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 I Abbreviations 

I. Abbreviations 

A  Å  Ångström 

  ACF ATP-utilizing chromatin assembly and remodeling factor 

  Acidic N Acidic region in the N-terminus of ISWI 

  ACN Acetonitrile 

  ADP-BeFx Adenosine-diphosphate beryllium-fluoride 

  ATP Adenosine-triphosphate 

  AutoN N-terminal autoinhibitory region in ISWI 
    

B  B or Bpa p-benzoyl‐ p‐ phenylalanine 

  BAZ2B Bromodomain adjacent to zing finger domain 2B 

  bp Base pair(s) 

  BPTF Bromodomain PHD finger transcription factor 

  BRF BAZ2B‐ containing remodeling factor 

  BS2G Bissulfosuccinimidyl glutarate 

  BS3 Bissulfosuccinimidyl suberate 

  BSA Bovine serum albumin 
    

C  CECR2 Cat eye syndrome critical region protein 2 

  CERF CECR2-containing remodeling factor 

  Chd1 Chromodomain helicase DNA-binding protein 1 

  CHRAC Chromatin accessibility complex 

  CID Collision-induced dissociation 

  CtBP COOH-terminal-binding protein 

  CV(s) Column volume(s) 
    

D  Da Dalton 

  Dm Drosophila melanogaster 

  DMSO  Dimethylsulfoxide 

  DNA Desoxyribonucleic acid 

  dNTP Desoxyribonucleotidetriphosphate 

  Dr Danio rerio 

  DTT Dithiothreitol 
    

E  E. coli Escherichia coli 

  EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

  EDTA Ethylenediaminetetraacetic acid 

  EM Electron microscopy 

  EMSA  Electrophoretic mobility shift assay 

  EPR Electron paramagnetic resonance  

  EtBr  Ethidiumbromide 

  ETD Electron transfer dissociation  
    

F  FDR False discovery rate  

  FL Full-length 

  FPLC Fast protein liquid chromatography 
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  FRET Fluorescence resonance energy transfer 
    

H  HAT Histone acetyltransferases  

  HDX-MS Hydrogen/deuterium exchange mass spectrometry 

  HP1 Heterochromatin binding protein 1 

  HSS HAND-SANT-SLIDE 
    

I  IAA Iodoacetamide 

  INO80 Inositol auxotroph mutant 80 

  IPTG Isopropyl-β-D-thiogalactopyranoside 

  ISWI Imitation switch 
    

K  K Lysine 
    

L  LC-MS/MS Liquid chromatography-tandem mass spectrometry 
    

M  m/z Mass-to-charge 

  MS Mass spectrometry 

  Mt Myceliophthora thermophila 

  MW Molecular weight 
    

N  NADH Reduced nicotinamide adenine dinucleotide 

  NCP Nucleosome core particle 

  NegC C-terminal autoinhibitory motif in ISWI 

  NHS N-hydroxysuccinimide 

  NMR Nuclear magnetic resonance 

  NoRC Nucleolar remodeling complex 

  NTR N-terminal region  

  NuRD Nucleosome Remodeling and Deacetylase 

  NURF Nucleosome remodeling factor  
    

O  OD Optical density 
    

P  PAGE Polyacrylamide gel electrophoresis 

  PCR Polymerase chain reaction 

  PHD Plant homeodomain 

  PMSF Phenylmethylsulfonyl fluoride 

  ppm Parts per million 

  PTM Posttranslational modification  
    

R  Rg Radius of gyration 

  RHP Rapid Histone Purification 

  RMSD Root-mean-square deviation 

  RSF Remodeling and spacing factor 
    

S  SAXS Small angle X-ray scattering 

  Sc Saccharomyces cerevisiae 

  SDS Sodium dodecyl sulfate 

  SEC Size-exclusion chromatography 

  SF Superfamily 
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 I Abbreviations 

  SHL Superhelical location 

  SLIDE SANT-like ISWI domain 

  Snf2H Sucrose non-fermenting protein 2 homolog 

  Snf2L Sucrose non-fermenting 2 like 

  SPE Solid-phase extraction 

  Sso Sulfolobus solfataricus 

  SWI/SNF SWItch/Sucrose Non-Fermentable 
    

T  TCA Trichloroacetic acid 

  TEV Tobacco etch virus  

  TFA Trifluoroacetic acid  

  Tip5 TTF-I interacting protein 5 

  TLC Thin-layer chromatography 

  ToRC Toutatis-containing chromatin remodeling complex 

  TTF-I Transcription termination factor I 
    

U  UV Ultraviolet 
    

V  v/v Volume per volume 
    

W  w/v Weight per volume 

  WICH WSTF-ISWI chromatin remodeling complex 

  WSTF Williams Syndrome transcription factor 

  WT Wild type 

  wwPDB Worldwide Protein Data Bank 
    

X  XL-MS Cross-linking coupled to mass spectrometry 
    

--  χ Chi 
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 II Summary 

II. Summary 

The eukaryotic genome is compacted into a higher-order chromatin structure to facilitate the 

packaging of DNA into the cell’s nucleus and to allow for controlled accessibility of genetic 

information at any given time. The chromatin landscape is dynamic and changes in response to 

endogenous and exogenous stimuli such that essential nuclear processes (e.g., DNA 

transcription and replication) can be carried out. The fundamental units of chromatin are 

nucleosomes, which are composed of DNA wrapped around an octamer of histone proteins. 

ATP-dependent chromatin remodeling enzymes play a key role in the modulation of chromatin 

structure by catalyzing various reactions such as the repositioning of nucleosomes along DNA. 

Despite the importance of ATP-dependent chromatin remodeling enzymes in regulating 

chromatin structure, however, the structure and function of these proteins have largely 

remained elusive. 

In this PhD project, the structural architectures of prototypical imitation switch (ISWI)-type 

chromatin remodeling enzymes from Drosophila melanogaster (DmISWI) and humans 

(Snf2H) were probed across different functional states of the catalytic cycle using an 

integrative structural approach. The approach combines experimental data from protein cross-

linking coupled to high-resolution mass spectrometry and small angle X-ray scattering in order 

to guide computational modeling of three-dimensional enzyme structures.  

The findings of the present study are consistent with the notion that the full-length DmISWI 

and Snf2H enzymes assume an overall compact resting state in the absence of ligands in 

solution. While the C-terminal HAND-SANT-SLIDE domain packs against the ATPase 

module, the autoregulatory NTR and NegC domains bridge the ATPase lobe-lobe interface and 

keep the remodeling enzymes in a catalytically incompetent conformation. The findings thus 

provide a structure-based explanation for the repressed basal ATPase activity of ISWI-type 

proteins in the absence of substrate. In addition, the respective structural model of the DmISWI 

ATPase domain provides support for the recently captured X-ray crystal structure of an ISWI-

type remodeling enzyme from the thermophilic yeast Myceliophthora thermophilia. In order to 

leave the identified resting state, ISWI-type remodeling enzymes presumably undergo a series 

of conformational changes in the presence of ligands and/or substrate. These conformational 

changes may comprise a rotation of the two ATPase lobes relative to each other such that 

residues involved in ATP binding and hydrolysis are in close spatial proximity. Interestingly, 

the Snf2H enzyme appears to interact via the HAND-SANT-SLIDE domain with a highly 

acidic region on the nucleosome core in the presence of both the non-hydrolysable nucleotide 

analog ADP-BeFx and nucleosomes. Our structural data of the substrate-bound Snf2H enzyme 

thus substantiate the recent notion that this acidic patch represents an important nucleosomal 

epitope, which could play an important mechanistic role during ATP-dependent chromatin 

remodeling by ISWI-type enzymes.   
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structural approach 

III. Zusammenfassung 

Das eukaryotische Genom wird in höher geordneten Chromatinstrukturen organisiert, um die 

kompakte Verpackung von DNA innerhalb des Zellkerns zu ermöglichen und um die 

Zugänglichkeit zur genetischen Information zu kontrollieren. Die Chromatinstruktur ist 

dynamisch und ändert sich in Abhängigkeit von endogenen und exogenen Stimuli, sodass 

essentielle Zellkern-Prozesse (z. B. DNA-Transkription und -Replikation) durchgeführt 

werden können. Die grundlegenden Strukturelemente des Chromatins sind Nukleosomen, in 

denen DNA um ein Oktamer aus Histonen gewickelt ist. ATP-abhängige Chromatin-

Remodeling-Enzyme nehmen eine Schlüsselrolle bei der Veränderung der Chromatinstruktur 

ein, indem sie verschiedene Reaktionen, wie beispielsweise die Repositionierung von 

Nukleosomen entlang der DNA, katalysieren. Trotz der Wichtigkeit von ATP-abhängigen 

Chromatin-Remodeling-Enzymen bei der Regulation der Chromatinstruktur blieben die 

Struktur und Funktionsweise dieser Proteine weitgehend ungeklärt. 

In der vorliegenden Dissertation wurde der Aufbau von prototypischen Imitation Switch 

(ISWI)-Chromatin-Remodeling-Enzymen der Fruchtfliege Drosophila melanogaster 

(DmISWI) und des Menschen (Snf2H) mithilfe von integrativen Strukturmethoden untersucht. 

Die experimentellen Daten aus Protein-Crosslinking gekoppelt an hochauflösende 

Massenspektrometrie und Kleinwinkel-Röntgenstreuung wurden verwendet um 

computergestützte Modelle der dreidimensionalen Enzymstruktur für verschiedene 

funktionelle Zustände des Katalysezyklus zu erstellen. 

Die Ergebnisse der vorliegenden Arbeit stimmen mit der Vorstellung überein, dass sowohl 

DmISWI als auch Snf2H in ungebundener Form einen kompakten Ruhezustand in Lösung 

annehmen. Während die C-terminale HAND-SAND-SLIDE Enzymdomäne gegen das ATPase 

Modul packt, überbrücken die autoregulatorischen NTR und NegC Domänen das Interface 

beider ATPase Untereinheiten, um die Remodeling-Enzyme in einer katalytisch inkompetenten 

Konformation zu halten. Die Ergebnisse erklären auf struktureller Ebene die gehemmte 

ATPase-Aktivität von ISWI-Proteinen in Abwesenheit von Substrat. Des Weiteren stützt unser 

Strukturmodell der DmISWI ATPase Domäne die erst kürzlich mittels Röntgenkristallographie 

identifizierte ATPase-Konformation der thermophilen Hefe Myceliophthora thermophila. Es 

ist davon auszugehen, dass ISWI-Enzyme in Abhängigkeit von Liganden und/oder Substrat 

eine Serie von Konformationsänderungen durchlaufen um den Ruhezustand zu verlassen. Die 

zwei Untereinheiten der ATPase Domäne drehen sich vermutlich relativ zueinander, sodass 

Aminosäureseitenketten, die an der ATP-Bindung und -Hydrolyse beteiligt sind, sich räumlich 

nahe anordnen. In Gegenwart des nicht-hydrolysierbaren Nukleotidanalogs ADP-BeFx und 

Nukleosomen interagiert das Snf2H-Enzym wahrscheinlich über die HAND-SANT-SLIDE 

Domäne mit der negativ geladenen Region des Nukleosoms. Folglich stützen unsere 

Strukturdaten des substratgebundenen Snf2H-Enzyms neuste Forschungsergebnisse, dass diese 

negativ geladene Region des Nukleosoms ein wichtiges Erkennungsmerkmal darstellt und 

somit eine wichtige mechanistische Rolle bei der ATP-abhängigen Umstrukturierung des 

Chromatins durch ISWI-Enzyme spielen könnte.  
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 1 Introduction 

1. Introduction 

1.1. Chromatin organization and dynamics 

The genetic information of eukaryotic organisms is organized into a compact chromatin 

structure, which comprises DNA and chromatin-associated proteins. Efficient DNA compaction 

is essential to pack the DNA into the dimensions of a cell’s nucleus and allows for controlled 

accessibility of genetic information at any given time. The molecular mechanisms that ensure 

access to the correct DNA sequence are essential for all fundamental nuclear processes such as 

DNA replication, gene expression, and DNA repair. Despite the groundbreaking achievements 

in sequencing the entire human genome (2), however, the central principles underlying the 

regulation of genetic information on a molecular level have remained elusive. A complex 

network of various factors and mechanisms control the accessibility of genetic information as 

well as prompt alterations in chromatin structure in response to endogenous and exogenous 

stimuli (3-7). 

The following sections outline the different hierarchical levels of the chromatin structure and 

delineate the dynamics of this supramolecular assembly. 

 

1.1.1. Nucleosome and chromatin structure 

The first level of eukaryotic DNA compaction is achieved by the formation of nucleosomes, the 

fundamental units of chromatin, which repeat every 160 to 240 base pairs (bp) across the 

genome depending on the cell type and species (8, 9). Each nucleosome core particle (NCP) 

consists of approximately 145−147 bp DNA, which is wrapped in roughly 1.65 left-handed, 

superhelical turns around an octamer of core histone proteins (Figure 1A) (10, 11).  
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Figure 1: Structure of the nucleosome. (A) The crystal structure (pdb 1AOI) of a nucleosome core particle 

in top and side view is shown (10). Human alpha-satellite DNA comprising 146 bp (purple) is wrapped 

around an octamer of Xenopus laevis histone proteins (H2A, green; H2B, yellow; H3, blue; H4, red). Histone 

tails protrude from the surface of the nucleosome and are only partially crystallized. (B) Electrostatic surface 

potential of the nucleosome highlights the acidic patch formed by H2A and H2B residues. The view is 

identical to (A, left). Negative and positive electrostatic potentials are shown in red and blue, respectively. 

The octamer comprises two copies of each of the evolutionarily conserved H2A, H2B, H3, and 

H4 histone proteins (12-14). Each of these histones has a structured core that includes a 

characteristic three-dimensional ‘histone fold’ motif. This motif consists of three α-helices 

being interconnected by two unstructured loops and facilitates the dimerization of histones (15). 

That is, histones H2A and H2B as well as histones H3 and H4 form heterodimers, which are 

predominantly stabilized through hydrophobic interactions (15). The H3/H4 dimers arrange in a 

tetramer and assemble with two H2A/H2B dimers to form the octamer (10, 13). The dynamic 

N-terminal tail of each core histone and the C-terminal tails of H2A subunits protrude from the 

NCP. Individual histone tails represent important interaction surfaces for cellular factors and 

contribute to the formation of higher-order chromatin structures (16, 17). 

The disk-shaped histone octamer carries a net positive charge under physiological conditions 

with basic residues being in particular concentrated along the outer curved edge to form a path 

for DNA wrapping (Figure 1B). The DNA contacts the histone octamer at regular intervals via 

direct DNA-protein and water-mediated interactions (18). The association of DNA with the 

histone octamer is described in the DNA superhelix relative to the central bp at the nucleosomal 

dyad axis as superhelical location (SHL) 0. Alternating regions of the DNA, where the major 

and minor grooves face the histone octamer, are defined in either direction from SHL 0 as SHL 

±1 to ±7 and SHL ±0.5 to ±6.5, respectively. The DNA-histone interactions at these sites are 

energetically not equivalent (19). Interactions at DNA entry/exit regions are typically weak to 

facilitate for instance unwrapping of the outer nucleosomal DNA, which might be initiated 

asymmetrically from one side as suggested recently (20). In contrast, the strongest interaction 

between the octamer and DNA occurs at the dyad. Notably, energetically weaker contacts are 
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also formed at SHL ±2.5 (19), in close proximity to the SHL 2 region, which acts as binding 

site for several chromatin remodeling enzymes (21-25).  

The complex electrostatic surface of the NCP (Figure 1B) also arises from conserved residues 

on the H2A/H2B dimer surface. These residues form a negatively charged surface area, termed 

‘acidic patch’, which represents an interaction platform for numerous proteins, including the 

histone H4 tail (26). Recent data also suggest that the acid patch plays an important role during 

the catalytic cycle of imitation switch (ISWI)-type remodeling enzymes (27, 28). The stability 

and electrostatic characteristics of NCPs can be affected by the incorporation of histone 

variants as well as posttranslational modifications (PTMs) of histones (cf. section 1.1.2.1). 

 

Individual NCPs are connected by stretches of linker DNA of varying length (approximately 

20−90 bp) in nucleosomal arrays. This primary structure of chromatin, which appeared as 

‘beads-on-a-string’ in early electron microscopy studies (29, 30), generates a fiber with a width 

of 11 nm. Nucleosomal arrays represent fundamental structural entities of chromosomal 

superstructures and play an important role during the transcription of genetic information (31). 

Further compaction of DNA is achieved by the association of linker histones. This class of 

histones bind proximal to DNA entry/exit sites of NCPs and influence the orientation of linker 

DNA of adjacent nucleosomes. Multiple isoforms of the mammalian linker histone H1 family 

have been identified, which differ in their binding affinities to chromatin (32). Linker histones 

are assumed to stabilize nucleosomes as well as higher-order chromatin structures such as the 

‘30 nm fiber’ (32, 33). 

The local packing of a nucleosomal array into a coil-like structure of approximately 30 nm in 

diameter, which was observed under distinct experimental conditions (34, 35), has been defined 

as the secondary level of DNA compaction. Experimental in vitro data have given rise to 

various models for the structural arrangement of the ’30 nm fiber’ including the solenoid and 

zigzag models (36-39). However, conclusive evidence for the existence of the ’30 nm fiber’ in 

vivo is still lacking and the subject of controversial debate (40-44). Recent models of chromatin 

organization suggest a rather dynamic and irregularly folded chromatin structure composed of 

10 nm fibers (45), which challenges previous static models such as the folding into ‘30 nm 

fibers’. That is, nucleosomal arrays are assumed to interact interdigitated through histone tail 

and inter-fiber interactions (46). Such folded nucleosome fibers might give rise to higher-order 

chromatin structures present in interphase chromatin and mitotic chromosomes.  
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1.1.2. Dynamic regulation of chromatin 

The packing of DNA into chromatin clearly restricts the access to genetic information. To 

assure controlled accessibility in DNA-mediated processes, several strategies have evolved to 

modulate structural properties of individual nucleosomes and of the higher-order chromatin 

organization. That is, individual nucleosomes are not static assemblies but were found to 

exhibit a pronounced dynamic behavior and to be capable of extensive crosstalk with various 

cellular factors such as chromatin remodeling enzymes (47). For instance, the nucleosome 

conformation can vary due to the breathing, unwrapping, and opening of DNA (48). The 

structural properties of nucleosomes depend on various factors including the incorporation of 

histone variants and/or a large variety of PTMs, which will be described in the following 

section. 

 

1.1.2.1. Histone variants and of posttranslational modifications  

Apart from canonical histones, numerous histone variants have been identified in vivo. These 

histone variants differ in the primary protein sequence from the canonical counterparts and 

some are expressed throughout the cell cycle. Whereas canonical histones are expressed during 

S-phase and are deposited in a replication-coupled manner, histone variants are incorporated 

into nucleosomes in a spatiotemporally uncoupled manner (49, 50). In general, the 

incorporation of histone variants changes intra-nucleosomal contacts, which in turn can affect 

the stability of nucleosomes (51, 52). Furthermore, variant nucleosomes exhibit differences in 

surface-exposed residues, which potentially impact various protein-nucleosome interactions as 

well as chromatin folding. For instance, nucleosomes comprising the H2A.Z histone variant 

have an expanded acidic patch region (53), which represents an important interaction platform 

for many proteins including the ISWI-type remodelers (26-28). Apart from H2A.Z, a multitude 

of other histone variants is known, in particular for H3 and H2A histones. The enrichment of 

individual histone variants is frequently associated with distinct functional chromatin states. For 

example, the H3.3 and H2A.Z variants have been observed to be enriched at transcriptionally 

active loci (54). Lastly, histone variants have been shown to facilitate the recruitment of cellular 

components. For instance, the phosphorylated form of H2AX is a key player in the DNA 

damage response by promoting the recruitment of many additional factors (e.g., Mediator of 

DNA Damage Checkpoint 1 protein, Mdc1) to the damaged DNA sites (55). New histone 

variants are still being discovered and their functions in remodeling the chromatin landscape 

has been a topic of intense research. 

 

Diverse PTMs add an additional level of complexity to the observed nucleosome diversity and 

potentially affect the function of histone proteins to modulate chromatin structure. Acetylation, 

methylation, phosphorylation, ubiquitylation, and ADP-ribosylation belong to the better studied 



 5 Introduction 

PTMs of histone proteins (56, 57), whereas additional modifications of lysine residues such as 

crotonylation, succinylation, and malonylation have been characterized more recently (58, 59). 

Notably, also histone variants represent profound targets for modifications. 

Histone PTMs can affect chromatin structure in different ways. That is, PTMs may directly 

alter histone-DNA or histone-histone interactions giving rise to changes in intrinsic nucleosome 

dynamics. The modifications predominantly occur at the flexible histone tails, whereas histone 

cores are less frequent targets for PTMs (57). PTMs on histones are dynamically set and 

removed by specific enzymes called ‘writers’ and ‘erasers’, respectively. For instance, the 

acetylation of lysine residues is catalyzed by histone acetyltransferases (HAT) and removes a 

positive charge, which causes a reduction in the electrostatic interaction with DNA (57). 

Historically, histone acetylation was described in connection with transcriptional activity as one 

of the first PTMs (60, 61) and decades later, the development of inhibitors targeting the 

dynamics of histone acetylation represents a promising avenue for cancer therapy (62).  

A PTM of particular interest is H4K16ac. That is, deacetylation of K16 in the basic patch of the 

H4 tail has been shown to be of functional relevance for heterochromatin formation in both in 

vivo and in vitro experiments (63-67). Furthermore, this modification may contribute to the 

regulation of nucleosome remodeling by ISWI-type enzymes, although the impact of histone 

acetylation on enzyme activity has been controversially discussed (65, 68-71).  

Histone PTMs can also affect chromatin structure in an indirect manner as they are sensed by 

molecular ‘readers’. Such ‘readers’ are often chromatin remodeling enzymes that harbor 

specific domains adjacent to the catalytic motor domain or as part of associated subunits. For 

instance, bromodomains, which are found in numerous subunits of the mating type 

switching/sucrose non-fermenting (SWI/SNF) family of remodeling complexes (72), are able to 

bind to acetylated lysine residues (73). Intriguingly, a single nucleosome can exhibit a 

combination of histone modifications. Thus, PTM patterns on histone proteins may represent a 

“molecular code”, which can be recognized by chromatin-associated proteins. The presence of 

combinatorial marks on histone proteins has resulted in the postulation of the ‘histone code’ 

hypothesis (17, 74), which links histone PTMs to gene regulation. Understanding the seemingly 

complex nature of modifications of histone proteins and their diverse potential to regulate and 

fine-tune chromatin organization have been investigated intensely (75, 76). 

 

Aside from the described histone-based mechanisms, additional strategies such as DNA 

methylation, association of small and long non-coding RNAs, as well as the binding of 

architectural proteins, such as the non-histone protein heterochromatin protein-1 (HP1), have 

evolved to modulate the chromatin state and to regulate chromatin-related processes (77-80). 

Furthermore, chromatin remodeling enzymes play a pivotal role in chromatin dynamics and 

will thus be further introduced in the subsequent section.  
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1.1.2.2. ATP-dependent chromatin remodeling 

Chromatin remodeling enzymes are generally involved in changing the molecular contacts 

between nucleosomal DNA and the histone octamer in an ATP-dependent manner (81, 82). 

These enzymes typically comprise a catalytic core and additional accessory subunit(s). The 

catalytic core is composed of a central bilobal ATPase domain that shares sequence homology 

with the superfamily (SF) 2 of helicases. Individual remodeling enzymes are classified into the 

SWI/SNF, ISWI, INO80 (inositol auxotroph mutant 80), or CHD (chromodomain helicase 

DNA-binding) families on the basis of unique domains that flank the ATPase lobes (83). 

