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Abstract: Advancement of shrubbiness (increase in plant cover and density of woody 
species) on different environments world-wide has generated an increasing interest in 
the scientific community, particularly because of its association with the desertification 
process which is increasing, also at a world-wide level. There are two opposing 
positions, both of them validated by scientific evidences. The greatly accepted position 
recognizes shrubbiness as one of the mechanisms conducive to desertification in natural 
environments, cataloguing it as a negative process. A different view, based on recent 
studies, suggests that shrubbiness should be considered as a positive process because it 
may drive a reversal of desertification, depending on the environment and the species 
of shrub studied at a site. This review presented within this framework discusses the 
existing relationship between shrubbiness and desertification and proposes an approach 
that should be considered in future research. 
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Land Degradation and Desertification 
World-Wide

Arid and semi-arid ecosystems represent 
approximately 41% of the terrestrial surface 
area and harbor more than 38% of the world 
population (Reynolds et al., 2007). Between 10 
and 20% of these ecosystems present some 
type of severe degradation (MEA, 2005). It 
is expected that the percentage will increase 
substantially as a result of the climatic change 
and population growth. 

In the last two decades, the process 
of shrubbiness and the advancement of 
desertification in various ecosystems has 
generated considerable interest in the scientific 
community world-wide. Shrubbiness consists 
of an increment in density, cover and 
biomass of species of shrubby growth habitat 
on environments dominated by herbaceous 
species (Haubensak and Parker, 2004; van 
Auken, 2009). Desertification, on the other 
hand, implies soil degradation on arid, semi-
arid and subhumid-dry areas, with negative 
ecological and socio-economical consequences, 

and as a result of, at least partially, anthropic 
activities (Reynolds et al., 2007). Changes in 
the biotic and abiotic environments; increases 
in soil erosion; reductions in the structure, 
sustainability and/or ecosystem functioning in 
the long-term and irreversible losses in primary 
and secondary productivities are typical signs 
of desertification (MEA, 2005). 

The proliferation of shrubbiness on 
grasslands has been reported in arid, semi-arid, 
temperate, alpine and artic environments in 
the whole world (van Auken, 2000). However, 
this phenomenon has been mostly studied 
on ecosystems where the transition between 
grasslands and shrublands has been dramatic 
and difficult to reverse during the last 150 years 
(van Auken, 2009; Maestre et al., 2009). 

It is estimated that 13 million ha are under 
the effect of shrubbiness in the south of Africa 
(Roques et al., 2001), while such a surface will 
reach to 330 million ha in the United States of 
America (Knapp et al., 2008). Similar scenarios 
have been reported in Australia (Robinson et 
al., 2008), India (Singh and Joshi, 1979) and 
South America (Adámoli et al., 1990). 
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The transition from a grassland to a shrubland 
environment has been associated with changes 
in the spatial-temporal distribution of the soil 
and vegetation resources, thus creating a more 
heterogeneous environment (Schlesinger et 
al., 1996; Schlesinger and Pilmanis 1998). The 
prevailing model of shrubbiness leading to a 
greater desertification on semi-arid grasslands 
was originally proposed by Schlesinger et al. 
(1990) for the Chihuahua Desert (United States). 
More than 20 years ago, these authors proposed 
that the heterogeneity creates opportunities 
for the colonization of new shrubs. This is 
because it reinforces itself at the same time 
when the abiotic (e.g., nutrient transportation, 
water availability) and biotic (e.g., root and 
microbial activities) mechanisms determine a 
mobilization of soil resources, which accumulate 
under the shrub cover favoring greater water 
infiltration levels (Bhark and Small, 2003; 
Ewing et al., 2007; Busso and Bonvissuto, 
2009; Busso et al., 2012). In turn, the bare areas 
between these vegetated areas experience high 
temperatures and evapotranspiration, delayed 
incorporation of inorganic N, denitrification, 
ammonia volatilization, moisture reduction 
and infiltration, and subsequent erosion 
increase (Schlesinger et al., 1990; Parizek et al., 
2002; Darrouzet-Nardi et al., 2006; Busso and 
Bonvissuto, 2009). The combined effect of these 
processes results in a mosaic of impoverished 
areas among shrubs and a strengthening of 
fertility islands which are formed between 
the bare sites (Schlesinger et al., 1996; Busso 
and Bonvissuto, 2009). This makes those 
shrublands extremely resistant to changes, 
increasing their persistence and development 
at the expense of grasslands (Schlesinger et al., 
1996; Giorgetti et al., 1997). These disturbances 
in the structure and functioning of ecosystems 
will finally lead to desertification (Schlesinger 
et al., 1990; Archer et al., 2001). In comparison 
to the original grassland, the popular view, 
for example, is that shrublands are associated 
with a reduction in plant biomass, diversity 
and species richness (Zarovalli et al., 2007; van 
Auken, 2009).

