfahren entwickelt um diese zu errei-

chen und dauerhaft sicherzustellen.

Für die Planungsphase werden die Standorte neuer Zellen in einem existierenden

Netzwerk optimiert, und die Aktivitätsphasen der Zellen geplant anhand der zu er-

wartenden Auslastung. Es wird gezeigt, dass eine gemeinsame Optimierung der Stan-

dorte mehrerer Zellen einer konsekutiven Aufstellung im Bezug auf die Lastverteilung

des HetNets überlegen ist. Der Zeitplan für die Zellaktivität und die Länge der

jeweiligen Zeitphasen werden gemeinsam optimiert. Durch dieses, aus der Ver-

fahrenstechnik übernommene Konzept, erreicht die Planung der Aktivitätsphasen der

Zellen die beste Lastverteilung. Simulationsergebnisse zeigen dass die Auslastung von

überladenen Zellen effektiv verringert werden kann durch eine Optimierung der Auf-

stellungsorte und der Aktivität von Zellen.

Der Betrieb des Netzwerkes mit hoher Ressourceneffizienz und unter Sicherstellung

der Servicequalität wird erreicht durch eine Optimierung in der Konfigurationsphase.

Es wird ein Optimierungsproblem entwickelt um den Ressourcenverbrauchs des Netz-

werks zu optimieren mittels mehrerer Subnetze, die orthogonal zueinander mit un-

terschiedlichen Ressourcen operieren. Für dieses Problem, welches für größere Netz-

werke sehr hohe Komplexität aufweist, wird eine lineare innere Approximation gebildet,

welche fast optimale Ressourceneffizienz erreicht. Die Interferenzen werden während

der Optimierung dynamisch modelliert, wodurch im Vergleich zu gängigen Verfahren

die Auslastung von Zellen genauer approximiert werden kann.

Um den höheren Energieverbrauch, welcher durch ein dichteres Netzwerk entsteht, zu

verringern, wird die Sendeleistung und die Aktivität der Zellen im Netzwerk gleich-

zeitig optimiert. Für das sich ergebende Optimierungsproblem wird eine vereinfachte

innere Approximation gebildet. Mehrere Verfahren zur Optimierung des Energiever-

brauchs werden in einem simulierten HetNet getestet. Die entwickelte Methode erreicht

einen niedrigeren Energieverbrauch als gängige, heuristische Verfahren, und findet in

schwierigen Szenarien mit höherer Wahrscheinlichkeit eine Konfiguration für das Netz-

werk, die alle Bedingungen an die Servicequalität erfüllt.

Zuletzt wird das Problem adressiert, eine ausgeglichene Lastverteilung im Netz-

werk während der Operationsphase zu erhalten. Ein Verfahren basierend auf einer

Mehrklassen-Stützvektormethode wird genutzt um das Lastverteilungsproblem dezen-

tral zu lösen. Etablierte Methoden basieren häufig auf umfangreicher Kommunikation

zwischen Zellen um Optimierungsprobleme zentral zu lösen. Das entwickelte dezen-

trale Verfahren erreicht eine fast optimale Lastverteilung obwohl die durchgeführten

Optimierungen von den Mobilfunkzellen und Nutzern nur mit lokal verfügbaren Infor-

mationen durchgeführt werden.
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Abstract

With the fourth generation of wireless radio communication networks reaching matu-

rity, the upcoming fifth generation (5G) is a major subject of current research. 5G

networks are designed to achieve a multitude of performance gains and the ability

to provide services dedicated to various application scenarios. These applications in-

clude those that require increased network throughput, low latency, high reliability and

support for a very high number of connected devices. Since the achieved throughput

on a single point-to-point transmission is already close to the theoretical optimum,

more efforts need to be invested to enable further performance gains in 5G. Technol-

ogy candidates for future wireless networks include using very large antenna arrays

with hundreds of antenna elements or expanding the bandwidth used for transmis-

sion to the millimeter-wave spectrum. Both these and other envisioned approaches

require significant changes to the network architecture and a high economic commit-

ment from the network operator. An already well established technology for expanding

the throughput of a wireless communication network is a densification of the cellular

layout. This is achieved by supplementing the existing, usually high-power, macro cells

with a larger number of low-power small cells, resulting in a so-called heterogeneous

network (HetNet). This approach builds upon the existing network infrastructure and

has been shown to support the aforementioned technologies requiring more sophisti-

cated hardware. Network densification using small cells can therefore be considered

a suitable bridging technology to path the way for 5G and subsequent generations of

mobile communication networks.

The most significant challenge associated with HetNets is that the densification is

only beneficial for the overall network performance up to a certain density, and can

be harmful beyond that point. The network throughput is limited by the additional

interferences caused by the close proximity of cells, and the economic operability of

the network is limited by the vastly increased energy consumption and hardware cost

associated with dense cell deployment. This dissertation addresses the challenge of

enabling reliable performance gains through network densification while guaranteeing

quality-of-service conditions and economic operability.

The proposed approach is to address the underlying problem vertically over multiple

layers, which differ in the time horizon on which network optimization measures are ini-

tiated, necessary information is gathered, and an optimized solutions are found. These

time horizons are classified as network planning phase, network configuration phase,

and network operation phase. Optimization schemes are developed for optimizing the

resource- and energy consumption that operate mostly in the network configuration

phase. Since these approaches require a load-balanced network, schemes to achieve
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and maintain load balancing between cells are introduced for the network planning

phase and operation phase, respectively.

For the network planning phase, an approach is proposed for optimizing the locations

of additional small cells in an existing wireless network architecture, and to schedule

their activity phases in advance according to data demand forecasts. Optimizing the

locations of multiple cells jointly is shown to be superior to deploying them one-by-

one based on greedy heuristic approaches. Furthermore, the cell activity scheduling

obtains the highest load balancing performance if the time-schedule and the durations

of activity periods is jointly optimized, which is an approach originating from process

engineering. Simulation results show that the load levels of overloaded cells can be

effectively decreased in the network planning phase by choosing optimized deployment

locations and cell activity periods.

Operating the network with a high resource efficiency while ensuring quality-of-service

constraints is addressed using resource optimization in the network configuration phase.

An optimization problem to minimize the resource consumption of the network by op-

erating multiple separated resource slices is designed. The originally problem, which is

computationally intractable for large networks, is reformulated with a linear inner ap-

proximation, that is shown to achieve close to optimal performance. The interference is

approximated with a dynamic model that achieves a closer approximation of the actual

cell load than the static worst-case model established in comparable state-ot-the art

approaches.

In order to mitigate the increase in energy consumption associated with the increase

in cell density, an energy minimization problem is proposed that jointly optimizes the

transmit power and activity status of all cells in the network. An original problem for-

mulation is designed and an inner approximation with better computational tractability

is proposed. Energy consumption levels of a HetNet are simulated for multiple energy

minimization approaches. The proposed method achieves lower energy consumption

levels than approaches based on an exhaustive search over all cell activity configura-

tions or heuristic power scaling. Additionally, in simulations, the likelihood of finding

an energy minimized solution that satisfies quality-of-service constraints is shown to

be significantly higher for the proposed approach.

Finally, the problem of maintaining load balancing while the network is in operation

is addressed with a decentralized scheme based on a learning system using multi-class

support vector machines. Established methods often require significant information

exchange between network entities and a centralized optimization of the network to

achieve load balancing. In this dissertation, a decentralized learning system is proposed

that globally balance the load levels close to the optimal solution while only requiring

limited local information exchange.
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Chapter 1

Introduction

1.1 5G Mobile Communication Networks

Since the fourth generation (4G) of radio access technology (RAT) in wireless com-

munication networks has reached maturity with the widespread deployment of LTE-

Advanced (LTE-A), multiple technology directions for future generations have been

under extensive research during recent years. The upcoming fifth (5G) and future

generations are designed to support a wide variety of network topologies and ser-

vices, significantly expanding the mostly homogeneous and hierarchical architectures

of current networks [ABC+14, BHL+14, WHG+14, Iwa15, NGM15]. Between the years

2017 and 2020 alone, a threefold increase in worldwide mobile data traffic to over

400 exabytes per year is forecasted [Cis17]. Not only the number of mobile devices,

but also the data rates required to support novel applications drive this exponential

growth in data traffic. Some of these services, such as Machine-to-Machine (M2M)

communications, multimedia streaming, or virtual reality (VR) applications may re-

quire an extremely low latency, very reliable connections, enhanced support for user

mobility [GJ15, Fet14], or an increased data rate. This poses novel challenges in the

network design process that previously followed the aim of providing uniform user ex-

perience in every connection [SAD+16,HLQ+14]. As 5G is an evolution of the mobile

communication network out of necessity for higher performance and new capabilities,

its function can best be envisioned by discussing the desired use-cases established in

the scientific community. The Radiocommunication Sector of the International Tele-

comunication Union (ITU-R) has defined three broad categories of usage scenarios for

5G [itu15,ITU17,SMS+17,XMH+17], which will be used in the following to outline the

envisioned services of 5G networks. Other groupings of the same services have been

proposed by researchers in the industry and the academia [3GP16,OBB+14].

Enhanced Mobile Broadband (eMBB) refers to the improvement and expansion of the

current mobile network. Especially the insufficiency of data rates and seamlessness

of the user experience in critical conditions demonstrate some of the shortcomings of

4G standards. In a typical cellular network architecture, users located near cell edges

generally experience decreased data rates, due to high interferences from neighboring

cells. The user experience in 5G however should be largely unaffected by the underlying

cellular architecture of the network. The optimal network is planned to serve a wide
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area, but also very concentrated hotspots of users, both with a high quality of service.

Typical users in this usage scenario are private and business subscribers with mobile

devices, whose main concerns are good coverage and high data rates. The desired

increase in throughput however cannot be accompanied by an equivalent increase in

energy consumption and operation cost [CSS+14]. A corresponding increase in spec-

tral efficiency and energy efficiency must be achieved to enable economically operable

5G networks. Additionally a high mobility of mobile devices must be supported, for

example for users in high-speed trains.

Ultra-reliable and Low Latency Communications (URLCC) constitute all usage sce-

narios where the limiting factors are both latency and reliability, as one rarely can

be achieved without the other. Typical scenarios with such quality of service con-

straints are communications between vehicles in transportation systems (vehicle-to-

vehicle, V2V), control mechanisms for energy grids and medical applications. Most

prominent is for example the vision of conducting remote surgeries using remotely con-

trolled robotics, which could provide complex medical services to the population of

remote areas of the world. For all these applications, a failure of the system could pose

health risks and financial damages to the parties involved, so a reliable and responsive

connection becomes the critical quality of service requirement. Similar to eMBB, a

high mobility must be supported especially for V2V services.

Massive Machine Type Communications (mMTC) applies the paradigm of an Inter-

net of Things (IoT) in the architecture of wireless communication networks. The

defining characteristic of this usage scenario is a very high spatial density of often

small devices. Sensor networks and applications in machine-to-machine (M2M) com-

munications require sophisticated protocols to increase battery lifetimes of the sensor

devices [TUY14]. Latency has a lower priority than for URLCC and the throughput

achieved by each connected device is much lower than in eMBB. Capabilities for de-

centralized self-organization of sub-networks should be supported by the underlying

cellular network.

Due to the described manifold of services, it becomes immediately apparent that the

existing network architecture is insufficient to support the demands for 5G. The ex-

pected gains in data rate alone cannot be fulfilled by marginal improvements in the

bandwidth efficiency of LTE. Therefore an expansion of the network resources is nec-

essary, and current research on 5G networks focuses on multiple types of such network

resources. Extensive research into modulation and coding schemes has already pushed

the efficiency of a single point-to-point connection in LTE-A to its theoretical limit.

The expansion of wireless communication network technology for 5G therefore needs to

incorporate an expansion of “physical” resources such as the invested energy, number
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of antennas, frequency bandwidth, or the spatial density of the cellular architecture. It

is commonly acknowledged that the most promising candidate technologies for future

wireless networks build upon utilizing multiple of the aforementioned resources simul-

taneously. Current research favors a combination of Massive MIMO, the utilization of

additional frequencies in the Millimeter-Wave band, and a significant densification of

the cellular network architecture. Even though this dissertation focuses on Network

Densification, it is important to address the synergies between these technologies to

understand why state-of-the-art research aims to utilize them jointly.

Multiple Input Multiple Output (MIMO) systems employ multiple antennas for signal

transmission and reception, and enables the transmission of multiple data streams over

the same radio channel by utilizing multipath propagation. MIMO has played a decisive

role for the success of current LTE and Wi-Fi systems. Massive-MIMO (mMIMO)

[LETM14] refers to multi-antenna systems that use a very large number of antennas,

which is higher than the number of users being served simultaneously, and usually

over 100. Space Division Multiple Access (SDMA) is then used to provide radio links

to all users with the same time-frequency resources. Recently also Non-Orthogonal

Multiple Access (NOMA), building upon established research in multiuser downlink

beamforming, has received increased attention [DYFP14] for an application in 5G. For a

very large number of antennas, the resulting channel from the antenna array to the user

becomes almost deterministic, an effect that is called channel hardening. Additionally

for a large ratio of the number of antennas in the array to the number of served users, the

channels are all approximately orthogonal to each other. This enables the utilization of

simple linear transmit precoding and receive combining schemes [NLM13]. A significant

challenge currently under investigation for mMIMO is the increased hardware cost that

would be caused by using one radiofrequency (RF) chain for each antenna. These

RF chains contain amplifiers, phase shifters, up/down converters and analog/digital

converters. State-of-the-art approaches in mMIMO aim to decrease the cost and energy

consumption for these components, or to use single units of them jointly for multiple

antennas [HIXR15]. Another major test for the practical feasibility of mMIMO is the

coordination of antenna beams between neighboring cells, to prevent these cells from

causing significant interferences to each other [NKDA18].

The most intuitive approach to increase the amount of resources available for the

wireless network is to use additional radio frequency bands for transmission. As the

Ultra-High Frequency Band currently used for 4G is already very crowded, research

for 5G focuses on the viability of using Millimeter Waves (mmWave) in the Extremely

High Frequency (EHF) band above 30 GHz. In the EHF range, unused spectrum

is readily available [GTC+14]. The higher transmission frequencies positively affect

the channel latency, which is especially suitable for URLLC applications, whereas the
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wider frequency bands and increased data rates are ideal to meet the throughput

demands of eMBB. As a major disadvantage, mmWaves suffer higher propagation loss

from atmosphere and rainfall than UHF waves, and even higher building penetration

loss [RSM+13,XMH+17]. In return, the resulting interferences for mmWave are lower

than for traditionally used frequency bands. Coverage areas of mmWave base stations

are therefore expected to be only a few hundred meters in diameter, and separate access

points would be necessary to achieve indoor coverage [RMSS15]. In urban areas, Line-

of-Sight (LOS) between transmitter and receiver has proven to be desirable but not

strictly necessary, as Non-Line-of-Sight (NLOS) transmissions have been successfully

tested [RSP+14]. Since mmWave is expected to be operated using mMIMO antenna

arrays with advanced RF chain technology, the discussed challenges regarding hardware

cost become increasingly important [RRE14].

The third resource to be utilized in 5G is the spatial density of the deployed cells in

the wireless network. If this density is increased, and therefore the size of the cov-

erage area of each individual cell is decreased, this process is commonly referred to

as Network Densification [BLM+14]. This is usually achieved by supplementing the

existing tier of high-power macro cells (MC) with an additional tier of low-power small

cells (SC) to obtain a Heterogeneous Network (HetNet). This method of increasing

the network throughput has already been established and refined for 4G with LTE-

A [KBTV10]. Multiple mechanisms to balance the network loads between the cell

tiers have been developed and tested [DMW+11]. The limits of such densification in

HetNets are, however, a major point of concern, primarily due to the resulting in-

terferences [AZDG16]. Overall hardware and energy costs increase with the number

of additionally deployed cells, which due to the density limitations imposed by inter-

ferences can even lead to cell deployments that do not contribute to the increase in

the network performance [GTM+16]. The densification of the network therefore re-

quires sophisticated control mechanisms that decouple the increase in throughput from

a corresponding increase in harmful interferences and energy consumption [CSS+14].

To assess the applicability of the previously introduced methods mMIMO, mmWave

and HetNets for 5G, their synergy in a simultaneous utilization is of paramount impor-

tance. The form factor of mMIMO antenna arrays greatly benefits from an operation

in the EHF band using mWaves, because their form factor is much smaller compared

to arrays with the same number of antenna elements in the UHF range [RSM+13]. The

combined usage of the additional SCs deployed in a densified HetNets with mMIMO

or mmWave technology however is difficult to assess in terms of performance gains.

When supplementing mMIMO MCs with SCs, interference coordination between these

two tiers of cells types becomes critical. Significant reductions in the overall network

power consumption are achievable when the interferences are managed and the user
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allocation between the cell tiers is optimized [BKD13]. Coordination between mMIMO

MCs and SCs can be optimized to such a degree that the network throughput perfor-

mance is mostly limited by out-of-cluster interferences from cells outside of those under

consideration [JMZ+14]. It can be concluded that the combined operation of mMIMO

and HetNets critically depends on the coordination between the cell tiers.

The decreased size of the coverage areas for mmWave-based cells leads to an automatic

network densification, which is emphasized due to the need for separate small cell access

points for indoor coverage [RMSS15]. Coverage planning, specifically the locations of

SCs and MCs, needs to be executed carefully for a joint operation of mmWave MCs

and SCs. The limitation of network throughput due to interferences can and must be

mitigated using sophisticated interference coordination schemes [AZDG16, FWL+17].

Contrary to mmWave and mMIMO however, network densification by SC deployment

constitutes an expansion of the existing network, with proven hardware components.

The technological commitment and financial risk of HetNets are lower than for the

other two technologies, because the latter ones require the use of advanced hardware.

It can be concluded that dense HetNets enable or support other key technologies for

5G very well. Since they build upon established hardware, and the SCs supplement an

existing network, HetNets are a very good “bridging” technology to achieve throughput

gains while making the necessary changes in network structure for other technologies.

The key challenges associated with the SC deployment planning, network configuration,

and in-operation optimization form the principal part of this dissertation.

1.2 Problem Statement

It is universally acknowledged that fundamental limits exist for the densification of

a wireless cellular communication network, if said densification is to be beneficial for

the network throughput [AZDG16, NK17]. The primary reason for this effect is that

the amount of interference present in each connection increases with the network den-

sity, which decreases the achievable signal-to-interference-plus-noise ratios (SINR) and

therefore eventually limits the achievable data rates. There exist however multiple sec-

ondary reasons for the limits of wireless network density, which include the necessity

for economic operability that can be violated with increasing hardware costs and en-

ergy consumption [CSS+14,HKD11]. Additionally, the number of available deployment

locations for additional base stations is limited, and each base station requires a wired

or wireless data backhaul that might be subject to capacity constraints [GTM+16].
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For each cell in the wireless network, the ratio of its used to its available resources de-

fines the cell load. This load should be kept as low and, between the cells, as balanced

as possible to ensure that the network can satisfy quality-of-service (QOS) constraints,

while retaining agility. An overloading of single cells and an underutilization of others

leads to dropped connections for the former, and is an indicator of unbalanced resource

distribution. If the overall load levels can be decreased, for example through interfer-

ence management or resource distribution optimization [LPGdlR+11,HRTA14,HQ14],

cells free up resources that can be utilized to achieve higher data rates for their

connected users. There is an equivalence between the two objectives of maximiz-

ing data rates for a limited cell load, and minimizing the cell load for fixed user

rates [MK10,SY12a]. Both approaches usually achieve resource efficient solutions when

performing interference management or resource distribution optimization.

Under these considerations, the following question shall summarize the main research

objective of this thesis with regards to HetNets and network densification:

How can heterogeneous wireless communication networks be planned,

scheduled and operated such that an increase in cell density yields an im-

provement in network performance, as measured by criteria such as data

rates, energy consumption and resource efficiency?

The relevance of this research objective is supported by very recent assessments

about the role of dense HetNets in 5G from the scientific community. The authors

in [AZDG16] state about the potential limits of network densification that “wire-

less network researchers and engineers should be aware of these rapidly approaching

limits, and we should begin developing communication protocols customized for dense

networks”. In [NK17], the authors further emphasize the importance of developing

optimization schemes for dense HetNets: “In practice, installing more BSs is beneficial

to the user performance up to a density point, after which further densification can be-

come harmful user performance due to faster growth of interference compared to useful

signal. This highlights the cardinal importance of interference mitigation, coordination

among neighboring cells and local spatial scheduling.” The significance of specialized

resource allocation schemes for the technologies of 5G is summarized by the authors

of [GTM+16] with: “Massive MIMO antennas and millimeter-wave communications

provide enough resource space for small cell BSs. How to utilize and optimize the

resource allocation for BS relaying and self-transmission is a critical problem in 5G

ultra-dense cellular networks.”
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The fundamental challenge of this objective is that there are three time-horizons on

which network planning, configuration and operation take place, and varying perfor-

mance criteria that apply in each stage. For example, the deployment planning of

additional small cells takes place on a very large timescale, and therefore has to con-

sider long-term average cell load levels as an objective rather than instantaneous data

rates. On the other hand, rate maximization for a single connection takes place on a

very short timescale and therefore does not depend on long-term average load levels.

The very broad research objective formulated in the question above therefore needs to

be divided into sub-objectives that each concern a specific time horizon of the network.

For the network planning and configuration phase, the following objective applies:

Objective 1: The wireless network architecture is designed with high spatial

density of cells. Additional cells are deployed in suitable locations, to de-

crease the load levels of existing cells. The activity of the cells is scheduled

such that load levels between all cells in the network are balanced. Both op-

timization procedures should be based on long-term averages of data traffic

forecasts.

This first step of planning the physical deployment of cells and testing activity

configurations for different deployment solutions typically takes place over a period

of multiple weeks or months, and is accompanied by an extensive planning effort

[SY13, GTM+16, KBTV10]. However, after Problem 1 is solved for a given wireless

network, the cellular layout of the network architecture can be considered static. Based

on a network with static architecture, further steps consider the configuration and op-

eration of a dense HetNet, where the behavior of the network is optimized to fulfill

various objectives [ABC+14, GJ15, SAD+16]. Because of the diversity of these objec-

tives, a multitude of sub-problems besides that of load balancing arise from the central

research question formulated above. The two problems that are widely considered as

critical for dense HetNets, resource and energy efficiency, as discussed in Sec. 1.1, are

addressed in this thesis. All optimizations of the network are subject to quality-of-

service (QOS) constraints such as minimum required data rates or SINR levels. These

QOS-constraints might vary depending on which services (such as eMBB, URLLC or

mMTC) are requested. The problem of efficient resource distribution in a dense HetNet

can therefore be formulated as follows:

Objective 2: The allocation of users to cells and distribution of time-

frequency resources in the network is to be optimized such that the resource

efficiency is maximized while meeting QOS-constraints.
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As discussed in Sec. 1.1, the successful operation of HetNets in 5G critically depends on

economic considerations such as costs for energy consumption. An increase in network

density cannot lead to an proportional increase in energy consumption. The problem

of minimizing this energy consumption is formulated as follows:

Objective 3: The energy consumption of the dense HetNet is to be mini-

mized while meeting QOS-constraints.