Remodeling enzymes catalyze a diverse set of reactions on their nucleosomal substrate as 

schematically illustrated in Figure 2. That is, these enzymes facilitate (i) the reposition of 

nucleosomes along DNA without disrupting the histone octamers (generally referred to as 

’sliding’), (ii) the eviction of octamers or histone dimers, (iii) the de novo assembly of 

nucleosomes, (iv) the local unwrapping of nucleosomal DNA, and (v) the exchange/integration 

of histone variants. Importantly, distinct remodeling enzymes differ in their functionality. For 

example, members of the ISWI family are known to slide nucleosomes along the DNA strand, 

sometimes giving rise to evenly spaced nucleosomal arrays as in the case of the ACF complex 

(84, 85), yet they are not capable of ejecting histone octamers. On the contrary, members of the 

SWI/SNF family are capable of ejecting histone octamers as well as displacing H2A/H2B 

dimers (83, 86, 87), but they lack the competency to evenly space nucleosomes (83, 86-88). 

Notably, chromatin remodeling enzymes represent functionally important components of multi-

protein chromatin remodeling factors (cf. section 1.2.1) and are thus found in complex with 

various accessory proteins in vivo.  

Given the broad range of catalyzed reactions on nucleosomes, these highly abundant chromatin 

remodeling enzymes play an essential role in chromatin-related processes ranging from the 

regulation of transcription activity and DNA repair to more global phenomena such as 

embryonic development. For instance, the ATP-dependent sliding of nucleosomes allows 

access to the underlying nucleosomal DNA sequences to initiate critical cellular processes such 

as gene expression. Consequently, perturbations to this finely balanced system in terms of 

mutations and misregulation of chromatin remodeling enzymes have been associated with 

carcinogenesis and other diseases (89, 90). However, inhibition of the remodeling activity also 

represents a potentially promising strategy in cancer treatment (90, 91). 
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Figure 2: ATP-dependent chromatin remodeling. A schematic illustration of distinct remodeling activities 

is shown. The reposition (‘sliding’), eviction, and assembly of histone octamers (blue) along DNA (black) 

results in accessible and/or occluded DNA sites upon remodeling. Similarly, local DNA unwrapping enables 

the transient access to nucleosomal DNA. Individual remodeling enzymes are also associated with the 

exchange of canonical histones with histone variants (pink) and vice versa. 

 

1.2. ISWI-type chromatin remodelers 

1.2.1. Organization of ISWI-type remodelers  

The ISWI remodeling enzyme was first purified from Drosophila melanogaster (Dm) as the 

catalytic subunit of the nucleosome remodeling factor (NURF) complex (92, 93). Mammals 

have two homologs of the catalytic ISWI protein, which are termed sucrose non-fermenting 2 

homolog (Snf2H) and sucrose non-fermenting 2 like (Snf2L). Both mammalian enzymes not 

only share high sequence identity to each other (~ 86%) but they are also highly similar to their 

Drosophila (~ 75%) and yeast counterparts (i.e., Isw1 and Isw2, ~ 65%) (94, 95). 

As schematically illustrated in Figure 3A, the DmISWI enzyme assembles with different 

subunits into distinct multi-protein complexes in vivo. Apart from NURF, the DmISWI enzyme 

was also found to be an essential component in the ACF (ATP-utilizing chromatin assembly 

and remodeling factor) (85) and CHRAC (chromatin assembly complex) (96, 97) remodeling 

factors, for which the subunit composition has been evolutionarily conserved between 

Drosophila and mammals. A total of six additional multi-protein remodeling complexes have 

been identified in humans that comprise either the ISWI-type Snf2H or Snf2L enzyme: RSF 

(remodeling and spacing factor) (98, 99), NoRC (nucleolar remodeling complex) (100), WICH 

(WSTF-ISWI chromatin remodeling complex) (101), CERF (CECR2-containing remodeling 

factor) (102), BRF (BAZ2B‐ containing remodeling factor) (103), and SNF2H-cohesin (104). 

The notion that known accessory proteins can interact with both Snf2H and Snf2L has evolved 

recently in conjunction with the identification of the bromodomain adjacent to zinc finger 

domain 2B (BAZ2B) protein as seventh accessory factor for both ATPases (103) (Figure 3A). 
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Individual accessory proteins of remodeling factors may also contribute to the restructuring of 

chromatin. For instance, the Acf1 protein of the ACF and CHRAC remodeling factors 

comprises two plant homeodomain (PHD) zinc fingers, which are suggested to improve the 

efficiency of nucleosome sliding through interactions with the histone octamer (105). The 

bromodomain PHD finger transcription factor (BPTF) subunit of the human NURF complex 

represents another example of an accessory protein that comprises PHD fingers. The BPTF 

subunit furthermore harbors a bromodomain, which plays an important role in anchoring the 

remodeling factor to nucleosomes by binding to H4K16ac as well as H3K4me3 (106).  

 

Figure 3: Remodeling factors that comprise ISWI-type enzymes. (A) A schematic representation of the 

Drosophila and human ISWI complexes is shown. The drawing is not to scale. An explanation for each 

abbreviation can be found in section I. (B) Schematic representation of the domain architecture of the 

Drosophila and human ISWI enzyme. The ATPase domain consists of two lobes (yellow and red) and 

comprises seven sequence motifs (I−VI) typically found in helicase-like enzymes. The ATPase domain is 

flanked by the N-terminal region (NTR, light blue) and the NegC motif (orange). The NTR and NegC region 

are implicated in the regulation of the catalytic activity. The DNA-binding HAND-SANT-SLIDE (HSS) 

domain (green) is located near the C-terminus of the enzyme. 

The ISWI-type remodeling enzymes share an overall conserved domain organization (Figure 

3B). The ATPase domain is composed of two lobes (i.e., ATPase lobe 1 and ATPase lobe 2), 

both of which comprise conserved sequence motifs that play an important role during catalysis. 

Seven sequence motifs are characteristic of SF2 helicases (cf. roman numerals in Figure 3B) 
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and additional conserved sequence blocks have been identified that are typically not found in 

helicases (107-109). The helicase sequence motif I (i.e., “ILADEMGLGKT”, residues 202−212 

and 150−160 in the Snf2H and DmISWI enzymes, respectively) comprises a conserved lysine 

residue, which is essential for ATP binding (109, 110). Another important motif, named 

according to the conserved sequence of ATPase lobe 1, is the “DEAH” box (also known as 

motif II, residues 308−311 and 256−259 in the Snf2H and DmISWI enzymes, respectively). 

The respective aspartate and glutamate residues have been suggested to be involved in binding 

of the Mg2+ ion and ATP hydrolysis, respectively (111). Two arginine residues in motif VI of 

ATPase lobe 2 (i.e., “QAMDRAHR”, residues 588−595 and 536−543 in the Snf2H and 

DmISWI enzymes, respectively) constitute an ‘arginine finger’, which interacts with the ATP 

γ-phosphate and may stabilizes the transition state during the ATP hydrolysis reaction (112, 

113). Importantly, taking into account that these individual motifs facilitate the hydrolysis of 

ATP in a cooperative manner, it is assumed that the ATPase domain has to adopt a specific 

conformation with structural motifs being oriented towards each other in order to become 

catalytically competent. 

ATPase lobe 1 and ATPase lobe 2 are adjacent to regulatory domains termed N-terminal region 

(NTR) and NegC, respectively (114). The NTR exhibits partially conserved motifs (115) such 

as the N-terminal autoinhibitory region (AutoN), which has been proposed to negatively 

regulate the ATPase activity of ISWI-type remodeling enzymes (114).  

At the C-terminal region, ISWI-type enzymes typically comprise a domain, which is rich in α-

helical segments and that can be divided into three characteristic motifs referred to as HAND, 

SANT, and SLIDE (HSS) as well as a spacer region. The HAND module was characterized by 

X-ray crystallography and displays four α-helices connected by loop regions in an unique 

structural arrangement (116). On the contrary, the SANT domain is structurally related to the 

DNA-binding domain of the transcription factor c-Myb (116, 117) and is furthermore 

sequence-wise related to the SLIDE (SANT-like ISWI domain) module. The SANT and SLIDE 

domains contain three α-helices each and harbor a basic and acidic surface patch that are 

involved in mediating DNA and octamer interactions, respectively (116). In the DmISWI 

enzyme, the SANT domain is connected to the SLIDE module through a continuous spacer 

helix of approximately 50 Å in length. The length of the spacer helix varies among related 

chromatin remodeling enzymes. For instance, the SANT and SLIDE domains are 

approximately 15 Å closer to each other in the chromodomain-helicase-DNA-binding protein 1 

from Saccharomyces cerevisiae (ScChd1), relative to the DmISWI enzyme, due to a shorter 

spacer helix (116, 118).  
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1.2.2. Mechanism and regulation of ISWI-mediated nucleosome sliding 

In order to reposition nucleosomes along DNA, the ATP-dependent chromatin remodeling 

enzymes have to disrupt DNA-histone interactions without causing the dissociation of the 

histone octamer. The molecular mechanisms underlying the nucleosome sliding function have 

remained poorly understood. One experimental challenge in exploring nucleosome sliding 

relies on the complex series of events that take place during the catalytic cycle. An improved 

mechanistic understanding for this important class of enzymes may pave the way towards the 

development of therapeutic strategies to specifically target and regulate ISWI-comprising 

remodeling factors, which enjoy widespread interest in the scientific community. This section 

thus aims at describing the interactions between ISWI-type remodeling enzymes and 

nucleosomes and briefly summarizing current models for nucleosome sliding and the regulation 

of ISWI-type enzymes.  

 

The ATPase and HSS domains of ISWI-type remodeling enzymes have been demonstrated to 

directly interact with nucleosomes and DNA. That is, early experiments on ISW2 using site-

directed cross-linking suggested that the catalytic ATPase domain engages the nucleosome 

about two helical turns off the dyad axis at the SHL +2 position (22, 23). In line with this 

observation, DNA gaps or nicks at different positions in the nucleosome had no major effects 

on nucleosome sliding by ISWI-type enzymes, only when the gaps or nicks were located near 

the SHL +2 site (25, 119). The binding mode of the catalytic core of ISWI-type enzymes may 

represents a common strategy to approach the nucleosomal substrate. The catalytic core of 

other chromatin remodeling proteins belonging to the SWI/SNF (21, 25, 120, 121), RSC (122), 

and Chd1 (24, 123) families were also found to interact with the nucleosome at the SHL 2 

position. Notably, the region around SHL 2 typically exhibits energetically weak histone-DNA 

interactions (19) with the mechanistically important H4 tail being in close spatial proximity (10, 

115, 124, 125). The remodeling enzyme of the INO80 complex appears to represent an 

exception considering that the Ino80 protein was found to contact the nucleosome exclusively 

at SHL –6 (126). 

Another functionally important set of intermolecular interactions is formed between the C-

terminal HSS domain and DNA (23, 116, 127). The HSS domain of the ScIsw2 enzyme has 

been observed to contact approximately 30 bp of DNA. That is, while the SLIDE module binds 

to extranucleosomal DNA 19 bp away from the entry site, the HAND region contacts between 

11–13 bp of nucleosomal DNA (22, 23). Interestingly, the structurally related SANT-SLIDE 

(SS) domain of the ScChd1 enzyme has also been identified to interact with extranucleosomal 

DNA at a similar position (24, 118, 123, 128). However, the interaction interface is presumably 

not static during the catalytic reaction. Recent studies on the Snf2H enzyme suggest that the 

HSS domain is not permanently bound to flanking DNA during the catalytic cycle (28, 129). 
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Instead, the experimental findings imply that the HSS domain is released from the flanking 

DNA stretch prior to the DNA translocation event and may interact with the nucleosome core. 

 

A critical question that remains to be answered in chromatin research is how ATP hydrolysis is 

mechanistically coupled to nucleosome sliding. Several distinct models for the molecular 

mechanism of the ATP-dependent repositioning of nucleosomes have been proposed, which are 

the subject of controversial debate. For instance, in the ‘twist diffusion’ model the remodeling 

enzyme introduces a twist defect in the DNA such that the DNA then propagates around the 

octamer shifting the nucleosome by 1 bp at the time (130, 131). On the contrary, in the ‘loop 

propagation’ model, individual remodelers are thought to initiate the sliding reaction by 

detaching DNA from the octamer at the entry site giving rise to the formation of a DNA loop, 

which then propagates around the octamer and resolves at the DNA exit site of the nucleosome 

(132, 133). Notably, the twist diffusion and loop propagation models may not be mutually 

exclusive and perhaps both mechanisms occur in nucleosomes depending on other factors such 

as the underlying DNA sequence (134, 135). However, several single-molecule studies have 

pointed towards a sliding mechanism, which cannot be explained by the above mentioned 

models. For instance, it was shown that ACF and RSC reposition nucleosomes in a step size > 1 

bp (i.e., nearly 7 or 3-4 bp and 2 bp, respectively) as suggested by the ‘twist diffusion’ model 

(136, 137). In addition, it was demonstrated that the ISWI enzyme repositions nucleosomes 

such that a stretch of DNA is first translocated to the exit site (138), which stands in contrast to 

the formation of a DNA loop, but might be explained by local under-twisting of DNA (139). 

Consequently, the combination of complementary biochemical, biophysical, and computational 

approaches might pave the way towards the definition of a common nucleosome sliding 

mechanism and/or the identification of mechanistic differences between remodeling enzymes of 

distinct families. 

 

The molecular regulation of the ATPase activity represents another important aspect of the 

chromatin remodeling mechanism. It is remarkable that the DmISWI ATPase module on its 

own is capable of carrying out fundamental aspects of the nucleosome remodeling reaction 

(140). That is, ISWI lacking its HSS domain exhibits an intrinsic ability to bind and move 

nucleosomes along DNA. The HSS domain potentially plays an important role in increasing the 

affinity and specificity of the remodeling enzyme for its nucleosomal substrate. Consequently, 

accessory domains of chromatin remodeling enzymes may have evolved to modulate the 

catalytic activity. This notion is furthermore supported by the identification of the 

autoregulatory NTR and NegC domains (114), which flank the catalytic core. 

 



 12 Introduction 

The structure and function of the NTR region have not been completely characterized. As 

outlined in the previous sections, the NTR domain comprises several motifs such as AutoN, for 

which the primary sequence shares similarities with the basic patch of the histone H4 tail (114). 

Sequence-related changes to the AutoN motif, i.e. substitution of two arginines to alanines, 

generate an enzyme that no longer requires the H4 tail for high levels of ATPase activity and 

nucleosome sliding and even allows the ISWI enzyme to more effectively use free DNA to 

stimulate ATPase activity (114). Based on the identification of the AutoN region, it was 

inferred that this motif may inhibit enzyme activity by binding to the ATPase domain in the 

absence of the nucleosomal substrate. The H4 tail was proposed to compete with the AutoN 

region for the interaction site on the ATPase domain and to displace the inhibitory NTR motif 

in the presence of substrate. However, this model of activity regulation by the NTR region has 

recently been challenged by experimental data that pointed towards a more sophisticated, non-

competitive mechanism (115). That is, the binding sites for AutoN and the histone H4 tail were 

shown to be adjacent to each other but did not overlap on ATPase lobe 2 of the DmISWI 

enzyme. Furthermore, the study revealed that in the absence of nucleosomes, the AutoN region 

cooperates with the AcidicN motif of the NTR domain in order to retain an inactive 

conformation of the DmISWI protein.  

 

Apart from the NTR domain, the NegC region has been shown to negatively influence the 

activity of chromatin remodeling enzymes. In the crystal structure of the ScChd1 protein (pdb 

3MWY), the NegC region bridges both ATPase lobes thereby locking the ATPase module in a 

catalytically incompetent conformation (141). Consequently, the NegC region has been 

suggested to prevent the efficient coupling of ATP hydrolysis to nucleosome sliding in the 

absence of nucleic acids. Consistent with the proposed mechanism of inhibition, deletion of the 

NegC region has been found to enable nucleosome sliding in an ISWI construct lacking its 

DNA-binding domain (114). 

 

The activity of the DmISWI enzyme is positively regulated by two nucleosomal features. As 

mentioned above, the ATPase domain of DmISWI generally engages the nucleosome at the 

SHL +2 position, which is in close spatial proximity to the protruding N-terminal H4 histone 

tail. Interestingly, the ATPase activity of the DmISWI enzyme has been shown to rely on the 

interaction with the H4 tail (124). In particular residues R17H18R19 of the basic patch of the H4 

tail appeared to be crucial to enhance chromatin remodeling activity (71, 142, 143). 

Flanking DNA represents the second nucleosomal feature that impacts the remodeling activity 

of the ISWI protein. That is, flanking DNA above a certain length threshold is associated with a 

stimulated remodeling activity (84, 129, 144). For instance, mononucleosomes with 20 bp of 

flanking DNA were remodeled at a slower rate by the Snf2H enzyme than mononucleosomes 

comprising > 40 bp of flanking DNA. Furthermore, the ACF complex has been shown to be 
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able to distinguish linker lengths of up to 60 bp (84). In the context of nucleosome arrays, the 

ability to sense the length of DNA flanking either side of a nucleosome preferentially results in 

nucleosome sliding towards the longer DNA stretch and may enable evenly spaced NCPs (22, 

84). The flanking DNA length sensitivity of ISWI-type remodeling enzymes has predominantly 

been attributed to the HSS domain (89). Consistent with this notion, ISWI lacking its HSS 

domain slides mononucleosomes and remodels nucleosome arrays at a decreased rate with 

similar results being reported for the ScChd1 protein (140, 145). However, the underlying 

mechanisms of DNA sensing by the HSS domain and molecular details how the information is 

propagated to the catalytic core have remained elusive. A potential role of the regulatory NegC 

region in the DNA sensing mechanism has been controversially discussed. That is, the NegC 

domain has been observed to affect the DNA sensitivity of distinct remodeling enzymes (e.g., 

Snf2H and MtISWI) (129, 146), whereas the sensitivity of the ACF complex does not appear to 

rely on the regulatory domain (147).  

 

An additional regulatory potential is offered by the way how individual remodeling enzymes 

engage the nucleosomal substrate. Whereas the ScChd1 enzyme slides nucleosomes as a 

monomer (148, 149), the Snf2H protein was shown to act as a dimer on the nucleosome (150). 

The dimeric architecture of the Snf2H enzyme is associated with an enhanced remodeling 

activity and bidirectional movement (129, 150). The related ScISW1a protein in turn has been 

proposed to interact simultaneously with two nucleosomes (151).  

 

Taken together, the activity of ISWI-type enzymes is regulated in a highly complex manner 

involving inhibitory accessory domains and the structural interplay with the nucleosomal 

substrate. One may speculate that the regulation is even more complex in vivo considering that 

chromatin remodeling enzymes are essential components of the much larger, multi-protein 

remodeling factors. That is, the accessory proteins of such remodeling complexes may hold the 

potential to additionally modulate the ATPase activity of remodeling enzymes. Furthermore, 

the incorporation of histone variants and/or PTMs in the nucleosomal substrate may fine-tune 

the activity of remodeling enzymes in vivo. However, the fundamental mechanisms underlying 

nucleosome sliding by ISWI-type enzymes are still not fully understood.   
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1.2.3. Structural information about remodeling enzymes 

The establishment of detailed structure-function relationships for individual remodeling 

enzymes is believed to pave the way towards an improved mechanistic understanding of how 

chromatin remodeling is performed on a molecular level. However, high-resolution structural 

information about remodeling enzymes in terms of X-ray crystallographic data have proven 

difficult to obtain and are thus sparse and in most cases limited to isolated domains of the 

studied enzyme. The following section aims at summarizing available high-resolution structural 

data for remodeling enzymes that are relevant to this study.  

 

As of today, a full-length high-resolution structure of an ISWI-type enzyme is lacking. 

Attempts to crystalize the full-length DmISWI enzyme have remained unsuccessful. However, 

limited proteolysis analysis of the DmISWI enzyme suggested compact protein segments with 

one fragment being suitable for crystallization and X-ray diffraction (116). The fragment turned 

out to correspond to the HSS domain comprising residues 691–991 of the DmISWI enzyme. 

The structure (pdb 1OFC) revealed four modules that are rich in α-helical regions (cf. section 

1.2.1.). In addition, the structure of the HSS domain of the ScIsw1 enzyme (HSSScIsw1) has been 

solved (pdb 2Y9Y), which displays identical secondary structural elements as indicated by a 

root-mean-square deviation (RMSD) of 2.8 Å (151). In the same study, the structure of the 

HSSScIsw1 in complex with a 31 bp DNA fragment (pdb 2Y9Z) was determined, which shows 

that the SANT and SLIDE modules bind to DNA minor grooves. The observed binding mode 

of the HSSScIsw1 thus slightly differs from the structurally related DNA-binding domain of the 

cMyb protein. The comparison of the HSSScIsw1 structures, in the absence and presence of DNA, 

suggests that the DNA-binding module is rigid, a feature which may be shared across 

individual members of the ISWI family (116, 151). 

The catalytic cores of several chromatin remodeling enzymes have been successfully 

crystallized depicting a vast diversity in the relative orientation of both ATPase lobes to each 

other (Figure 4). In the case of the ScChd1 structure (pdb 3MWY), which represented the most 

closely related enzyme with available structure in the beginning of the PhD project, both 

ATPase lobes are held apart in a presumably inactive, open conformation (141). The ATPase 

activity of the ScChd1 protein appears to be regulated by N-terminal chromodomains, which 

mask the catalytically important motifs (141). In contrast, ATPase lobes and conserved 

structural motifs of the Rad54 protein have been captured in much closer spatial proximity to 

each other in the respective structure (pdb 1Z3I) (109). This arrangement of the two ATPase 

lobes in Rad54 may reflect structural characteristics that are compatible with ATP hydrolysis 

activity (152). Crystallographic efforts on enzymes from the yeast Myceliophthora thermophila 

(MtSnf2 and MtISWI) have resulted in two structures (pdb 5HZR and 5JXR), which depict the 

catalytic domain in a presumably inactive conformation with conserved structural motifs 
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pointing towards opposite directions (146, 153). Importantly, the MtISWI structure (pdb 5JXR) 

revealed a novel orientation of both ATPase lobes and comprised atomic coordinates for large 

parts of the flanking NTR and NegC domains (146). Notably, the NegC module of the MtISWI 

enzyme protrudes from the otherwise compact ATPase domain to interact with an adjacent 

protomer in the crystal. The orientation of the NegC region in the MtISWI structure is thus 

substantially different to the one observed for the ScChd1 enzyme (pdb 3MWY), in which the 

corresponding ‘brace-bridge’ segment (also referred to as ‘NegC’ hereafter) bridges both 

ATPase lobes of the same molecule (141). These pronounced differences in the arrangement of 

both ATPase lobes among Snf2-related enzymes raise the question whether the static snapshots 

reflect physiologically relevant conformations. It has furthermore remained unclear how the 

orientation of helicase-related motifs cooperatively function to couple DNA binding and ATP 

hydrolysis to chromatin remodeling. 

 

Figure 4: Available apo crystal structures of Snf2-type ATPases differ in the relative orientation of both 

ATPase lobes. A phylogenetic tree depicts the evolutionary relationship of the DmISWI enzyme to Snf2 

ATPase domains, for which crystal structures are available (109, 141, 146, 153, 154). The crystal structures 

are all aligned to ATPase lobe 2 (red). The relative orientation of ATPase lobe 1 (yellow) to lobe 2 varies 

drastically among the presented structures. Spheres indicate the position of motifs implicated in ATP 

hydrolysis (grey, motif I; green, motif II; blue, motif VI). The crystal structure of MtSnf2 lacks electron 

density for motif VI and thus the position of the closest neighboring amino acid is indicated instead. N/A: not 

available. Dm: Drosophila melanogaster; Mt: Myceliophthora thermophila; Sso: Sulfolobus solfataricus; Dr: 

Dario renio; Sc: Saccharomyces cerevisiae. The figure was adapted from (1) in accordance with Elsevier’s 

policies. 