Disputes about the causes of shrubbiness 
of semi-arid grasslands have historically been 
a subject of debate. It has centered, lately, on 
the climatic change and the atmospheric CO2 
increases (Naito and Cairns, 2011). However, 
most of the density increases of woody species 

has been associated with high herbivory levels 
(van Auken, 2009). Overgrazing of areas with 
a shrubby component normally leads to an 
increase in the dominance of shrubs and the 
conversion of grasslands to less desirable 
shrublands (León and Aguiar, 1985; Milchunas 
and Laurenroth, 1993; Bóo et al., 1997). Excess 
herbivory reduces the aboveground and 
belowground biomass, cover and vigor of the 
desirable perennial grasses (Kröpfl et al., 2007), 
leading to a reduction in the amount of fine 
plant fuel. This results in a reduction of the 
frequency (or even the elimination) of natural 
fires on grasslands and shrubby steppes. These 
fires would have otherwise contributed to the 
control of the density of woody species and 
prevent the invasion of new areas (Bóo et al., 
1997; Peláez et al., 2010). In addition, livestock 
and the local fauna would favor the dispersion 
and germination of seeds of some woody 
species (van Auken, 2000; Cabral et al., 2003). 

The paradigm of desertification puts great 
emphasis in the advancement of shrubbiness 
on grasslands. This comes from the fact 
that shrubbiness and desertification in the 
Chihahua desert, where most research was 
conducted to develop of the conceptual 
model of shrubbiness-desertification, are very 
intimately linked (Schlesinger et al., 1990; 
Peters et al., 2006). The loss of soil fertility, 
a result of shrub species advancement, is 
considered as a precursor of desertification by 
ecologists world-wide (Archer, 2010). Because 
of this, it is possible to find various works 
in the literature that point to shrubbiness 
as the maximum ecological expression of 
desertification in arid and semi-arid rangelands 
(Archer et al., 2001; Peters et al., 2006). The 
view that prevails between agropecuarian 
producers and scientists is that shrubbiness 
and desertification are, as a result, synonymous 
(Eldridge et al., 2011). However, recent studies 
allow a unique interpretation of shrubbiness 
leading to ecosystem improvement (Maestre et 
al., 2009). In an updated revision of 244 works 
coming from all over the world (including 7 
works from Argentina), Eldridge et al. (2011) 
evaluated the effects of shrubbiness on 43 
response variables (structural and functional). 
They found that positive and neutral effects 
of shrubbiness were more abundant than 
negative. Their results demonstrated that 
the increment in the cover of woody species 
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was associated with decreases in the grass 
cover and the soil pH. Nevertheless, that 
increment was also associated with increases 
in aboveground and total organic C, total 
N, exchangeable soil Ca, available P and the 
potential mineralization of soil N. Shrubbiness 
additionally increased root biomass in the first 
0-15 cm of the soil profile. At the same time, 
density of vegetation patches and richness of 
vascular plants were not affected. Maestre et 
al. (2009) observed results (in Mediterranean 
rangelands in process of shrubbiness) opposite 
to those reported by Schlesinger et al. (1990). 
The authors neither found evidence of shrub- 
induced modification of the spatial distribution 
of the plant species nor the soil microorganisms, 
nor that nutrients were transported from the 
uncovered spaces to below the shrub cover in 
such ecosystem. On the contrary, they observed 
a greater species richness, diversity, evenness 
of perennial species and a greater fertility at 
sites with shrubs, in both covered and bare 
areas. In rangelands, an increased species 
richness improves productivity (Tilman et al., 
2001), while a greater plant diversity increases 
resource use efficiency, contributing to stability 
in the functioning of ecosystems especially 
when these are under stress (Oesterheld, 
2008; Loydi and Distel, 2010). In this regard, 
a recent study which involved the participation 
of 53 researchers of 16 countries (including 
Argentina), has proposed the importance 
of plant diversity preservation (herbaceous 
and woody) in arid and semi-arid regions to 
alleviate the effects of the climatic change and 
desertification (Maestre et al., 2012). As a result, 
at least in some environments, the advance of 
shrubbiness would contribute to a reversion 
rather than an increase of the desertification. 

The degree at which shrubbiness leads to 
a degradation and desertification depends 
upon the particular identity of the shrubby 
and herbaceous species on the site (Peters et 
al., 2006; Maestre et al., 2009, 2016; Eldridge 
and Soliveres, 2015). Differences in physiology, 
aboveground and belowground architecture, 
distribution of the vertical biomass on shrubs 
and involved grasslands can generate different 
patterns of retention and distribution of the 
mobile resources depending on the species 
involved (Eldridge et al., 2011). In Australia, 
it was observed that the same species of 
invasive shrubs determined a positive impact 

on the functional indicators of an herbaceous 
grassland and a negative impact on another 
one (Ayers et al., 2001). Because of this, it 
is critical to evaluate shrubbiness effects on 
each particular community before adopting 
a generalization on the existing relationship 
between shrubbiness and desertification. In 
addition, most research on shrubbiness is 
usually biased toward the livestock production 
systems. As a consequence, reductions in 
primary and secondary productivities are 
directly viewed as analogous to degradation 
or desertification (Maestre et al., 2009, 2016; 
Eldridge et al., 2011). 

