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Abstract

Machine learning is aimed at the automatic extraction of semantic-level informa-

tion from potentially raw and unstructured data. A key challenge in building

intelligent systems lies in the ability to extract and fuse information from multiple

sources. In the present thesis, this challenge is addressed by using representation

learning, which has been one of the most important innovations in machine learn-

ing in the last decade. Representation learning is the basis for modern approaches

to natural language processing and artificial neural networks, in particular deep

learning, which includes popular models such as convolutional neural networks

(CNN) and recurrent neural networks (RNN). It has also been shown that many

approaches to tensor decomposition and multi-way models can also be related to

representation learning. Tensor decompositions have been applied to a variety of

tasks, e.g., knowledge graph modeling and electroencephalography (EEG) data

analysis. In this thesis, we focus on machine learning models based on recent

representation learning techniques, which can combine information from multiple

channels by exploiting their inherent multi-channel data structure.

This thesis is divided into three main sections. In the first section, we describe a

neural network architecture for fusing multi-channel representations. Additionally,

we propose a self-attention mechanism that dynamically weights learned represen-

tations from various channels based on the system context. We apply this method

to the modeling of distributed sensor networks and demonstrate the effectiveness

of our model on three real-world sensor network datasets.

In the second section, we examine how tensor factorization models can be ap-

plied to modeling relationships between multiple input channels. We apply tensor

decomposition models, such as CANDECOMP/PARAFAC (CP) and tensor train

decomposition, in a novel way to high-dimensional and sparse data tensors, in
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addition to showing how they can be used for machine learning tasks, such as

regression and classification. Furthermore, we illustrate how the tensor models

can be extended to continuous inputs by learning a mapping from the continuous

inputs to the latent representations. We apply our approach to the modeling of

inverse dynamics, which is crucial for accurate feedforward robot control. Our ex-

perimental results show competitive performance of the proposed functional tensor

model, with significantly decreased training and inference time when compared to

state-of-the-art methods.

In the third part, we show how the multi-modal information from both a sta-

tistical semantic model and a visual model can be fused to improve the task of

visual relationship detection. In this sense, we combine standard visual models

for object detection, based on convolutional neural networks, with latent variable

models based on tensor factorization for link prediction. Specifically, we propose

two approaches for the fusion of semantic and sensory information. The first ap-

proach uses a probabilistic framework, whereas the second makes use of a multi-way

neural network architecture. Our experimental results on the recently published

Stanford Visual Relationship dataset, a challenging real-world dataset, show that

the integration of a statistical semantic model using link prediction methods can

significantly improve visual relationship detection.



Zusammenfassung

Maschinelles Lernen zielt auf die automatische Extraktion semantischer Informa-

tion aus zum Teil rohen und unstrukturierten Daten. Eine entscheidende Heraus-

forderung beim Entwurf intelligenter Systeme, besteht darin Informationen aus

verschiedenen Quellen zu extrahieren und zu fusionieren. In dieser Arbeit wird

diesen Herausforderungen mit Methoden des Repräsentations-Lernens begegnet,

welche eine der bedeutendsten Innovationen im Maschinellen Lernen in der letzten

Dekade darstellt. Repräsentations-Lernen ist die Basis für moderne Ansätze zur

Verarbeitung natürlicher Sprache und Modellierung künstlicher Neuronaler Netze,

insbesondere dem Deep Learning, welchem beliebte Modelle wie Convolutional

Neural Networks (CNN) und rekurrente neuronale Netze (RNN) zugeordnet wer-

den. Außerdem wurde gezeigt, dass auch viele Ansätze zur Tensor Faktorisierung

und Multi-way Modelle als Repräsentations-Lernen interpretiert werden können.

Tensor Faktorisierungs Modelle finden Anwendung in einer Vielzahl von Bereichen,

wie zum Beispiel der Modellierung von Wissensgraphen und der Elektroenzephalo-

grafie (EEG) Daten Analyse. Die hier vorliegende Arbeit konzentriert sich auf

aktuelle Techniken des Repräsentations-Lernens, welche Information aus unter-

schiedlichen Kanälen kombinieren und dabei die inhärente Mehr-Kanal Struktur

der Daten ausnutzen.

Die Arbeit ist in drei Hauptteile gegliedert. Im ersten Teil wird die Architektur

eines neuronalen Netzes beschrieben, welches zur Fusion mehrerer Repräsentationen

aus unterschiedlichen Kanälen verwendet wird. Des Weiteren wird ein Attention

Mechanismus vorgestellt, welcher dynamisch die gelernten Repräsentationen aus

unterschiedlichen Kanälen in Abhängigkeit des aktuellen Systemzustands gewichtet.

Die Methode wird zur Modellierung verteilter Sensor Netzwerke angewendet. Dabei

wird die Effektivität des Ansatzes anhand dreier Datensätze mit echten Sensor
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Werten evaluiert.

Im zweiten Teil dieser Arbeit wird untersucht, wie Tensor-Faktorisierungs

Modelle zur Modellierung von Beziehungen zwischen verschiedenen Eingangs

Kanälen verwendet werden können. Dabei werden Tensor Modelle wie CANDE-

COMP/PARAFAC (CP) und Tensor Train in einer neuartigen Art und Weise

auf hochdimensionale und dünnbesetzte Tensoren angewendet. Es wird gezeigt,

wie diese Modelle für Aufgaben des maschinellen Lernens, wie Regression und

Klassifikation eingesetzt werden können. Desweitern wird gezeigt, wie die Tensor

Modelle zu kontinuierlichen Eingangsvariablen erweitert werden können, indem

eine Funktion von den kontinuierlichen Eingängen zu der latenten Repräsentation

des Faktorisierungs Modells gelernt wird. Der gezeigte Ansatz wird schließlich

zur Modellierung inverser Dynamiken angewandt. Die Modellierung inverser Dy-

namiken ist essenziell für die Vorwärtssteuerung eines Roboters. Die Experimente

zeigen, dass das kontinuierliche Tensor Modell vergleichbare Ergebnisse erzielt wie

herkömmliche Methoden für diese Aufgabe, wobei sich durch das Tensor Modell

sowohl die Trainings als auch die Inferenz Zeit deutlich reduzieren lassen.

Im dritten Teil wird gezeigt, wie die multi-modale Information eines statis-

tisch semantischen Modells und eines visuellen Modells fusioniert werden können,

um im Bereich der visuellen Infromationsextraktion, speziell dem Erkennen von

Beziehungen zwischen visuellen Objekten, verbesserte Ergebnisse zu erzielen.

Dabei wird ein gängiges, auf CNNs basierendes, visuelles Modell zur Objek-

terkennung mit Tensor-Faktorisierungs Modellen zur Modellierung von Wissens-

graphen kombiniert. Es werden zwei Ansätze für die Fusion semantischer und

sensorischer Information gezeigt. Der erste Ansatz benutzt eine probabilistische

Methode, wohingegen der zweite Ansatz ein Multi-way neuronales Netzwerk ver-

wendet um die Informationen zu kombinieren. Die Evaluation auf einem kürzlich

veröffentlichten Datensatz (Stanford Visual Relationship Dataset), mit Bildern aus

der realen Welt, zeigt, dass die Integration eines statistisch semantischen Modells,

die Methoden zur Detektion visueller Objektbeziehungen deutlich verbessert.
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Chapter 1

Introduction

In this chapter, we introduce the technical background of the thesis. In Section 1.1,

we present the mathematical notation, that we use throughout the work. In Section

1.2, we introduce the field of representation learning, a sub-area of machine learning

research, which has gained notable attention in the last decade. In traditional

machine learning, often sophisticated features are extracted from the raw data in

a preprocessing step before a predictive model is fit. The goal of representation

learning is to learn the best features for the prediction task directly from the data

instead of hand crafting them. In Section 1.3, we introduce and discuss information

fusion. The ability to fuse information into a robust percept is a central aspect

of many intelligent systems. The human brain constantly integrates information

derived from various senses and from semantic and episodic memory. Technical

applications of information fusion can be found, for example, in distributed sensor

networks, where information needs to be integrated from multiple channels, or in

visual scene description tasks, where sensory data needs to be modeled together

with semantic information. There is a close relationship between machine learning

and information fusion research, as both are concerned with the process of turning

raw data into semantic-level decisions. In this work, we consider the modeling of

the information fusion process using supervised machine learning techniques.



2 1. Introduction

1.1 Notation

In the following, scalars will be denoted by lowercase letters x and by uppercase

letters X if they represent constants. Column vectors will be denoted by bold

lowercase letters x, and matrices will be denoted by bold uppercase letters X.

Tensors of order three or higher will be denoted by bold calligraphic uppercase

letters X .

The i-th index of a vector will be denoted as x(i), the element at row i and

column j of a matrix will be denoted as X(i, j). Elements of higher order tensors

indexed by i1 to in are denoted in a similar way as X (i1, . . . , in). Subtensors will

be denoted by using a colon instead of an index. For example X (i, :, :) denotes the

matrix, sliced at position i on the first mode of the tensor X . Further notations

are defined throughout the work as needed.

1.2 Introduction to Representation Learning

Neural representations play an important role in the human brain for many cog-

nitive functions, such as perception, memory, decision making, and motor control.

Motivated by the biology, neural like representations also have a long tradition in

artificial intelligence research. Especially, with the rise of deep learning, the learn-

ing of expressive representations has become a main concern in machine learning.

In Section 1.2.1, we give an overview of learning representations. In Sections 1.2.2

and 1.2.3, respectively, we introduce two widely used methods for learning repre-

sentations, namely neural networks and tensor decompositions.

1.2.1 Learning Representations

Within the last decade, representation learning has gained tremendous attention

in the machine learning community. Modeling complex structured data, such as

images, sensory data, or text, requires a transformation of the raw input data

into a representation space, in which modeling becomes feasible. Traditionally,

this transformation has been achieved by extracting data-specific features, often

defined by human experts, in a preprocessing step before training the machine



1.2 Introduction to Representation Learning 3

learning model. For example, to derive a feature representation of an image,

expert-designed features such as SIFT [90] and HOG [39], which are based on

key-point detection and hand-crafted features such as color gradients, have been

extracted. In representation learning, the feature extraction becomes part of the

machine learning model, instead of being delegated to a preprocessing step. The

parameters of a differentiable mapping function, which maps from the raw input

space, e.g., pixels, to a latent representation space, are learned from training data.

The development in representation learning has mainly been driven by advances in

the field of artificial neural networks, often referred to as deep learning. According

to Goodfellow et al. [62], the concept of representation learning ties together all

the many forms of deep learning. Neural networks are universal function approxi-

mators, which can have various architectures. Popular instances are convolutional

neural networks (CNN) and recurrent neural networks (RNN). These methods are

suitable for learning a mapping function for unstructured sensory data such as

images or speech, and also for learning representations of discrete entities. For

discrete entities, such as words or graph nodes, the latent representation can be

directly learned by the machine learning model without explicitly learning a map-

ping function. These latent representations are often referred to as embeddings.

Besides neural networks, embeddings are also often learned using factorization

techniques, such as matrix or tensor factorization.

Representation learning can be conducted in a supervised or unsupervised man-

ner. In unsupervised learning, no labeled data is available, and the model typically

tries to estimate p(x|h), where x is the data and h is the latent representation.

The learned features in h should correspond to the latent explanatory factors,

which are causing x [70, 62]. If h is learned in an unsupervised fashion, the rep-

resentation is only useful for a predictive model p(y|h) if y depends on the latent

causes among h. Learning h in a predictive model p(y|x) forces the model to

encode the relevant factors for predicting y. In supervised learning, the input

x is mapped to a latent representation h, and from that mapping, a label y is

predicted. The model is trained end-to-end so that the latent representation h is

derived as a by-product of learning p(y|x). For example, latent representations for

images can be derived from an image classification model, typically implemented

as a CNN, where the latent representation h, describing the image is the output
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of the second last network layer.

Bengio et al. [18] give the following motivation for using vector representa-

tions: If we consider a representation vector with n features and k values, kn

distinct concepts can be represented. If we want to represent more than n con-

cepts, the representations necessarily need to share some features, thereby enabling

generalization. Having shared features, the vector representations define a mean-

ingful similarity space, where semantically similar entities cluster together. This

space distinguishes the learned representations from symbolic representations, e.g.,

a one-hot representation, where all entities have the same distance among each

other. Reducing the representation vector’s dimensionality, is one method of reg-

ularization. Further regularization can be achieved by introducing priors such as

sparseness, smoothness, disentanglement, and simplicity of factor dependencies

[18].

Representation learning is useful for many tasks in machine learning. Greedy

layer-wise unsupervised pre-training of deep believe networks started the revival

of neural network research, in 2006 [69]. Representation learning can be used for

a number of transfer tasks, such as clustering, outlier detection, one-shot, and

zero-shot learning. Furthermore, interest is increasing in explainable artificial in-

telligence. One possible way of achieving this is by trying to find interpretable

structures in the learned latent representations. In Section 1.3.3, we will discuss

how the concept of representation learning is also useful for model-based informa-

tion fusion. Recent surveys on representation learning can be found in [18] and in

Chapter 15 of [62].

1.2.2 Neural Networks

Artificial neural networks originate from neuroscience as a mathematical model

for the dynamics of neurons in the brain [95, 123]. In machine learning research,

neural networks have become popular as universal function approximators for pat-

tern recognition. In the last decade, neural networks have received tremendous

attention often using the term deep learning [62]. It has been shown that only

one hidden layer, with sufficiently many hidden units, is enough to approximate

any Borel measurable function up to any desired non-zero precision [75]. Thus,
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neural networks are considered to be universal function approximators. However,

in practice the hidden layer might need to be infeasible large, and the learning

algorithm might fail to find the correct parameter setting. It has been shown that

for some families of functions deep models with many hidden layers can overcome

these problems [93, 19, 69, 62]. Another motivation for deep network architectures

arises from the view of representation learning. It is assumed that every layer in

the neural network extracts a representation which is formed of underlying ex-

ploratory factors of its input. For complex structured data, such as images, it is

reasonable to assume that these factors are hierarchically structured. This gives

rise to the use of multiple successive layers. Various types of neural network ar-

chitectures have been proposed. In the following, we review the most important

architectures, which are extensively used in recent neural network research.

Multilayer Perceptrons Multilayer perceptrons (MLP) are the most basic no-

tion of a neural network. They are simple feed-forward neural networks without

circles. Each layer of a MLP is a function which transforms an input vector to an

output vector. Arbitrary many layers are applied successively. The parameters in

a hidden layer l ∈ [1, . . . , L] are the weight matrix W (l) ∈ Rdl×dl−1 and the bias

vector b(l) ∈ Rdl . The transformation is computed as

h(l) = ψ(W (l)h(l−1) + b(l)); h(0) = x, (1.1)

where x ∈ Rd0 is the input vector to the network, and ψ is a non-linear activation

function, such as hyperbolic tangent (tanh) or the logistic sigmoid, which is applied

element-wise to the vector. The output of the last hidden layer h(L) is then passed

to the output layer, which calculates the output ŷ, as

ŷ = φ(Ah(L) + c), (1.2)

where A ∈ Rk×dL is the weight matrix and c ∈ Rk is the bias vector of the

output layer, with k ∈ N denoting the output dimensionality. φ is an activation

function, which relates the model output to the parameter of the distribution of

ŷ. For example if ŷ is a Bernoulli variable, φ is the logistic sigmoid, and if ŷ is a

categorical variable, φ is the softmax function.
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Convolutional Neural Networks Since the great success of a model called

AlexNet [84] in the Image Net Challange 2012 [125] convolutional neural net-

works (CNN) are ubiquitous in machine learning. They became the state-of-the-

art method for many image related machine learning tasks. CNNs have also been

applied to other tasks involving non image data, such as text. One of the first

methods with a structure similar to today’s models can be found in [87]. The

architecture of CNNs is inspired by the visual cortex. The neurons in the visual

cortex only respond to a limited area in the visual field which is called the receptive

field. By using the convolution operation the weights in a CNN are also applied

to local image patches.

In a convolutional layer, the input is convolved by a parametrized kernel. The

transformation is computed as

h
(l)
j = ψ(

K(l−1)∑
i=1

wij ∗ h(l−1)
i + b

(l)
j ); h(0) = x (1.3)

where ψ is a non-linear activation function, b is the bias term, w is the convolution

kernel and ∗ denotes the convolution operation. At each layer, multiple outputs

h
(l)
j with j ∈

[
1 . . . K(l)

]
are computed. All outputs are then input to the next

layer. The intermediate outputs of convolutional layers are called feature maps.

The convolution operation can also be applied in multiple dimensions, e.g., two

dimensional convolution on images, or three dimensional convolution on videos. If

the input is an image, all vectors hi, wij, and bj are replaced by matrices, and

the initial feature maps are typically the three color channels of the input image

(K(0) = 3).

The convolutional layer can be interpreted as a fully connected layer where some

of the weights are shared through the convolution operation. In CNN architectures

the convolutional layer is often followed by a pooling layer. Pooling layers reduce

the dimensionality of each feature map by down sampling. CNNs are networks

which make use of convolutional layers. Most popular CNN architectures, such as

LeNet or AlexNet, apply multiple convolutional layers, each followed by a pooling

layer. The output of the last convolution layer is reshaped into a vector which is

then mapped to the output, either by a linear unit or a MLP. CNN architectures
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have been extended in many ways. Among the state-of-the-art architectures are

VGG [132], ResNet [68], and Inception network [141].

Recurrent Neural Networks Recurrent neural networks (RNN) are designed

for modeling sequential data. They have shown state-of-the-art performance in

many important machine learning applications, such as automatic speech recog-

nition, end-to-end machine translation, and image caption generation. Given an

input sequence x = (x1, ...,xT ) of length T ∈ N with xt ∈ Rn, an RNN generates a

hidden state sequence h = (h1, ...,hT ), ht ∈ Rd, where the hidden representation

ht at time t ∈ {1, 2, ..., T} depends on the previous hidden state ht−1 and the

current input xt as

ht = f(ht−1,xt). (1.4)

At every time step an output ŷt ∈ Rk, may be computed given the current hidden

state ht as

ŷt = g(ht). (1.5)

Most commonly f is an affine transformation, parameterized by U ∈ Rd×d, W ∈
Rd×n, and b ∈ Rd, followed by an element-wise non-linear activation function, e.g.

tanh, so that

ht = ψ(Uht−1 +Wxt + b). (1.6)

In regression tasks, g is typically chosen to be a simple affine transformation and

in multi-class classification tasks g is usually chosen to be an affine transformation

followed by the softmax function. It has been shown that the basic RNN suffers

from the problem of vanishing gradient for long input sequences in the training

data [20, 72]. Therefore, more sophisticated components like the long short-term

memory units (LSTM) [73] and the gated recurrent units (GRU) [33, 36] have

been proposed. Various methods for training RNNs have been explored. However,

in most recent applications backpropagation through time has been used. As

RNNs process the input sequence x iteratively (see eq. 1.4), they can run over

a data stream, which generates x, and compute the latest hidden state without

having to store past measurements. This property makes them suitable for stream

processing.
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Encoder-Decoder Framework The encoder-decoder framework is a general

architecture mapping an input structure to an output structure using artificial

neural networks. They consist of an encoder and a decoder part, which can be

modeled by any neural network architecture, e.g., MLP, CNN, or RNN. The en-

coder function fenc is trained to produce a latent representation of its input data

being, e.g., an image or a sentence, such that

c = fenc(x). (1.7)

The latent representation c ∈ Rd, is then passed to another neural network fdec,

which represents the decoder function. The decoder produces an output given the

latent representation c as

ŷ = fdec(c). (1.8)

The composite function fdec◦fenc is jointly trained end-to-end. One of the first and

most prominent encoder-decoder models is the sequence-to-sequence model [139]

where both the input and output data are sequences. Sequence-to-sequence models

have become the state-of-the-art in neural machine translation, where the source

sentence is processed by an encoder RNN, and the target sentence is produced

using another decoder RNN. Another example of an encoder-decoder model is the

autoencoder where an encoder function derives a latent representation of the input,

and the decoder function reconstructs the input from the latent representation.

Further examples of encoder-decoder architectures can, for example, be found in

image caption generation [164], and clinical decision support systems [47, 48].

Model Training Neural networks are trained by minimizing the negative log-

likelihood of the model parameters given the data D = {y(i),x(i)}Ni=1, which con-

tains pairs of input vectors x(i) and labeled outputs y(i). For i.i.d. training data

the negative log-likelihood is

C = −
N∑
i=1

log p(y(i)|x(i),Θ), (1.9)
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with Θ being a vector which contains all learnable parameters of the network. The

concrete cost function C depends on the distribution of p(y(i)|x(i),Θ). The most

common cost functions are the squared error cost function, which is derived by

assuming a Gaussian distribution, the binary cross-entropy cost function, which

is derived by assuming a Bernoulli distribution, and the categorical cross-entropy

cost function which is derived by assuming a Categorical distribution.

The cost function C is minimized using the back-propagation algorithm [124].

The back-propagation algorithm consists of three steps: The forward-pass, the

backward-pass, and the parameter update. These three steps are iteratively re-

peated, until the cost converges to a minimum.

In the forward-pass, the network is evaluated given the input, while intermedi-

ate results are stored. We denote z(l) as the output of a layer, before the activation

function is applied, and o the output of the output-layer, before the output ac-

tivation is applied. In the multilayer perceptron (as defined in Equation 1.1 and

1.2) these outputs are defined as

z(l) = W (l)h(l−1) + b(l), (1.10)

o = Ah(L) + c. (1.11)

These intermediate results, as well as the activated outputs h(l) = ψ(z(l)) and

ŷ = φ(o) are stored, during the forward pass of the backpropagation algorithm.

