
R. Meersman, Z. Tari, P. Herrero et al. (Eds.): OTM 2007 Workshops, Part I, LNCS 4805, pp. 211–221, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Browsing Semantics in Context-Aware Mobile
Hypermedia

Cecilia Challiol1,3, Agustin Muñoz1, Gustavo Rossi1,3, Silvia E. Gordillo1,4,
Andrés Fortier1,2,3, and Robert Laurini5

1 LIFIA. Facultad de Informática. UNLP. La Plata, Argentina
{ceciliac,agustinm,gustavo,gordillo,

andres}@lifia.info.unlp.edu.ar
2 DSIC. Universidad Politécnica de Valencia. Valencia, España

3 Also CONICET
4 Also CICPBA

5 LIRIS. Universite de Lyon. France
robert.laurini@insa-lyon.fr

Abstract. Mobile hypermedia applications combine the well-known advantages
of the navigational paradigm of the Web with the capabilities of location-aware
software. However, there are some subtleties to integrate them synergistically.
In this paper we analyze different aspects related with navigation semantics in
mobile hypermedia; in particular we discuss the problems which arise in the use
of the familiar backward and forward operations when physical navigation in
the real world is involved. Using a motivating example, we present a simple
model to handle physical and digital navigation in a cohesive way. We also de-
scribe a modular implementation of our ideas in an architecture which support
context-aware services.

1 Introduction and Motivation

In the last years there has been a growing interest to integrate the navigation paradigm
of the Web with the capabilities which are usual in mobile, context-aware software
[8,9]. In these systems, the mobile user navigates physically by traversing the real
world or digitally by following links. The underlying hypermedia network is therefore
formed out of a set of physical and digital nodes; while digital links are just the “old”
Web links, physical ones require moving in the physical space.

Suppose for example a tourist in a city: when he stands in front of a remarkable
place (e.g. a monument) he receives digital information about that place in his mobile
device. This location-aware behavior can be thought as equivalent to opening a Web
page; however, in this case “opening” means accessing physically. This page may
contain links to other pages, which can be pure digital (i.e. conventional hyperlinks)
or may point to other physical locations. When the user chooses a digital link, he
explores the hyperspace and does not need to move. Meanwhile, if he selects a
“physical” link he receives information on how to move to the target of the link (a
physical place). In this case, traversing the link means moving to another location,
what is referred to as “walking” the link [10]. However, during this trip, the user

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Centro de Servicios en Gestión de Información

https://core.ac.uk/display/199238457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

212 C. Challiol et al.

might get lost or decide to visit other monuments. Navigation in the real world is not
atomic as we are used to in the virtual world. In this context, browsing semantics such
as the interpretation of the back and forward operations are an important issue for the
mobile user.

Figure 1 shows a sketch of the city our tourist is traversing and some relevant
points of interest. At the beginning of his tour the user is in front of the Museum, and
therefore he is accessing the corresponding digital node. One of the (physical) links
points him to the Theatre; he selects it and gets a map to initiate his trip. The user
walks according to the map and then he arrives to the Theatre. In that moment, the
user selects the (physical) link to the Cathedral and gets a map with the travel. While
walking, he passes by the Football Stadium, stops in front of it, gets some information
for a future visit and decides to continue to the Cathedral.

Figure 1 also shows a simple graph indicating this trajectory. It is easy to see that
his “navigation history” includes (in order): Museum, Theatre, Football Stadium and
Cathedral. According to this sequence it is natural to think that the default implemen-
tation of the back button would be to help him return to the previous place, while the
next button should give him cues regarding the rest of the trip.

The situation might get more complicated if during this trip he faces other physical
objects that behave as assistants [4], either correcting his tour, giving further informa-
tion or encouraging to follow his trip. Should these objects be part of the navigation
history? Moreover, suppose that he arrives to the Cathedral and wants to return to the
Museum. Is it necessary that he traverses the same path even when he can use a short-
cut? (see Figure 1). In addition, suppose that in each stop the user navigates the digital
hyperspace; how should the (digital) back operation behave? The situation might be
more complicated if we try to provide context-aware behavior, such as eliminating a
place from the history if it is closed, not accessible or not in the user’s preferences.