Soil fertility directly depends on its 
microbiological activity in any ecosystem, 
which in turn is influenced by changes in plant 
species composition (White et al., 2000). In some 
environments, shrubbiness has created very 
marked differences between shrubby and bare 
sites, altering the microbial composition and 
reducing the diversity of fungi and bacteria, 
which directly affects soil fertility (Herman et 
al., 1995; Smith and Johnson, 2004; Zachary et 
al., 2008; Yannarell et al., 2014). However, in 
other shrubby ecosystems, either increments 
or absence of negative effects in the microbial 
activity and diversity (Cable et al., 2009; Jin et 
al., 2011; Maestre et al., 2011; Qu et al., 2016) 
and in the soil C and N mineralization rates 
(Asner et al., 2003; Haubensak and Parker, 2004; 
Baer et al., 2006; Zavaleta and Kettey, 2006; 
McKinley et al., 2008; Throop and Archer, 2008) 
have been observed. These results indicate that 
soil fertility may not be compromised and it 
might even increase in some cases, in these 
environments. Increase in the production of 
root biomass, of litter and root exudates, and 
the hydraulic lift on woody species would be 
responsible, at least partially, for the observed 
positive effects (Maestre et al., 2009).

In low productivity environments, arbuscular 
mycorrhiza (AM) and the soil biological crusts 
(SBC) would be of major interest. The arbuscular 
mycorrhizal fungi (AMF) form hyphae, vesicles 
(in some species) and arbuscules (interchange 
structures) within the cortical cells of the plant 
they colonize (Parodi and Pezzani, 2011). In this 
association, the plant provides photoassimilates 
(i.e., C sources) to the fungi and they provide 
water and nutrients (mostly P, as long as 
the availability of this nutrient is low) to the 
plant (Barrer, 2009). The hyphae of AMF are 
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physiologically more efficient for water and 
nutrient uptake than plant roots (Montaño 
et al., 2007), providing a greater resistance to 
water and nutritional stresses (Schreiner et al., 
1997). Research conducted in other parts of the 
world shows diverse results in the response of 
soil fungi in general and of AM in particular, 
in shrubby environments, also depending on 
the identity of the fungi species and of plant 
species composition (Azcón-Aguilar et al., 2003; 
Yannarell et al., 2014). On the other hand, the 
SBC represent intimate associations among soil 
particles, cyanobacteria, algae, fungi, mosses, 
hepatical and bryophytes. However, their 
composition varies depending on the climatic 
regime (Belnap and Lange, 2003). 

Though SBC have been found in arctic, 
boreal and arid ecosystems, it is in these 
last-mentioned ecosystems where SBC have 
a greater ecological importance since they 
can cover up to a 70% of the soil surface 
area (Belnap and Lange, 2003). Several 
positive effects are associated with the SBC: 
The stabilization and protection of the soil 
against erosive processes; the increase in water 
infiltration and soil moisture retention (favoring 
the germination and establishment of new 
seedlings); the fixation of atmospheric CO2 and 
subsequent release because of lixiviation and 
decomposition; increases in the concentrations 
of organic matter, N, Mn, Ca, K, Mg and 
available P (Eldridge and Rosentreter, 1999; 
Belnap and Lange, 2003; Castillo-Monroy and 
Maestre, 2011). According to a recent study, 
the acquisition of nitrate and ammonium by 
plants would require a smaller root growth in 
soils covered by SBC than in soils covered by 
grasses or woody species (Delgado-Baquerizo 
et al., 2013). Anyhow, these results cannot be 
extrapolated to all areas where SBC are present. 
The presence of SBC has been described in 
Argentina (Scutari et al., 2004) and particularly 
at the south of the Phytogeographical Province 
of the Monte (Kröpfl et al., 2007; Calabrese et 
al., 2013). However, the scarcity of local studies 
on the persistence of SBC and AM communities 
in particular and of soil microorganisms 
in general and their relationship with soil 
fertility in shrubby environments restricts their 
contribution towards restoration of degraded 
environments.  

Grasslands of Argentina are not immune 
to the phenomenon of shrubbiness where 75% 

of the continental territory is characterized 
by the presence of arid and semi-arid zones 
and the industry of livestock production is 
dependent on grazing of native vegetation 
(Busso and Fernández, 2018). Examples of the 
advancement of shrubbiness on productive 
zones have been reported in various regions of 
the country (Adámoli et al., 1990; Parizek et al., 
2002; Cabral et al., 2003; Anriquez et al., 2005; 
Kröpfl et al., 2007; De Villalobos et al., 2011; 
Dussart et al., 2011). In the particular case of 
Southwestern Buenos Aires, changes produced 
in the native landscape are mostly derived from 
the advancement of the agropecuarian borders. 
This has resulted in a reduction in the cover 
of perennial grasses and a reduction in the 
frequency of usual fires in the region. Because 
of this, a shrubbiness system has eliminated 
the grassland as a production system (Kröpfl 
et al., 2007; Peláez et al., 2010; Peláez, 2011; 
De Villalobos, 2013). About 75% of District of 
Patagones (554.138 ha; Giorgetti et al., 2006) 
has exclusive livestock activity, where it is 
common to observe continuous grazing with 
an excessive stocking rate (Fernández et al., 
2007). In addition, the precipitation regime 
in this system, with the greatest precipitation 
concentrated in fall and summer, and without 
torrential events, allows the deep recharge of 
the soil in normal years, favoring shrubs rather 
than grasses (Kröpfl et al., 2007). The process 
of degradation in the District of Patagones 
has not yet reached limits such as the ones 
occurring in other arid and semi-arid areas of 
the country, where desertification is already 
an irreversible phenomenon (Peláez, 2011). 
In the region, the ecological systems and the 
grassland species still exist; however, if current 
tendencies persist the scenario might become 
irreversible in a few generations. As a result, 
it is a priority to know the current stage of the 
advancement of shrubbiness, its real influence 
on the herbaceous stratum and soil fertility, 
and its relationship with the desertification 
observed in the region. In this way, it will be 
possible (1) to revise ecological concepts with 
respect to shrubbiness and desertification, (2) 
reformulate protection guidelines, use and 
management of these environments with the 
purpose that they are productive in the short-
term and sustainable in time, and (3) propose 
reforestation program on cleared areas, with 
native shrubby species with forage value. 
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Towards a Better Understanding of the 
Shrubbiness-desertification Process

