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Abstract. Mobile hypermedia applications combine the well-known advantages 
of the navigational paradigm of the Web with the capabilities of location-aware 
software. However, there are some subtleties to integrate them synergistically. 
In this paper we analyze different aspects related with navigation semantics in 
mobile hypermedia; in particular we discuss the problems which arise in the use 
of the familiar backward and forward operations when physical navigation in 
the real world is involved. Using a motivating example, we present a simple 
model to handle physical and digital navigation in a cohesive way. We also de-
scribe a modular implementation of our ideas in an architecture which support 
context-aware services. 

1   Introduction and Motivation 

In the last years there has been a growing interest to integrate the navigation paradigm 
of the Web with the capabilities which are usual in mobile, context-aware software 
[8,9]. In these systems, the mobile user navigates physically by traversing the real 
world or digitally by following links. The underlying hypermedia network is therefore 
formed out of a set of physical and digital nodes; while digital links are just the “old” 
Web links, physical ones require moving in the physical space. 

Suppose for example a tourist in a city: when he stands in front of a remarkable 
place (e.g. a monument) he receives digital information about that place in his mobile 
device. This location-aware behavior can be thought as equivalent to opening a Web 
page; however, in this case “opening” means accessing physically. This page may 
contain links to other pages, which can be pure digital (i.e. conventional hyperlinks) 
or may point to other physical locations. When the user chooses a digital link, he 
explores the hyperspace and does not need to move. Meanwhile, if he selects a 
“physical” link he receives information on how to move to the target of the link (a 
physical place). In this case, traversing the link means moving to another location, 
what is referred to as “walking” the link [10]. However, during this trip, the user 
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might get lost or decide to visit other monuments. Navigation in the real world is not 
atomic as we are used to in the virtual world. In this context, browsing semantics such 
as the interpretation of the back and forward operations are an important issue for the 
mobile user. 

Figure 1 shows a sketch of the city our tourist is traversing and some relevant 
points of interest. At the beginning of his tour the user is in front of the Museum, and 
therefore he is accessing the corresponding digital node. One of the (physical) links 
points him to the Theatre; he selects it and gets a map to initiate his trip. The user 
walks according to the map and then he arrives to the Theatre. In that moment, the 
user selects the (physical) link to the Cathedral and gets a map with the travel. While 
walking, he passes by the Football Stadium, stops in front of it, gets some information 
for a future visit and decides to continue to the Cathedral. 

Figure 1 also shows a simple graph indicating this trajectory. It is easy to see that 
his “navigation history” includes (in order): Museum, Theatre, Football Stadium and 
Cathedral. According to this sequence it is natural to think that the default implemen-
tation of the back button would be to help him return to the previous place, while the 
next button should give him cues regarding the rest of the trip.   

The situation might get more complicated if during this trip he faces other physical 
objects that behave as assistants [4], either correcting his tour, giving further informa-
tion or encouraging to follow his trip. Should these objects be part of the navigation 
history? Moreover, suppose that he arrives to the Cathedral and wants to return to the 
Museum. Is it necessary that he traverses the same path even when he can use a short-
cut? (see Figure 1). In addition, suppose that in each stop the user navigates the digital 
hyperspace; how should the (digital) back operation behave? The situation might be 
more complicated if we try to provide context-aware behavior, such as eliminating a 
place from the history if it is closed, not accessible or not in the user’s preferences.  

These are just a set of the problems one faces when combining the physical and digi-
tal worlds in a hypermedia setting. Some of the problems might depend on the applica-
tion domain, others on the user’s context, while others are just the consequence of map-
ping the hypermedia metaphor to the real world. While it is not possible to find a solu-
tion suitable for all cases, we aim to provide a conceptual and application framework to 
provide different navigation behaviors according to the user’s needs. 

 

Fig. 1. A simple city tour scenario 
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In this paper we analyze the problem of dealing with different browsing semantics 
in a coherent way. We show that a mobile user requires varied strategies for backward 
and forward navigation, both according to his actual context and intended task; we 
also describe an architectural approach and its associated implementation to deal with 
these issues modularly. 