These are just a set of the problems one faces when combining the physical and digi-
tal worlds in a hypermedia setting. Some of the problems might depend on the applica-
tion domain, others on the user’s context, while others are just the consequence of map-
ping the hypermedia metaphor to the real world. While it is not possible to find a solu-
tion suitable for all cases, we aim to provide a conceptual and application framework to
provide different navigation behaviors according to the user’s needs.

Fig. 1. A simple city tour scenario

 Browsing Semantics in Context-Aware Mobile Hypermedia 213

In this paper we analyze the problem of dealing with different browsing semantics
in a coherent way. We show that a mobile user requires varied strategies for backward
and forward navigation, both according to his actual context and intended task; we
also describe an architectural approach and its associated implementation to deal with
these issues modularly.

The main contributions of our paper are the following:

• We characterize the problem raised by browsing semantics in mobile hyper-
media applications.

• We outline a model to reason on (physical and digital) navigation in this kind
of software.

• We present a novel approach to decouple the navigation semantics from the
underlying browsing software in order to improve application’s modularity.

The rest of the paper is organized as follows: In Section 2 we present a model for
dealing with forward and backward navigation. In Section 3 we describe our architec-
tural support. In Section 4 we discuss some related works and we conclude in Section
5 describing some further work we are pursuing.

2 Forward and Backward Navigation in Mobile Hypermedia

We will use the standard graph representation both for digital and physical hyperme-
dia and we will assume that there are two different graphs, one encompassing the
physical objects the user can visit and the other corresponding to the digital docu-
ments he can navigate with his mobile device. As we will explain below, some of
these digital nodes are the counterpart of physical objects. Regardless the nature of
the graph (digital or physical) we represent the user’s path as the list of nodes he has
traversed; each time a new node is visited, it is added at the end of the user’s path.
The next step is adding the back and next functionality, which in principle should
match the standard browser semantics (i.e. Stack-Based Navigation [2]). To do so we
define:

back : (Path × Index) → Node
back(p,i) = element(p, i-1) ∀ i , 1 < i <= size(p)

next : (Path × Index) → Node
next(p,i) = element(p, i+1) ∀ i , 1 <= i < size(p)

It is important to notice that these functions do not modify the user’s current situa-
tion; they just return, based on a specific criterion, what the previous or next node is,
given a path and the current active node.

2.1 Physical Navigation

In the case of physical navigation, there is an important issue in terms of visited
nodes, since navigation is not atomic and therefore a user can visit a physical node
without explicitly asking for it. In our example the user decides to physically navigate
from the Museum to the Theatre and then to the Cathedral. In his way he passes by

214 C. Challiol et al.

Fig. 2. An extended map showing points of interest and physical objects

different physical objects of which the system is aware (e.g. ATMs, traffic lights,
etc.). Thus, even though the user has not explicitly asked to navigate to those interme-
diate objects, we can think of them as part of his navigation history and we can use
them to improve user guidance [13]. In this case, when the user walks from the Mu-
seum to the Cathedral he had passed by four physical objects (a traffic light, the Thea-
tre, an ATM and the Football Stadium).

From this scenario (Figure 2), we could think of applying two different back (and
next) functions: one that takes into an account all visited objects (BackFull) and other
that only looks at objects that were explicitly requested by the user (BackSimple). As-
suming that the user is standing in the Cathedral, this scenario would be modeled as:

Path={Museum, TrafficLight, Theatre, ATM, FootballStadium, Cathedral}
BackFull(path,6) → FootballStadium
BackSimple(path,6) → Theatre

The situation might get more complicated if we want to filter the objects according
to contextual information, such as the user activity or actual task.