Very recently, the high-resolution cryo-EM structure of the ScChd1 enzyme in complex with its 

nucleosomal substrate (pdb 5O9G) represented a groundbreaking achievement in chromatin 

research (24). The corresponding structure provides molecular cues for the binding mode 

between the monomeric ScChd1 enzyme and its nucleosomal substrate while showing 

consistency with previous low-resolution structural data for the protein (155). The ATPase 

domain adopts a closed, presumably active conformation and interacts with nucleosomal DNA 

at the SHL +2 position. The ATPase module is furthermore anchored to the N-terminal histone 
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H4 tail in a similar manner as observed in the MtSnf2 ATPase-nucleosome complex (pdb 

5JXR) (21) and in agreement with structural data for the DmISWI enzyme (115). The SS 

domain of the ScChd1 enzyme formed interactions with detached DNA, in close spatial 

proximity to the SHL –7 position and the N-terminal chromodomains. As such, the 

crystallographic results by Farnung and co-workers differ from the low-resolution structural 

data for the Snf2H enzyme, which suggest that a dimer of ATPases interacts with the 

nucleosome in a coordinated manner (150). 

 

1.3. Structural techniques to study chromatin remodeling enzymes  

X-ray crystallography represents a powerful approach to elucidate the structural architecture of 

chromatin remodeling enzymes, and thus has significantly contributed to our understanding of 

this important class of proteins. Individual crystal structures have established a structural and 

functional framework and given rise to mechanistic models for chromatin remodeling. 

However, these X-ray structures represent static snapshots of presumably highly dynamic 

remodeling enzymes and they have often been obtained using non-native conditions during the 

sample preparation procedure. Consequently, complementary biophysical and computational 

approaches are needed to study the higher-order structure and dynamics of individual 

remodelers in a more native-like environment in solution in order to comprehensively 

understand the molecular mechanisms underlying the chromatin remodeling activity. A variety 

of biophysical approaches including electron microscopy (EM) (21, 24, 123, 126, 150, 155, 

156), small angle X-ray scattering (SAXS) (148, 155), protein-protein and protein-DNA cross-

linking (22, 23, 28, 115, 123, 155-157), fluorescence resonance energy transfer (FRET) 

spectroscopy (28, 129, 138, 148, 150, 155, 158, 159), and electron paramagnetic resonance 

(EPR) spectroscopy (150, 159) have been applied to chromatin remodeling enzymes. The 

results from these biophysical measurements have substantially contributed to our 

understanding of chromatin remodeling by highlighting for instance the dynamic nature of 

chromatin remodeling enzymes in solution and providing insights into the interaction with the 

nucleosomal substrate. 

 

1.3.1. Small angle X-ray scattering 

As of today, SAXS represents a powerful and popular approach to characterize the higher-order 

structure and interactions of proteins under close-to-physiological conditions in solution (160, 

161). The fundamental principles of SAXS were developed in the late 1930s. 

In a conventional SAXS experiment, the sample solution containing macromolecules is 

exposed to high-energy X-rays of a specific wavelength, which scatter elastically dependent on 

the size and shape of the studied macromolecules, giving rise to a spatially averaged intensity 
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distribution (161-163). The scattering intensity (I(q)) is detected as a function of scattering 

vector length (q), which is defined as 

𝑞 =  
4𝜋 𝑠𝑖𝑛𝜃

λ
 

, where θ corresponds to half the scattering angle and λ signifies the radiation wavelength. 

Structural information about the macromolecules present in the sample solution can be derived 

from the scattering profile. That is, the radius of gyration (Rg), which is an important parameter 

for describing the size of the macromolecule, can be extracted by the Guinier approximation 

(valid in the low q-range) according to the following equation  

𝑙𝑛𝐼(𝑞) = 𝑙𝑛𝐼(0) −  
𝑅𝑔

2 𝑞2

3
 

, where I(0) signifies the zero angle scattering intensity (164). A monodisperse sample results in 

a linear Guinier plot, whereas aggregation is seen as a non-linear dependence (165).  

SAXS analysis furthermore allows for the assessment of the folding state of the target 

macromolecule based on Kratky plots. That is, in the Kratky representation, where (q) is plotted 

against (I(q)q2), one observes a bell-shaped curve for globular, folded macromolecules, whereas 

extended and/or unfolded particles exhibit a plateau or a slight increase in the larger q-range 

(166). Notably, the comparison of SAXS-derived structural parameters for the target protein 

across distinct steady-state conditions sometimes point towards conformational differences 

between studied states. For instance, the comparison of SAXS data may reveal a ligand-induced 

compaction of the overall protein shape if the Rg value is decreased in the ligand-bound state 

relative to apo state conditions (167-169).  

Lastly, SAXS data can be used for ab-initio shape reconstruction giving rise to three-

dimensional, low-resolution (i.e., 10–30 Å) models of biomolecules in solution (170). To 

evaluate the quality of the computationally generated ab-initio models with respect to 

experimental SAXS data, the χ-value (or alternatively χ2) is commonly used (171). This value 

reports on the goodness of the fit as discrepancy between the calculated, theoretical scattering 

intensity of the model and the experimental scattering data. Consequently, the χ-value is 0 for 

two identical scattering profiles and increases for dissimilar profiles. Notably, the χ-acceptance 

criterion for computed models differs among individual SAXS studies with upper limits being 

reported ranging from 2 to 5 (172, 173).  

Numerous structural studies on chromatin remodeling enzymes, including human CHD4 (174), 

ScChd1 (155), and MtSnf2 (153), have substantially benefited from SAXS analysis. 

Furthermore, integrative modeling strategies haven recently proven valuable to translate the 

SAXS-derived scattering data into high-quality models of protein-protein complexes (175).   
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1.3.2. Protein cross-linking coupled to mass spectrometry 

Protein cross-linking coupled to mass spectrometry (XL-MS) was introduced more than 15 

years ago (176) and represents a valuable approach in structural biology to gain structural 

insights on biomacromolecules in solution. Ongoing developments in MS instrumentation and 

cross-linking agents, as well as advances in bioinformatics have substantially improved the XL-

MS technique to provide important structural information about individual proteins and protein 

complexes, for which no higher-resolution data (e.g., X-ray crystallography and NMR) can be 

obtained (177). Protein cross-linking generally involves the reaction of a cross-linking agent 

with functional groups of the target molecule(s) resulting in the formation of a covalent bond. 

These reactive residues have to be in spatial proximity in order for a cross-link to be formed. 

Notably, the maximal spanned distance between two reactive residues differs for individual 

cross-linking agents and typically ranges from 0 Å to more than 35 Å (178). This distance 

dependency of cross-linking reactions in turn allows the cross-linking agent to act as a 

molecular ruler (179) providing information about the higher-order structure (e.g., orientation 

of individual domains and protein-protein interfaces) of the target protein(s) in solution.  

The conventional XL-MS workflow can be divided into distinct steps including (i) the cross-

linking reaction, (ii) the enzymatic digestion of the target protein, (iii) LC-MS/MS analysis, and 

(iv) the identification of cross-linked products. Each of these steps is important for the success 

of the XL-MS experiment and will thus be further introduced in the subsequent paragraphs.  

 

Different strategies for protein cross-linking have been described, which can be classified as 

targeted and untargeted approaches (180). Notably, both cross-linking strategies have 

experimental advantages and can complement each other. 

In a targeted cross-linking approach, an unnatural, photo-crosslinkable amino acid (e.g., p-

benzoyl-L-phenylalanine, Bpa) is genetically engineered at a desired position into the target 

protein. The Bpa amino acid (Figure 5A) can be site-specifically incorporated into the 

polypeptide chain in response to an amber stop codon (TAG) using an orthogonal 

tRNA/aminoacyl-tRNA synthetase pair (181). UV irradiation of the Bpa amino acid induces 

oxidative radicals, which facilitate the formation of a covalent cross-link. The Bpa residue 

exhibits a broad reactivity towards different amino acids, even though the benzophenone 

moiety has been observed to preferentially react with surrounding methionine side chains (182). 

In an untargeted cross-linking approach, a chemical cross-linking agent is added to the sample 

solution. Chemical cross-linkers comprise reactive groups that are capable of covalently 

binding to specific functional groups. In the present study, the chemical cross-linkers BS3 and 

BS2G were employed, which comprise two reactive N-hydroxysuccinimide (NHS) ester groups 

on each end of a spacer arm of defined length (Figure 5A). The NHS esters are designed to 

form a covalent adduct with primary amines, which are present at the N-terminus of each 
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polypeptide chain and in the side chain of lysine residues (Figure 5B). However, these cross-

linking reagents are susceptible to hydrolysis and have been observed to sometimes react with 

serine, threonine, and tyrosine residues (183, 184). Furthermore, isotope-labeled cross-linking 

agents have become commercially available, in which certain atoms are substituted with heavy 

stable isotopes (185). For instance, a total of four hydrogens are replaced with deuterium atoms 

in the “heavy” form of the BS3 cross-linker (BS3-D4, Figure 5A). Some studies rely on the 

simultaneous use of heavy and light cross-linking reagents to enhance the identification success 

of chemically cross-linked peptides (186, 187), which in mass spectra appear as two peptide 

envelopes that are separated on the mass-to-charge (m/z) scale with a mass shift according to 

the isotope label. In addition, isotope-labeled cross-linkers enable the relative quantification of 

cross-linking candidates to investigate the dynamics of the target protein(s) (188). That is, the 

probability of a cross-linking reaction and thus the yield of a cross-linked product is tightly 

coupled to the conformation of the target protein(s). Consequently, conformational differences 

in the target protein(s) in response to changed steady-state conditions can be revealed by 

calculating the extracted ratios between heavy- and light-labeled cross-linking candidates (189). 

 

Figure 5: Cross-linking agents. (A) The chemical structures for the BS
3
 and BS

2
G cross-linking agents as 

well as the photo-reactive amino acid Bpa are shown. The chemical BS
3
 and BS

2
G cross-linkers comprise 

identical Sulfo-NHS ester groups at either end of a spacer arm of defined length. (B) An exemplary reaction 

scheme for protein cross-linking by NHS-esters is shown. The NHS esters of the cross-linking agent BS
3
 

predominantly react with primary amines (-NH2) of the target protein(s). 

Following UV-induced or chemical cross-linking, protein samples are subjected to enzymatic 

proteolysis. In most XL-MS studies, trypsin is employed to cleave the target protein into 
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smaller peptides due to its high proteolytic activity, robustness, and substrate specificity (180, 

190). Trypsin cleaves the polypeptide chain C-terminally to arginine and lysine residues giving 

rise to a mixture of peptides with often favorable properties in terms of length, charge, and 

fragmentation behavior during MS/MS analysis (191). For instance, tryptic peptides typically 

comprise at least two positively charged residues located at the N- and C-terminus, which is 

beneficial for MS analysis in positive ionization mode. Consequently, the tryptic sample 

mixture comprises unmodified linear peptides and the desired inter-peptide cross-linking 

products, but it also includes so called “loop-links” (i.e., two reactive groups cross-linked 

within a single peptide) and “mono-links” (i.e., a single peptide modified with a hydrolyzed 

cross-linker) (Figure 6A) (192). Although mono-links generally do not provide distance 

information, they report on solvent accessibility and the relative reactivity of individual 

residues of the target protein(s) in solution (193). In the case of a targeted cross-linking 

approach using the unnatural Bpa amino acid, UV irradiation occasionally results in the 

unwanted elimination of hydrogen atoms from nearby amino acids without formation of a 

cross-linked product (157, 194). 

 

Figure 6: Cross-linking products and the Roepstorff and Fohlman nomenclature. (A) A schematic 

illustration of cross-links, loop-links, and mono-links is shown. The cross-linking agent and individual 

peptides are colored in blue and black, respectively. (B) Roepstorff and Fohlman nomenclature (195) for 

fragment ions observed in an MS/MS spectrum. The dashed lines indicate the site at which the peptide 

backbone is cleaved with arrows pointing towards the product ion. Fragment ions are labeled as a, b, c, x, y, 

and z depending on the cleavage site and which side retains the charge. Fragmentation by CID predominantly 

results in the cleavage of the peptide bond giving rise to b- and y-ions (blue). The fragment ions are 

furthermore labeled with a subscript number corresponding to the residue count and a superscript number (not 

indicated) specifying the charge state. R, amino acid side chain. 

The complex sample mixture is usually desalted and separated by reversed-phase liquid 

chromatography (LC) and peptides gradually eluted into a high-resolution mass spectrometer 

for mass analysis. That is, peptides are transferred from solution into the gas-phase using 

electrospray ionization (196, 197) and analyzed in MS1 mode to deduce the m/z ratio of the 

precursor ions. Alternatively, analyte molecules are selectively filtered based on their m/z value 

and subjected to collision-induced dissociation (CID) to produce a set of fragment ions that 
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allow sequence assignments (i.e., MS/MS analysis or MS2 mode). The precursor ions are 

thereby accelerated into a gas-filled collision chamber. Upon collision with inert gas molecules, 

the high kinetic energy is converted into vibrational energy, which causes the breakage of 

peptide bonds in the analyte molecules (198). Consequently, fragmentation of peptides by CID 

predominantly results in the generation of N-terminal “b-ions” and C-terminal “y-ions” (195) 

(Figure 6B), which can be used to deduce the sequence of the analyte molecules during MS/MS 

analysis (199).  

 

In a final step, the LC-MS/MS data is analyzed using specialized software such as ‘Crossfinder’ 

(200), which matches the observed precursor masses and fragment ions of identified cross-link 

candidates with the sequence of the target protein(s). Given the complexity and diversity of 

cross-linking products, in particular in chemical cross-linking experiments, the analysis of LC-

MS/MS data is primarily a computational challenge (201). Individual sequence assignments for 

cross-linked products are primarily validated by three distinct approaches (186). These include 

a score-based evaluation of the quality of the match between experimental and predicted 

fragmentation data of a given cross-link candidate as well as the implementation of false 

discovery rates (FDRs) to minimize the number of false positive identifications (186). 

Furthermore, individual sequence assignments should ideally be verified by manually 

inspecting the fragmentation spectra for a given cross-link candidate. 

 

Despite being straightforward in theory, XL-MS analysis of proteins and protein complexes is 

often challenging due to various technical and biological reasons, which will be described in 

the following paragraphs. 

Cross-linked peptides are typically of low abundance in the proteolytic reaction mixture 

resulting in suboptimal signal intensities during MS and MS/MS analysis. A possibility to 

overcome this technical challenge is to selectively enrich the cross-linked peptides prior to LC-

MS/MS analysis, for example by size-exclusion chromatography, cation exchange 

chromatography or purification through an affinity tag (202). However, even in enriched 

samples only a subset of all cross-linked peptides is typically detected during MS analysis due 

to either unfavorable ionization properties of the analyte molecules and/or ion suppression by 

interfering ion species. Thus, even though a particular cross-link is present in the sample 

solution, it is sometimes difficult to obtain fragmentation data of sufficient quality that allows 

an unambiguous identification of the candidate and/or the localization of cross-linking sites. Ion 

suppression is an inherent problem in LC-MS analysis, which in some instances may be 

counteracted by sophisticated chromatographic separation strategies and extensive sample 

cleanup (e.g., enrichment of cross-linked products) (203). 
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To be a proper target for the chemical cross-linking agent, reactive residues are ideally well 

distributed across the target protein(s) with corresponding side chains being accessible to the 

cross-linking agent. Accessibility is in most instances warranted if the reactive residue is 

located on the protein surface and/or occupies solvent-exposed regions. The formation of a 

cross-link between two distant sites furthermore requires that the bridged path lead through 

solvent-occupied space such that there are no steric clashes between the cross-linking agent and 

individual segments of the target protein(s). Consequently, one may observe substantially 

different experimental outcomes for individual cross-linking agents that differ in their 

functional groups and/or the length of the spacer arm. The formation of a cross-link generally 

implies that the corresponding residues were in sufficiently close proximity to each other and 

were accessible to the cross-linking agent. Consequently, the comparison of cross-linking data 

sometimes allows for the identification of conformational differences in the target protein(s) 

across different steady-state conditions. That is, conformational rearrangements in the target 

protein(s) can give rise to changes in the relative distance between two reactive residues, 

sometimes resulting in the loss and gain of established and novel cross-linked products during 

LC-MS/MS analysis, respectively. However, slight conformational differences often remain 

undetected, if the changes in the distance between reactive residues are beyond the resolution 

limit of the XL-MS approach. Considering that proteins are inherently dynamic, XL-MS data 

report on the sum of cross-links that can be formed from an ensemble of distinct structures 

present in solution (179). The assignment of identified cross-links to distinct, often unknown 

protein states of a conformational ensemble is currently not feasible. Thus, the target protein is 

ideally trapped in a desired, physiologically relevant conformation prior to the cross-linking 

reaction in order to ease the interpretation of XL-MS results. 

In principle, any biophysical technique that relies on the covalent modification of the target 

protein could give rise to structural artefacts in the studied molecule. For instance, the covalent 

binding of the cross-linking agent may bias the conformational ensemble of the target protein 

towards infrequent or even physiologically irrelevant solution-phase states. Several studies, in 

which XL-MS data are compared to high-resolution structures, have not provided experimental 

evidence for such cross-linking-induced structural artefacts in the investigated proteins (204-

206). However, in a recent study by Rozbesky et al. (207), it appears that chemical cross-

linking may cause local structural perturbations to the target protein, whereas the overall 

protein fold is well preserved even at an elevated cross-linker to protein ratio.  

 

Despite the above mentioned methodological challenges, the rapidly increasing number of 

studies, in which XL-MS is applied to probe the conformation and structural architecture of 

proteins and protein complexes in solution, underscores the usefulness of the approach in 

protein science. The XL-MS technique has proven to be in particularly powerful in combination 
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with complementary biophysical methods (e.g., SAXS) and computational modeling (cf. 

section 1.3.3). For instance, XL-MS-derived distance restraints are often used during 

computational docking of protein complexes. Selected scientific achievements that underline 

the power of XL-MS analysis include the chromatin remodeling complexes INO80 (156) and 

SWR1 (208), transcription- and translation-related protein complexes (e.g., RNA polymerase 

and the translation initiation complex) (209-213), ribosomes (214), chaperons (215-217), and 

complexes involved in exchange and trafficking of molecules (e.g., nuclear pore complex and 

the exocyst complex) (218, 219). 

 

1.3.3. An integrative structural approach to study the topology of ISWI-type 

remodeling enzymes  

Given the importance of ISWI-type chromatin remodeling enzymes in the regulation of 

fundamental nuclear processes, we set out to study the structural architecture of two of these 

proteins, DmISWI and human Snf2H, by means of an integrative structural approach (Figure 

7). The approach combines experimental data from XL-MS and SAXS analysis to guide the 

computational modeling of the higher-order structure of the remodeling enzymes. The 

combination of biophysical methods and computational modeling has previously proven useful 

for the structural characterization of proteins and/or protein complexes, for which no higher-

resolution data (e.g., X-ray crystallography) could be obtained (162, 220). 

 

Figure 7: Workflow of the integrative approach for the structural characterization of ISWI-type 

remodeling enzymes. Collaborative work is indicated by green boxes. 
a
, Dr. Christina Schindler and Prof. Dr. 

Martin Zacharias (TUM, Munich); 
b
, Dr. Linda Brützel and Prof. Dr. Jan Lipfert (LMU, Munich); 

c
, Dr. Ignasi 

Forné and Prof. Dr. Axel Imhof (LMU, Munich). 
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As illustrated in Figure 7, the general workflow for the structural characterization of ISWI-type 

remodeling enzymes comprised several distinct experimental steps. First, the DmISWI and 

Snf2H enzymes were purified from bacterial cell extracts to near homogeneity using different 

chromatographic separation techniques. Subsequently, samples were subjected to either XL-MS 

or SAXS analysis. 

Two complementary XL-MS strategies, UV and chemical cross-linking, were applied in the 

course of this project in order to obtain intra- and inter-domain distance restraints for each 

remodeling enzyme. The sample preparation procedures for UV- and chemical cross-linking 

differed and relied on in-gel and in-solution tryptic digestion, respectively. In the case of the 

DmISWI enzyme, we used the photo-reactive Bpa residue (ISWIM578B) as well as chemically 

cross-linked the enzyme with either the BS2G or BS3 cross-linking agent. The Snf2H protein 

was chemically cross-linked across distinct steady-state conditions (i.e., ± nucleotide analog, ± 

substrate) using the BS3 cross-linker. For selected DmISWI and Snf2H samples, I performed 

size-exclusion chromatography subsequent to protein proteolysis in order to enrich the cross-

linked products in a similar manner as demonstrated previously (177). The tryptic peptide 

mixture was then subjected to LC-MS/MS analysis using a high-resolution mass spectrometer 

and XL-MS data analyzed with the Crossfinder software. 

Given the XL-MS data, our collaboration partner Dr. C. Schindler (TUM, Munich) performed 

computational modeling to reconstruct the structural architecture of the full-length DmISWI 

and Snf2H enzymes. Individual DmISWI and Snf2H domains (e.g., ATPase module) were 

homology modeled according to corresponding high-resolution structures of related remodeling 

enzymes. These homology models were subjected to rigid body docking, which was guided by 

XL-MS-derived upper distance restraints. The upper distance thresholds for individual 

restraints were set to 25 Å and 29 Å for the chemical BS2G and BS3 cross-linking agents, 

respectively. The employed threshold values are in agreement with previous XL-MS studies 

(180, 188, 221, 222) and account for the length of lysine side chains (approximately 6.5 Å), the 

length of the spacer (7.7 Å for BS2G and 11.4 Å for BS3; cf. Figure 5A), and some degree of 

protein flexibility (223). Likewise, the distance threshold for Bpa-derived restraints was set to 

20 Å, which is comparable to previously published XL-MS studies (182, 224). The docking 

procedure typically resulted in a multitude of potential enzyme structures, from which the top-

ranked 200 models were further considered. These structural models for the DmISWI and 

Snf2H enzymes were validated with respect to experimental XL-MS data as well as screened 

against collected SAXS profiles. Generally, the structural model with the lowest discrepancy 

between theoretical and experimental SAXS data (i.e., the model with the lowest χ-value) was 

selected as the representative final model.   
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1.4. Aims of this study 

The lack of high-resolution structural information for chromatin remodeling enzymes has been 

limiting our mechanistic understanding of how the chromatin landscape is regulated on a 

molecular level. We thus aimed at characterizing the structural architecture of the full-length 

DmISWI enzyme and the human Snf2H homolog in solution. As outlined in the above section, 

we used an integrative structural approach that combines the solution-based, biophysical 

techniques XL-MS and SAXS with computational modeling. We were in particularly interested 

in elucidating structural characteristics of the catalytic core of both studied enzymes and to 

better understand how enzyme activity is regulated in a nucleotide- and substrate-dependent 

manner. We therefore applied our integrative structural approach to both enzymes under apo 

state conditions and when bound to the nucleotide analog adenosine-5′-diphosphate beryllium-

fluoride (ADP-BeFx). We reasoned that we could detect and visualize the conformational 

impact of ADP-BeFx binding on the full-length DmISWI and Snf2H enzymes using our 

integrative structural approach. In a subsequent step, we aimed at exploring the binding mode 

of the Snf2H protein to its nucleosomal substrate. The characterization of the interaction 

between chromatin remodeling enzymes and nucleosomes has proven to be very challenging by 

traditional structural techniques (e.g., X-ray crystallography), yet it will contribute to our 

mechanistic understanding of the remodeling activity by ISWI-type enzymes.  

  



 26 Results 

2. Results 

2.1. Purification of proteins 

2.1.1. An improved purification procedure for recombinant histone proteins 

In-vitro reconstitution of nucleosomes has become an indispensable part in chromatin research 

and relies on the time-consuming and labor-intensive expression and purification of 

recombinant histone proteins. In the conventional workflow (i.e., Inclusion Body Purification, 

IBP), individual core histones are expressed in bacteria cells and the proteins are solubilized 

from purified inclusion bodies (225, 226) (Figure 8A). An optimized protocol for the 

purification of histones (i.e., Rapid Histone Purification, RHP) has recently been developed in 

our research institute (Division of Molecular Biology, Biomedical Center, LMU Munich) 

(Figure 8B). My contribution in this project was to directly compare the IBP and RHP 

strategies for the purification of the four canonical histones from Drosophila melanogaster. 

