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Abstract 

The interaction of ultrafast laser pulses with surfaces on the nanoscale paves the way for various 

innovative technologies in spectroscopy, photovoltaics, photocatalysis, or medicine, to mention only 

a few. The basic mechanisms, however, are still the subject of intense research. We take a closer 

look at this topic from different viewpoints. The first aspect is the enhancement of the efficiency of 

physical or chemical processes by producing local field maxima and resonances at top-down or 

bottom-up structured surfaces. A further aspect is the dynamic change of optical properties by 

inducing free carriers and plasmons. Last but not least, permanent nanostructures can be obtained 

as a result of nano-feedback and self-organization. In high-energy laser physics, all three aspects play 

a role at once. Therefore, particular attention will be paid to this emerging field.  
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Glossary 

 

Anti-Stokes-shift: see � Raman spectroscopy. 

 

Casimir force: Force between bodies in vacuum caused by fluctuating electromagnetic quantum 

vacuum modes. The Casimir force can be reduced by surface nanostructuring [15]. 

 

Double plasma mirror: A plasma mirror is a tool to control the temporal contrast of a laser pulse, i.e. 

the intensity ratio between ASE (amplified spontaneous emission) or prepulse level and main laser 

pulse [142]. It basically consists of a glass substrate with an anti-reflection coating. The pulse is 

loosely focused onto this substrate. At low intensities, before the main pulse, reflection is negligible. 

However, if the leading edge of the main pulse interacts with the substrate, a plasma is generated. 

The high density of free electrons strongly increases the reflectivity, i.e. the plasma layer acts like a 

metal and the main pulse is reflected if the intensity exceeds a critical level. Typically, in laser plasma 

experiments double plasma mirrors (DPM) with two reflections are applied. A final contrast between 

main pulse and ASE level > 1014 is reached. In our experiments, the DPM reflectivity was about 80%. 

 

Drude theory: The Drude theory [19] describes the transport of free electrons in metals or 

semiconductors in an external electrical field. 

 

Field enhancement: Local enhancement of the efficiency of physical or chemical processes caused by 

a higher field density in the proximity of nanostructures or in nanoresonators. 

 

Glancing angle deposition (GLAD): Physical vapour deposition (PVD) technique for the fabrication of 

nanostructured porous thin films. Roughness and fine structure of the layer can be changed by 

tuning the deposition angle [143]. 

 



Laser-induced periodic surface structures (LIPSS): Surface ripples generated by laser-induced surface 

plasma waves and ablation [20] and/or thermal re-arrangement of a laser-induced surface 

instability. The effect was for the first time observed in 1965 by Birnbaum [21]. In detail, the 

mechanisms depend on laser and material parameters. Two different kinds of LIPSS are usually 

distinguished with respect to the spatial frequencies: high-frequency LIPSS and low-frequency LIPSS. 

The responsible formation mechanisms are not identical. Recent experiments indicate combined 

mechanisms including plasmon excitation, bubble formation and field-induced ablation. Initial 

random scatterers lead to couple light into surface plasmon polaritons. In a feedback loop, the 

process repeats self-amplifying. At the positions of maximum field, material is ablated. In the result, 

ordered grating-like structures are written in the surface. Melting can contribute to a subsequent 

rearrangement of material. 

 

Laser plasma: Abbreviation for laser produced plasma. A laser plasma is produced during the 

intense-laser matter interaction. Free electrons are generated via field ionization. For this process to 

occur, the electric field of the laser pulse must be comparable to the Coulomb field of the nuclei. 

Depending on the actual field strength, the resulting potential suppresses bound states to different 

extent. Complete ionization is possible. For the first few hundred fs, these plasmas are far from 

equilibrium. Once, equilibrium is established, these plasmas are characterized by extremely high 

electron temperatures, densities and ionization levels. 

 

Metamaterials:  Artificial structures with designed values of permittivity ε and permeability μ which 

are typically not observed in natural materials [144]. Such extended degrees of freedom enable to 

realize new optical properties, e.g. negative index lenses. The structures are often composed of 

arrays of nanoelements consisting of metallic and/or dielectric materials. 

 

Nano-feedback: Nano-feedback plays an important role for laser-induced structuring processes as 

well as for many applications of nanostructures. In the very beginning of the formation of LIPSS, the 

light is redistributed by of randomly arranged scatterers which act like dipole antennas. Therefore, 

the feedback is polarization dependent and a preferred orientation of nanoripples is obtained. Sub-

wavelength gratings show characteristic spectral resonances and polarization dependencies which 

can lead to a total absorption of light. The selection, guiding and enhancing of plasmon modes can 

result from the action of nanostructures as local resonators. A typical effect of nanoresonators is 

period-splitting. Furthermore, frequency doubling or other nonlinear processes can be locally 

enhanced close to nanostructures. 

 

Nanorods: Nanorods are rod-like nanoscale solid objects fabricated by chemical synthesis. Such 

structures have a shape whereby one dimension is significantly greater than the others, typically by 

a factor of 10 or more, and at least one dimension is of the order of 100 nm or less.  Typical 

materials are semiconductors (e.g. ZnO, TiO2, Si) or metals (Au). These structures can be fabricated 

both by top-down lithographic techniques or bottom-up self assembly, or hybrid approaches. The 

bottom-up self assembly methods are particularly useful and convenient. Controlled self assembly 

growth can be obtained using chemical bath deposition (CBD) [145] at lower temperatures or vapour 

phase transport techniques (VPT) [146] or chemical vapour deposition (CVD) at higher temperatures.  