In the backward-pass the so called error signals are computed for each layer.

The error signals for each layer are defined as

δ(l) = ∇z(l)C. (1.12)

For the output layer, which we denote as layer (L+1), the error signal is computed

given the cost C and the output ŷ as

δ(L+1) = ∇ŷC � φ′(o), (1.13)

with � denoting the element-wise vector product. The error signals of the subse-
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quent hidden layers are computed recursively. For the MLP the error signals at

the hidden layers are computed as

δ(l) = ((W (l+1))Tδ(l+1) � ψ′(z(l)). (1.14)

Given the activations h(l) from the forward pass, and the error signals δ(l) from the

backward pass, the partial derivatives for the weights can be computed efficiently.

For the MLP the derivatives for the weights are

∂C

∂W (l)(i, j)
= h(l−1)(j)δ(l)(i), (1.15)

and the derivatives for the bias terms are

∂C

∂b(l)(i)
= δ(l)(i). (1.16)

All learnable parameters of the model are concatenated into the vector Θ and

the partial derivatives for all parameters are concatenated into the gradient vector

∇ΘC.

In the last step of every iteration of the backpropagation algorithm, the weights

are updated according to the gradient descent update rule

Θnew = Θ− η∇ΘC. (1.17)

The procedure is repeated iterativley until the cost function converges to a local

minimum. The parameter η is called learning rate, and is a hyperparameter of the

algorithm. Alternative update rules, such as Adam [81] or Adagrad [43], which

adjust the learning rate dynamically for each update, have been proposed. In order

to avoid the convergence of the cost function into a local minimum, or in situations

where the dataset is too large, the parameter update is not performed on the full

dataset D. Instead, a random subset of the data, also called batch, is sampled

in each iteration of the backpropagation algorithm. In this way, the calculated

gradient is only an approximation of the complete cost function. By introducing

this randomness, the optimization algorithm has a chance to jump out of a local

minimum, and find a better solution. To avoid overfitting, the algorithm is often
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not trained until convergence, but stopped, once the performance on a seperatly

evaluated validation set, which has been hold out from the training data, does not

increase. This technique is called early stopping.

1.2.3 Tensor Decompositions

Tensors can be considered as multi-dimensional arrays. Tensor decompositions are

generalizations of matrix factorizations to higher order tensors. Low rank approx-

imations provide latent representations for the involved statistical entities. Thus,

tensor decompositions are considered a technique for learning representations. The

first applications of tensor factorizations originate from psychometrics and chemo-

metrics. Nowadays, tensor decompositions have also become increasingly popular

in signal processing and machine learning. Surveys on the topic can be found in

[82, 131]. In the following, we give a brief overview over the most important tensor

decompositions.

CANDECOMP/PARAFAC The outer product of two vectors builds a rank-

one matrix. Matrices with higher rank can be reconstructed from the sum of

multiple rank-one matrices. The number of rank-one matrices needed for the

reconstruction, determines the rank of the matrix. In a similar way, the outer-

product of n vectors builds a n-mode rank-one tensor. The number of rank-one

tensors, which are needed to sum to a n-mode tensor, defines its tensor-rank.

Thus, a tensor can be decomposed into the sum of rank-one tensors, each being

represented by the outer-product of n vectors.

For a tensor X ∈ Rn1×n2×...×nS the decomposition is

X ≈
R∑
r=1

a(1)
r ⊗ a(2)

r . . .⊗ a(S)
r , (1.18)

with a
(d)
r ∈ Rnd and ⊗ denoting the outer-product. This decomposition has origi-

nally been proposed by Hitchcock [71]. Later it has been independently rediscov-

ered by Carroll and Chang [67] as CANDECOMP decomposition and by Harshman

[29] as PARAFAC decomposition. Thus, it is often referred to as CP (CANDE-

COMP/PARAFAC) decomposition. An additional scaling constant gr for each of
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the R components can be added. In an element-wise form the CP decomposition

can be written as

X (i1, i2, ..., iS) ≈
R∑
r=1

g(r) ·A1(i1, r) ·A2(i2, r) · . . . ·AS(iS, r), (1.19)

whereAd ∈ Rnd×R for d ∈ {1, ..., S} are the so called factor matrices. The columns

of the factor matrices correspond to the rank one components in Equation 1.18

and g ∈ RR contains the additional scaling constants. The decomposition is usu-

ally trained using the alternating least squares (ALS) algorithm, which iteratively

updates one factor matrix per iteration. In each step, it solves the least squares

problem which arises, when all factor matrices except one are being fixed.

The rows of the matrices A1 to AS contain the vector representations for all

entities along the axis of X . For example if X is a three dimensional tensor repre-

senting users × items × ratings, the rows of A1 contain the latent representations

for all users, the rows of A2 for each item, and the rows of A3 for each rating type.

The length of the representation vectors is R, which is equal in all modes.

Tucker Decomposition Tucker [149] introduced a decomposition, which fac-

torizes a tensor into a core tensor, and factor matrices for each mode. The core

tensor G ∈ RR1,...,RS weights all the interactions between the components of the

factor matricesAd ∈ Rnd×R for d ∈ {1, ..., S}. The Tucker decomposition is defined

as

X (i1, i2, ..., iS) ≈
R1∑
r1=1

...

RS∑
rS=1

G(r1, ..., rS) ·A1(i1, r1) ·A2(i2, r2) · . . . ·AS(iS, rS).

(1.20)

The factor matrices are sometimes constrained to be orthogonal. In this case the

decomposition can be considered as a generalization to PCA. Thus, the decomposi-

tion is sometimes also referred to as n-mode PCA [85]. The Tucker decomposition

can be computed using the truncated higher order singular value decomposition

(HOSVD) algorithm, which derives the factor matrices by applying SVD to all

mode-n matrix reshapes of the tensor. Given the factor matrices the core tensor

can be computed using a closed form solution. Alternatively, the Tucker decom-
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position can also be computed using an ALS algorithm.

The rows of the matrices A1 to AS contain representations for the indexed

entities similar to the CP decomposition. However, the fusion of the multiple rep-

resentations is more powerful, as each possible combination of factors is weighted

differently by an element of the core tensor G. Note that CP is a special case of the

Tucker decomposition where the core tensor is diagonal. For higher order tensors

the core tensor in the Tucker decomposition quickly explodes, as the number of

elements in the core tensor grows exponentially with the number of dimensions.

Tensor Train Decomposition Due to the limitations on scalability of the

Tucker decomposition, the tensor train decomposition for higher order tensors

has been proposed. Tensor trains consist of multiple low rank tensors in a row,

each with a fixed order of three so that the number of elements does not grow

exponentially with the order of the input tensor. The tensor train decomposition

is defined as

X (i1, i2, ..., iS) ≈
R0∑
r0=1

...

RS∑
rS=1

A1(r0, i1, r1) ·A2(r1, i2, r2) · . . . ·AS(rS−1, iS, rS),

(1.21)

where Ad ∈ RRd−1,nd,Rd for d ∈ {1, ..., S} and R0 = RS = 1 so that A1 and AS

are in fact matrices as the third dimension has only length one, and A2, . . . ,AS−1

are tensors of order three. Oseledets proposed a fast learning algorithm based on

multiple successive singular value decompositions [110].

Note that the latent representations for the entities along the axes of X are not

vectors but matrices Ad(:, id, :). Only entities of the first and last dimensions are

represented by vectors. The latent matrix representations control the interaction

to their neighboring entities.

General Multi-way Models Tensor decompositions learn representations for

the involved entities in all dimensions of the input tensor. To approximate the

original tensor the representations are fused according to the respective decom-

position. A more general view on tensor decompositions can be formulated as
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X (i1, i2, ..., iS) ≈ f(ai1 , . . . ,aiS), (1.22)

where the vectors a are the latent representations of the involved entities and f

is the multi-linear tensor factorization, e.g., CP or Tucker. This more general

formulation gives rise to the extension of the tensor decomposition framework to

non-linear implementations of f , such as a multilayer perceptron. Using a neural

network for f allows the modeling of arbitrary non-linear interactions between the

learned latent factors. When a multilayer perceptron is used, the model is referred

to as a multi-way neural network. Such a model has, for example, been used for

knowledge graph modeling [41, 106], for clinical decision support systems [47] and

for sensory data [50]. A non-linear approach using Gaussian Processes can be

found in the Infinite Tucker decomposition [165].

1.2.4 Applications of Representation Learning

Representation learning has become a standard technique in many areas of machine

learning. For example, matrix factorization has emerged to be the state-of-the-art

method for collaborative filtering. In these settings, latent representations of users

and items are derived by factorizing the adjacency matrix which describes previ-

ous interactions. Based on the similarity of the derived representations, new items

are recommended to users. In particular, the Netflix challenge [83] has proven the

superior performance of factorization techniques for collaborative filtering. For

missing link prediction in large graph-structured knowledge bases, such as Yago

[137], Freebase [22], or DBpedia [3], tensor factorization techniques have become

a standard approach [106]. In these models, a latent representation is learned for

every graph node and for the possible relations between the nodes. Based on these

latent representations, a likelihood score for every possible triple can be derived.

In this way, missing triples in the knowledge base are inferred. In general, tensor

decompositions are a powerful method to learn representations of entities which

are involved in relationships of higher orders. An overview of applications can be

found in [82] and [131]. Latent representations obtained by tensor decompositions

are also used for factor analysis in data mining [1, 67]. In natural language pro-

cessing, learned word and sentence embeddings have become ubiquitous. They are
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either learned unsupervised, based on co-occurrence of words in large text corpora

[96], or simultaneously with a supervised model, e.g., for machine translation [140].

Representation learning is also used extensively in computer vision applications.

Many of todays computer vision applications make use of CNNs, which hierar-

chically extract latent features from images. For example Facebook’s DeepFace

[142] searches images of the same person, using latent representations, which are

derived from CNNs.

1.3 Introduction to Information Fusion

With the increasing ubiquity of large and diverse data collections, the question of

how to improve knowledge discovery and decision making by combining informa-

tion from multiple sources has gained increasing attention. According to Boström

et al. the research field of information fusion can be defined as follows [24]:

”Information fusion is the study of efficient methods for automatically

or semi-automatically transforming information from different sources

and different points in time into a representation that provides effective

support for human or automated decision making.”

The information sources can be as manifold as sensors, databases, simulations,

ontologies, text documents, the Web, and humans. Thus, information fusion also

comprises more traditional areas of research such as sensor fusion. By including not

only different sources but also various points in time, the definition also includes

estimation methods such as the Kalman filter.

Research on information fusion is concerned with a number of questions, such as

[2]: Which sources and features to fuse? How to transform the data, and at which

level of transformation to fuse the information? And which methods to use to

efficiently achieve effective results? Thereby, information fusion research is strongly

related to many other research areas such as machine learning, signal processing,

robotics, multimedia analysis, and cognitive neuroscience. In this thesis, we focus

on information fusion problems and techniques in the realm of machine learning

research.
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Information fusion is also central to cognitive neuroscience, as it plays a critical

role in the human brain, e.g., [46, 55, 42]. Some evidence supports the notation that

the brain processes and merges information in a hierarchical manner, e.g. when

propagating information from the primary to the secondary sensory cortex. The

superior colliculus is believed to fuse multi-modal inputs such as visual, haptic, or

audio signals, to derive a percept. Furthermore, information in the brain is filtered

and processed by mechanisms such as attention. Also, the integration of sensory

inputs with prior knowledge about a situation seems very likely in the human brain

[42].

In Section 1.3.1, we summarize the connections between information fusion and

machine learning. Approaches to information fusion in machine learning can be

broadly categorized into model-agnostic and model-based approaches, which we

discuss in Section 1.3.2 and 1.3.3, respectively.

1.3.1 Information Fusion in Machine Learning

According to the definition provided by [24], the transformation of information

from various sources and the effective support for decision making are central

points in information fusion. Therefore, machine learning models represent an

important set of methods for information fusion, as they are concerned with the

transformation of information, e.g., feature extraction, representation learning and

decision making, e.g. with a classification model. However, it is still subject to

ongoing research on how to fuse data from multiple sources and explore their

interactions. The machine learning models can include a wide range of tasks, such

as clustering, novelty detection, or predictive modeling. The final decision, which

is desired in the information fusion process, can be either directly obtained from

the machine learning model or the machine learning model at least provides the

necessary information for a separate decision step. The final decision step can be

performed by a human or another automated process.

Machine learning aims at building statistical models to derive a semantic-level

decision, given some inputs. In complex problem domains, the data might come

from various sources. In this setting, the goal of information fusion is to gain

better prediction accuracy by including multiple information sources.
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One goal of information fusion in machine learning is more robust models,

e.g., by combining evidence from multiple sources, or if for some channels only

limited training data is available. Furthermore, the model can improve its per-

formance if complementary information is captured in the different channels and

cross-correlations can be exploited. Finally, in some cases, the problem of noisy

or missing data channels can be overcome by the inclusion of information from

multiple channels; see [15].

In what follows we give an overview of various scenarios that demonstrate

information fusion problems in machine learning. However, it will also become

clear that drawing a clear line between the various scenarios is not always possible.

Multi-view In multi-view learning, a particular data instance is represented by

multiple views. These views can be derived from various sources or from a subset

of features. For example, for the problem identifying a person, various views such

as an image of the face, an iris-scan and a fingerprint can be used. In this case, the

views are derived from various sources. Conversely, an image can be represented

by a color view or a texture view. In this case, the various views are obtained by

taking subsets of features. A survey of classical approaches to multi-view learn-

ing, including co-training, multiple-kernel learning, and subspace learning, can be

found in [138]. More recent research concerns multi-view representation learning

using autoencoders and deep learning techniques. A recent survey can be found

in [158].

Multi-modal In multi-modal machine learning, the data involves multiple

modalities, such as audio, video, or text. The various modalities are described

by very different representations. For example, an image is represented by pixel

values whereas text is represented by a sequence of words or tokens. Multi-modal

machine learning includes the fusion of multiple modalities as input to a predic-

tive model, e.g. audio-visual speech recognition, and the translation or alignment

between various modalities, e.g., image caption generation. Many applications of

multi-modal learning arise in the multimedia domain. A recent survey on the topic

can be found in [15].
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Multi-channel In multi-channel settings, the data is derived from various chan-

nels with the same modality. A popular example is electroencephalography (EEG)

data, where the brain’s electrical activity is measured at various positions; see

[98, 130]. Other examples in which sensors are spatially distributed on a larger

scale can be found in remote sensing [173] or sensor arrays such as multiple mi-

crophones in a room [148].

Multi-way Multi-way data is represented in a multidimensional array, e.g., EEG

data, where the electrical activity is represented in three modes: channel, fre-

quency, and time [1]. Each mode is split into a discrete set of options, which

are described by the indices in the multidimensional array. In some applications,

the data cannot be represented in a single multidimensional array but in several,

where some of the modes are shared, e.g., an adjacency tensor of a knowledge

graph of the form entity × relation × entity and a matrix containing side informa-

tion about the entities of the form entity × features. Multi-way data appears in a

wide range of application domains, such as psychometrics, chemometrics, text, and

image analysis. A comprehensive review summarizing methods and applications

of multi-way analysis can be found in [82]. More recent surveys with a focus on

data fusion and machine learning applications are available in [113, 131].

The methods of information fusion in machine learning can broadly be cat-

egorized into model-agnostic and model-based information fusion approaches

[15]. Model-agnostic approaches are independent of the specific machine learn-

ing method where-as in model-based approaches, the machine learning models are

designed with regard to the information fusion problem at hand. We review the

two approaches in the following sections.

1.3.2 Model Agnostic Information Fusion

Traditionally, information fusion in machine learning has been approached in a

model agnostic way. In model agnostic fusion, the channels are fused independently

of the machine learning model. The main advantage of model-agnostic fusion is

that any generic machine learning model, such as linear- and logistic-regression,
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decision trees, or support vector machines, can be applied without modifications

to the model architecture. In the literature, model agnostic fusion is often divided

into three strategies, which differ in the level where the information is merged.

Early Fusion In early fusion, also referred to as feature-level fusion, the infor-

mation sources are fused at the raw feature level, often simply by concatenating

the input features from multiple sources. The combined input features are then

passed to a machine learning model, which can exploit the interactions between

the features and outputs a prediction. For this approach, only a single model is

necessary, which eases the training. However, the input size to the model can grow

quite large. Thus, the early fusion approach is not scalable to a large number of

input channels. Further problems can arise if the representations of the input chan-

nels are very heterogeneous, e.g., audio and image data. A single type of model,

or in kernel systems, a single type of kernel, is often not suitable for all modalities,

e.g., RNNs are better suited for modeling sequential data, whereas CNNs are more

adequate for image data. In time-dependent data, the early fusion approach can

also be problematic if the data from the input channels are not synchronized in

time, as sequential models such as recurrent neural networks or hidden markov

models assume fixed time scales. Some successful applications of early fusion can,

for example, be found in [100, 127, 44].

Late Fusion In late fusion, also referred to as decision-level fusion, the informa-

tion from various channels or modalities is combined at the decision level, i.e., the

input features of each channel are processed by separate machine learning mod-

els. Each model makes a prediction, and the predictions are finally fused to a

final decision. The fusion can be performed by rule-based methods such as voting,

MIN, MAX, AND, OR, by a weighted combination, based on the uncertainty of

the single models, by Bayesian inference, by the Dampster-Shafer evidence the-

ory, or by training an additional fusion model, which takes the predictions of the

single models as input and outputs the final prediction. Training multiple models

allows for choosing the best model for each input channel, e.g., RNNs for text

and CNNs for images. Furthermore, the late fusion approach can resolve problems

with unsynchronized input channels, e.g., time series measured at various scales.
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It is also easier to handle cases where the information from an input channel is

missing. However, the main disadvantage of late fusion approaches is, that low-

level interactions between the input features cannot be exploited, as each channel

is processed independently. Also, including many models increases the training

effort. Late fusion approaches have been widely applied; some successful examples

can be found in [76, 51, 60, 97, 117, 115, 169].

Hybrid Fusion To benefit from the advantages of both techniques, hybrid ap-

proaches have been proposed. A hybrid approach can take a flexible combination

of early and late fusion procedures for various input channels. Redundant ar-

chitectures, where the various channels are input to a joint model (early fusion)

and a separate model for each channel (late fusion), have proven advantageous.

Successful applications using hybrid fusion include multi-sensor image analysis

[105, 17], event detection in audio-visual data with external information [162, 86],

and multi-modal speaker identification [161].

Both approaches have their advantages and disadvantages, which cannot be

overcome in a model-agnostic fusion procedure. One way to overcome the problems

is to use an early fusion approach but adjust the model so it overcomes some of the

problems that arise when a generic model is used. We present these model-based

methods in the next section.

1.3.3 Model-Based Information Fusion

In model-based fusion, the machine learning model is designed so that it supports

the information fusion process by explicitly modeling the interactions between the

channels. This arrangement allows for the inclusion of prior information about

the system into the model architecture. In some cases, it also leads to more

interpretable results by visualizing the information flow in the architecture and

showcasing the importance of each channel for the prediction. In this section, we

give an overview over the methods used in model-based fusion, with a focus on

neural networks and tensor decompositions.
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Neural Networks More recently, neural networks have been used for multi-

channel and multi-modal modeling, as their architectures can easily be designed

for problem-specific settings. When applying neural networks in a model-based

fusion setting, the network architecture is designed so that it fits the specific fu-

sion problem. It therefore reflects the a priori knowledge of how the processing

pipeline should look. A popular framework is an extension to the encoder-decoder

model, where multiple encoders learn a latent representation for the separate input

channels and a decoder fuses the latent representations from the encoders. The

idea behind this architecture is that the encoders extract meaningful higher-level

latent features for each input channel, and the decoder learns the interaction be-

tween the channels based on the detected features. The encoders can be of various

types, such as RNN and CNN. For example, if a vision and text modality are

merged into a classifier, one could apply a CNN to the visual input and an RNN

to the text, as these models derived expressive representations for the respective

data types. For a classification, the decoder could then, for example, be of a feed-

forward model type, which takes the combined representations from the encoders

as an input. Thus, the information fusion takes place on a latent representation

level. The whole network, including all decoders and the encoder, is typically

trained end-to-end. In this way, the decoders should learn to directly extract the

meaningful features for the respective task. However, one cannot be sure, that

after the training, the separate processing steps work in the expected way. The

intermediate features, which are extracted from the input channels, are typically

not interpretable by humans. Also, the importance of the individual channels for

the final prediction cannot be assessed. Modern neural network architectures often

contain a large amount of parameters, allowing them to learn complex feature ex-

tractors and complex decision boundaries. However, they are also very expensive

to train and require large amounts of training data.

One of the early successful examples of model-based information fusion using

deep learning can be found in [103]. The authors used a restricted Boltzmann

machine, which is a generative neural network model, for learning joint represen-

tations in audio-visual speech recognition by learning separate latent representa-

tions for each modality, which are combined into a joint latent representation. In

[49], static and dynamic information about a patient in a clinical setting is fused
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within a neural network architecture. The temporal information derived from the

patient’s former visits to the clinic is processed using an RNN whereas the static

information is separately processed using a feedforward neural network. The latent

representations derived from both parts are concatenated and fed into the decoder

feedforward neural network, which predicts the best medication for the particular

patient. The fusion of text and image data into a joint model can be found in re-

cent visual question-answering models. Although various additional mechanisms

are applied, most of the work follows the basic structure of learning a latent repre-

sentation for the question using an RNN and a latent representation for the image

using a CNN; see [159, 54, 163]. Further examples of model-based information

fusion using deep learning techniques can be found in 3-D object recognition [45]

and video-related tasks such as emotion recognition [79] and gesture recognition

[102].