In Central Argentina, a combination of 
environmental (droughts, strong winds, 
unpredictable precipitation events) and 
anthropic (woody vegetation clearing, excessive 
soil tillage, overgrazing) factors have led to an 
increased land degradation coincident with the 
appearance of desertification processes (e.g., an 
increased soil erosion, and loss of its fertility 
and net primary and secondary productivities) 
(Peláez, 2011; Busso and Fernández, 2018). 
Under this scenario and given the fragility 
of the system, conservation of the woody 
plants, which serve as a structural skeleton 
for the herbaceous component, can result 
in a viable alternative for controlling the 
desertification process (Bogino et al., 2002). 
Further, preservation of plant biodiversity 
has been demonstrated to be a useful tool for 
mitigating desertification in arid and semi-arid 
areas. In these ecosystems, the activity of the 
soil microbial communities (responsible for 
the organic matter decomposition and nutrient 
cycling), the arbuscular mycorrhiza (symbiotic 
association between the soil mycorrhizal fungi 
and the 95% of the terrestrial plants) and the 
soil biological crusts (symbiotic association 
between different soil organisms) play a 
critical role on plant growth and survival, 
and on the maintenance of plant diversity and 
productivity, promoting the stabilization and 
protection of the soil from erosive processes 
(Belnap and Lange, 2003; Kardol and Wardle, 
2010; Martínez García, 2011). 

Several efforts by our research group have 
demonstrated the importance of conserving 
the shrubby vegetation patches in an arid 
zone to prevent accelerated soil erosion and 
desertification of the ecological system (Busso 
and Bonvissuto, 2009; Busso et al., 2012). In 
addition, because of plant biodiversity, in 
arid and semi-arid environments, would 
be critical to reduce the effects of climatic 
change and desertification (Maestre et al., 
2012), it is important to generate knowledge 
that promotes plant resource conservation in 
arid zones considering both the herbaceous and 
the shrubby components. Results obtained by 
our research group indicate that soil fertility 
and thereafter the productivity of some 
species, would increase as species richness and 

biodiversity of herbaceous and woody species 
also increases (Cardillo et al., 2018). 

The disciplines included by the members of 
our research group currently involved in the 
study of the shrubbiness-desertification process 
covered (1) the study of ecophysiological 
characteristics and rangeland management, 
(2) changes in the community of arbuscular 
mycorrhizal fungi after fire and defoliation in 
semi-arid rangelands, (3) capture, viability and 
determination of spores of mycorrhizal fungi 
species, (4) recognition and classification of 
plant species, (5) microbial respiration and 
soil nitrogen mineralization, (6) molecular 
analysis of soil microorganisms, (7) shrubbiness 
effects on the composition of soil microbial 
communities using various techniques: 
culture in selective media, and amplification 
and sequencing of genomic DNA, (8) use of 
current and historic satellite images to study 
the advancement of shrubby species, along 
with field studies to evaluate the reliability of 
the digital classifications. 

Our ongoing research is evaluating the 
dynamics and the effects of shrubbiness 
on an arid rangeland within the context of 
desertification. This will contribute to increase 
our knowledge of the current shrubbiness stage 
and its relationship with the (a) distribution, 
diversity and species richness of the herbaceous 
vegetation, (b) soil fertility, (c) diversity, 
composition and functional characteristics 
of the soil microbial communities, (d) 
viability and diversity of spores of arbuscular 
mycorrhiza fungi and (e) cover by biological 
crusts. The obtained information shall allow the 
development of management guidelines and 
policies of vegetation and soil conservation 
that guarantee a sustainable use of the natural 
resources of the study region. In addition, our 
results will be an additional contribution to 
the current debate on the existing relationship 
between shrubbiness and desertification. 

References
Adámoli, J., Sennhauser, E., Acero, J.M. and Resica, 

A. 1990. Stress and disturbance: Vegetation 
dynamics in the dry region of Argentina. Journal 
of Biogeography 7: 491-500. 

Anriquez, A., Albanesi, A., Kunst, C., Ledesma, R., 
López, C., Rodríguez Torresi, A. and Godoy, J. 
2005. Rolado de fachinales y calidad de suelos en 
el Chaco Occidental, Argentina. Ciencia del suelo 
23: 145-157. 