 

Nonlinear nanooptics: Nonlinear optical effects induced or enhanced by nanostructures [147]. 



 

Plasma gradient: Abbreviation for plasma density gradient. In the ultra-intense laser solid 

interaction, a plasma is generated not only at the peak of the laser pulse. Depending on the laser 

contrast management, even the ASE (amplified spontaneous emission) level can be sufficiently high 

to ionize the solid to a significant extent already nanoseconds before the main peak interacts with 

the target. The expansion of this so-called pre-plasma with a specific velocity distribution leads to a 

spatially dependent plasma density at the plasma-vacuum interface. The exact density profile is of 

enormous importance for the laser plasma interaction, e.g. for the laser absorption, as well as for 

ion acceleration. 

 

Photoluminescence (PL): Spontaneous emission from optically excited materials like semiconductors. 

An enhancement of PL can be achieved by enhancing excitation rates with field-reshaping 

nanostructures. Increased density of states and enhanced spontaneous emission rate can be 

obtained by surface plasmons in nanoparticles in composite materials. 

 

Radiation Pressure Acceleration (RPA): Upon reflection of light quanta their momentum is 

transferred to the “mirror”. If the “mirror” is a plasma sheet of low mass and the laser pulse 

sufficiently energetic, the plasma sheet experiences substantial acceleration and protons can reach 

very high energies. For a very simple estimate, consider a laser pulse with 1 J energy, a sheet of 

matter with 10 nm thickness and 3 µm diameter and assume that the laser is completely reflected. 

With an assumed target density of 1 g/cm³ the light sail model [148] yields a target speed of about 

0.15 c, where c is the speed of light. For protons this corresponds to a kinetic energy of 10 MeV. If 

the laser pulse is applied in less than 100 fs, an enormous acceleration in the order of 10 Exa g (g is 

the gravitational acceleration on earth, Exa=1018) is acting on the protons. 

 

Raman scattering: see � Raman spectroscopy. 

 

Raman spectroscopy: Raman spectroscopy can probe and measure the frequencies of vibrational or 

rotational modes of molecules [149]. Therefore, it is a helpful tool in chemistry for the identification 

of substances. The essential information is a shift in photon energy which depends on the sign of 

inelastic scattering (Raman scattering) to satisfy energy conservation. If the final vibrational state has 

a higher or lower energy than the initial state, the shift must be positive (Stokes shift) or negative 

(anti-Stokes shift), respectively. 

 

Relativistic intensities: A laser pulse is a pulsed electromagnetic field. Those fields act on (free) 

electrons and accelerate them. If the field strengths are so high that electrons reach relativistic 

energies, i. e. kinetic energies exceeding the rest energy, within a single cycle, the associated 

intensities are called relativistic. The scale is set by the relativistically normalized vector potential a0 

= p0/(m0c). Here, p0 is the maximum (relativistic) electron momentum, c is the speed of light and m0 

is the electron rest mass. In terms of electric field strength E or laser intensity I, a0 can be rewritten 

to e0E/(m0ωc) = 0.85 x 10-9 ����/(W/cm²μm�), where e0 is the elementary charge, ω is the laser 

angular frequency and λ is the laser wavelength. For a0 << 1, the electron motion is non-relativistic, 

while for a0 >> 1, it is strongly relativistic. The case a0 = 1 is reached for laser intensities of I = 1.4 x 

1018 W/cm2 at a laser wavelength of λ = 1 µm. 
 



Single molecule detection: see � Surface enhanced Raman spectroscopy. 

 

Stokes-shift: see � Raman spectroscopy. 

 

Superhydrophobicity: An enhancement of hydrophobic surface properties can be obtained by 

roughness or ripples on an optimized spatial frequency scale [150,14]. 

 

Surface enhanced Raman spectroscopy (SERS): also referred to as surface-enhanced Raman 

scattering. SERS is a Raman spectroscopy technique with enhanced Raman scattering at adsorbed 

molecules by local field enhancement at surface nanostructures. Enhancement factors can reach 

1010 to 1014 [1,42,43]. Under optimum conditions, the highly sensitive technique enables to detect 

single molecules [44,45]. 

 

Surface plasmon polariton (SPP): SPPs are electromagnetic surface waves that travel along metal-

dielectric or metal-air interfaces. This type of wave combines the carrier oscillation in the metal and 

a charge free electromagnetic wave the air or in a dielectric. At high laser intensities, the required 

carriers can also be excited in transparent materials via multiphoton absorption. This leads to a 

transient metallic behaviour which is indicated by a temporal increase of reflection (Drude metals). 

The spatial periods of SPPs are smaller compared to the periods of the light waves. Therefore, SPPs 

enable for a stronger localization of electromagnetic field energy compared to free space light 

waves. 