My results have been published in the PLOS ONE journal (i.e., Fig. 4, Fig. S1 and Fig. S2 in 

(227)) and detailed purification protocols of both approaches are provided in the method 

section (cf. section 4.2.2.4).  

  

Figure 8: Schematic illustration of distinct purification strategies for recombinant histone proteins. 

The schematic workflows for (A) the conventional IBP and (B) the refined RHP approaches are shown. 

Notably, canonical histones can be purified in a time-saving manner using the RHP strategy. SAU 200, 

sodium-acetate-urea buffer supplemented with 200 mM NaCl. 
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To compare the IBP and RHP methods side-by-side, I recombinantly expressed the four 

canonical Drosophila histones in E. coli and split the cell pellets into two equal parts. As 

illustrated in Figure 8, the IBP and RHP protocols already differ at an early stage of the 

purification procedure. The IBP approach relies on the partition of the histones into inclusion 

bodies, which then have to undergo a time-consuming washing procedure before the proteins 

are solubilized under denaturing solution condition. In contrast, the cell lysis step is already 

conducted under denaturing conditions in the RHP protocol. Notably, we observed that a 

substantial fraction of the H2B protein (i.e., approximately 50%) did not partition into 

inclusion bodies in the conventional workflow and remained soluble in the supernatant (Figure 

9A). Processing the same cell extract under denaturing conditions resulted in a more efficient 

extraction of the H2B histone (i.e., approximately 80%, Figure 9B). In line with this 

observation, we obtained higher yields for the H2B histone using the RHP approach (Figure 

9E). 

The Drosophila core histones are highly basic proteins (228) (i.e., isoelectric points > 10.2) 

and thus carry a net positive charge under slightly acidic solution conditions. Consequently, in 

both IBP and RHP protocols, cation exchange chromatography provides an excellent 

opportunity to purify the recombinant histone proteins at pH 5.2 and denaturing conditions. In 

addition to the conventional workflow, we included anion exchange chromatography in the 

RHP protocol in order to minimize residual DNA and to remove contaminating protein 

species. This additional purification step can be performed independently (“Variant 1” in 

Figure 8B) or in tandem with cation exchange chromatography (“Variant 2” in Figure 8B). In 

the latter approach, the anion exchange column is placed upstream of the cation exchange 

column and has to be detached from the FPLC system prior to the salt gradient elution of the 

histones. The two presented RHP protocols resulted, as demonstrated for the H3 histone in 

Figure 9D and E, in comparable yields (i.e., 4.5 and 6.6 mg per liter bacteria culture for 

Variant 1 and 2, respectively) and equivalent sample purity. A direct comparison between the 

IBP and RHP approach revealed comparable purification parameters in terms of yields (2−11 

mg per liter cell culture) and sample purity (Figure 9C, E) for all investigated canonical 

histones.  

In conclusion, we find that the RHP strategy represents a convenient alternative to the 

conventional purification workflow. That is, the RHP protocol requires less hands-on working 

time, while sample purity and purification yields are comparable to the inclusion body-based 

approach. Consequently, canonical histones can be prepared in a time-saving manner, which is 

an important factor for subsequent downstream applications in chromatin research such as in-

vitro reconstitution of nucleosomes.  
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Figure 9: Comparison of purification strategies for canonical histone proteins by SDS-PAGE analysis. 

(A) For the conventional IBP approach, equivalent amounts of the soluble (S) and pelleted (P) fractions of 

the whole cell extracts were analyzed for each histone by SDS-PAGE analysis and Coomassie staining. 

Notably, a substantial fraction of the expressed H2B protein did not partition into inclusion bodies and was 

lost at an early stage of the IBP purification procedure. (B) In the RHP approach, the majority of H2B 

proteins are extracted under denaturing conditions during the cell lysis step. Similar results were obtained for 

the other investigated histones. (C) Comparison of sample purities obtained for the IBP and RHP (Variant 1) 

protocol. The SDS-PAGE analysis reveals comparable purities for all four canonical histones. (D) SDS-

PAGE analysis for the H3 protein, which was either purified by Variant 1 or Variant 2 of the RHP approach 

(cf. Figure 8B). The two RHP protocols resulted in comparable sample purity and protein yields. (E) 

Comparison of DNA contamination and protein yields (n = 1). Protein concentrations were obtained from 

UV A280nm absorption measurements. Histone extinction coefficients are provided in Table 13 in Material and 

Methods. DNA contamination was calculated from the UV absorption ratio A260nm:A280nm as described in 

(229). M, protein marker; Oct, histone octamer. The panels (A) and (C)–(E) were adapted from (227) in 

accordance with the Creative Commons Attribution (CC BY) license applied by the Public Library of 

Science. 
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2.1.2. Purification of remodeling enzymes 

Expression and purification strategies for the full-length DmISWI remodeling enzyme 

(ISWIWT, Figure 10A), its catalytic core (ISWI∆HSS, Figure 10D), and several point mutant 

constructs (i.e., ISWIM578B, Figure 10B) have already been well established prior to the 

beginning of the PhD project. However, corresponding procedures for the full-length Snf2H 

protein and the HSS domain of DmISWI (HSSISWI) were lacking and thus had to be established 

in the course of the project. The purification strategy for HSSISWI (Figure 10C) was set up on 

the basis of published work by Grüne and co-workers (116) and the procedure for the Snf2H 

enzyme (Figure 10E) was adapted from a protocol kindly provided by Prof. G. Narlikar and 

Dr. J. Leonard (UCSF, San Francisco, California).  

This section aims at describing the key steps of the purification procedures for the above-

mentioned remodeling enzymes and their variants with detailed protocols being provided in the 

method section (cf. chapters 4.2.2.2 and 4.2.2.3).  

 

Figure 10: Purification strategies for full-length and variant remodeling enzymes. Schematic illustration 

of the purification procedures for the following His6-tagged proteins: (A) full-length ISWIWT (157) and 

additional point mutation constructs (i.e., ISWIK337D, ISWID485K, and ISWIK337D D485K), (B) ISWIM578B 

comprising the UV-inducible cross-linking amino acid Bpa at position 578 (157), (C) HSSISWI (i.e., residues 

691−1027 in the full-length ISWI enzyme) (116), (D) ISWI∆HSS (i.e., residues 26−648 in the ISWI enzyme) 

(140), and (E) wild-type Snf2H. 
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The target proteins were all recombinantly expressed in E. coli and purified as schematically 

illustrated in Figure 10. The full-length and variant remodeling enzymes were expressed with 

an N-terminal His6-tag that allows for the purification by Ni-NTA affinity chromatography, as 

representatively shown in the purification progress for HSSISWI and Snf2H in Figure 11A and 

B, respectively. With the exception of the ISWIΔHSS variant, the His6-tag was subsequently 

cleaved off using tobacco etch virus (TEV) protease and most samples were again subjected to 

Ni-NTA affinity chromatography to remove unwanted protein species (i.e., the cleaved off 

His6-tag, uncleaved target protein, and His6-tagged TEV protease). The full-length enzymes 

were further purified by ion exchange chromatography in order to minimize sample impurities 

including nucleic acids and E. coli proteins. In a final step, we performed size-exclusion 

chromatography on all constructs to enhance sample purity to near homogeneity (Figure 11C). 

We observed that the sample purity was generally better for the ISWI constructs. However, the 

Snf2H enzyme was the most abundant protein in the respective samples such that the detected 

impurities likely did not interfere with XL-MS analysis (230). Furthermore, I did not observe 

protein species of higher molecular weight than the Snf2H enzyme during SDS-PAGE 

analysis, which is important for the analysis of SAXS data (231). The yield was on average 3.7 

mg and 1.4 mg per liter E. coli cell culture for purified full-length Snf2H and ISWIWT proteins, 

respectively. The yields ranged from 0.2 (ISWIK337D D485K) to 6.3 mg per liter cell culture 

(ISWIΔHSS) for the investigated ISWI variants. 

 
* continues next page * 
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Figure 11: Monitoring the purification progress for remodeling enzymes by SDS-PAGE analysis. I 

monitored the purification progress for individual remodeling enzymes and variants thereof by SDS-PAGE 

analysis and Coomassie staining. (A) Representative purification progress for the His6-tagged HSSISWI 

variant. The lysed whole cell extract (‘T’) containing soluble HSSISWI (‘SN’) was filtered (‘SNfiltered’) and 

subjected to a first Ni-NTA affinity purification (‘1
st
 Ni-NTA’) in order to remove most bacterial 

contaminations. Following TEV protease cleavage and dialysis, the target protein was subjected to a second 

Ni-NTA affinity purification (‘2
nd

 Ni-NTA’). In a last step, size-exclusion chromatography (‘SEC’) ensured 

near homogeneity of the final sample. Arrows mark the protein of interest. The three letter designations (e.g., 

1A2, 2B2, etc.) refer to individual FPLC-separated fractions. M, protein marker; P, pellet; FT, flow through. 

(B) Representative purification progress for the His6-tagged Snf2H enzyme. Ni-NTA affinity purification 

removed most soluble, contaminating protein species of the pre-cleared whole cell extract. The Snf2H 

enzyme was further separated from contaminating protein species and DNA fragments by MonoQ anion 

exchange chromatography and the concentrated flow-through (‘conc. FT MonoQ’) was subjected to TEV 

protease cleavage and dialysis. In a final step, the sample (‘After dialysis, SN’) was further processed using 

size-exclusion chromatography. (C) SDS-PAGE analysis for purified full-length and variant remodeling 

enzymes. Notably, individual target proteins were purified to near homogeneity.   
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2.2. Solution structure of the DmISWI enzyme under apo state conditions 

As of today, high-resolution structural evidence for the full-length DmISWI remodeling 

enzyme is lacking and only the respective HSS module has been successfully crystalized (116). 

As outlined in section 1.3.3, we developed an integrative structural approach (cf. Figure 7), 

which combines XL-MS and SAXS analyses as well as computational modeling, to probe the 

relative orientation of individual domains and thus the overall structural architecture of the 

full-length DmISWI protein in solution. 

Briefly, following UV and chemical cross-linking of the full-length target protein under apo 

state conditions, MS analysis of tryptic DmISWI digests resulted in the identification of 94 

cross-linked peptides providing a total of 61 unique cross-linked residue pairs (cf. STable 1, 

STable 2). I thereby included published cross-links from Forné et al. (157) (i.e., XLISWI 1, 2, 

24, 25) and Ludwigsen et al. (115) (i.e., XLISWI 3) and took advantage of an unpublished data 

set (i.e., XLISWI 6, 9–13, 16–18, 31–35, 39, 46, 47, 52, 53, 59–61), which was kindly provided 

by Dr. F. Müller-Planitz. Notably, 43 of all identified cross-linked residue pairs (including ten 

cross-links used for docking) were reproducible as further specified in STable 1 and STable 2. 

In collaboration with Dr. C. Schindler (TUM, Munich), we subsequently implemented a subset 

of the identified inter-domain cross-links as distance restraints to guide the computational 

modeling of potential solution structures for the DmISWI ATPase module and the full-length 

enzyme. Finally, candidate ATPase and full-length DmISWI structures were compared to the 

molecular shape information gathered from SAXS measurements, which were kindly 

performed by Dr. L. Brützel (LMU, Munich).  

The following sections describe the key findings from XL-MS analysis, SAXS measurements, 

and computational modeling for each functional domain of the DmISWI enzyme under apo 

state conditions in a step-by-step manner. 
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2.2.1. Conformation of the DmISWI ATPase domain  

2.2.1.1. The orientation of both ATPase lobes 

XL-MS analysis revealed 30 cross-linked residue pairs (cf. STable 1) within the ATPase 

module, which is defined in the following to include the NTR, ATPase lobe 1, ATPase lobe 2, 

and the NegC domain. Seven out of these 30 cross-linking positions (XLISWI 1–7) connected 

both ATPase lobes (Figure 12) and thus restricted the relative orientation of both ATPase lobes 

to each other in the full-length DmISWI enzyme. One UV and two chemical cross-links 

(XLISWI 3–5) connected the C-terminal region of ATPase lobe 1 with the C-terminal half of 

ATPase lobe 2. Moreover, three UV cross-links (XLISWI 1, 2, 7) bridged the N- and the C-

terminus of ATPase lobes 1 and 2, respectively, suggesting that these particular regions are in 

close spatial proximity to each other under apo state conditions. 

 

Figure 12: Identified cross-links for the full-length DmISWI protein. Identified cross-links for the 

DmISWI enzyme under apo state conditions are schematically illustrated in an arc plot. The UV and 

chemical cross-links that connect the homology models for region “” (residues 116−351) and region “” 

(residues 352−637) are highlighted in blue and cyan color, respectively. Residue numbering is denoted below 

each DmISWI domain. Arrows indicate the positions of Bpa-substituted amino acids. STable 1 provides 

further details for each presented cross-link. NTR, N-terminal region; HSS, HAND-SANT-SLIDE. The 

figure was adapted from (1) in accordance with Elsevier’s policies. 

Dr. I. Forné (LMU, Munich) performed the MS analysis. 

As a complementary approach to XL-MS analysis, we investigated the molecular shape of the 

ATPase module of the DmISWI protein in solution by means of SAXS. I therefore expressed 

and purified a truncated variant of the remodeling enzyme (i.e., residues 26−648), which lacks 

its HSS domain (ISWIΔHSS) and comprises an N-terminal His6-tag. Our collaboration partner 

Dr. L. Brützel (LMU, Munich) conducted the SAXS measurements and analyzed the data for 

the ISWIΔHSS variant at different protein concentrations ranging from 1.5 to 7.0 mg/mL. The 

experimental scattering curves were well superimposable after data normalization against 

intensity (Figure 13A) indicating that protein aggregation was minimal and that obtained data 

were of good quality. The Kratky representation of the scattering data furthermore suggested 

that the ISWIΔHSS enzyme was folded (Figure 13B). The reconstructed molecular envelope 
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(Figure 13C) visualizes that the ATPase module adopted a globular conformation under apo 

state conditions. 

 

Figure 13: SAXS data and scattering-derived parameters for the ISWIΔHSS variant. (A) Extrapolated 

scattering curves obtained at different ISWIΔHSS concentrations are shown. Notably, these curves are well 

superimposable indicating good data quality, because sample aggregation was negligible. (B) Kratky 

representation of merged SAXS scattering data. (C) The ab-initio determined molecular envelope of the 

ISWIΔHSS variant is depicted. The panels (A) and (B) were adapted from (1) in accordance with Elsevier’s 

policies. 

Dr. L. Brützel (LMU, Munich) conducted the SAXS measurements and analyzed the respective data shown in 

panels (A)–(C). 

In order to resolve and visualize potential orientations of both ATPase lobes in the DmISWI 

enzyme and thus generate a structural model of the ATPase module, we integrated the 

experimental XL-MS and SAXS data into a refined docking protocol for the ATTRACT 

software.  

In a first step, our collaboration partner Dr. C. Schindler (TUM, Munich) homology modeled 

the DmISWI ATPase domain according to the Chd1 structure from Saccharomyces cerevisiae 

(pdb 3MWY), the most closely related remodeler with an available high-resolution structure at 

this time. In order to model potential orientations of both ATPase lobes to each other in a rigid 

two-body docking approach, the generated homology model of the ATPase module was cut 

into two parts at a predicted hinge region that connects both ATPase lobes yielding two 

structural bodies (“”: residues 116–351; “”: 352–637 residues; cf. Figure 12). To validate 

the structural bodies with respect to experimental XL-MS data, I measured the Cα-Cα distance 

of identified intra-domain cross-links (i.e., XLISWI 13–30) in the computed structures. 

Importantly, all accessible intra-domain cross-links (XLISWI 15–22) were consistent with the 

computational models for the ATPase domain. Some cross-links (i.e., XLISWI 13, 14, and 23–

30), however, mapped to DmISWI regions, for which our structural models lack atomic 

coordinates.   
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In a second step, Dr. C. Schindler performed XL-MS-guided docking of the two structural 

bodies. The docking procedure was initiated by computing one million starting models with 

random ATPase lobe 1 and ATPase lobe 2 orientations, solely preventing direct steric clashes 

between the two rigid bodies. Subsequently, the distance between selected cross-linked residue 

pairs was restrained by implementing an upper harmonic restraint between the respective Cα 

atoms. That is, we employed inter-domain cross-links (XLISWI 1–3), which exhibited excellent 

fragmentation data during MS/MS analysis, as distance restraints to guide the computational 

docking of the ATPase lobes. The maximum distance thresholds were set to 20, 25, and 29 Å 

for the UV-, BS2G-, and BS3-derived cross-links, respectively. The ATTRACT software then 

provided a score-based ranking of the generated models of the ATPase module. The top-

ranked 200 models were further subjected to flexible refinement. Importantly, all these 200 

refined models of the ATPase module were fully consistent with the implemented distance 

restraints used for docking and furthermore displayed an overall highly similar topology as 

indicated by a model precision of 3.4 Å. Finally, the 200 different structures of the ATPase 

module were compared with the molecular shape information provided by the SAXS 

measurements of ISWIΔHSS in order to validate and select the most favorable structural model 

with respect to the experimental data. Consequently, the ATPase model with the lowest 

discrepancy between theoretical and experimental scattering curves, i.e. lowest χ-value, is 

generally shown as a representative structure in the following sections, unless stated otherwise, 

and will be termed “DmISWI ATPase model” hereafter. 

 

Our DmISWI ATPase model is shown in Figure 14A. Interestingly, compared to the 

conformation of the initial ScChd1-based homology model, ATPase lobe 1 had to undergo a 

remarkable rotation of almost 180° relative to ATPase lobe 2 in order to fulfill the cross-

linking distance restraints (Figure 14D). Such a striking, global rearrangement within the 

DmISWI ATPase module was unexpected considering that structures of related remodeling 

enzymes show a different relative orientation of both lobes (cf. section 2.2.1.2). 

To further validate our structural model of the ATPase module with respect to the experimental 

data, I assessed the Cα-Cα distances between individual residue pairs for inter-domain cross-

links not used during the docking procedure (i.e., XLISWI 4–12). Notably, the large majority of 

these additional inter-domain cross-links was in excellent agreement with the proposed 

DmISWI ATPase model with solely XLISWI 8 marginally violating the defined distance 

threshold by as much as 5 Å (cf. STable 1). The cross-linked residue K637 in XLISWI 8 is 

located in a potentially flexible loop region at the C-terminal region of the ATPase model, 

which in turn may provide a structure-based explanation for the minor inconsistency between 

experimental and computational data. Notably, also the SAXS scattering data for ISWIΔHSS 

showed consistency with the representative DmISWI ATPase model as reflected by a χ-value 
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of 1.03 (Figure 14B). The proposed ATPase structure can be fitted well into the SAXS-derived 

shape envelope as illustrated in Figure 14C. 

To evaluate the reliability and robustness of our DmISWI ATPase model, the docking 

procedure was repeated using all identified lobe-connecting cross-links (XLISWI 1–8). The 

obtained structural model resulted in an almost identical domain architecture with distinct 

DmISWI ATPase structures being well superimposable (Figure 14E) as indicated by an RMSD 

of 2.2 Å. Likewise, docking with all identified inter- and intra-domain cross-links for the 

ATPase module (XLISWI 1–12, 15–21) yielded superimposable structures (RMSD = 2.6 Å). 

These findings collectively demonstrate the robustness and reliability of our proposed 

DmISWI ATPase model. 

 

Taken together, by combining several structural techniques, we successfully reconstructed the 

three-dimensional architecture of the catalytic core of the DmISWI enzyme under apo state 

conditions. Our experimental data provide evidence for an ATPase conformation, which was 

remarkably different from the one observed in the ScChd1 structure. 
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Figure 14: Architecture of the DmISWI ATPase domain determined by our integrative structural 

approach. (A) Structural model of the DmISWI ATPase module is shown with ATPase lobe 1, ATPase lobe 

2, and the NegC domain being colored in yellow, red, and orange, respectively. Cross-linked amino acids are 

represented as spheres and are connected by grey rods. For individual distances spanned by the cross-linker 

see also STable 1. (B) The theoretical scattering curve obtained for the structural model depicted in (A) 

(black line) is in good agreement (χ = 1.03) with the measured scattering data for the ISWIΔHSS variant (red 

circles). (C) The structural model of the DmISWI ATPase module shown in (A) can be fitted well into the 

SAXS-derived molecular shape envelope for the ISWIΔHSS construct. Note that 19% of residues are missing 

in the structural model, which explains the excess of electron density. (D) Schematic illustration of the 

domain orientation revealed by our structural approach. (E) Incorporation of all ATPase lobe 1-lobe 2 cross-

links into the docking protocol led to a highly similar DmISWI ATPase model (grey; RMSD = 2.2 Å; cf. 

STable 1 for individual cross-linking distances). The structural model shown in (A) (yellow, red) is depicted 

for orientation. The panels (A), (B), and (E) were adapted from (1) in accordance with Elsevier’s policies. 

I expressed, purified, and cross-linked the DmISWI enzyme and analyzed the respective XL-MS data shown 

in panel (A). Dr. I. Forné (LMU, Munich) performed the MS analysis. Dr. L. Brützel (LMU, Munich) 

conducted and analyzed the SAXS-related data shown in panels (B) and (C). Dr. C. Schindler (TUM, 

Munich) generated the ATPase models depicted in panels (A), (C), and (E). 
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2.2.1.2. The DmISWI ATPase model shares a similar domain architecture with the 

MtISWI enzyme 

To uncover common structural features between our proposed DmISWI ATPase model and 

structures of related Snf2 ATPases, I examined the compatibility of the identified inter-domain 

cross-links used for docking with the following enzymes: Sso1653 (154), DrRad54 (109), 

ScChd1 (141), MtSnf2 (153), MtISWI (146), and a former model of the DmISWI ATPase 

module (157). That is, I measured the Cα-Cα distances for the inter-domain cross-links used 

for docking (i.e., XLISWI 1–3) at homologous positions in the related remodeling enzymes. As 

detailed in Figure 15, all accessible Cα-Cα distances consistently exceeded the defined 

distance thresholds in the high-resolution structures of Sso1653 (pdb 1Z6A), DrRad54 (pdb 

1Z3I), ScChd1 (pdb 3MWY), and MtSnf2 (pdb 5HZR) suggesting an overall deviating 

ATPase architecture for the DmISWI enzyme. The previous XL-MS-based DmISWI model by 

Forné et al. also displayed inconsistencies with our experimental data. For instance, the 

identified inter-lobe XLISWI 3 as well as XLISWI 5 (34.7 Å) do not lead through solvent-

occupied space and furthermore exceed the defined distance requirements. Strikingly, 

superimposition of our ATPase model of the DmISWI enzyme and the crystal structure of the 

MtISWI protein (pdb 5JXR) revealed an almost identical configuration of both ATPase lobes 

with an RMSD of 4.5 Å (cf. Figure 15). Indeed, all identified intra- and inter-ATPase lobe-lobe 

cross-linking distances (XLISWI 1−7, 15−22) were in excellent agreement with the crystal 

structure for the catalytic core of the MtISWI protein (cf. STable 1). In addition, the 

conformation of MtISWI is consistent with our SAXS data for ISWIΔHSS. The predicted 

scattering profile of a homology model of monomeric MtISWI provided an excellent fit to our 

experimental data (χ = 0.71; Note that, only 5% of residues are missing in the homology model 

of MtISWI compared to 19% in DmISWI ATPase). With the exception of ScChd1, other 

ATPase conformations of Sso1653, DrRad54, and MtSnf2 fitted the SAXS data significantly 

worse (i.e., χ(ScChd1) = 0.61, χ(Sso1653) = 2.69, χ(DrRad54) = 2.22, χ(MtSnf2) = 3.02). 