Tensor Decompositions Tensor decompositions are used in machine learning,

data mining, and signal processing as a method for modeling multi-way data. The

structure of the decomposition can be defined with respect to the input data and

the specific problem at hand. Machine learning tasks built based on tensor de-

compositions include recommender systems, missing link prediction in knowledge

graphs, and efficient regression, classification, and clustering of multi-way data

[106, 113, 131]. When the data is represented in multiple tensors or matrices with

common modes, they can be factorized jointly in a coupled tensor factorization. In

coupled tensor factorization approaches, each tensor is factorized, and the common

modes share the same representations. Coupled tensor decompositions have also

been applied to multi-view learning, where each view is represented in a separate

multidimensional array, and all arrays share the first mode, which describes the

data instance [80, 88]. Successful applications include spatial temporal tensor re-

gression [6], seizure prediction in EEG data [1], blind source separation in speech

recordings [108], automatic conversation detection in emails [4], as well as image

analysis, compression, and recognition [153, 154, 129].

Other Methods Many other methods are used for model-based information fu-

sion. For example, probabilistic graphical models are well suited for model-based
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information fusion. In probabilistic graphical models, the joint probability distri-

bution of all involved variables, including a priori independence assumptions, is

modeled, and the parameters are estimated from data. The structure of the model

has to be determined beforehand and can thus be designed such that it reflects

the prior assumptions about the modeled heterogeneous system. Special models

have been proposed for modeling multi-modal data, e.g., [135, 65, 101]. Also, ker-

nel systems such as support vector machines have been extended to model-based

fusion methods. In multiple kernel learning, the features of each input chan-

nel are modeled with separate kernels, which are best suited for the respective

modality; see [61]. Popular methods for parameter estimation in sensor fusion

are the Kalman filter and non-linear methods such as the extended Kalman filter,

unscented Kalman filter, and the particle filter. These methods are used for esti-

mating the state of a system, e.g., the position of a moving object, by integrating

uncertain measurements from either a single or multiple sensors; see [77].

1.4 Contributions of this Work

In this thesis, we propose various statistical models for advancing information

fusion problems in machine learning. The contributions of this work lie in the

intersection of representation learning and information fusion. Below, we briefly

summarizes the main contributions of the thesis.

In Chapter 2, we propose a neural network architecture for fusing latent repre-

sentations derived from multiple input channels. We further consider the problem

of automatically determining what information to fuse in a dynamic multi-channel

environment. Therefore, we apply the neural attention mechanism, which has

become popular in language modeling, in a novel way, to address the dynamic

information fusion problem. The effectiveness of the proposed architecture is eval-

uated on multiple real world sensor network datasets.

In Chapter 3, we propose a novel way for predictive modeling of multi-channel

data using tensor decompositions. Specifically, we describe how the decomposi-

tion of high-dimensional and sparse data tensors can be used for classification and

regression tasks. We then show a novel extension of the tensor decompositions to

continuous inputs and model interactions between groups of input features. Our
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experimental results on multiple datasets show that the efficient multi-linear mod-

els can reach similar performance as non-linear models, by reduced computational

complexity.

In Chapter 4, we deal with the challenging problem of fusing semantic and

sensory information. We propose novel machine learning models for this task

based on the combination of tensor factorization for semantic modeling and deep

learning models, which work well for modeling sensory data. Experiments on the

task of visual relationship detection in images show promising results for this novel

direction of research.

All significant contributions of this thesis have been published in conferences

as peer-reviewed papers, as listed below.

[9] Stephan Baier, Denis Krompass, and Volker Tresp. Learning representations

for discrete sensor networks using tensor decompositions. IEEE International

Conference on Multisensor Fusion and Integration for Intelligent Systems,

2016

[14] Stephan Baier and Volker Tresp. Factorizing sparse tensors for supervised

machine learning. NIPS workshop on tensor methods, 2016

[12] Stephan Baier, Sigurd Spieckermann, and Volker Tresp. Attention-based

information fusion using multi-encoder-decoder recurrent neural networks.

Proceedings of the European Symposium on Artificial Neural Networks, Com-

putational Intelligence and Machine Learning, 2017

[13] Stephan Baier, Sigurd Spieckermann, and Volker Tresp. Tensor decompo-

sitions for modeling inverse dynamics. Proceedings of the Congress of the

International Federation of Automatic Control, 2017

[10] Stephan Baier, Yunpu Ma, and Volker Tresp. Improving visual relation-

ship detection using semantic modeling of scene descriptions. International

Semantic Web Conference, 2017

[11] Stephan Baier, Yunpu Ma, and Volker Tresp. Improving information ex-

traction from images with learned semantic models. International Joint

Conference on Artificial Intelligence, 2018
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I am the main author of all the listed publications. The papers have been

written by me, and all the experiments have been conducted by me. At the

beginning of each chapter we clearly state where the following contributions are

published, and which parts are taken from the original publications.
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Chapter 2

Attention-based Representation

Fusion

In this chapter, we first propose a neural network architecture for fusing latent

representations from multiple data channels. We then address the problem of

how to dynamically determine what information to fuse. We therefore extend

the proposed architecture using a self-attention mechanism, which automatically

determines the importance of each data channel based on the current system state.

We apply our model to the modeling of sensor networks, where we derive the latent

representations for each sensor station using recurrent neural networks. The main

contributions of this chapter are published in:

[12] Stephan Baier, Sigurd Spieckermann, and Volker Tresp. Attention-based

information fusion using multi-encoder-decoder recurrent neural networks.

Proceedings of the European Symposium on Artificial Neural Networks, Com-

putational Intelligence and Machine Learning, 2017

Sections 2.1, 2.2, 2.5, and 2.6 of this thesis correspond to Sections 1, 2, 3 and 4

of [12], but have been extended and edited to a large extent. Figure 2.1 has been

copied and modified from [12]. Section 2.3 and 2.4 are entirely new. I am the main

author of [12] . The paper has been written by me, and all the experiments have

been conducted by me.
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2.1 Introduction

Traditionally, multi-channel data is often processed using multivariate models,

where the data from all channels is concatenated at the model input. From an

information fusion perspective this corresponds to an early fusion approach. In

this chapter, we propose a model-based fusion approach using neural networks.

Our proposed architecture extends the popular encoder-decoder framework by

applying dedicated encoders to each input channel. The latent representations

from the different channels are then fused and fed into one or multiple decoder

functions, which generate the predictions.

One problem in information fusion is that of determining which channels to

fuse. An approach to this problem is to determine the cross-correlations between

multiple channels and integrate those that show high cross-correlation. However, in

dynamic systems, cross-correlations between different channels may vary in time.

It is therefore desirable to also adjust the fusion process dynamically in time. Con-

sequently we extend the proposed neural network architecture to incorporate an

attention-based fusion layer that assesses the importance of the different input

channels dynamically. Attention mechanisms have become popular in neural net-

work research over recent years. We apply the attention in a novel way to address

the dynamic fusion problem.

We apply our architecture to the modeling of distributed sensor networks, in

which information from multiple data streams is combined. The sensor networks

considered consist of multiple stations, where each station can measure multiple

features at a single location. For each station, we implement an encoder function

using recurrent neural networks. The latent representations from the dedicated

RNN models are combined in the attenion-based fusion layer. After the represen-

tations are fused, they are passed to a decoder model which makes a prediction.

We address the task of sequence-to-sequence prediction where the decoder network

is another RNN that predicts the future behavior of a particular sensor station.

Moreover, the proposed architecture can be easily generalized to other settings,

such as classification or anomaly detection, by using different decoder functions.

Given the rising number of connected devices and sensors, often referred to as

the Internet of Things (IoT), modeling sensor networks and multi-agent systems is
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attracting increasing interest. We discuss the parallelizable nature of our proposed

architecture in both training and inference contexts and show how this could be

helpful when deploying the model in distributed environments.

We demonstrate the effectiveness of the multi-sequence-to-sequence network on

three datasets. Two of these datasets are drawn from various sensor stations spread

across Quebec and Alberta that measure climatological data. The third dataset

contains energy load profiles from multiple zones of a smart energy grid. In our

experiments on sensory data, we show that the proposed architecture outperforms

both, purely local models for each agent as well as one central model of the whole

system. This can be explained by the fact that the local sub-models learn to adapt

to the peculiarities of the respective sensor station and, at the same time, integrate

relevant information from other stations through the interconnection layer, which

allows the model to exploit cross-correlations between the data streams of multiple

stations.

The remainder of this chapter is organized as follows. In Section 2.2, we ex-

plain both the architecture of our proposed model and the attention-based fusion

mechanism. Section 2.3 elaborates on the model’s distributed training and infer-

ence. In Section 2.4, we discuss related work. Section 2.5 shows the experimental

settings and results for the different experiments. Section 2.6 concludes our work

and discusses possible directions of future research.

2.2 Representation Fusion Model

We propose a neural network architecture for modeling sensor networks consisting

of multiple stations, where each station can potentially measure multiple features.

The proposed architecture builds on top of the encoder-decoder framework and

models each sensor station using a dedicated encoder function. We propose an

attention-based interconnection layer that weights the latent representations from

the encoders based on their importance for the prediction task. In this way cross-

correlations between the single sensing stations can be exploited. A combined

representation is then passed to a decoder model, which performs the prediction.

It is also possible to add multiple decoder functions to the network. Due to the fact

that all proposed layers are differentiable, we are able to train the whole system
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of models end-to-end.

2.2.1 Multi-Encoder-Decoder RNNs

We consider the task of predicting multiple multivariate output sequences from

multiple multivariate input sequences. The input sequences are represented by a

three-way tensor X ∈ RE×Tenc×Fenc , where E denotes the number of encoder de-

vices, Tenc denotes the encoder sequence length, and Fenc is the number of encoder

features. Similarly, the output sequences are represented by a three-way tensor

Y ∈ RD×Tdec×Fdec , where D denotes the number of decoder devices, Tdec denotes

the decoder sequence length, and Fdec is the number of decoder features. In the

case of multivariate streaming data from a sensor network, the value X (i, t, j)

corresponds to the j-th feature measured at the i-th sensor station at time t. Sim-

ilarly, the value Ŷ(i, t, j) corresponds to the predicted value of the j-th feature at

the i-th output node at time t. If we consider, for example, the task of predicting

the features of the next Tdec values for all stations in a sensor network, then D is

the number of stations, Fdec is the number of features, and Tdec is the time period

for which forecasts are performed. The input and output feature spaces may be

identical, i.e. a prediction of all the sensor values per sensor node, or not, e.g.,

there may be a central control station making predictions for larger parts of the

system.

We propose a neural network architecture that extends the encoder-decoder

framework. The general architecture consists of multiple encoder functions, a

interconnection layer, and possibly multiple decoder functions. Each input-sensing

device is modeled by an encoder function

fenc,i(X (i, :, :)) = ei, with i ∈ {1, 2, ..., E}, (2.1)

which takes the data measured at the i-th sensing device as input and outputs a

latent representation ei. For each output device, an interconnection function fcon,j

combines the representations {ei}Ei=1 as

fcon,j({ei}Ei=1) = cj, with j ∈ {1, 2, ..., D}. (2.2)
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Figure 2.1: Unfolded multi-encoder-decoder recurrent neural network for multiple
sequence-to-sequence prediction.

Finally, for each output device, a decoder function fdec,j models the prediction

using the respective combined representation cj as

fdec,j(cj) = Ŷ(j, :, :), with j ∈ {1, 2, ..., D}. (2.3)

In this way, information between the different input and output sequences can be

exchanged through the interconnection layer.

In order to predict the sequence of future sensor behavior given the previous

observations, we implement the functions fenc and fdec using recurrent neural net-

works. Thus, the functions are implemented as was explained in Equation 1.6 in

Section 1.2.2. Figure 2.1 presents the architecture of a multi-encoder-decoder re-

current neural network model. For the sequence-to-sequence prediction, we model

each encoder and each decoder function using an RNN. The rectangles describe

the hidden states of the RNNs, while the arrows indicate the transformations be-
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tween the states. Each encoder RNN iterates over the sequence produced by the

respective sensing node. Thus, the input of the i-th encoder RNN is X (i, t, :). We

define the last hidden state of the i-th encoder RNN to be the encoder output ei.

For each decoder RNN, a combined representation is computed by the respective

interconnection function, which is represented by the large vertical box in the il-

lustration. The interconnection layer outputs combined representations for each

decoder. These representations are then used as initial hidden representation in

the decoder RNNs. The decoder output Ŷ(i, t− 1, :) is passed as an input to the

next time step t of the i-th decoder RNN.

In order to maintain the scalability of the architecture the dimensionality of

the merged decoder representation should be independent of the number of input

channels. One canonical way to keep the dimensionality of the decoder repre-

sentations the same size as the encoder representations is to use a sum or mean

operation, such that

cj =
1

E

E∑
i=1

ei ∀j ∈ {1, . . . , D}. (2.4)

This implementation for fusing the representation vectors, does not require addi-

tional learned parameters. Moreover, it can deal with a variable number of input

channels, which is especially useful in settings where the number of input channels

is not constant over time, e.g. moving devices where devices appear and disap-

pear over time or where some input devices do not send any data, e.g., broken

sensors. However, it does compute the same representation for all decoders. Thus,

a more advanced implementation of the interconnection layer is desired, and will

be described in the next section.

2.2.2 Spatial Attention Mechanism

We propose an implementation of the interconnection layer using an attention

mechanism. In this way, the combination of latent representations is not fixed for

every prediction but changes depending on the current context, which is encoded

in the input representations. The attention mechanism assesses the importance of

the representations of the encoding devices ei and computes a weighted sum over
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Figure 2.2: Illustration of the attention-based fusion layer with five encoder inputs
and a single (the j-th) decoder output. The attention network on the left is shared
for all inputs.

the latent vectors

cj =
1

E

E∑
i=1

wjiei. (2.5)

The vectors ei are element-wise multiplied with the weight wij ∈ R. To adjust the

weights wij dynamically, we compute them using the additional attention func-

tion fatt. The attention function is implemented as a multi-layer percepron, as

described in Equation 1.1 in Section 1.2.2. The outputs of the attention function

are normalized through a softmax function, such that

zji = fatt,j(ei), (2.6a)

wji =
exp(zji)∑E
k=1 exp(zjk)

. (2.6b)

Whether or not attention is put on a representation ei can vary for each prediction,

depending on the information encoded in ei. The approach draws inspiration from

the attention-based machine translation model [8]; however, the attention is not

used across time, but spatially across sensing devices to address the dynamic fusion

problem. The only parameters that need to be learned are those of the attention

function. As all encoder representations are passed independently to the same

attention function, the number of parameters is independent of the number of

encoders, which yields a constant number of parameters.
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Figure 2.2 illustrates the attention-based interconnection layer for an architec-

ture with five encoders and a single decoder. The attention network on the left

is specific to the decoder. All representations ei are passed to the attention net-

work separately. In practice, this can be implemented as a batch of inputs. For

each encoder representation, a weight w1, . . . , w5 is derived and then used in the

fusion mechanism on the right. The output of the fusion mechanism is a weighted

combination of the encoder representations, which is then passed to a decoder

model.

Note that this mechanism can deal with a variable number of input devices.

This is especially useful in settings where the number of input-devices is not con-

stant over time, e.g., moving devices where devices appear and disappear over time,

or where some input devices do not send any data, e.g., due to broken sensors.

2.2.3 Model Training

The model is trained end-to-end in a supervised fashion by minimizing the neg-

ative log-likelihood of a historical training set D = {(X (n),Y (n))}Nn=1 w.r.t. the

model parameters of all encoders and decoders. The log-likelihood of i.i.d. train-

ing examples can be written as

l = −
N∑
n=1

log p(Y (n)|X (n),Θ), (2.7)

where Θ = {Θenc,i}Ei=1 ∪ {Θdec,j}Dj=1 is the set of parameters for all encoders and

decoders. We assume the parameters of the j-th interconnection function to be

part of Θdec,j. Thus, we obtain

l = −
N∑
n=1

log p(Y (n)|X (n); {Θenc,i}Ei=1, {Θdec,j}Dj=1). (2.8)

Due to the conditional independence of the decoders, we can simplify (2.8) to

l = −
D∑
j=1

N∑
n=1

log p(Y (n)(j, :, :)|X ; {Θenc,i}Ei=1,Θdec,j) =
D∑
j=1

lj, (2.9)
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obtaining a sum of negative log-probabilities that we refer to as l1, ..., lD. Since

all components in the complete encoder-decoder architecture are differentiable,

the network can be trained via backpropagation. By training the complete model

end-to-end, each encoder learns to encode the relevant information for all decoding

tasks, rather than solely learning a good model for the specific input sequence.

2.3 Distributed Settings

Many modern field devices are equipped with powerful hardware for computation

and the ability to exchange data with each other. To make use of these capacities,

it is sometimes desirable to run analytics models directly in these decentralized

environments. Our proposed architecture fits with this paradigm, as it is possible

for the single decoder RNNs to run directly on the local sensing devices. When

predictions are being made for each device, the decoder models can also run locally.

In this section, we demonstrate what the parallel training and inference of the

model could look like in a distributed environment.

2.3.1 Parallel Training

We train the parameters Θ using backpropagation and stochastic gradient descent.

To update the parameters in each iteration, we need to compute the gradient of

the cost function w.r.t. the network parameters.

Decoder Training The overall gradient w.r.t. the decoder parameters can be

split into the sum of gradients of the single decoder likelihoods as

∇Θdec
l =

D∑
j=1

∇Θdec
lj. (2.10)

The gradient w.r.t. Θdec,j, j ∈ {1, 2, ..., D}, is zero in all lj with j 6= i. Thus, the

gradients w.r.t. all decoder weights can be computed independently and, hence,

concurrently, for each decoder as

∇Θdec,j
l = ∇Θdec,j

lj. (2.11)
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for each j ∈ {1, ..., D} do . Parallel Decoders

update(Φdec,j)

broadcast({δi,j}Ei=1)

for each i ∈ {1, ..., E} do . Parallel Encoders

{δi,j}Dj=1 ← collectDeltas()

update(Φenc,i)

Algorithm 1: Multi-Enc-Dec RNN Backpropagation

Encoder Training Computing the gradients w.r.t. the encoder weights requires

backpropagation of the error signal through the decoders’ local copies of the en-

coder representations ei that is performed concurrently on all decoder devices,

such that

δi,j = ∇eilj. (2.12)

Backpropagation continues on each encoder device i by collecting the local copies of

the i-th encoder representation error signals δi,j from all decoders j and summing

them, such that

γi =
D∑
j=1

δi,j. (2.13)

The error signal γi relates to the encoder representation ei. Backpropagation

continues using the chain rule in order to compute the gradients w.r.t. the encoder

weights Θenc,i where Θenc,i(k) denotes the k-th variable of Θenc,i, such that

∂l

∂Θenc,i(k)
=

dim(ei)∑
r=1

γi(r)
∂ei(r)

∂Θenc,i(k)
. (2.14)

Since we can compute the gradient of the cost w.r.t. the encoder weights Θenc,i(k)

concurrently on each encoder device once the error signal γi is available, the weight

updates are performed concurrently on all encoders. Algorithm 1 shows the train-

ing procedure for one update iteration in pseudo code.
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for each i ∈ {1, ..., E} do . Parallel Encoders

ei ← fenc,i(X (i, :, :))

broadcast(ei)

for each j ∈ {1, ..., D} do . Parallel Decoders

{ei}Ei=1 ← collectStates()

cj ← fcon,j({ei}Ei=1)

Ŷ(j, :, :)← fdec,j(cj)

return Ŷ(j, :, :)

Algorithm 2: Multi-Enc-Dec-RNN Inference

2.3.2 Parallel Inference

When running in a streaming environment, predictions can be performed at their

own rate, which can be smaller than the sampling rate. Algorithm 2 shows how the

model is executed in a distributed environment. Each sensing device computes a

representation, which encodes the relevant information of preceding measurements

in a single vector representation ei. As we have defined ei to be the latest hidden

state of the encoder RNN, fenc can run in a streaming manner over the input data

without having to recall previous measurements. This can be done concurrently

for each sensing device. The resulting encoder representation ei is broadcast to

all decoder devices at the time a prediction is requested. The decoder devices

simultaneously collect the encoder representations, combine them using their re-

spective interconnection functions and output a prediction. Thus, the architecture

scales along with the number of devices as the computational resources of the de-

vices are exploited. When the sampling rate is higher than the prediction rate,

or when the dimensionality of the representations is smaller than the number of

measured features, the distributed model compresses information by sending latent

representations instead of raw data. In this way, communication is more efficient

in the decentralized environment compared to a centralized solution, where all

measurements need to be sent to a central server.
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2.4 Related Work

Our proposed model is an extension of the general encoder-decoder framework

that has become popular for various machine learning tasks, including machine

translation, image caption generation, and automatic speech recognition [140, 32].

The idea of using multiple encoders and decoders has also recently been considered

in natural language processing [92, 52, 66]. We propose an interconnection layer

that joins the latent representations of all encoders using an attention mechanism.

Thereby, the attention mechanism, which was originally developed for neural ma-

chine translation [8, 32], is applied in a novel context. Typically, the attention

mechanism is applied in sequence-to-sequence models to the individual steps of

the decoder RNN; in our model, however, it is applied to dynamically fuse the

representations from multiple encoders. Attention mechanisms have been further

developed in many directions. For example, a neural network architecture for

sequence-to-sequence prediction has recently become popular, which solely uses

attention, without any recurrent structures [155]. Dropping the recurrent units,

allows for massive parallelization of the model.

Some standard approaches to modeling multivariate time series data include

multivariate linear regression and multivariate ARMA and ARIMA models. Box

and Jenkins proposed a standard procedure for fitting these models [25]. Recur-

rent neural networks can be interpreted as nonlinear ARMA models [37]. One

disadvantage of using neural networks is that they are completely deterministic.