 

Target Normal Sheath Acceleration: Target Normal Sheath Acceleration (TNSA) is a particular regime 

of laser driven ion acceleration. Briefly, an ultrahigh intensity laser pulse (I ~ 1019-1020W/cm2) 

interacts with a target foil of ~1 µm thickness generating hot electrons. This hot electron cloud can 

penetrate the target foil and escape into the vacuum leaving a charged target behind. At a certain 

point, the target charge prevents further escaping of even MeV electrons, i.e. those electrons are 

trapped in the electrostatic field of the target and start to recirculate through the target leading to 

charge separation on both target sides. The induced electric fields are sufficiently high to ionize 

atoms at the target surfaces and accelerate ions in the field of the expanding electron cloud. It is 

important to note that typically accelerated ions stem from a surface contamination layer of 

hydrocarbons and water molecules. Heavy ions from the target foil are only accelerated if the 

contamination layer is removed before the experiment or if a different acceleration regime is used 

(e. g. by inserting ultra-thin target foils of only few tens of nanometers). 

 

XPW front end: Another tool to control the laser contrast [151]. It makes use of crossed-polarized 

wave generation, a degenerate four-wave mixing process in a nonlinear crystal [152]. The 

orthogonally polarized wave which is only generated at highest pulse intensities is filtered out by a 

polarizer. Contrast enhancement by 3-4 orders of magnitude is possible. This results in a final 

contrast level (after full amplification of the laser pulses) between the main pulse and the ASE level 

of better than 1010. 

 

 

 

 



 

1. Introduction 

 

The combination of the unique features of laser light with the specific properties of nanostructured 

solid materials is a promising field of research with enormous potential for applications in physical 

and chemical technology, biology and medicine. Nanostructured surfaces enable local reshaping and 

guiding of light as well as modified optical, mechanical and chemical properties. Therefore, there is 

an ever increasing spectrum of applications reaching from optoelectronic components with 

enhanced emission rate or detection sensitivity [1], tailored or broadband absorption [2], high-

efficiency solar cells [3] and photocatalysis [4,5] to surface-enhanced spectroscopy techniques, 

friction control [6], bio-compatibility [7-11] and superhydrophobicity (including anti-corrosion, anti-

icing, anti-biofouling, and self-cleaning) [12,13,14]. High-spatial-frequency nanostructures can be 

tools for quantum experiments [15]. Laser light can be prepared so as to be highly localized in space 

and time so that nonlinear optical processes can be used to generate far-sub-wavelength structures 

[16]. The control of polarization [17] and orbital angular momentum [18] of laser beams opens 

further areas for study and application by adding new free parameters.  

    One can distinguish between different relevant cases of laser-material interaction. In the first case 

(a) the material is pre-structured by subtractive or additive techniques (e.g. by drilling nanoholes 

into a surface or growing nanorods on top). Such nanostructures will be referred to as primary 

nanostrustures. The interaction of light with nanorods is used for applications like efficiency 

enhanced frequency conversion, photoelectron emission, sensing or photodynamic therapy. In the 

second case (b) the optical properties of the material are temporally changed. For example, this is 

possible by inducing free charge carriers in insulators or semiconductors as described for the 

stationary case by the Drude theory of metals [19]. Another example is the non-destructive 

excitation of plasmon-polaritons with sub-wavelength periods at a metal-air interface. Transient 

nanoperiodic structures will be referred to as transient nanostructures. In the third case (c) the 

interaction of the laser field with an originally unstructured material leads to the formation of 

permanent secondary nanostructures. All three cases can be coupled by feedback processes. In one 

example of which ultimately leads to case (c), the formation of laser-induced periodic surface 

structures (LIPSS) [20-23], the process starts with a process of the case (b) type and by virtue of a 

process related to case (a) then ultimately leads to a structure of the case (c) type. At extremely high 

fields, the transition between the cases can happen nearly instantaneously. In the following 

paragraphs, the optical properties of nanostructure surfaces and the decisive role of feedback and 

self-organization for laser-induced nanostructuring will be addressed. A detailed presentation is 

dedicated to a relatively new field where material sciences, surface chemistry and laser physics meet 

particle physics. It is shown that dynamic nanostructure formation under the extreme conditions of 

ultrafast high-field excitation are a promising approach for secondary sources, i.e. laser-driven 

sources of radiation (ions, particles, x-rays etc.) [24-26]. 

 

2. Optical properties of nanostructure surfaces 

 

Nanostructured surfaces interact with laser light in a specific way [27]. The degree of randomness of 

the structures and its control [28] is essential. Scattering, diffraction and absorption depend on 

wavelength, polarization and (in nonlinear case) on the intensity. For visible or near infrared lasers, 

surface structures on nanoscale are typically smaller than the wavelength. Therefore, such surfaces 



can show effective medium characteristics with structurally modified spectral absorption or 

reflection. A well-known example are the reduction of reflectance [29,30] or colorizing [31,32] of 

metals. The observed color effects are related to the excitation of surface plasmon polaritons (SPPs) 

in surfaces with nanogratings [31]. SPPs are also responsible for coupling effects in arrays of 

nanogrooves [33]. Blackened materials can serve as a black body radiators in thermodynamics or as 

absorbers for solar light. Black silicon which exhibits quasiperiodical conical structures is wide-band 

anti-reflecting and absorbs from visible to near infrared. This makes it interesting for sensing and 

detection applications. Multifunctional surfaces combine modified optical and tribological properties 

with each other [34]. 