Consequently, our solution-phase XL-MS data for the DmISWI enzyme collectively provide 

evidence for a similar ATPase architecture as has been reported for the related MtISWI protein 

without prior knowledge of the crystal structure. 
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Figure 15: Comparison of our DmISWI ATPase model with available apo structures of related 

ATPases. The orientation of both ATPase lobes (yellow: ATPase lobe 1, red: ATPase lobe 2) in our model 

of the DmISWI ATPase module (upper left corner, cf. Figure 14A) deviates from the one observed for 

Sso1653, DrRad54, ScChd1, MtSnf2, and a former model of the DmISWI ATPase module (157). Notably, 

the large majority of Cα-Cα distances between cross-linked residue pairs substantially violated the defined 

distance threshold in the investigated structures (red values). Strikingly, our DmISWI ATPase model exhibits 

a similar domain architecture as observed for the MtISWI enzyme with respective Cα-Cα distances being in 

the expected range (green values). Structures of related enzymes are aligned to ATPase lobe 2 of our 

DmISWI ATPase model, which is shown in grey color for orientation. 
a
: Calculated distances were taken 

from (157). N/A: Not available, K1020 and neighboring residues are missing in the structure, precluding a 

measurement. Dm: Drosophila melanogaster; Sc: Saccharomyces cerevisiae; Dr: Danio rerio; Sso: 

Sulfolobus solfataricus; Mt: Myceliophthora thermophila.   
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2.2.1.3. The catalytic domain of ISWI adopts a resting conformation under apo state 

conditions 

The ATPase domain from the Snf2 family of ATPases generally comprise several conserved 

structural helicase-like motifs, which play a key role in ATP hydrolysis (232). Motifs I and II 

on ATPase lobe 1 assist in binding of ATP and Mg2+. These motifs work cooperatively with 

motif VI on ATPase lobe 2, which acts as an “arginine finger” to assist catalysis. The spatial 

arrangement of these individual motifs is assumed to determine the catalytic activity of the 

enzyme and consequently, both ATPase lobes must align to become competent to hydrolyze 

ATP. Interestingly, individual motifs were not oriented towards each other in our DmISWI 

ATPase model (cf. Figure 17A). Instead, the motifs were twisted towards opposite sides 

implying that the catalytic core of DmISWI rests in an inactive conformation under apo state 

conditions in solution. Thus, the proposed DmISWI ATPase model may provide a structural 

basis for the well documented repressed basal ATPase activity (140). 

 

To rule out that the employed docking protocol inherently favored the presumably inactive 

conformation of the ATPase domain, we repeated the docking procedure for the catalytic core 

in the absence of any XL-MS-derived distance restraints (ab-initio docking; only the obvious 

distance between amino acids 351 and 352 was restraint). As depicted in Figure 16, the top-

ranked ab-initio model exhibits a 

completely different orientation of both 

ATPase lobes and is, to a large extent, 

inconsistent with the experimental XL-

MS data (cf. STable 1). In particular, 

cross-links that bridged distant residue 

pairs with regard to the primary protein 

sequence (i.e., > 400 residues) were 

prone to be inconsistent with the 

generated ab-initio ATPase model. 

Considering that the ab-initio docking 

resulted in a substantially different 

domain architecture as observed for the 

XL-MS-based DmISWI ATPase model, 

an inherent bias towards the inactive 

conformation can most likely be ruled 

out. Intriguingly, the catalytically 

important motifs were found in close 

spatial proximity to each other in the ab-

 

Figure 1: Ab-initio docking model of DmISWI 

ATPase module. The orientation of both ATPase 

lobes in the ab-initio structure (light blue) was 

modeled in the absence of distance restraints. The 

ab-initio model was then aligned to lobe 2 of the XL-

MS-derived DmISWI ATPase model (yellow, red; 

cf. Figure 14A). Motifs I (purple), II (blue) and VI 

(black), are highlighted as spheres for both models. 

See also STable 1 for measured Cα-Cα distances. 

The figure was adapted from (1) in accordance with 

Elsevier’s policies. 

Dr. C. Schindler (TUM, Munich) generated the ab-

initio model of the ATPase module. 



 41 Results 

initio model, which perhaps reflects structural properties of an active configuration of the 

ATPase module. Consequently, activation of the DmISWI enzyme potentially relies on large-

scale conformational rearrangements to align the conserved, catalytically important ATPase 

motifs. 

 

To further characterize and validate the presumably inactive ATPase conformation, I perturbed 

a proposed interaction site between both DmISWI ATPase lobes by introducing point 

mutations and monitored the ATPase activity. We hypothesized that the disruption of a 

potential salt bridge in the lobe-lobe interface (i.e., K337-D485, cf. Figure 17B) by charge-

reversal mutations (K337D or D485K; Figure 17C) could lead to a destabilization of the 

inactive conformation and thus to an increased ATPase activity of the DmISWI enzyme. 

Notably, the MtISWI protein comprises corresponding charged residues in the ATPase lobe-

lobe interface (R394 and D544, pdb 5JXR) that point towards each other (Figure 17B). 

Consistent with our hypothesis, weakening of the lobe-lobe interface by mutation of D485K 

resulted in a nearly two-fold increase in ATPase activity, whereas double mutation of both 

residues completely restored wild-type ATPase levels (Figure 17E). Surprisingly, ISWIK337D 

exhibited a decreased ATPase activity. I therefore inspected our DmISWI ATPase model in 

order to pinpoint surrounding residues, which potentially interact with the negatively charged 

aspartic acid through a hydrogen bond or salt bridge. Two basic residues, H483 and R486, 

exist within a 12 Å radius (i.e., four times the median distance of a salt bridge (233) to account 

for protein flexibility), which may form compensatory interactions upon mutation (Figure 

17B). Finally, one has to keep in mind that residue K337 in the DmISWI protein may serve 

other important functions in addition to stabilizing the lobe-lobe interface and that charge-

reversal at this position could cause unexpected side effects. 
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Figure 17: The DmISWI ATPase module most likely assumes an inactive conformation under apo state 

conditions. (A) Structural motifs involved in ATP hydrolysis are represented as spheres in our ATPase 

model of the DmISWI enzyme (cf. Figure 14A). (B) Illustration of a potential inhibitory interaction between 

two residues of ATPase lobe 1 and lobe 2 in the apo state. The residues K337 and D485 (cyan) are located at 

the lobe interface in the ATPase model of DmISWI and might be sufficiently close to interact with each other 

(top left; section corresponds to dotted rectangle in (A)). The corresponding residues in the structure of 

MtISWI (pdb 5JXR) show a remarkably similar orientation (bottom left). On the contrary, in the ISWI model 

of Forné and co-workers (157), in which both lobes adopt a different orientation to each other, both residues 

are located in a way that an interaction is unfavorable (top right). I introduced charge-reversal mutations to 

perturb the proposed interaction between K337 and D485 in the DmISWI enzyme. However, a possible 

compensatory interaction might be formed between K337D and H483 or R486 (blue), respectively, in the 

ISWIK337D variant (bottom right). (C) Sample purity of DmISWI constructs evaluated by SDS-PAGE analysis 

and Coomassie staining. (D) Comparability of enzyme amounts used in ATPase assay. A fraction of each 

assay reaction mixture used in (E) was separated by SDS-PAGE, stained with Coomassie, and bands 

corresponding to ISWI quantified by densitometry relative to ISWIWT (n = 1). (E) Comparison of the ATPase 

activity for ISWIWT and lobe interface mutants. The reactions were performed in the presence of saturating 

concentrations of ATP and DNA. Errors bars represent standard deviations of ≥ 3 independent 

measurements. The unstimulated basal activity was ≤ 0.005 s
-1

 for all enzyme variants. A two-tailed t test 

was performed to determine statistical significance. **, p ≤ 0.01; n.s., not significant, p ≥ 0.05. The panels 

(B)–(E) were adapted from (1) in accordance with Elsevier’s policies. 
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2.2.2. The HSS domain contacts the ATPase domain in solution 

With the structural model of the ATPase module in our hand, we subsequently set out to 

elucidate the relative orientation of the HSS domain in the full-length DmISWI remodeling 

enzyme.  

The XL-MS analysis of the DmISWI protein yielded a total of 31 cross-linked residue pairs 

(XLISWI 31–61; STable 2) that mapped to the HSS domain. A subset of these cross-links 

(XLISWI 31–48) connected the HSS domain and the ATPase module (Figure 18). The cross-

linker sometimes bridged distant residue pairs (XLISWI 34, 35, and 37) with regard to the 

primary protein sequence (> 700 residues), suggesting a compact protein structure formed by 

the ATPase and HSS modules. Spatial proximity between the HSS domain and the ATPase 

module was evident from both chemical and UV-induced cross-linking. Numerous cross-links 

between the ATPase module and the HSS domain mapped to the SLIDE region (XLISWI 31, 34, 

35, 37−39, 41). The well-distributed lysine residues of the HAND region, however, reacted 

with the cross-linking agent to form mono-links (data not shown). The enrichment of mono-

links implies that the HAND region most likely remains solvent-accessible and is not part of 

the ATPase-HSS interface under apo state conditions. 

 

Figure 18: Identified cross-links for the full-length DmISWI protein under apo state conditions in 

solution. Identified cross-links for the DmISWI enzyme are schematically illustrated in an arc plot. The UV 

and chemical cross-links that bridge the ATPase module (““: residues 116−637) and the HSS domain 

(“”: residues 697−977) are further highlighted in blue and cyan color, respectively. Residue numbering is 

denoted below each DmISWI domain. The arrow indicates the position of the Bpa-substituted amino acid. 

STable 2 provides details for each colored cross-link. NTR, N-terminal region; HSS, HAND-SANT-SLIDE. 

The figure was adapted from (1) in accordance with Elsevier’s policies. 

Dr. I. Forné (LMU, Munich) performed the MS analysis. 
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Figure 19: Representative MS/MS spectrum for a single cross-link used for docking of full-length 

DmISWI. The cross-linked peptides were assigned based on the observed fragment ions. The monoisotopic 

peaks of y- and b-fragment ions from both peptides (blue and orange) are denoted in the MS/MS spectrum 

and are furthermore indicated in the sequence of the cross-linked peptides. Notably, the quality of the 

MS/MS spectrum as well as the number of fragment ions (e.g., consecutive y13-y4-ion series for the blue 

peptide) allows unambiguous sequence assignments and the identification of the cross-linking site. We also 

detected the triply charged precursor ion (M, black) with modifications, i.e. neutral losses of NH3 and/or 

H2O. SFigure 5 shows additional fragmentation spectra of cross-links, which were used to guide the 

computational docking. The figure was reprinted from (1) in accordance with Elsevier’s policies. 

Dr. I. Forné (LMU, Munich) performed the MS analysis. 

In addition to XL-MS analysis, we collected information about the molecular shape of both the 

full-length DmISWI enzyme and the HSS domain (i.e., ISWI691-1027) under apo state conditions 

in solution by SAXS measurements. The SAXS data for both DmISWI constructs collected at 

different protein concentrations resulted in largely superimposable scattering curves after 

rescaling by intensity (Figure 20A and C). However, slight concentration effects in the low q-

region were observed for both DmISWI constructs at the highest sample concentrations 

indicating attractive interactions between individual particles, which could result in unspecific 

protein aggregation (234). To obtain optimum data quality, our collaboration partner Dr. L. 

Brützel (LMU, Munich) scaled and merged the low angle data from the lowest protein 

concentration with the high angle data from the highest concentration. The comparison 

between experimental and theoretical (pdb 1OFC) scattering profiles for the HSS domain 

(Figure 20B) yielded a χ-value of 1.84. This discrepancy could originate from the missing 

atomic coordinates for 16% of the residues in the high-resolution structure of the HSS module 

compared to our measured construct or could point towards slight differences in protein 

conformation.  
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Figure 20: SAXS data for the full-length DmISWI enzyme and its HSS domain. (A) The extrapolated 

scattering curves for the HSS domain of the DmISWI enzyme are shown for different protein concentrations 

(left). Notably, these curves are largely superimposable. The ab-initio determined shape envelope for the 

HSS domain is depicted on the right side. (B) Superimposition of the experimental (green circles) and 

theoretical (blue line, pdb 1OFC) scattering profiles of the HSS domain of the DmISWI enzyme yielding a χ-

value of 1.84. (C) Same representation as shown in (A) for the full-length DmISWI enzyme. The molecular 

envelope depicted on the right side implies that the full-length protein adopted a compact conformation under 

apo state conditions. The panel (C), left was adapted from (1) in accordance with Elsevier’s policies. 

I purified both DmISWI protein constructs and prepared the samples for SAXS measurements, which were 

conducted and analyzed by Dr. L. Brützel (LMU, Munich). 

To visualize the relative orientation of the ATPase and HSS modules to each other in the full-

length DmISWI enzyme, our collaboration partner Dr. C. Schindler (TUM, Munich) docked an 

ensemble of ten DmISWI ATPase models, which were most consistent with the collected 

SAXS data for ISWI∆HSS (cf. section 2.2.1.1), against the available HSS crystal structure (pdb 

1OFC). The two-body docking was performed in an identical manner as described for the 

ATPase module in section 2.2.1.1. The docking was guided by five distance restraints, which 

were derived from identified inter-domain cross-links (XLISWI 31–35; cf. STable 2) that 

yielded excellent fragmentation data during MS/MS analysis (Figure 19 and SFigure 5). The 

top-ranked 200 models showed convergence with regard to the spatial arrangement of the 

ATPase module and the HSS domain as indicated by an overall model precision of 3.3 Å. The 

model with the lowest χ-fit to the SAXS data of ISWIWT was selected as the representative 

model of the full-length DmISWI enzyme (Figure 21). 
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Figure 21: Structural model of the full-length DmISWI enzyme under apo state conditions in solution. 

Our structural model of the full-length DmISWI enzyme is shown with ATPase lobe 1, ATPase lobe 2, and 

the HSS domain being colored in yellow, red, and green, respectively. Cross-linked amino acids are 

represented as spheres. Pink asterisks indicate residues that cross-linked to the NTR, for which atomic 

coordinates are lacking in the structural model. Grey rods connect individual residues of identified inter-

domain cross-links, for which the distance was restrained during the two-body docking procedure. STable 2 

provides further details for individual cross-links. The arrow denotes the N-terminus of the model (N; residue 

116). The Figure was adapted from (1) in accordance with Elsevier’s policies. 

I expressed, purified, and cross-linked the DmISWI enzyme and analyzed the respective XL-MS data. Dr. I. 

Forné (LMU, Munich) performed the MS analysis. Dr. C. Schindler (TUM, Munich) generated the full-length 

DmISWI model. 

To evaluate our full-length DmISWI model, Dr. C. Schindler (TUM, Munich) first compared 

the proposed model to the scattering data for ISWIWT. Notably, experimental and theoretical 

scattering data were found to be in overall good agreement as indicated by a χ-value of 1.04 

(Figure 22A). The SAXS-derived shape envelope allows for accommodation of the computed 

full-length DmISWI structure (Figure 22B). In a second step, I measured the Cα-Cα distances 

between cross-linked residue pairs in the full-length DmISWI model. The majority of cross-

links was largely consistent with the proposed DmISWI model (cf. STable 2). However, three 

cross-links (XLISWI 37, 38, and 40) exceeded the defined distance threshold by more than 20 Å. 

The cross-linked lysine residues in XLISWI 37 and 38 (i.e., K247, K945, and K353) are located 

in or are very close to flexible regions of the DmISWI enzyme, such that local protein 

dynamics at least partially account for the observed discrepancy between the computational 

and experimental data. The incompatibility of individual cross-linking distances with the 

proposed structural model (in particular XLISWI 40) could also arise from false sequence 

assignments or conformational heterogeneity of the protein sample. 
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Figure 22: SAXS analysis of the full-length DmISWI enzyme. (A) The theoretical scattering profile 

obtained for the structural model depicted in Figure 21 (red line) is in good agreement (χ = 1.04) with the 

measured scattering data for the full-length DmISWI protein (blue circles). (B) SAXS envelope 

reconstruction of collected SAXS data of ISWIWT (residues 1-1027). The model shown in Figure 21 fits well 

into the reconstructed envelope. Note that, 22% of residues are missing in the full-length model, explaining 

the excess of electron density. L. Brützel (LMU, Munich) initially prepared the figures. Panel (A) and (B) 

were adapted and reprinted from (1), respectively, in accordance with Elsevier’s policies. 

Dr. L. Brützel (LMU, Munich) obtained and analyzed the SAXS data for ISWIWT. Dr. C. Schindler (TUM, 

Munich) generated the full-length DmISWI model. 

Our collaboration partner Dr. C. Schindler (TUM, Munich) assessed whether the 

implementation of additional, XL-MS-derived distance restraints between the ATPase module 

and the HSS domain would result in an improved full-length DmISWI model with respect to 

the experimental data. Repetition of the two-body docking procedure using all available inter-

domain distance restraints (XLISWI 31–40 and 42–45, cf. STable 2) resulted in a similar 

structural architecture for the DmISWI enzyme (Figure 23A). However, we could again not 

obtain a single model that satisfied all cross-linking distances at once (cf. STable 2).  

We then considered that our models of the ATPase module might not be optimal. Dr. C. 

Schindler (TUM, Munich) thus separated the ATPase lobes at the hinge region of the ATPase 

module and docked them against the HSS domain in a three-body docking approach. The two 

separated ATPase lobes docked in a similar fashion against the HSS domain with an overall 

structural architecture of the full-length DmISWI enzyme resembling the one observed for the 

two-body docking approach (Figure 23B). Several distance restraints (cf. Table S1 and Table 

S2) as well as the fit to the SAXS data (χ = 0.85) were in better agreement with the generated 

model of the three-body docking approach. Nevertheless, XLISWI 37, 38, and 40 still severely 

violated the distance thresholds by as much as > 20 Å. Consequently, it appears plausible that 

the well-documented flexibility of DmISWI domains (114, 129, 140) does not allow us to 

compute a single structural model of the enzyme that fits all cross-linking data at once.  
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Figure 23: Evaluation of the structural model of the full-length DmISWI enzyme. (A) Incorporation of 

all identified ATPase-HSS cross-links into the two-body docking algorithm resulted in a similar domain 

arrangement (grey) as observed for the representative DmISWI model (colored) depicted in Figure 21. 

Structural models are aligned to ATPase lobe 2 for comparison. (B) Results of the three-body docking 

approach (light blue) are compared to our representative DmISWI model shown in Figure 21. The structural 

architecture in both full-length DmISWI models is similar. STable 1 and STable 2 provides cross-linking 

distances for both models. The Figure was adapted from (1) in accordance with Elsevier’s policies. 

Dr. C. Schindler (TUM, Munich) performed the computational modeling of the depicted structures.  

I subsequently evaluated whether the proposed domain architecture for the full-length 

DmISWI protein allows for DNA binding by the HSS domain as has been demonstrated in 

previous studies (23, 116, 127, 151). I thus superimposed the crystal structure of the Isw1a 

HSS domain in complex with DNA (pdb 2Y9Z, (151)) onto our structural model of the full-

length DmISWI enzyme (cf. Figure 21). Superimposition resulted in a direct steric clash 

between the ATPase module and the DNA strand (Figure 24) implying that the HSS domain in 

our DmISWI model is incapable of binding DNA without prior conformational changes. 

Notably, such a binding-incompetent orientation of the HSS domain supports the notion that 

the DmISWI enzyme assumes a resting conformation under apo state conditions in solution.  
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Figure 24: The full-length DmISWI model is not compatible with DNA binding via the HSS domain. 

The crystal structure of the HSS domain of ScISW1a (pdb 2Y9Z, (151); only the DNA is shown for clarity) 

was superimposed onto our structural model of the full-length DmISWI enzyme (ATPase lobe 1, yellow; 

ATPase lobe2, red; HSS domain, green; cf. Figure 21). Steric clashes between the ATPase module and the 

DNA strand can be observed. Consequently, our obtained model of DmISWI appears to be incompetent to 

bind DNA via the HSS domain. The Figure was adapted from (1) in accordance with Elsevier’s policies. 

Dr. C. Schindler (TUM, Munich) performed the modeling of the full-length DmISWI enzyme.  

In summary, we propose a potential structure for the full-length DmISWI enzyme under apo 

state conditions in solution by using an integrative approach. The results from XL-MS analysis 

and computational docking collectively suggest that the C-terminus of the HSS domain packs 

against the ATPase module. The proposed arrangement of the HSS domain appears to be 

incapable of binding to DNA without prior conformational changes. The minor inconsistencies 

observed between experimental and computational data may arise from inherent protein 

flexibility in one or more parts of the DmISWI enzyme.  

 

2.2.3. The NTR bridges both ATPase lobes and contacts the HSS 

In a recent study by Ludwigsen and co-workers (115), several NTR residues of the DmISWI 

enzyme formed cross-links with Bpa substituted at position H483 of ATPase lobe 2. However, 

the relative orientation of the NTR region in the full-length DmISWI protein has remained 

unclear. Here, I identified an additional, chemical cross-link candidate (XLISWI 13; cf. STable 

1), which connects the autoregulatory NTR region and ATPase lobe 1. Although high-

resolution structures for the NTR are lacking for the DmISWI protein, the partner cross-linking 

sites were found in close spatial proximity to the ATPase lobe-lobe interface in our structural 

model of the full-length enzyme (cf. pink asterisks in Figure 21). Consequently, the results by 

Ludwigsen et al. and my findings collectively suggest that the NTR domain is neighboring the 

ATPase lobe-lobe interface under apo state conditions in solution. 

 



 50 Results 

The MtISWI protein has recently been crystalized with large parts of the NTR domain (pdb 

5JXR) (146), which in turn allowed Dr. C. Schindler (TUM, Munich) to generate an MtISWI-

based homology model of the ATPase module. Using this homology model, I measured the 

Cα-Cα distances between cross-linked residue pairs of the NTR domain and the ATPase 

module. The here identified XLISWI 13 as well as the published cross-links by Ludwigsen et al. 

did not violate the distance threshold for the UV- and chemical cross-linkers (range 7.9–25.3 

Å) and thus were consistent with the MtISWI-based homology model (Figure 25). This finding 

is consistent with the notion that the NTR region of the DmISWI protein contacts the ATPase 

domain in a similar fashion as observed in the MtISWI structure and that the interaction site on 

the ATPase domain may be conserved between these two remodeling enzymes.  

 

Unexpectedly, I also identified inter-domain cross-links that connect the NTR domain and the 

HSS domain. The cross-linker bridged distant residue pairs (XLISWI 46–48, cf. STable 2) with 

respect to the primary protein sequence (i.e., > 800 amino acids), which indicates spatial 

proximity between the SLIDE region and the NTR domain. Mapping these cross-linking sites 

onto the HSS domain in our full-length DmISWI model (cf. pink asterisks in Figure 21) 

revealed that the cross-linked residues are also located in close spatial proximity to the lobe-

lobe interface of the ATPase module.  

Our collaboration partner Dr. C. Schindler (TUM, Munich) subsequently generated an 

MtISWI-based structural model of the full-length DmISWI enzyme that includes large parts of 

the NTR region. We applied the same docking protocol, including identical Cα-Cα distance 

restraints, to generate the MtISWI-based model as described for our representative full-length 

structure shown in Figure 21. The only difference was that an MtISWI-based homology model 

of the ATPase module (i.e., encompassing residues 38–592), instead of the ScChd1-based 

ATPase model, served as input structure. I subsequently assessed the compatibility of 

identified NTR-HSS cross-links (XLISWI 46–48) with the MtISWI-based structural model. 

Notably, the Cα-Cα distances between these cross-linked residue pairs consistently exceeded 

the distance threshold by almost 20 Å on average in the MtISWI-based model (cf. STable 2). 

However, the MtISWI-based model showed remarkable consistency with the experimental 

SAXS data for the full-length DmISWI enzyme as indicated by a χ-value of 0.88. 

We reasoned that the implementation of distance restraints that map to the NTR region (XLISWI 

46–48) would result in an MtISWI-based structural model that is more consistent with the 

experimental XL-MS data. Implementation of these additional distance restraints during 

docking indeed substantially improved the observed Cα-Cα distances between cross-linked 

residues of the NTR region and the HSS domain for XLISWI 46–48 by approximately 10 Å on 

average (Figure 25 and STable 2). However, this alternative MtISWI-based model resulted in a 

significantly poorer fit to the experimental SAXS data for the DmISWIWT enzyme as indicated 
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by a χ-value of 2.92. Possible explanations for the increased discrepancy between experimental 

and theoretical SAXS data upon implementation of NTR-HSS distance restraints is discussed 

in section 3.2. 