Both Objectives 2 and 3 consider network optimizations that take place on a shorter

timescale than Objective 1, for example in a day-ahead scheduling of the network config-

uration. All of the first three objectives however do not consider real-time optimization

of single connections. This is because a joint optimization of the network-wide energy

consumption or resource efficiency of multiple cells or the entire network is difficult

to realize based on instantaneous channel state information (CSI). The CSI observed

for any single connection may be outdated during the time all necessary information

is gathered, the optimization problem is solved, and the optimal configurations are

redistributed in the network. It can however be assumed that cells can perform de-

centralized optimization schemes, if they have capacity left and are not close to being

overloaded.

This underlines the importance of maintaining a load-balanced state in the network.

The maintenance of load balancing is a fundamental requirement for meeting QOS

requirements, and to give cells sufficient head space to perform other optimizations.

The problem of load balancing maintenance is formulated as follows:

Objective 4: The dense HetNet must be maintained in a load balanced

state using fast and decentralized offloading schemes. These schemes must

operate based on locally available information with low communication and

coordination overhead.

Objectives 1 and 4 address the fundamental requirement for the dense HetNet to meet

QOS requirements and allow for further network optimization. This requirement is that

a load-balanced state can be created through optimized network planning (Objective

1) and maintained during the operation of the network (Objective 4). Objective 2

and 3 presuppose a load-balanced network and address the economic operability and

resource efficiency.
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1.3 Contributions and Thesis Overview

The detailed outline of this dissertation is as follows:

In Chapter 2, the system model for the heterogeneous wireless communication net-

work and the signal model for the radio links between cells and users are introduced.

Fundamental solutions for standard network optimization objectives, such as load-

balancing and SINR-maximization, are provided. The model for characterizing the

different time-horizons of network operation phases is discussed.

Chapter 3 summarizes methods to reformulate and solve optimization problems with

both continuous and integer parameters. Adaptations of these methods to components

of the mathematical model introduced in Chapter 2 are discussed. A machine-learning

based classifier is designed to serve as a resource allocation scheme for the decentralized

load balancing approaches.

The following Chapters 4-7 each consider subproblems of the research objective for

heterogeneous wireless network optimization defined in Sec. 1.2. Each chapter provides

a discussion of the state-of-the-art and contributions specific to each objective.

In Chapter 4, a cell deployment scheme is addressed that selects an optimized loca-

tion and cell type for the densification of an existing network through SC deployment.

Multiple candidate deployment locations and cells types with varying associated costs

are considered. The scheduling of cell activity over a time period is discussed for cells

with energy limitations. A joint optimization is designed for the cell activity schedule

and the duration of time-slots on which the resulting schedule is applied. This joint

optimization significantly improves upon the state-of-the-art solution of optimizing the

system with fixed time-slot durations. The proposed solutions for both the deployment

and configuration problem outperform greedy and heuristic approaches, effectively ad-

dressing Objective 1 as defined in Sec. 1.2.

This chapter is based on the following publications:

• Bahlke, F.; Ramos-Cantor, O.D.; Pesavento, M.: Budget Constrained Small Cell

Deployment Planning for Heterogeneous LTE Networks, Proceedings of the 16th

IEEE Workshop on Signal Processing Advances in Wireless Communications

(IEEE SPAWC), June 2015, pp. 1-5

• Bahlke, F.; Yang, J.; Pesavento, M.: Activity Scheduling for Energy Harvesting

Small Cells in 5G Wireless Communication Networks, accepted for publication

in the Proceedings of the 29th IEEE Symposium on Personal, Indoor and Mobile

Radio Communications (IEEE PIMRC 2018), September 2018
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In Chapter 5, a configuration scheme for resource allocation in dense HetNets with

heterogeneous service requirements is considered. The proposed method maximizes the

resource efficiency subject to QOS-constraints by joint optimization of the dimensioning

and allocation of multiple resource pools and the allocation of users to cells. The

adaptive interference model introduced in this scheme shows significant performance

gains compared to established state-of-the-art methods that utilize a static interference

model. In this chapter, Objective 2 defined in Sec. 1.2 is discussed.

This chapter is based on the following publication:

• Bahlke, F.; Ramos-Cantor, O.D.; Henneberger, S.; Pesavento, M.: Optimized

Cell Planning for Network Slicing in Heterogeneous Wireless Communication

Networks, IEEE Communication Letters 2018, Vol. 22 (8), pp. 1676-1679

In Chapter 6, an energy minimization scheme for dense HetNets with joint optimiza-

tion of cell transmit powers, on-off status and user allocation is considered. A inner

linear approximation of the originally intractable optimization problem is derived. The

reformulated problem has decreased computational complexity and enables a network

operation with lower energy consumption levels than existing heuristic approaches,

which provides an answer to Objective 3 as defined in Sec. 1.2.

This chapter is based on the following publication:

• Bahlke, F.; Pesavento, M.: Energy Consumption Optimization in Mo-

bile Communication Networks, submitted for journal publication (preprint:

https://arxiv.org/abs/1807.02651)

In Chapter 7, two approaches to achieve decentralized load balancing as defined by

Objective 4 in Sec. 1.2 are considered. State-of-the-art approaches to user allocation

and cell range expansion for load balancing require significant coordination overhead to

obtain a load balanced network configuration. The two designed approaches perform

user-side and cell-side decentralized load balancing using a learning-based allocation

scheme that operates with information that only needs to be available locally. Sim-

ulation results show that both schemes, while operating in a decentralized manner,

achieve performance close to the globally optimal load-balancing solution.

This chapter is based on the following publications:

• Bahlke, F.; Pesavento, M.: Decentralized Load Balancing in Mobile Commu-

nication Networks, Proceedings of the 25th IEEE International Conference on

Acoustics, Speech and Signal Processing (IEEE ICASSP 2018), April 2018, pp.

3564-3568
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• Bahlke, F.; Pesavento, M.: Optimized Small Cell Range Expansion in Mobile

Communication Networks Using Multi-Class Support Vector Machines, accepted

for publication in the Proceedings of the 29th European Signal Processing Con-

ference (EUSIPCO 2018), September 2018

A final assessment and discussion of future work is provided in Chapter 8.
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Chapter 2

System Model

2.1 Introduction

In this chapter, a model for the downlink transmissions in a heterogeneous wireless

communication network is defined that serves as a mathematical framework for network

optimization. The signal model for single point-to-point transmissions in the wireless

communication network is given in Sec. 2.2, followed by the definition of the SINR

and the data rate. As each transmission from cell to a mobile node may only use a

fraction of its available resources, metrics for transmission induced load (to the cell)

and the total cell load level are derived to characterize the state of the network. In

Sec. 2.3, common approaches to affect the cell load by allocating mobile nodes to

different cells are discussed. The first approach is to minimize the maximum load

level among all cells in the network, commonly referred to as “load balancing”. The

second approach aims at maximizing the SINR, and accordingly minimizing the induced

load, of every single connection. The wireless communication network is optimized

based on network parameters which can be adjusted on varying timeframes. Sec. 2.4

concludes with an overview of the time horizons of network planning, configuration

and optimization. An overview of the network optimization methods introduced in this

thesis, their objectives, and the timescale on which they are applied, is also provided.

2.2 Heterogeneous Wireless Networks

A wireless communication network is considered with K cells and the set of all cells

being C = {1, . . . , K}. The subsets CMC ⊂ C and CSC ⊂ C with C = CSC ∪ CMC, CSC ∩
CMC = ∅ indicate macro cells (MC) and small cells (SC), respectively. The network

area under consideration contains M so-called “demand points” (DP), with the set of

all DPs M = {1, . . . ,M}. DP m ∈ M exhibits the data rate demand dm in bits per

second, which may represent the demand of single mobile users or aggregated data

demand of multiple users in a hotspot. The attenuation factor of a single-input-single-

output radio link between cell k ∈ C and DP m ∈M is determined as

gkm = gABS
km E

(∣∣hCH
km

∣∣2) gADP
km gPROC

km (2.1)
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macro cell k ∈ CMC

small cell k ∈ CSC demand point m ∈M

pk

dm

gkm

Figure 2.1. Illustration of a heterogeneous wireless network.

where gABS
km and gADP

km denote the antenna gains of the cell base station antenna and the

DP antenna, respectively. The parameter gPROC
km denotes the processing gain achieved

at the receiver by multipath processing schemes such as Maximum Ratio Combining

(MRC) or Zero Forcing (ZF) [Gol04, TV05]. The factor E
(∣∣hCH

km

∣∣2) denotes the ex-

pected magnitude of the path attenuation. In the following, the real-valued scalar

parameter gPATH
km = E

(∣∣hCH
km

∣∣2) denotes the large-scale path attenuation factor caused

by propagation loss and shadow fading.

The SINR of cell k serving DP m can be computed as

γkm =
pkgkm∑

j∈{C\{k}} pjgjm + σ2
(2.2)

where pk is the transmit power of cell k and σ2 is the power of additive white Gaussian

noise, which is assumed to be identical for all DPs. The formulation C \ {k} refers to

the set C without the element k. The SINR definition in (2.2) represents an orthogo-

nal frequency-division multiple access (OFDMA) system commonly used in LTE and

WLAN standards [Cim85,WCLM99,MK10]. The network is assumed to operate with

full frequency reuse between cells, i.e. all cells are utilizing the same time-frequency

resources. The maximum transmission rate achievable by cell k serving DP m is de-

termined as ( [MNK+07,SY12a])

Rkm (γkm) = ηBW
km W log2 (1 + γkm) (2.3)
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where W is the total system bandwidth in Hz and ηBW
km is the bandwidth efficiency of

the used modulation and coding scheme.

To satisfy the data demands of DP m, cell k needs to utilize at least the fraction

dm/Rkm of its available resources. Therefore the load induced by DP m to cell k is

given by
dm
Rkm

=
dm

ηBW
km W log2 (1 + γkm)

. (2.4)

For the utilization of the cell load function in optimization problems, the following

important property is proposed:

Lemma 2.2.1. The load induced by DP m to cell k is a convex and strictly decreasing

function of the SINR γkm for γkm > 0.

Proof. Let

ζ(γ) =
1

log2 (1 + γ)
. (2.5)

The first and second order derivatives are given as

dζ(γ)

dγ
= − log(2)

(1 + γ) log2(1 + γ)
(2.6)

and
d2ζ(γ)

dγ2
=

log(2)(log(1 + γ) + 2)

(1 + γ)2 log3(1 + γ)
(2.7)

Hence the lemma follows from dζ(γ)/dγ < 0 ∀γ > 0 and d2ζ(γ)/dγ2 > 0 ∀γ > 0.

To indicate the allocation of DPs to cells the binary matrix A ∈ {0, 1}K×M with the

matrix elements

Akm =

{
1 if DP m is allocated to cell k

0 otherwise
(2.8)

is introduced. To satisfy the data demands of DP m, cell k needs to utilize at least the

fraction dm/Rkm of its available resources [SY12a,MK10]. In the following, it shall be

assumed that due to the used modulation- and coding scheme in the radio link under

investigation, a maximum SINR level γMAX exists for which the highest possible rate is

achieved, and does not improve further for γkm ≥ γMAX. Let τMIN = 1/ log2

(
1 + γMAX

)
and

ζ+
τMIN(γ) = max

{
1/ log2 (1 + γ) , τMIN

}
. (2.9)

Therefore, the sum load of cell k that is required to serve the data demands of all its
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allocated DPs (cell load) can be computed as

ρk =
∑
m∈M

Akm
dm

ηBW
km W

ζ+
τMIN (γkm) . (2.10)

The parameters ρk are the elements of the vector ρ ∈ RK×1. For any feasible network

configuration

0 ≤ ρk ≤ 1 ∀k (2.11)

needs to hold, as ρk > 1 would indicate that cell k is overloaded and cannot serve

the data rates requested by all its allocated DPs. Note that the interference term∑
j∈{C\{k}} pjgjm+σ2 in the computation of the SINR Eq. (2.2) and in Eq. (2.10) can be

weighted with the cell load itself [SY12a] or with an SINR-efficiency parameter [MK10]

to account for the statistically lower probability that a lightly loaded cell interferes with

other cells, and to consider the system’s capabilities for interference mitigation. In this

work, without loss of generality, the worst-case assumption that all active cells fully

interfere with each other will be used. This serves as an upper bound approximation

of the actual interference levels that occur while the network is in operation.

2.3 Demand Point Allocation and Load Balancing

It is assumed that a minimum SINR γMIN is required for establishing a successful

wireless link between cell and DP, which is a parameter imposed by the used modulation

and coding scheme. If Akm = 1 then γkm ≥ γMIN needs to hold. This can be formulated

as the inequalities

pkgkm ≥ γMIN

 ∑
j∈{C\{k}}

pjgjm + σ2

 ∀(m, k) : Akm = 1. (2.12)

To avid overloaded cells in the network at all cost, a suitable optimization approach

preventing such scenarios is to minimize the maximum load of any cell in the network.

In the following this is referred to as “load balancing”. With the continuous upper

bound on the load levels Π and the allocation matrix A, the following mixed integer

linear optimization problem (MILP) is designed to optimize the allocation of DPs to
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cells such that load balancing is achieved:

minimize
Π,A

Π (2.13a)

subject to Π ≥
M∑
m=1

Akm
dm

ηBW
km W

ζ+
τMIN (γkm) ∀k (2.13b)

K∑
k=1

Akm = 1 ∀m (2.13c)

∑
k

Akmpkgkm ≥ γMIN

(∑
j∈C

(1− Ajm)pjgjm + σ2

)
∀m (2.13d)

Π ∈ R0+ (2.13e)

Akm ∈ {0, 1} ∀k,m (2.13f)

In problem (2.13), the parameter Π in Eq. (2.13b) is the maximum load of any cell

that is to be minimized. Constraints (2.13c) cause each DP to be allocated to exactly

one cell. The minimum SINR condition Eq. (2.13d) is a linear reformulation of (2.12).

If the allocation of DPs to cells is not being optimized for load balancing, static al-

location rules can also be employed. One such rule would be to allocate each DP to

the cell that provides the strongest received signal, which maximizes the SINR of each

wireless link and therefore the load each DP imposes on a cell [SY12a]. To encourage

offloading to specific cells, for example the typically underutilized small cells, cell range

expansion can be utilized [3GP12, SY12b, YRC+13]. The total received power pkgkm

from cell k is multiplied with a weighting factor θk, the so-called “bias value”, and the

resulting product used for the allocation decision regarding DP m. The allocation rule

can be formulated as follows:

Akm =

{
1 if k = arg maxj θjpjgjm

0 otherwise.
(2.14)

where
∑

k∈C Akm = 1 ∀m needs to hold, i.e. every DP is allocated to exactly one cell.

If there exist two or more cells that provide exactly the same received power according

to Eq. (2.14), other, for example random, allocation rules can be used between these

cells. The following property of the user allocation rule (2.14) is proposed:

Lemma 2.3.1. The user allocation rule (2.14) minimizes the maximum sum load Π =∑
k∈C with the the bias factors chosen as θk = 1 ∀k, and uniform bandwidth efficiency

ηBW
km = ηBW∀k,m.
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Proof. Given (2.10) the sum load of all cells can be written as

∑
k∈C

ρk =
∑
k∈C

∑
m∈M

Akm
dm

ηBWW
ζ+
τMIN (γkm) . (2.15)

Due to
∑

k∈C Akm = 1, for each DPm exactly one serving cell k is selected (byAkm = 1).

To minimize the sum load of all cells, each DP m has to be served by the cell k for

which it induces the lowest additional load:

Akm = 1 if k = arg min
k∗

(
dm

ηBWW
ζ+
τMIN (γkm)

)
(2.16)

The function ζ+
τMIN (γ) defined in (2.9) is a monotonously nonincreasing function in γ,

therefore the sum cell load is minimized if the SINR γkm of each individual user m is

maximized:

arg min
k

(
dm

ηBWW
ζ+
τMIN (γkm)

)
= arg max

k
γkm ∀ m (2.17)

The lemma follows from arg maxk γkm = arg maxk pkgkm.

The allocation rule in (2.14) can equivalently be expressed in form of the inequality∑
k∈C

Akmθkpkgkm ≥ (1− Ajm)θjpjgjm ∀j,m, (2.18)

which is used as a constraint in subsequent network optimization problems.

For each connection between cell k and DP m, the remaining cells providing the

strongest second strongest interfering signals have special significance for cell load lev-

els. These strongest interfering cells are the most significant limiting factor in achieving

high data rates [MHV+12,RCBHP17a,GKN+15]. For later use, the indices of the first-

and second strongest interfering cell are denoted as

κP
km = arg max

j∈{C\{k}}
(pjgjm) (2.19)

and

κS
km = arg max

j∈{C\{k,κPkm}}
(pjgjm) (2.20)

for the connection between cell k and DP m.
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2.4 Network Optimization Timescales

As the optimization of heterogeneous wireless networks incorporates multiple interde-

pendent processes, it is essential for every network optimization scheme to first identify

the timescale on which it operates [BLM+14, KBTV10, MK10]. The following three

timescales shall serve as a framework for the network optimization schemes considered

within this thesis:

• Network planning phase: This phase involves the expansion or modification of

the network architecture, including base stations with baseband processors, radio-

frequency frontends and antennas. Usually this phase is accompanied by exten-

sive measurement campaigns and network simulations and takes place over the

course of weeks or months. Specific examples for this step in 5G are deployment

of additional small cells or a mMIMO antenna array. The deployment of addi-

tional small cells, due to the smaller transmit power and coverage area, requires

a shorter planning period than a new macro cell.

• Network configuration phase: In the configuration stage, the architecture and

the physical hardware of the network is already fixed. The resource utilization

of the network components however can be optimized towards certain objectives

such as load balancing, data rates or energy efficiency. Some of the network

parameters such as the time-frequency resources used by each cell or the on-

off status of antennas possibly cannot be changed instantaneously. Therefore,

a schedule for the utilization of the resources based on data demand forecasts

becomes necessary, and the optimized configuration is determined before the

operation of the network, for example on the previous day.

• Network operation phase: The operation stage refers the network that is in-

operation and all corresponding performance optimization schemes that can be

applied, based on instantaneous channel feedback or short-term averages. Usually

any scheme that exhibits either a high computational complexity, long inherent

delays or the requirement for extensive communication- or coordination overhead

is not suitable to be applied in this stage. More suitable are schemes that obtain

good performance gains with limited computational effort and based on locally

available information, such that they can be utilized in the range of seconds or

milliseconds.

The methods for network optimization that are introduced in this thesis are each de-

signed to be applied in one of the above stages. A summary of this classification is
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Method Chapter Timescale Objective

Cell deployment planning 4 planning load balancing
Cell activity scheduling 4 configuration load balancing
Resource planning and network
slicing

5 configuration
/ operation

resource efficiency

Energy consumption minimiza-
tion

6 configuration
/ operation

energy consumption

Decentralized load balancing by
demand points

7 operation load balancing

Decentralized load balancing by
cells

7 operation load balancing

Table 2.1. Method overview, timescales and objectives.

provided in Table 2.1, as well as the objectives of each optimization scheme:

Cell deployment planning aims to find the optimal locations and cell types for new cell

deployments. This implicitly affects the parameters gkm, and the path loss between

each DP and the closest cell. Deployment planning is part of the network planning

stage where the network is supplemented with additional hardware. Cell activity con-

figuration aims to find a schedule of on-off decisions for each cell for multiple con-

secutive time periods. This activity configuration could typically be performed in a

day-ahead manner based on demand forecasts. Schemes for both cell deployment and

activity scheduling with the aim to obtain a load-balanced network are introduced in

Chapter 4. Resource planning introduced in Chapter 5 aims to minimize the amount

of time-frequency resources required to fulfill the data demands and possibly hetero-

geneous service requirements of the DPs. The proposed approach is to separate the

total time-frequency resources W in Eq. (2.3) into multiple independently operating

resource regions, the so-called “slices”. These network slices are designed based on the

demands of the services they provide. This type of network optimization is suitable

for optimizing a smaller network in-operation or a larger network in a resource plan-

ning schedule. The energy consumption minimization scheme introduced in Chapter

6 optimizes the on-off status and transmit power pk of cells in order to decrease the

energy consumption of the network. A real-time applicability of this scheme might be

limited by startup and shutdown times of base stations. As with resource planning, the

proposed approach for energy minimization is suitable for the network configuration

and operation stages. Finally, the load balanced state of the network that is required

for further optimization must be retained while the network is in operation. The ap-

proaches for decentralized load balancing by demand points and cells introduced in

Chapter 7 are designed to operate fast and decentralized with limited coordination

overhead.
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Chapter 3

Methodology

3.1 Introduction

In the following an overview is provided for methods used to solve the network opti-

mization problems that form the principal part of this thesis. Typically these prob-

lems in their original formulation are computationally intractable to solve optimally,

and therefore require reformulation and approximation techniques to obtain feasible

solutions and preserve scalability for larger networks. The reformulation techniques

discussed in Sec. 3.2 are applied with the aim to obtain linear inner approximations

or reformulations of the originally nonlinear optimization problem. A basic taxon-

omy of optimization problems and a motivation for aiming towards linearized problem

formulations is discussed in Sec.3.2.1. Bilinear products and corresponding linear re-

formulation schemes are introduced in Sec. 3.2.2. Piecewise linearization of nonlinear

functions, along with breakpoint selection schemes to find suitable segments for lin-

earization, are discussed in Sec. 3.2.3. As the performance of wireless communication

problems usually depends on the achievable SINR, fractional programming plays a

significant role in the typical network optimization schemes. A linear reformulation

technique specifically developed for fractional problems in this application scenario is

discussed in Sec. 3.2.4. An introduction to Support Vector Machines (SVM), which

are utilized for a fast and decentralized learning-based network load balancing scheme

are introduced in Sec. 3.3. Traditionally SVMs are used for classification, but they can

be adapted to solve resource allocation problems. The requirements and an outline

of this SVM application are discussed in Sec. 3.3.1. An overview of training schemes

for an SVM-based binary classifier are introduced in Sec. 3.3.2, which is expanded to

multiclass scenarios in Sec. 3.3.3.

3.2 Mixed-Integer Programming

The network optimization problems discussed in this work are based on discrete pa-

rameters, such as binary indicators of user-cell allocations, and continuous parameters,

such as the load factor of a cell. An outline of various optimization problem types and
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their significance, as well as a discussion on reformulation techniques, are provided in

the following.

3.2.1 Optimization Problem Taxonomy

Optimization problems containing both real and discrete parameters are classified as

mixed-integer problems (MIP), whereas problems containing only integer parameters

are called integer problems (IP). Both MIP and IP are NP-complete, and therefore NP-

hard [Kar72]. In the specific scenario where the optimization objective function and all

constraints are linear functions of all optimization variables, the problems classify as

MILPs and integer linear problems (ILPs), respectively. Efficient solution algorithms

for ILPs and MILPs have been continuously developed and improved since the mid of

the 20th century [Dak65,Sch98,LS99].