For many applications, field enhancement effects or modified optical transfer functions caused by 

the surface profile [35,36] or local resonant structures [37] enable for significant improvements in 

sensitivity or efficiency. Laser-induced nanoripples are used to enhance the extraction efficiency of 

light emitting diodes [38]. Surface enhanced Raman spectroscopy (SERS) was first reported in 1974 

bei Fleischmann [39,40]. Electro-magnetic (plasmonic coupling) and "chemical" (charge transfer) 

mechanisms are distinguished. Extreme enhancement of Raman lines of 106 to 1014 is observed 

[1,41,42]. This enables  the detection of single molecules [43-45]. Typical substrates consist of Ag, Au 

or Cu with nanostructure dimensions in the range of 20-500 nm. In biology, silver citrate or random 

silver boron aggregates are applied. With Ag necklace structures, enhancement factors of >109 are 

realized [46]. A control of nanoscale fields in spectroscopic applications is possible by using 

nanocrystals [47] or nanoantennas [48]. Surface-enhanced infrared absorption (SEIRA) spectroscopy 

with tunable nanoantennas was demonstrated [49]. The technical challenge in these cases, however, 

is still the structuring of sufficiently large areas. Low-cost and one-way substrates can be obtained by 

replication methods [50]. An alternative method is the formation of laser-induced periodic surface 

structures (LIPSS) in metals which has been applied to SERS of biomolecules [17]. LIPSS can be 

replicated and enable for a fast large-area processing. The technique will be described in more detail 

in the next paragraph. 

Nanostructure-supported reaction rate enhancement can also be obtained in photocatalysis. 

Nanostructured porous thin films for catalysis applications can be prepared by glancing angle 

deposition (GLAD) [18]. Metal oxicde nanotubes and nanorods (nanowires) can be fabricated by  

Enhanced photochemical activity was demonstrated with TiO2 nanotubes [51]. Moreover, TiO2 

nanostructures are interesting for water cleaning and disinfection [52]. Other promising fields of 

application are water splitting for hydrogen generation [53] or the transformation of atmospheric 

carbon dioxide into fuel [54,55]. 

Specific interaction of intense light with nanostructured surfaces (including surfaces decorated with 

nanoparticles) gives rise to modified spectral response, e.g. for enhanced ultraviolet 

photoluminescence (UV-PL) [56] of large-bandgap materials and enhanced coherent frequency 

conversion like second harmonic generation (SHG) [57-59], third harmonic generation (THG) [60] or 

high-order harmonics generation (HHG) [61]. Moreover, stimulated emission can be induced in 

nanomaterials on surfaces [62]. 

 

3. Laser-induced periodic surface structures (LIPSS) 

 

The appearance of periodic surface ripples was observed by Birnbaum in 1965 [21]. The mechanisms 

of LIPSS formation are complex and depend on material type and fine structure [63]. They were 

explained by the excitation of laser-induced surface plasma waves [20,64-67], Wigner excitons [68], 



hydrodynamics [69] and relaxation of laser-induced surface instabilities [70,71]. The interplay of 

SPPs, hydrodynamic self-organization and material transport processes, all of these models have in 

common particular feedback loops and self-organization. The plasma wave model starts from 

statistically distributed scatterers and random matching of the k-vector selection rules by random 

spatial frequency components convoluted with the dipole characteristics of the scatterers [72,73]. 

On this basis, the generation of low-spatial-frequency LIPSS (LSFL) can be understood. It is assumed 

that in the periodical field maxima, photoelectrons are emitted leaving positively charged lattice 

parts which locally are ablated by Coulomb explosion. By polarization-selective feedback, the angular 

spectrum narrows and more and more parallel ripples are shaped. Additionally, dynamic polarization 

flip near plasmon resonance can play a role [74]. The feedback channels are decisive for structural 

evolution and efficiency [75]. In particular cases, melt-solid patterns with correlated length scales of 

optical and thermodynamical processes are found [76]. The appearance of high-spatial-frequency 

LIPSS (HSFL) with far-sub-wavelength features [77-81] is assumed to follow other mechanisms [82]. 

The formation of LIPSS in transparent large-bandgap materials like ZnO or TiO2 is possible with 

ultrashort laser pulses via multiphoton excitation [83,84]. Strong indication was found for the 

contribution of surface plasmon-polaritons (SPPs) [85-89]. The polarization dependence of LIPSS 

formation [90] also confirms a plasmonic mechanism. Thermal material modification and 

rearrangement appear at later time scales but are strongly influenced by plasmons [91]. The ripple 

orientation, however, can be parallel or perpendicular to the polarization vector so that the scenario 

seems to be complex in detail (e.g. by a possible influence of SHG [82]). Transient optical parameters 

by carrier excitation play an important role [60,84,92,93]. LIPSS formation in metals appears to be 

complex [94]. The excitation of metals requires a relatively strong focusing to couple light into 

plasmons because of high reflectivity and low initial roughness. Experimental studies with metals like 

Ti, Al and Au [91,95] indicate that a combination of sub-surface bubble generation and plasmon-

related periodical energy insertion results in the generation of isolated or merged nanovoids 

depending on the fluence. Similar results were obtained for glasses in 3D where bubble formation 

and rearrangement were found to be related to plasmons as well [96]. The model is also supported 

by studies of Si dynamics [97]. 