 

Taken together, our XL-MS data collectively suggest that the NTR domain is located near the 

interface of both ATPase lobes and potentially assumes a similar conformation as observed in 

the recent crystal structure of the MtISWI enzyme. In addition, the SLIDE region of the HSS 

module packs against the ATPase domain in spatial proximity to the NTR region. 

Consequently, the catalytic core of the DmISWI protein appears to be caged by the NTR 

domain and the C-terminal region of the HSS module, which may lock the remodeling enzyme 

in a resting conformation under apo state conditions in solution. 

  

Figure 25: The NTR is neighboring both ATPase lobes and the HSS domain in the full-length DmISWI 

enzyme. Identified cross-links originating from the NTR are shown in a structural model of full-length 

DmISWI including the NTR domain. Protein domains are colored according Figure 12. An MtISWI-based 

homology model of the ATPase module (NegC was omitted, discussed in section 2.2.4) was docked onto the 

HSS domain using cross-linking distance restraints as guides. Cross-links originating from the NTR (XLISWI 

13, 46–48 and published cross-links from (115)) are shown as rods. Cross-linked residue pairs published in 

(115) are furthermore marked by an asterisk. The measured Cα-Cα distances between individual residue pairs 

were below the distance threshold of the cross-linkers (see also STable 1 and STable 2 for individual values) 

suggesting a comparable orientation of the NTR in the full-length DmISWI and MtISWI enzymes under apo 

state conditions.  

Dr. C. Schindler (TUM, Munich) performed the computational modeling of the depicted structure.  
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2.2.4. The NegC adopts a Chd1-like conformation  

As of today, two significantly distinct conformations of the NegC domain have been reported. 

In the crystal structure of the ScChd1 protein (pdb 3MWY), the NegC domain bridges both 

ATPase lobes thereby locking the enzyme in an inactive state (114, 141) (Figure 26A). In 

contrast, the NegC domain protrudes from the catalytic core and interacts with a neighboring 

protomer in the crystal structure of the MtISWI protein (pdb 5JXR) (146). Consequently, XL-

MS analysis provided an excellent opportunity to probe the orientation of the NegC domain in 

the full-length DmISWI enzyme under apo state conditions in solution.  

We identified a total of 16 cross-linked peptides, which revealed five cross-linked residue pairs 

between the NegC domain and the ATPase module (XLISWI 8–12, cf. STable 1). Notably, the 

Cα-Cα distances between cross-linked lysine residues of XLISWI 9–12 complied with the 

defined distance threshold not only in our ScChd1-based model of the DmISWI ATPase 

module but also with the crystal structure of the ScChd1 protein (pdb 3MWY). Solely XLISWI 8 

modestly violated the maximal distance in our structural model of the ATPase module, as 

already discussed above, as well as in the ScChd1 crystal structure by less than 5 Å. 

In order to evaluate whether our XL-MS results are compatible with a protruding NegC 

conformation as observed recently for the MtISWI enzyme, I measured the Cα-Cα distances 

between cross-linked residue pairs, which map to the NegC region in the respective crystal 

structure. I thereby measured the distances between residues of a single protomer as well as 

between two neighboring protomers (see STable 1 for individual values). The XL-MS-derived 

distance restraints of XLISWI 9–12 were satisfied in the MtISWI dimer, in which the NegC 

domain serves as a dimerization interface. Thus, our XL-MS data could indicate a similar 

protruding conformation of the NegC region for the DmISWI enzyme presupposed that the 

protein is present as a dimer under the tested conditions. However, although the MtISWI 

enzyme has been crystalized as a homodimer, Yan and co-workers emphasized in the same 

study that the protein is predominantly (> 90%) present as a monomer in solution (146). We 

also hold experimental evidence that the DmISWI enzyme is present as a monomer under apo 

state conditions in solution. In particular, the SEC analyses of native and cross-linked DmISWI 

protein (Figure 26B) as well as the SAXS-derived molecular envelope (cf. section 2.2.2.) 

showed consistency with a monomeric solution state of the remodeling enzyme.  

The large majority of XL-MS-derived distance restraints, however, were severely violated in 

the monomeric MtISWI structure (Figure 26C and STable 1). That is, XLISWI 8 and XLISWI 10–

12 exceeded the defined Cα-Cα distance threshold by almost a factor two with cross-linked 

residue pairs frequently being 50 Å apart from each other. Consequently, given that the 

DmISWI protein appears to be present as a monomer under apo state conditions in solution, 

the XL-MS data for our remodeling enzyme are inconsistent with a protruding NegC 

conformation.   
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To further rule out that the NegC domain is protruding from the catalytic core in the DmISWI 

enzyme, Dr. C. Schindler (TUM, Munich) computationally docked the HSS domain (pdb 

1OFC) against an MtISWI-based homology model of the ATPase module comprising the 

NegC region (i.e., encompassing residues 38–651). The resulting structural model of the 

DmISWI protein displayed a deviating domain architecture with the HSS domain packing 

differently against the ATPase module (Figure 26D) when compared to our proposed, ScChd1-

based structure of the full-length enzyme depicted in Figure 21. Importantly, the large majority 

of distance restraints (> 88%) between the ATPase and HSS module (XLISWI 31–48; cf. STable 

2) suddenly exceeded the distance threshold of the cross-linking agent in the MtISWI-based 

structural model. Notably, this model furthermore exhibited a poorer fit to the SAXS-derived 

scattering data for DmISWIWT as indicated by a χ-value of 2.53. To test whether the protruding 

NegC conformation biased the docking towards a deviating domain architecture, Dr. C. 

Schindler (TUM, Munich) repeated the docking protocol in the absence of the NegC domain 

(i.e., residues 593−651 were removed from the ATPase module). The MtISWI-based structural 

model, in which the NegC region was removed, was well superimposable with our proposed, 

ScChd1-based model of the full-length DmISWI enzyme. The large majority of inter-domain 

cross-links between the ATPase and HSS module complied with the distance requirements of 

the cross-linking agent and we obtained a good fit to the SAXS data for DmISWIWT as 

indicated by a χ-value of approximately 1. Consequently, the computational simulations on the 

MtISWI-based homology model of the ATPase module further underscored that our 

experimental data for DmISWI are incompatible with a protruding NegC conformation.  

In summary, our experimental SAXS and XL-MS data as well as computational simulations 

collectively imply that the NegC domain of the DmISWI enzyme adopts a similar 

conformation under apo state conditions as has been observed for the related ScChd1 protein. 
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Figure 26: XL-MS data for DmISWI are inconsistent with a protruding NegC conformation. (A) The 

NegC conformations in the structures of MtISWI and ScChd1. Protomer 1 of dimeric MtISWI (light pink; 

pdb 5JXR) was aligned with monomeric ScChd1 (green; pdb 3MWY) on ATPase lobe 2. The NegC of 

MtISWI protomer 1 (light pink) protrudes from the surface to interact with protomer 2 (dark pink). Likewise, 

the NegC region of MtISWI protomer 2 bridges across the ATPase module of protomer 1. Remarkably, the 

NegC of ScChd1 (green) and of MtISWI protomer 2 pack against the ATPase domain in a similar manner 

(dashed ellipse). (B) Size-exclusion chromatography of cross-linked and DMSO-treated DmISWIWT. 

Superdex 200 10/300 GL elution profiles of DMSO-treated and cross-linked full-length DmISWI protein did 

not provide evidence for dimerization. (C) NegC cross-links mapped onto the structure of a single MtISWI 

protomer (pdb 5JXR). The majority of Cα-Cα distances between NegC and the ATPase lobes are violated 

(pink rods) in the MtISWI protomer. See also STable 1 for individual spanned distances of the cross-linker. 

Cyan, NTR; yellow, ATPase lobe 1; red, ATPase lobe 2; orange, NegC. (D) An MtISWI-based homology 

model including the NegC region (grey) was docked against the HSS domain (teal, pdb 1OFC). We observe a 

substantially different orientation of the HSS domain in the MtISWI- and ScChd1-based (yellow, red, green; 

cf. Figure 21) models of the DmISWI enzyme. See also STable 2 for individual distances spanned by the 

cross-linker. The panels (A)–(C) were adapted from (1) according in accordance with Elsevier’s policies. 

Dr. C. Schindler (TUM, Munich) performed the computational modeling of the structures in panel (D).  
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2.3. Solution structure of the Snf2H enzyme under apo state conditions 

To corroborate our findings for DmISWI (e.g., domain orientation, see section 2.2), we probed 

the in-solution structural architecture of the orthologous, human remodeling enzyme Snf2H 

using a similar integrative approach (i.e., XL-MS, SAXS, and computational modeling). We 

were in particular interested in elucidating whether Snf2H assumes an overall comparable 

conformation under apo state conditions as the DmISWI protein. 

Despite the availability of a low-resolution Snf2H structure (150), molecular details of the full-

length Snf2H enzyme as well as the mechanism of action have remained elusive. The human 

Snf2H remodeling enzyme shares 79% overall sequence identity with its Drosophila 

counterpart (Clustal Omega web service, EMBL-EBI). While residues of the functionally 

important ATPase, NegC, and HSS domains appear to be largely conserved across these two 

species, sequence homology is somewhat lost in the autoregulatory NTR region (< 32% 

sequence identity) (140). Considering the remarkable sequence homology, we envisaged that 

studying the structural architecture of human Snf2H in solution would not only allow us to 

indirectly validate the findings for DmISWI but also to draw mechanistic inferences on this 

important class of proteins. 

 

2.3.1. The Snf2H domain architecture viewed by chemical cross-linking 

To obtain structural information about the full-length Snf2H enzyme under apo state 

conditions, I chemically cross-linked the protein using the BS3 cross-linking agent and 

analyzed the XL-MS data (cf. sections 4.2.4.1.2 and 4.2.4.5), while our collaboration partner 

Dr. I. Forné (LMU, Munich) was responsible for high-resolution MS analysis (cf. section 

4.2.4.4).  

MS analysis resulted in the identification of 115 cross-linked peptides yielding a total of 84 

unique residue pairs for the Snf2H enzyme (Figure 27, STable 3). The large majority (81%) of 

these cross-linked residue pairs were reproduced in at least a technical replicate as further 

specified in column “Reproducibility group” in STable 3.  
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Figure 27: Identified BS
3
 cross-links for the full-length Snf2H enzyme under apo state conditions in 

solution. Schematic representation of Snf2H domains with identified inter- and intra-domain cross-links 

being indicated as solid and dotted arcs (cf. color scheme), respectively. Numbers refer to the residue 

numbering of the Snf2H enzyme. The grey bars below the arc plot specify the range of the generated 

homology models. STable 3 provides further details for each cross-link. NTR: N-terminal region; HSS: 

HAND-SANT-SLIDE. 

Dr. I. Forné (LMU, Munich) performed the MS analysis. 

Due to the lack of high-resolution structures for the Snf2H enzyme, our collaboration partner 

Dr. C. Schindler (TUM, Munich) homology modeled the ATPase module (residues 120–689) 

and HSS domain (residues 743–1012) according to the structures of ScChd1 (pdb 3MWY, 

41% sequence identity,) and DmISWI (pdb 1OFC, 81% sequence identity), respectively. The 

ATPase module was cleaved at a predicted hinge region into two structural bodies (i.e., 

residues 120−403 and 404−689). 

I validated these homology models based on identified intra-domain cross-links (cf. STable 3) 

for the HSS domain (XLSnf2H 70–75), ATPase lobe 1 (XLSnf2H 64–69), and ATPase lobe 2 

(XLSnf2H 53–63) (Figure 28). Importantly, all HSS cross-linking distance restraints were 

consistent with the homology model of the Snf2H domain. Likewise, the large majority of 

intra-domain linkages for individual structural bodies of the ATPase module were in excellent 

agreement with only two cross-links (XLSnf2H 63 and 67) negligibly violating the defined Cα-

Cα distance threshold by < 0.4 Å. Taken together, the generated homology models for the HSS 

domain and ATPase lobes were consistent with the XL-MS data and thus could be used to 

elucidate the overall structural architecture of the Snf2H enzyme.  
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Figure 28: XL-MS-based evaluation of homology models for distinct Snf2H domains. I measured the 

Cα-Cα distances between residues of identified intra-domain cross-links in the respective homology models 

of ATPase lobe 1 (yellow; i.e., XLSnf2H 64–69; STable 3), ATPase lobe 2 (red; i.e., XLSnf2H 53–63) and the 

HSS domain (green; i.e., XLSnf2H 70–75) of the Snf2H enzyme. Cross-links are indicated as grey lines and 

spheres in the homology models, in which the N- and C-termini are furthermore highlighted in cyan for 

orientation. The presented box plots signify the median (solid line) and the third and first quartile range (box) 

of the measured Cα-Cα distances in the respective Snf2H domain. The whiskers indicate the minimum and 

maximum measured Cα-Cα distances. The distance threshold given by the cross-linking agent is shown as a 

red dotted line in the box plot diagram. 

Dr. C. Schindler (TUM, Munich) performed the homology modeling of individual Snf2H domains.  

I identified a total 50 inter-domain cross-links that restricted the relative orientation of Snf2H 

domains to each other. A subset of these linkages connected the two ATPase lobes with the 

HSS domain (XLSnf2H 1–29, STable 3) with cross-linked peptides (i.e., XL XLSnf2H 7–12, 14, 

26, 28, 29) frequently providing excellent fragmentation data during MS analysis (SFigure 6). 

Intriguingly, we noticed that the majority of contacts from the ATPase module to the HSS 

domain were formed to the C-terminal SLIDE domain (cf. STable 3). In particular, lysine 

residues K929 and K990 of the SLIDE region appeared to represent cross-linking hotspots 

(Figure 29A). Cross-links originating from either K929 or K990 mapped to broadly distributed 

lysine residues of ATPase lobe 1 and ATPase lobe 2 (Figure 29B, C). Such a wide-ranging 

distribution of partner cross-linking sites was not observed for any other lysine residue and 

may indicate inherent protein flexibility in one or more regions of the Snf2H enzyme as further 

discussed in section 3.2. Consequently, a considerable number of cross-links substantiated the 

notion of spatial proximity between the SLIDE domain and the ATPase module in the Snf2H 

enzyme under apo state conditions. 
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Figure 29: Cross-linking hotspots of the SLIDE region. (A) Arc plot of identified cross-links for the 

Snf2H enzyme shown in Figure 27 with cross-links originating from lysine residues 929 and 990 of the 

SLIDE domain being colored in green. Remaining cross-links are depicted as grey arcs. (B) Mapping of 

partner cross-linking sites for residue K929 onto Snf2H homology models of ATPase lobe 1 (yellow) and 

ATPase lobe 2 (red). The partner cross-linking sites on the ATPase lobes are indicated as grey spheres with 

the radius of the spheres corresponding to the length of the BS
3
 spacer arm (i.e., 11.4 Å). The N- and C-

termini of the Snf2H homology models are denoted for orientation. (C) Mapping of partner cross-linking 

sites for residue K990 as shown in (B). 

Dr. C. Schindler (TUM, Munich) performed the homology modeling of individual Snf2H domains.  

MS analysis of cross-linked Snf2H samples only resulted in the identification of a single cross-

linked residues pair (i.e., XLSnf2H 43, STable 3) that restricted the relative orientation of both 

ATPase lobes to each other. That is, I found that K397 of ATPase lobe 1 cross-linked to K624 

of lobe 2 suggesting spatial proximity between the C-termini of both ATPase lobes. I 

subsequently checked the compatibility of the identified ATPase lobe-lobe cross-link XLSnf2H 

43 with our structural model of DmISWI (cf. Figure 21) as well as published structures of 

ScChd1 (pdb 3MWY) and MtISWI (pdb 5JXR). The Cα-Cα distance slightly exceeded the 

distance threshold by < 6.5 Å in the structures of DmISWI and MtISWI but showed 

consistency with the domain orientation of the ScChd1 protein. The increased Cα-Cα distance 

in the DmISWI and MtISWI structures may arise from local protein dynamics considering that 

the cross-linked lysine residue K397 resides in an unstructured and thus probably flexible 

Snf2H region. In conclusion, the limited number of identified lobe-lobe cross-links only 

provides a rough approximation of the relative orientation of both ATPase lobes to each other 

and does not allow for a conclusive statement.   
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The relative position of the autoregulatory NegC domain in the full-length Snf2H enzyme was 

restricted by a total of ten inter-domain cross-links (XLSnf2H 30–32 and 44–50, STable 3). 

These cross-links mapped to either the above-mentioned hotspot residues K929 and K990 of 

the SLIDE domain (i.e., XLSnf2H 30–32) or both ATPase lobes (XLSnf2H 44–50). A single cross-

link (XLSnf2H 44) connected the very N-terminus of ATPase lobe 1 with the NegC domain 

raising the possibility that NegC bridges the ATPase lobe-lobe interface under apo state 

conditions. The Cα-Cα distance restraints between cross-linked residue pairs of ATPase lobe 2 

and NegC (XLSnf2H 45–50) were consistent with our ScChd1-based homology model of the 

respective domains (Figure 30A). Assuming that the Snf2H is present as a monomer in 

solution (cf. SAXS data for Snf2H in section 2.3.2), the identified NegC-ATPase lobe 2 cross-

links argue against a protruding NegC conformation as depicted in the MtISWI crystal 

structure (pdb 5JXR). That is, mapping XLSnf2H 45–50 onto a single MtISWI protomer 

consistently violated the defined BS3 distance threshold by a factor of 1.7 to 3.1 (Figure 30B).  

In conclusion, I find that the NegC regions potentially assumes a ScChd1-like conformation in 

the full-length Snf2H enzyme with the autoregulatory domain packing against both ATPase 

lobe and the SLIDE region of the HSS domain. As such, XL-MS data for the NegC region 

appear to be similar for the full-length Snf2H and DmISWI enzymes under apo state 

conditions in solution (Figure 30C). 
 

 

 
 

 

 

 
Figure 30: XL-MS data for the Snf2H enzyme are consistent with a ScChd1-like orientation of the 

NegC domain. (A) NegC cross-links mapped onto our ScChd1-based homology model of ATPase lobe 2 

(red) and the NegC domain (orange). Identified inter-domain cross-links that connect these two regions 

(XLSnf2H 45–50) are indicated as grey rods. The Cα-Cα distance restraints between individual NegC-ATPase 

lobe 2 residue pairs were all satisfied in our homology model. (B) NegC cross-links mapped onto the 

structure of a single MtISWI protomer (pdb 5JXR). All Cα-Cα distances between NegC (orange) and ATPase 

lobe 2 (red) are violated (pink rods; XLSnf2H 45–50) and exceed the distance threshold by 19–60 Å in the 

MtISWI protomer. Cyan, NTR; yellow, ATPase lobe 1. (C) Identified NegC cross-links for the DmISWI 

enzyme are mapped onto the MtISWI crystal structure for comparison (Figure identical to Figure 26C). The 

comparison between (B) and (C) reveals similar cross-linked residue pairs suggesting a similar, ScChd1-like 

conformation of the NegC region in both Snf2H and DmISWI enzymes.  

Dr. C. Schindler (TUM, Munich) performed the homology modeling shown in panel (A). 
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Table 1: The Cα-Cα distances of NTR cross-links 

in the structure of MtISWI. 

 Snf2H 
(this study) 

MtISWI 
(pdb 5JXR) 

XLSnf2H 

Site 
Dist. 

thres- 
hold [Å] 

Site Dist. 
[Å] 1 2 1

 
 2

 
 

40 K160 K121 < 29  K166 K123 29.1 

41 K160 K128 < 29  K166 R136 24.8 

42 K160 K129 < 29  K166 K137 27.4 

 

In the case of the NTR region, various lysine residues of ATPase lobe 1 and the SLIDE 

domain formed cross-links with reactive residues of the NTR (XLSnf2H 33–42, STable 3). In 

particular lysine residues K121, K128, and K129 of the NTR, which are in close spatial 

proximity to the N-terminus of ATPase lobe 1, formed intra- and inter-domain linkages with 

surrounding residues (XLSnf2H 76–82 and 33, 34, 40–42, respectively). The structural 

interpretation of these XL-MS results 

in light of the limited number of 

available high-resolution structures is 

difficult due to the inherently low 

sequence homology in the NTR 

region among related remodeling 

enzymes. I evaluated the Cα-Cα 

distances for NTR-ATPase cross-

links between corresponding sites in 

the recently published MtISWI 

structure (pdb 5JXR) that comprises large parts of the NTR (Table 1). Notably, the identified 

inter-domain cross-links XLSnf2H 40–42 were in excellent agreement with the MtISWI structure 

with Cα-Cα distances ranging from 24.8–29.1 Å. The validity of XLSnf2H 38 and 39 could, 

however, not be assessed due to the lack of atomic coordinates in the NTR region that harbors 

the respective cross-linked residue.  

In summary, our XL-MS findings are consistent with an MtISWI-like conformation of the 

NTR region with the SLIDE domain being in close spatial proximity to the NTR region in the 

full-length Snf2H enzyme.  

 

In overall conclusion, our XL-MS data for the full-length Snf2H protein collectively point 

towards a rather compact enzyme conformation under apo state conditions. That is, the 

identified cross-links are consistent with the notion that the autoregulatory NTR and NegC 

regions pack against the ATPase lobes. In addition, I identified the SLIDE region of the HSS 

domain to form various contacts to the ATPase module including the NTR, NegC, and both 

ATPase lobes. From a XL-MS perspective, it thus appears possible that the Snf2H and 

DmISWI remodeling enzymes assume a similar conformation under the investigated solution 

conditions. 
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2.3.2. The Snf2H domain architecture viewed by computational modeling and 

SAXS 

To computationally resolve the structural architecture of the Snf2H enzyme under apo state 

conditions, we decided to perform a three-body docking using the ScChd1- and DmISWI-

based homology models for both ATPase lobes and the HSS domain (cf. section 2.3.1), 

respectively. Our collaboration partner Dr. C. Schindler (TUM, Munich) performed the 

computational docking of individual Snf2H domains by employing a total of eleven XL-MS-

derived distance restraints (i.e., XLSnf2H XL 7–12, 14, 26, 28, 29, 44; STable 3). These distance 

restraints were selected because the respective cross-linked peptides showed excellent 

fragmentation data during MS/MS analysis (SFigure 6). Notably, the modeling procedure for 

the Snf2H protein differed to the one described for DmISWI (i.e., two two-body docking 

procedure, cf. section 2.2.2) in order to overcome the limited number of identified cross-links 

between the two ATPase lobes. Using a three-body docking protocol, the arrangement of both 

ATPase lobes in the modeled Snf2H structure would primarily depend on their relative 

orientation towards the HSS domain. Briefly, the orientation of initially randomly orientated 

Snf2H domains (1x105 starting configurations) was guided by XL-MS derived upper harmonic 

distance restraints using the ATTRACT modeling software. The computed models were 

ranked by their ATTRACT energy score and the top-ranked 200 models were selected for 

atomistic refinement with iATTRACT. 

 

We observed a considerable heterogeneity among the generated structural models of the full-

length Snf2H enzyme under apo state conditions. For instance, structural alignment of the two 

top-ranked Snf2H models resulted in an RMSD of approximately 9.5 Å underscoring their 

divergent domain architecture. In particular the docking geometry of the HSS domain relative 

to the ATPase module remained ambiguous as shown in Figure 31A for 18 out of the total 200 

generated full-length Snf2H models (i.e., the top five and every fifteenth model).  