2.2 Integrating Physical and Digital Navigation Semantics

Mobile hypermedia combines physical and digital navigation. To show how to inte-
grate the physical and digital models, we will refer to the set of digital hypermedia
nodes as Ndig and to the set of physical hypermedia objects as Nph. Using this notation
we can define a function that maps physical objects to their digital counterparts:

Mapph-dig : Nph → (Ndig ∪ {θ})
where θ corresponds to those physical objects without a digital counterpart

In the example of Figure 3 we have:

• Ndig={A,B,C,D,E,F,H}
• Nph={Museum, Theatre, Cathedral, TrafficLight, ATM, FootballStadium}
• Mapph-dig={(Museum,A), (Theatre,B), (FootballStadium,H), (Cathedral,C)}

We can now characterize physical objects according to their relationship with digi-
tal objects and vice versa:

• PurePhysicalObejcts={n | n ∈ Nph ∧ Mapph-dig(n) = θ }
• PointsOfInterest={n | n ∈ Nph ∧ Mapph-dig(n) ≠ θ }
• PureDigitalObjects={d | d ∈ Ndig ∧ ∼ (∃ n ∈ Nph) (Mapph-dig(n) = d)}

 Browsing Semantics in Context-Aware Mobile Hypermedia 215

Fig. 3. Mapping physical and digital models

By using this characterization we can offer the user a wider range of functions to
give back and next semantics. As an example, a user may find useful to include in the
back functionality the objects that he has encounter along his path, but only if they are
points of interest. As a result, we would have now a new back function for Figure 2:

Path={Museum, TrafficLight, Theatre, ATM, FootballStadium, Cathedral}
BackPoI (path, 6) → FootballStadium (consider only objects in PointsOfInterest)

This idea can be extended as far as needed, adapting the back and next functional-
ity according to different parameters. As an example consider these two scenarios:

• We could tag points of interest according to different characteristics. For ex-
ample the Museum, Theatre and Cathedral would be tagged as cultural
points of interest, while the Football Stadium would be tagged as recrea-
tional. A “smart” back could inspect tags to decide weather a node is taken
into an account or not. In this case, since the football stadium was not ex-
plicitly asked by the user and it is the only one that is not tagged as cultural,
when asked for the previous point of interest, BackTagged (path, 6) would an-
swer Theatre.

• If we have a function that retrieves opening times of points of interest, the
back function could take into an account only those points of interest that are
open.

These examples show that we should be able to create as many back functions as
we need. Of course not all of them are well suited for every situation: while BackPoI

seems reasonable for a tourist that knows where he is, it does not apply for a tourist
that is lost (and especially if the visited points of interest are far away from each
other). Moreover, this kind of functionality might be application dependent, e.g. if the
user is a postman delivering letters, he may need a back function that shows the
places in which letters could not be delivered (e.g. because there was nobody at
home). As a consequence, an architecture that supports the development of mobile
hypermedia applications should allow this variability, which means that it should
clearly separate these aspects to simplify the development process. In the next sec-
tions we describe the main design decisions in our architecture to support varied
browsing strategies.

216 C. Challiol et al.

3 Architectural Support

We have built a substrate for developing mobile hypermedia applications as an exten-
sion of our previous work on context-aware services [4, 13]. The first and most im-
portant decision to achieve flexibility in browsing semantics is to decouple the
browser functionality from the model it is rendering. Generally, a Web browser is
seen as an application that sends HTTP requests and renders the response. In the next
sub-section we will present a different perspective for using a Web browser in a mo-
bile setting, and show how navigation functionality can be configured according to
the application’s need. Next we will briefly explain our base architecture for context-
aware behavior and how we used it to provide context-aware browsing.

3.1 Decoupling Navigation from the Browser

In order to achieve the required functionality we consider and use the Web browser as
a medium that encompasses the view and the controller of a typical MVC architecture
[12] (see Figure 4). As a result the navigational model (including its browsing seman-
tics) is decoupled from the browser, which gives us great flexibility.