Double-pulse experiments were performed to explore the mechanisms of LIPSS formation in time 

domain [98], including polarization sensitivity [99] and two-color excitation [100]. Fig. 1 shows 

results of a pump-probe diffraction experiment (right side) which was performed to study the 

dynamics of the  ultrashort-pulse LIPSS formation in silicon. The pump laser was an amplified 

Ti:sapphire laser (central wavelength 800 nm, pulse duration 120 fs). The SHG of a part of the pulses 

(wavelength 400 nm) was used as probe pulses with variable time delay. The diffraction was 

detected by a highly sensitive 2D electron multiplying charge-coupled device (EMCCD). The time 

scales of selected processes are presented in a schematic overview (left side). It is strongly indicated 

that a combined nonthermal-thermal mechnism has to be assumed with subsequent steps including 

plasmons in the initial phase and thermal structure formation in stages long after the end of the 

pulses. 

 



 

Figure 1 Temporal dynamics of LIPSS formation in silicon. Right side: pump-probe diffraction 

experiment, left side: corresponding regime and assumed steps of the mechanism (schematically). A 

combined mechanism is indicated. Plasmons appear during the laser pulse. The nonthermal phase is 

followed by thermal processes and material re-arrangement. 

 

4. Nanostructured Surfaces in Laser Ion Acceleration 

 

Further promising applications of nanostructured surfaces emerge in laser plasma physics. If 

ultrahigh intense laser pulses interact with a solid target foil, a hot and dense plasma is generated. 

These laser produced plasmas give rise to the emission of ultrashort secondary radiation pulses, i. e. 

Kα radiation [101], bremsstrahlung [102], XUV radiation [103], relativistic electrons [104] and fast 

ions [105]. The mechanisms leading to those secondary emission are manifold. For ion acceleration 

for example, target normal sheath acceleration (TNSA), radiation pressure acceleration (RPA) and 

breakout afterburner (BOA) have been investigated in detail during recent years [106, 105]. 

Maximum ion energies in such laser plasma accelerators of 93 MeV and above 100 MeV have been 

demonstrated [107, 108]. What makes this kind of source particularly appealing is its size compared 

to conventional sources. For example, classical RF accelerators have acceleration gradients of 100 

MeV/m. In laser plasmas, 104 times larger values are reached. Consequently, much more compact 

and cost-effective accelerators can be designed. One of the most exciting applications of laser 

plasma ion acceleration is the hadron cancer therapy [109, 110]. However, this application requires 

at least two hundred MeV protons and strategies about how to reach such energies with 

femtosecond lasers targeting the PW-power that are currently built. With plane target strategies, as 

much as few percent [111, 112] of the laser energy are transferred to protons. The direction of 

research and development for increasing proton energy and numbers for a given laser energy is 



therefore obvious: to improve the conversion efficiency. One possible option is to increase the 

absorption of laser light, and this is exactly the point where nanostructured surfaces enter the game. 

Triggered by simulations [113-116], several groups have studied how a nanostructured surface 

affects laser proton acceleration. Margarone et al. used a 1 µm thick mylar substrate with a single 

layer of microspheres with diameters of a few hundred nm [117]. With a laser intensity of 5 x 1019 

W/cm2 and a laser (p-polarized) incidence angle of 22.5°, they observed an increase of the maximum 

proton energy from ~5.3 MeV for the plane target to ~8.6 MeV for the 535 nm microspheres. In 

addition, the total proton beam energy was increased by a factor of 6.3. In a more recent work, 

Margarone et al. have performed similar experiments but at significantly higher laser intensities of 

~7 x 1020 W/cm2 [118]. In this case, they compared a plane 700 nm target with a nanosphere target 

with an effective thickness of 720 nm where the microspheres had a diameter of 470 nm. At such 

high laser intensities, an increase of maximum proton energy from about 24 MeV to 30 MeV and an 

increase of total proton number above 5 MeV by a factor of 4.5 from the plane to the microsphere 

target, respectively, was observed. 

Floquet and co-workers performed similar experiments [119]. An SEM image of one of their samples 

is shown in Fig. 2a. They used a laser intensity of 2.8 x 1019 W/cm2, different substrate thicknesses 

(900 nm, 20 µm, 40 µm), microsphere diameters (471 nm and 940 nm) and angles of incidence (10°, 

30°, 45°) for both s- and p-polarized laser light.  

 

 

Figure 2 Different nanostructured surfaces used in laser ion acceleration. a) Microsphere targets 

(with kind permission of J. Appl. Phys. [119]), b) snow target (from [120]), c) foam target (from 

[121]), d) foam target (from [122]), e) LIPSS (own work), f) E-coli bacteria (Credit: Rocky Mountain 

Laboratories, NIAID, NIH-NIAID). 