A significant breakthrough in the theory of MILPs is that their solution can be ob-

tained by solving a series of non-integer linear problems. This is achieved through

relaxing the problem to a continuous variable space by removing the integrality con-

straints. The feasible solution set of the problem is then iteratively restricted with

so-called “cutting planes” [Gom58], searching for solutions that are feasible for the

original integer problem. If no such “integer feasible” solution is found using cutting

planes, the problem is divided into sub-problems where integer parameters are fixed

to different values (“branching”), and cutting planes are applied to the so obtained

sub-problems. Under certain conditions it can be shown that a sub-problem cannot

contain the optimal solution of the optimal problem and is therefore not further con-

sidered. This process is called “branch-and-bound”, which stems from envisioning the

integer problem as a decision tree. An iterative scheme combining cutting planes and

branch-and-bound strategies is called “branch-and-cut”, which has been a very power-

ful state-of-the-art approach to ILPs and MILPs in recent decades [MMWW02,CBD11].

The applications for MILPs today pervade many industries including wireless commu-

nications [ZHS10,CPP13,MCLG06]. Generic solvers for such problems are available in

many programming languages [GB08,GB14,GUR,ApS17].

Contrary to MILPs, which can be reliably and efficiently solved by the aforementioned

schemes, there still is no universal and established approach to mixed integer nonlinear

problems (MINLPs) [BL12, KN13]. While significant advancements have been made

for convex MINLPs [HBCO12,BKL+13], it is universally agreed upon that nonconvex

MINLPs pose a significant computational challenge where the chances of finding an

optimal solution to any given problem highly depend on the problem size and structure
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[FAC89,TG14]. To maintain robustness and scalability for schemes based on network

optimization problems, it is therefore advisable to find an MILP that represents a linear

inner approximation or a linear reformulation of the original MINLP. The problems

discussed in Chapters 4, 5 and 6 are all, in their original formulation, nonconvex

MINLPs. The techniques used to reformulate them are discussed in the following

Secs. 3.2.2, 3.2.3 and 3.2.4.

3.2.2 Bilinear Products

Bilinear products between two optimization parameters in MILPs must be distin-

guished between three different types, which are integer-integer, integer-continuous

and continuous-continuous products. The first two types can be recast into equiva-

lent linear formulations using a lifting strategy, and at the cost of increased problem

dimensionality [AFG04,GACD13]. These schemes will be outlined in the following.

Consider the binary parameters b1, b2 ∈ {0, 1}. The product of both binary parameters

is to be expressed by the auxiliary parameter ϕ ∈ {0, 1}. The equality b1b2 = ϕ holds

if the following inequalities are fulfilled:

ϕ ≤ b1 (3.1a)

ϕ ≤ b2 (3.1b)

ϕ ≥ b1 + b2 − 1 (3.1c)

A set B of three parameters b1,b2 and ϕ that fulfill the inequalities in (3.1), implying

b1b2 = ϕ, shall in the following be defined as

B := {(b1, b2, ϕ) ∈ {0, 1} × {0, 1} × {0, 1} : ϕ ≤ b1, ϕ ≤ b2, ϕ ≥ b1 + b2 − 1}. (3.2)

Similarly, consider the binary parameter b ∈ {0, 1} and the real parameter r ∈ R which

is bounded by r ≤ r ≤ r. The equality br = ϕ holds if the following inequalities are

fulfilled:

ϕ ≥ r − (1− b)r (3.3a)

ϕ ≤ r − (1− b)r (3.3b)

ϕ ≥ rb (3.3c)

ϕ ≤ rb (3.3d)
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For r = 0, the set L of parameters b,ϕ, and r with upper bound r that fulfill the

inequalities in (3.3), implying br = ϕ, is defined as

L := {(r, r, b, ϕ) ∈ R0+ × R0+ × {0, 1} × R0+ : ϕ ≥ r − (1− b)r, ϕ ≤ r, ϕ ≤ br}. (3.4)

The sets B and L are used for multiple linear reformulations of bilinear products in

Chapters 4, 5 and 6. Note that if the discrete parameter in the bilinear product is

an integer instead of binary, the linearization can be achieved using binary expansion

[GACD13]. Let a ∈ N be a natural number with 0 < a ≤ a, and let L = blog2(a) + 1c.
The parameter a can be expressed as a weighted sum of binary parameters al ∈ {0, 1}
with l = 1, . . . , L and

a =
L∑
l=1

2l−1al (3.5)

for the real parameters ϕl ∈ R0+ and ϕ =
∑L

l=1 ϕl, the equality ar = ϕ holds if

(r, r, al, ϕl) ∈ L ∀ l.
As an example based on the system model defined in Sec. 2.2, let the parameter Ωkm ∈
R0+ define power that cell k serves DP m with, with the corresponding matrix Ω ∈
RK×M

0+ . Based on the previously defined notation, this can be expressed in a MILP as(
pk, P

MAX
k , Akm,Ωkm

)
∈ L ∀ k,m, which implies Ωkm = Akmpk ∀ k,m.

The product of two real parameters r1, r2 ∈ R that are bounded by r1 ≤ r1 ≤ r1 and

r2 ≤ r2 ≤ r2 can be approximated by a set of linear inequalities using McCormick

envelopes [MCB09, McC76]. The auxiliary parameter ϕ is used to approximate the

product r1r2 with the following inequalities:

ϕ ≥ r1r2 + r1r2 − r1 r2 (3.6a)

ϕ ≥ r1r2 + r1r2 − r1 r2 (3.6b)

ϕ ≤ r1r2 + r1r2 − r1 r2 (3.6c)

ϕ ≤ r1r2 + r1r2 − r1 r2 (3.6d)

The approximation of ϕ = r1r2 with the above inequalities (3.6) has the critical draw-

back that it is neither a strict over- nor under-approximation. In the network opti-

mization problems discussed in the following chapters, QOS constraints usually only

allow an inner approximation of the original problem, i.e. every solution obtained from

solving the approximated problem must be feasible for the original problem. Therefore

such reformulations that lead to bilinear functions of two continuous parameters are

generally avoided.
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3.2.3 Piecewise Linearization

The problem of fitting a piecewise linear function to a given set of datapoints can

be accomplished with linear regression and other established approaches [MB09]. If

a piecewise linear function should be fitted to a given non-linear function, it may be

insufficient to choose a uniform grid of discrete points on said function and then again

use regression algorithms. Breakpoint selection schemes have been proposed [LT15] to

find an optimized set of points on the non-linear function, where the piecewise linear

segments are determined by connecting neighboring pairs of breakpoints [LCG+13].

Let f(x) be a continuous function for which a piecewise linear approximation is to be

found in the interval xMIN ≤ x ≤ xMAX. This objective is equivalent to finding a set X
of breakpoints xB

i with i = 1, . . . , I + 1 and xB
i < xB

i+1 ∀ i ≤ I. Let

ui(x) = αix+ βi (3.7)

be the linear function obtained from connecting the points
(
xB
i , f

(
xB
i

))
and(

xB
i+1, f

(
xB
i+1

))
, specifically

αi =
f
(
xB
i+1

)
− f

(
xB
i

)
xB
i+1 − xB

i

(3.8)

and

βi = f
(
xB
i

)
− αixB

i , (3.9)

The piecewise linearization of f(x) in the interval xB
1 ≤ x ≤ xB

I+1 shall be denoted as

LinX (f(x)) = ui(x) with xB
i < x ≤ xB

i+1 (3.10)

The problem of finding suitable breakpoints xB
i can be accomplished using iterative

schemes [LT15]. An analytic minimization of the number of linear functions might

not be feasible, depending on the function to be linearized. Let the x-position of the

maximum approximation error of a given linearization LinX be

xE = arg max
x

|LinX (f(x))− f(x)| (3.11)

If the approximation error should be kept below a selectable ε, the construction of a set

of breakpoints X and corresponding linear functions ui(x) can be conducted as follows:

1. the set of breakpoints is initialized with the endpoints of the interval to be lin-

earized: X =
{
xMIN,≤ xMAX

}
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x

f(x)

xMIN xMAX

LinX (f(x))

x

f(x)

xMIN xMAXxE

f
(
xE
) > ε

x

f(x)

xMIN xMAXxE

f
(
xE
)

> ε

x

f(x)

xB1 xB2 xB3 xB4

x

f(x), ui(x)

xB
1 xB

2 xB
3 xB

4

u3(x)

u2(x)

u1(x)

Figure 3.1. Illustration of an iterative breakpoint selection scheme for piecewise linear
approximation.
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2. based on X , compute linear functions ui(x) according to Eq. (3.7)

3. compute xE with Eq. (3.11)

4. if
∣∣LinX

(
f
(
xE
))
− f

(
xE
)∣∣ > ε, add xE to the set of breakpoints X and continue

from step 2, otherwise return final set X and corresponding linear functions ui(x)

The described breakpoint selection and linearization process is illustrated in Fig. 3.1.

A formulation of the piecewise linearization of f(x), based on linear inequalities to be

utilized in a MILP, is outlined in the following. Let νi ∈ {0, 1}∀i be an indicator used to

select the appropriate line segment, with the corresponding vector ν ∈ {0, 1}I×1. For

a given x, µ = LinX (f(x)) can be obtained from the following optimization problem:

minimize
µ,ν

µ (3.12a)

subject to µ ≥
I∑
i=1

ui (x) νi (3.12b)

νix
B
i ≤ x ≤ νix

B
i+1 ∀ i ≤ I (3.12c)

I∑
i=1

νi = 1 (3.12d)

νi ∈ {0, 1} ∀ i ≤ I (3.12e)

Piecewise convexity of f(x) can be exploited to decrease the number of additional

parameters required in (3.12) [LCG+13]. If f(x) is strictly convex, this linearization

can be formulated without the segment selection parameter ν in (3.12). For a given

x, the parameter µ = LinX (f(x)) can be obtained from the following optimization

problem:

minimize
µ

µ (3.13a)

subject to µ ≥ ui(x) ∀ i ≤ I (3.13b)

As an example for this piecewise linearization, the load function ζ(γ) as defined in

Eq. (2.5) in Sec. 2.2 is to be linearized in the interval γMIN ≤ γ ≤ γMAX. As shown

in Lemma 2.2.1, ζ(γ) is convex and strictly decreasing in γ. The function ζ(γ) and

corresponding ui(γ) that serve as a linear over-approximation are illustrated in Fig. 3.2.

The approximation error between a linear function ui(γ) connecting two breakpoints

on ζ(γ) and ζ(γ) is

ui(γ)− ζ(γ) = αiγ + βi −
1

log2(1 + γ)
(3.14)
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γ

ζ(γ), ui(γ)

β1

τMAX

βI = τMIN

γMIN γMAX

u1

u2

u... uI

Figure 3.2. Illustration of the piecewise linear over-approximation of the cell load
function f(γ) with the linear functions ui(γ) in the SINR interval γMIN ≤ γ ≤ γMAX.

with the derivative

d (ui(γ)− ζ(γ))

dγ
= αi +

log(2)

(γ + 1) log2(γ + 1)
. (3.15)

In order to find the γ-position of the potential breakpoint, Eq. (3.11) is evaluated:

γE = arg max
γ

(ui(γ)− ζ(γ)) (3.16)

This implies
d
(
ui(γ

E)− ζ(γE)
)

dγE
= 0 (3.17)

which for αi < 0 is satisfied for

γE = e
2W
(

1
2

√
− log(2)

αi

)
. (3.18)

where W is the Lambert W-Function defined as

x = f−1 (xex) =W (xex) . (3.19)
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3.2.4 Fractional Bounding Discretization

Let x with elements xl, l ∈ F , F = F{N}∪F{R}, xl ∈ R∀l ∈ F{R} and xl ∈ N∀l ∈ F{N},
i.e. the vector x contains both real and integer elements. Furthermore let fN(x) > 0

and fD(x) > 0 be linear functions of x. A fractional MIP shall be defined as follows:

minimize
x

fN(x)

fD(x)
(3.20a)

subject to xl ∈ R0+ ∀ l ∈ F{R}, xl ∈ N ∀ l ∈ F{N} (3.20b)

Solution approaches for fractional MIPs have been proposed [YGGY13,Wu97], usually

relying on variable transformations to a bilinear, and then to a MILP, using methods

such as the ones discussed in Sec. 3.2.2. If the fractional term however is not in the

objective, but rather appears in the constraints of a larger problem, the proposed

methods might not be applicable. Additionally, the variable transformations required

in [YGGY13,Wu97] cannot be applied if other constraints in the optimization problem

require the original variables. Multiple iterative approaches for continuous fractional

problems have been proposed with applications on wireless communications [ZJ15], but

they cannot necessarily be applied if the fractional term contains integer optimization

parameters. Therefore in the following a method to perform a inner approximation of

the fractional MIP shall be proposed. Let Ψn ∈ R0+ with n = 1, . . . , N and let φn ∈
{0, 1} with the corresponding vector φ ∈ {0, 1}N×1. Problem (3.20) is approximated

with

minimize
x,φ

N∑
n=1

φn
fN(x)

Ψn

(3.21a)

subject to
N∑
n=1

φnΨn ≥ fD(x) (3.21b)

N∑
n=1

φn = 1 (3.21c)

xl ∈ R0+ ∀ l ∈ F{R}, xl ∈ N ∀ l ∈ F{N} (3.21d)

φn ∈ {0, 1} ∀ n (3.21e)

Note that the problem (3.21) is an inner approximation of problem (3.20), i.e. every x

obtained as the optimal solution of (3.21) is feasible for problem (3.21). How tight this

approximation is depends on the discrete values Ψn and how closely they approximate

the actual denominator fD(x). Specifically, if (3.21) solves (3.20) optimally, Eq. (3.21b)

is fulfilled with equality. The following situations are beneficial for the tightness of this
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approximation:

• the target set of fD(x) is integer, and can be directly represented by correspond-

ing Ψn

• the fractional term is embedded as a constraint in a larger optimization problem,

and only a small fraction of the target set of fD(x) has significant effect on the

overall objective

• the optimal solution very likely features a small subset of the target set of fD(x)

In Chapters 5 and 6, the proposed reformulation method for fractional terms is utilized

in optimization problems that meet the aforementioned conditions.

3.3 Classifier-Based Optimization

In the following an adaptation of learning-based classifiers to the network optimization

problems encountered in wireless networks is discussed. The classifier is based on

support vector machines (SVM) that are extended for multi-class scenarios.

3.3.1 Allocation and Classification

Classification in the context of machine learning is the attempt to identify which class

out of a given set of classes an entity belongs to. This entity usually possesses cer-

tain attributes which are either directly used as or transformed into features, based

on which the assignment to the correct class should be made. In supervised learning,

the classification scheme is “trained”, using a dataset of entities with features and the

correct classes. The trained classifier is then used with a new dataset of attributes to

estimate the unknown classes.

The application of statistical learning methods in optimizing wireless communications

networks is only being considered recently [JZR+17]. Wireless network operators typ-

ically face optimization problems of setting parameters or distributing resources, both

usually under multiple side constraints. The following conditions are beneficial for the

improvised usage of a classifier to solve the optimization problem:
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• The original problem is an IP where a high number of network entities have to

each choose between a limited number of options.

• If one such decision made by the classifier violates a QOS-constraint in the original

problem, a fallback solution needs to be available for that entity, since hard

constraints usually cannot be implemented is classifiers.

• Each entity needs to be able to extract a sufficient amount of attributes about the

network state on which the decision is made. In wireless networks, this includes

for example channel conditions, load levels and data rates.

These conditions are met for the ILPs discussed in Chapter 7, which are used to perform

decentralized load balancing, as defined in Sec. 2.3. The decentralization of decision

making is possible because the discussed features required to make the classification

decision are extracted locally. Network-wide information exchange, that is necessary for

the ILP-based optimization, can thus be avoided using this learning-based approach.

3.3.2 Support Vector Machines

Let ht̃ be a dataset of attributes with t̃ = 1, . . . , T̃ and let

H = [h1, . . . ,hT̃ ]> . (3.22)

The class labels of the training data is given in the vector y = [y1, . . . , yT̃ ]>. During

SVM training, a hyperplane ω>h + b = 0 is to be found that best separates the

feature datapoints into two classes. SVMs are large-margin classifiers, which means

that they aim to maximize the margin 2/|ω| between the hyperplane and the closest

datapoints. Since usually the data cannot be separated optimally, two modifications

for SVMs have been established. The first modification is soft threshold training,

where the hyperplane does not have to strictly separate the two classes of datapoints.

The resulting mis-classifications are discouraged during the training of the SVM. The

second modification is the kernel trick, where a function ϑ(xt̃) maps the attribute

vector xt̃ onto the L-dimensional feature space. In this feature space for example

polynomial combinations of the attributes are used as training features. The following

optimization problem is solved to train an SVM that classifies between classes c1 and
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c2 [Kre99,CV95]:

minimize
ω{c1c2},b{c1c2},ψ{c1c2}

1

2
(ω{c1c2})>ω{c1c2} + C

T̃∑
t̃=1

ψ
{c1c2}
t̃

(3.23a)

subject to (ω{c1c2})>ϑ(ht̃) + b{c1c2} ≥ 1− ψ{c1c2}
t̃

if yt̃ = c1 (3.23b)

(ω{c1c2})>ϑ(ht) + b{c1c2} ≤ ψ
{c1c2}
t̃

− 1 if yt̃ = c2 (3.23c)

ψ
{c1c2}
t̃

≥ 0 (3.23d)

ω{c1c2} ∈ RL×1, b{c1c2} ∈ R,ψ{c1c2} ∈ RL×1 (3.23e)

The penalty term C
∑T̃

t̃=1 ψ
{c1c2}
t̃

in Eq. (3.23a), with a selectable weighting factor C, is

used to discourage mis-classifications, providing the aforementioned soft-thresholding.

The classifier between classes c1 and c2 is defined by the parameters ω{c1c2} and b{c1c2}

obtained from solving problem (3.23). If classification has to be conducted only between

these two classes, the estimated class ŷ for a new dataset ĥ can be determined as follows:

ŷ =

{
c1 if (ω{c1c2})>ϑ(ĥ) + b{c1c2} ≥ 0

c2 if (ω{c1c2})>ϑ(ĥ) + b{c1c2} < 0
(3.24)

Multiclass SVM training problems like (3.23) are typically solved with high computa-

tional efficiency in their Lagrange dual formulation using kernel functions [MMR+01].

This functionality is included in common machine learning software tools [CL11,MAT].

3.3.3 Multiclass Extensions

Multiple approaches exist that aim to expand the capabilities of SVM for multi-class

problems [HL02, CS02]. A brief outline of the different options shall be given in the

following:

• One-Against-All : Multiple SVMs are trained with one class being assigned the

positive labels y = 1 and all other classes being assigned the negative labels

Y = −1. For i = 1, . . . , I classes, the so obtained parameters ωi and bi are used

to estimate the class ŷ for a new dataset ĥ based on the largest margin out of

any of the trained SVMs:

ŷ = arg max
i

(
(ω{i})>ϑ(ĥ) + b{i}

)
(3.25)
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• One-Against-One: The classification is carried out by training SVMs between all

possible pairings of classes c1 and c2 according to (3.23). The estimated class ŷ is

chosen according to which class “wins” the most one-on-one classifications with

all other classes, specifically

ŷ = arg max
i

(
I∑
j=1

H
(

(ω{ij})>ϑ(ĥ) + b{ij}
))

(3.26)

where H(·) is the Heaviside step function.

• More sophisticated schemes based on decision trees have also been proposed, for

example directed acyclic graph SVMs [PCST00].

Since the optimization problems encountered in wireless communication networks typ-

ically have more than two options for resource allocation or parameter settings, the

extensions to multi-class SVMs are crucial to effectively solve the load balancing prob-

lems discussed in Chapter 7.
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Chapter 4

Small Cell Deployment and Activity

Scheduling

4.1 Introduction and Contributions

The successful operation of small cells requires an optimized planning of deployment

locations [SY13], scheduling of activities, as well as allocation mechanisms for users to

cells [YY17,GTM+16,KBTV10,HRTA14]. Locations have to be chosen by considering

the average user demand in the serving area, the interference levels, and the possible

benefit in terms of decreased load for the macro cells. Simple approaches like selecting

the location solely based on the hotspot positions or the distance to macro nodes do

not account for the complexity of wireless networks especially in urban areas. Each

deployment is associated with specific costs that depend on the location and the type

of base station. For example, it may be very expensive or not affordable to deploy

a cell in certain areas, and the acquisition cost increases with enhanced capabilities,

such as an increased number of transceivers or higher transmit power. In this chapter,

two approaches are introduced to optimize the deployment location and small cell

type selection in LTE networks, where heterogeneous distributions of the user demand

and the location-dependent acquisition cost are also considered. Adaptive switching

between on and off states for small cells has been proposed, against the issues of

increased energy consumption and throughput-limiting interferences, and in order to

utilize only those small cells that are most beneficial for the overall network performance

[WWH+17, GTM+16, NH09, NK17, HKD11]. This activity scheduling becomes even

more crucial when the small cells use renewable energy sources and power storage. In

this work, a scheme is proposed where the optimal energy harvesting small cell activity

schedule for load balancing is obtained as the solution of a mixed-integer optimization

problem. For the cell activity optimization, demand forecasts are available in form of

so-called network “snapshots” that capture the forecasted user data demand per area.

It is assumed that the number of snapshots is very large, such that a joint optimization

of the small cell activity schedule for all time periods corresponding to the snapshots

is computationally intractable. Therefore, a cost function is proposed based on the

changes in the demand profile between consecutive snapshots. This cost function is

used to group snapshots to time-slots in a way that more time-slots per time period are

used if there is a larger fluctuation in the demand profile. The obtained time-slots, each
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corresponding to the time period of multiple snapshots, are then used as the timescale

for the small cell activity schedule optimization.

4.1.1 State-of-the-Art

The deployment problem has been discussed before for macro base stations in 3G

[ACM03] and small cells 4G networks [SY13,KMK12]. In [SY13], the authors propose

an approach to small cell deployment planning that aims at load minimization by op-

timization of a mixed-integer nonlinear problem. The problem formulation proposed

there is a MILP except for the interference term in the load computation Eq. 2.10 being

weighted with the cell load of interfering cells. As discussed in Sec. 2.2, this weight-

ing factor will not be considered in this thesis, so the problem discussed in [SY13],

adapted to the system model introduced in Sec. 2.2 is a MILP. An approach for solving

the deployment problem based on tabu search is proposed in [SY13] in an effort to de-

crease the computational complexity at the cost of potentially obtaining a sub-optimal

solution. The approach proposed in [KMK12] attempts to minimize the number of

additional SCs that have to be deployed to meet QoS requirements. A greedy solution

approach is proposed to solve the original deployment problem sub-optimally. A se-

lection among multiple small cell types and area-dependent acquisition costs has not

been considered in the aforementioned references and the preceding literature. Activity

scheduling schemes have been developed with the objective of energy minimization or

rate maximization [KU16,MGRD17,LSB+16,SBSLa14]. The authors in [KU16] provide

a common problem formulation for the activity scheduling problem as a MILP, and a

low-complexity continuous approximation. In [MGRD17] and [LSB+16], learning-based

solutions for similar problems have been introduced. The approaches in [KU16], [SB-

SLa14] and [LSB+16] all focus on a minimization of the energy consumption and are

unsuitable for load balancing. The learning-based approach in [MGRD17] aims to

maximize the network throughput in terms of data rates. Approaches that consider

load balancing with a joint optimization of the small cell activities and the timescale on

which the scheduling solutions are applied however are not considered in the literature.