In many practical use cases, probabilistic models such as the Kalman filter and

its non-linear extensions are preferred over deterministic approaches, because an

estimate of the models uncertainty is desired. Traditionally, the selection of which

time series to include in a multivariate model is accomplished by computing the

cross-correlations on a historic dataset. Channels that show low cross-correlations

with the target channel are not included in the predictive model. This approach,

however, is only able to reliably detect linear relationships.

In signal processing, the sensor stream selection is typically formulated as an

optimization problem. The goal is to find the best subset of sensor streams based

on some relevant criterion. For large numbers of sensor streams, however, this

problem becomes infeasible. Therefore, heuristics have been proposed for solving
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this problem, e.g., [111, 78]. In [160], a procedure for finding the optimal com-

binations of modalities for fusing multimedia data is proposed. An overview of

methods for selecting the right modalities in fusion problems can be found in [2].

2.5 Experiments

We evaluate the performance of the multi-encoder-decoder network using sequence-

to-sequence prediction in sensor networks on two climatological datasets and a

smart grid dataset. The chosen task is the prediction of future network behavior

given a sequence of past measurements. Predictions are made for every sensor

station and all features; thus, E = D and Fenc = Fdec.

2.5.1 Datasets

For the first two datasets, we consider the modeling of spatially distributed weather

stations. The multi-channel setting gives rise to our proposed model-based fusion

architecture. The cross-correlation change over time based on the climatological

conditions; this motivates the use of our proposed dynamic fusion architecture. We

consider a sensor network of environmental sensing stations measuring climatolog-

ical data on an hourly basis. The first dataset consists of 18 stations distributed

across Quebec, each measuring air temperature, dew point, relative humidity and

wind speed. The second dataset is a sensor network of 15 environmental sensors

spread across Alberta and measuring the same features. We downloaded 5 years

of data (between 2010 and 2014) from ASOS1 and selected stations and features

with the lowest number of missing values. We extracted sequences of 72 hours in

length as input sequences and used the subsequent 24 hours as target sequences

using a sliding window. After filtering missing values, we retained a total of 26991

sequence-to-sequence pairs in the Quebec data set and 34427 pairs in the Alberta

data set. The data was split into training, validation and test sets. The data

gathered between 2010 and 2013 was used for training (with 5 percent of it used

for validation), while the data from 2014 was used for testing the models. This

1https://mesonet.agron.iastate.edu/request/download.phtml
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resulted in a test data size of 26991 pairs in the Quebec data set and 3507 pairs

in the Alberta dataset.

The third dataset considers short-term load forecasting in a power grid. Many

new sensor measurements have recently become available due to the introduction

of smart grid technology. Short-term load forecasting is an important problem in

the utility industry with impacts on generation, transmission, distribution, and

retail (see [74]). We use the load prediction data set from [74], which measures

hourly loads in kW, and predict the load profiles for the next 3 days on the basis

of the previous 21 days (i.e. 3 weeks). We selected 18 zones with historical load

profiles. The data encompasses 4.5 years of data gathered between 2004 and 2008.

We set the time rate of the prediction system at one day. For each day we consider

24 features, which are the loads at each hour. After removing sequence pairs with

missing values, we obtain a dataset of 1187 training samples and 169 test samples.

We use 5 percent of the training data for validation of different hyperparameter

settings.

2.5.2 Experimental Setting

We evaluate various models based on their mean squared error on the test set.

We normalized the data to have a mean of zero and a standard deviation of one.

This results in a baseline mean squared error of 1.0 for a constant prediction of

the mean. We further report the constant prediction of the last observed value

as a baseline for each measured feature. We compare our model to linear auto-

regression, which is a linear regression model that takes the previous measurements

as input. The simple auto-regression models have shown superior performance in

the task of energy load forecasting [74] compared to more complicated ARIMA

models. We also conduct comparisons against regular RNN models. Both base-

line models are trained in two different settings: (i) a separate model for each

station, i.e., no cross-correlations can be exploited and (ii) a joint model for all

stations, i.e., cross-correlations between stations can be exploited. For all RNN

models, we performed the experiments with the basic model, a GRU-RNN, and

an LSTM-RNN. The third dataset is too small to train the GRU and LSTM ex-

tensions without overfitting, as these models are very parameter-intensive. We
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Quebec Alberta
Model Basic GRU LSTM Basic GRU LSTM
Last observed values 0.6515 - - 0.7295 - -
Linear regression per station 0.4289 - - 0.4189 - -
Linear regression all stations 0.3562 - - 0.3487 - -
Enc-dec-RNN per station 0.3817 0.3728 0.3877 0.3492 0.3453 0.3581
Enc-dec-RNN all stations 0.3477 0.3488 0.3540 0.3468 0.3389 0.3505
Multi-enc-dec RNN 0.3361 0.3481 0.3426 0.3381 0.3387 0.3490
Multi-enc-dec RNN attention 0.3328 0.3314 0.3403 0.3289 0.3348 0.3485

Table 2.1: Mean squared error results for the climatological test sets.

compare these baseline models against our proposed architecture. The first model

we evaluate is the multi-encoder-decoder with the simple mean interconnection

layer (as shown in Equation 2.4). The second model is the extension proposed in

Section 2.5 with the spatial attention mechanism. To optimize the neural network

models, we used the stochastic gradient descent variant Adam [81], which uses an

adaptive learning rate for each parameter. To avoid overfitting, we stopped train-

ing when the error on the validation set did not decrease within 10 iterations. A

hyperparameter search was conducted on the validation set, including parameters

such as learning rate, size of hidden units and regularization rate. All experiments

were implemented using Theano [143] and Keras [35]. We run the models on a

computer with a dual core Intel i5 CPU with 2.6 GHz and 16 GB of memory.

2.5.3 Experimental Results

Table 2.1 shows the results for both climatological datasets. The optimal size of the

hidden state of the multi-encoder-decoder models was found to be 130 for the basic

model, 70 for the GRU and 100 for the LSTM models. With larger hidden states

the performance on the validation set decreased due to overfitting. For the RNN,

which models all stations jointly, a larger hidden state of 300 for the basic model

and 250 for the GRU and LSTM models was necessary to yield optimal results.

Compared to dedicated models for each station, we can see that both the RNN and

linear models perform significantly better when all stations are integrated into one

model. This observation indicates strong cross-correlations between the stations.
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Model MSE
Last observed values 0.5169
Linear regression per station 0.3382
Linear regression all stations 0.3164
Enc-dec-RNN per station 0.3150
Enc-dec-RNN all stations 0.2956
Multi-enc-dec RNN 0.3020
Multi-enc-dec RNN attention 0.2884

Table 2.2: Mean squared error results for the smart grid data test set.

The use of individual RNNs per station yields better performance than the linear

regression model per station, while the joint RNN for all stations outperforms the

linear model for all stations. The multi-encoder-decoder RNN has the exact same

number of parameters as the multivariate RNN for all stations. Experimental

evaluation shows that using the fusion architecture improves the results slightly.

When adding the proposed attention mechanism for the information fusion, the

mean squared error decreases even further for both climatological datasets. We

further observe that GRUs improve the prediction in some cases, whereas LSTMs

do not perform better than the basic RNNs. In [57], it has also been found that

LSTMs are not particularly well suited for time series forecasting.

The results for the smart grid data set are reported in Table 2.2. Here, the

prediction of the load profile for the last day (last observed values) is already

a good baseline, as the profiles do not change drastically within three days. The

linear model with all stations included yields slightly improved predictions relative

to the single models. Moreover, the RNN model including all stations outperforms

the single per-station RNN models. The distributed multi-encoder-decoder model

achieves similar or better results than the standard RNN model, depending on the

implementation of the interconnection layer. The multi-encoder-decoder model

with the mean interconnection layer and the RNN model including all stations

jointly perform very similar, whereas the attention-based interconnection layer

clearly outperforms these simpler models. We also tested GRUs and LSTMs on

this dataset but discovered that the number of training examples was too small

at 1187 to allow these parameter-intensive models to generalize well. Again, we
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found a hidden state size of 130 units for the multi-encoder-decoder RNN yielded

best results. For the RNN, that models all stations, 130 hidden units were also

sufficient.

2.6 Conclusion

In this chapter, we proposed a model-based information fusion architecture, which

extends the popular encoder-decoder framework. Our neural network architecture

combines latent representations derived from multiple encoder functions and feeds

them to the decoders, which then generate the predictions. We further extend

the neural network architecture for dynamic information fusion. The problem of

what channels to fuse is an important research question in information fusion.

Our proposed approach carries out the selection based on data and dynamically

adapts to changes in the system. The fusion of hidden representations of multiple

encoder networks, using an attention mechanism, allows for the exploitation of

cross-correlations across channels. For the dynamic adoption of the fusion process,

we proposed the attention-based interconnection layer, which efficiently learns to

combine information from multiple sensor stations by drawing attention to the

stations containing information relevant to the current prediction. The attention

varies based on the current context. To the best of our knowledge, this is a novel

method in the context of intelligent sensor fusion. Using end-to-end training,

the complete model (consisting of the encoders, the interconnection layer with an

attention mechanism, and the decoders) is trained to predict a sequence of future

behavior. It is important to note that the encoders are not trained to be a good

model of the input sequence, but rather to produce a representation that leads to

good output sequence predictions.

We showed how the model could be deployed in a distributed environment, such

that local computational resources (which are available in most modern sensing

devices) can be exploited. This has potential applications in real-world sensor

networks such as smart grids or remote sensing. An important property of RNNs,

which we use as encoder models, with regard to data stream modeling is their

ability to selectively encode information from previous time steps in a compact

hidden state representation that is updated continuously at every time step. Thus,
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RNNs are good candidates for the efficient processing of streaming data.

In various experiments on sensor network data, the multi-encoder-decoder

model showed clearly better results relative to a standard RNN, which models

all stations jointly in a single model. This might be due to the dedicated encoder

functions for each sensor station, which learn to encode the optimal information

for the predictions, and the decoders ability to decide which representations are

important for the current prediction.

The proposed architecture can easily be extended to different prediction tasks

such as classification or anomaly detection. It is also possible to integrate differ-

ent neural network architectures, such as convolutional neural networks or feed-

forward neural networks, for both encoders and decoders.



Chapter 3

Discriminative Tensor

Decompositions

In this chapter, we consider modeling the interactions between groups of input

features using tensor decompositions. We first formulate an approach for applying

tensor decompositions to supervised discriminative modeling with discrete input

features. We then generalize the approach to continuous inputs and apply the

model to the application of modeling inverse dynamics. The main contributions

of this chapter are published in:

[9] Stephan Baier, Denis Krompass, and Volker Tresp. Learning representations

for discrete sensor networks using tensor decompositions. IEEE International

Conference on Multisensor Fusion and Integration for Intelligent Systems,

2016

[13] Stephan Baier, Sigurd Spieckermann, and Volker Tresp. Tensor decompo-

sitions for modeling inverse dynamics. Proceedings of the Congress of the

International Federation of Automatic Control, 2017

Section 3.1 is taken from Section 1 in [9] and changed broadly. Section 3.2 is partly

taken from Section 4 in [9] and the Sections 2 and 3 in [13]. Subsection 3.2.3 is

entirely new. The Sections 3.3, 3.4, and 3.5 are taken from the Sections 2, 5, and

6 in [9], and the Sections 4, 5, and 6 in [13], respectively. All sections haven been

edited to a large extend. Figure 3.2 has been published in [9] and Figure 3.4 and
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Figure 3.5 have been published in [13]. I am the main author of the papers [9]

and [13]. The papers have been written by me, and all the experiments have been

conducted by me.

3.1 Introduction

Within recent years, tensor decompositions have found a number of applications

in machine learning, e.g., modeling knowledge graphs [106], weight compression in

neural networks [109], and spatio-temporal regression [6]. In this chapter, we pro-

pose a method that exploits the inherent multi-way structure of tensor decompo-

sitions for discriminative modeling. Tensor decompositions model the interactions

between various inputs by fusing learned latent representations of each input. In

our approach the data is mapped to a high dimensional sparse tensor, i.e., most

values are unobserved, and the tensor is then decomposed using common tensor

factorization techniques. In particular, the CP and tensor train decompositions

have shown to be applicable for the decomposition of tensors with many dimen-

sions.

We first consider the problem of fusing information from various categorical

variables. This setting can, for example, be found in the technical application of

modeling sensor networks with multiple input sensors each measuring values on a

discrete scale. By applying the tensor decompositions, a representation is learned

for all possible measurements of all sensors. These representations are fused in

order to classify the current behavioral state of the whole sensor network. The de-

composed tensor represents the space of all possible combinations of sensor values.

By learning a representation for each possible value of all sensors, the decompo-

sition allows for approximating highly non-linear functions. The proposed models

can be generalized to different distributions of the output data by applying differ-

ent activation functions and different cost functions, similar to generalized linear

models. We evaluate the performance of the proposed tensor models with discrete

inputs on various datasets from the UCI data repository [40]. The experimen-

tal evaluation shows that the tensor decomposition models reach similar accuracy

levels as support vector machines, which is a popular non-linear machine learning

model for this kind of problem, while maintaining lower runtime complexities. We
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further show that interpretability measures, such as odds ratios, can be computed

efficiently for the tensor models.

We then propose a generalization to continuous inputs, by explicitly learning

a mapping from the input data to the latent representations. In this way, a con-

tinuous version of tensor decompositions is derived. We apply this extension to

learn an inverse dynamics model, that computes the necessary joint torques of a

robot’s motors for the execution of a desired movement. We group the desired

joint positions, velocities, and accelerations of all degrees of freedom of the robot,

resulting in a tensor of order three, which can be modeled using the Tucker de-

composition. Our model exploits the inherent three-way interaction of positions

× velocities × accelerations. We evaluate our model on a dataset of a seven de-

grees of freedom SARCOS robot arm that was introduced in [156]. An inverse

dynamics model is learned based on collected trajectories, and its performance is

evaluated on a test set. The results show that our model outperforms a number of

competitive baseline methods, such as linear regression, radial basis function net-

works (RBF-networks), and support vector regression. Furthermore, the Tucker

model shows superior performance over a CP model. Our proposed model gains

similar results as the state-of-the-art methods on this task, but at simultaneously

significantly shorter training and inference times. In this application, the inference

time specifically matters, as the model needs to be deployed in a real-time control

setting.

This chapter is organized as follows. In Section 3.2, we introduce our approach,

applied in regard to discrete input data and the extension to continuous input data.

We further present the generalizations to different output distributions, and dis-

cuss the efficient computation of interpretability measures, such as the odds ratio.

In Section 3.3, we discuss related work, while Section 3.4 includes experiments

on multiple discrete classification tasks and the application to modeling inverse

dynamics. We conclude this chapter in Section 3.5.
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3.2 Tensor Decompositions for Discriminative

Modeling

In this section, we show how the decompositions of sparse and higher-order tensors

can be applied to discriminative machine learning. We discuss their characteristics

and application settings.

3.2.1 Predictive Model

Tensors and tensor decompositions can be considered as functions of multiple in-

dices. In the full tensor, a combination of input indices maps directly to the

corresponding function value. In the decomposed form, each input index maps to

a latent representation. For deriving the function value, the latent representations

are combined in a polynomial model, which is determined by the form of decompo-

sition model. In this way, tensor decompositions are able to model the interactions

between the input indices. In the following, we use the decomposition function for

modeling the conditional probabilities in discriminative machine learning settings.

We consider a discriminative machine learning problem with S ∈ N discrete

input variables. Each of the input variables xj for j ∈ {1, . . . , S} assumes one out

of Fj ∈ N discrete values. Furthermore, we consider a dependent variable y which

we for now assume to be y ∈ R. We model a function for a dataset of N training

examples {y(i), (x
(i)
1 , . . . , x

(i)
S )}Ni=1. All training examples are mapped to a sparse

tensor Y ∈ RF1,...,FS . The tensor is filled with

Y(x
(i)
1 , . . . , x

(i)
S ) = y(i) ∀i ∈ {1, ..., N}. (3.1)

The remaining entries of the tensor, which do not occur in the training data, are left

unknown. This results in Y being a very sparse tensor. We approximate the tensor

Y using a low-rank tensor decomposition. When using the CP decomposition we

derive

Y(x1, . . . , xS) ≈
R∑
r=1

g(r) ·A1(x1, r) ·A2(x2, r) · . . . ·AS(xS, r) = Ŷ(x1, . . . , xS).

(3.2)
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Imposing a low rank R, the approximation results in a dense tensor Ŷ . It describes

the outcome ŷ for all combinations of the input variables (x1, ..., xS). However,

it would be impossible to compute and store the whole approximated tensor Ŷ .

Thus, only the parameters of the decomposition are stored. When predicting ŷ for

a new set of input variables, the representations for that tuple are indexed, and

the approximation is computed on demand.

If we apply the Tucker decomposition, which considers all interactions between

the latent representations, we get

Y(x1, . . . , xS) ≈
R1∑
r1=1

. . .

RS∑
rS=1

G(r1, . . . , rS) ·A1(x1, r1) ·A2(x2, r2) · . . . ·AS(xS, rS).

(3.3)

The core Tensor G grows exponentially with the number of dimensions S. For

machine learning problems with many input variables, the core tensor becomes to

large, thus the decomposition is not suited for these kind of problems. Another

scalable decomposition is the tensor train decomposition, which is

Y(x1, x2, . . . , xS) ≈
R0∑
r0=1

. . .

RS∑
rS=1

A1(r0, x1, r1) ·A2(r1, x2, r2) · . . . ·AS(rS−1, xS, rS),

(3.4)

with Ad ∈ RRd−1,Fd,Rd for d ∈ {1, . . . , S} and R0 = RS = 1 so that A1 and AS

become matrices. Thus the entities of the first and the last dimension are repre-

sented by vectors, where as the entities of all other dimensions are represented by

matrices. To reduce the number of hyperparameters, the length of the represen-

tations R1 to RS−1 in the tensor train decomposition are assumed equal in this

work.

Model Analysis The tensor decompositions describe multi-linear functions,

which are fast to compute. Table 3.1 summarizes the runtime and space complexi-

ties of the different tensor models. When assuming multiplication and summation

operations being performed in constant time, the time complexity for evaluating

the CP model is O(R · S), as it needs R − 1 summations and R · S multiplica-

tions. Similarly, the time complexity for the tensor train model is O(R2 · S) as it
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Method Time Complexity Space Complexity

CP O(R · S) O(R · F · S)
tensor train O(R2 · S) O(R2 · F · S)
Tucker O(RS · S) O(RS +R · F · S)

Table 3.1: Comparison of the runtime complexities of different tensor decomposi-
tion models.

needs R2(S − 2) + R multiplications and (R − 1) · R · (S − 2) + (R − 1) summa-

tions. The Tucker decomposition has a time complexity of O(RS · S), with RS · S
multiplications and RS summations.

The relation of the proposed tensor decomposition models to linear regression

with polynomial interactions is the following. The tensor decompositions can be

interpreted as a factorization of the F S coefficients of a polynomial regression

model, which models all joint interactions of the input variables. Through the

factorization the number of parameters is significantly reduced. The representation

for a certain input is the same for all combinations where this input appears in.

This coupling allows the model to generalize to combinations, which have not

been observed in the training data. In this way, the parameters are reduced to

R · F · S + R in the CP decomposition, which results in a space complexity of

O(R · F · S). The tensor train decomposition has 2 · R · F + (R2 · F ) · (S − 2)

parameters and a space complexity of O(R2 · F · S). The Tucker decomposition

still has R ·F ·S +RS parameters. Thus, it is only applicable for low S and when

R� F .

3.2.2 Generalized Models

For training the tensor models, we take a maximum likelihood approach. Specif-

ically, we minimize the negative log-likelihood of the model parameters given

the data D = {y(i), (x
(i)
1 , . . . , x

(i)
S )}Ni=1. For i.i.d. training data the negative log-

likelihood is

l = −
N∑
i=1

log p(y(i)|x(i)
1 , . . . , x

(i)
S ,Θ), (3.5)



3.2 Tensor Decompositions for Discriminative Modeling 51
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Figure 3.1: Predictive model using the CP decomposition. The tensors are plotted
three dimensional for illustrative reasons (S = 3).

where Θ denotes the set of all parameters in the tensor decomposition. The prob-

ability is parametrized using the tensor decomposition models as

E [p(y|x1, . . . , xS)] = φ(Ŷ(x1, . . . , xS)). (3.6)

Similar to generalized linear models different distributions of the exponential fam-

ily can be assumed for p(y|x1, . . . , xS), requiring different activation functions φ

and leading to different cost functions. For each distribution within the expo-

nential family the canonical link function, which maps from the expected value

of the distribution to the natural parameter of the exponential family is uniquely

determined. We apply the inverse canonical link function as an activation func-

tion φ to the model output, to map it to the range of the expected value of the

distribution. Equation 3.5 can be minimized using gradient-based optimization

algorithms. Note, that the cost function considers only non-zero elements of the

tensor, i.e., the sparsity of the tensor is exploited. As Equation 3.5 sums over all

training data points and not over the tensor elements, it can also handle situations

where multiple training data points with the same input configuration but differ-

ent target variables exist. In experiments, we found the stochastic optimization

algorithm Adam [81] to work well for training the models. Figure 3.1 shows the CP

decomposition of the sparse input tensor Y . Predictions are derived by indexing

the representations in the decompositions and applying the activation function φ.