Fig. 4. The browser as the view component of an MVC application

In this approach the MVC components will be materialized as:

• View: an object’s view is just a standard HTML document that is generally
created in a dynamic fashion (e.g. as a result of processing a remote jsp). In
this scenario, the web browser takes the role of an HTML renderer.

• Controller: in hypermedia applications we are mainly interested in naviga-
tion events. These events result from the user clicking on a link anchor or us-
ing the standard toolbar functionality (back, next, home, and update buttons).
However, the interpretation of these behaviors should be provided by the
model and not by the browser; the controller just “captures” them and dele-
gates their execution. To support this view we have used callbacks to inter-
cept these events and redirected them to the browser’s model. Even though
we implemented this schema in Twoflower, a simple Smalltalk browser,
most actual web browsers provide callbacks to capture navigation events.

La Plata Cathedral

The most outstanding
building and monument
in the city he
magnificence of this
Neo Gothic Temple
which started being
built in XIX Century.
Neo Gothic Style
It is located in La Plata
geographical centre.

 Browsing Semantics in Context-Aware Mobile Hypermedia 217

• Model: the browser model is in charge of adapting the underlying applica-
tion model to comply with the browser required interface. Internally the
browser model maintains the static structure (i.e. the nodes and the links),
keeps track of the navigational state (i.e. the path and current node) and de-
fines the navigational behavior by means of the back and next functions.

By defining a clear message protocol for the model, we can use a Web browser for
any application type in which the underlying domain can be “navigated”, such as Web
sites, mobile hypermedia or workflows. To do so, the web browser’s model should
comply with the IBrowserModel interface (see Figure 5). To ease the development
process we have created an abstract class (BrowserModel) that implements almost all
the required behavior; the only abstract message that must be redefined by its sub-
classes is the doNavigateTo(String nodeDescription) that takes a string that identifies
an object and should return the corresponding IBrowserNode object. As an example,
implementing a mobile Web browser using this small framework is straightforward:
the WebBrowserModel interprets the nodeDescription as a url and just creates a
WebBrowserNode. When asked for its html representation, the WebBorwserNode
issues an http request and answers its result.

Finally, notice that the BrowserModel class not only provides a stub for the
IBrowserModel interface, but also decouples the back and next functionality by dele-
gating it to a navigation strategy [5]. By default the StackBasedStragety is used, but it
can be changed according to the application needs. To do so, a subclass of Naviga-
tionStrategy must be defined and override the back() and next() abstract messages. As

<<View>>
Browser

1
-model

1

<<Interface>>
IBrowserModel

+ IBrowserNode current()
+ IBrowserNode back()
+ IBrowserNode next()
+ navigateTo(String nodeDescription)

<<Interface>>
IBrowserNode

+ String html()

+ IBrowserNode current()
+ IBrowserNode back()
+ IBrowserNode next()
+ navigateTo(String nodeDescription)
- IBrowserNode doNavigateTo(String nodeDescription)

NavigationStrategy

+ IBrowserNode back()
+ IBrowserNode next()
+ addNode(IBrowserNode node)

1

-navigationStrategy

1

BrowserModel

1

-currentNode 1

- Collection path

RecencyBasedStrategy

+ IBrowserNode back()
+ IBrowserNode next()
+ addNode(IBrowserNode node)

StackBasedStrategy

+ IBrowserNode back()
+ IBrowserNode next()
+ addNode(IBrowserNode node)

- IBrowserNode doNavigateTo(String nodeDescription)

WebBrowserModel

+ String html()
- String url
WebBrowserNodeIBrowserNode

IBrowserNode doNavigateTo(String nodeDescription)

 return this.currentNode(WebBrowserNode.fromUrl(nodeDescription))

String html()

 return (HttpRequest.from(this.url)).execute().contents()

IBrowserModel

Fig. 5. Class diagram showing how to decouple the browser from its model

218 C. Challiol et al.

an example, the class diagram shows a subclass that implements a recency based
strategy [6]. Finally, if we have a mapping function between different browser models
(such as the Mapph-dig function presented before), the user is able to switch between
different views of the same object (e.g. the digital description of the Museum and a
map showing where it is located).