Joint optimization of the system parameters and the time-slot durations during which

individual solutions are applied is an approach well established in process engineer-

ing [SP96,FL05]. In the proposed approach, these principles are applied to a wireless

communication network where a small cell activity schedule has to be optimized for a

longer time period, based on many data demand forecasts.
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4.1.2 Contributions and Overview

A network planning approach for the deployment of small cells in a mobile communica-

tion network is proposed that aims to deploy the best type of cell in the best location,

in order to achieve load balancing for the existing network. Multiple heterogeneous

parameters of the network, such as area-dependent deployment costs and different se-

lectable small cells types, are considered in the optimization process, which expands

upon the homogeneous network models used in [SY13, KMK12]. The activity of the

small cells over a given time period is optimized in a scheduling scheme that performs

energy management based on data demand forecasts. The length of the time periods

in which the optimized scheduling is applied is jointly optimized, which has been ap-

plied before in process management [SP96, FL05], but has not been considered in cell

activity scheduling for wireless networks.

The remainder of this chapter is structured as follows: Approaches for an optimiza-

tion of the deployed small cell type and location are introduced in Sec. 4.2. The

greedy approach to this location optimization is shown described in Sec. 4.2.1, followed

by the mixed-integer programming approach in Sec. 4.2.2. For the network with de-

ployed small cells, a energy management and activity scheduling scheme is presented

in Sec. 4.3, where first the energy management is optimized in Sec. 4.3.1 and then

the timescale on which the solution is applied in Sec. 4.3.2. Simulation results are

presented in Sec. 4.4 and a final summary and assessment of the proposed methods is

given in Sec. 4.5.

4.2 Location Optimization

Based on the system model introduced in Sec. 2.2, the established model is in the

following expanded for a network where different small cell models are to be deployed

in a network with multiple so-called “candidate sites” for deployment. An intuitive

approach to select these candidate sites for small cell deployment is to select locations

corresponding to pixels which require many resources from a cell in order to satisfy

their user demands. In these pixels, either the demand is very high or the achievable

SINR of the allocated base station is very low, as for example at the cell edges. Small

cells deployed in the corresponding locations can assist in fulfilling the user demand

in that area with a high proximity gain. Given a testing DP m, a “site suitability
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indicator” can be modeled as

SSI(m) =
∑

m∗:||m∗−m||<RSC

ρ2
k

dm∗

Rkm∗
(4.1)

where RSC is the expected radius of a small cell coverage area and m∗ : ||m∗−m|| < RSC

are all DPs m∗ within this radius around the DP under investigation. To encourage

offloading to overloaded cells the SSI of pixel locations that are allocated to overloaded

cells is emphasized by including the weighting factor ρk, which is squared to highly

prioritize cells with ρk > 1. In the following Secs. 4.2.1 and 4.2.2 it is assumed that,

based on the highest entries obtained from the evaluation of the SSI in (4.1), a set

k ∈ CSC of small cell candidate sites has been determined.

The dependency of the SINR on the activity and type of all interfering cells, including

SCs, poses difficulties in the computation of the SINR in Eq. (2.2). Since SCs usually

exhibit a much lower transmit power, and therefore smaller coverage area, than MCs,

they create significantly lower interference for the DP. In order to obtain a formulation

for the SINR that is computationally tractable in optimization problems for network

planning and network scheduling, the interference of SCs is in this Chapter 4 neglected,

and the SINR is computed as

γkm =
pkgkm∑

j∈{C\{k,CSC}} pjgjm + σ2
. (4.2)

Furthermore, it is assumed in the following Secs. 4.2.1 and 4.2.2 that suitable candidate

sites for small cells deployment have already been identified and that each k ∈ CSC

represents one such potential deployment location, but not necessary a deployed small

cell. Suitable locations for these candidate sites are, for example, the edges between

the coverage areas of macro cells, areas with high data demand from DPs (hotspots) or

remote areas that due to bad SINR conditions cause high load to serving macro cells.

Denote as Ñ the number of available small cell types, indicated by ñ = 1, . . . , Ñ . To

describe the small cell deployment configuration the binary Matrix Θ = {0, 1}Ñ×K is

introduced with elements

Θñk =

{
1 if a small cell of type ñ is installed in candidate site k

0 otherwise.
(4.3)

Usually it can be assumed that Θñk = 0 ∀ ñ, k ∈ CMC, i.e. no SCs are deployed in

the exact cell location of MCs. The cost of deploying small cell type ñ shall in the

following be denoted as χSC
ñ . Furthermore, let χLOC

k denote a cost factor associated

with deployment location of cell k, such that the total cost of deploying an SC of type



4.2 Location Optimization 39

ñ in the location of cell k is determined as χSC
ñ χLOC

k . The total available budget for

deployment of SCs shall be χ. Further denote as $ñ the transmit power of SC type ñ.

4.2.1 Greedy Algorithm

An intuitive approach to solve the SC deployment problem is to perform an iterative

greedy upgrade approach that starts with the MC-only network and iteratively chooses

suitable “upgrades” where either a candidate site is upgraded to a deployed small cell

or a deployed small cell is upgraded to a higher-powered model. Assuming that the

SC deployment configuration is fully represented by Θ, denote as Θ0 and ΘUP the

SC deployment solution representing the configuration before and after a considered

upgrade. The iterative upgrade process can be summarized as the following:

1. evaluate maximum load of the network before and after upgrade, respectively

maxk ρk (Θ0) and maxk ρk
(
ΘUP

)
, based on Eq. (2.10)

2. compute upgrade cost as the difference of total SC configuration costs before and

after upgrades:
∑Ñ

ñ=1

∑
k∈CSC χ

SC
ñ ΘUPχLOC

k −
∑Ñ

ñ=1

∑
k∈CSC χ

SC
ñ ΘUPχLOC

k

3. the benefit of all possible upgrades is evaluated as the ratio of maximum load

decrease to the upgrade cost, and the upgrade with the highest benefit is chosen

4. through the steps 1.-3., the network is iteratively upgraded until the total budget

χ is depleted

The proposed greedy upgrade approach maximizes cost efficiency in each upgrade step,

but lacks the ability for long-term planning, which is demonstrated and discussed in

the simulation results Sec. 4.4.

4.2.2 MILP Formulation

A scheme to solve the small cell deployment problem based on solving a MILP is

outlined in the following. The following binary indicator is pre-computed for all possible

combinations of cell location k, cell type ñ and DP m:

Υñkm =

{
1 if $ñΘñkgkm ≥ pjgjm ∀ j ∈ CMC

0 otherwise
(4.4)
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The parameter Υñkm ∈ {0, 1} indicated whether a cell of type ñ deployed in cell location

k may provide the strongest signal to DP m. An allocation of DPs to MCs is prevented

if an offloading to SCs is possible:

∑
k∈CMC

(1− Amk) ≤
∑
j∈CSC

Ñ∑
ñ

ΘñkΥñkm ∀ m (4.5)

For the selection of deployed small cell types, represented by Θ, the total budget χ

cannot be exceeded:
Ñ∑
ñ=1

∑
k∈CSC

χSC
ñ χSC

ñ ΘχLOC
k ≤ χ (4.6)

The load balancing problem (2.13) is adapted to account for the possibility of different

types of SCs being deployed.

minimize
Π,A,Θ

Π (4.7a)

subject to Π ≥
M∑
m=1

Akm
dm

ηBW
km W

ζ+
τMIN (γkm) ∀ k (4.7b)

(4.5), (4.6)

K∑
k=1

Akm = 1 ∀ m (4.7c)

Ñ∑
ñ

Θñk ≤ 1 ∀ k ∈ CSC (4.7d)

Θñk = 0 ∀ñ, k ∈ CMC (4.7e)

Π ∈ R0+ (4.7f)

Akm,Θñk ∈ {0, 1} ∀k,m, ñ (4.7g)

In problem (4.7), the established load balancing problem (2.13) is supplemented with

the following constraints to enable the deployment of optimized SC types: equations

(4.5) regulates the offloading of DPs to SCs from MCs, (4.6) prevents the deployment

solution from exceeding the available budget, and due to (4.7d), only up to one type

of SC can be deployed in any given SC candidate site.

The formulation of the deployment problem in (4.7) is linear in all optimization param-

eters and can be solved using conventional MILP solvers. The feasibility of using this

MILP-based approach to obtain near-optimal SC deployment solutions is demonstrated

in Sec. 4.4 based on simulated network scenarios.
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4.3 Cell Activity Scheduling

For the application of activity scheduling the system model presented in Sec. 2.2 is in

the following expanded by a timescale. Using this timescale, interdependent decisions

that follow each other, such as scheduling the activity of a cell at the cost of energy

consumption, can be adequately modeled. It is assumed that each demand point

exhibits a data demand d
{t}
m in bits per second in time-slot t = 1, . . . , T . Each time-slot

t has the time duration lt. The path attenuation of cell k serving users in pixel m in

time-slot t is denoted as g
{t}
km, which includes the antenna gains of the base station and

user antennas and the propagation loss. Considering only the interference of macro

cells, the signal-to-interference-and-noise-ratio (SINR) of the wireless link between cell

k and users in pixel m can be formulated as

γ
{t}
km =

pkg
{t}
km∑

j∈CMC,j 6=k pjg
{t}
jm + σ2

, (4.8)

where pk denotes the transmit power of cell k and σ2 is the power of additive white

Gaussian noise. Note that interference from small cells is omitted because of their

much lower transmit power and to simplify the resulting optimization problem. The

fraction of its available resources cell k utilizes in order to serve the data demand d
{t}
m

of users in pixel m at time-slot t is characterized as d
{t}
m /(ηBW

km W log2(1 + γ
{t}
km)) Denote

the binary matrix A{t} ∈ {0, 1}K×M with its elements defined as A
{t}
km = 1 if pixel m is

allocated to cell k in time-slot t and A
{t}
km = 0 otherwise. The set of allocation matrices

for all time-slots is denoted as A =
{
A{1}, . . . ,A{T}

}
. The allocation rule in which

each pixel is allocated to the cell providing the strongest signal is given by Eq. (2.14).

The total load incurred by cell k at time-slot t, as a ratio of used and available resources

in the cell, can be computed as

ρ
{t}
k

(
A{t}

)
=

M∑
m=1

A
{t}
km

d
{t}
m

ηBW
km W log2(1 + γ

{t}
km)

. (4.9)

The vector of all cell loads at time-slot t is defined as ρ{t} ∈ RK×1
0+ and the set of all

load vectors as R =
{
ρ{1}, . . . ,ρ{T}

}
. To indicate the activity of cell k at time-slot t

the binary vector b{t} ∈ {0, 1}K×1 is introduced with its k-th element defined as

z
{t}
k =

{
1 if cell k is active in time-slot t

0 otherwise
(4.10)
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The set of all activity indicator vectors is denoted as Z =
{
z{1}, . . . ,z{T}

}
.

Based on the introduced parameters, the amount of stored energy of small cell k ∈ CSC

in time-slot t is modeled according to its on-off activity status z
{t}
k and its load level

ρ
{t}
k as

E
{t}
k (R,Z) = E

{0}
k +

t−1∑
t′=1

E
{t′}
k −

t∑
t′=1

z
{t′}
k lt′

(
PON + P LDρ

{t′}
k

)
. (4.11)

In Eq. (4.11), E
{0}
k refers to the energy stored by cell k at the beginning of the observed

time horizon, PON represents a fixed power consumption that is due if the cell is active

and P LD is the weighting factor of the energy consumption that scales linearly with

the cell load.

4.3.1 Energy and Activity Management

In the following a scheme is introduced to perform load balancing in a heterogeneous

wireless network by scheduling the activity of energy harvesting small cells over a time

horizon. Without loss of generality it is assumed that energy management and activity

scheduling is required only for the small cells in the network. A mixed-integer nonlinear

optimization problem (MINLP) can be formulated as follows:

minimize
A,Z,R,Π

Π (4.12a)

subject to ρ
{t}
k

(
A{t}

)
≤ Π ∀k, t (4.12b)

E
{t}
k (R,Z) ≥ 0 ∀k ∈ CSC, t (4.12c)

K∑
k=1

A
{t}
kmδkpkg

{t}
km ≥(

1− A{t}jm
)
δjpjg

{t}
jm ∀j,m, t (4.12d)

K∑
k=1

A
{t}
km = 1 ∀m, t (4.12e)

A
{t}
km ≤ z

{t}
k ∀k ∈ CSC,m, t (4.12f)

Π ∈ R0+, Π ≤ Π (4.12g)

ρ
{t}
k ∈ R0+ ∀k, t (4.12h)

A
{t}
km, z

{t}
k ∈ {0, 1} ∀k,m, t (4.12i)

In problem (4.12), the objective (4.12a) and constraints (4.12b) minimize the maximum

load Π occurring for any cell in any time-slot, which is commonly referred to as load
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balancing. This maximum load level is upper bounded in (4.12g) by Π ≤ Π, which is

typically set to Π = 1. Load levels greater than one indicate overloaded cells, making

the network configuration technically infeasible. The constraints (4.12c) ensure that

each small cell cannot utilize more than its available energy, i.e. the energy level at the

end of each time-slot is nonnegative. Constraints (4.12d) are a reformulation of (2.14),

and due to (4.12e) and (4.12f), each pixel is allocated to an active cell.

Problem (4.12) is a nonlinear mixed-integer programming problem because of the bilin-

ear products z
{t′}
k ρ

{t}
k in the constraints (4.12c) where E

{t}
k (R,Z) is computed as given

in Eq. (4.11). Since the load levels are bounded in problem (4.12) by ρ
{t}
k ≤ Π ≤ Π,

the products of binary and a continuous parameters can be reformulated by applying

a lifting strategy and introducing the auxiliary parameter ρ̃
{t}
k with the following set

of inequalities:

ρ̃
{t}
k ≤ρ

{t}
k ∀k, t (4.13a)

ρ̃
{t}
k ≤z

{t′}
k Π ∀k, t (4.13b)

ρ̃
{t}
k ≥ρ

{t}
k −

(
1− z{t

′}
k

)
Π ∀k, t. (4.13c)

Further denote as ρ̃{t} ∈ RK×1
0+ the vector of elements ρ̃

{t}
k for all k, and the set Y ={

ρ̃{1}, . . . , ρ̃{T}
}

. Replacing (4.12c) by (4.13), the problem (4.12) can therefore be

reformulated into a the following mixed-integer linear problem (MILP):

minimize
A,Z,R,Y,Π

Π (4.14a)

subject to (4.12b), (4.13), (4.12d)− (4.12g)

0 ≤ E
{0}
k +

t−1∑
t′=1

E
{t′}
k

−
t∑

t′=1

(
z
{t′}
k lt′P

ON + ρ̃
{t′}
k lt′P

LD
)
∀k, t (4.14b)

ρ
{t}
k , ρ̃

{t′}
k ∈ R0+ ∀k, t (4.14c)

A
{t}
km, z

{t}
k ∈ {0, 1} ∀k,m, t (4.14d)

The SC activity scheduling problem as defined in Eq. (4.14) is a MILP, for which com-

putationally efficient state-of-the-art solvers are available as discussed in Sec. 3.2.1.

Even though this is a computationally tractable approach for the SC activity schedul-

ing problem, the increased dimensionality obtained from the lifting procedure may

prove problematic if a high number of time-slots are jointly optimized. The following

Sec. 4.3.2 addresses this challenge by decreasing the problem size along the timescale

dimension.
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4.3.2 Timescale Optimization

The approach proposed in Sec. 4.3.1 relies on solving an optimization problem that can

be computationally challenging if a large number of time-slots T are jointly optimized.

In the following a scalable approach is proposed in which multiple forecast snapshots

are grouped together into a smaller number of time-slots. The optimization procedure

proposed in Sec. 4.3.1 is applied to the resulting lower number of time-slots. Suppose

that there exist S network snapshots indicated by s = 1, . . . , S which represent a

demand forecast that is valid for time duration l̃s. In snapshot s, pixel m is forecasted

to exhibit an average aggregated data demand d̃
{s}
m . Let J ∈ {0, 1}S×T be a matrix

indicating the grouping of snapshots s to time-slots t with its elements indicated as

Js,t = 1 if time-slot t contains snapshot s and Js,t = 0 otherwise. Therefore there is

lt =
∑S

s=1 l̃sJs,t and

d{t}m =
1

lt

S∑
s=1

l̃sd̃
{s}
m Js,t. (4.15)

The mean squared deviation of the user demand in all pixels between snapshots s and

s− 1 can be computed as

v(s) =
α

M

M∑
m=1

(
d̃{s}m − d̃{s−1}

m

)2

∀s > 1 (4.16)

where α is a scaling parameter that is chosen such that maxs v(s) = 1. The function

v(s) in Eq. (4.16) measures the average squared difference in pixel demand between s−1

and s. The proposed strategy to find an optimized allocation matrix J of snapshots to

time-slots is to use a high density of snapshots when v(s) takes high values, indicating

a high demand fluctuation in the network, and a low density of snapshots when v(s)

takes lower values, indicating that the pixel demands remain mostly unchanged. This

is achieved by solving the following optimization problem:

minimize
Ψ,J

Ψ (4.17a)

subject to
S∑
s=1

Js,tv(s) ≤ Ψ ∀t (4.17b)

S∑
s=1

Js,t ≥ 1 ∀t (4.17c)

T∑
t=1

Js,t = 1 ∀s (4.17d)

J1,1 = 1, JS,T = 1 (4.17e)
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Js,t ≤ Js−1,t + Js−1,t−1 ∀s > 1, t (4.17f)

Ψ ∈ R0+, Js,t ∈ {0, 1} ∀s, t, S > T (4.17g)

In problem (4.17), the constraints (4.17b) use the term v(s) as a cost function, where the

maximum sum cost allocated to any time-slot is minimized. With constraints (4.17c)

and (4.17d), at least one snapshot is allocated to each time-slot and each snapshot

can only be allocated to one time-slot, respectively. Constraints (4.17e) cause the first

and last snapshot to be allocated to the first and last time-slot respectively, and due

to (4.17f), starting from time-slot t = 1, with increasing s, each snapshot can only be

allocated to the current time-slot (t) or the next time-slot (t+ 1).

4.4 Simulation Results

A simulation for a heterogeneous wireless communication network is carried out using

the parameters listed in Table 4.4 and the locations of 3 MCs and 9 SCs as depicted in

Fig.4.4. The network area is segmented into pixels of size 25 × 25 m and the number

of users Um in pixel m is determined randomly in each snapshot from a Poisson

distribution Um ∼ P (λm) with rate λm = 0.1 for normal pixels and higher λm if pixel

m is in a hotspot. This results in about 300 users in the simulated network area.

The used performance criterion is the maximum load of any cell during any time-slot,

which has to be minimized. Interferences and load levels are computed considering all

macro cells and active small cells, which is an exact computation of the interference

contrary to the simplifying approximation of neglecting the SC interference that was

used in the optimization schemes discussed in Secs. 4.2 and 4.3.

Two simulations are performed to validate the performance of the methods introduced

in Secs. 4.2.1 and 4.2.2. Common parameters for both simulations are shown in Table

4.4. The costs of small cell models, as well as the total budget, are modeled in ‘Units’.

The number of users and their data demand is chosen in such a way that the macro cells

are close to being overloaded, with a load factor 0.8 < ρk < 1. The MILP problems

are solved using Gurobi Optimizer 6.0 [GUR] and the CVX optimization toolbox for

MATLAB [GB14]. As the main performance metric, the ‘relative maximum load’ is

computed, which is the maximum load factor of any cell in the network after small

cell deployment normalized by the maximum load factor in the original macro-only

network. Each curve in Figs. 4.2 and 4.3 is obtained from averaging 20 Monte-Carlo

trials, each generated from a new map with random hotspot and DP distributions.
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Table 4.1. Common network parameters for the simulation of a heterogeneous LTE
network.

Area size 1000× 1000 m
System bandwidth W 20 MHz
Avg. number of users ≈ 350
Avg. demand per user 400 kbit/s
Log-normal shadow fading 5 dB
Noise power -145 dBm/Hz
Bandwidth efficiency ηBW 0.8
MC transmit power pk 46 dBm
MC antenna gain g̃ABS 15dB
Propagation loss gMC, gSC 3GPP TS 36.814 [3GP16]

Simulation 1 is designed to evaluate the two proposed deployment methods, MILP-

based and greedy approach, in comparison with the optimal solution found with ex-

haustive search. Finding this optimal solution is only possible for a very small instance

of the problem. The simulation parameters are shown in Table 4.4. Only ten candidate

sites are used, and the two solutions for each candidate site are either ‘no deployment’

or deployment of a pico cell with 1 W transmit power and 5 dB antenna gain, which

will in the following be called ‘pico B’. The decrease in the maximum load factor is

evaluated for multiple small total budgets up to Z = 300.

As observable in Fig. 4.2, the decrease in load factor is less than 15% for all methods,

due to the limited budget and small pico cell model used. The relative maximum load

decreases continuously with the increasing budget for the exhaustive search approach.

Since the greedy approach is iterative in nature and the MILP-based approach only

solves an approximated version of the original problem, both methods show slightly

worse performance than the optimal results, but provide good solutions for the small

cell deployment problem. Simulation 2 compares the two proposed methods for a

more realistic size of the deployment problem. As shown in Table 4.4, the number

of candidate sites is increased to 100, and 4 different small cell deployment options

are available with different cost and transmit power. An example for the resulting

deployment solution is illustrated in Fig. 4.1. The performance comparison of the

CWGU and the MILP-based approach for Simulation 2 is shown in Fig. 4.3. The

decrease in maximum load is much larger than the decrease obtained in Simulation

1, because of the larger budget and the increased number of small cell models. The

MILP-based approach achieves a larger decrease in terms of maximum load than the

CWGU. Since the computation time for the MILP is also much lower with the used

system, this approach is preferable over the iterative CWGU method.
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Table 4.2. Hotspot model, deployment cost factors and small cell models for SC de-
ployment simulation.

Pixel size 25× 25 m

Number of hotspots 10

Hotspot radius 50m

Hotspot user density 4× normal

Area deployment cost factors 1 in 50% of area

0.75 in 15% of area

1.5 in 25% of area

3 in 10% of area

Pos. of macro BS MC1 at [100m, 200m]

MC2 at [800m, 100m]

MC3 at [200m, 800m]

MC4 at [900m, 900m]

number of candidate sites (simulation 1) 10

small cell models (simulation 1):

no deployment $1 = 0, χSC
1 = 0 Units

pico C $2 = 35dBm, χSC
2 = 50 Units

number of candidate sites (simulation 2) 100

small cell models (simulation 2):

no deployment $1 = 0, χSC
1 = 0 Units

pico C $2 = 29dBm, χSC
2 = 40 Units

pico B $3 = 35dBm, χSC
3 = 50 Units

pico A $4 = 41dBm, χSC
4 = 75 Units

Table 4.3. Small cell energy management and activity scheduling simulation parameters

Bias values SC δk∀k ∈ CSC 6dB

Initial energy E
{0}
k ∀k ∈ CSC 2

Fixed power cons. fac. PON 1

Load-dependent power cons. fac. P LD 1

Snapshot length l̃s∀s 1

Number of snapshots S 48
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Figure 4.1. Network scenario and sample solution for SC deployment panning sim-
ulation. Different types of SC are deployed on the edges between the MC coverage
areas.