To validate individual Snf2H models with respect to the XL-MS data, I subsequently measured 

the Cα-Cα distances between cross-linked residue pairs of all accessible inter-domain cross-

links, including cross-links used for docking, in the representative structures depicted in Figure 

31A. The observed distribution of measured Cα-Cα distances for each inter-domain cross-link 

is summarized in Figure 31B. Importantly, none of the selected structural models of the full-

length Snf2H enzyme was entirely consistent with the implemented distance restraints used for 

docking and the majority of additional identified inter-domain cross-links exceeded the BS3 

distance threshold. Possible reasons for the discrepancy between the XL-MS and 

computational data may have diverse origins, which are further discussed in section 3.1.  
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Figure 31: Structural models of the Snf2H enzyme under apo state conditions in solution. (A) The top-

ranked Snf2H models (i.e., models #1-5 and every other fifteenth model) are shown and aligned to ATPase 

lobe 2 of model #1. ATPase lobe 1, ATPase lobe 2, and the HSS domain of model #1 are colored in yellow, 

red, and green, respectively. The remaining structures are depicted in grey color. (B) The Cα-Cα distances 

between reactive residues of identified inter-domain cross-links were measured in each Snf2H model shown 

in (A). Individual box plots summarize the observed distribution of measured Cα-Cα distances for each inter-

domain cross-link. That is, each box plot shows the median (solid line), the Q3-Q1 range (box), and the 

minimum and maximum measured Cα-Cα distance (whiskers). Cross-links are numbered according to 

STable 3. Cross-links with an asterisk were used as distance restraints during computational docking. The 

Cα-Cα distance threshold given by the cross-linking agent is shown as a red dotted line in the box plot 

diagram. 

Dr. C. Schindler (TUM, Munich) performed the computational docking of the full-length Snf2H enzyme 

shown in panel (A).  

As an additional complementary approach to XL-MS analysis, Dr. L. Brützel (LMU Munich) 

performed SAXS measurements on the full-length Snf2H protein in order to deduce the 

molecular shape of the remodeling enzyme under apo state conditions in solution. A series of 

SAXS measurements at different Snf2H concentrations resulted in well superimposable 

scattering profiles (Figure 32A). Reconstruction of the molecular envelope showed that the 

Snf2H protein predominantly assumes an overall globular, yet slightly elongated conformation 

(Figure 32B). The SAXS data thus show consistency with the computationally generated 

Snf2H models considering that representative structures can be fitted well into the molecular 

envelope (e.g., model #1; Figure 32B). Comparison between the experimental and the 
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theoretical scattering curves for the investigated Snf2H models depicted in Figure 31A resulted 

in an average χ-value of 4.2 ± 0.3, which is close to the upper limit of the acceptance criterion 

range of < 2 (172) to 5 (173). 

 

Figure 32: SAXS analysis of the Snf2H enzyme. (A) The extrapolated scattering curves for the Snf2H 

enzyme are shown for three different protein concentrations. The curves are well superimposable and 

indicate good data quality. (B) The top-ranked structural model #1 (cf. Figure 31A) can be fitted well into the 

SAXS-derived molecular envelope of the full-length Snf2H enzyme. Notably, 20% of residues are missing in 

the Snf2H model, which explains the excess of electron density. 

I purified the full-length Snf2H enzyme and prepared the samples for SAXS measurements, which were 

conducted and analyzed by Dr. L. Brützel (LMU, Munich) shown in panels (A) and (B). Dr. C. Schindler 

(TUM, Munich) generated the full-length model in panel (B). 

In conclusion, the ambiguous nature of the modeling results and the limitations in narrowing 

down the pool of candidate conformations by experimental data do not allow us to propose a 

single Snf2H structure for the remodeling enzyme under apo state conditions with the desired 

confidence. 
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2.4. Probing the conformation of remodeling enzymes upon changing the 

ATP state 

Our proposed structural model of the DmISWI ATPase module implies that both ATPase lobes 

are twisted against each other under apo state conditions such that motifs important for 

catalysis are not oriented towards each other (cf. section 2.2.1.3). It appears plausible that the 

catalytic core of the Snf2H enzyme favors a similar resting state under comparable solution 

conditions. The ATPase modules of both remodeling enzymes may have to undergo substantial 

conformational rearrangements in order to assume a catalytically competent configuration. The 

nucleotide analog adenosine-5′-diphosphate beryllium-fluoride (ADP-BeFx) has been shown to 

induce various nucleotide-dependent states of the Snf2H enzyme including the transition state 

during ATP hydrolysis (159). We thus envisaged that binding of ADP-BeFx to the Snf2H 

protein would shift the conformational ensemble towards an active enzyme conformation, 

which we could probe by XL-MS analysis, SAXS measurements, and computational modeling. 

To assess saturating ADP-BeFx concentrations, a competitive, thin-layer chromatography 

(TLC)-based ATPase assay was used to follow hydrolysis of [γ-32P]ATP in the presence of 

increasing concentrations of the nucleotide analog (cf. Materials and Methods section 

4.2.7.2.1). The ATP hydrolysis activities of DmISWI, DmISWI∆HSS, and Snf2H decreased with 

increasing ADP-BeFx concentrations with [γ-32P]ATP turnover being negligible at a nucleotide 

analog concentration of > 0.5 mM (SFigure 2). Consequently, these preliminary findings 

suggested that 3 mM ADP-BeFx are sufficient to shift the conformational ensemble of the 

studied remodeling enzymes towards the transition state during ATP hydrolysis. 

The following subsections provide a detailed summary of the results obtained for the Snf2H 

enzyme in the presence of the nucleotide analogue ADP-BeFx. Furthermore, a side-by-side 

comparison of the XL-MS data for the Snf2H protein in the presence and absence of ADP-

BeFx allows for the identification of nucleotide-dependent changes in the higher-order 

structure of the remodeling enzyme.  

 

2.4.1. Elucidating the conformational impact of nucleotide analog binding on 

the Snf2H enzyme using XL-MS analysis and computational modeling 

To investigate the conformational impact of nucleotide analog binding on the Snf2H protein, 

we collected XL-MS data of the remodeling enzyme in the presence of ADP-BeFx in an 

identical manner as described for the Snf2H enzyme under apo state conditions (cf. section 

2.3.1). I identified a total 154 unique, cross-linked residue pairs for the Snf2H enzyme in the 

presence of ADP-BeFx (Figure 33 and STable 4) with the majority (76%) of cross-linking sites 

being reproduced in technical replicates (cf. STable 4, column “Reproducibility group”).   
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Figure 33: Identified cross-links for the full-length Snf2H enzyme in the presence of ADP-BeFx. 

Schematic representation of Snf2H domains with identified inter- and intra-domain cross-links (cf. STable 4) 

being indicated as solid and dotted arcs (cf. color scheme), respectively. The residue numbering is denoted 

below. The grey bars below the arc plot define the generated homology models of the distinct Snf2H domains 

(cf. section 2.3.1). NTR, N-terminal region; HSS, HAND-SANT-SLIDE. 

Dr. I. Forné (LMU, Munich) performed the MS analysis. 

The number of identified cross-links for Snf2H was thus considerably higher in the ADP-BeFx 

state than under apo state conditions. The increased number of identifications was primarily 

due to novel cross-links that map to either the NegC-HSS interconnecting region (i.e., residues 

690–742) or the very C-terminal segment (i.e., residues 1023–1052) of the Snf2H enzyme 

(Figure 34), for which we lack atomic coordinates in our structural models.  

 

Figure 34: Comparison of identified cross-links for the Snf2H enzyme in the presence and absence of 

ADP-BeFx. Schematic representation of Snf2H domains with identified inter- and intra-domain cross-links 

being indicated as solid and dotted arcs, respectively. Arcs on the top and bottom side refer to identified 

cross-links for the Snf2H enzyme in the presence and absence of ADP-BeFx, respectively. Individual cross-

links, which were identified under both conditions, are highlighted in cyan. Cross-links that were exclusively 

observed upon binding of ADP-BeFx or under apo state conditions are colored in purple and grey, 

respectively. NTR, N-terminal region; HSS, HAND-SANT-SLIDE. 

I also observed novel intra-domain cross-links for the ATPase module and the HSS domain in 

the ADP-BeFx state. In a first step, I thus evaluated the compatibility of all identified intra-

domain cross-links for ATPase lobe 1 (XLSnf2H,nt 67–78), ATPase lobe 2-NegC (XLSnf2H,nt 85–

90 and XLSnf2H,nt 59), and the HSS domain (XLSnf2H,nt 94–107) with the previously generated 

homology models of the respective Snf2H domains. As illustrated in Figure 35, the 
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experimental distance restraints for these functional domains still showed excellent consistency 

with the computed structures.  

 

Figure 35. Intra-domain cross-links for the Snf2H enzyme in the presence of ADP-BeFx. I measured the 

Cα-Cα distances between residues of identified intra-domain cross-links in the respective homology models 

of ATPase lobe 1 (yellow; i.e., XLSnf2H,nt 67−78), ATPase lobe 2 (red; i.e., XLSnf2H,nt 85−90), and the HSS 

domain (green, i.e., XLSnf2H,nt 94−107) of the Snf2H enzyme. Cross-links are depicted as grey rods in the 

homology models, in which the N- and C-termini are furthermore highlighted as cyan spheres for orientation. 

Notably, XLSnf2H,nt 68, which connects residues 249 and 298 in ATPase lobe 1, fulfilled the BS
3
 distance 

threshold but resulted in a direct steric clash by extending through the bulk of the domain. Thus, XLSnf2H,nt 68 

may represent a false positive identification. The presented box plots signify the median (solid line), the Q3-

Q1 range (box), and the minimum and maximum measured Cα-Cα distance (whiskers) for all intra-domain 

cross-links of a given domain. The Cα-Cα distance threshold given by the cross-linking agent is shown as a 

red dotted line in the box plot diagram. STable 4 provides further details for each cross-link.  

Dr. C. Schindler (TUM, Munich) performed the homology modeling of individual Snf2H domains. 

In a next step, I focused on inter-domain cross-links for the HSS domain and the ATPase 

module in order to elucidate similarities and differences in the cross-linking pattern for the 

Snf2H enzyme in the absence and presence of ADP-BeFx. Interestingly, approximately 70% of 

inter-domain cross-links that were identified under apo state conditions were also detected in 

the ADP-BeFx state pointing towards an overall similar structural architecture of the 

remodeling enzyme (Table 2). In line with this qualitative comparison, I found that the 

identified inter-domain cross-links for the ADP-BeFx state were consistent with a ScChd1-like 

conformation of the NegC region (XLSnf2H,nt 50–53, STable 4; Figure 36A) and with the HSS 

domain being in spatial proximity to the ATPase lobes (XLSnf2H,nt 1–18, 23–29) as well as the 

autoregulatory NTR and NegC domains (XLSnf2H,nt 37–46 and XLSnf2H,nt 54–58).  
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Cross-links that connected the NTR with the ATPase lobes did not map to identical sites in the 

Snf2H enzyme in the apo (XLSnf2H 38, 39; Table 3) and ADP-BeFx state (XLSnf2H,nt 34–36; 

STable 4). The novel NTR-ATPase lobe cross-links XLSnf2H,nt 34–36, however, remained 

consistent with the MtISWI crystal structure (pdb 5JXR) suggesting a similar positioning of 

the NTR in the ADP-BeFx-bound Snf2H enzyme (Figure 36B).  

 

Figure 36: Evaluation of NTR and NegC cross-links for the ADP-BeFx-bound Snf2H enzyme. (A) NegC 

cross-links mapped onto our ScChd1-based homology model of ATPase lobe 2 (red) and the NegC domain 

(orange). Identified inter-domain cross-links that connect these two regions (XLSnf2H,nt 50–53, STable 4) are 

indicated as grey rods with respective Cα-Cα distances being all satisfied. (B) NegC cross-links mapped onto 

the structure of a single MtISWI protomer (pdb 5JXR). All Cα-Cα distances between the NTR (cyan) and the 

ATPase lobes (ATPase lobe1, yellow and ATPase lobe 2, red) were satisfied. In contrast, all Cα-Cα distances 

between NegC (orange) and ATPase lobe 2 are violated (pink rods; XLSnf2H,nt 50–53) and exceed the distance 

threshold by 26–60 Å in the MtISWI protomer. 

Dr. C. Schindler (TUM, Munich) performed the homology modeling of the depicted structure in panel (A). 

Similar to the XL-MS results for the Snf2H protein under apo state conditions, I only obtained 

a single ATPase lobe-lobe cross-link that restricted the relative orientation of both ATPase 

lobes to each other in the ADP-BeFx state. The respective candidate (XLSnf2H,nt 84, STable 4) 

was identified on the basis of two distinct cross-linked peptides of various charge states and 

bridged the sequence-wise distant C-termini of both ATPase lobes in a similar manner as 

described for Snf2H under apo state conditions. This ATPase lobe-lobe cross-link for the 

ADP-BeFx-bound Snf2H enzyme, however, could not be used to distinguish between the 

markedly distinct orientations of both ATPase lobes depicted in available apo (cf. Figure 4) 

and nucleosome-bound structures of related remodeling enzymes. That is, the Cα-Cα distance 

between corresponding sites was consistently < 15.6 Å in the structures of ScChd1 (pdb 
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3MWY and 5O9G), Sso1653 (pdb 1Z6A), DrRad54 (pdb 1Z3I), MtSnf2 (pdb 5JXR), and 

ScSnf2 (pdb 5X0Y and 5X0X).  

In conclusion, the XL-MS data delineate a rather compact conformation of the ADP-BeFx-

bound Snf2H protein considering that the cross-linking agent bridged numerous domain 

interfaces. Alternatively, the increased number of identified cross-links in the ADP-BeFx state 

relative to apo state conditions could derive from enhanced flexibility of the Snf2H enzyme 

upon binding of the nucleotide analog. The high number of identical/similar cross-linked 

residue pairs for Snf2H in the presence and absence of ADP-BeFx may point towards an 

overall similar structural architecture of the remodeling enzyme under these solution 

conditions. However, I cannot rule out that potential ADP-BeFx-induced conformational 

changes in these Snf2H regions may remained undetected due to the resolution limit of the XL-

MS approach using the chemical BS3 cross-linking agent.  

 

 

Table 2: Identical and similar inter-domain cross-links for the Snf2H enzyme in the apo and ADP-BeFx 

state. Site 1 and site 2 of the cross-linked peptides, the respective protein domains, and the corresponding 

cross-link identification numbers are specified for each identical and similar inter-domain cross-link that was 

identified in both apo and ADP-BeFx states (cf. STable 3 and STable 4). Cross-linked peptides were 

considered similar if the cross-linking sites were within ± 10 amino acids with respect to the primary protein 

sequence. Similar cross-links are denoted in grey. Inter-domain cross-links that mapped to either the NegC-

HSS interconnecting region (i.e., residues 690–742) or the very C-terminal segment (i.e., residues 1023–

1052) are not included in the table. 

Site 1 
Domain  

site 1 
Site 2 

Domain  

site 2 

Apo state  

XLSnf2H 

ADP-BeFx state  

XLSnf2H,nt 

71 NTR 990 HSS 37 38 
97 NTR 990 HSS 36 40 

121 NTR 990 HSS 34 46 
128 NTR 990 HSS 33 45 
129 NTR 990 HSS     app. 33  44 
132 NTR 990 HSS 35 41 
160 NTR 644 NegC  44* 33 
160 NTR 929 HSS 13 42 

176 ATPase lobe 1 847 HSS     app.  9* 1 
176 ATPase lobe 1 855 HSS  9*  2* 
176 ATPase lobe 1 929 HSS  12*  3* 
176 ATPase lobe 1 990 HSS  14*  4* 
223 ATPase lobe 1 929 HSS  10*  6* 
264 ATPase lobe 1 847 HSS 16  11* 
264 ATPase lobe 1 929 HSS  8*  8* 
264 ATPase lobe 1 990 HSS  11*  9* 
328 ATPase lobe 1 929 HSS 3 14 
397 ATPase lobe 1 758 HSS 4 10 
397 ATPase lobe 1 929 HSS  7*  15* 
397 ATPase lobe 1 990 HSS 6  18* 

407 ATPase lobe 2 929 HSS 27     app. 15* 
408 ATPase lobe 2 929 HSS 18     app. 23 
408 ATPase lobe 2 990 HSS 17     app. 24* 
418 ATPase lobe 2 665 NegC 48 53 
418 ATPase lobe 2 929 HSS  26* 23 
418 ATPase lobe 2 990 HSS  29*  24* 
430 ATPase lobe 2 665 NegC 49 52 

    
 

* continues next page * 



 69 Results 

     

430 ATPase lobe 2 855 HSS 24 25 
430 ATPase lobe 2 990 HSS  28*  26* 
440 ATPase lobe 2 647 NegC 45 51 
443 ATPase lobe 2 644 NegC 46     app. 50 
443 ATPase lobe 2 647 NegC 47 50 

647 NegC 929 HSS 30 54 
665 NegC 990 HSS 31 57 

*:  Cross-links with an asterisk were used for computational docking of the full-length Snf2H enzyme in the 
apo or ADP-BeFx state. 

app.: Approximately 

 

 

 

Table 3: ADP-BeFx-dependent inter-domain cross-links for the Snf2H enzyme. Site 1 and site 2 of the 

cross-linked peptides, the respective protein domains, and the corresponding cross-link identification number 

(cf. STable 4) are specified for each ADP-BeFx-dependent inter-domain cross-link. Inter-domain cross-links 

that mapped to either the NegC-HSS interconnecting region (i.e., residues 690–742) or the very C-terminal 

segment (i.e., residues 1023–1052) are not included in the table. 

Site 1 
Domain  

site 1 
Site 2 

Domain  

site 2 

ADP-BeFx state  

XLSnf2H,nt 

71 NTR 684 NegC 32 
71 NTR 929 HSS 37 
83 NTR 328 ATPase lobe 1 35 
83 NTR 929 HSS 39 
97 NTR 328 ATPase lobe 1 36 

128 NTR 929 HSS 43 
129 NTR 496 ATPase lobe 2 34 

223 ATPase lobe 1 855 HSS 5 
264 ATPase lobe 1 758 HSS 7 
299 ATPase lobe 1 855 HSS  12* 
299 ATPase lobe 1 929 HSS  13* 
299 ATPase lobe 1 990 HSS  16* 
328 ATPase lobe 1 990 HSS  17* 
402 ATPase lobe 1 600 ATPase lobe 2 84 

440 ATPase lobe 2 990 HSS 27 
496 ATPase lobe 2 990 HSS 29 
624 ATPase lobe 2 990 HSS 28 

647 NegC 990 HSS 55 
665 NegC 929 HSS  56* 
684 NegC 990 HSS 58 

*:  Cross-links with an asterisk were used for computational docking of the full-length Snf2H enzyme in the 
ADP-BeFx state. 

 

 

Despite the similarities between cross-linking results for the Snf2H enzyme in the presence and 

absence of the nucleotide analog, I detected several inter-domain cross-links between the 

ATPase module and the HSS domain that were exclusively found in the ADP-BeFx state 

(Table 3) using comparable filtering criteria during MS data analysis (cf. Table 15 in Materials 

and Methods section). It thereby appeared that especially residues of the autoregulatory NTR 

region and ATPase lobe 1 formed cross-links with the HSS domain in an ADP-BeFx-dependent 

manner. Notably, many of these ADP-BeFx-dependent linkages for Snf2H were repeatedly 
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observed across distinct XL-MS analyses as further specified in column ‘Reproducibility 

group’ in STable 4. 

To resolve and visualize these potential ADP-BeFx-induced structural changes in the full-

length Snf2H enzyme, our collaboration partner Dr. C. Schindler (TUM, Munich) performed a 

three-body docking with homology models of both ATPase lobes and the HSS domain in a 

similar manner as described in section 2.3.2. The docking procedure was guided by a total of 

16 inter-domain distance restraints (i.e., XLSnf2H,nt 2–4, 6, 8, 9, 11–13, 15–18, 24, 26, 56; cf. 

STable 4), for which we obtained excellent fragmentation data during MS/MS analysis (cf. 

SFigure 7). As such, the docking procedure relied on previously implemented distance 

restraints as well as ADP-BeFx-dependent linkages between ATPase lobe 1, NegC, and the 

HSS domain (cf. asterisks in Table 3). Figure 37A shows our representative structural models 

of the ADP-BeFx-bound Snf2H enzyme (i.e., the top-ranked models #1−5 and every other 

fifteenth model). These structural models of the Snf2H enzyme in the presence of ADP-BeFx 

were rather heterogeneous. In particular, the orientation of the HSS domain relative to both 

ATPase lobes remained ambiguous, while the ATPase module itself displayed recurrent 

structural characteristics.  

I subsequently evaluated the quality of the structural models depicted in Figure 37A with 

respect to the experimental XL-MS and SAXS data. Measuring the Cα-Cα distances between 

cross-linked residue pairs revealed that none of the investigated Snf2H models satisfied all 

implemented distance restraints used for docking at once (Figure 37B, marked with an 

asterisk). Furthermore, the majority of additional identified inter-domain cross-links listed in 

Table 2 and Table 3 exceeded the BS3 distance threshold (Figure 37B). It thus appears 

plausible that the well-documented flexibility in one or more parts of the full-length Snf2H 

enzyme (89, 129) may hinder us from modeling a single ADP-BeFx-bound conformation of the 

remodeling enzyme. Nevertheless, the SAXS-derived scattering profile of the ADP-BeFx-

bound Snf2H protein (see section 2.4.2) showed partial consistency with the theoretical 

scattering curves of the investigated structural models as reflected by an average χ-value of 3.0 

± 0.23. 
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Figure 37: Structural models of the full-length Snf2H enzyme in the presence of ADP-BeFx. (A) The 

top-ranked structural models for the ADP-BeFx-bound Snf2H enzyme (i.e., models #1−5 and every other 

fifteenth model) are shown and aligned to ATPase lobe 2 of model #1. ATPase lobe 1, ATPase lobe 2, and 

the HSS domain are colored in yellow, red, and green for model #1, respectively. The remaining structures 

are depicted in grey color. (B) I measured the Cα-Cα distances between reactive sites of identified inter-

domain cross-links in each Snf2H model shown in (A). Individual box plots summarize the observed 

distribution of measured Cα-Cα distances for each inter-domain cross-link. That is, each box plot shows the 

median (solid line), the Q3-Q1 range (box), and the minimum and maximum measured Cα-Cα distance 

(whiskers). Cross-links are numbered according to STable 4. Cross-links with an asterisk were used as 

distance restraints during computational docking. The Cα-Cα distance threshold given by the BS
3
 cross-

linking agent is shown as a red dotted line in the box plot diagram. 

Dr. C. Schindler (TUM, Munich) performed the computational docking of the full-length Snf2H enzyme 

shown in panel (A).  

Despite the above outlined, partial inconsistencies between XL-MS and computational data, it 

is interesting to compare our representative models of the full-length Snf2H enzyme in the apo 

(cf. section 2.3.2) and ADP-BeFx state with each other. For a more structural perspective, I 

superimposed and aligned the top five structural models of each state with regard to the 

ATTRACT score (Figure 38). The superimposition of individual structural models suggests 

that ATPase lobe 1 rotates approximately 180° relative to ATPase lobe 2 upon changing the 

nucleotide state. Furthermore, I observed that the orientation of the HSS domain relative to 
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ATPase lobe 2 is substantially different between Snf2H models for the apo and ADP-BeFx 

states. The drastically different modeling outcomes for the Snf2H enzyme in the apo and ADP-

BeFx state are surprising considering that the large majority of distance restraints used to guide 

the computational docking was identical. The direct comparison of these structural models 

points towards the possibility that the Snf2H protein may undergo major conformational 

changes upon nucleotide analogue binding with identical/similar cross-linked residue pairs 

being formed in both states. However, the comparison between XL-based modeling results for 

the apo and ADP-BeFx states should be done with caution. That is, our structural models are 

too ambiguous to draw conclusive mechanistic inferences with the desired confidence. 

  

Figure 38: Superimposition of structural models of the full-length Snf2H enzyme in the presence and 

absence of ADP-BeFx. The top five ATTRACT-scored docking models of the full-length Snf2H enzyme in 

the apo (cf. Figure 31A) and ADP-BeFx-bound state (cf. Figure 37A) are aligned on ATPase lobe 2 (red). 

The superimposition of structures suggests that ATPase lobe 1 (colored in sand and yellow for the apo and 

ADP-BeFx state, respectively) undergoes a rotation of approximately 180° upon binding of the nucleotide 

analog. Likewise, the orientation of the HSS domain is markedly different in the apo (dark green) relative to 

the ADP-BeFx state (light green).  