70 TORRES et al.

Archer, S., Boutton, T.W. and Hibbard, K.A. 
2001. Trees in grasslands: Biogeochemical 
consequences of woody plant expansion. In 
Global Biogeochemical Cycles in the Climate Systems 
(Eds. M. Schulze, S. Heimann, E. Harrison, J. 
Holland, I. Lloyd, C. Prentice and D. Schimel), 
pp. 115-130. Academic Press, San Diego, 
California. 

Archer, S.R. 2010. Rangeland conservation and 
shrub encroachment: New perspectives on an 
old problem. In Wild Rangelands: Conserving 
Wildlife While Maintaining Livestock in Semi-
arid Ecosystems (Eds. J.T. Toit, R. Kock and J.C. 
Deutsch), pp. 53-97. John Wiley and Sons Ltd., 
Chichester. 

Asner, G., Archer, S.R., Hughes, R., Ansley, R. and 
Wessman, C. 2003. Net changes in regional 
woody vegetation cover and carbon storage in 
Texas drylands, 1937-1999. Global Change Biology 
9: 1-20. 

Ayers, D., Melville, G., Bean, J., Beckers, D., Ellis, M., 
Mazzer, T. and Freudenberger, D. 2001. Woody 
Weeds, Biodiversity and Landscape Function in New 
South Wales. WEST 2000, Dubbo, 221 p. 

Azcón-Aguilar, C., Palenzuela, J., Roldán, A., 
Bautista, S., Vallejo, R. and Barea, J.M. 2003. 
Analysis of the mycorrhizal potential in the 
rhizosphere of representative plant species 
from desertification-threatened Mediterranean 
shrublands. Applied Soil Ecology 22: 29-37. 

Baer, S.G., Church, J.M., Williard, K.W.J. and 
Groninger, J.W. 2006. Changes in intrasystem 
N cycling from N2-fixing shrub encroachment 
in grassland: Multiple positive feedbacks. 
Agriculture, Ecosystems and Environment 115: 
174-182. 

Barrer, S. 2009. El uso de hongos micorrízicos 
arbusculares como una alternativa para la 
agricultura. Facultad de Ciencias Agropecuarias 
7(1): 123-132. 

Belnap, J. and Lange, O.L. 2003. Biological Soil Crust: 
Structure, Function and Management. Springer-
Verlag, Berlin, 503 p. 

Bhark, E.W. and Small, E.E. 2003. Association 
between plant canopies and the spatial patterns 
of infiltration in shrubland and grassland of the 
Chihuahuan Desert, New Mexico. Ecosystems 6: 
185-196. 

Bogino, S., Gómez, M., Ávila, A., Furlán, Z., 
Escudero, S., Corral, A. and Molinero, H. 2002. 
La forestación con especies nativas: análisis de 
un caso promisorio en la provincia de San Luis. 
XVII Jornadas Forestales de Entre Ríos, Concordia. 
Entre Ríos, 5 p. 

Bóo, R.M., Peláez, D.V., Bunting, S.C., Elia, O.R. and 
Mayor, M. 1997. Effect of fire on woody species 
in central semi-arid Argentina. Journal of Arid 
Environments 35: 87-94.

Busso, C.A. and Bonvissuto, G.L. 2009. Structure of 
vegetation patches in northwestern Patagonia, 
Argentina. Biodiversity and Conservation 18: 3017-
3041. 

Busso, C.A., Bonvissuto, G.L. and Torres, Y.A. 2012. 
Germination and seedling establishment of 
grasses and shrubs in arid Patagonia, Argentina. 
Land Degradation and Development 23: 116-129. 

Busso, C.A. and Fernández, O.A. 2018. Arid and 
semi-arid rangelands of Argentina. In Climate 
Variability Impacts on Land Use and Livelihoods 
in Drylands (Eds. M.K. Gaur and V.R. Squires). 
Springer, New York, eBook ISBN 978-3-319-
56681-8, Hardcover ISBN 978-3-319-56680-1. 
https://link.springer.com/book/10.1007/978-3-
319-56681-8 

Cable, J.M., Ogle, K., Tyler, A.P., Pavao-Zuckerman, 
M.A. and Huxman, T.E. 2009. Woody plant 
encroachment impacts on soil carbon and 
microbial processes: Results from a hierarchical 
Bayesian analysis of soil incubation data. Plant 
and Soil 320: 153-167. 

Cabral, A.C., De Miguel, J.M., Rescia, A.J., Schmidz, 
M.F. and Pineda, F.D. 2003. Shrub encroachment 
in Argentinean savannas. Journal of Vegetation 
Science 14: 145-152. 

Calabrese, G.M., Rovere, A.E. and Zeberio, J.M. 
2013. Costras biológicas en sitios de Monte 
con diferentes niveles de perturbación. In 
Restauración ecológica en la Diagonal Árida de 
la Argentina (Eds. D.R. Pérez, A.E. Rovere, 
M.E. Rodríguez Araujo), pp. 112-119. Vázquez 
Mazzini, Buenos Aires. 

Cardillo, D.S., Busso C.A., Ambrosino, M.L., Torres, 
Y.A., Ithurrart, L.S. and Palomo, R. 2018. Plant 
species identity and richness influence microbial 
respiration of soil microorganisms on various 
functional groups in northeastern Patagonia, 
Argentina. Biodiversity International Journal 2(2): 
138-147.