3.2 Context-Dependent Behaviors

In this section we will show how to take advantage of the gained flexibility of de-
coupling the browser’s model from the view by changing the back and next function-
ality according to the user’s behavior and context. By default, the system is initialized
with the BackPoI strategy, which only takes into an account the points of interest vis-
ited by the user. If, by analyzing the way the user moves around the city, the system
“realizes” that he can not easily follow the paths, the strategy is replaced by the Back-
Full, which shows all the physical objects the user has passed by.

Following the approach presented in [4] we used a three-layered approach to de-
couple those concerns that evolve independently (a complete instance diagram is
presented in Figure 6):

• Application Model: this is the model that has to be enhanced with new,
context-aware functionality. In mobile hypermedia software, this role is
played by the hypermedia application (i.e. the “Model” in the MVC triad
described in 3.1).

• Context Model: it is in charge of modeling the information that is contex-
tually relevant. Since we must reason about the way the user traverses his
path, we model him as an aware object with two context features: his lo-
cation and the target of his actual navigation. The location feature will be
updated when a location sensor changes (e.g. receiving a beacon signal or
a GPS coordinate), while the navigationTarget will be changed by a soft-
ware sensor that is triggered every time the browser sends the navigateTo
message to its model (for more information regarding decoupling sensing
mechanisms from context model see [7]).

• Context Adaptation: a context handler is created to act as an Observer
[5] of an aware object to get notified of context changes. This handler will
be triggered each time the user asks for a new navigation or changes his
current position. If by analyzing his behavior the system concludes that
the user is lost, the handler will change the navigation strategy of the
browser model. Since this paper is not concerned with describing how to
infer if the user is lost, we assume that the handler collaborates with a rea-
soning engine, which can have data structures of its own.

As a result, by decoupling the aspects that are inherently independent (such as the
context model, the context-dependent behavior and the sensing mechanism) we can
add specialized behavior with almost no impact in the original application model. For
example, to skip closed points of interest from the path we would have to create an
aware object for each point of interest, with a schedule context feature. Then a new
navigation strategy would be defined to filter out those points of interest that are

 Browsing Semantics in Context-Aware Mobile Hypermedia 219

Fig. 6. Instance diagram of a simple context-aware mobile hypermedia application

closed. Thus, the required modifications to the application model to achieve this func-
tionality are minimal.

4 Related Work

Our work has some points in common with [3], where the authors present a model
and infrastructure for browsing the world with added context information. In contrast
with our work, they design and implement an infrastructure based on a 4-tuple context
model (Who, What, Where and When) while our context model is configurable by
adding or removing context features. Also, the system in [3] is oriented towards que-
rying a tuple space, while we take an event-based approach. We could mimic this
behavior by imposing 4 context features to the aware objects and defining one handler
that reacts to a context change by adding the aware object to a tuple space.

In [6] a recency-based back behavior (an alternative to stack-based back function-
ality) is presented. In [1] the authors present task-based backtracking, a technique for
backtracking within the various logical tasks a user may be working on at any given
time. Since the back and next functionalities in our approach can be configured, they
could easily match the previous criteria.

A Mobile Tourist information Systems (TIP) is presented in [11], where the au-
thors mention different user interactions, like Browsing by walking or going To last
location. Even tough our work has some points in common with TIP (since the user
can switch between a browser and map view while he is walking), we include the
concept of physical navigation that is not present on TIP. The back button offers the
user the chance to return to the last information that was delivered, before he started
browsing and/or walking around, which can be compared with our digital navigation.
Finally in [9] the author presents a framework for context-aware mobile hypermedia
(HyCon) which has four different context-aware techniques: browsing, search, anno-
tation, and linking. The users can “browse information with their feet”, simply by
moving about in the world. In our system the user can also browse digital information
by moving in the physical world, but we attempt to go a step further and extend the
browser metaphor to other domains in which navigation is used.