The methods used for benchmarking the proposed small cell activity scheduling schemes

are the following: The first method is to leave all SCs off and handle data traffic solely

through macro cells. Since this solution is part of the feasible set of problem (4.14),

and the only simplification of neglecting small cell interferences is not very significant,

leaving all SCs off always generates higher load levels than the proposed scheme. The

second benchmarking method is to leave all small cells on at all times, which ignores

the constraints (4.14b), but serves as an upper bound on achievable performance. The

third benchmarking method is to ignore (4.14b) and find the best activity schedule for

each snapshot independently using exhaustive search. This method may serve as the

absolute theoretical lower bound on achievable load levels that is however computa-

tionally impractical for larger networks. For each of the following three simulations,

100 network scenarios with S = 48 demand forecast snapshots are simulated, and the

resulting maximum cell loads are averaged for all methods.
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Figure 4.2. Small cell deployment performance (simulation 1), with low number of
candidate sites and only one small cell type, to allow for comparison with the exhaustive
search solution.
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Figure 4.3. Small cell deployment performance (simulation 2) with a large number of
candidate sites and three selectable small cell types.
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Figure 4.4. Network scenario for SC scheduling simulation. Three MC and nine SC
are deployed in the network area under consideration, all SC are assumed to utilize a
renewable energy source and energy storage.

The results of a simulation with variable DP demand are depicted in Fig. 4.5, where

the maximum load for all methods is shown over increasing user data demand and with

varying incoming energy levels E
{t}
k for the proposed method. Every 8 snapshots, the

coverage areas of three randomly selected small cells are chosen as hotspots. Problems

(4.14) and (4.17) are solved with T = 8 time-slots. As the amount of harvested energy

increases, more small cells can be left on in the proposed approach, and the load level

decreases. In a simulation of the achieved load level over a variable number of timeslots,

shown in Fig. 4.6, the demand of a single user is fixed at 400 kbit/s. The maximum

load level over the number of time-slots T is shown in Fig. 4.6. It is observable that the

achieved maximum load decreases with increasing E
{t}
k as well as with an increasing

number of time-slots T .

To highlight the benefits of the proposed timescale optimization technique proposed

with problem (4.17), a network scenario is constructed that has a high demand fluc-
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Figure 4.5. Averaged maximum load level for different small cell scheduling approaches
and varying amounts of energy supply for the SC. The achieved load levels increase
linearly with the user demand.

tuation. For the previous simulations, the overall demand fluctuations, represented by

the function v(s) in Eq. (4.16), is chosen to be very low, leading to an almost equal

length of all time-slots. For a network scenario with high demand variability, a net-

work scenario is constructed where, over the S = 48 snapshots considered, three new

hotspots are selected randomly every 4 snapshots for s = [15, 35]. Additionally, the

overall data demand is multiplied by a factor of 1.5 for s = [15, 21] and s = [29, 35]

and by a factor of 2 for s = [22, 28]. This leads to an increased cost function v(s) for

s = [15, 35] shown in Fig. 4.7.

The resulting segmentation of snapshots into T = 8 time-slots obtained from solving

problem (4.17) is also shown in Fig. 4.7. As observable, a higher density of time-slots

with shorter duration each is chosen in the high variability time interval. The compar-

ison in this network scenario between the proposed approach and the approach where

a uniform length of time-slots is chosen is shown in Fig. 4.8. The propsed timescale

optimization achieves significantly lower load levels especially if a low number of time-

slots is available. The proposed joint optimization of the small cell activity schedule

and of the time-slot durations on which the schedule is applied achieves significantly

decreased load levels.
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Figure 4.6. Averaged maximum load levels for different number of time-slots and
varying energy supply. The maximum load level decreases if more time-slots can be
jointly optimized.
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Figure 4.7. Snapshot cost function example with corresponding time-slot segmentation.
A time period with high demand variability in the network was added for snapshots
15 to 35.
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Figure 4.8. Averaged maximum load over number of time-slots, with fixed and varying
time-slot length. The proposed approach with variable time-slot length achieves lower
load levels than with fixed time-slot duration, especially if a low number of time-slots
can be jointly optimized.

4.5 Summary

A framework was introduced for the planning of SC deployments and the scheduling

of their activity status over a time horizon. The proposed SC deployment scheme

considers multiple heterogeneities such as hotspots in the mobile user distribution,

location-dependent site acquisition costs and multiple available small cell models with

different cost and transmit power. An approach to find candidate deployment locations

with a ‘site suitability function’ has been introduced. Due to the non-linearity of the

original mixed-integer optimization problem, a greedy upgrade method to solve the

problem iteratively, and a MILP-based approximation of the original problem, which

can be solved using conventional optimization tools. The superiority of the MILP-

based approach was demonstrated with simulations of a heterogeneous LTE network.

A scheme for small cell activity scheduling over a given time horizon with energy har-

vesting small cells was introduced. The optimal activity schedule was obtained as the
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result of a mixed-integer optimization problem. To achieve scalability of the mixed-

integer optimization approach, a time schedule with time-slots of varying length, on

which the schedule was applied, was optimized according to the temporal demand vari-

ability of the network. Simulation results show that the proposed approach achieves a

decrease in load levels and problem dimensionality. The deployment, activity schedul-

ing, and timeslot optimization subproblems were all effectively solved to facilitate a

load balanced network already at the network planning stage.
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Chapter 5

Resource Allocation and Network Slicing

5.1 Introduction

As a key feature, future wireless networks are designed to operate based on a “Network

Slice Layer” and a “Service Layer” [P1 16,FMK17,FSPRA18,SPRFA17]. The function

of a network slice is to aggregate sets of network resources from the underlying physical

layer to provide specific services in the service layer [FSPRA18]. These services, which

can be categorized for example into eMBB, URLLC and mMTC services as discussed

in Sec. 1.1, can have varying QoS-constraints such as a minimum SINR level, band-

width efficiency, latency, support for a large number of connected devices and other

requirements. The QoS-constraints are largely dictated by the requested service, and

the underlying time-frequency resources have to be distributed accordingly. Methods

for spectrum coexistence between cells aim to find solutions where each cell utilizes

as much of the spectrum as required, but adapts its spectrum-sharing behavior in a

“cognitive” manner based on that of neighboring cells, to avoid interfering in critical

scenarios [ADARCA17]. The segmentation and allocation of the network resources

can be planned in advance, based on demand forecasts, or while the network is in

operation. As a consequence, there exists multiple approaches to RAN slicing based

on spectrum planning, inter-cell interference coordination, packet scheduling or admis-

sion control [SPRFA17]. The approach proposed this chapter is a spectrum planning

scheme, but its solutions can be applied to admission control schemes.

From a network operators perspective one of the greatest concerns is how to enable the

coexistence of a variety of services, with very diverse requirements regarding reliability,

data throughput or latency, in a network that due to its dense cell deployment becomes

increasingly interference-limited [AZDG16]. To achieve the high SINR levels that are

necessary for high-reliability or high-throughput slices, the network can only be “den-

sified” to a limited extent if co-channel operation is being considered, as discussed in

Sec. 1.1. The resource allocation scheme proposed in this chapter aims to minimize the

amount of resources that have to be utilized to fulfill all QoS-requirements of a given

network scenario. This is achieved by a joint optimization of the resource distribution

between slices and the allocations these resources to cells and DPs.
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5.1.1 State-of-the-Art

The approach of segmenting the time-frequency resources and allocating these segments

to cells originates from conventional cell planning [EHF08], but can be adapted to

optimize resource allocation to slices providing different services. To mitigate the

significant interferences caused by network densification, multiple slices operating on

orthogonal sets of physical time-frequency resources have been proposed [ZLC+17, P1

16]. The authors in [ADARCA17] propose a spectrum managements scheme where the

spatial distribution of cells is considered, and resources are distributed according to

service requirements. There is however no method provided to optimize the resource

efficiency or resource consumption. In [ZLC+17], a scheme is introduced for handover

management and for maximizing individual SC capacities, but the proposed methods

a not applicable for spectrum management of a larger network and joint optimization

of multiple cells. Dedicated network optimization methods for dense heterogeneous

slicing networks are still scarce in current literature [AZDG16].

5.1.2 Contributions and Overview

In this work, an approach is proposed for network time-frequency resource planning

based on maximizing the resource efficiency of the network by joint optimization of

the resource assignment to network slices, the allocation of slices to different operating

cells, and the allocation of users to cells. The proposed resource optimization is a

concrete application of the concepts of spectrum planning and densification of HetNets

formulated in [AZDG16, SPRFA17]. It is also demonstrated how SINR-requirements

and bandwidth efficiencies of the transmission schemes dedicated to different services

can be incorporated into the network optimization process. The contributions of the

proposed resource allocation method compared to state-of-the-art approaches can be

summarized as follows: The proposed approach jointly considers multiple network

parameters for optimization: the allocation of DPs to cells, the allocation of cells to

different time-frequency resource pools and the dimensioning of these resource pools.

Established methods consider a static model where the interference for each DP is

considered to be fixed. The proposed approach dynamically models the interference

based on the jointly optimized resource pools. QOS-constraints for different services

provided by the network slices can be considered during the optimization of the resource

distribution.

In the following Sec. 5.2, a problem formulation is introduced for maximizing the

resource efficiency of a wireless network. The proposed resource allocation method in
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is discussed in Sec. 5.3. Simulation results of the achieved resource efficiency for varying

user demand and number of small cells are given in Sec. 5.4. A final assessment of the

method and summary of the results is provided in Sec. 5.5.

5.2 Problem Formulation

The system model for network slicing expands upon the model introduced in Sec. 2.2.

Bandwidth resources available to the network are divided among I slices, indicated by

q = 1, . . . , Q. These slices may be designed to provide different services, with varying

minimum SINR requirements γMIN
q and bandwidth efficiencies ηQ

q , which represent the

ratio of the bandwidth available for data transmission to the total available bandwidth.

Other service requirements may include peak data rates and latency, which both can

be optimized in higher network layers. A low-latency transmission scheme for example

would rely on very small packet sizes, which can be modeled with a decreased band-

width efficiency in the proposed scheme [MK10]. The information in which of the slices

q a DP m can be served is specified by parameter Sqm, where Sqm = 1 if DP m can be

served in slice q, and Sqm = 0 otherwise. In this chapter, it is assumed without loss

of generality that each cell operates in a single slice. A cell that operates in multiple

slices can be modeled as multiple “virtual” cells in the same location. The allocation

of cells to slices is indicated in matrix B ∈ {0, 1}Q×K , where

Bqk =

{
1 if cell k operates in slice q

0 otherwise
. (5.1)

The SINR γkm of DP m served by the base station in cell k is formulated as

γkm =
pS
kgkm∑

j∈{C\{k}}
∑Q

q=1BqkBqjpS
j gjm + λ

(5.2)

where pS
k is the power spectral density of the transmitted signal of cell k, gkm is the

combined attenuation factor from cell k to userm resulting from antenna gains and path

loss and λ is the power spectral density of additive white Gaussian noise. The sum over

j ∈ {C \ {k}} refers to the set of all cells j = 1, . . . , K except for j = k. The model in

(5.2) corresponds to an OFDMA system with full frequency reuse between cells [MK10].

Note that the term j ∈ {C \ {k}}
∑I

q=1BqkBqjpjgjm indicates the interference from

those cells j which are serving, and therefore interfering, in the same slice q as cell

k. Indicate the allocation of DPs to cells with the binary matrix A ∈ {0, 1}K×M ,

with its elements Akm = 1 if DP m is allocated to cell k, and Akm = 0 otherwise. The
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bandwidth efficiency modifying factor related to the type of cell k (e.g. MC or SC) used

for the transmission is indicated as ηK
k . Based on the cell load computation outlined

in [MK10], cell k is not overloaded if the following condition is satisfied:

M∑
m=1

AkmDmζ
+
τMIN (γkm) ≤ ηK

k

Q∑
q=1

(
Bqkη

Q
q wq

)
∀ k, (5.3)

where ζ+
τMIN(γ) is defined in Eq. (2.9), wq is the bandwidth allocated to slice q. The

total system bandwidth is denoted as w, such that for any viable network configuration∑Q
q=1wq ≤ w.

To maximize the overall resource efficiency of the network, a cell- and slicing- configu-

ration need to be found where the requests from all DP are fulfilled with a minimum

amount of bandwidth resources used. This problem is equivalent to maximizing the

amount of “unused” resources Z = w −
∑Q

q=1wq. The practical use of this approach

is that the unused spectral resources, after optimizing the network using our proposed

approach, can be utilized for example to further improve the data rates of selected

users. For this purpose a mixed-integer nonlinear optimization problem (MINLP) can

be formulated as follows:

maximize
Z,w,A,B

Z (5.4a)

subject to

Q∑
q=1

wq + Z = w (5.4b)

K∑
k=1

Akm = 1 ∀ m (5.4c)

Q∑
q=1

Bqk ≤ min

{
1,

M∑
m=1

Akm

}
∀ k (5.4d)

K∑
k=1

AkmBqk ≤ Sqm ∀ q,m (5.4e)

γkm =
pS
kgkm∑

j∈{C\{k}}
∑Q

q=1BqkBqjpS
j gjm + λ

∀ k,m (5.4f)

Akmγkm ≥ Akmγ
MIN
q ∀ k,

{
m, q|

∑
k

AkmBqk = 1

}
(5.4g)

M∑
m=1

AkmDmζ
+
τMIN (γkm) ≤ ηK

k

Q∑
q=1

(
Bqkη

Q
q wq

)
∀ k (5.4h)

Z,wq ∈ R0+ ∀ q (5.4i)
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Akm, Bqk ∈ {0, 1} ∀ q, k,m (5.4j)

In problem (5.4), equality (5.4c) forces each DP to be allocated to exactly one cell,

while inequality (5.4e) allows it to be allocated only to its requested slice(s), as specified

by Sqm. Constraints (5.4d) cause each cell to operate in at most one slice, and only

if it has users allocated to it. With (5.4g), an allocated DP-cell connection needs to

fulfill the SINR requirement of the slice requested by the DP.

Problem (5.4) is a nonconvex mixed-integer program. Especially the dependency of

the interference-plus-noise term in Eq. (5.4f) on B and multiple bilinear terms in other

constraints render the problem computationally intractable to solve. Motivated by the

considerations in Sec. 3.2.1, an approach to reformulate problem (5.4) into a MILP is

derived in the following.

5.3 Resource Planning Scheme

This inner approximation is performed in three steps: firstly, the interference for each

connection is upper bounded with a set of discrete interference scenarios, secondly the

SINR- and load-computation are reformulated with said approximation, and finally all

bilinear products of optimization parameters are replaced with equivalent linear for-

mulations using a lifting procedure.

To provide an approximation of the SINR expression as defined in Eq. (5.4f), a set of

discrete interference levels Ψnkm is introduced, indicated by n = 1, . . . , N , which are

precomputed for each pair of (k,m), such that they represent the most relevant low-

to medium-SINR scenarios. These discrete interference levels are utilized to approxi-

mate the denominator of the SINR-term in Eq. (5.4f), in a scheme based on Sec. 3.2.4.

To ensure the feasibility of the approximate problem, the full interference scenario,

i.e. Ψ1km =
∑

j∈{C\{k}} pjgjm+ε is considered as one of the relevant interference scenar-

ios. The second relevant interference level is the scenario where the strongest interfering

cell is inactive or operating in another slice, for example Ψ2km = Ψ1km−maxj\{k} pjgjm,

. Usually the removal of the first- and second-strongest interfering cell has the highest

impact on achievable rates. If every possible interference scenario is considered for K

cells, 2K scenarios are required to solve the resource allocation problem optimally. The

algorithm in the following aims to utilize only those N � 2K scenarios that have the

strongest impact on overall cell load levels. The algorithm is designed in such a way

that the discrete interference level used as an approximation is always an over-estimator

of the actual interference plus noise. This is achieved by adding in the reformulated
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problem the following constraint:

∑
j∈{C\{k}}

Q∑
q=1

BqkBqjpjgjm + ε ≤
N∑
n=1

φnkmΨnkm ∀k,m (5.5)

where φnkm = 1 if interference scenario n is used as an approximation for the link

between DP m and cell k, and φnkm = 0 otherwise. Since exactly one interference

scenario applies for each pair of cell k and DP m, it has to hold that∑
n

φnkm = 1 ∀k,m. (5.6)

The elements φnkm are arranged in the three-dimensional binary array φ ∈
{0, 1}N×K×M . The proposed inner approximation of Eq. (5.4h) is the following:

M∑
m=1

N∑
n=1

DmφnkmAkmζ
+
τMIN

(
pkgkm
Ψnkm

)
≤ ηK

k

Q∑
q=1

(
ηQ
q Bqkwq

)
∀k (5.7)

The term ζ+
τMIN (pkgkm/Ψnkm) in Eq. (5.7) can be pre-computed for all combinations of

(n, k,m). Approximating the constraints (5.4h) with (5.5) and (5.7) leads to an upper

bound approximation of the interference and accordingly the required bandwidth for

each user. Solutions obtained from using the latter set of constraints are therefore

feasible for the original problem. A possible selection of discrete interference levels

The constraints (5.4g) are approximated correspondingly with

Akmp
S
kgkm ≥ γMIN

i

N∑
n=1

φnkmAkmΨnkm ∀ k,

{
m, q|

∑
k

AkmBqk = 1

}
. (5.8)

To enable the correct parameter selection for which Eq. (5.8) has to hold, it is mod-

ified using a big-M reformulation [CPP13] where a term ξ(1 −
∑K

k=1AkmBqk) is sub-

tracted on the right-hand side to ensure that the SINR-constraint is always fulfilled if∑K
k=1AkmBqk = 0, i.e. when DP m is not serviced in slice q:

Akmp
S
kgkmAkmp

S
kgkm ≥ γMIN

q

(
N∑
n=1

φnkmAkmΨnkm − ξ

(
1−

K∑
k=1

AkmBqk

))
∀ k, q,m

(5.9)

For this property to hold, the parameter ξ needs to be chosen such that ξ ≥
maxn,k,m Ψnkm. The reformulated problem (5.4) reads as follows:

maximize
Z,w,A,B,φ

Z (5.10a)
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γMIN γMAX

Figure 5.1. Illustration of the load function for an example of discrete interference
terms. The density of the discretization is chosen to be higher for SINR-levels where
the load function ζ(γ) has a steeper slope.

subject to (5.4b)− (5.4d), (5.4e), (5.5), (5.6), (5.7), (5.9)

Z,wq ∈ R0+ ∀ q (5.10b)

Akm, Bqk, φnkm ∈ {0, 1} ∀ q, k,m, n (5.10c)

The resulting optimization problem (5.10) is still nonlinear because of multiple bilin-

ear products of two optimization variables in the constraints, specifically AkmBqk in

Eq. (5.4g) and Eq. (5.4e), φnkmAkm in Eq. (5.9) and Eq. (5.7), BqkBqj in Eq. (5.5) and

Bqkwq in Eq. (5.7). These bilinear terms are reformulated using the constraint sets B
and L as defined in Sec. 3.2.2.

To replace the aforementioned bilinear products, the lifting strategy introduced in

Sec. 3.2.2 is used that linearizes the problem at the cost of increased dimensionality.

Denote as

wB
qk = Bqkwq ∀ q, k (5.11)

the resources cell k utilizes in slice q. Because the maximum amount of resources

utilized by any cell in any slice is nonnegative and bounded by wq ≤ w, Eq. (5.11) is

reformulated based on Eq. (3.3) to the following inequalities:

∀ q, k : (5.12a)

wB
qk ≥ wq − (1−Bqk)w (5.12b)
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wB
qk ≤ wq (5.12c)

wB
qk ≤ wBqk (5.12d)

A real matrix wB ∈ RQ×K
0+ shall in the following represent all arranged elements wB

qk.

To write the set of linear inequalities (5.12) in a shorter form, the set L introduced in

Sec. 3.2.2 will be used in the following.

The term
∑

j∈{C\{k}}
∑Q

q=1 BqkBqj in Eq. (5.5) contains the product BqkBqj of two

binary parameters, which is also reformulated based on the lifting strategy introduced

in Sec. 3.2.2. Denote as

BINT
qkj =

{
BqkBqj ∀ q, k, j : k 6= j

0 ∀ q, k, j : k = j
(5.13)

an auxiliary parameter indicating whether cells k and j are interfering with each other

in slice q. The bilinear product BqkBqj computing the non-zero BINT
qkj , for which k 6= j,

can be recast into an equivalent formulation with the following inequalities:

∀ q, k 6= j : (5.14a)

BINT
qkj ≤ Bqk (5.14b)

BINT
qkj ≤ Bqj (5.14c)

BINT
qkj ≥ Bqk +Bqj − 1 (5.14d)

The elements BINT
qkj are arranged in the three-dimensional binary array BINT ∈

{0, 1}Q×K×K , and the constraints (5.14) is written in the following using the set B
introduced in Sec. 3.2.2.

Further denote the auxiliary optimization parameters AB
ikm , AkmBqk, φA

nkm ,

φnkmAkm, with their elements arranged in the three-dimensional binary arrays AB ∈
{0, 1}Q×K×M and φA ∈ {0, 1}N×K×M , respectively. To ensure that these auxiliary

parameters are equal to the bilinear products of the original optimization parameters

again the linear inequality constraints in B are utilized. Implementing the reformu-

lation of bilinear terms in the optimization problem results in the following MILP:

maximize
Z,w,A,B,AB,BINT,φ,φA,wB

Z (5.15a)

subject to (5.4b)− (5.4d)

K∑
k=1

AB
ikm ≤ Sqm ∀ q,m (5.15b)
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γMIN
q

(
N∑
n=1

φA
nkmΨnkm − ξ

(
1−

K∑
k=1

AB
qkm

))
≤ Akmp

S
kgkm ∀ k, q,m

(5.15c)

M∑
m=1

N∑
n=1

Dmφ
A
nkmζ

+
τMIN

(
pkgkm
Ψnkm

)
≤ ηK

k

I∑
q=1

(
ηQ
q w

B
qk

)
∀ k (5.15d)

I∑
q=1

K∑
j=1

BINT
qkj p

S
j gjm + ε ≤

N∑
n=1

φnkmΨnkm ∀ k,m (5.15e)∑
n

φnkm = 1 ∀ k,m (5.15f)

{wq, w,Bqk, w
B
ik} ∈ L ∀ q, k (5.15g)

{φnkm, Akm, φA
nkm} ∈ B ∀ n, k,m (5.15h)

{Akm, Bik, A
B
ikm} ∈ B ∀ q, k,m (5.15i)

{Bqk, Bqj, B
INT
qkj } ∈ B ∀ q, j 6= k;BINT

qkj = 0 ∀ q, j = k (5.15j)

Z,wq, w
B
qk ∈ R0+ ∀ q, k (5.15k)

Akm, Bqk, φnkm, φ
A
nkm, B

INT
qkj , A

B
ikm ∈ {0, 1} ∀ q, k, j,m, n (5.15l)

The problem formulated in (5.15) is linear in all optimization variables and therefore

can be solved using conventional MILP solvers.