In the following we describe the activation functions and cost functions for different

assumptions about the target variable.
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Regression In regression tasks a real-valued Gaussian distributed target vari-

able is assumed, such that

Y(x1, . . . , xS) ∼ N (Ŷ(x1, . . . , xS), σ2). (3.7)

The activation function for the Gaussian distribution is simply the identity func-

tion. σ2 is typically assumed to be constant and independent of the input. In this

case, the negative log-likelihood cost function becomes the mean squared error

l =
N∑
i=1

(Y(x
(i)
1 , x

(i)
2 , . . . , x

(i)
S )− Ŷ(x

(i)
1 , . . . , x

(i)
S ))2. (3.8)

The mean squared error cost function is most commonly used in the tensor de-

composition literature. When fixing the parameters of all but one dimension, the

tensor decompositions become linear functions, for which a closed form solution

to the least squares problem exists. This allows to train the models using the

alternating least squares algorithm. For the tensor train decomposition with mean

squared error cost function, also a fast training algorithm based on Singular Value

Decomposition has been proposed in [110]. Alternatively, the parameters can also

be optimized using gradient-based methods.

Poisson Regression Poisson Regression is typically used when the target vari-

able represents count data. We assume the target to be Poisson distributed, such

that

Y(x1, . . . , xS) ∼ Poisson(φ(Ŷ(x1, . . . , xS))), (3.9)

where the activation function φ for the Poisson distribution is exp(·). The cost

function for Poisson regression is

l =
N∑
i=1

φ(Ŷ(x
(i)
1 , . . . , x

(i)
S ))−Y(x

(i)
1 , . . . , x

(i)
S ) log φ(Ŷ(x

(i)
1 , . . . , x

(i)
S )). (3.10)

Since there exists no closed form solution for this cost function, we propose to

use gradient-based methods such as stochastic gradient descent (SGD) for the

optimization of the model parameters.
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Figure 3.2: Multinomial classification model using CP decomposition. The tensors
are plotted three dimensional for illustrative reasons (S = 3). The number of
classes is also three in this example (C = 3).

Logistic Regression Logistic Regression is used for binary classifications prob-

lems, where the target variable is assumed to be Bernoulli distributed, such that

Y(x1, . . . , xS) ∼ Bernoulli(φ(Ŷ(x1, . . . , xS))), (3.11)

with φ being the Sigmoid function

φ(x) =
1

exp(−x) + 1
. (3.12)

The negative log-likelihood for Bernoulli distributed variables becomes the binary

cross-entropy, which is

l =
N∑
i=1

−Y(x
(i)
1 , . . . , x

(i)
S ) log(φ(Ŷ(x

(i)
1 , . . . , x

(i)
S ))

− (1−Y(x
(i)
1 , . . . , x

(i)
S )) log(1− φ(Ŷ(x

(i)
1 , . . . , x

(i)
S ))).

(3.13)

Also for this cost function no closed-form solution exists. Thus we optimize the

cost function using a gradient-based method.

Multinomial Regression Multinomial regression is used to model multi-class

classification problems. We assume a categorical distribution for the class label
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Y(x1, . . . , xS) such that

Y(x1, . . . , xS) ∼ Categorical
( [
φ(Ŷ1(x1, . . . , xS)), . . . , φ(ŶC(x1, . . . , xS))

] )
,

(3.14)

where Ŷc denotes a low rank tensor approximation of Yc. This approach assumes

one tensor decomposition for each class. The class tensors Yc are constructed by

mapping all training examples that belong to the same class to a sparse tensor

Yc ∈ RF1,...,FS for c ∈ {1, ..., C} where C ∈ N describes the number of classes. The

tensors Yc are filled as

Yc(x
(i)
1 , . . . , x

(i)
S ) = Π(y(i) = c), ∀i ∈ {1, ..., N}, (3.15)

where the indicator function Π(x) is one if the statement x is true. Thus, in

the class tensors all positions indexed by the training tuples are set to one, other

positions are left unknown. Figure 3.2 shows the architecture of the multi-class

model. Each class tensor is decomposed separately and the predictions are fed

to the activation function φ, which in the case of a categorical distribution is the

softmax function

φ(Ŷc(x1, . . . , xS)) =
eŶc(x1,...,xS)∑C
k e

Ŷk(x1,...,xS)
. (3.16)

The softmax function normalizes the values across the low rank approximations

such that
∑C

c=1 φ(Ŷc(x1, . . . , xS)) = 1. This makes the values interpretable as

probabilities for the categorical distribution. The corresponding cost function for

the categorical distribution is the categorical cross-entropy, which is defined as

l = −
N∑
i=1

C∑
c=1

Π(y(i) = c) log φ(Ŷc(x
(i)
1 , . . . , x

(i)
S )). (3.17)

All tensor decompositions are learned jointly end-to-end. Thus, optimal represen-

tations for the multinomial classification task are learned. When predicting a class

label for a new input setting (x1, ..., xS), which is not included in the training set,

the representations for that tuple are indexed and the approximations Ŷ1 to ŶC

are computed. By applying the softmax function one obtains the class probabilities

for that new input setting.
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An alternative approach to modeling multi-class classification problems is using

a one-versus-rest approach, where C binary classifiers are trained separately, each

distinguishing one class from all other classes. To derive a prediction for a new

data point, all classifiers are evaluated, and the class label of the classifier with

the highest confidence is picked as a result.

3.2.3 Interpretability

In many use-cases the interpretability of a machine learning model, such as the

contribution of a specific input variable to the prediction, is of interest. For exam-

ple in a medical use case one might be interested in how the probability of having

diabetes changes for a specific patient, if the blood pressure changes from medium

to high. An advantage of linear models is that these insights can be derived di-

rectly from the learned coefficients. For non-linear models such as neural networks

or support vector machines, it is computationally more involved to derive the de-

sired insights. In this section, we analyze the interpretability of the multi-linear

tensor models.

Odds Ratio For binary classification tasks an important interpretability mea-

sure is the odds ratio. We assume categorical input variables Xj for j ∈ {1, . . . S},
where each variable possibly takes discrete values Xj ∈ {1, . . . Fj}. For a given

data sample (x1, . . . , xS) the conditional odds ratio of changing variable Xj from

xj to any x′j ∈ {1, . . . , Fj}, and leaving all other inputs unchanged, is defined as

odds(Xj;xj → x′j) =
p(Y = 1|Xj = xj, Xk 6=j = xk)

p(Y = 1|Xj = x′j, Xk 6=j = xk)
/
p(Y = 0|Xj = xj, Xk 6=j = xk)

p(Y = 0|Xj = x′j, Xk 6=j = xk)
.

(3.18)

In logistic regression with discrete inputs, the effect of changing the value of a

categorical variable from a discrete input to another can simply be derived from

the model coefficients. For binary input variables Xj ∈ {0, 1} the conditional

odds ratio odds(Xj; 0 → 1) of changing this variable is exp(βj), where βj is the

coefficient associated with Xj. For categorical input variables Xj ∈ {1 . . . Fj},
which are one-hot-encoded in the model input, the odds ratio can be derived as

exp(βj,xj − βj,x′j), where βj,xj and βj,x′j are the coefficients associated with the
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positions of the one-hot-encoding corresponding to xj and x′j. In linear models

the conditional odds ratio is independent of the remaining model input Xk 6=j. The

time complexity for deriving the odds ratios for all possible changes in all input

variables is O(F · S) due to the computations of the differences of the coefficients

and the computation of exp(·).

Difference in Prediction A similar interpretability measure for regression

tasks, is the absolute difference in the predicted value, when changing a categorical

input.

For a given data sample (x1, . . . , xS) the conditional difference in the prediction,

when changing variable Xj from xj to any x′j ∈ {1, . . . , Fj}, and leaving all other

inputs unchanged, is

diff(Xj;xj → x′j) = E [p(Y |Xj = xj, Xk 6=j = xk)]− E
[
p(Y |Xj = x′j, Xk 6=j = xk)

]
.

In the case of Xj being a binary input feature, the difference is simply βj. For

categorical variables which are encoded in a one-hot-representation the change

can be calculated as βj,xj − βj,x′j , where βj,xj and βj,x′j are again the respective

coefficients of the two different inputs in the one-hot-encoding. Similar to the odds

ratio in logistic regression, the difference in the predicted value in linear regression,

is independent of the remaining variables Xk 6=j. In the case of categorical inputs

with a one-hot-representation, the time complexity for deriving the differences

in the predicted value for all inputs is O(F · S) due to the computations of the

differences of the coefficients. For binary input variables the time complexity is

O(1).

Non-linear models The direct interpretability of the model coefficients is a

special case of linear models. For non-linear models, e.g., neural network or support

vector machine, computing the conditional odds ratios for S input variables with

F possible values requires S · F model evaluations. This leads to a complexity of

O(F 2 · S2 · H) for a MLP with one hidden layer of size H and to O(F 2 · S2 · V )

for a support vector machine with V support vectors. In contrast to the linear

models, the conditional odds ratio in classification tasks, and the difference in the
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1: Input: (x1, . . . , xS), A1, . . . ,AS

2:

3: Cbw ← [AS(xS)]

4: for i← S − 1, 1 do

5: Cbw.append(Ai(xi)� Cbw.last())

6:

7: Cfw ← list()

8: R← list()

9: for i← 1, S do

10: if i == 1 then

11: R.append(Ai � Cbw.get(i+ 1))

12: Cfw.append(Ai(xi))

13: else if i == S then

14: R.append(Cfw.last()�Ai)

15: else

16: R.append(Cfw.last()�Ai � Cbw.get(i+ 1))

17: Cfw.append(Cfw.last()�Ai(xi))

18:

19: Output: R

Algorithm 3: Efficient computation of all possible changes in all input variables
in the CP model. This computation is the basis for efficiently computing the
conditional odds ratios.

predicted value in regression tasks, depends on the remaining unchanged inputs

and is thus different for every input data point.

Tensor Decomposition Models For the CP decomposition and the tensor

train decomposition, computing the conditional odds ratio or the conditional dif-

ference in the predicted value, can be performed in an efficient way. By substituting

Equation 3.18 with the tensor decomposition models, with a sigmoid activation

function, one derives

odds(Xj;xj → x′j) = exp(Ŷ(Xj = xj, Xk 6=j = xk)− Ŷ(Xj = x′j, Xk 6=j = xk)).

(3.19)
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1: Input: (x1, . . . , xS), A1,A2, . . . ,AS−1,AS

2:

3: Cbw ← [AS(xS)]

4: for i← S − 1, 1 do

5: Cbw.append(Ai(xi) · Cbw.last())

6:

7: Cfw ← list()

8: R← list()

9: for i← 1, S do

10: if i == 1 then

11: R.append(Ai · Cbw.get(i+ 1))

12: Cfw.append(Ai(xi))

13: else if i == S then

14: R.append(Cfw.last() ·Ai)

15: else

16: R.append(Cfw.last() ·Ai · Cbw.get(i+ 1))

17: Cfw.append(Cfw.last() ·Ai(xi))

18:

19: Output: R

Algorithm 4: Efficient computation of all possible changes in all input variables
in the tensor train model. This computation is the basis for efficiently computing
the conditional odds ratios.

Thus, all possible odds ratios can be computed efficiently, if the model outputs

Ŷ for all changes in the input can be computed efficiently. Obviously, the same

holds for the computation of the conditional difference in the predicted value in a

regression model.

Algorithm 3 shows the procedure of computing the model outputs for all

changes in the input for the CP decomposition. The input is a sample (x1, . . . , xS)

and the model parameters A1, . . . ,AS. The algorithm starts with a backward

chain of multiplying the indexed representations based on the given input, where

� denotes the elementwise vector product. All intermediate results of the product

chain are stored in the list Cbw. This loop has a time complexity of O(S ·R). Af-

ter the backward loop follows a forward loop. The intermediate results are again

stored in a list, which we denote Cfw. Additionally, at each step of the forward
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Method Complexity

Linear Model O(F · S)
CP O(F ·R · S)
tensor train O(F ·R2 · S)
Multilayer Perceptron O(F 2 · S2 ·H)
Support Vector Machine O(F 2 · S2 · V )

Table 3.2: Runtime complexities of calculating all conditional odds ratios for S
categorical inputs, with each having F different values.

chain, the outputs of changing the i-th input to any of the other possible values

are computed and stored in the list R. For the computation of the outputs the

intermediate results of the backward loop are utilized. The forward loop has a time

complexity of O(F · R · S). Thus, computing the conditional odds ratios for all

variables and a given input in the CP model has a time complexity of O(F ·R ·S).

Algorithm 4 shows the computation of the conditional odds ratios for the tensor

train model. The basic procedure is the same as for the CP decomposition. It

starts with a backward loop, where it performs the dot products between the

representations and stores the intermediate results in Cbw. Due to the matrix

representations in the tensor train, this results in a time complexity of O(S ·R2).

In every step of the backward loop, the output for all possible inputs is computed.

The dot product in line 14 between the vector and the third order tensor is applied

as a vector matrix product to each slice of the tensor. The second loop has a time

complexity of O(F ·R2 · S), which is also the complexity of the overall algorithm.

Table 3.2 summarizes the time complexities for computing the conditional odds

ratios of all inputs, for the different machine learning models. Logistic regression

has the least complexity. Additionally, linear models have the advantage, that the

conditional odds ratio is independent of the model input, and thus only needs to

be computed once for all input data. The non-linear models have squared terms

for F and S, which do not arise for the tensor models. Thus, the complexity of

the tensor models is in-between the complexity of linear and non-linear models.
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3.2.4 Mapping Continuous Inputs

The proposed model so far only works for a discrete input space. In the tensor

decompositions, latent representations for each discrete input value are indexed

and fused. In the CP decomposition, the representation at input i is a vector

ai = Ai(xi, :) depending on the discrete input variable xi. One possible approach

to modeling continuous inputs is to discretize the input space, and learn latent rep-

resentations for each discretization step. However, this approach comes with the

problem that it does not imply any smoothness on neighboring inputs. Although,

this makes it a powerful, highly non-linear model, it is prone to overfitting. Thus,

the model requires many more training examples to learn the smoothness implic-

itly. To introduce smoothness explicitly, and to extend the model to continuous

inputs, we use smooth mappings from the input space to the latent parameters of

the decomposition.

If we assume the discrete inputs to be represented in a one-hot-encoded vector,

with vi denoting the one-hot representation vector for xi, the indexing of the latent

representations can be written as a dot product between the representation matrix

and the one-hot vector, such that

ai = Aivi. (3.20)

This view gives rise to a natural extension to continuous input vectors vi ∈ Rd;

namely by learning a linear mapping from the input to the latent representation

of the tensor decomposition. We can futher generalize this mapping to

ai = f(vi), (3.21)

with f(·) being implemented by any, possibly non-linear, function approximator.

Instead of indexing the latent representation from a matrix, their values are com-

puted using the mapping function. To derive non-linear mappings we propose to

use a Gaussian kernel, such that

ai(r) = exp
(
−(µi,r − vi)TDi,r (µi,r − vi)

)
, (3.22)
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with µri ∈ Rd representing the centers and Dri ∈ Rd×d weighting the distance

from the centers in the d dimensional input space. The closer a data point is

to the center of a basis function, the higher is its activation. The centers of the

basis functions can be seen as landmarks in the input space. In this way, the

latent representation is modeled by the similarity of the input to the center of

the Gaussian kernel function. Thus, similar inputs induce similar representations.

The parameters of the basis function are optimized during training to yield optimal

regression results. Also a mixture of discrete and continuous inputs can easily be

modeled by applying the basis functions only to the continuous inputs, and learning

representation matrices for the discrete input variables.

For the tensor train decomposition, where the latent representations are not

vectors but matrices, the mapping can be applied in a similar manner, such that

Ai(r1, r2) = exp
(
−(µi,r1,r2 − vi)TDi,r1,r2 (µi,r1,r2 − vi)

)
, (3.23)

where Ai denotes the latent representation matrix of the i-th input and the scalars

r1, r2 index their elements.

In the proposed model vi is a vector of inputs. Thus, multiple input vari-

ables are grouped together to one dimension in the tensor decomposition. It is

also possible to model every input by its own dimension in the tensor decomposi-

tion. However, in many use-cases, such as multi-view learning, a priori knowledge

about groups of input variables is available, which can be exploited in the model

design. The grouping of input variables reduces the dimensionality of the tensor

decomposition, and thus the number of free parameters.

3.3 Related Work

Tensor models have been applied successfully in many application areas, such as

relational learning, signal processing, spatio-temporal analysis, brain-wave analy-

sis, and multilinear time invariant systems; see for example [106, 82, 131, 7, 112].

Most literature on tensor modeling is concerned with the decomposition of dense

tensors, i.e., most of the elements in the tensor are non-zero. The factorization of

sparse matrices has become popular in recommendation systems, especially due
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to its success in the Netflix challenge; see [83]. The decompostion of sparse three-

dimensional tensors found applications in the modeling of large knowledge bases,

such as Yago [137], DBpedia [3], or Freebase [22]. In these models, the elements

of the tensor represent all possible triple combinations of entities and relations in

the knowledge graph. Only elements that represent known facts from the knowl-

edge graph are set to one. These tensors are then decoposed by models such as

RESCAL, in order to predict missing linkes in the knowledge graph; see [106]. Our

approach builds uppon this line of research, by extending it to higher order tensors

and applying it in new domains.

Our proposed model is strongly related to factorization machines [120, 121],

which are polynomial models with factorized coefficients for the interaction terms.

Additionally to the polynomial interaction terms, factorization machines also in-

cludes linear terms. In the multi-way factorization machine, which models all input

interactions, the weights are factorized using the CP decomposition. However, for

many applications, including recommendation settings, it has been shown suffi-

cient, to model only pairwise interactions. In contrast to factorization machines,

our proposed model also uses other decompositions, such as the tensor train decom-

position. We further propose non-linear mapping functions for continuous inputs

and the grouping of multiple inputs into one factorization dimension. Whereas, in

factorization machines the mappings are linear and applied to each input variable

separately.

Our model also shows some connections to sum-product networks [114]. Sum-

product networks are a specific type of probabilistic graphical models, which are

designed and trained in a way, such that they comprise generative models with

tractable partition functions. If non-negative weights are assumed for tensor de-

compositions, the tensor decomposition function also forms a sum-product net-

work. The non-negativity constraint in sum-product networks allows for efficient

marginalization of the modeled joint probability. In our work, the tensor decompo-

sitions are trained in a discriminative way, which does not require marginalization

operations. In our work, the structure of the compute network is naturally deter-

mined by the form of the tensor decomposition, whereas in sum-product networks

the structure needs to be chosen based on the task, which can be a challeng-

ing design choice. Therefore, structure learning techniques have been proposed.
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Sum-product networks have been applied to tasks such as image completion and

language modeling; see [114, 31]. In [56], discriminative training of sum-product

networks for image classification has been discussed.

Another use of tensor decompostion models in supervised machine learning

is tensor regression. Tensor regression methods are linear regression models with

input data, which is naturally structured in a multidimensional array. The weights

of the tensor regression model are also represented in higher order tensors, which

are compressed using low-rank tensor decompositions. Tensor regression allows for

efficient modeling in settings where traditional methods are often insufficient due

to the complex structure of the data and the high input dimensionality. As tensor

regression learns a linear mapping and deals with dense input tensors, the approach

is fundamentally different from ours; see [171, 174]. Stoudenmire et al. [136]

proposed a tensor regression model which maps the data to a high-dimensional

tensor using non-linear transformations, before applying a tensor regression model.

The corresponding high dimensional weight tensor is then compressed using the

tensor train decomposition.

Our approach using the non-linear mappings shows some similarities to RBF-

networks which are able to approximate any non-linear function by using radial

basis functions. RBF-networks have been successfully applied to a number of

tasks including control engineering; see [26]. The main difference to our proposed

functional tensor decomposition models is, that RBF-networks learn one latent

representation for the entire input, and map it to the output; whereas, the con-

tinuous tensor decomposition models proposed in this work learn representations

for each input mode and join them using the tensor decomposition model. In this

way multi-way interactions are modeled explicitly.

3.4 Experiments

In this section, we evaluate the proposed tensor methods empirically. First, we

present experiments on standard classification tasks with discrete input features.

Second, we examine an application to modeling inverse dynamics for feedforward

robot control. This shows the effectiveness of the tensor decomposition models

when applied to continuous inputs.
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3.4.1 Discrete Input Classification

Datasets For evaluating the performance of the proposed tensor model with

discrete input variables, we apply the model to a number of standard classification

data sets. We perform our experiments on five different datasets from the UCI

data repository [40]. All datasets comprise classification tasks with categorical

input features. These datasets naturally build a tensor, which contains the class

for each possible input combination. However, during training only a subset of

the elements in the tensor are known. The order of the tensor corresponds to the

number of input variables. Table 3.3 summarizes the statistics of the five datasets.

The Car dataset contains features about cars, and the goal is to predict their

acceptability in the market, which is encoded in four different output classes.

The input consists of 6 categorical variables, where three of them can take four

different values and the other three can take three different values. Thus, the

total number of combinations is 1728. In the dataset, the classes for all possible

input combinations are provided, which means that the tensor is completley filled.

However, due to the split of training and test data, which is described in the next

paragraph, the model is still trained only on a subset of the tensor elements.

In the Nursery dataset, applications to nursery schools are classified into 5

different classes. The input tensor has the size 2 × 3 × 3 × 3 × 3 × 4 × 4 × 5,

which leads to 12960 possible configurations. Also in this dataset the full tensor

is provided.

The TickTacToe dataset comprises a binary classification task. The inputs are

the nine fields in the game, where each field can take one out of three different

values. The values are player1 or player2, if one of the two players occupied

the field, or blank if the field is empty. The dataset contains all possible end

configurations of the game. The goal is to predict, if player one has won the game.

The Votes dataset also contains a binary classification task. The goal is to

predict the voting of congressmen, given 16 binary input variables. This leads to

216 = 65536 possible combinations. The dataset only contains 435 data points.