 

The largest effects of the microspheres were observed for the thick substrates and small laser 

incidence angles. For example, at 10° angle of incidence and for 940 nm microspheres on 20 µm 

substrate, a relative increase of the proton cutoff energy by at least a factor of 5 was observed for p-

polarized laser pulses. In contrast, no beneficial effect of the microspheres was observed for the thin 

substrate. 



Zigler and co-workers applied snow targets (see Fig. 2b) to improve laser proton acceleration [120]. 

Water vapor was deposited onto a LN2 cooled sapphire substrate. The snow targets possess three 

different substructure-size scales: pillars of ~ 100 µm, spikes of ~ 10 µm on top of the pillars and 

whiskers of ~ 1 µm on top of the spikes. With those targets, Zigler et al. enhanced the maximum 

proton cutoff energy by about one order of magnitude, reaching 20 MeV protons with 5 TW laser  

pulses. 

Yet another approach was chosen by Passoni et al., who used carbon foam targets (cf. Fig. 2c) to 

improve the energy transfer from the laser to the target [121]. The foams with mass densities of only 

~ 7 mg/cm� and thicknesses of 12 or 23 µm where grown on 1.5 µm and 10 µm thick aluminum foil, 

respectively. Passoni et al. have investigated the impact of the foam layer on the maximum proton 

energy for laser intensities ranging between 5 x 1016 and 5 x 1019 W/cm2. They observed a significant 

increase of proton energy - in particular at low intensities. At 2 x 1017 W/cm2, an increase from 0.3 

MeV to 1.2 MeV, i.e. by a factor of 4, is observed. Similar targets were also used by Prencipe et al., 

who investigated the influence of different foam thicknesses (8, 12, 16, 36 µm) for higher laser 

intensities of ~ 1 to 4 x 1020 W/cm2 [122]. A SEM picture of their targets is shown in Fig. 2d. The best 

performance was found for the 8 µm thick foam layer. In this case, the maximum proton energy 

increased from 22 MeV for the plane 0.75 µm thick Al target to ~ 30 MeV for p-polarized laser 

irradiation at the highest intensity. A similar result was obtained in terms of maximum C6+ energies. 

Here, an increase from 80 MeV to ~ 120 MeV ~ is observed. The proton numbers increased about 10 

times compared to the plane target. 

A thin grating target was employed in the work of Ceccotti and coworkers [123]. They could show 

that also at relativistic intensities a grating can resonantly couple energy into a plasma and cause an 

enhancement of maximum proton energy. If the laser is incident on the grating target under the 

resonance angle ( + 30°), maximum proton energies up to 2.5 times larger than in the plane target 

case were achieved. Under the same angle, a sudden drop of reflectivity is observed. Nevertheless, 

the maximum proton energies observed from the grating target under resonance conditions did not 

significantly exceed maximum proton energies from the plane target at larger incidence angle. 

All these previously discussed studies concern TNSA. However, it is known that maximum proton 

energies are actually obtained in the case of RPA. In order to become the dominant mechanism in 

laser proton acceleration, RPA requires the thinnest possible foils which need to remain close to the 

transparency limit during the interaction with the ultra-intense laser pulse [124, 111]. In terms of 

laser parameters, this means that a steep rising edge of the laser pulse, reaching the peak intensity 

in only a few cycles, is required. These are challenges for laser technologies which have yet to be 

solved. To overcome those technical issues, Bin et al. have pursued a different approach [125]. They 

used a near-critical density plasma in which the laser pulse undergoes relativistic self-focusing and 

pulse front steepening. In order to generate such a near-critical density plasma with suffcient 

uniformity and lengths of about 1 µm, carbon nanotube foams (CNF) were inserted. This new 

technology led to significantly enhanced proton and carbon ion energies. For example, 5 µm thick 

CNF increased proton energies from 10 MeV for a plane target to 15 MeV and C6+ energies from 7 

MeV/u for a plane target to 20 MeV/u. 

Common to all of the previously described approaches is the issue of demanding (and expensive) 

target preparation processes. Recently, a new approach in target nanostructuring for laser ion 

acceleration based on LIPSS was investigated by the authors (see above). The specific advantage of 

our method is that the targets are laser-nanostructured in situ. During the first step 

(nanostructuring), the beam diameter is strongly apertured (from 60 to 6 mm) and the laser energy 



on target is further strongly reduced (from 2 J to 10-30 µJ). With these parameters the laser fluence 

on the sample was adjusted between 2 and 6 J/cm2. Typically ~20 pulses were applied to generate 

LIPSS on a 5 µm thick titanium foil with spatial periods of 600 to 800 nm. Typical LIPSS are shown in 

Fig. 2e). In the second step (ion acceleration), a full-power shot at the complete beam aperture is 

applied to accelerate protons from the nanostructured target. In between these two steps, no 

further target alignment or laser manipulation was necessary. In principle, this approach also allows 

for high repetition rate target solutions. In such a scheme two different lasers (or a TW laser with a 

kHz frontend) and a tape target system would be employed. One of the lasers (with less pulse 

energy, but high repetition rate) will generate the nanostructures, while the second one 

(ultraintense, lower repetition rate) drives the proton acceleration, i.e. between consecutive 

ultraintense pulses, the sample is (in-situ) nanostructured. 