5.4 Simulation Results

A mobile communication network is simulated with the parameters outlined in Table

5.1. The network, as shown in Fig. 5.2 contains three macro cells and six small cells that

are located along the edges of the macro cell coverage areas. The simulation considers

three possible configurations for the interference scenario, corresponding respectively

to a full interference setting, a removal to the strongest interfering cell and the removal

of the two strongest interfering cells. The final interference level corresponds to the

no-interference case. Specifically, the discrete interference levels Ψnkm with N = 4 are

computed as

Ψ1km =
∑

j∈{C\k}

pjgjm + λw, (5.16)

Ψ2km =
∑

j∈{C\k,κPkm}

pjgjm + λw, (5.17)

Ψ3km =
∑

j∈{C\k,κPkm,κ
S
km}

pjgjm + λw. (5.18)
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Table 5.1. Simulation parameters of a downlink LTE network for resource efficiency
minimization. The resource and DP allocation is optimized. Resource consumption
performance is averaged over 500 simulations with fixed base station positions and
randomly distributed DPs.

Area size 1000× 1000 m

Noise power spectral density λ -145 dBm/Hz

Max. time-frequency resources w 20 MHz

Number of DPs M 40

Position of macro BS MBS1 at [100m, 800m]

MBS2 at [900m, 800m]

MBS3 at [500m, 140m]

MBS transmit power spectral density pS −27 dBm/Hz

MBS antenna gain g̃ABS 15dB

Position of pico BS PBS1 at [500m, 900m]

PBS2 at [500m, 600m]

PBS3 at [300m, 400m]

PBS4 at [150m, 200m]

PBS5 at [700m, 400m]

PBS6 at [850m, 200m]

PBS transmit power spectral density pS −37 dBm/Hz

PBS antenna gain g̃ABS 5dB

DP antenna gain g̃ADP 0dB

Propagation loss g̃PATH 3GPP TS 36.814 [3GP16]

Cell bandwidth efficiency ηK
k 1

Slice bandwidth efficiency ηK
k 1 (normal slice)

0.5 (reliability slice)

SINR requirement γMIN
q −7dB (normal slice)

0dB (reliability slice)

SINR threshold γMAX 20dB



5.4 Simulation Results 65

0 100 200 300 400 500 600 700 800 900 1,000
0

200

400

600

800

1,000

range (m)

cr
os

sr
an

ge
(m

)

SC inactive

MC Slice 1

MC Slice 2

SC Slice 3
DP Slice 1
DP Slice 2
DP Slice 3

Figure 5.2. Illustration of a typical resource distribution, slices, and user allocation
result. All SCs are automatically allocated to a separate resource slice from the ones
utilized by the macro cells.

The final interference scenario models the noise-only case Ψ4km = λw. The optimiza-

tion problem in (5.15) is solved using CVX for MATLAB [GB14,GB08] and Gurobi as

a MILP solver [GUR]. For each network scenario, M = 40 demand points are randomly

distributed in the simulated area. The network scenarios described in this section have

been solved on a standard workstation with an Intel i7-7600 processor, with a solver

time of approximately one minute for each scenario. A typical result of the proposed

method is illustrated in Fig. 5.2. Three orthogonal resource slices, indicated by color

in Fig. 5.2, are utilized (Q = 3). The proposed method automatically allocates all

SCs to a separate slice from those utilized by the MCs. One SC in the bottom right

corner of the map is not utilized at all, resulting from a lack of DPs in close proximity.

Different services envisioned for 5G, as discussed in Sec. 1.1, might require the use

of transmission and coding schemes that require better SINR-levels and that sacrifice

bandwidth efficiency for reliability. The corresponding parameters for this “reliability”
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Figure 5.3. Illustration of the resource slicing distribution with one reliability-focused
slice. Two clusters of five DPs each are specifically requesting the reliability slice.

slice are shown in Table 5.1. In the example scenario shown in Fig. 5.3, two clusters

were added with five DPs each that explicitly request service from slice i = 1. This

slice is set up as a “high reliability” slice that could provide for example coverage to

machine-to-machine services. Because of these requirements, the transmission scheme

used in this slice has lower bandwidth efficiency (ηI
1 = 0.5) and requires good SINR

(γMIN
1 = 0dB). As observable, the macro cell in the upper right corner of the map is

reserved almost exclusively for the service of the DPs requesting Slice 1. Interference

to these DPs is also actively regulated because only two SCs in the lower right region

of the map also share this “high reliability” slice. The algorithm also chooses to service

some other users in this slice, even though they had not specifically requested it.

In the following the effect of cell planning with multiple orthogonal resource pools

on the resource efficiency of the system, as optimized by solving problem (5.15), is

analyzed. As a baseline method to optimize the resource efficiency the state-of-the-art

approach of full frequency reuse, and an allocation of DPs to the cell providing the
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Figure 5.4. Network resource utilization of the proposed resource slicing optimiza-
tion for varying user demand (simulation 1). The proposed method benefits from the
availability of additional, orthogonally operating resource slices.

strongest signal is used. To allow for a comparison with this approach, the slices in the

proposed method are modeled with equal parameters as outlined in Table 5.1.

In a simulation to evaluate the resource efficiency of the proposed method, 250 net-

work scenarios with the DP demand in each scenario increasing from Dm = 0.5 Mbit/s

to Dm = 5 Mbit/s, and M = 40 randomly placed DPs for each scenario, where the

resulting levels of unused resources Z are averaged over all scenarios. As observable

in Fig.5.4, the proposed method with Q = 1 yields a resource efficiency slightly higher

than the baseline method, but remark that both methods require more resources than

are actually available for high demand, which means that Z is negative. For Q = 2,

the resource efficiency vastly improves, and increasing the maximum number of slices

to Q = 3 and Q = 4 improves the performance even further, but shows diminishing

returns.

In a second simulation, the network for this scenario is simplified from that shown in

Fig. 5.2 such that only the three macro cells and the small cell in the center are deployed.

The DPs are randomly placed in the simulated area using a uniform probability distri-

bution. As observable in Fig. 5.5, the proposed method with Q = 1 yields a resource

efficiency slightly higher than the baseline method, but remark that both methods re-

quire more resources than are actually available for high demand, which means that Z
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Figure 5.5. Resource consumption comparison of the proposed resource slicing method
for decreased network size (simulation 2). The proposed scheme achieves better per-
formance due to its adaptive interference modeling compared to the established static
interference modeling.

is negative. For Q = 2, the remaining resources are also shown for modified versions of

the algorithm. In the first modified algorithm, indicated as “full interference model”,

it is shown that selecting Ψnkm such that all possible combinations of active cells are

considered only provides marginal performance increases. The second modified algo-

rithm assumes a constant interference model used for example in [CBdVCP17] and the

references therein, which shows significantly decreased resource efficiency due to the

worse approximation of the actual interference.

In a third numerical experiment, 500 network scenarios are simulated, where the 6

small cells are one by one activated in a location randomly chosen from the 6 available

locations shown in Fig. 5.2. This simulation is designed to evaluate the benefits of net-

work densification, represented by the number of additionally deployed small cells. The

results are shown in Fig. 5.6. As observable, the resource efficiency for the max. SINR

method overall shows no real benefit from densifying the network. Even worse, the

resource consumption first decreases if The proposed method however already shows

some gains for I = 1, where only user allocation and cell activity status is optimized.

It is observable that especially two deployed small cells appear to be an unsuitable so-

lution for the given network, with both the baseline method and the proposed method
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Figure 5.6. Resource consumption comparison for varying number of small cells (sim-
ulation 3). Reliable performance gains are only achievable if the proposed method is
used with multiple resource slices.

with Q = 1 showing a decrease in performance. If additionally Q = 2 or Q = 3 slices

operating on orthogonal resource pools are allowed, the proposed method demonstrates

gains in resource efficiency and the benefits of network densification.

5.5 Summary

A method was introduced to optimize the resource allocation in a heterogeneous wire-

less communication network. The proposed scheme relies on minimizing the resource

consumption of the network by solving a joint optimization of the allocation of cells

to orthogonally operating slices of resources, the dimensioning of these slices, and the

allocation of DPs to cells. An adaptive estimation of the interference levels is used in

the optimization which significantly improves upon the static interference model used

in common literature. The optimization is carried out such that specific slices can

be set up with different QOS requirements, such as SINR constraints or modulation

and coding schemes with different bandwidth efficiencies, to account for the service-

centric network design paradigm for 5G discussed in Sec. 1.1. The proposed method
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achieves superior resource efficiency compared to the baseline approach, and enables

further performance gains through network densification when additional small cells

are deployed.
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Chapter 6

Energy Consumption Minimization

6.1 Introduction and Contributions

In dense and heterogeneous wireless networks, the existing cell architecture is supple-

mented with additional cells containing base stations of variable size, both in transmit

power and coverage area. This densification of the network has been identified as

a promising approach for the next decades of wireless communications. The scala-

bility of such networks, especially with regards to network energy consumption, has

come under recent scrutiny [BLM+14, GTM+16, WWH+17, ZSB+16]. Due to the in-

crease in intercell interferences limiting the achievable data throughput, novel control

schemes for such networks need to be devised that supersede the established strategy

of deploying additional cells without increasing the amount of coordination between

them [AZDG16, CSS+14, IRH+14]. The wireless communication networks of the fu-

ture are envisioned to have a significantly higher energy efficiency in terms of energy

consumption per transmitted bit of data. In the 5G standard, this will be achieved

trough intelligent switching of each cell’s operation between active phases and sleep

modes - abandoning the always-on and always-connected concept of contemporary

base stations - a dynamic scaling of the transmit power, and an energy-focused design

of multi-antenna systems [LKB+14,CSS+14,CZB+10,VHD+11].

In this chapter, a method is proposed for minimizing the energy consumption of the

wireless communication network, subject to cell load constraints that prevent cells from

being unable to serve the demand of associated users with their available time-frequency

resources. This approach is suitable for the planning of the network parameters ahead of

operation, and complements energy efficient transceiver techniques commonly applied

in-operation for example to maximize instantaneous data rates.

6.1.1 State-of-the-Art

In previous research, extensive effort has been invested into the analysis and optimiza-

tion of cell loads for heterogeneous mobile communication networks [YY17, SY12b,
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SY13,YPC+15]. The cell load has been used in various schemes to optimize the trans-

mit powers [HYLS15,YLY16], in the design of energy-efficient beamformers for multi-

antenna systems [CZL16, MHLT11], and to optimize the cell on-off status to enable

scheduling for sleep mode and activity periods [CG17,LYHS15]. These methods share

one fundamental disadvantage, which is that they cannot jointly optimize the transmit

power and the cell activity status. Switching cells off is just considered implicitly, as

the transmit power being scaled down to zero [HYLS15, KU16]. The transmit power

in a practical system however might be lower-bounded by a nonzero level, for exam-

ple due to transmit power independent losses and nonlinearities in the power ampli-

fiers [KB02,DDG+12,ARFB10]. Heuristic approaches also heavily rely on the cell load

being a strictly decreasing continuous function of its transmit power, which requires

multiple simplifications in the way how the network is modeled, particularly regarding

the used adaptive modulation and coding schemes. For example, the load a user adds

to a cell needs to be a strictly decreasing function of the user’s SINR, the assignment

of users to cells needs to be constant and the operable transmit power range needs to

be lower-bound by zero, which all do not necessarily apply in practical systems.

6.1.2 Contributions and Overview

The proposed approach for energy consumption minimization expands upon state of

the art solutions in the following aspects: The transmit power and the activity status

of the cell (on or off) are jointly optimized. This leads to a mixed-integer problem as,

e.g. the transmit power is optimized on a continuous scale and the cell activity indicator

is binary. While the original optimization problem is nonlinear and computationally

intractable to solve, a linear inner approximation is proposed. The solution of this

approximate problem is always feasible for the original problem. The proposed method

easily incorporates additional convex constraints such as minimum transmit power and

minimum SINR threshold constraints as well as upper bounds on the user rates due

to finite modulation and coding schemes. The assignment of users to cells is one of

the design parameters, and changes dynamically according to which cell provides the

strongest signal. The proposed scheme also allows the incorporation of other user

allocation rules.

The remainder of this chapter is structured as follows: In Section 6.2 the system model

from Chapter 2 is expanded for the wireless communication network and provide a

formulation of the energy minimization problem. A mixed-integer nonlinear program-

ming (MINLP) approach to minimize the network’s energy consumption is discussed

in Section 6.3, for which an inner linear approximation (MILP) is provided. Simulation
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results for different energy consumption models and a comparative analysis between

the proposed and alternative methods are provided in Section 6.4. Finally, the results

are summarized in 6.5.

6.2 Problem Formulation

Expanding upon the system model introduced in Chapter 2, the transmit power pk will

in the following be considered as an optimization parameter. In practical networks, pk

is generally confined to lie in a the interval

0 < PMIN
k ≤ pk ≤ PMAX

k , (6.1)

where, due to physical hardware limitations, such as linearity constraints in the power

amplifiers and radiation efficiency requirements of the antenna the thresholds PMIN
k

and PMAX
k are positive (excluding PMIN

k = 0) and finite [KB02, DDG+12, ARFB10].

Let p = [p1, p2, . . . , pK ]T be the vector of all transmit powers.

The on-off activity status of cells is denoted with the binary model parameter

zk =

{
1 if cell k is active

0 otherwise
. (6.2)

and the vector z = [z1, z2, . . . , zK ]> representing the activity status of all cells in the

network.

The energy consumption of a cell shall be defined as

E
(Γ)
k = Γ (zk, pk, ρk) (6.3)

where Γ (zk, pk, ρk) is an arbitrary linearly increasing function of the cell’s on-off status

zk, transmit power pk and load ρk. For example, the energy consumption function used

in Eq. (6.3) can be defined as

Γ (zk, p̃k, ρk) = T0P
MAX
k

(
κ1zk + κ2

p̃k
PMAX
k

+ κ3ρ̃k

)
(6.4)

where the parameters κ1, κ2 and κ3 are weighting factors for the cell’s energy consump-

tion based on the on-off status, transmit power, and load factor, respectively, and T0 is

a time constant. The load factor of a cell can impact its power consumption because it

reflects the amount of its utilization [SKYK11]. Recent network models therefore have



74 Chapter 6: Energy Consumption Minimization

established that, especially for small cells, the power consumption is best modeled as

a function of the cell load in addition to the transmit power [KU16,YLY16]. Note that

the terms zk, p̃k/P
MAX
k and ρ̃k cannot exceed the value 1, for each cell k. For more

sophisticated models for the power consumption of mobile communication BSs, which

incorporate energy consumption of wired backhaul, and individual factors for all com-

ponents of the BS, refer to [HBB11,BC11,DDG+12,DJM14]. Since the propsed model

can use any combination of the three factors in Eq. (6.3), a highly flexible approach

for energy minimization is obtained.

In this section, an optimization problem in the form of a MIP is formulated to minimize

the energy consumption of the wireless network as defined in Eq. (6.3), subject to DP to

BS allocation-, minimum SINR- and cell load constraints. The system model is based

on Secs. 2.3 and 2.2. Using as optimization parameters the binary cell activity indicator

z ∈ {0, 1}K×1 and allocation indicator A ∈ {0, 1}M×K , the continuous transmit power

parameter p ∈ RK×1
0+ and the cell load ρ ∈ RK×1

0+ , the energy minimization problem

can be formulated as following:

minimize
z,p,A,ρ

K∑
k=1

Γ (zk, pk, ρk) (6.5a)

subject to PMIN
k ≤ pk ≤ PMAX

k ∀ k (6.5b)

K∑
k=1

Akm = 1 ∀ m (6.5c)

K∑
k=1

Akm ≤ zk ∀ k,m (6.5d)

K∑
k=1

Akmθkpkgkm ≥ zjθjpjgjm ∀ j,m (6.5e)

K∑
k=1

Akmpkgkm − γMIN

(∑
j

zj(1− Ajm)pjgjm + σ2

)
≥ 0 ∀ m (6.5f)

ρk =
M∑
m=1

Akm
dm

WηBW
km

ζ+
τMIN

(
pkgkm∑K

j=1 zj(1− Ajm)pjgjm + σ2

)
∀ k (6.5g)

ρk ≤ 1 ∀ k (6.5h)

zk, Akm ∈ {0, 1} ∀ k,m (6.5i)

pk ∈ R0+ ∀ k (6.5j)

In problem (6.5), the objective (6.5a) aims to minimize the overall systems’ energy

consumption, which is the sum of the energy consumption of individual cells as defined

in (6.3) and (6.4). The constraint (6.5b) defines the feasible transmit power range of
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cell k restricted according to (6.1). The fixed data rate demand of each DP m is served

by exactly one cell k, and only active cells {k|zk = 1} can serve any DP, as specified by

(6.5c) and (6.5d), respectively. Constraint (6.5e) enforces that, each DP m is allocated

to the cell k that provides highest product of received signal power and bias value. The

load constraint that cell k has to satisfy, as defined in (2.10), is specified in (6.5h).

Problem (6.5) is a combinatorial and nonconvex MINLP, and thus generally very dif-

ficult to solve. As discussed in Sec. 3.2.1, it is therefore advisable to find an MILP

that represents a linear inner approximation or a linear reformulation of the original

MINLP, which will be discussed in the following Sec. 6.3.

6.3 Energy Minimization Scheme

The objective function (6.5a) and constraints (6.5e), (6.5f) and (6.5h) contain the

bilinear term zkpk. A new variable p̃k , pkzk is introduced to reformulate (6.5) as the

following equivalent problem:

minimize
z,p̃,A,ρ

K∑
k=1

Γ (zk, p̃k, ρk) (6.6a)

subject to zkP
MIN
k ≤ p̃k ≤ zkP

MAX
k ∀ k (6.6b)

(6.5c)− (6.5d)

K∑
k=1

Akmθkp̃kgkm ≥ θj p̃jgjm ∀ j,m (6.6c)

K∑
k=1

Akmp̃kgkm − γMIN

(∑
j

(1− Ajm)p̃jgjm + σ2

)
≥ 0 ∀ m (6.6d)

ρk =
M∑
m=1

Akm
dm

WηBW
km

ζ+
τMIN

(
p̃kgkm∑K

j=1(1− Ajm)p̃jgjm + σ2

)
∀ k (6.6e)

ρk ≤ 1 ∀ k (6.6f)

zk, Akm ∈ {0, 1} ∀ k,m (6.6g)

p̃k ∈ R0+ ∀ k (6.6h)

Using a lifting strategy, auxiliary parameters will in the following be introduced to

represent bilinear products of optimization variables, which yields a more tractable,

linear problem structure at the cost of increased problem dimensionality. Towards

this aim, the bilinear products of binary allocation parameters Akm and cell transmit

powers p̃k in Eqs. (6.6c), (6.6d) and (6.6e) have to be linearized using the procedure
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outlined in Sec. 3.2.2.

Let Ωkm be an auxiliary optimization parameter and denote the corresponding matrix

Ω ∈ RK×M
0+ . For the proposed lifting approach,

(
p̃k, P

MAX
k , Akm,Ωkm

)
∈ L ∀k,m is

installed in problem (6.6), which enforces that Ωkm = p̃kAkm, such that (6.5) can be

reformulated as:

minimize
z,p,A,ρ,Ω

K∑
k=1

Γ (zk, p̃k, ρk) (6.7a)

subject to (6.5c)− (6.5d), (6.6b), (3.4)

K∑
k=1

Ωkmθkgkm ≥ zjθj p̃jgjm ∀ j,m (6.7b)

K∑
k=1

Ωkmgkm − γMIN

(∑
j

(1− Ωjm)gjm + σ2

)
≥ 0 ∀ m (6.7c)

ρk =
M∑
m=1

Akm
dm

WηBW
km

ζ+
τMIN

(
p̃kgkm∑

j=1,...,K(p̃j − Ωjm)gjm + σ2

)
∀ k (6.7d)

ρk ≤ 1 ∀ k (6.7e)(
p̃k, P

MAX
k , Akm,Ωkm

)
∈ L ∀ k,m (6.7f)

zk, Akm ∈ {0, 1} ∀ k,m (6.7g)

p̃k,Ωkm ∈ R0+ ∀ k (6.7h)

From (6.5) to (6.7), the auxiliary parameter Ω has been used in constraints (6.7b),

(6.7c) and (6.7d) to replace Ωkm = p̃kAkm, whereas the remaining optimization

parameters remain unchanged. The solution of problem (6.7) can therefore be used to

easily obtain the corresponding solutions for problem (6.5) and vice-versa. Thus, both

formulations can be considered equivalent.

Problem (6.7) is an integer linear program except for constraint (6.7d), which is non-

linear due to the log-term in the function ζ+
τMIN(γ) as defined in (2.9), the fractional

SINR-term and the allocation factor Akm. In the following, a linear inner approxima-

tion of (6.7d)-(6.7e) based on Sec. 3.2.3 is proposed. Denote a set of I linear functions

ui(γ) = αiγ + βi, i = 1, . . . , I, (6.8)

which satisfy the upper bound property

max
i

ui(γ) ≥ ζ+
τMIN(γ) ∀ γ ≥ γMIN, (6.9)
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as illustrated in Fig. 3.2. Since f(γ) in (2.5) is strictly decreasing, all ui(γ) can be

designed such that αi ≤ 0 ∀ i. To approximate the load for γ ≥ γMAX, as depicted

in Fig. 3.2, a constant function can be used with uI(γ) = βI = τMIN. The issue of

designing a suitable set of ui that keep the maximum absolute approximation error

below a selectable threshold ε is discussed in Sec. 3.2.3.

Let µkm be an optimization parameter designed to be an upper bound of the load term

in Eq. (6.7d), such that

µkm ≥ ui(γ) ∀ i, γ ≥ γMIN (6.10)

and the corresponding matrix µ ∈ RK×M
0+ . For the interval γMIN ≤ γ ≤ γMAX, the

log-term contained in the function ζ+
τMIN(γ) in the constraint (6.7d) is reformulated as

ρk =
M∑
m=1

Akm
dm

WηBW
km

µkm (6.11)

where for (6.8)-(6.10)

µkm ≥ αi
p̃kgkm∑

j=1,...,K(1− Ωjm)gjm + σ2
+ βi ∀ i, k,m (6.12)

The product of µkm and allocation parameter Akm is in the following as Λkm = µkmAkm

and the corresponding matrix as Λ ∈ RK×M
0+ . This bilinear product formulation for

Λ is replaced by a linear reformulation using (3.4) by adding the constraint that

(µkm, β1, Akm,Λkm) ∈ L.

In order to approximate the interference levels in the denominator of the SINR term

Eq. (2.2), the fractional bounding discretization outlined in Sec. 3.2.4. Scalar inter-

ference levels Ψnkm are introduced with interference scenario index n = 1, . . . , N , and

the corresponding three-dimensional scalar tensor Ψ ∈ RN×K×M
0+ . Denote a binary in-

terference scenario selection parameter φnkm and the corresponding three-dimensional

binary tensor φ ∈ {0, 1}N×K×M . To ensure that the solution of the approximate prob-

lem is always feasible for the original, a constraint is added that the selected discrete

interference level is always an over-approximation of the actual interference:

N∑
n=1

φnkmΨnkm ≥
∑

j=1,...,K

(1− Ωjm)gjm + σ2 ∀k,m (6.13)

When implementing the selection parameter φ in Eq. (6.12), the bilinear product

p̃kgkmφnkm is replaced with an auxiliary parameter, for which the lifting variable

Φnkm = p̃kgkmφnkm is introduced with the corresponding tensor variable Φ ∈ RN×K×M
0+ .