Castillo-Monroy, A.P. and Maestre, F.T. 2011. Las 
costras biológicas del suelo: Avances recientes 
en el conocimiento de su estructura y función 
biológica. Revista Chilena de Historia Natural 84: 
1-21. 

Darrouzet-Nardi, A., D’Antonio, C.M. and Dawson, 
T.E. 2006. Depth of water acquisition by invading 
shrubs and resident herbs in a Sierra Nevada 
meadow. Plant Soil 285: 31-43. 

Delgado-Baquerizo, M., Covelo, F., Maestre, F.T. and 
Gallardo, A. 2013. Biological soil crusts affect 
small-scale spatial patterns of inorganic N in a 
semi-arid Mediterranean grassland. Journal of 
Arid Environments 91: 147-150. 

De Villalobos, A.E. 2013. El sobrepastoreo del ganado 
doméstico como disparador de la arbustización. 
BioScriba 6(1): 51-57



71SHRUBBINESS AND DESERTIFICATION

De Villalobos, A.E., Zalba, S.M. and Peláez, D.V. 2011. 
Pinus halepensis invasión in mountain pampean 
grassland: Effects of feral horses grazing on 
seedling establishment. Environmental Research 
111: 953-959.

Dussart, E.G., Chirino, C.C., Morici, E. and Peinetti, 
R.H. 2011. Reconstrucción del paisaje del 
caldenal pampeano en los últimos 250 años. 
Quebracho 19: 54-65.

Eldridge, D.J., Bowker, M.A., Maestre, F.T., Roger, E., 
Reynolds, J.F. and Whitford, W.G. 2011. Impacts 
of shrub encroachment on ecosystem structure 
and functioning: Towards a global synthesis. 
Ecology Letters 14: 709-722. 

Eldridge, D.J. and Rosentreter, R. 1999. Morphological 
groups: A framework for monitoring 
microphytic crusts in arid landscapes. Journal of 
Arid Environments 41: 11-25. 

Eldridge, D.J. and Soliveres, S. 2015. Are shrubs 
really a sign of declining ecosystem function? 
Disentangling the myths and truths of woody 
encroachment in Australia. Australian Journal of 
Botany 62: 594-608. 

Ewing, S.A., Southard, R.J., Macalady, J.L., 
Hartshorn, A.S. and Johnson, M.J. 2007. Soil 
microbial fingerprints, carbon and nitrogen in 
a Mojave Desert creosote-bush ecosystem. Soil 
Science Society of America Journal 71: 469-475. 

Fernández, O.A., Gil, M.E. and Distel, R.A. 2007. 
The challenge of rangeland degradation in a 
temperate semi-arid region of Argentina: The 
Caldenal. Land Degradation and Development 18: 
1-10. 

Giorgetti, H.D., Busso, C.A., Montenegro, O.A., 
Rodríguez, G.D. and Kugler, N.M. 2006. Cattle 
raising in Central, semi-arid rangelands of 
Argentina. Rangelands 28: 32-36. 

Giorgetti, H., Montenegro, O.A., Rodríguez, G.D., 
Busso, C.A., Montani, T., Burgos, M.A., Flemmer, 
A.C., Toribio, M.B. and Horvitz, S.S. 1997. The 
comparative influence of past management and 
rainfall on range herbaceous standing crop in 
east-central Argentina: 14 years of observations. 
Journal of Arid Environments 36: 623-637. 

Haubensak, K.A. and Parker, I.M. 2004. Soil changes 
accompanying invasion of the exotic shrub 
Cytisus scoparius in glacial outwash prairies of 
western Washington (USA). Plant Ecology 175: 
71-79. 

Herman, R.P., Provencio, K.R., Herrera-Matos, J. 
and Torrez, R.J. 1995. Resource islands predict 
the distribution of heterotrophic bacteria 
in Chihuahuan Desert soils. Applied and 
Environmental Microbiology 61: 1816-1821. 

Jin, V.L., Schaeffer, S.M., Ziegler, S.E. and Evans, 
R.D. 2011. Soil water availability and microsite 
mediate fungal and bacterial phospholipid fatty 
acid biomarker abundances in Mojave Desert 

soils exposed to elevated atmospheric CO2. 
Journal of Geophysical Research 116: Issue G. 

Kardol, P. and Wardle, D.A. 2010. How understanding 
aboveground-belowground linkages can assist 
restoration ecology. Trends in Ecology and 
Evolution 25: 670-679. 

Knapp, L.K., Briggs, J.M., Collins, S.L., Archer, 
S.R., Bret-Harte, M.S., Ewers, B.E., Peters, D.P., 
Young, D.R., Shaver, G.R., Pendall, E. and 
Cleary, M.B. 2008. Shrub encroachment in North 
American grasslands: Shifts in growth form 
dominance rapidly alters control of ecosystem 
carbon inputs. Global Change Biology 14: 615-623. 

Kröpfl, A.I., Deregibus, V.A. and Cecchi, G.A. 2007. 
Disturbios en una estepa arbustiva del Monte: 
Cambios en la vegetación. Ecología Austral 17: 
257-268. 

León, R.J.C. and Aguiar, M.R. 1985. El deterioro por 
uso pasturil en estepas herbáceas patagónicas. 
Phitocoenologia 13: 181-196.