The main contributions of our paper are the following: 

• We characterize the problem raised by browsing semantics in mobile hyper-
media applications. 

• We outline a model to reason on (physical and digital) navigation in this kind 
of software. 

• We present a novel approach to decouple the navigation semantics from the 
underlying browsing software in order to improve application’s modularity. 

The rest of the paper is organized as follows: In Section 2 we present a model for 
dealing with forward and backward navigation. In Section 3 we describe our architec-
tural support. In Section 4 we discuss some related works and we conclude in Section 
5 describing some further work we are pursuing. 

2   Forward and Backward Navigation in Mobile Hypermedia 

We will use the standard graph representation both for digital and physical hyperme-
dia and we will assume that there are two different graphs, one encompassing the 
physical objects the user can visit and the other corresponding to the digital docu-
ments he can navigate with his mobile device. As we will explain below, some of 
these digital nodes are the counterpart of physical objects. Regardless the nature of 
the graph (digital or physical) we represent the user’s path as the list of nodes he has 
traversed; each time a new node is visited, it is added at the end of the user’s path. 
The next step is adding the back and next functionality, which in principle should 
match the standard browser semantics (i.e. Stack-Based Navigation [2]). To do so we 
define: 

back : (Path × Index) → Node 
back(p,i) = element(p, i-1) ∀ i , 1 < i <= size(p) 

next : (Path × Index) → Node 
next(p,i) = element(p, i+1) ∀ i , 1 <= i < size(p) 
 

It is important to notice that these functions do not modify the user’s current situa-
tion; they just return, based on a specific criterion, what the previous or next node is, 
given a path and the current active node. 

2.1   Physical Navigation 

In the case of physical navigation, there is an important issue in terms of visited 
nodes, since navigation is not atomic and therefore a user can visit a physical node 
without explicitly asking for it. In our example the user decides to physically navigate 
from the Museum to the Theatre and then to the Cathedral. In his way he passes by  
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Fig. 2. An extended map showing points of interest and physical objects 

different physical objects of which the system is aware (e.g. ATMs, traffic lights, 
etc.). Thus, even though the user has not explicitly asked to navigate to those interme-
diate objects, we can think of them as part of his navigation history and we can use 
them to improve user guidance [13]. In this case, when the user walks from the Mu-
seum to the Cathedral he had passed by four physical objects (a traffic light, the Thea-
tre, an ATM and the Football Stadium). 

From this scenario (Figure 2), we could think of applying two different back (and 
next) functions: one that takes into an account all visited objects (BackFull) and other 
that only looks at objects that were explicitly requested by the user (BackSimple). As-
suming that the user is standing in the Cathedral, this scenario would be modeled as: 

Path={Museum, TrafficLight, Theatre, ATM, FootballStadium, Cathedral} 
BackFull(path,6) → FootballStadium  
BackSimple(path,6) → Theatre 
 

The situation might get more complicated if we want to filter the objects according 
to contextual information, such as the user activity or actual task. 

2.2   Integrating Physical and Digital Navigation Semantics 

Mobile hypermedia combines physical and digital navigation. To show how to inte-
grate the physical and digital models, we will refer to the set of digital hypermedia 
nodes as Ndig and to the set of physical hypermedia objects as Nph. Using this notation 
we can define a function that maps physical objects to their digital counterparts: 

Mapph-dig : Nph → (Ndig ∪ {θ}) 
where θ  corresponds to those physical objects without a digital counterpart 

In the example of Figure 3 we have: 

• Ndig={A,B,C,D,E,F,H} 
• Nph={Museum, Theatre, Cathedral, TrafficLight, ATM, FootballStadium} 
• Mapph-dig={(Museum,A), (Theatre,B), (FootballStadium,H), (Cathedral,C)} 

We can now characterize physical objects according to their relationship with digi-
tal objects and vice versa: 