Thus the input tensor is very sparse for this dataset.

In the Connect-4 dataset, data samples consist of game states from the game

connect-4. The game board is of size 6×7. Each field is described by a categorical
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Dataset # classes # dimensions # data points

Car 4 6 1728
Nursery 5 8 12960
TicTacToe 2 9 958
Votes 2 16 435
Connect-4 3 42 67557

Table 3.3: Meta information for the five classification datasets with categorical
input features from UCI data repository [40]

input variable, which can take three different values. The values are player1 if a

token of player one is placed on the field, player2 if a token of player two is placed

and blank if the field is not occupied. This setting leads to 342 possible board

configurations. However, not all configurations appear in practice, as the game

ends as soon as one player has four tokens in a row and the game board can only

be filled column-wise from bottom to top. The goal is to classify the outcome for

player one, which can be either win, loss or draw. The whole dataset consists of

67557 game states, where none of the player has won yet and the next move is not

forced.

Setting We split all datasets into 70 percent training and 30 percent test data.

We use additional 5 percent of the training data for finding the best hyper param-

eters. The splits are randomly repeated 10 times. The task is to predict the target

variable given the discrete inputs. We report the mean classification accuracy for

all models along with their standard deviations.

We compare the classification results of the CP decomposition model and the

tensor train decomposition model against state-of-the-art linear and non-linear

machine learning models, namely, logistic regression and support vector machine

with a Gaussian kernel. For these two models the input data is encoded in a

concatentation of one-hot feature vectors; one for each input variable. Logistic

regression is regularized using the L2 norm. The amount of regularization and

the penalty term for the support vector machine where tuned on the validation

set. We use the implementations from the Python package scikit-learn [27] for the

baseline models.
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We compare the baselines with the CP and the tensor train decomposition

approach described in this chapter. As the input tensors for the different datasets

have between 6 and 42 dimensions, the full Tucker decomposition is not tractable

for any of the datasets. For the datasets where the prediction task is a multi-class

classification problem we use two different approaches. The first is a one-versus-

rest approach, where a binary classifier is trained for each class, to distinguish data

points from this class from data points from other classes. In the prediction the

class label of the classifier with the highest confidence is picked as a result. The

second approach is using the multinomial classification as described in Section

3.2.2 and Equation 3.14, with multiple class tensors which are trained jointly

and normalized using the softmax function. We initialized the weights of the

CP decomposition uniformly between 0.9 and 1.1. The representation matrices

of the tensor train decomposition where initialized by the identity matrix. The

optimal rank of the tensor decomposition models was determined on the validation

set. For optimizing the tensor decomposition, we applied the Adam optimization

method [81] which has one hyperparameter, namely the initial learning rate. We

evaluate the performance of the model on the validation set after each epoch, and

stopped training, when the accuracy has not been increased within the last 10

epochs (early stopping). The tensor decompositions where implemented using the

Python package Theano [143] and Keras [35].

Results Figure 3.3 summarizes the results of the experiments. In all datasets

the support vector machine shows significantly better results than the logistic re-

gression model. This shows that there is a strong non-linear relationship between

the input variables and the class labels. In all five datasets the tensor decompo-

sitions reach about the same accuracy as the support vector machine. For the

multiclass tasks, it does not make a significant difference if the model is trained

using a one-versus-rest approach or the multinomial regression approach. Also,

in most cases the tensor train decomposition and the CP decomposition result in

very similar accuracy. In the TicTacToe dataset the tensor train decomposition

performs even worse than the CP decomposition. Thus, the additional parame-

ters of the tensor train decomposition have not shown to be advantageous for the

predictive modeling in these experiments.
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(a) Car dataset (b) Nursery dataset (c) TicTacToe dataset

(d) Votes dataset (e) Connect-4 dataset

Figure 3.3: Mean classification accuracy and standard deviation on the five differ-
ent datasets from the UCI data repository [40]

For the CP decomposition a rank of 10 has been found sufficient in all five

datasets. The optimal tensor train rank was determined at 10 for the Connect-4

dataset, and 5 for all other datasets. The optimal rank for the Bernoulli models

was the same as for the multinomial models. The best initial learning rate for

the Adam optimizer was found at 0.0001 for the tensor train decompositions, and

at 0.01 for the CP decompositions in all experiments. We found that limiting

the rank of the tensor decomposition models and early stopping was sufficient for

avoiding overfitting in the tensor decomposition models. It was not necessary to

apply additional regularization to the parameters.

The L2 regularization for the linear models has been found optimal at an inverse

strength of 0.01 for the car and nursery dataset. For TicTacToe and Connect-4

0.1 was found optimal and for the votes dataset 1.0 has been determined. The

optimal penalty terms for the support vector machine have been found to be 100

for all datasets except the Votes datasets, there a penalty term of 1 has been found
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Method Complexity

Logistic Regression O(S)
Support Vector Machine O(S · V )
CP O(S ·R)
tensor train O(S ·R2)

Table 3.4: Comparison of the runtime complexities of the different models.

to perform optimal. These high penalty terms led to a large amount of support

vectors. In the connect-4 dataset the number of support vectors for the first class

are 95 percent of the training data. In all other datasets, the number of support

vectors is also very high with 50 to 75 percent. Only in the nursery dataset the

number of support vectors is relatively small between 1 and 14 percent depending

on the class.

Table 3.4 compares the complexity of the different models. The logistic regres-

sion has a linear complexity in the number of input features, however, its modeling

capabilities are also limited to linear separating hyperplanes. For all models we

dropped the term F which describes the number of options for the categorical

inputs. As for a given data point only one value out of F is active at each input,

deriving the respective weight or the latent representation, can be implemented

in O(1), by indexing an array. In the comparison we assume an efficient imple-

mentation, which exploits this sparsity, for all models. Support vector machines

have a complexity of O(S · V ), where V are the number of support vectors. If the

support vector machine degenerates to having a large amount of support vectors,

the complexity of the model is dominated by this term. In this case the tensor

decompositions show a clear advantage. The complexity of the CP decomposition

is O(S · R) where R is the rank of the decomposition, which has been found to

be much less than the number of support vectors. Even in the tensor train de-

composition, where the rank appears squared in the complexity, the term is small

compared to the large number of support vectors.
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3.4.2 Application to Inverse Dynamics

In this section, we evaluate the extension of the tensor decomposition models to

continuous inputs on the problem of learning inverse dynamics. Within model-

based robot control, an inverse dynamics model is used to compute the necessary

joint torques of the robot’s motors for the execution of a desired movement. The

feedforward control command can be calculated using the rigid-body formulation

uFF = M(p)p̈ + F (p, ṗ), with p, ṗ, p̈ being vectors of joint positions, joint ve-

locities, and joint accelerations. However, in practice many nonlinearities such as

friction or actuator forces need to be taken into account. Thus, methods model-

ing uFF = f(p, ṗ, p̈) using non-linear regression techniques have shown superior

performance in inferring the required joint torques for feedforward robot control.

The parameters of the function f are estimated offline using collected trajectories

of the robot [38, 104, 99]. An additional feedback component is typically used to

prevent the accumulation of tracking errors.

In this section, we build upon the approach of decomposing sparse tensors and

apply it to inverse system identification. Our model exploits the inherent three-

way interaction of positions × velocities × accelerations. We derive a continuous

version of tensor decompositions by mapping the continuous inputs using basis

functions, specifically Gaussian kernels. The basis functions also imply smoothness

on the inputs, such that the model is able to generalize well, in spite of the extreme

sparsity. By using multivariate basis functions, we can group inputs such that

the dimensionality of the tensor decomposition can be reduced. In our inverse

dynamics model, we group the joint positions, velocities, and accelerations of all

degrees of freedom of the robot, resulting in a tensor of order three. This makes

the powerful Tucker decomposition applicable to the problem. We evaluate our

proposed method on an inverse dynamics dataset including movements from a

seven degrees of freedom SARCOS robot arm. We compare against other state-

of-the-art regression techniques for this task.

Inverse dynamics are traditionally modeled using the rigid-body formulation,

see [38]. However, general regression techniques such as locally weighted projection

regression (LWPR), Gaussian processes, and RBF-networks, have shown advan-

tageous for learning inverse dynamics; see [157, 118]. The topic was subject to
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... torques

...

positions

velocities

accelerations

Figure 3.4: Inverse dynamics model using a functional Tucker decomposition. The
output tensors and the representation matrices are replaced by functions (illus-
trated with dashed lines). The representations are computed given the continuous
inputs using Gaussian kernels.

a number of studies; see [28, 104]. Support vector regression has shown superior

performance for this task.

Continuous Tensor Model We describe a continous Tucker model for the

approximation of the joint torques, necessary to perform a movement of a robot

arm. Figure 3.4 shows the model schematically. We consider a robot with C ∈ N
degrees of freedom (DoF). In the following, we denote the vectors p, ṗ, p̈, describing

the desired positions, velocities, and accelerations for each of the C DoFs, as the

input variables x1,x2,x3 ∈ RC . The vector y ∈ RC describes the corresponding

joint torques. Each element of the vector y is modeled in a separate function.

We model the c-th joint torque y(c) = fc(x1,x2,x3) for c ∈ {1, . . . , C} using

functional tensor decomposition functions. Each input vector is modeled by one

dimension in a third order Tucker decomposition, which describe the joint torques.

The Tucker decomposition models the three-way interaction positions × velocities
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× accelerations with a limited rank R in each dimension, such that

fc(x1,x2,x3) =
R∑

r1,r2,r3

Gc(r1, r2, r3) · A1(x1, r1) · A2(x2, r2)

·A3(x3, r3).

(3.24)

A1 to A3 are functions, which map from the c-dimensional input to the latent rep-

resentations of the Tucker model. We model the representations using multivariate

Gaussian kernels, such that

Ai(xi, ri) = exp
(
−(µri − xi)TDri (µri − xi)

)
∀i ∈ {1, 2, 3},

(3.25)

with µri ∈ RC representing the centers and Dri ∈ RC×C weighting the distance

from the centers in the C dimensional input space. The closer a data point is to the

center of a basis function, the higher is its activation. Thus, the centers of the basis

functions can be seen as landmarks in the input space. All three-way interactions,

between the representations of the three input dimensions, are explicitly modeled

and weighted by the elements of the core tensor Gc.

As discussed in Section 3.2.2 we train the model, taking a maximum likelihood

approach. As we deal with a regression task we apply the mean squared error

cost function on the decompositions. We minimize Equation 3.8 using gradient

descent. In experiments, we found the stochastic optimization algorithm Adam

[81], which adopts the learning rate automatically for each parameter, to work

best for this task. The sampling of stochastic mini-batches for each update has

also shown advantageous for speeding up training.

We initialize the centers of the Gaussian kernel in a preprocessing step, using

three k-means clusterings [89], such that

Ji =
R∑
r=1

N∑
j=1

‖x(j)
i − µri‖2 (3.26)

are minimized for i ∈ {1, . . . , 3}. All matrices Dri are initialized with the iden-

tity matrix. The elements of the core tensors Gc are initialized randomly with
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a Gaussian distribution of mean zero and standard deviation 0.05. While train-

ing all parameters are further optimized. We implemented the model using the

computational Python library Theano [143] and Keras [35].

Dataset The dataset was introduced by [157].1 It contains data from a SARCOS

robot arm with seven degrees of freedom. The data was collected from the moving

robot arm at 100Hz and corresponds to 7.5 minutes of movement. The dataset

includes 21 input dimensions, consisting of 7 joint torques, 7 joint positions, 7 joint

velocities, and 7 joint accelerations. The whole dataset consists of 42482 samples.

We split the dataset randomly into 90 percent training and 10 percent test data.

Additional 5 percent of the training set where used as a validation set. The task

is to learn a model on the training data, which models the 7 joint torques, given

the positions, velocities and accelerations. The offline learned model can then be

applied in the forward controller of the robot. The dataset has been subject to

some studies on the topic; see [157, 118]. The regression task has been found

to be highly non-linear. Non-linear regression techniques outperformed the rigid-

body dynamics formulation by a large margin. The performance of the regression

techniques is evaluated on the test set, which includes unseen movements. We

repeated the random split 10 times and report the average results and the standard

deviation of multiple trials.

Baseline Methods We compare our model against various state-of-the art re-

gression techniques, modeling the function y = f(p, ṗ, p̈). The baseline models

we consider are linear regression, RBF-networks and support vector regression. In

previous studies support vector regression has shown the best results on this task.

For all baseline models a concatenated vector x = [p, ṗ, p̈] is built. The linear

regression model learns a linear mapping from the inputs to the outputs, such

that

y = Wx+ b. (3.27)

1http://www.gaussianprocess.org/gpml/data/
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Method DoF 1 DoF 2 DoF 3 DoF 4 DoF 5 DoF 6 DoF 7
LR 6.80 11.62 10.82 5.81 12.81 22.59 6.73
RBF-Net 2.64 1.79 1.01 0.41 4.07 3.91 1.17
SVR 0.88 0.67 0.43 0.15 1.04 0.72 0.34
RBF-Tucker 0.59 0.28 0.46 0.24 1.03 0.91 0.31
RBF-CP 1.64 1.14 0.61 0.32 1.30 1.17 0.50

Table 3.5: Normalized mean squared error for all 7 degrees of freedom in percent.

RBF-networks model the regression problem as

y(c) =
R∑
i=1

wi,c exp (−βi‖x− ci‖2) + bc. (3.28)

The parameters ci, βi, wi,c, and bc are learned using backpropagation. We initial-

ized the parameters ci with the centroids of a k-means clustering on the training

data, where R is the number of centroids.

Support vector regression [134] has shown state-of-the-art results in modeling

inverse dynamics. It predicts y as

y(c) =
N∑
j=1

(αj,c − α?j,c)kc(x(j),x) + bc, (3.29)

with k(x,x′) being a kernel function. In the experiments we use a Gaussian kernel.

αj and α?j are Lagrange multipliers, which are determined during optimization. In

our experiments we use the Python library scikit-learn [27].

Furthermore, we compare the functional Tucker model with a functional CP

model. For the functional CP model we replace the tensor decomposition structure

in Equation 3.24 with a CP decomposition, as shown in Equation 3.2.

Results We report the normalized mean squared error (nMSE) for the regression

task, which is defined as the mean squared error of all data points divided by the

variance of the target variable in the training data. Table 3.5 summarizes the mean

nMSE for all seven degrees of freedom in percent. In Table 3.6, the mean of all

seven degrees of freedom is shown. All results, as well as the standard deviation are
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Method Mean ± std in %
LR 11.03 ± 0.26
RBF-Net 2.14 ± 0.19
SVR 0.60 ± 0.28
RBF-Tucker 0.55 ± 0.24
RBF-CP 0.96 ± 0.22

Table 3.6: Normalized mean squared error in average for all 7 degrees of freedom
in percent. Mean and standard deviation of ten random data splits.
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Figure 3.5: Normalized mean squared error of the Tucker and CP model, in de-
pendency of the embedding rank.

referring to the average result of 10 random data splits. The performance of the

regression techniques varies across the DoFs. The linear model reaches an nMSE

of 11.03% in average. The nonlinear RBF-network performs much better with an

nMSE of 2.14% in average. The number of of hidden neurons for the RBF-network

was set to 1000. With larger numbers the predictive performance did not increase.

The support vector regression model yields a very good result of 0.60%. Here, we

set the parameter C to 600 and ε to 0.1. All hyperparameters were evaluated on

a separate validation set. Our proposed continuous Tucker model resulted in a

slightly better nMSE of 0.55%. Especially, for the first two DoFs the continuous

Tucker model performs significantly better than support vector regression. For

the other DoFs the results of support vector regression and continuous Tucker

decomposition are very close to each other. The parameter efficient continuous CP

model reaches an nMSE of 0.96% in average. Figure 3.5 shows the performance

of the two continuous tensor decomposition models in dependence of the rank of
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Method training time prediction time
SVR ∼ 5.1 h ∼ 3.0 ms
RBF-Tucker ∼ 1.9 h ∼ 0.7 ms

Table 3.7: Computation time for one DoF.

the decompositions. For the Tucker model, the performance converges at a rank

of 30 and for the CP model at a rank of 40. It is also notable that both methods

already perform relatively well with a very small rank of 5. The nMSE of the

Tucker model is 2.09% with a rank of 5 and the nMSE of the CP model is 2.43%.

Both continuous tensor models show clearly better results than RBF-networks.

This indicates that the explicit modeling of the three-way interaction, yields a

significant improvement.

Table 3.7 shows the training and prediction time of support vector regression

and the continuous Tucker model for one DoF on a single core of a Intel Core I5-

4300M 2.6 GHz CPU. The training time until convergence is more than 2.5 times

faster for the continuous Tucker model, and the prediction of a single datapoint

is more than 4 times faster. Especially the speedup in prediction is important in

order to apply the algorithm at a high sampling rate to real time control. The high

computational cost of the SVR is caused by the fact that more than 90 percent of

the training data points are support vectors.

3.5 Conclusion

We have shown how tensor decompositions can be applied to supervised machine

learning by mapping the data to a sparse and high-dimensional tensor. This ap-

proach can be easily applied to regression and classification tasks. Any tensor

decomposition can be used for the model, as long as it scales to the order of the

tensor. As latent representations are learned for all possible values of the input

variables, the approximated function can be highly non-linear. We discussed the

runtime and space complexity, which turned out to be advantageous over con-

ventional non-linear machine learning models. We also presented an algorithm

for efficiently deriving interpretability measures, such as the odds ratio. In ad-
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dition, we discussed the modeling of differently distributed target variables, such

as Gaussian, Bernoulli, Poisson, and the categorical distribution. To obtain a

categorical distribution over the class labels describing the overall system state,

multiple class tensors are jointly decomposed, and representations between the

decompositions can be shared for some decompositions. Our experiments on a

number of classification datasets with discrete input variables have shown that the

tensor decompositions reach similar performances as support vector machines.

Furthermore, we proposed to augment the tensor decompositions with basis

functions so as to allow for continuous input variables. In this way, a continuous

version of a tensor decomposition can be derived. Representations for each tensor

mode are induced through the basis functions and fused by the tensor model. The

parameters of the basis functions can be learned through backpropagation. In the

experiments section, we applied a tensor model based on the Tucker decomposition

to the modeling of inverse dynamics. Our proposed model exploits the inherent

three-way interaction of positions × velocities × accelerations. The grouping of

multiple input variables into one tensor dimension makes the powerful Tucker

model applicable. Experiments on an inverse dynamics dataset, derived from a

seven degrees of freedom robot arm, show promising results from our proposed

model for the application of learning inverse dynamics. The proposed continuous

Tucker model outperforms RBF-networks, and even support vector regression,

which has shown state-of-the-art performance on this task.

Our extension of tensor decomposition models to continuous inputs enables

a wide range of applications. In particular, if an inherent multi-way structure

exists in the data, continuous tensor models can be advantageous over traditional

techniques by explicitly modeling the multi-way interaction. The experimental

results on both datasets show the effectiveness of our approach and indicate the

great potential of sparse tensor models for supervised machine learning.



Chapter 4

Visual Relationship Detection

with Learned Semantic Models

In this chapter, we consider the multi-modal problem of fusing semantic and sen-

sory information for the task of visual relationship detection. We propose two

models, both combining tensor decompositions and object detection in different

ways. Experiments on a recently released dataset for visual relationship detection

show promising results for this novel direction of research.

The contributions of this chapter are published in:

[10] Stephan Baier, Yunpu Ma, and Volker Tresp. Improving visual relation-

ship detection using semantic modeling of scene descriptions. International

Semantic Web Conference, 2017

[11] Stephan Baier, Yunpu Ma, and Volker Tresp. Improving information ex-

traction from images with learned semantic models. International Joint

Conference on Artificial Intelligence, 2018

Section 4.1, 4.2, 4.3 are taken from [10] with some edits and extensions. Section

4.3.3 has been taken and extended from Section 3.2 in [11]. Sections 4.4, 4.5, and

4.6 have been partly taken and edited from the Sections 2, 4, and 5 in [10]. All

figures from this chapter, have been published with minor modifications in [10]. I

am the main author of the papers [10] and [11]. The papers have been written by

me, and all the experiments have been conducted by me.
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4.1 Introduction

Extracting semantic information from unstructured data, such as images or text,

is a key challenge in artificial intelligence. Semantic knowledge in a machine-

readable form is crucial for many applications, such as search, semantic querying,

and question answering.

Novel computer vision algorithms, mostly based on convolutional neural net-

works (CNN), have enormously advanced over the last years. Standard applica-

tions are image classification and, more recently, also the detection of objects in

images. However, the semantic expressiveness of image descriptions that consist

simply of a set of objects is rather limited. Semantics is captured in more meaning-

ful ways by the relationships between objects. In particular, visual relationships

can be represented by triples of the form (subject, predicate, object), where two

entities appearing in an image are linked through a relation (e.g. man-riding-

elephant, man-wearing-hat). Figure 4.1 illustrates the task of visual relationship

detection on an example. The input data is a raw image, and the output are a

number of detected objects plus their relationship described as semantic triples.

Extracting triples, i.e. visual relationships, from raw images is a challenging

task, which has been a focus in the Semantic Web community for some time

[5, 21, 16, 152, 170, 128] and recently also gained substantial attention in main

stream computer vision [126, 34, 30, 91]. First approaches used a single classifier,

which takes an image as input and outputs a complete triple [126, 34]. However,

these approaches do not scale to datasets with many object types and relationships.

Due to the cubic combinatorial complexity of possible triples it is likely that not all

relevant triples do appear in the training data, which makes training a predictive

model difficult. Recently, [91] proposed a method which classifies the visual objects

and their relationships in independent preprocessing steps, and then derives a

prediction score for the entire triple. This approach was applied to the extraction

of triples from a large number of potential triples. In the same paper, the first

large-scale dataset for visual relationship extraction was published.