Loydi, A. and Distel, R.A. 2010. Diversidad florística 
bajo diferentes intensidades de pastoreo por 
grandes herbívoros en pastizales serranos del 
Sistema de Ventania, Buenos Aires. Ecología 
Austral 20: 281-291. 

Maestre, F.T., Bowker, M.A., Puche, M.D., Hinojosa, 
M.B., Martínez, I., García-Palacios, P., Castillo, 
A.P., Soliveres, S., Luzuriaga, A.L., Sánchez, 
A.M., Carreira, J.A., Gallardo, A. and Escudero, 
A. 2009. Shrub encroachment can reverse 
desertification in semi-arid Mediterranean 
grasslands. Ecology Letters 12: 930-941. 

Maestre, F.T., Eldridge, D.J. and Soliveres, S. 2016. 
A multifaceted view on the impacts of shrub 
encroachment. Applied Vegetation Science 19: 369-
370. 

Maestre, F.T., Puche, M.D., Guerrero, C. and 
Escudero, A. 2011. Shrub encroachment does 
not reduce the activity of some soil enzymes in 
Mediterranean semi-arid grasslands. Soil Biology 
and Biochemistry 43(8): 1746-1749. 

Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, 
A., Ochoa, V., Delgado-Baquerizo, M., García-
Gómez, M., Bowker, M.A., Soliveres, S., Escolar, 
C., García-Palacios, P., Berdugo, M., Valencia, 
E., Gozalo, B., Gallardo, A., Aguilera, L., 
Arredondo, T., Blones, J., Boeken, B., Bran, D., 
Conceição, A.A., Cabrera, O., Chaieb, M., Derak, 
M., Eldridge, D.J., Espinosa, C.I., Florentino, A., 
Gaitán, J., Gatica, M.G., Ghiloufi, W., Gómez-
González, S., Gutiérrez, J.R., Hernández, R.M., 
Huang, X., Huber-Sannwald, E., Jankju, M., 
Miriti, M., Monerris, J., Mau, R.L., Morici, 
E., Naseri, K., Ospina, A., Polo, V., Prina, A., 
Pucheta, E., Ramírez Collantes, D.A., Romão, 
R., Tighe, M., Torres-Díaz, C., Val, J., Veiga, 
J.P., Wang, D and Zaady, E. 2012. Plant species 
richness and ecosystem multifunctionality in 
global drylands. Science 335(6065): 214-218. 



72 TORRES et al.

Martínez García, L.B. 2011. Micorrizas arbusculares 
en ecosistemas semiáridos. Respuesta a factores 
de estrés ambiental. Ecosistemas 20: 117-120. 

McKinley, D.C., Rice, C.W. and Blair, J.M. 2008. 
Conversion of grassland to coniferous woodland 
has limited effects on soil nitrogen cycle 
processes. Soil Biology and Biochemistry 40: 2627-
2633. 

Milchunas, D.G. and Laurenroth, W.K. 1993. 
Quantitative effects of grazing on vegetation 
and soils over a global range of environments. 
Ecological Monographs 63: 327-366. 

Millennium Ecosystem Assessment (MEA). 2005. 
Ecosystems and Human Well-being: Desertification 
Synthesis. World Resources Institute, 
Washington, DC, 36 p. 

Montaño, N.M., Camargo-Ricalde, S.L., García-
Sánchez, R. and Monroy, A. 2007. Micorrizas 
arbusculares en ecosistemas áridos y semiáridos. 
Instituto Nacional de Ecología-SEMARNAT, 
Mundi Prensa SA de CV, UAM Iztapalapa, FES 
Zaragoza, UNAM. México, DF, 460 p. 

Naito, A.T. and Cairns, DM. 2011. Patterns and 
processes of global shrub expansion. Progress in 
Physical Geography 45: 423-442. 

Oesterheld, M. 2008. Impacto de la agricultura 
sobre los ecosistemas. Fundamentos ecológicos 
y problemas más relevantes. Ecología Austral 18: 
337-346. 

Parizek, B., Rostagno, C.M. and Sottini, R. 2002. 
Soil erosion as affected by shrub encroachment 
in northeastern Patagonia. Journal of Range 
Management 55: 43-48. 

Parodi, G. and Pezzani, F. 2011. Micorrizas 
arbusculares en dos gramíneas nativas de 
Uruguay en áreas con y sin pastoreo. Agrociencia 
Uruguay 15: 1-10. 

Peláez, D.V. 2011. Dinámica de la vegetación en 
los pastizales del SO Bonaerense: Interacción 
clima-fuego-pastoreo. In Jornada sobre Evolución 
y Futuro del Desarrollo de Producciones Agrícola-
Ganaderas en el S.O. Bonaerense. Academia 
Nacional de Agronomía y Veterinaria, pp. 406-
416. Bahía Blanca.

Peláez, D.V., Giorgetti, H.D., Montenegro, O.A., Elía, 
O.R., Rodríguez, G.D., Bóo, R.M., Mayor, M.D. 
and Busso, C.A. 2010. Vegetation response to a 
controlled fire in the Phytogeographical Province 
of the Monte, Argentina. Phyton, International 
Journal of Experimental Botany 79: 169-176. 