• PurePhysicalObejcts={n | n ∈ Nph ∧ Mapph-dig(n) = θ } 
• PointsOfInterest={n | n ∈ Nph ∧ Mapph-dig(n) ≠ θ } 
• PureDigitalObjects={d | d ∈ Ndig ∧ ∼ (∃ n ∈ Nph) (Mapph-dig(n) = d)} 
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Fig. 3. Mapping physical and digital models 

By using this characterization we can offer the user a wider range of functions to 
give back and next semantics. As an example, a user may find useful to include in the 
back functionality the objects that he has encounter along his path, but only if they are 
points of interest. As a result, we would have now a new back function for Figure 2: 

Path={Museum, TrafficLight, Theatre, ATM, FootballStadium, Cathedral} 
BackPoI (path, 6) → FootballStadium (consider only objects in PointsOfInterest) 

This idea can be extended as far as needed, adapting the back and next functional-
ity according to different parameters. As an example consider these two scenarios: 

• We could tag points of interest according to different characteristics. For ex-
ample the Museum, Theatre and Cathedral would be tagged as cultural 
points of interest, while the Football Stadium would be tagged as recrea-
tional. A “smart” back could inspect tags to decide weather a node is taken 
into an account or not. In this case, since the football stadium was not ex-
plicitly asked by the user and it is the only one that is not tagged as cultural, 
when asked for the previous point of interest, BackTagged (path, 6) would an-
swer Theatre. 

• If we have a function that retrieves opening times of points of interest, the 
back function could take into an account only those points of interest that are 
open. 

These examples show that we should be able to create as many back functions as 
we need. Of course not all of them are well suited for every situation: while BackPoI 

seems reasonable for a tourist that knows where he is, it does not apply for a tourist 
that is lost (and especially if the visited points of interest are far away from each 
other). Moreover, this kind of functionality might be application dependent, e.g. if the 
user is a postman delivering letters, he may need a back function that shows the 
places in which letters could not be delivered (e.g. because there was nobody at 
home). As a consequence, an architecture that supports the development of mobile 
hypermedia applications should allow this variability, which means that it should 
clearly separate these aspects to simplify the development process. In the next sec-
tions we describe the main design decisions in our architecture to support varied 
browsing strategies. 
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3   Architectural Support 

We have built a substrate for developing mobile hypermedia applications as an exten-
sion of our previous work on context-aware services [4, 13]. The first and most im-
portant decision to achieve flexibility in browsing semantics is to decouple the 
browser functionality from the model it is rendering. Generally, a Web browser is 
seen as an application that sends HTTP requests and renders the response. In the next 
sub-section we will present a different perspective for using a Web browser in a mo-
bile setting, and show how navigation functionality can be configured according to 
the application’s need. Next we will briefly explain our base architecture for context-
aware behavior and how we used it to provide context-aware browsing. 

3.1   Decoupling Navigation from the Browser 

In order to achieve the required functionality we consider and use the Web browser as 
a medium that encompasses the view and the controller of a typical MVC architecture 
[12] (see Figure 4). As a result the navigational model (including its browsing seman-
tics) is decoupled from the browser, which gives us great flexibility.  

 

Fig. 4. The browser as the view component of an MVC application 

In this approach the MVC components will be materialized as: 

• View: an object’s view is just a standard HTML document that is generally 
created in a dynamic fashion (e.g. as a result of processing a remote jsp). In 
this scenario, the web browser takes the role of an HTML renderer. 

• Controller: in hypermedia applications we are mainly interested in naviga-
tion events. These events result from the user clicking on a link anchor or us-
ing the standard toolbar functionality (back, next, home, and update buttons). 
However, the interpretation of these behaviors should be provided by the 
model and not by the browser; the controller just “captures” them and dele-
gates their execution. To support this view we have used callbacks to inter-
cept these events and redirected them to the browser’s model. Even though 
we implemented this schema in Twoflower, a simple Smalltalk browser, 
most actual web browsers provide callbacks to capture navigation events. 