Again, the product computation of Φ will be replaced by an auxiliary parameter using

(3.4) by adding the constraint
(
p̃kgkm, P

MAX
k gkm, φnkm,Φnkm

)
∈ L ∀n, k,m.
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The proposed linear inner approximation of (6.7) is the following:

minimize
z,p̃,A,ρ̃,Ω,µ,Λ,φ,Φ

K∑
k=1

Γ (zk, p̃k, ρ̃k) (6.14a)

subject to (6.5c)− (6.5d), (6.6b), (3.4), (6.7b)− (6.7c), (6.7f), (6.13)

ρ̃k =
M∑
m=1

(
dm

WηBW
Λkm

)
∀ k (6.14b)

ρ̃k ≤ 1 ∀ k (6.14c)

N∑
n=1

φnkm = 1 ∀ k,m (6.14d)

µkm ≥ αi

N∑
n=1

Φnkm

Ψnkm

+ βi ∀ i, k,m (6.14e)

(µkm, β1, Akm,Λkm) ∈ L ∀ k,m (6.14f)(
p̃kgkm, P

MAX
k gkm, φnkm,Φnkm

)
∈ L ∀ n, k,m (6.14g)

zk, Akm, φnkm ∈ {0, 1} ∀ n, k,m (6.14h)

p̃k,Ωkm, µkm,Λkm,Φnkm ∈ R0+ ∀ n, k,m (6.14i)

Proposition 6.3.1. Problem (6.14) is an inner approximation of problem (6.7), i.e.

for every point {z,p,A} solving (6.14) a feasible point of (6.7) can be constructed.

Proof. The transmit power constraints (6.6b), the allocation constraints (6.5c)-(6.5d)

and the signal power constraints (6.7b)-(6.7c) are identical in problem (6.7) and (6.14).

The proposition therefore holds if the load in (6.14b) is an inner approximation of that

in (6.7d), specifically if

M∑
m=1

(
dm

WηBW
Λkm

)
≥

M∑
m=1

Akm
dm

WηBW
km

1

log2

(
1 + p̃kgkm∑

j=1,...,K(1−Ωjm)gjm+σ2

) ∀ k. (6.15)

Due to (6.14f), there is Λkm = µkmAkm, therefore (6.15) is satisfied if

µkm ≥
1

log2

(
1 + p̃kgkm∑

j=1,...,K(1−Ωjm)gjm+σ2

) ∀ k,m, (6.16)

from which, with (6.14e) and (6.9) applied to the left- and right-hand side of Eq. (6.16),
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respectively,

αi

N∑
n=1

Φnkm

Ψnkm

+ βi ≥ αi

N∑
n=1

p̃kgkm∑
j=1,...,K(1− Ωjm)gjm + σ2

+ βi ∀ i, k,m. (6.17)

Due to the constraints (6.14g), which implement the bilinear constraint Φnkm =

p̃kgkmφnkm, and due to φnkm ∈ {0, 1} ∀ n, k,m, there is

N∑
n=1

Φnkm

Ψnkm

=
p̃kgkm∑N

n=1 φnkmΨnkm

∀ n, k,m. (6.18)

Substituting (6.18) in the left-hand side of (6.17) yields the inequality

αi

N∑
n=1

p̃kgkm∑N
n=1 Ψnkm

+ βi ≥ αi

N∑
n=1

p̃kgkm∑
j=1,...,K(1− Ωjm)gjm + σ2

+ βi ∀ i, k,m, (6.19)

which holds due to the constraint (6.13) for αi ≤ 0 ∀ i, thus proving the proposition.

The tightness of the approximating problem (6.14) with regards to problem (6.7)

depends on two factors. The first factor is related to how closely the linear func-

tions ui approximate the load function as in Eq. (6.9). The second factor is how

closely the discrete interference levels Ψnkm approximate the actual interference level∑
j=1,...,K(1 − Ωjm)gjm + σ2. Proposition 6.3.1 holds irrespectively the choice of the

discrete interference levels Ψnkm. Certain changes in interference levels, specifically the

removal of strongest interferers, cause large differences in the load caused by a DP. The

levels Ψnkm can be chosen in such a way that these changes can be reflected by the

selection of a different interference scenario. The accuracy of the inner approximation

can be improved by using a larger number of interference levels, at the cost of increased

problem complexity.

Based on the considerations for the fractional bounding discretization approach dis-

cussed in Sec. 3.2.4, introduce for each pair (m, k) of DP m allocated to cell k, in-

terference levels Ψnkm that mainly reflect transmit power changes of the first- and

second-strongest interferers [MHV+12, RCBHP17b, GKN+15]. With the indices de-

fined in Eqs. (2.19) and (2.20), the interference levels are computed as

Ψnkm = LP
npκPkmgκPkmm + LS

npκSkmgκSkmm + LR
n

∑
j\{κPkm,κ

S
km,w}

pjgjm + σ2, (6.20)

where the parameters LP
n ,LS

n and LR
n denote the weighting factors for primary-,

secondary- and remaining interferers, respectively. Keeping in mind that the focus
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Table 6.1. Weighting factors for computation of interference scenarios Ψnkm, used for
an over-approximation of the actual interference level.

n = 1 2 3 4 5 6 7

LP
n 1 0.75 0.5 0.25 0 0 0

LS
n 1 1 1 1 1 0 0

LR
n 1 1 1 1 1 1 0

is on transmit power changes for the first- and second strongest interferers, a suitable

set of weighting factors to compute the interference levels Ψnkm is shown, for example,

in Table 6.1.

6.4 Simulation Results

To evaluate the performance of the proposed method, a heterogeneous wireless com-

munication network is simulated containing 4 macro- and 4 pico cells as illustrated

in Fig. 6.1. The selected system parameters are summarized in Table 6.2. The se-

lectable transmit power range and antenna gains are chosen as 36dBm− 46dBm with

15dB antenna gain for macro cells and 26dBm − 36dBm with 5dB antenna gain for

small cells. A bias value of θk = 3dB is used for small cells to slightly increase their

coverage area. The proposed method using Problem (6.14) was solved using CVX for

MATLAB [GB14,GB08] and Gurobi as a MILP solver [GUR].

6.4.1 Energy Consumption Modeling Comparison

To evaluate the effect of different models for the cell energy consumption Eq. (6.4),

four scenarios with different weighting factors are introduced in Sec. 6.4.1. Equal

weighting for all energy consumption components is used in Model 1. For Model 2,3

and 4 the load-, transmit power- and on-off-status-based components are respectively

with zero, and use equal weighting between the remaining two components.

First the effect of different parameter settings is evaluated for the network illustrated

in Fig. 6.1, but without the four pico-cells. A comparison of the energy consumptions

for the described models is shown in Fig. 6.2. It is observable that Model 4, where
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Table 6.2. Simulation parameters of a downlink LTE network for energy consumption
minimization. The transmit power of the cells is optimized inside a 10dB interval. Re-
sults are averaged over 5000 simulations with fixed base station positions and randomly
distributed DPs.

Area size 1000× 1000 m

Noise power -145 dBm/Hz

System bandwidth W 20 MHz

Position of macro BS MBS1 at [200m, 200m]

MBS2 at [150m, 850m]

MBS3 at [800m, 230m]

MBS4 at [780m, 820m]

MBS transmit power range PMIN . . . PMAX 36dBm . . . 46dBm

MBS antenna gain g̃ABS 15dB

MBS bias value θk 0dB

Position of pico BS PBS1 at [500m, 700m]

PBS2 at [520m, 310m]

PBS3 at [320m, 500m]

PBS4 at [690m, 490m]

PBS transmit power range PMIN . . . PMAX 26dBm . . . 36dBm

PBS antenna gain g̃ABS 5dB

PBS bias value θk 3dB

DP antenna gain g̃ADP 0dB

Propagation loss g̃PATH 3GPP TS 36.814 [3GP16]

Bandwidth efficiency ηBW 0.8

SINR requirement γMIN −10dB

SINR threshold γMAX 20dB

Table 6.3. Weighting factors for different models of Γ (xk, p̃k, ρk)

Model nr. 1 2 3 4

κ1 0.33 0.5 0.5 0

κ2 0.33 0.5 0 0.5

κ3 0.33 0 0.5 0.5
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Figure 6.1. Illustration of the network scenario for energy consumption optimization
with 4 macro- and 4 small cells and an example distribution of 20 DPs.

the energy consumption solely depends on the variable parameters transmit power

and cell load, has lower energy consumption. This is rather plausible, as there is no

option for the algorithm to decrease the fixed energy consumption of active cells in

Models 1-3. For these models, the energy consumption increases of course with the

data demand. But between the models the energy consumption also increases with

higher weighting factors κ3 for the load-based energy consumption and with lower κ2

for the transmit-power-based energy consumption. This indicates that there is more

flexibility for the algorithm to decrease transmit power than to decrease cell load.

Also, the energy consumption in Models 1-3 is rather similar for demands up to about

2 Mbit/s, which identifies the range where the network can mostly be operated with

only one active cell. This is confirmed in Fig. 6.3, where the number of active cells

is shown for each model. Model 4 uses on average more active cells than Models 1-3,

because it does not consider a fixed power consumption for active cells. Models 1-3

use approximately the same number of active cells.
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Figure 6.2. Energy consumption for different energy consumption models, 4 macro
cells, M=20 DPs, averages of 250 simulations. Only Model 4, where the cell activity
status does not contribute to the energy consumption, uses on average a higher number
of cells.

6.4.2 Performance Comparison of Schemes

In the following, for the energy consumption modeling of cells, Eq. (6.4) is used with

κ1 = 0.5, κ2 = 0.5 and κ3 = 0. This implies that the power consumption of cell k

depends on its on-off status indicator zk and its transmit power pk. The power con-

sumption is modeled this way in order to allow comparability of the proposed MILP

with an established heuristic method proposed in [HYLS15] that focuses on transmit

power minimization. As a performance benchmark for our energy minimization algo-

rithm the power scaling method introduced in [HYLS15] is used, which is extended

in the following ways to make it applicable to our problem: power scaling is used for

all possible configurations of all cells’ on-off status z. Resulting transmit powers ob-

tained by the algorithm of [HYLS15] that lie below or above the bounds specified in

Table 6.2 are projected to the lower- and upper bound respectively. Then, the best

configuration that does not violate load constraints is selected as the solution. This
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Figure 6.3. Number of active cells for different energy consumption models, 4 macro
cells, M=20 users, averages of 250 simulations. The achieved Energy consumption
follows similar patterns for all models.

algorithm therefore combines an exhaustive search over all configurations for z with

power scaling being used in each configuration. It is in the following in all figures

denoted as “power scaling + exh. search”. The second approach used for comparison

is an exhaustive search over all combinations of cells being switched on or off, with

the transmit powers being fixed to PMAX, which in the following is indicated as “max

power cell switching”. The solution of the original MINLP in (6.5) is unsuitable as

a lower bound solution even for small problem sizes, because even for fixed binary

optimization parameters the resulting continuous problem is still nonconvex. Deploy-

ing M = 20 DPs randomly in the network area illustrated in Fig. 6.1, 5000 network

scenarios are generated and each DPs data demand in each scenario is scaled between

dm = 0.25Mbit/s and dm = 7.5Mbit/s. The proposed energy-minimized solution ob-

tained from solving problem (6.14) is compared to the solutions of the aforementioned

max. power cell switching and combined power scaling and exhaustive search meth-

ods [HYLS15]. The probability of obtaining a feasible solution with no overloaded cells

is illustrated in Fig.6.4. The proposed MILP based method is much more likely to find

a feasible and power-minimized solution even in high demand scenarios.

Out of the 5000 evaluated scenarios, only those can be considered where the original
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Figure 6.4. Probability of obtaining a feasible solution over increasing user demand,
evaluated over 5000 simulations of M = 20 randomly distributed demand points. The
proposed MILP-based scheme achieves the highest solution percentage.

configuration with maximum transmit power is a feasible solution to the energy mini-

mization problem. In this case, the transmission at full power can be considered as a

fallback solution for each energy minimization scheme, should it fail to find an “energy-

minimized solution”. In this case, for each scheme an average between 5000 datapoints

can be computed. The achieved average energy consumption for each method is shown

in Fig. 6.5. It is observable that the proposed method greatly benefits from its in-

creased chances of finding a feasible solution. In the following, it has to be determined

if this superior performance is still present if the effect of the solving percentage is not

present.

To ensure a fair comparison, the respective averages of performance indicators will in

the following be computed only from those scenarios that were solved by all methods.

The following performance indicators are discussed: energy consumption, cell load,

and number of active cells. Fig. 6.6 shows the average power consumption achieved by

each of the three considered energy minimization schemes. The proposed MILP-based

approach achieves lower power consumption levels than both the cell switching and the

heuristic approach. The cell switching method noticeably achieves good performance

up until about 3Mbit/s, with the performance significantly deteriorating for higher
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Figure 6.5. Energy consumption for energy minimization schemes over increasing user
demand, averaged over 5000 simulations of M = 20 randomly distributed demand
points. Each method uses maximum transmit power as a fallback solution The pro-
posed scheme achieves the lowest average energy consumption levels of the evaluated
schemes.

demands.

In Fig. 6.7, the average number of active cells is shown. For very low demands, it can

be observed that the number of cells is not increasing continuously with the demand,

as the proposed algorithm for some scenarios serves all users exclusively with pico cells,

instead of using a single macro cell. In practice this does not pose a problem since for

these low load levels offloading is not required. On average however less than 4 cells

are being used, showing that small cells are only used sporadically or for low demand

levels. For very high demand levels, the proposed method utilizes the lowest number

of cells.

The average load factor of active cells is shown in Fig. 6.8. It is observable that the

cell load does not converge to 1 even for high loads. It was shown in [HYLS15] that for

minimum energy consumption, the load would be equal to 1. This however only holds

if the transmit power can be increased or decreased without bounds (i.e. for PMIN = 0
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Figure 6.6. Energy consumption for energy minimization schemes over increasing user
demand, averaged over 5000 simulations of M = 20 randomly distributed demand
points. The proposed scheme achieves the lowest average energy consumption levels of
the evaluated schemes.

and PMIN = ∞), and if the cell load is a strictly decreasing function of the transmit

power. With the upper- and lower bounds on the transmit power, the discontinuities

introduced in the load computation, and the user allocation changing dynamically

with the transmit powers,it can be observed from Fig. 6.8 that this property no longer

holds. The energy consumption is also evaluated for a varying number of users as

shown in Fig. 6.9. The network is simulated in 200 scenarios with each between 5 and

25 users with a demand of 6 Mbit/s each. Only scenarios are used that were solved by

all methods, and it shows that the results are qualitatively similar to the simulation

presented in Fig. 6.6. This has the strong implication that the energy saving capabilities

of the proposed methods depend on the density of data demand per area, but not on

the actual number of DPs.
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Figure 6.7. Number of active cells for energy minimization schemes over increasing
user demand, averaged over 5000 simulations of M = 20 randomly distributed demand
points. For high demand, the proposed scheme on average utilizes the lowest number
of cells.

6.5 Summary

This chapter addressed the challenge of minimizing the energy consumption of a wire-

less communication network by joint optimization of the base station transmit power

and the cell activity. A mixed-integer nonlinear optimization problem is formulated, for

which a computationally tractable linear inner approximation algorithm was provided.

The proposed method offers great flexibility in optimizing the network operation by

considering multiple system parameters jointly, which mitigates a major drawback of

existing state-of-the-art schemes that are mostly based on heuristics. Multiple simpli-

fications used in other state of the art methods to allow the application of heuristic

schemes are not required in the proposed method.

The simulation results show that the proposed approach achieved a further decrease

in energy consumption relative to both an optimization of the cell activity and a com-

parable heuristic method. Additionally, it achieves a higher success rate in finding an

operable solution for high-demand network scenarios.
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Figure 6.8. Load of active cells for energy minimization schemes over increasing user
demand, averaged over 5000 simulations of M = 20 randomly distributed demand
points.

Even though the proposed method consists in linear approximations of the originally

mixed integer nonlinear program with bilinear and nonconvex constraints, it still yields

very high complexity, making it impractical for the optimization of large networks.

Further work could be dedicated to combining existing heuristic methods with an

utilization of the proposed approach to optimize smaller clusters of the network, to

allow for better scalability.
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Chapter 7

Decentralized Load Balancing

7.1 Introduction and Contributions

In addition to the correct placement and activity scheduling of SCs discussed in Chapter

4, the optimized allocation of users to MCs or SCs is a subject of current research

[YY17,SY12b,YRC+13,AWFT15]. The allocation can be optimized while the network

is in operation, or allocation rules can be devised before, based on demand forecasts.

Most prominently, small cell range expansion has been proposed as an effective way

to move users from the typically overloaded MCs to the less utilized SCS. This can

be achieved either by optimizing the user allocation directly (for example by solving

(2.13)) or by introducing the cell bias values discussed in Sec. 2.2 to the signal power

report received by the user node. For the allocation decision with range expansion, the

signal powers from small cells are increased with a bias value. This leads to more users

being allocated to SCs, which corresponds to an increased coverage area. The main

parameter to be optimized for range expansion is the bias value for each SC.

In this chapter, approaches for in-operation load balancing based on allocation

optimization and range expansion optimization are both solved using decentralized

learning-based approaches. These learning-based approaches are used to mitigate

the aforementioned problem of high communication and coordination overhead with

established methods. The proposed methods rely on utilizing the multi-class SVMs

discussed in Sec. 3.3 as resource-allocation tools. For the training of these SVMs,

local attributes of the network state are extracted that are easily accessible to each

DP and cell, such as current load levels, channel conditions and the neighboring cell

topology. The small cell attributes and the optimal MILP results are used to train a

classifier based on multi-class support vector machines. This classifier is then applied

locally in each DP to allocate to a suitable neighboring cell or in each SC to find its

optimal bias value in new network scenarios. Using machine learning classifiers as

improvised resource allocation schemes in wireless communication networks is only

being considered recently, and comparable methods have not yet been introduced.
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7.1.1 State-of-the-Art

The problem of allocating DPs to cells such that load balancing between the cells

is achieved is formulated in Eqs. (2.13). Other allocation schemes have been pro-

posed [YY17, AWFT15]. The authors in [YY17] propose a load balancing problem

similar to Eqs. (2.13), but use the cell load as a weighting factor for the interference

that each respective cell creates. This complicates the optimization drastically, but as

discussed in 2.3, is not a worst-case assumption and therefore this weighting factor is

not used in the system model in this thesis. In [AWFT15], a load balancing scheme

is proposed based on a ILP that has the same structure as Eqs. (2.13). Optimized

schemes for range expansion have been proposed in [SY12b, YRC+13]. The problem

formulation in [SY12b] again uses the aforementioned weighting factor, and utilizes

piecewise linearization to obtain optimized bias values for range expansion. The au-

thors in [YRC+13] propose to solve the user association problem such that a utility

function based on the achieved rates is maximized. While the underlying user asso-

ciation problem for load balancing is a (combinatorial) IP, the common drawback of

the established optimization schemes is that they require extensive knowledge about

the channel conditions and the state of each network entity to perform the bias value

and allocation optimization, which is carried out either centrally or using consensus

algorithms.

7.1.2 Contributions and Overview

The key contributions in this chapter can be summarized as follows: Multi-class SVMs

are utilized as tools to obtain decentralized solutions for ILPs characterizing network

load balancing problems. The training of the required SVM-based multiclass is per-

formed using historical network data, but once training is complete, the resulting clas-

sifiers can be applied in a fast and decentralized scheme during network operation.

Both the proposed decentralized DP-allocation scheme and range expansion scheme

achieve close to (globally) optimal performance.

The remainder of this chapter is organized as follows: The proposed methods for

load balancing based on DP allocation and range expansion are explained in Secs. 7.2

and 7.3, respectively. In Sec. 7.4 simulation results are provided, followed by a final

summary and conclusion in Sec. 7.5.
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7.2 User Allocation Optimization

The primary, secondary and tertiary allocation candidates of DP m are, in descend-

ing order of magnitude, those cells which can provide the first-, second-, and third-

highest signal power pkgkm at the DP’s location. Their indices are listed in the vectors

κP,κS,κT ∈ NM×1, respectively, with their respective elements determined as

κP
m = arg min

k
pkgkm, (7.1)

κS
m = arg min

k\{κPm}
pkgkm, (7.2)

κT
m = arg min

k\{κPm,κSm}
pkgkm. (7.3)

As shown for Lemma 2.3.1, in the case that Akm = 1 for k = κP
m for all DPs m, each

DP is allocated according to the cell providing the connection with the highest SINR.

In this way the additional load caused by each individual connection is minimized.

This common allocation scheme is used as a heuristic baseline approach to evaluate

the subsequent load balancing solutions, in the following denoted as “max. SINR”.

In the following, assume that A∗ represents the DP-cell allocation solution obtained

from solving problem (2.13). Denote the label vector y ∈ NM×1 which has elements

ym determined as follows:

ym =


2 if A∗κSmm = 1

3 if A∗κTmm = 1

1 otherwise

(7.4)

For the training of the proposed statistical learning approach for user allocation, at-

tributes need to be extracted for the three candidate allocation cells of each user m.

These attributes are designed to reflect specific knowledge of the network and the pa-

rameters deemed significant for the allocation problem. Three attributes are extracted

for each cell. The first attribute is an indicator of cell type defined as

FTYPE(k) =

{
1 if cell k is a small cell,

0 otherwise.
(7.5)

The second attribute describes the additional load that user m would cause to cell k if

it was allocated to it, based on the load definitions introduced in Sec. 2.2:

F LOAD =
dm
Rkm

(7.6)
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The third attribute is the “would-be” load of cell k, if the max. SINR scheme was being

used. This attribute serves as a measure of load caused by DPs in each cell’s coverage

area. The third attribute is determined as follows:

FCOV(k) =
∑

m|κPm=k

F LOAD(k,m). (7.7)

Using all three of the aforementioned attributes for each of the three candidate cells

for allocation, the attribute vector of DP m is determined as

hm =
[
FTYPE(κP

m), FTYPE(κS
m), FTYPE(κT

m), F LOAD(κP
m,m), F LOAD(κS

m,m), . . .

F LOAD(κT
m,m), FCOV(κP

m), FCOV(κS
m), FCOV(κT

m)
]>
. (7.8)

This results in a training problem of a multi-class classifier which will be solved by

training two SVMs, with the first being used to identify DPs that are allocated to

their secondary cell, and the second SVM identifying those that are allocated to their

tertiary cell, characterized by the normal vectors to their separating hyperplanes ω21

and ω31 respectively. The used soft-margin SVM is discussed in Sec. 3.3.2. Based on

the one-versus-one multiclass extension to the SVM discussed in Sec. 3.3.3, denote as

ŷm the cell type that is classified by the SVMs according to the two decision functions

based on a feature observation ĥ, which is computed as:

ŷm =



2 if (ω21)>ϑ(ĥm) + b21 ≥ 0 and

(w21)>ϑ(ĥm) + b21 ≥ (w31)>ϑ(ĥm) + b31

3 if (w31)>ϑ(ĥm) + b31 ≥ 0 and

(w31)>ϑ(ĥm) + b31 ≥ (w21)>ϑ(ĥm) + b21

1 otherwise

(7.9)

Using Eq. (7.9), the allocation decisions for all DPs m in a given network scenario is

determined, which leads to a load-balanced allocation solution for the full network.