Peters, D.C., Bestelmeyer, B.T., Herrick, J.E., 
Fredrickson, E.L., Monger, H.C. and Havstad, 
K.M. 2006. Disentangling complex landscapes: 
New insights into arid and semi-arid system 
dynamics. Bioscience 56: 491-501. 

Qu, L., Yuanyuan, H., Ma, K., Zhang, Y. and Biere, 
A. 2016. Effects of plant cover on properties of 

rhizosphere and inter-plant soil in a semi-arid 
valley, SW China. Soil Biology and Biochemistry 
94: 1-9. 

Reynolds, J.F., Stafford Smith, D.M., Lambin, E.F., 
Turner, B.L. II, Mortimore, M., Batterbury, S.P.J., 
Downing, T.E., Dowlatabadi, H., Fernández, R.J., 
Herrick, J.E., Huber-Sannvald, E., Leemans, R., 
Lynam, T., Maestre F.T., Ayarza, M. and Walker, 
B. 2007. Global desertification: Building a science 
for dryland development. Science 316: 847-851. 

Robinson, T.P., van Klinken, R.D. and Metternicht, G. 
2008. Spatial and temporal rates and patterns of 
mesquite (Prosopis species) invasion in Western 
Australia. Journal of Arid Environments 72: 175-
188. 

Roques, K.G., O’Connor, T.G. and Watkins, A.R. 
2001. Dynamics of shrub encroachment in an 
African savanna: Relative influences of fire, 
herbivory, rainfall and density dependence. 
Journal of Applied Ecology 38: 268-280. 

Schlesinger, W.H. and Pilmanis, A.M. 1998. Plant-
soil interactions in desert. Biogeochemistry 42: 
169-187. 

Schlesinger, W.H., Raikes, J.A., Hartley, A.E. and 
Cross, A.E. 1996. On the spatial pattern of soil 
nutrients in desert ecosystems. Ecology 77: 364-
374. 

Schlesinger, W.H., Reynolds, J.F., Cunningham, G.L., 
Huenneke, L.F., Jarrell, W.M., Virginia, R. and 
Whitford, W.G. 1990. Biological feedbacks in 
global desertification. Science 247: 1043-1048. 

Schreiner, R.P., Mihara, K.L., McDaniel, H. 
and Bethlenfalvay, G.J. 1997. Mycorrhizal 
fungi influence plant and soil functions and 
interactions. Plant Soil 188: 199-209. 

Scutari, N.C., Bertiller, M.B. and Cabrera A.L. 2004. 
Soil-associated lichens in rangelands of north-
eastern Patagonia. Lichen groups and species 
with potential as bioindicators of grazing 
disturbance. The Lichenologist 36: 404-412. 

Singh, J.S. and Joshi, M.C. 1979. Ecology of the semi-
arid regions of India with emphasis on land-use. 
In Management of Semi-arid Ecosystems (Ed. B.H. 
Walker), pp. 243-227. Elsevier, Amsterdam. 

Smith, D.L. and Johnson, L. 2004. Vegetation-
mediated changes in microclimate reduce 
soil respiration as woodlands expand into 
grasslands. Ecology 85: 3348-3361. 

Tilman, D., Reich, P.B., Knops, J., Wedin, D., 
Mielke, T. and Lehman, C.L. 2001. Diversity 
and productivity in a long-term grassland 
experiment. Science 294: 843-845. 

Throop, H.L. and Archer, S.R. 2008. Shrub (Prosopis 
velutina) encroachment in a semi desert 
grassland: Spatial-temporal changes in soil 
organic carbon and nitrogen pools. Global Change 
Biology 14: 2420-2431. 



73SHRUBBINESS AND DESERTIFICATION

van Auken, O.W. 2009. Causes and consequences of 
woody plant encroachment into western North 
American grasslands. Journal of Environmental 
Management 90: 2931-2942. 

van Auken, O.W. 2000. Shrub Invasions of North 
American Semi-arid Grasslands. Annual Review 
of Ecology and Systematics 31(1): 197-215.

White, R.P., Murray, S. and Rohweder, M. 2000. 
Pilot Analysis of Global Ecosystems: Grassland 
Ecosystems. World Resources Institute, 
Washington, DC, 100 p. 

Yannarell, A.C., Menning, S.E. and Beck, A.M. 2014. 
Influence of shrub encroachment on the soil 
microbial community composition of remnant 
hill prairies. Microbial Ecology 67: 897-906. 

Zachary, T.A., Shuldman, M.I., Drenovsky, R.E. and 
Richards, J.H. 2008. Shrub-interspace dynamics 
alter relationships between microbial community 
composition and belowground ecosystem 
characteristics. Soil Biology and Biochemistry 40: 
2206-2216. 

Zarovalli, M.P., Yiakoulaki, M.D. and Papanastasis, 
V.P. 2007. Effects of shrub encroachment on 
herbage production and nutritive value in semi-
arid Mediterranean grasslands. Grass and Forage 
Science 62: 355-363. 

Zavaleta, E.S. and Kettley, L.S. 2006. Ecosystem 
change along a woody invasion chronosequence 
in a California grassland. Journal of Arid 
Environments 66: 290-306.

Printed in December 2018