At this point a comment on the applied fluences is needed: in our work, the applied fluence is about 

twice as high as in other works where LIPSS have been generated [126-131]. However, there is one 

main difference to those works - and that is that we performed our experiments in vacuum. Our 

comparative measurements at a kHz laser in air require significantly lower fluences in agreement 

with previously published work. One possible reason for this apparent discrepancy is that the 

absence of air deactivates important chemical processes at the plasma surface and thus modifies 

plasma parameters and the light intensity (due to different nonlinear processes in action). 

In our work, we investigated under which conditions the use of nanostructures is beneficial [132]. 

Besides surface nanostructures there are further options to enhance the coupling between laser and 

plasma and to optimize the energy transfer from the laser to protons. The most important one is 

certainly the plasma scale length. We have considered whether nanostructures can further improve 

the energy transfer if the laser plasma conditions are already optimized by the plasma scale length. 

If an ultra-intense laser pulse is incident on a solid state target, already the level of amplified 

spontaneous emission (ASE) or eventual pre-pulses might be sufficiently intense to ionize the target 

and generate a pre-plasma. This pre-plasma will start to expand generating a plasma density profile 

that is strongly depending on the full temporal evolution before the peak of the laser pulse. The 

efficiency of laser absorption strongly depends on the plasma density profile in the vicinity of the 

critical density, which is the plasma density up to which the laser light can penetrate. On the other 

hand, for an effcient TNSA acceleration mechanism it is necessary that the target rear surface 

remains fully intact and a plasma is not formed in this region. From these considerations it becomes 

clear that there exists an optimal plasma gradient for a given target thickness. Experimental 

investigations of the interplay between plasma scale length and target thickness were performed by 

Kaluza et al. and Neely et al. [133, 134]. 

Performing such experiments at a finite plasma gradient calls in addition for an experimental proof 

that the nanostructures survive until the peak of the laser pulse interacts with the target. To provide 

this proof we have investigated the emission of Ti-Kα radiation as function of intensity and for two 

different plasma gradients, i.e. we performed two sets of experiments: one with the XPW frontend 

only, and a second one with the DPM in use. Since Kα emission strongly depends on electron 

numbers and energy distribution function, it is a sensitive measure of laser absorption. For both 

plasma gradients a significant increase of Kα emission (~ factor 1.5) is observed in presence of the 

nanostructures even at the highest intensities (8 x 1019 W/cm2). This clearly shows that the 

nanostructures are functional under both plasma conditions. However, we note that the enhanced 

absorption may not necessarily be caused by the original structure but possibly by dynamically 

generated replica resulting from plasma collisions [117]. 



Our investigations regarding proton acceleration show that nanostructured surfaces can strongly 

enhance maximum proton energies and numbers, if the laser plasma conditions are not optimal. For 

example, we have observed an increase of the maximum energy by a factor of  ~ 4  and an increase 

in proton numbers by a factor of 200 at an intensity of 4 x 1017 W/cm2. At optimum conditions on 

the other hand we did not observe a further increase of maximum energy or proton numbers. This 

outcome is an important finding. It shows that there are active mechanisms which so far have not 

been considered in all detail in simulations leading to significant deviations between theoretical 

predictions and experiment.  

Another rather simple method of surface nanostructuring has been used by Dalui et al. [135]. They 

have applied a coating with e.coli bacteria. E. coli are typically rod-shaped with ~2 μm length and 

(0.25-1) µm diameter (see Fig. 2f). With this coating and at relatively low laser intensities of only 5 x 

1017 W/cm2 they were able to increase maximum carbon ion energies from ~ (30-40) keV (C+ and C2+; 

no C3+ ions were observed) up to 150 keV (C+), 400 keV (C2+) and 700 keV (C3+). On the other hand, 

proton energies could not be increased by the surface coating. 

To conclude, all the previously discussed examples of nanostructure applications in laser proton 

acceleration experiments demonstrate their benefits whenever laser-plasma conditions are not 

optimal for a plane target. This is the case when the laser intensity or given contrast conditions 

result in a low absorption due to an overly steep density gradient. Among the different 

nanostructures tested so far, the LIPSS technique is particularly promising for a high repetition rate 

target system which is condition precedent for applications that need repetitive particle radiation 

dose supply. 

 

5. Nanostructure-enhanced XUV emission 

 

Laser produced plasmas are also a source of intense coherent XUV radiation. The emission of high 

order harmonics is discussed by different models - coherent wake emission (CWE) [136], the 

relativistically oscillating mirror model (ROM) [103] and coherent synchrotron-like emission (CSE) 

[137]. The individual models differ in their predictions with respect to emission intensity of different 

high harmonic orders and emission geometry. These processes are so far investigated only for plane 

targets. We have started some investigations on HHG from structured targets that promise 

interesting insights into underlying physics and that we would like to present here. 

We studied the XUV emission from so-called nanobrush targets, which consist of ZnO nanorods that 

are grown on a 30 nm thin Si3N4 film. A typical SEM image is shown in Fig. 3. The distance between 

these nanorods was on the same order of magnitude as their diameter. We used two kinds of 

nanorods with significantly distinct lengths (100 nm, 400 nm). In addition, we compared the 

measured XUV spectra from these nanobrush targets to ZnO deposited on Si3N4. For the latter 

samples we estimated a ZnO layer thickness of ~ 50 nm. 