7.3 Allocation Bias Optimization

For the optimization of cell range expansion, a set of available nonnegative bias values

is denoted as S = δ1, . . . , δS̃. The K-element vector of the selected bias values for all

cells is denoted as θ with the elements θk ∈ Sk. For example, if SCs operate with any of

the available bias values and MCs would not be biased, there would be θk = 1 ∀k ∈ CMC

and θk ∈ S ∀k ∈ CSC In the following, denote the A obtained from applying (2.14)
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with θk = 1 ∀k (no bias) as Ã. Similarly, A0 denotes the allocation result according

to Eq. (2.14) for θk = 1 ∀k ∈ CMC (no bias) and θk = 0 ∀k ∈ CSC (bias).

In the following a scheme is introduced to find the optimal bias values for each cell

that minimize the maximum load of any cell in the network. These optimal bias

values are obtained as the optimal solution of a mixed integer problem. Assume that

θk ∈ Sk ∀k ∈ CSC and θk = 1 ∀k ∈ CMC, which means that SCs can operate with any

of the available bias values and MCs operate without bias. The proposed problem can

be formulated as follows:

minimize
Π,A,θ

Π (7.10a)

subject to Π ≥
M∑
m=1

Akm
dm
Rkm

∀k (7.10b)∑
k

Akmθkpkgkm ≥ (1− Ajm)θjpjgjm ∀j,m (7.10c)

K∑
k=1

Akm = 1 ∀m (7.10d)

Π ∈ R0+ (7.10e)

Akm ∈ {0, 1} ∀k,m (7.10f)

θk ∈ Sk ∀k ∈ CSC, θk = 1 ∀k ∈ CMC (7.10g)

In problem (7.10), constraints (7.10d) force each DP to be allocated to exactly one

cell. Contraints (7.10c) represent a reformulation of the allocation rule introduced in

Eq. (2.14). Problem (7.10) is a mixed-integer nonlinear problem (MINLP) because of

the bilinear product terms Akmθk. In the following, this problem is converted into a

mixed integer linear problem (MILP) using the lifting strategy discussed in 3.2.2. Let

the constant

θ = arg max
s̃,k

δs̃,k (7.11)

denote the largest bias value. An auxiliary parameter ∆km is introduced, for which

∆km = Akmθk ∀k,m is enforced using the following linear inequalities:

∆km ≤ Akmθ (7.12a)

∆km ≤ θkm (7.12b)

∆km ≥ θkm − (1− Akm)θ (7.12c)

∆km ≥ 0 (7.12d)



96 Chapter 7: Decentralized Load Balancing

Problem (7.10) can be reformulated as the following:

minimize
Π,A,θ,∆

Π (7.13a)

subject to Π ≥
∑
m

AkmΦ(k,m) ∀k (7.13b)∑
k

∆kmpkgkm ≥ (θj −∆jm)pjgjm ∀j,m (7.13c)

(7.10d), (7.12) ∀k,m (7.13d)

α ∈ R0+ (7.13e)

Akm ∈ {0, 1} ∀k,m (7.13f)

θk ∈ Sk ∀k ∈ CSC, θk = 1 ∀k ∈ CMC (7.13g)

∆km ∈ R0+ (7.13h)

Problem (7.13) is linear in all optimization variables and therefore classifies as a MILP,

which can be solved using conventional state-of-the art solvers. Even though problem

(7.13) is capable of obtaining the optimal bias values, the network needs to gather all

information about SINR-levels, user demands etc. centrally to solve the problem. In

the following a learning-based decentralized approach is introduced.

Denote as θ∗ the optimal bias values for a given network scenario obtained by solving

problem (7.13). A vector of class labels y is computed with its elements yk = {s|θk =

δs}. In the following suitable attributes are designed for each small cell that are being

mapped to corresponding features to be used in the proposed classification scheme.

Denote the attribute GSC(k) which is determined as GSC(k) = 1 if small cell k is

deployed on the edge of the coverage areas between two macro cells, and GSC(k) = 0

otherwise, which is illustrated in Fig. 4.4. Which of these roles a small cell fulfills is

known to the operator from the network architecture.

For the second set of attributes, define the index set

M{s̃}
k = {m|δspkgkm ≥ pjgjm∀j ∈ CMC} (7.14)

of DPs connected to cell k if bias value δs̃ is used, for which the expected load of cell

k is computed as

GLD(k, s̃) =
∑

m∈M{s̃}k

dm
Rkm

. (7.15)

Similarly the expected sum load is computed that DPs in the coverage area of SC m

operating with bias δs cause to the first and second neighboring cell in the allocation
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defined by A0:

GPSL(k, s) =
∑

m∈M{s}k

A0
κPkm

Φ(κP
k ,m) (7.16)

and

GSSL(k, s) =
∑

m∈M{s}k

A0
κSkm

Φ(κS
k,m), (7.17)

respectively. The aforementioned attributes are combined into the following (3S + 1)-

element attribute vector:

hm =
[
GSC(k), GLD(k, 1), . . . , GLD(k, S̃),

GPSL(k, 1), . . . , GPSL(k, S̃), GSSL(k, 1), . . . , GSSL(k, S̃)
]>

(7.18)

This attribute vector is used to train SVMs that can classify pairwise between all avail-

able bias values, using the soft-margin introduced SVM in Sec. 3.3.2. The multi-class

SVM training and classification problem is solved using the one-versus-one majority

voting approach introduced in Sec. 3.3.3.

7.4 Simulation Results

Simulations of a wireless communication network with three macro- and six small cells

in fixed positions as illustrated in Fig. 7.1 are carried out. The common network pa-

rameters from Table 4.4 are used.

Problem (2.13) is solved using the CVX toolbox for MATLAB [GB14] with the Gurobi

solver [GUR], and the SVM training problem (3.23) is solved using the Machine Learn-

ing Toolbox for Matlab. For the training of the SVMs, 10000 DP attribute vectors are

used from 100 simulations of network scenarios with M = 100 DPs each. The soft

threshold weighting parameter C in problem (3.23) is determined by searching on a

grid the value that provides the highest classification accuracy on the training set. For

the function ϑ(·) in problem (3.23) consider both, the linear mapping of attributes to

features, and the mapping to quadratic features. In the following these two methods

are referred to as “lin. SVM” and “quad. SVM”, respectively. To evaluate the per-

formance of the algorithms with a testing set, 100 instances of network scenarios are

generated with M = 100 DPs each and the resulting load levels of each cell are aver-

aged over all scenarios. Accordingly, SVM classification on the testing set is performed

using the coefficients obtained from the training set.
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As observable in Fig. 7.2, the maximum cell load increases with the demand, here

simulated in the range of 0-1 MBit/s per DP. For the given network configuration, there

are differences in the sizes of coverage areas that result in unbalanced load levels across

the cells. The max. SINR approach is not designed to mitigate this imbalance, and

therefore exhibits the worst performance. Both SVM-based methods however perform

better than the max. SINR approach, with the quadratic SVM being very close to the

optimal solution. This demonstrates that using the learning-based approach discussed

in the paper, a decentralized load balancing scheme can be obtained that is close to

the globally optimal solution of a computationally extensive, joint optimization of all

allocations in the network.

For an increasing number of SCs randomly deployed in one of the locations shown

in Fig. 7.1, the averaged maximum load also decreases linearly, as shown in Fig. 7.3.

The average load level of individual cells for all methods and a fixed DP demand of

1 MBit/s is shown in Fig. 7.4. It shows that the cell MC1, which corresponds to the

macro cell in the lower center area of Fig. 7.1, is close to being overloaded. Both the

SVM-based methods and the optimal solution achieve this through offloading to small

cell. It is observable that the small gap to the optimal solution probably originated

from small cell SC2 being underutilized in the SVM-based methods compared to the

optimal solution.

For the SVM training of the range expansion optimization scheme in Sec. 7.3, 250

network scenarios with nine small cells each are used for a total of 2250 training dat-

apoints. To test the performance of the SVM-based classifier as a parameter opti-

mization scheme, 100 new network scenarios are used in a Monte-Carlo evaluation and

compute the average achieved cell loads as performance metrics.

As a benchmark to evaluate the performance of the proposed scheme, a network with

SCs operating without range expansion and DP allocation according to the strongest

received signal, in the following referred to as “no range exp.”, as defined by Eq. 2.14.

The upper bound performance benchmark is given by the optimal bias selection ob-

tained from solving problem (7.13). The averaged maximum load achieved by all

schemes for range expansion over an increasing DP demand is illustrated in Fig. 7.6.

It is observable that, similarly to the DP allocation optimization scheme, the scheme

based on an SVM with a quadratic feature mapping performs close to optimal. The

overall achievable load decrease however, even when solved optimally, is lower for the

range expansion optimization approach. Fig.7.7 shows the average maximum load over

the evaluated network scenarios for an increasing number of users with a data demand

of 1 MBit/s each. As observable, the quadratic SVM achieves close to optimal per-

formance, while the linear SVM causes slightly higher cell load, with both approaches

showing lower load levels than without range expansion for all M . This underlines the



7.4 Simulation Results 99

0 100 200 300 400 500 600 700 800 900 1,000
0

100

200

300

400

500

600

700

800

900

1,000

prm.

sec.

ter.

range (m)

cr
os

sr
an

ge
(m

)

macro cell (MC)

small cell (SC)
demand point (DP)

Figure 7.1. Illustration of the network scenario and primary, secondary and tertiary
allocation candidates.

stability of the proposed scheme and the suitability of the selected SC features.

The load of individual cells for a simulation of 100 network scenarios with 100 DPs

with 0.8 MBit/s data demand each is shown in Fig. 7.8. The load of MC1 without

range expansion is the critical one to be minimized for the load balancing scheme to be

successful. All proposed methods achieve decreased load for MC1, with the SVM-based

approaches being only slightly worse than the optimum. The highest load of any SC is

about 20%, which is a large increase relative to the load level without range expansion.

The confusion matrix of optimal bias levels and classified bias levels for the quadratic

SVM is shown in Fig. 7.9. The classifier shows very good performance with 93% accu-

racy in detecting which small cells, according to the optimal solution of the MILP, do

not serve any DPs.Mainly for the bias values 0dB and 4dB, the accuracy is decreased.

The most common error made by the classifier, with respect to the optimal MILP so-

lution, is to not allocate users to SCs that for the optimal solution actually had users
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Figure 7.2. Maximum cell load comparison for learning-based and optimal user alloca-
tion over increasing demand. The SVM based on quadratic feature mapping performs
close to optimal.

allocated to them. The good performance in load balancing however, as discussed for

Fig. 7.7, suggests that these wrong classifications do not occur in critical scenarios.

7.5 Summary

A scheme was introduced to utilize multi-class SVMs for solving resource allocation

ILPs arising in load balancing problems. The proposed method relies on training

a classifier based on support vector machines using historical network data. This

classifier is then used by each SC in operation of the network or each DP to make

allocation decisions using locally available information, such that the maximum load

of any cell in the network is minimized. Simulation results show that the proposed

methods achieve close to optimal performance especially if support vector machines

with quadratic feature mapping are being used.
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Figure 7.3. Maximum cell loads for user allocation schemes over number of deployed
small cells. The deployment of additional SCs continuously decreases the maximum
load level.
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Figure 7.4. Example of cell loads for individual cells. All proposed approaches for SC
allocation decrease the critical load level of MC1.
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Figure 7.7. Maximum cell load levels for range expansion schemes over an increasing
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Chapter 8

Conclusions and Outlook

In this thesis, a plan to enable gains in network performance for heterogeneous wireless

communication networks is proposed. The performance of future wireless networks is

measured in throughput, energy efficiency, spectral resource efficiency, adherence to

QOS-constraints and other criteria. Similarly, any attempts to optimize the network

with respect to these objectives can be applied on various timescales. Three optimiza-

tion phases, in the order of long-term to more immediate measures, were identified:

network deployment, network configuration and network operation. As the upcoming

fifth and future generations of wireless networks need to provide a wide variety of ser-

vices, all of which lead to QOS-constraints that need to be adequately addressed in

the proposed approaches for network optimization. This favors a utilization of MIPs,

for which reformulations to attain computational tractability are proposed as a major

contribution of this thesis.

The problem of increasing the network performance, as measured by a variety of objec-

tives, was divided into multiple sub-problems critical for this goal. Firstly, the network

needs to be planned and set up to facilitate a load balanced operation. Only cells that

are not overloaded or forced to operate at the expense of all their available resources,

such as time-frequency resources or transmit power, can optimize their operation to-

wards other objectives. Therefore, the network must be designed for load-balanced

operation in the planning and scheduling phases. For the second objective, the net-

work needs to be optimized towards an efficient utilization of the available resources.

The third objective addresses economic operability considerations, where the energy

consumption of all cells must be optimized in an effort to decouple the increase in net-

work density from a proportional increase in energy consumption. Finally, the need of

a load-balanced operation is again addresses by the fourth objective, which demands

that load-balancing can be maintained in operation through fast and decentralized

methods.

The first objective was addressed with a scheme to optimize the deployment location

of SCs and their activity, specifically their on-off status over a given time horizon.

The deployment location of SCs was optimized while considering area- and SC-type-

dependent cost factors. As SCs in future HetNets are envisioned to operate with

their own energy supply from renewable energies and utilizing energy storage, the

optimization of their activity over a time horizon requires joint scheduling optimization
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over multiple time instances. An optimization approach for grouping demand forecasts

for multiple time instances into time-slots of varying length was proposed, based on the

forecasted demand variability of the network. The cell activity was optimized based

on the thus obtained time-schedule. Network simulations demonstrated the beneficial

effect of the optimized deployment locations, activity status and scheduling timeframe

for the load balancing of the network. The analysis shows that an optimization-based

approach to planning the deployment locations of multiple cells jointly achieves lower

cell load levels than a heuristic approach where the cells are deployed one-by-one. This

has already been shown in [SY13], but the analysis in this work shows that the benefit

is emphasized especially if multiple candidate locations and cells types are available.

Furthermore, the joint optimization of cell activity and time schedule achieves lower

load levels than optimizing the activity based on a schedule with timeslots of equal

length, especially if there is high temporal variance in the spatial load distribution of

the network.

The resource allocation of the HetNet was optimized in order to fulfill the second ob-

jective. The high variety of services provided by future HetNets necessitate viewing

the network as the joint operation of multiple slices, which may utilize different time-

frequency resources. A nonconvex MIP to jointly optimize the resource dimensioning of

these slices, the allocation of cells to different slices, and the allocation of DPs to cells,

was formulated. An inner linear approximation of the original problem was provided

in the form of an MILP, that under certain conditions and with sufficient computa-

tional effort could solve the original problem optimally. It was demonstrated through

simulation results that the proposed cell planning approach minimized the resource

consumption of the network. Also it was demonstrated that the proposed approach,

when operating with multiple orthogonal resource slices, enabled significant and re-

liable gains in resource efficiency through DP deployment. This result adresses the

key challenge raised by the authors of [AZDG16], which is that novel network control

mechanisms need to be developed for dense wireless networks to enable performance

gains through network densification. The results in this work show that through a joint

cell and spectrum planning approach, resource efficiency gains can be reliably achieved

when additional small cells are deployed.

For the third objective of energy consumption minimization and economic operability,

a scheme to minimize the total energy consumption of the network subject to QOS-

constraints was proposed. The proposed MILP is an inner approximation of the origi-

nal, computationally intractable power minimization problem. Other than established,

heuristic approaches for power scaling in HetNets, multiple network parameters and

QOS-constraints can be adequately modeled by relying on the solution of the MILP.

A proof that the solution of the approximate MILP is always feasible for the original
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MIP was also provided. Simulation results showed the superiority to established meth-

ods and demonstrated significant decreases in energy consumption. Most significantly,

the proposed approach achieved lower energy consumption when compared with an

exhaustive search scheme over all possible cell activity configurations combined with a

heuristic power scaling approach introduced in [HYLS15]. The fundamental problem of

economic operability regarding energy consumption of dense wireless networks raised

in [CSS+14] and [AZDG16] can be effectively mitigated using the approach presented

in this thesis.

Finally, the fourth objective of maintaining the load-balanced network state was ad-

dressed using two decentralized learning-based schemes. Communication and coordi-

nation overhead necessary for network-wide optimizations mitigates the feasibility of

such schemes for a live application during network operation. A learning-based scheme

was proposed that utilizes multi-class SVMs with locally available network attributes

to perform decentralized load balancing. These SVMs, even though they are tradi-

tionally used as classifiers, were adapted to approximately solve network optimization

IPs. Two approaches were proposed, one where DPs utilized the learning-based clas-

sifier to allocate to the best cells, and one where the SCs synthetically expanded their

coverage area based on the learning system. Both approaches yielded the desired load-

balancing effect, with almost the same performance as a global network optimization

approach. In comparison with established load balancing approaches [SY12b,YRC+13],

the proposed methods require only very limited local information exchange to achieve

close-to-optimal performance. This enables their scalability to very large network sce-

narios.

Even though the developed approaches for network optimization effectively solved the

problems defined at the beginning of the thesis, the resulting observations suggest some

important follow-up research. The processing time, especially for the resource- and en-

ergy consumption optimization on a large network, remains very large even for the

computationally tractable linear inner approximations. Possibly a close to optimal so-

lution could be obtained by segmenting larger networks into separate clusters, applying

the proposed schemes on each individually, and then fusing the results to obtain the

global network optimization solution. Additionally, the currently significant popularity

and proven performance of solution approaches based on deep learning strongly suggest

more detailed research on possible applications to wireless network optimization.
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List of Acronyms

4G Fourth Generation Mobile Networks

5G Fifth Generation Mobile Networks

AWGN Additive White Gaussian Noise

CSI Channel State Information

DP Demand Point

EHF Extremely High Frequency

eMBB Enhanced Mobile Broadband

GSM Global System for Mobile communications

HetNet Heterogeneous Wireless Communication Network

ILP Integer Linear Problem

IP Integer Problem

ITU International Telecommunications Union

LOS Line-of-Sight

LTE Long Term Evolution

LTE-A Long Term Evolution Advanced

M2M Machine-to-Machine

MC Macro Cell

MILP Mixed-Integer Linear Problem

MIMO Multiple Input Multiple Output

MINLP Mixed-Integer Nonlinear Problem

MIP Mixed-Integer Problem

mMIMO Massive MIMO

mMTC Massive Machine Type Communications

mmWave Millimeter-Wave
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MRC Maximum Ratio Combining

NLOS Non-Line-of-Sight

NP Nondeterministic Polynomial Time

OFDMA Orthogonal Frequency Division Multiple Access

QOS Quality-of-Service

RAT Radio Access Technology

RF Radio Frequency

SC Small Cell

SINR Signal-to-Interference-Plus-Noise-Ratio

SDMA Space Division Multiple Access

SNR Signal-to-Noise-Ratio

SVM Support Vector Machine

UHF Ultra-High Frequency

URLLC Ultra-Reliable and Low-Latency Communications

V2V Vehicle-to-Vehicle

VR Virtual Reality

WLAN Wirless Local Area Network

ZF Zero Forcing
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List of Symbols and Notation

Symbols and Functions:

Akm binary allocation indicator of DP m to cell k

Bqk binary allocation indicator of slice q to cell k

C weighting factor of SVM soft-margin penalty term

dm data demand of DP m in bit per second

Ek energy level of cell k in Joule

E
(Γ)
k energy consumption of cell k based on model Γ(·)

FTYPE..(·) SVM attributes for decentralized user allocation

GSC..(·) SVM attributes for decentralized SC range expansion

gkm total link attenuation between cell k and DP m

hCH
km propagation channel coefficients between cell k and DP m

H attribute matrix for SVM training

h attribute vector of a single sample for SVM training

i index of linearization functions, i = 1, . . . , I

Jst binary allocation indicator of snapshot s to time-slot t

k index of cells, k = 1, . . . , K

L
P/S/R
n weighting factor of prim./sec./remaining interference in scenario n

lt length of time-slot t in seconds

m index of DPs, m = 1, . . . ,M

n index of interference scenarios, n = 1, . . . , N

ñ index of small cell models ñ = 1, . . . , Ñ

P
MIN/MAX
k minimum/maximum transmit power of cell k in Watts

pk transmit power of cell k in Watts

q index of network slices, q = 1, . . . , Q

Rkm data rate achievable for cell k serving DP m in bits per second

s̃ index of available bias values for range expansion, s̃ = 1, . . . , S̃

s index of snapshots, s = 1, . . . , S

T0 time constant for energy consumption model, in seconds

t index of time-slots, t = 1, . . . , T

t̃ index of attribute vectors for SVM, t̃ = 1, . . . , T̃

Um number of discrete users in DP m

ui(·) piecewise linearizing function i

v(·) demand variability function
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W total availiable system bandwidth in Hz

wq system bandwidth allocated to slice q

w system bandwidth resources availiable for distribution between slices

y label vector for SVM training

Z unused spectral resources in Hz

zk binary activity indicator of cell k

γkm SINR of cell k serving DP m

Γ(·) model function for cell energy consumption

δs̃ bias value with index s̃

ε linearization accuracy parameter

ζ(·) load term function, ζ(x) = 1/ log2(1 + x)

ηBW
km bandwidth efficiency of the link between cell k and DPm

θk bias value of cell k used for cell range expansion

Θñk binary indicator of SC type ñ deployment in cell location k

κ
P/S
km index of primary/secondary interferers for cell k serving DB m

λ power spectral density of AWGN

νi binary indicator of line segment i used for piecewise linearization

ξ weighting factor for big-M method

Π upper bound of cell loads minimized in load balancing

ρk load of cell k

σ2 signal power of AWGN

τMIN/MAX minimum/maximum link load parameters

ψt̃ SVM misclassification penalty term of attribute vector t̃

Ψnkm discrete interference scenario n for cell k serving DP m

$ñ deployment cost of small cell model ñ

χ
SC/LOC
ñ/k SC deployment cost factor for type ñ / location k

Υñkm binary offloading indicator for SC type ñ in location k serving DP m
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Sets:

∅ the empty set

{0, 1} set of binaries

N set of natural numbers

R set real numbers

R0+ set of nonnegative real numbers

C set of indices of all cells

CSC set of indices of small cells

CMC set of indices of macro cells

M set of indices of all DPs

M{s̃}
k set of DPs in coverage area of SC k with bias s̃

B set of three binaries used for bilinear reformulation

L set of two bounded real scalars and a binary used for bilinear reformulation

A set of allocation parameters over a time horizon

R set of cell loads over a time horizon

Z set of cell activity indicators over a time horizon

Sk set of bias values available for cell k

Notation:

∈ element of

∀ for all

⊂ is a proper subset of

∪ set union

∩ set intersection

Akm element in the k-th row and m-th column of matrix A

RK×M matrix with K rows and M columns of real parameters

[·]> vector transpose

E(·) expected value

||M|| number of elements in set M
| · | magnitude
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