The statistical modeling of graph-structured knowledge bases, often referred

to as knowledge graphs, has recently gained growing interest. The most popular

approaches learn embeddings for the entities and relations in the knowledge graph,
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Input Image

Output

person-on-motorcycle motorcycle-has-wheel person-wear-helmet person-wear-jacket

Figure 4.1: Input to the model is a raw image. The task of visual relationship
detection is to detect the objects in the image and generate semantic triples, which
describe the scene. Images taken from the Stanford Visual Relationship dataset
[91].

by decomposing the three-dimensional adjacency tensor of the knowledge graph

with limited rank. Based on the learned representations from the tensor decom-

position, a likelihood for every possible triple can be derived. This approach has

mainly been used for link prediction, which tries to predict missing triples in a

knowledge graph. A recent review paper can be found in [106].

In the approaches described in this chapter, statistical knowledge base models,

based on tensor decompositions, are used to support the task of visual relationship

detection. The semantic model helps to interpret a visual scene. For example if

the visual model detects a motorbike, it is very likely that the triple motorbike-

has part-wheel is true, as all motorbikes have wheels. We integrate such prior

knowledge by fusing the visual models with learned semantic models. In particu-

lar, we propose two different approaches, both building on probabilistic semantic

machine learning models.

The first model uses a Bayesian fusion approach for combining visual object

detection methods with a separate trained probabilistic semantic prior. Incorpo-
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rating a probabilistic semantic prior especially helps in cases where the prediction

of the classifier is not very certain, and for the generalization to unobserved triples

in the training set. A purely visual model, which only processes the raw image

data, is combined with a semantic prior. For combining the semantic prior with

the visual model we employ a probabilistic approach which can be divided into a

semantic part and a visual part. We show how the semantic part of the proba-

bilistic model can be implemented using standard link prediction methods using

tensor decompositions, and the visual part using recently developed computer vi-

sion algorithms. We train our semantic model by using absolute frequencies from

the training data, describing how often a triple appears in the training data. By

applying a latent variable model, we are able to also generalize to unseen or rarely

seen triples, which still have a high likelihood of being true, due to their similarity

to other likely triples. For example if we frequently observe the triple person-

ride-motorcycle in the training data we can generalize also to a high likelihood

for person-ride-bike due to the similarity between motorcycle and bike, even if the

triple person-ride-bike has not been observed or just rarely been observed in the

training data. The similarity of motorcycle and bike can be derived from other

triples, which describe, for example, that both have a wheel and both have a

handlebar.

The second model we propose, is a conditional multi-way model which is in-

spired by statistical link prediction methods. This model does not include an

explicitly trained prior of the semantic triples. The prior is rather captured in

the learned entity representations of a multi-way neural network, which is applied

subsequently to the output of the visual model. Thus, the conditional multi-way

model can be trained in a purely feedforward manner. Similar to the first model,

we also reach a generalization to unobserved or rarely observed triples. This is

achieved by learning latent representations for all involved entities in the con-

ditional multi-way model. Given the latent representations for a pair of visual

objects which have been detected in the image, we predict the relationship among

them using the conditional multi-way model. As similar entities based on their

occurrence in the training data should get similar latent representations, this helps

to generalize to triples which are reasonable, but have never been observed in the

training data.
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We conduct experiments on the Stanford Visual Relationship dataset recently

published by [91]. We evaluate the models on the task of predicting semantic

triples and the corresponding bounding boxes of the subject and object entities

detected in the image. For the Bayesian fusion model, we compare various tensor

decomposition models as a semantic prior. Our experiments show, that including

the semantic model improves on the state-of-the-art result in the task of mapping

images to their associated triples. The experiments further show that the con-

ditional multi-way model, especially in the task of predicting unobserved triples,

achieves performance that is comparable to the Bayesian fusion model.

This chapter is structured as follows. Section 4.2 gives an overview over the

most important background for the chapter. In particular, we discuss various ten-

sor decomposition models for link prediction and approaches to image classification

and object detection. In Section 4.3, we describe the Bayesian fusion model and

the conditional multi-way model. Section 4.5 contains the experimental evaluation.

Finally, we conclude our work with Section 4.6.

4.2 Background Methods

Our proposed models join ideas from two areas, computer vision and statistical

relational learning for semantic modeling. Both fields have developed rapidly in

recent years. In this chapter, we discuss relevant work from both areas.

4.2.1 Statistical Link Prediction

A number of statistical models have been proposed for modeling graph-structured

knowledge bases often referred to as knowledge graphs. Most methods are designed

for predicting missing links in the knowledge graph. A recent review on link

prediction can be found in [106]. A knowledge graph G consists of a set of triples

G = {(s, p, o)i}Ni=1 ⊆ E × R × E . The entities s, o ∈ E are referred to as subject

and object of the triple, and the relation between the entities p ∈ R is referred to

as predicate of the triple.

Most popular link prediction methods can be seen as tensor decompositions

on the adjacency tensor X ∈ R|E|×|R|×|E| of the graph G. The adjacency tensor is
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filled as

X (s, p, o) = Π((s, p, o) ∈ G) ∀ s, o ∈ {1, . . . , |E|} p ∈ {1, . . . , |R|} (4.1)

where Π(·) is one, if the condition ((s, p, o) ∈ G) is true. The adjacency tensor X
is approximated by X̂ ∈ R|E|×|R|×|E| which is derived through a decomposition of

X with limited rank. In the following, we describe the decompositions, which are

used in this chapter.

DistMult DistMult [166] scores a triple by building the tri-linear dot product

of the embeddings, such that

X (s, p, o) ≈ 〈A(s, :),R(p, :),A(o, :)〉 =
r̃∑
r=1

A(s, r)R(p, r)A(o, r), (4.2)

with A ∈ R|E|×r̃ containing the latent representations for all entities and R ∈
R|R|×r̃ containing the latent representations for all relations. The dimensionality r̃

of the embeddings, also called rank, is a hyperparameter of the model. Note, that

this model is a CP decomposition, with shared factor matrices for the first and

third dimension. Thus, DistMult is not able to model non-symmetric relations.

ComplEx ComplEx [147] extends DistMult to complex valued vectors for the

embeddings of both, relations and entities. The decomposition is

X (s, p, o) ≈ Re(〈A(s, :),R(p, :),A(o, :)〉)

= 〈Re(A(s, :)), Re(R(p, :)), Re(A(o, :))〉

+ 〈Im(A(s, :)), Re(R(p, :)), Im(A(o, :))〉

+ 〈Re(A(s, :)), Im(R(p, :)), Im(A(o, :))〉

− 〈Im(A(s, :)), Im(R(p, :)), Re(A(o, :))〉,

(4.3)

with A ∈ C|E|×r̃ containing the latent representations for all entities and R ∈
C|R|×r̃ containing the latent representations for all relations. Re(·) and Im(·)
denote the real and imaginary part, respectively, and · denotes the complex con-

jugate. By allowing complex numbers for the embedding of the entities, ComplEx



4.2 Background Methods 83

is able to model also non-symmetric relations.

Multi-way NN The multi-way neural network [41, 106] concatenates all em-

beddings and feeds them to a neural network of the form

X (s, p, o) ≈ βT tanh (W [A(s, :),R(p, :),A(o, :)] + b1) + b2, (4.4)

where [·, ·, ·] denotes the concatenation of the embedding vectors. The prediction

is derived using a Mulilayer Perceptron with the weight matrix W ∈ R3r̃×z, the

weight vector β ∈ Rz, and the bias terms b1 ∈ Rz, and b2 ∈ R.

RESCAL The tensor decomposition RESCAL [107] learns vector embeddings

for entities and matrix embeddings for relations. The score function is

X (s, p, o) ≈ A(s, :) ·R(:, p, :) ·A(o, :)T , (4.5)

with · denoting the dot product, with A ∈ R|E|×r̃ containing the latent represen-

tations for all entities and R ∈ Rr̃×|R|×r̃ containing the latent representations in

for of matrices for all relations. RESCAL is a Tucker-2 decomposition with shared

factor matrices at the first and third dimension.

Typically, the models are trained using a Bernoulli or a ranking cost function

[106]. For our task of visual relationship detection, we will train them slightly

differently using a Poisson cost function for modeling count data, as we will show

in Section 4.3.2. Another popular link prediction method is TransE [23], however

it is not appropriate for modeling count data; thus we are not considering it in

this work.

4.2.2 Image Classification and Object Detection

Computer vision methods for image classification and object detection have im-

proved enormously over the last years. Convolutional neural networks (CNN),

which apply convolutional filters in a hierarchical manner to an image, have be-

come the standard for image classification. In this work, we use the following two

methods.
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VGG The VGG-network is a convolutional neural network, which has shown

state-of-the-art performance at the Imagenet challenge [133]. It exists in two

versions, i.e. the more commonly used VGG-16 with 16 convolutional layers, and

VGG-19 with 19 convolutional layers. The model is especially popular due to its

uniform architecture. All convolutional layers throughout the network perform

a 3 × 3 convolution, and all pooling layers perform 2 × 2 max pooling. Each

convolution layer is followed by a rectified linear unit (Relu) activation function.

The input size to the network is 3 × 244 × 244, which means that the images

should have three color channels and a size of 244×244. Thus images are typically

scaled and warped to fit this format. In total, the VGG architecture has about

140 million parameters. As networks of this size require many training data and

enormous computing resources, models with pre-trained parameters have been

made available. The pretrained models are typically trained on the Imagenet

dataset which consists of around 1.2 million images and 1000 classes. When the

VGG network is applied to a new dataset, only the output layer, which maps to

the classes of the specific task, is trained entirely. The last few layers of the pre-

trained network are typically fine-tuned using a small learning rate. VGG is also

a popular model for deriving image features. These features are taken from the

activation of the second last layer, which has a size of 4096.

RCNN The region-based convolutional neural network (RCNN) [59] is a popu-

lar object detection method. Given an input image, it proposes bounding boxes,

which show visual objects in the image, and their classification. The output is

derived in multiple successive steps. First, a selective search algorithm is applied,

which proposes around 2000 candidate regions in the image [151]. Selective search

gradually combines regions of different scales based on their similarity. The simi-

larity measure takes into account the color, the texture, the size, and the position

of the regions. This procedure works in a purely unsupervised manner. The de-

rived regions from the selective search algorithm are then classified into N + 1

classes. Therefore, a classifier has to be trained for these particular classes. The

classes are the N classes of the dataset plus a background class. By integrating the

background class many regions are filtered out. The regions are further filtered us-

ing a greedy non-maximum suppression. This method rejects those regions, which
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object area - robj

predicate area - rpred

subject area - rsub

s-person
p-next_to
o-surfboard

Figure 4.2: The subject and object of the triple relate to two regions in the image,
and the predicate relates to the union of the two regions. Image taken from the
Stanford Visual Relationship dataset [91].

have a large overlap with a higher scoring region for each class. As a result, a small

set of region proposals is derived. A regression model based on CNN features of

an image region is finally applied to predict adjustments to the bounding boxes.

With these adjustments tighter bounding boxes can be reached. There are two

extensions to RCNN, which are mainly faster to compute [58, 119]. However, in

our experiments we use the original RCNN, for a fair comparison with [91]. Our

focus is on improving visual relationship detection through incorporating semantic

modeling rather than on improving computer vision techniques.

4.3 Visual Relationship Detection

In this section, we define the problem of visual relationship detection and describe

our proposed models.

4.3.1 General Setting

The training data consists of images and corresponding sets of semantic triples

which describe the image. Each semantic triple consists of a subject s ∈ E , a pred-

icate p ∈ R, and an object o ∈ E , where E is a set of indices which represent visual

concepts (e.g. man, horse) and R is a set of indices which represent relationships

between visual concepts (e.g. riding, next to). Each triple (s, p, o) is associated

with image regions rsub, rpred, robj which are described by the coordinates of the

bounding boxes containing the respective image region. Thereby, rsub describes

the region in the image which shows the subject, and robj describes the region

which contains the object. The region rpred is defined as the union of the regions
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Figure 4.3: The pipeline for deriving a ranked list of triples. Images taken from
the Stanford Visual Relationship dataset [91].

rsub and robj. Each sample of the training data is represented as a six-tuple of the

form (rsub, rpred, robj, s, p, o). Figure 4.2 shows an example of a triple and its cor-

responding bounding boxes. During training, all triples and their corresponding

areas are observed. After model training, the task is to predict the most likely

tuples (rsub, rpred, robj, s, p, o) for a given image.

The methods proposed in this work follow the processing pipeline illustrated in

Figure 4.3. Input to the pipeline is a raw image and output a ranked list of triples,

each with their corresponding bounding boxes. First, the objects in the image are

detected using a RCNN model. The RCNN results in a list of object regions which

is of variable length. Then all possible pairs of the detected bounding boxes are

built. Finally, for each pair of bounding boxes a corresponding triple is predicted.

The predicted triples are ranked according to their confidence score. Finally, the

output is a ranked list of triples, which are associated with the regions detected by

the RCNN. The procedure for deriving the bounding box pairs is identical to the

one used in [91]. In our work, we propose two different models for the last step,

which is predicting the triples given the pairs of detected bounding boxes.

4.3.2 Bayesian Fusion Model

The triples are predicted, given the detected region proposals by the RCNN. Our

first approach, the Bayesian fusion model, can be divided into a visual model, and

semantic model, which are combined in a Bayesian framework. Figure 4.4 shows

the basic concept of the approach.

Visual model The visual model consists of two convolutional neural networks,

with an VGG-16 architecture [132]. The first CNN which we denote as CNNe takes
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Figure 4.4: In the Bayesian fusion model, the visual component is fused with a
semantic prior. Images taken from the Stanford Visual Relationship dataset [91].

as input a subregion of an image, which is defined by a bounding box, and outputs

a probability distribution over the visual concepts in E . The second CNN, which

we denote as CNNr takes the union region of two bounding boxes as an input,

and outputs a probability distribution over the relationships in R. While training,

both CNNs use the regions (bounding boxes) provided in the training data (rsub,

rpred, and robj).

During inference, the CNNs are applied to the regions which are derived from

the RCNN. As shown in the processing pipeline in Figure 4.3, the next step is to

build all possible pairs out of the regions, which have been detected by the RCNN.

In each pair, we denote the first region as rsub and the second as robj. We apply

CNNe to both regions separately, to derive the classification scores p(s|rsub) =

CNNe(rsub) and p(o|robj) = CNNe(robj). Then the union of the regions rsub and

robj which we denote as rpred, is fed to CNNr to derive the score p(p|rpred) =

CNNr(rpred).

Probabilistic Semantic Model In the probabilistic semantic model, we train

a latent variable model based on tensor decomposition in the following way. In

contrast to typical knowledge graph modeling, we do not only have one global

graph G, but an instance of a knowledge graph Gi for every image i. Each triple

which appears in a certain image can be described as a tuple (s, p, o, i). The link
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prediction model shall reflect the likelihood of a triple to appear in a graph instance,

as a prior without seeing the image. By summing over the occurrences in the i-th

dimension, we derive the absolute frequency of triples (s, p, o) in the training data,

which we denote as ys,p,o. We build a tensor X ∈ R|E|×|R|×|E| and set its elements as

X (s, p, o) = ys,p,o. We aim to model X using the link prediction methods described

in Section 4.2.1, which approximate the tensor with a decomposition, where X ≈
X̂ . As we are dealing with count data, we assume a Poisson distribution on the

model output X̂ . The log-likelihood for a triple is

log p(X (s, p, o)|(s, p, o),Θ) = X (s, p, o) log φ(X̂ (s, p, o))

−φ(X̂ (s, p, o))− log(X (s, p, o)!),
(4.6)

where Θ are the model parameters of the link prediction method and φ is the

activation function for the Poisson distribution, namely

φ(X̂ (s, p, o)) = exp(X̂ (s, p, o)). (4.7)

We train the model by minimizing the negative log-likelihood. In the objective

function the last term log(X (s, p, o)!) can be neglected, as it does not depend

on the model parameters. Thus, the cost function for the whole training dataset

becomes

cost =
∑

(s,p,o)

φ(X̂ (s, p, o))−X (s, p, o) log φ(X̂ (s, p, o)). (4.8)

Using this framework, we can train any of the link prediction methods described

in Section 4.2.1, by plugging the prediction into the cost function and minimizing

the cost function using a gradient-descent based optimization algorithm. In this

work, we use Adam, a recently proposed first-order gradient-based optimization

method with adaptive learning rate [81].

Probabilistic Joint Model In the last step of the pipeline in Figure 4.3, which

we denote as ranking step, we need to combine the scores from the visual model

with the scores from the semantic model. For joining both, we propose a proba-

bilistic model for the interaction between the visual and the semantic part. Figure

4.5 visualizes the joint model for all variables in a probabilistic graphical model.
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Figure 4.5: The probabilistic graphical model describes the interaction between
the visual and the semantic part in the Bayesian fusion model. We assume the
image regions rsub, rpred and robj to be given by the RCNN, and infer the underlying
s, p, o triples.

The joint distribution factors as

p(s, p, o, rsub, rpred, robj) = p(s, p, o) · p(rsub|s) · p(rpred|p) · p(robj|o). (4.9)

We can divide the joint probability of Equation 4.9 into two parts. The first part

is p(s, p, o), which models semantic triples. The second part is p(rsub|s) ·p(rpred|p) ·
p(robj|o), which models the visual part given the semantics.

Following [144, 146], we derive the joint probability of the triples p(s, p, o)

using a Boltzmann distribution. With the energy function E(s, p, o) =

− log φ(X̂ (s, p, o)) the probability for the triples becomes

p(s, p, o) =
φ(X̂ (s, p, o))∑

s′∈E
∑

p′∈R
∑

o′∈E φ(X̂ (s′, p′, o′))
. (4.10)

The visual models described in the previous section, model the probabilities

p(s|rsub), p(p|rpred), and p(o|robj). By applying Bayes rule to Equation 4.9 and

conditioning on the image regions we get

p(s, p, o|rsub, rpred, robj) ∝ p(s, p, o) · p(s|rsub) · p(p|rpred) · p(o|robj)

p(s) · p(p) · p(o)
. (4.11)

We derive the additional terms of the denominator p(s), p(p), p(o) through
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marginalization of p(s, p, o) and Laplace smoothing, such that

p(s) =

∑
p∈R

∑
o∈E p(s, p, o) + α

α + 1
, (4.12)

p(p) =

∑
s∈E
∑

o∈E p(s, p, o) + α

α + 1
, (4.13)

p(o) =

∑
s∈E
∑

p∈R p(s, p, o) + α

α + 1
, (4.14)

with α being a hyperparameter. For each image, we derive the region candidates

rsub, rpred, robj from the RCNN. The final prediction score for each triple given the

bounding boxes is

p(s, p, o|rsub, rpred, robj) ∝ φ(X̂ (s, p, o))
CNNe(rsub) · CNNr(rpred) · CNNe(robj)

p(s) · p(p) · p(o)
.

(4.15)

For each pair of bounding boxes, we pick the triple with the highest probability

as a final prediction.

4.3.3 Conditional Multi-way Model

We now propose an alternative model for the task of visual relationship detection,

which does not include an explicitly trained prior. It rather learns the semantic

prior implicitly in its latent representations during training. This model builds

upon the same visual pipeline as the Bayesian Fusion model, but uses another

model to derive the final ranking of image related triples.

We again assume the candidate boxes being detected by the RCNN, and predict

semantic triples for all possible pairs of bounding boxes. For a bounding box

pair (rsub, robj), we derive the subject s and the object o by applying the CNN

classifier CNNe to the respective regions, which provides us with the probabilities

p(s|rsub) = CNNe(rsub) and p(o|robj) = CNNe(robj).

To derive a triple from the pair of classified bounding boxes, we need to infer

the relationship between the two visual objects. We propose a multi-way model

conditioned on a specific s, o, and rpred, which is again the union of the regions
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(rsub and robj), to derive the corresponding p. As p is sampled from a categorical

random variable, we model the probability distribution over all possible p using

the softmax function, such that

p(p|s, o, rpred) =
exp(fp(s, o, rpred))∑
p̃ 6=p exp(fp̃(s, o, rpred))

. (4.16)

We implement the function fp(s, o, rpred) with a multi-way neural network model

as introduced in Section 1.2.3 and Equation 1.22. The multi-way neural network

learns latent representations for the input entities such that,

fp(s, o, rpred) = wT
p tanh(W

[
as,ao, erpred

]
+ b) + bp, (4.17)

with as,ao ∈ Rd being latent vector representations for the visual concepts,

erpred ∈ Rd being a latent representation vector for the image patch rpred, and

[·, ·, ·] denoting the concatenation operation. For as and ao the representations are

learned directly and stored in a lookup table. For deriving a representation of the

predicate region rpred, we model erpred = Mhrpred , where hrpred is the activation of

the second last layer of the VGG network CNNr with the image region rpred as in-

put. The matrix M maps the latent representation of the VGG network to the rank

of the multi-way model. The probabilities for p are derived by applying a multilayer

perceptron with the additional parameters W ∈ R3d×z,wp ∈ Rz, b ∈ Rz, bp ∈ R.

This is a forward model which can be trained end-to-end.