 

La Plata Cathedral 
 

The most outstanding 
building and monument 
in the city he 
magnificence of this 
Neo  Gothic Temple 
which started being 
built in XIX Century. 
Neo Gothic Style 
It is located in La Plata 
geographical centre. 
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• Model: the browser model is in charge of adapting the underlying applica-
tion model to comply with the browser required interface. Internally the 
browser model maintains the static structure (i.e. the nodes and the links), 
keeps track of the navigational state (i.e. the path and current node) and de-
fines the navigational behavior by means of the back and next functions.   

By defining a clear message protocol for the model, we can use a Web browser for 
any application type in which the underlying domain can be “navigated”, such as Web 
sites, mobile hypermedia or workflows.  To do so, the web browser’s model should 
comply with the IBrowserModel interface (see Figure 5). To ease the development 
process we have created an abstract class (BrowserModel) that implements almost all 
the required behavior; the only abstract message that must be redefined by its sub-
classes is the doNavigateTo(String nodeDescription) that takes a string that identifies 
an object and should return the corresponding IBrowserNode object. As an example, 
implementing a mobile Web browser using this small framework is straightforward: 
the WebBrowserModel interprets the nodeDescription as a url and just creates a 
WebBrowserNode. When asked for its html representation, the WebBorwserNode 
issues an http request and answers its result. 

Finally, notice that the BrowserModel class not only provides a stub for the 
IBrowserModel interface, but also decouples the back and next functionality by dele-
gating it to a navigation strategy [5]. By default the StackBasedStragety is used, but it 
can be changed according to the application needs. To do so, a subclass of Naviga-
tionStrategy must be defined and override the back() and next() abstract messages. As 
 

<<View>>
Browser

1
-model

1

<<Interface>>
IBrowserModel

+ IBrowserNode current()
+ IBrowserNode back()
+ IBrowserNode next()
+ navigateTo(String nodeDescription)

<<Interface>>
IBrowserNode

+ String html()

+ IBrowserNode current()
+ IBrowserNode back()
+ IBrowserNode next()
+ navigateTo(String nodeDescription)
- IBrowserNode doNavigateTo(String nodeDescription)

NavigationStrategy

+ IBrowserNode back()
+ IBrowserNode next()
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1

-navigationStrategy

1
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1
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- Collection path

RecencyBasedStrategy

+ IBrowserNode back()
+ IBrowserNode next()
+ addNode(IBrowserNode node)

StackBasedStrategy

+ IBrowserNode back()
+ IBrowserNode next()
+ addNode(IBrowserNode node)

- IBrowserNode doNavigateTo(String nodeDescription)

WebBrowserModel

+ String html()
- String url
WebBrowserNodeIBrowserNode

IBrowserNode doNavigateTo(String nodeDescription)

    return this.currentNode(WebBrowserNode.fromUrl(nodeDescription))

String html()

    return (HttpRequest.from(this.url)).execute().contents()

IBrowserModel

 

Fig. 5. Class diagram showing how to decouple the browser from its model 
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an example, the class diagram shows a subclass that implements a recency based 
strategy [6]. Finally, if we have a mapping function between different browser models 
(such as the Mapph-dig function presented before), the user is able to switch between 
different views of the same object (e.g. the digital description of the Museum and a 
map showing where it is located). 

3.2   Context-Dependent Behaviors 

In this section we will show how to take advantage of the gained flexibility of de-
coupling the browser’s model from the view by changing the back and next function-
ality according to the user’s behavior and context. By default, the system is initialized 
with the BackPoI strategy, which only takes into an account the points of interest vis-
ited by the user. If, by analyzing the way the user moves around the city, the system 
“realizes” that he can not easily follow the paths, the strategy is replaced by the Back-
Full, which shows all the physical objects the user has passed by. 

Following the approach presented in [4] we used a three-layered approach to de-
couple those concerns that evolve independently (a complete instance diagram is 
presented in Figure 6): 

• Application Model: this is the model that has to be enhanced with new, 
context-aware functionality. In mobile hypermedia software, this role is 
played by the hypermedia application (i.e. the “Model” in the MVC triad 
described in 3.1). 