220 C. Challiol et al.

5 Concluding Remarks and Further Work

We have presented a characterization of browsing semantics in mobile hypermedia
applications. We showed that different browsing strategies should be applied to physi-
cal navigation according to user preferences, contextual information or actual user
behavior. The key point in our approach is to decouple the underlying model from the
browser software and to configure it by means of the back and next functions as ob-
ject strategies. In this way, we were able to create as many back and next functions as
necessary according to different parameters or to the semantics of the. We have also
shown that any model that complies with the IBrowserModel interface (e.g. web sites,
mobile hypermedia or workflows) can be navigated with the standard Web browser
semantics.

So far we have defined browser models to navigate the Web and a network of
physical objects. We are currently working on adding workflows to support task-
oriented physical hypermedia, and to fully characterize the notion of “navigable”
models. We are also working on interface issues to easily manage related models, so
that the user can view different aspects of the same object (e.g. digital information or
the tasks related to it) without loosing context information (e.g. where the user is
physically standing). As a long term goal we expect to have a dedicated framework
which supports the most used models and navigation strategies.

References

1. Bieber, M., Jiangling, W.: Backtracking in a Multiple-window Hypertext Environment. In:
Proceeding of ECHT 1994, pp. 158–166. ACM Press, New York (1994)

2. Bieber, M., Vitali, F., Ashman, H., Balasubramanian, V., Oinas-Kukkonen, H.: Fourth
generation hypermedia: some missing links for the World Wide Web. Journal of Human-
Computer Studies, 31–65 (1997)

3. Castelli, G., Rosi, A., Mamei, M., Zambonelli, F.: A Simple Model and Infrastructure for
Context-Aware Browsing of the World. In: Proceeding of PERCOM 2007, pp. 229–238.
IEEE Computer Society, Los Alamitos (2007)

4. Fortier, A., Challiol, C., Rossi, G., Gordillo, S.: Physical Hypermedia: a Context-Aware
approach. In: Proceedings of the CAiSE 2007, pp. 499–513 (2007)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of reusable
object-oriented software. Addison-Wesley, Reading (1995)

6. Greenberg, S., Cockburn, A.: Getting Back to Back: Alternate Behaviors for a Web
Browser’s Back Button. In: Proceeding of the 5th Annual HFWeb (1999)

7. Grigera, J., Fortier, A., Rossi, G., Gordillo, S.: A Modular Architecture for Context Sens-
ing. In: Proceedings of PCAC 2007, pp. 147–152. IEEE Computer Society, Los Alamitos
(2007)

8. Gronbaek, K., Kristensen, J., Eriksen, M.: Physical Hypermedia: Organizing Collections
of Mixed Physical and Digital Material. In: Proceedings of Hypertext 2003, pp. 10–19
(2003)

9. Hansen, F.A.: Context-aware Mobile Hypermedia: Concepts, Framework, and Applica-
tions. Ph.D. Dissertation, Department of Computer Science, University of Aarhus (2006)

 Browsing Semantics in Context-Aware Mobile Hypermedia 221

10. Harper, S., Goble, C., Pettitt, S.: proXimity: Walking the Link. Journal of Digital Informa-
tion 5(1) Article No 236

11. Hinze, A., Malik, P., Malik, R.: Interaction design for a mobile context-aware system us-
ing discrete event modeling. In: Proceedings of the ACSC 2006, pp. 257–266. Australian
Computer Society (2006)

12. Krasner, G., Pope, S.: A Cookbook for Using Model-View-Controller User Interface Para-
digm in Smalltalk-80. Journal of Object Oriented Programming, 26–49 (1988)

13. Rossi, G., Gordillo, S., Challiol, C., Fortier, A.: Context-Aware Services for Physical Hy-
permedia Applications. In: Proceedings of the CAMS 2006, pp. 1914–1923. Springer,
Heidelberg (2006)