To derive a single prediction for each pair of bounding boxs, we pick the

subject ŝ = arg max p(s|rsub), object ô = arg max p(o|rsub) and predicate p̂ =

arg max p(p|rpred, ŝ, ô) with the highest probabilities. After deriving ŝ, p̂, and ô

we derive the final confidence score for the triple (ŝ, p̂, ô) given the input regions

(rsub, rpred, robj) as

p(ŝ, p̂, ô|rsub, rpred, robj) = p(ŝ|rsub) · p(ô|robj) · p(p̂|rpred, ŝ, ô). (4.18)

Figure 4.6 shows the model schematically. The visual part from the raw image

to the pairs of bounding boxes is identical to the Bayesian fusion model. The

next step shows the forward processing of the conditional multi-way model, which
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Figure 4.6: The processing pipeline for the conditional multi-way model. The
difference to the Bayesian fusion model is in how the triples are derived given the
region pairs. Images taken from the Stanford Visual Relationship dataset [91].

derives first ŝ and ô and then the predicate p̂. Finally, one triple is derived for each

pair of bounding boxes and the triples are ranked according to their confidence

score.

4.4 Related Work

Lu et al. [91] The Stanford computer vision group where the first proposing

a model to large scale visual relationship detection. The model was applied to a

dataset containing 700000 possible triples. The approach of Lu et al. can be seen

as a multi-modal approach as they use the information provided in the annotated

image dataset, plus word embeddings which are derived from a word2vec model

trained on an external text corpus. The model consists of a visual module and

a language module. The visual module uses an RCNN for object detection to

derive candidate regions. Further, a VGG-16 is applied to the detected regions

for obtaining object classification scores for each region. A second VGG, which

classifies relationships, is applied to the union of pairs of regions. This vision

module is identical to the approach we use in our models. The difference of our

models to the model of Lu et al. is in how the triple ranking is derived. Our

conditional multi-way model has some similarities with this approach, since it

also predicts the predicate of a triple given the representations of the subject and

the object. One difference is, that in our conditional multi-way model we also

integrate the latent representation of the image region of the predicate. The other

main differences are that in our model the embeddings for subject and object

are learned entirely during training, without requiring any external data sources.

Further, we implemented the multi-way model as a multilayer perceptron, where as
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in Lu et al. it is implemented using a linear model. In [91] the relationship between

two entities are predicted given the word embeddings of the detected subject and

object. Lu et al. add a regularization term, which enforces to give similar scores

to similar triples. The similarity between triples is measured by the sum of the

cosine distances between the word2vec embeddings of the visual objects and the

relations of two triples.

Visual TransE [23] More recently, Zhang et al. [23] have published an approach

which combines a visual model with the translational embedding model [23] for

the task of visual relationship detection. This approach also builds upon an object

detection method, which derives region proposals for objects. Based on the image

regions, a feature extraction method is proposed which extracts the class of the

object in the region, the location of the region, and a visual feature vector derived

from a CNN. The learned visual features are then projected to a relation space,

where the translational embedding model is applied to predict the most likely

relation between two visual objects.

Earlier Work Some earlier work on visual relationship detection was concerned

with learning spatial relationships between objects, however with a very limited

set of relations consisting of four spatial directions [53, 63]. Other related work at-

tempted to learn actions and object interactions of humans in videos and images

[122, 168, 94, 64, 167, 116]. Full visual relationship detection has been demon-

strated in [126, 34, 30], however, also with only small amounts of possible triples.

In [30], an ontology over the visual concepts is defined and combined with a neural

network approach to maintain semantic consistency. In the Google Knowledge

Vault project [41], semantic triples have been extracted from raw text. The ap-

proach fuses the confidence scores from the text-based extraction methods with

the scores derived from a factorization model of existing knowledge bases. In-

corporating the probabilistic semantic prior significantly improved the retrieved

results.

Related Tasks Visual relationship detection is also related to visual caption

generation, which recently gained considerable popularity among the deep learning
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community. In visual caption generation, an image caption consisting of natural

text, is generated given an input image, see e.g. [164]. The main difference to

visual relationship detection is, that the output in visual relationship detection is

more structured (a set of triples versus natural text) and thus it is more appro-

priate for further automatic processing, e.g. semantic querying, whereas natural

text is understandable by humans, but difficult to process by machines. Another

important task, which is related to visual relationship detection, is visual question

answering, see e.g. [159, 54, 163]. The main difference is that only the information

necessary to answer a specific query, e.g. ”What is the color of the shirt?” is ex-

tracted from the image. In visual relationship detection, all semantic information

for a scene is derived, and the querying is applied in a post-processing step.

Cognitive Interpretation In [144, 146, 145], the connection of tensor decom-

position models to the perception and memory system in the human brain has been

discussed. The human brain needs to interpret information, which is continuously

acquired by the visual system. Therefore, it contains internal representations of

entities, which are used by the perceptual and the main declarative memory sys-

tems [150]. Our proposed Bayesian fusion model can more directly be related to

the Bayesian brain hypothesis, as being pursued by many research teams, whereas

the conditional multi-way model is more closely related to the tensor memory

hypothesis [145]. A further discussion on the relationship can be found in [11].

4.5 Experiments

We evaluate our proposed methods on the recently published Stanford Visual

Relationship dataset [91], and compare against the state-of-the-art methods in

visual relationship detection. As in [91] we will divide the setting into two parts:

First an evaluation on how well the methods perform when predicting all possible

triples and second only evaluating on triples, which did not occur in the training

data. This setting is also referred to as zero-shot learning, as the model has not

seen any training images containing the triples which are used for evaluation.
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4.5.1 Dataset

The dataset consists of 5000 images. The semantics are described by triples,

consisting of 100 entity types, such as motorcycle, person, surfboard, watch, etc.

and 70 relations, e.g. next to, taller than, wear, on, etc. The entities correspond

to visual objects in the image. For all subject and object entities the corresponding

regions in the image are given. Each image contains in average 7.5 triples, which

describe the scene. In total, there are 37993 triples in the dataset. The dataset

is split into 4000 training and 1000 test images. We use the same data split as in

[91] and [172], thus we can directly compare our results. There are 1877 triples,

which only occur in images from the test set but not in the training set. We will

use these triples for the zero-shot analysis.

4.5.2 Methods

We compare both, the Bayesian fusion model and the conditional multi-way model,

against the state-of-the-art methods from [91] and [172] in the task of predicting

semantic triples from images. As we use the same evaluation setting as in [91] and

[172] we directly compare our achieved results with the results reported in these

papers. We compare against the purely visual model in [91] which we denote as

Lu et al. V and the full model including the language prior and the regularization

term. We denote this method as Lu et al. full. Furthermore, we denote the visual

translational embedding model from [172] as VTransE. For the Bayesian fusion

model we apply the four different factorization methods presented in Section 4.2.1.

4.5.3 Setting

In our experiments, we consider the same three evaluation settings as in [91], which

are as follows.

Phrase detection In phrase detection the task is to give a ranking of likely

triples plus the corresponding regions for the subject and object of the triple.

The bounding boxes are derived from the RCNN. A triple with its corresponding

bounding boxes is considered correctly detected, if the triple is identical to the
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ground truth, and if the union of the bounding boxes has at least 50 percent

overlap with the union of the ground truth bounding boxes.

Relationship detection The second setting, which is also considered in [91] is

relationship detection. It is similar to phrase detection, but with the difference

that it is not enough when the union of the bounding boxes is overlapping by at

least 50 percent. Instead, both the bounding box of the subject and the bounding

box of the object need at least 50 percent of overlap with their ground truth.

Predicate detection In predicate detection, it is assumed that subject and

object are given, and only the correct predicate between both needs to be

predicted. Therefore, we use the ground truth bounding boxes with the respective

labels for the objects instead of the bounding boxes derived by the RCNN. This

separates the problem of object detection from the problem of predicting the

correct relationships between the visual objects.

For each test image, we create as many triples as there are pairwise combinations

of detected bounding boxes. For each pair of bounding boxes exactly one triple is

predicted. These triples are ranked according to their confidence score. Similar to

[91] we report the recall at the top 100 elements of the ranked list and the recall

at top 50. Note, that there are 700000 possible triples, out of which the correct

triples need to be ranked on top. When training the semantic model, we hold out

5 percent of the nonzero triples as a validation set. We determine the optimal

rank for the link prediction methods based on that hold-out set. For the visual

model (RCNN and VGG) we use the predicted regions and classification scores as

provided by [91]. In order to get more stable results in the tensor decompositions,

we train them 20 times and average over the reconstructed tensor.

We also include an experimental setting, where we only evaluate on triples,

which had not been observed in the training data. This setting reveals the gener-

alization ability of the semantic model. The test set contains 1877 of these triples.

We evaluate based on the same settings as in the previous section, however for the

recall we only count how many of the unseen triples are retrieved.
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Task Phrase Det. Rel. Det. Predicate Det.

Evaluation R@100 R@50 R@100 R@50 R@100 R@50

Lu et al. V [91] 2.61 2.24 1.85 1.58 7.11 7.11

Lu et al. full [91] 17.03 16.17 14.70 13.86 47.87 47.87

VTransE [172] 22.42 19.42 15.20 14.07 - -

Cond. Multi-way Model 17.71 15.79 15.37 13.72 47.93 47.62

Bayes. Fusion - RESCAL 19.17 18.16 16.88 15.88 52.71 52.71

Bayes. Fusion - Multi-wayNN 18.88 17.75 16.65 15.57 51.82 51.82

Bayes. Fusion - ComplEx 19.36 18.25 17.12 16.03 53.14 53.14

Bayes. Fusion - DistMult 15.42 14.27 13.64 12.54 42.18 42.18

Table 4.1: Results for visual relationship detection. We report Recall at 50 and
100 for four different validation settings.

4.5.4 Results

Table 4.1 shows the results for visual relationship detection. In the first three lines

we report the results from [91] and [172]. The first row shows the results, when

only the visual part of the model is applied. This model performs poorly, in all

three settings. The full model in the second row adds the language prior to it

and also some regularization terms during training, which are described in more

detail in [91]. This drastically improves the results. As expected the recall at top

100 is better than at top 50, however the difference is rather small, which shows

that most of the correctly predicted triples are ranked quite high. The results for

predicate detection are much better than for the other settings. This shows that

one of the main problems in visual relationship detection is the correct detection

and classification of the visual objects. The Visual Tanslation Embedding model

(Visual TransE) outperforms the model from Lu et al. in the setting of phrase

detection and relationship detection. The predicate detection setting has not been

reported by [172]. Our conditional multi-way model outperforms the language

prior model in some settings and achieves very similar results in the others. In

relationship detection the performance is comparable to the Visual TransE model,
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Task Phrase Det. Rel. Det. Predicate Det.

Evaluation R@100 R@50 R@100 R@50 R@100 R@50

Lu et al. V [91] 1.12 0.95 0.78 0.67 3.52 3.52

Lu et al. full [91] 3.75 3.36 3.52 3.13 8.45 8.45

VTransE [172] 3.51 2.65 2.14 1.71 - -

Cond. Multi-way Model 5.73 5.39 5.22 4.96 14.32 14.32

Bayes. Fusion RESCAL 6.59 5.82 6.07 5.30 16.34 16.34

Bayes. Fusion Multi-wayNN 6.93 5.73 6.24 5.22 16.60 16.60

Bayes. Fusion ComplEx 6.50 5.73 5.82 5.05 15.74 15.74

Bayes. Fusion DistMult 4.19 3.34 3.85 3.08 12.40 12.40

Table 4.2: Results for the zero shot learning experiments. We report Recall at 50
and 100 for four different validation settings.

in the phrase detection setting Visual TransE clearly outperforms the conditional

multi-way model. In the last four rows, we report the results of the Bayesian fu-

sion model. We compare the results for the integration of the four link prediction

methods described in Section 4.2.1. We see that with all link prediction methods

the model performs constantly better than the method proposed by [91], except

for DistMult. The poor performance of DistMult might result from the fact, that

it assumes symmetric scores when subject and object are exchanged. For relation-

ship detection, which is the most challenging setting, ComplEx achieves the best

results, with a recall of 17.12 and 16.03 for the top 100 and top 50 results respec-

tively. RESCAL performs slightly better than the multi-way neural network in all

evaluation settings. The best performing Bayesian fusion model clearly outper-

forms the VTransE model on the relationship detection task. In phrase detection,

however, VTransE performs best with a result of 22.42 and 19.42 for the recall at

100 and 50, respectively.

The optimal rank for the conditional multi-way model has been found at 20

on the validation set. For ComplEx, RESCAL, and multi-way neural network a

rank of of 12 has been found to be best. For the DistMult model a rank of 20
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Figure 4.7: Recall at 50 as a function of the rank.

was found to be optimal. Figure 4.7 shows the recall at 50 on the test set for

our different variants as a function of the rank. We see that the performances of

ComplEx and RESCAL converge relatively quickly to a recall of around 16. The

multi-way neural network converges a bit slower, to a slightly smaller maximum.

DistMult converges slower and to a much smaller maximum recall of 12.5.

Table 4.2 shows the results for the zero-shot experiments. This task is much

more difficult, which can be seen by the huge drop in recall. However, also in this

experiment, including the semantic model significantly improves the prediction.

For the first three settings, the best performing method, which is the multi-way

neural network, almost retrieves twice as many correct triples, as the state-of-

the-art model of [91]. Especially, for the predicate detection, which assumes the

objects and subjects to be given, a relatively high recall of 16.60 can be reached.

In the zero-shot setting for predicate detection even the integration of the worst

performing semantic model DistMult shows significantly better performance than

the state-of-the-art method. These results clearly show that our model is able to

infer also new likely triples, which have not been observed in the training data.

This is one of the big benefits of the link prediction methods. VTransE per-

formes poorly in the zero-shot setting. This is astonishing, as the integration of

the Tranlational Embedding (TransE) model should have a similar effect as the

tensor decomposition models, proposed in this paper. A reason why this is not

the case could be, is that the TransE model is to simple to capture the existing

semantics in the dataset. The language prior allows the model to generalize to

unseen triples. However, our experiments show that integrating state-of-the-art
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Figure 4.8: Recall at 50 as a function of the rank for the zero-shot setting.

link prediction methods for modeling semantics based on tensor decomposition is

more appropriate for improving general prediction and generalization to unseen

triples.

For the zero-shot settings the same parameters for the rank have been used,

as found optimal on the validation set for the first setting. To illustrate the im-

portance of the rank in the zero-shot setting, Figure 4.8 shows the recall at 50 on

the zero-shot test set as a function of the rank. As expected, the models start

to overfit in the zero-shot setting if the rank is to high. With a limited rank

the models have less freedom for explaining the variation in the data; this forces

them to focus more on the underlying structure, which improves the generaliza-

tion property. ComplEx, which has more parameters due to the complex valued

embeddings, performs best with small ranks and reaches the maximum at a rank

of around 8. multi-way neural network reaches the maximum at a rank of 10 and

RESCAL at a rank of 14. The highest recall is achieved by RESCAL at 5.3.

4.6 Conclusion

In this chapter, we presented two novel approaches for including semantic knowl-

edge into visual relationship detection. Both approaches combine standard com-

puter vision methods for perceptual modeling, with latent variable models for se-

mantic modeling. We combine a state-of-the-art computer vision procedure with

latent variable models for link prediction, in order to enhance the modeling of rela-

tionships among visual objects. In the first approach, we proposed a probabilistic
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framework, in form of a Bayesian fusion model, for integrating both the seman-

tic prior and the computer vision algorithms into a joint model. By including a

statistical semantic model, the predictive quality can be enhanced significantly.

Especially the prediction of triples, which have not been observed in the training

data, can be enhanced through the generalization properties of the semantic link

prediction methods. The recall of the best performing link-prediction method in

the zero-shot setting is almost twice as high as the state-of-the art method. The

second approach uses a conditional multi-way model, which is inspired by link

prediction methods. For the prediction of triples, which have not been observed

in the training data, the performance of the second approach is on par with the

first approach, as its structure helps to generalize to unobserved triples, without

including a separately trained prior for the semantic triples. The semantic prior is

implicitly represented in the learned latent representations of the involved entities.

Both approaches form statistical models on the class level, and can thus generalize

to new images. This is in contrast to typical knowledge graph models, where nodes

correspond to specific instances. Our experiments show, that the interaction of

semantic and perceptual models can support each other to derive better predictive

accuracies. The improvement over the state-of-the-art vision model shows that

visual relationship detection can not only be improved by better computer vision

methods, but also by multi-modal approaches, in particular, the integration of a

component, which models the semantic structures. The developed methods show

great potential also for broader application areas, where both semantic and sensory

data needs to be fused.
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Chapter 5

Conclusion

In this thesis, we examined various approaches to information fusion in supervised

machine learning. In this chapter, we want to summarize the main aspects and

discuss interesting directions for future work and application areas.

5.1 Summary and Discussion

We considered three different aspects of information fusion in supervised machine

learning and demonstrated the effectiveness of the elaborated models on different

applications, such as modeling distributed sensor networks, feed-forward robot

control, and visual relationship detection in images.

In contrast to traditional model agnostic fusion approaches, which either take

an early or a late fusion approach, the concept of representation learning allows

for performing the information fusion at an intermediate level, i.e., the level of

latent representations derived from the raw input data. The proposed models in

this thesis are all trained in a supervised manner. In this way, the representations

are implicitly optimized so as to be the most advantageous for the predictive

task. The representations capture the relevant factors for predicting the output

as a side effect while modeling a conditional predictive model. This is in contrast

to unsupervised representation learning, where the representations are trained to

capture the latent explanatory factors of the observed input data itself.

In Chapter 2, a single representation was learned for each input channel, which
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was then used as a predictor for multiple decoders. In this way, the model learns

to extract not only the necessary information for predicting a single time series

but also information that is a potential predictor for related data streams. The

complete model (including the encoders, the interconnection layer with an atten-

tion mechanism, and the decoders) is trained in an end-to-end fashion so that it

learns to predict a sequence of future behavior. In this way, the encoders are not

trained to be a good model of the input sequence but rather to produce a repre-

sentation that leads to good output sequence predictions. An important property

of RNNs, which we use as encoder models, with regard to data stream modeling is

their ability to selectively encode information from previous time steps in a com-

pact hidden state representation that is continuously updated at every time step.

Thus, RNNs are good candidates for the efficient processing of streaming data.

Using an attention mechanism, which has previously shown to be advantageous in

various tasks of natural language processing, for the fusion of the latent represen-

tations allows for adjusting the fusion processes dynamically to the current system

state. Nevertheless, the model can only learn to extract and effectively process

signals that have occurred in the training data.

In Chapter 3, we examined how to efficiently model the interactions in multi-

way data using tensor decompositions, which allow for the learning of latent repre-

sentations for each input dimension. By fusing the learned latent representations

in an efficient way, predictions for each of the exponentially many combinations of

input signals can be derived. A similar approach was taken in the models for visual

relationship detection described in Chapter 4. In the Bayesian fusion approach,

the semantic model is trained on the marginalized count data of semantic triples,

derived from a visual relation extraction dataset. In this way, the learned repre-

sentations capture the semantic world as described by the triples as they appear in

the dataset. In the second approach (the conditional multi-way model), the rep-

resentations for the various visual concepts are directly learned in an end-to-end

model, which is trained to predict the triples given the images. One of the main

advantages of both models is their ability to generalize to triples that have never

been observed in the training data, but which seem reasonable in the realm of

the dataset. The models, however, are not able to generalize to different semantic

worlds, which are driven by distinct semantic rules.
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5.2 Future Directions and Applications

Information fusion is an important aspect of machine learning research. Since rep-

resentation learning has demonstrated excellent performance in a variety of ma-

chine learning tasks, there is a clear trend towards model-based fusion approaches.

The concept of performing information fusion on the basis of latent representations

is a promising framework for modeling complex systems. Such an approach shows

promising results, but it also comes with some problems that need to be addressed

in future work.

Most existing artificial intelligence (AI) applications are specific to certain cog-

nitive tasks. However, the human brain, sometimes referred to as the only real

existing intelligent system, is very good at combining information from various

sources. Therefore, the fusion aspect is also important for AI systems. Our pro-

posed approaches to visual relationship detection detailed in Chapter 4, which

integrate semantic reasoning and visual perception into a single model, are one

step towards this goal. A limiting aspect for training models on such complex

tasks is often the availability of training data. In this regard, most successful ma-

chine learning applications nowadays are trained using supervised learning and,

in order to train the models, large amounts of labeled data needs to be available,

which is often expensive to gather. The datasets that are available in the research

community often focus on very specific problems and thus do not always reflect the

complexity of real-world challenges. Therefore, for more complex settings, some

effort needs to go into building high-quality labeled data sets. For example, for

visual relationship detection, as discussed in Chapter 4, a larger data set would

be advantageous to boost the performance of the models. In many real-world sce-

narios, however, large and extensively labeled data is not always available. Thus,

an important direction for future machine learning research is to acquire universal

models that can be transferred between domains. This area of research, referred to

as transfer learning, is therefore crucial for putting more deep-learning applications

into practice.

With the dissemination of machine learning models in many industries, infor-

mation fusion is also becoming increasingly important in technical applications.

In this sense, new application areas for information fusion arise in IoT applica-
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tions and sensor networks. Even with today’s advanced computation facilities,

fast models are still desirable, especially in embedded real-time systems. Our pro-

posed information fusion architecture in Chapter 2 offers an example of how a

model-based distributed architecture could look. Models such as the fast multi-

linear ones proposed in Chapter 3 may also find applications in areas with limited

compute resources, as shown in the example application of the control of a robot

arm.

Another problem that is particularly relevant to modern deep-learning archi-

tectures is their missing interpretability, which makes it difficult to apply the

models in safety-critical applications. The fast multi-linear models proposed in

Chapter 3 take a step in this direction by creating an efficient way of computing

conditional odds-ratios, which are used to explain the model output. The neural

attention mechanisms used in Chapter 2 are another example of obtaining more

interpretability in neural network models. However, if the learned representations

are highly entangled, human interpretation becomes difficult. Therefore, the learn-

ing of disentangled representations is highly desirable, where a single neuron, or

at least a subgroup of neurons, exclusively represents a certain semantic aspect of

the modeled system.
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