• Context Model: it is in charge of modeling the information that is contex-
tually relevant. Since we must reason about the way the user traverses his 
path, we model him as an aware object with two context features: his lo-
cation and the target of his actual navigation. The location feature will be 
updated when a location sensor changes (e.g. receiving a beacon signal or 
a GPS coordinate), while the navigationTarget will be changed by a soft-
ware sensor that is triggered every time the browser sends the navigateTo 
message to its model (for more information regarding decoupling sensing 
mechanisms from context model see [7]). 

• Context Adaptation: a context handler is created to act as an Observer 
[5] of an aware object to get notified of context changes. This handler will 
be triggered each time the user asks for a new navigation or changes his 
current position. If by analyzing his behavior the system concludes that 
the user is lost, the handler will change the navigation strategy of the 
browser model. Since this paper is not concerned with describing how to 
infer if the user is lost, we assume that the handler collaborates with a rea-
soning engine, which can have data structures of its own. 

As a result, by decoupling the aspects that are inherently independent (such as the 
context model, the context-dependent behavior and the sensing mechanism) we can 
add specialized behavior with almost no impact in the original application model.  For 
example, to skip closed points of interest from the path we would have to create an 
aware object for each point of interest, with a schedule context feature. Then a new 
navigation strategy would be defined to filter out those points of interest that are  
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Fig. 6. Instance diagram of a simple context-aware mobile hypermedia application 

closed. Thus, the required modifications to the application model to achieve this func-
tionality are minimal. 

4   Related Work 

Our work has some points in common with [3], where the authors present a model 
and infrastructure for browsing the world with added context information. In contrast 
with our work, they design and implement an infrastructure based on a 4-tuple context 
model (Who, What, Where and When) while our context model is configurable by 
adding or removing context features. Also, the system in [3] is oriented towards que-
rying a tuple space, while we take an event-based approach. We could mimic this 
behavior by imposing 4 context features to the aware objects and defining one handler 
that reacts to a context change by adding the aware object to a tuple space. 

In [6] a recency-based back behavior (an alternative to stack-based back function-
ality) is presented. In [1] the authors present task-based backtracking, a technique for 
backtracking within the various logical tasks a user may be working on at any given 
time. Since the back and next functionalities in our approach can be configured, they 
could easily match the previous criteria. 

A Mobile Tourist information Systems (TIP) is presented in [11], where the au-
thors mention different user interactions, like Browsing by walking or going To last 
location. Even tough our work has some points in common with TIP (since the user 
can switch between a browser and map view while he is walking), we include the 
concept of physical navigation that is not present on TIP. The back button offers the 
user the chance to return to the last information that was delivered, before he started 
browsing and/or walking around, which can be compared with our digital navigation. 
Finally in [9] the author presents a framework for context-aware mobile hypermedia 
(HyCon) which has four different context-aware techniques: browsing, search, anno-
tation, and linking. The users can “browse information with their feet”, simply by 
moving about in the world. In our system the user can also browse digital information 
by moving in the physical world, but we attempt to go a step further and extend the 
browser metaphor to other domains in which navigation is used. 
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5   Concluding Remarks and Further Work 

We have presented a characterization of browsing semantics in mobile hypermedia 
applications. We showed that different browsing strategies should be applied to physi-
cal navigation according to user preferences, contextual information or actual user 
behavior. The key point in our approach is to decouple the underlying model from the 
browser software and to configure it by means of the back and next functions as ob-
ject strategies. In this way, we were able to create as many back and next functions as 
necessary according to different parameters or to the semantics of the. We have also 
shown that any model that complies with the IBrowserModel interface (e.g. web sites, 
mobile hypermedia or workflows) can be navigated with the standard Web browser 
semantics. 

So far we have defined browser models to navigate the Web and a network of 
physical objects. We are currently working on adding workflows to support task-
oriented physical hypermedia, and to fully characterize the notion of “navigable” 
models. We are also working on interface issues to easily manage related models, so 
that the user can view different aspects of the same object (e.g. digital information or 
the tasks related to it) without loosing context information (e.g. where the user is 
physically standing). As a long term goal we expect to have a dedicated framework 
which supports the most used models and navigation strategies. 
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