The measured XUV spectra are shown in Fig. 4. The emission of high order harmonics is dominant in 

the range between 50 and 160 nm, while at short wavelength the incoherent plasma emission 

becomes the dominant contribution to the spectrum. For longer wavelengths, the plasma becomes 

more and more opaque and the MCP becomes less sensitive which both results in lower XUV photon 

detection yield. For the nanorod target, we can clearly assign harmonic orders from 5-14, with the 

maximum intensity in the 8th harmonic. Compared to plane target spectra there are some important 

differences: First of all, and immediately visible, the intensity of the coherent emission from the 

sample with longer nanorods is significantly enhanced by more than a factor of 2 with respect to the 



best performing flat sample. Furthermore, it seems that there is a shift of spectral intensity: While 

for the long nanorods the maximum intensity is found in the 8th harmonic, for the other targets (and 

in particular for the flat ones) the spectral intensity is shifted towards longer wavelengths which 

reproduces our work on plane targets [139].  

 

 

 

Figure 3 SEM image of a ZnO nanorod sample grown on a 30 nm thick Si3N4 substrate. 

 

 
Figure 4 XUV emission spectra for different targets (logarithmic plot). The most efficient long ZnO 

nanorods (black curve) are compared to short ZnO nanorods (green), flat ZnO layers (red and blue) 

and formvar (polyvinyl formal resin, pink). All ZnO layers were prepared on a 30 nm thick Si3N4 

substrate. 



 

 

Both observations show that ZnO nanorods have an impact on the XUV emission. First results from 

simulations are available concerning the physical origin of the XUV emission from nanobrush targets 

[138]. However, that work mainly concentrates on the emission of coherent betatron radiation. The 

central idea is that the laser field and the electrostatic field of the nanorods drive electrons into 

coherent betratron oscillations. These simulations assumed significantly larger distances between 

the nanorods than those available in our targets. Concerning HHG emission from nanostructured 

targets, we are not aware of any theoretical work in the literature as yet. There are however some 

works about the HHG emission from planar targets that focus on a CSE-like model [137]. 

Experiments with flat targets show enhanced high harmonic emission, if target pre-expansion was 

initiated by a pre-pulse [139]. One way to discuss our results from the nanorod target may therefore 

be in the context of a reduced effective density. According to the CSE model, such a density 

modification can enhance the emission. Nevertheless, to what extent we can exclude or have to 

include a CWE process in case of the nanostructured samples is not clear at the moment. The 

emission of an 11/2 harmonic is not intuitively in line with the CWE model but may stem from a two-

plasmon decay [104]. The shift in spectral density also indicates that the underlying processes and 

mechanisms may be different. However these studies represent only a starting point and the very 

first results on this interesting and promising application of nanostructures in laser plasma XUV 

sources. More experimental and theoretical studies are necessary to unravel the complex plasma 

dynamics involved and to yield a comprehensive understanding of those processes. 

 

6. Summary and outlook 

 

Nanostructured surfaces enable a variety of applications by enhancing the efficiency of physical, 

chemical and biomedical processes. In addition to this, nanostructures can be generated by the laser 

irradiation of materials. In both cases, intense ultrashort pulses open specific nonlinear excitation 

channels. Under extreme conditions with respect to pulse duration and field intensity, the laser-

matter interaction is highly complex. The use of permanent or transient nanostructures promotes 

the realization of more efficient or compact secondary sources for the characterization and 

modification of materials. Most of the specific light-nanostructure interactions addressed here are 

related to electric field effects. It has to be mentioned, however, that there is also a great potential 

for applications in the case of laser-induced magnetic field phenomena such as plasmon enhanced 

transient magnetization, which is of importance for high-capacity data storage [140]. Tailored 

metamaterials [141], bio-mimetic structures and functional surfaces with tunable properties are 

other intriguing targets for future research.  
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Figures and figure captions 

 

 

 

Figure 1 Temporal dynamics of LIPSS formation in silicon. Right side: pump-probe diffraction 

experiment, left side: corresponding regime and assumed steps of the mechanism (schematically). A 

combined mechanism is indicated. Plasmons appear during the laser pulse. The nonthermal phase is 

followed by thermal processes and material re-arrangement. 

 

 

Figure 2 Different nanostructured surfaces used in laser ion acceleration. a) Microsphere targets 

(with kind permission of J. Appl. Phys. [119]), b) snow target (from [120]), c) foam target (from 

[121]), d) foam target (from [122]), e) LIPSS (own work), f) E-coli bacteria (Credit: Rocky Mountain 

Laboratories, NIAID, NIH - NIAID). 

 



 

 

Figure 3 SEM image of a ZnO nanorod sample grown on a 30 nm thick Si3N4 substrate. 

 

 
Figure 4 XUV emission spectra for different targets (logarithmic plot). The most efficient long ZnO 

nanorods (black curve) are compared to short ZnO nanorods (green), flat ZnO layers (red and blue) 

and formvar (polyvinyl formal resin, pink). All ZnO layers were prepared on a 30 nm thick Si3N4 

substrate. 