Dr. C. Schindler (TUM, Munich) performed the computational docking of the full-length Snf2H enzyme in the 

apo and ADP-BeFx-bound state.  
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2.4.2. Nucleotide-induced conformational changes in ISWI-type remodeling 

enzymes viewed by SAXS analysis 

To further investigate nucleotide-dependent conformational changes in the Snf2H protein, our 

collaboration partner Dr. L. Brützel (LMU, Munich) performed SAXS measurements on the 

remodeling enzyme in the presence and absence of ADP-BeFx and compared the respective 

structural parameters with each other (Figure 39A). In addition, we examined whether the full-

length DmISWI enzyme would exhibit a similar conformational response to the binding of the 

nucleotide analog (Figure 39B). 

Binding of ADP-BeFx resulted in a 6.7% and 10.4% decreased radius of gyration for the full-

length DmISWIWT and Snf2H remodeling enzymes (Figure 39D), respectively. These findings 

suggest that the tested nucleotide analog induces an overall more compact solution-phase 

structure of both full-length proteins.  

In a subsequent step, we examined the impact of ADP-BeFx binding on the catalytic core of the 

DmISWI enzyme. Dr. L. Brützel (LMU, Munich) therefore conducted additional SAXS 

measurements on DmISWI∆HSS in the presence of the nucleotide analog and compared these 

results to corresponding data obtained under apo state conditions (Figure 39C, cf. section 

2.2.1.1). Interestingly, a similar compaction in the ISWI∆HSS variant was observed upon ADP-

BeFx ligation considering that the Rg value decreased by 5.3% relative to apo state conditions 

(Figure 39D). This finding implies that the ATPase module undergoes a global conformational 

change in response to ADP-BeFx binding.  
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Figure 39: ADP-BeFx-induced compaction of remodeling enzymes. Kratky representations for (A) full-

length Snf2H, (B) full-length ISWIWT, and (C) ISWIΔHSS are shown. (D) Tabular overview of the radii of 

gyration for the investigated remodeling enzymes in the presence and absence of the nucleotide analog. Data 

represent means ± standard deviation (n = 2−3). The presented data (A−D) collectively suggest an ADP-

BeFx-dependent compaction of the remodeling enzymes in solution. The panels (B) and (C) as well as values 

of (D) were adapted from (1) in accordance with Elsevier’s policies. 

I purified all protein constructs and prepared the samples for SAXS measurements, which were conducted 

and analyzed by Dr. L. Brützel (LMU, Munich). 
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2.5. Probing the interaction between remodeling enzyme(s) and 

nucleosomes 

Remodeling complexes have to recognize and bind to their substrate in order to fulfill their 

essential functions such as the reposition of nucleosomes along DNA. Detailed structure-

function relationships will pave the way towards a better mechanistic understanding of 

remodeling enzymes and how they interact with nucleosomes on a molecular level. However, 

the majority of structural information for individual enzyme-nucleosome complexes is either of 

low resolution (150), which does not allow for detailed mechanistic inferences or derive from 

truncated enzyme variants (21). The recently determined high-resolution, cryo-EM structure of 

the ScChd1 enzyme in complex with a nucleosome (pdb 5O9G) (24) shows how the 

monomeric ATPase module interacts with nucleosomal DNA at SHL +2 and how it is 

anchored to the N-terminal tail histone H4. The DNA-binding SANT and SLIDE domains 

furthermore contact the extranucleosomal DNA around SHL –7. The binding of remodeling 

enzymes to flanking DNA stretches, as observed in the ScChd1 structure, has been well 

documented (23, 116, 127). However, recent studies suggest an alternative binding mode for 

the HSS domain of the Snf2H enzyme (28, 129). That is, the HSS domain has been suggested 

to bind to the nucleosome core during the DNA translocation step.  

To better understand how the Snf2H protein engages its nucleosomal substrate, we performed 

XL-MS analyses of the ADP-BeFx-bound remodeling enzyme in the presence and absence of 

nucleosomes. The following subsections provide a step-by-step summary of obtained 

experimental results from XL-MS analysis and computational modeling. By comparing cross-

linking data in the presence and absence of nucleosomes in a quantitative manner, I was able to 

gain information about possible substrate-induced conformational changes in the Snf2H 

enzyme.  

 

2.5.1. In-vitro reconstitution of remodeling enzyme-nucleosome complexes 

The four Drosophila core histones were either purified from inclusion bodies or using the RHP 

method (cf. Materials and Methods section 4.2.2.4). Lyophilized histone proteins were mixed 

under denaturing solution conditions and were assembled into histone octamers by dialyzing 

the samples against a high salt refolding buffer. Histone octamers were subsequently purified 

by size-exclusion chromatography as specified in Materials and Methods section 4.2.3.2. The 

DNA for mononucleosomes derived from cut plasmids and was isolated by a native PAGE 

approach (cf. Materials and Methods section 4.2.3.1). Purified DNA fragments of 187 bp 

length comprised the 601 positioning sequence (235) and a flanking DNA stretch. 

Reconstitution of histone octamers with DNA was accomplished by using a salt gradient 

dialysis approach (cf. Materials and Methods section 4.2.3.3). For samples subjected to XL-
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MS analysis, excess of unbound DNA was subsequently removed by glycerol gradient 

centrifugation. As mentioned above, mononucleosomes comprised a one-sided linker DNA of 

40 bp length, which will be referred to as “0N40 mononucleosomes” hereafter. This 

extranucleosomal DNA stretch may serve as an interaction site for the HSS domain in the 

Snf2H-nucleosome complex (23, 151).  

 

In a next step, I screened for suitable conditions that allow for the formation of DmISWI- or 

Snf2H-nucleosome complexes in solution. I therefore incubated increasing concentrations of 

either the DmISWI or Snf2H remodeling enzyme with a constant amount of 0N40 

mononucleosomes as well as 3 mM ADP-BeFx and evaluated complex formation by an 

electrophoretic mobility shift assay (EMSA, cf. Materials and Method section 4.2.7.1). I 

decided to use ADP-BeFx for the reconstitution due to the reported potential of this particular 

nucleotide analog to increase the binding affinity of the Snf2H enzyme towards 0N40 

mononucleosomes (150).  

DmISWI as well as Snf2H appeared to form complexes with 0N40 mononucleosomes (Figure 

40). However, I observed a certain tendency of both remodeling enzymes to form aggregates in 

the presence of substrate (Figure 40A, B). Under comparable solution conditions at elevated 

protein concentrations, I often observed more visible aggregates during EMSA analysis for 

DmISWI than for Snf2H samples. The tendency of the DmISWI enzyme to form protein 

aggregates in the presence of nucleosomes has also been reported recently in the context of 

structural studies of the remodeler (236). I consequently endeavored to prevent aggregation of 

the DmISWI-nucleosome complex by changing potentially critical experimental parameters. 

My efforts encompassed the testing of alternative nucleotides (e.g., ADP and the non-

hydrolyzable AMP-PNP analog), substitution of 0N40 with 0N0 nucleosomes, and the use of 

distinct buffer solutions (cf. section 6.3 in Appendix) commonly employed in nucleosome-

based experiments (116, 150). Despite the sometimes promising EMSA results for the 

DmISWI enzyme for individual conditions (SFigure 3), the handling of these samples 

remained challenging. I therefore decided to focus on the Snf2H enzyme to study structural 

characteristics of an ISWI-type remodeling enzyme in complex with its nucleosomal substrate 

by means of XL-MS analysis.  

The EMSA results suggested that up to three Snf2H molecules might be bound to a single 

nucleosome in solution (Figure 40B) and that Snf2H-nucleosome complexes are compatible 

with the use of chemical cross-linking agents (Figure 40C). The single particle EM study by 

Racki et al. (150) already suggested that two Snf2H molecules bind to a single nucleosome in 

the presence of ADP-BeFx in order to facilitate the bidirectional movement of the substrate 

along DNA in a cooperative manner. The observation that up to three Snf2H engage the 

nucleosome in the present study may be explained by assuming an additional binding site on 
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the flanking DNA stretch (237). Attempts to separate these different Snf2H-nucleosome 

complexes and to remove unbound protein species by size-exclusion chromatography have 

remained ineffective because Snf2H-nucleosome complexes could not be eluted from the size-

exclusion column (data not shown). Notably, other laboratories also experienced challenges in 

separating different protein species in ISWI-nucleosome samples (i.e., free nucleosomes, 

several remodeler-nucleosome complexes as well as free remodeler, and aggregates) by size-

exclusion chromatography (236). 

 

In conclusion, I decided not to pursue XL-MS analysis of the substrate-bound DmISWI protein 

due to the experienced challenges associated with the handling of these samples. Instead, I 

focused on Snf2H-nucleosome complexes and found the following conditions to be most 

promising for XL-MS analysis: 1.5 µM Snf2H enzyme in the presence of either 1.5 or 0.8 µM 

0N40 mononucleosomes, 3 mM ADP-BeFx, and 1 mM BS3 cross-linker in buffer solution [15 

mM Hepes-KOH (pH 7.6), 4% glycerol, 70 mM KCl, 1 mM DDT, and 1 mM MgCl2]. 

Although the sample heterogeneity under these conditions could complicate the interpretation 

of experimental results (Figure 40C), I envisaged having enough Snf2H-nucleosome 

complexes in solution that allow the unambiguous identification of intermolecular cross-links 

during MS/MS analysis. 
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Figure 40: Monitoring the interaction of DmISWI and Snf2H with mononucleosomes. I monitored 

complex formation between 0N40 mononucleosomes and either Snf2H or DmISWI by a 4.5% native 

PAGE/0.2x TBE approach and ethidium bromide staining. (A and B) I incubated increasing concentrations of 

DmISWI (left) and Snf2H (right) with 0N40 mononucleosomes and the indicated nucleotide (ADP or ADP-

BeFx) in EMSA buffer #4 (cf. Table 12). I predominantly observed protein aggregates at DmISWI 

concentrations > 1 µM. In contrast, protein aggregation was less pronounced for the Snf2H enzyme under 

comparable solution conditions. Titration furthermore revealed that more than one Snf2H molecules may 

bind to a single nucleosome. Notably, the nucleosomes used in (A) were not purified over a glycerol gradient, 

which explains the band corresponding to ‘overassembled nucleosomes’. (C) The formation of Snf2H-

nucleosome complexes appeared to be compatible with the use of chemical cross-linkers. M: Marker. See 

also SFigure 3 for additional EMSA results. 
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2.5.2. Cross-linking of the Snf2H-nucleosome complex 

I cross-linked the Snf2H enzyme in the presence of its nucleosomal substrate (i.e., 0N40 

mononucleosomes) using the BS3 cross-linker to gain a better structural understanding of this 

interaction and to uncover potential conformational changes in the target proteins upon 

complex formation. The XL-MS workflow was essentially the same as described above for the 

Snf2H enzyme with MS analysis being conducted by our collaboration partner Dr. I. Forné 

(LMU, Munich). 

A total of 253 peptides passed the filtering criteria during peptide identification (cf. Table 15 in 

Materials and Methods) yielding 181 unique cross-linked residue pairs for the Snf2H-

nucleosome state (Figure 41, STable 5). Notably, the large majority of these cross-linking sites 

(74%) were reproducible in at least technical replicates as further specified in STable 5. Cross-

linking candidates, for which the spacing between reactive sites was below ten amino acids, 

were not considered for further analysis. These candidates were often found in individual 

histone tails, which are very rich in surface-exposed lysine residues. 

 

Figure 41: Identified cross-links for the full-length Snf2H enzyme in complex with nucleosomes and 

ADP-BeFx. Schematic representation of the Snf2H enzyme and individual histone proteins with identified 

inter- and intra-domain cross-links being indicated as solid and dotted arcs (cf. color scheme), respectively. 

STable 5 provides further details for each presented cross-link. Identified inter-molecular cross-links (cf. 

SFigure 11 for MS/MS spectra) are shown as purple lines. Numbers refer to the amino acid numbering of the 

individual proteins. NTR, N-terminal region; HSS, HAND-SANT-SLIDE. 

Dr. I. Forné (LMU, Munich) performed the MS analysis. 
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In a first step, I focused on the identified intra-molecular cross-links for both the full-length 

Snf2H enzyme and the histone octamer. In the case of the octamer, the identified linkages were 

sometimes confined to a single subunit (XLSnf2H,c 1–17; STable 5) but frequently also provided 

information about the distance between two histone proteins (XLSnf2H,c 18–31). To examine 

potential conformational changes in the octamer upon Snf2H binding as suggested recently 

(238), I mapped the identified intra-molecular cross-links onto an available crystal structure of 

the nucleosome (pdb 2PYO). The majority of these linkages (XLSnf2H,c 1, 3–17, 19, 20, 23, 25, 

28, 30, 31), however, mapped to nucleosomal regions (e.g., histone tails) for which atomic 

coordinates are lacking in the crystal structure. Accessible cross-links for the histone octamer 

(XLSnf2H,c 2, 18, 21, 22, 24, 26, 27, 29) are illustrated in Figure 42A and showed consistency 

with the nucleosome structure because Cα-Cα distances between cross-linked lysine residues 

did not violate the defined distance threshold of the BS3 agent. Thus, our cross-linking data for 

the Snf2H-nucleosome state do not provide further experimental evidence for binding-induced 

conformational changes in the histone octamer within the resolution of the XL-MS approach.  

 

In the case of the Snf2H enzyme, I identified several intra-domain cross-links (XLSnf2H,c 86–

119), which I mapped onto the respective homology models (cf. section 2.3.1). I found that all 

distance restraints (XLSnf2H,c 90–103) were fulfilled in our structural models of both ATPase 

lobes (Figure 42B). Likewise, the large majority of intra-domain distance restraints for the 

HSS domain (XLSnf2H,c 104–119) were satisfied (Figure 42B). However, three cross-links that 

connect residues of the HAND and SLIDE regions (XLSnf2H,c 117–119) substantially exceeded 

the BS3 distance threshold by a factor of 2−3 (Figure 42C). This apparent mismatch between 

experimental data and our homology model of the DNA-binding domain may point towards a 

nucleosome-dependent conformational change of the HSS domain. However, the possibility 

that these incompatible cross-links were formed between two Snf2H molecules cannot be ruled 

out. The probability of false sequence assignments for XLSnf2H,c 117 and 118 is low given the 

consecutive ion series and good signal intensities of the fragment ions detected during MS/MS 

analysis of these candidates (SFigure 8). 
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Figure 42: Mapping of identified intra-molecular and intra-domain cross-links for the Snf2H enzyme 

in the presence of nucleosomes. (A) The crystal structure of the nucleosome (pdb 2PYO) is shown with 

individual histone proteins being colored as specified in Figure 41. All accessible intra-molecular cross-links 

for the histone octamer are depicted as grey rods and spheres in the nucleosome structure. The box plot 

signifies the median (solid line), the Q3-Q1 range (box), and the minimum and maximum measured Cα-Cα 

distance (whiskers) for all intra-molecular cross-links of the nucleosome. The Cα-Cα distance threshold of 

the BS
3
 cross-linker is indicated as a red dotted line in the box plot diagram. (B) The Cα-Cα distances 

between cross-linked residues of identified intra-domain linkages were measured in the respective homology 

models of ATPase lobe 1, ATPase lobe 2, and the HSS domain of the Snf2H enzyme. The presented box 

plots signify the median (solid line), the Q3-Q1 range (box), and the minimum and maximum measured Cα-

Cα distance (whiskers) for all intra-domain cross-links of a given domain. The Cα-Cα distance threshold of 

the BS
3
 cross-linker is shown as a red dotted line. (C) Identified cross-links for the HSS domain of the Snf2H 

enzyme in the presence of nucleosomes are mapped onto the respective homology model. Intra-domain 

cross-links (XLSnf2H,c 104–119) are indicated as rods and spheres in the homology model, in which the N- and 

C-termini are furthermore highlighted in cyan for orientation. Grey and pink rods connect cross-linked 

residue pairs for which the Cα-Cα distance threshold is satisfied and violated, respectively. STable 5 provides 

further details for individual cross-links. MS/MS spectra of cross-links XLSnf2H,c 117–119 are provided in 

SFigure 8. 

Dr. C. Schindler (TUM, Munich) performed the homology modeling of individual Snf2H domains, which 

were used in panels (B) and (C) for the evaluation of XL-MS data. 

In a next step, I examined the 86 inter-domain cross-links that were identified for the Snf2H 

enzyme in the presence of 0N40 mononucleosomes (XLSnf2H,c 32–85, 90, 91, and 120–149; 

STable 5). Approximately two-thirds of these linkages (i.e., XLSnf2H,c 38, 41, 42, 46–58, 75–85, 

91 and 120–149) mapped to either the NTR, the NegC-HSS interconnecting region (i.e., 
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residues 690–742) or the very C-terminal segment (i.e., residues 1023–1052) of the Snf2H 

protein, for which we lack atomic coordinates in our structural models. Furthermore, I noticed 

that numerous cross-linked residue pairs for the Snf2H-nucleosome state were identical or 

highly similar to the ones detected in the apo and ADP-BeFx-bound states (Table 4). These 

cross-links listed in Table 4 predominantly mapped to the HSS domain implying that the 

SLIDE region is spatially neighboring both ATPase lobes (XLSnf2H,c 32–37, 39, 40, and 43–45) 

as well as the autoregulatory NTR and NegC domains (XLSnf2H,c 53–58 and 71–74). The 

structural interpretation of shared inter-domain cross-links is not straightforward because these 

cross-links could also originate from unbound Snf2H molecules and thus may not reflect 

structural properties of the nucleosome-bound remodeling enzyme. As outlined above, 

attempts to separate complexed and unbound Snf2H molecules after the cross-linking reaction 

by size-exclusion chromatography have remained unsuccessful.  

 

 

Table 4: Identical and similar inter-domain cross-links for the Snf2H enzyme in the apo, ADP-BeFx, 

and nucleosome state. Site 1 and site 2 of the cross-linked peptides, the respective protein domains, and the 

corresponding cross-link identification numbers are specified for each identical and similar inter-domain 

cross-link that was identified in the apo, ADP-BeFx, and nucleosome state (cf. STable 3–STable 5 and 

SFigure 9 for MS/MS spectra). Cross-linked peptides were considered similar if the cross-linking sites were 

within ± 10 amino acids with respect to the primary protein sequence. Similar cross-links are denoted in grey. 

Inter-domain cross-links that mapped to either the NegC-HSS interconnecting region (i.e., residues 690–742) 

or the very C-terminal segment (i.e., residues 1023–1052) are not included in the table. 

Site 1 
Domain  

site 1 
Site 2 

Domain  

site 2 

Apo state  

XLSnf2H 

ADP-BeFx 

state  

XLSnf2H,nt 

Nucleosome 

state  

XLSnf2H,c 

121 NTR 990 HSS 34 46 56 
121 NTR 929 HSS N/D  app. 43 57 
128 NTR 929 HSS N/D 43  app. 57 
119 NTR 990 HSS  app. 34  app. 46 55 
128 NTR 990 HSS 33 45  app. 58 
129 NTR 990 HSS  app. 33 44 58 
132 NTR 990 HSS 35 41  app. 58 
176 ATPase lobe 1 847 HSS N/D 1 32 
176 ATPase lobe 1 929 HSS 12 3 33 
176 ATPase lobe 1 990 HSS 14 4 34 
264 ATPase lobe 1 929 HSS 8 8 35 
299 ATPase lobe 1 929 HSS N/D 13 36 
299 ATPase lobe 1 990 HSS N/D 16 37 
418 ATPase lobe 2 665 NegC 48 53 67 
418 ATPase lobe 2 990 HSS 29 24 43 
430 ATPase lobe 2 665 NegC 49 52 66 
430 ATPase lobe 2 990 HSS 28 26 45 
440 ATPase lobe 2 647 NegC 45 51 64 
443 ATPase lobe 2 644 NegC 46  app. 50 62 
443 ATPase lobe 2 647 NegC 47 50 63 
647 NegC 929 HSS 30 54 72 
647 NegC 990 HSS N/D 55 74 
665 NegC 929 HSS N/D 56 71 
665 NegC 990 HSS 31 57 73 

app.: Approximately 

N/D:  Not determined 
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However, I identified several inter-domain cross-links for the Snf2H enzyme that were solely 

detected in the presence of the nucleosomal substrate (Table 5). These nucleosome-dependent 

cross-links predominantly connected the autoregulatory NTR and NegC domains with ATPase 

lobe 1 and ATPase lobe 2, respectively. The qualitative comparison of XL-MS data for the 

Snf2H enzyme in the ADP-BeFx and nucleosome states may point towards conformational 

changes in the autoregulatory NTR and NegC regions upon substrate binding. Interestingly, 

both the NTR and the NegC region have previously been reported to undergo substrate-

dependent conformational changes with molecular details, however, remaining elusive and 

being the subject of extensive debate (28, 115, 140, 146). The identified cross-links for the 

nucleosome state, listed in Table 4 and Table 5, are consistent with the notion that the NTR 

and NegC of the Snf2H enzyme are spatially neighboring ATPase lobe 1 and ATPase lobe 2, 

respectively. Furthermore, both autoregulatory regions may contact the DNA-binding domain 

in the presence of substrate. 

 

 

Table 5: Nucleosome-dependent inter-domain cross-links for the Snf2H enzyme. Site 1 and site 2 of the 

cross-linked peptides, the respective protein domains, and the corresponding cross-link identification number 

(cf. STable 3, STable 5 and SFigure 10 for MS/MS spectra) are specified for each inter-domain cross-link. 

None of the listed cross-links was found in the ADP-BeFx state. However, some ATPase lobe 2-NegC and 

ATPase lobe 2-HSS cross-links that were identified in the presence of nucleosomes were also detected under 

apo state conditions. Similar cross-links are denoted in grey. Inter-domain cross-links that mapped to either 

the NegC-HSS interconnecting region (i.e., residues 690–742) or the very C-terminal segment (i.e., residues 

1023–1052) are not included in the table. 

Site 1 
Domain  

site 1 
Site 2 

Domain  

site 2 

Apo state  

XLSnf2H 

ADP-BeFx 

state  

XLSnf2H,nt 

Nucleosome 

state  

XLSnf2H,c 

83 NTR 990 HSS N/D N/D 53 
112 NTR 814 HSS N/D N/D 54 
119 NTR 328 ATPase lobe 1 N/D N/D 50 
121 NTR 176 ATPase lobe 1 N/D N/D 52 
121 NTR 319 ATPase lobe 1 N/D N/D 51 
128 NTR 176 ATPase lobe 1 N/D N/D 91 
160 NTR 176 ATPase lobe 1 N/D N/D 90 
176 ATPase lobe 1 758 HSS N/D N/D 39 
176 ATPase lobe 1 799 HSS N/D N/D 40 
407 ATPase lobe 2 684 NegC  app. 50 N/D 70 
408 ATPase lobe 2 684 NegC 50 N/D 69 
418 ATPase lobe 2 684 NegC  app. 50 N/D 68 
430 ATPase lobe 2 647 NegC  app. 45 N/D 65 
430 ATPase lobe 2 929 HSS 25 N/D 44 
440 ATPase lobe 2 647 NegC 45 N/D  app. 65 
490 ATPase lobe 2 647 NegC N/D N/D 59 
490 ATPase lobe 2 665 NegC N/D N/D 60 
490 ATPase lobe 2 684 NegC N/D N/D 61 

app.: Approximately 

N/D:  Not determined 
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2.5.3. Quantitative cross-linking revealed conformational change of the HSS 

domain triggered by nucleosomes  

To further explore the possibility of a nucleosome-dependent reorientation of the HSS domain 

relative to the ATPase module in the full-length Snf2H enzyme, I pursued a quantitative cross-

linking strategy that relies on the use of a “light” cross-linker and its deuterated, “heavy” 

analog (239). Briefly, I used the light BS3-H4 and heavy BS3-D4 analogs for the relative 

quantification of shared inter-domain cross-links for the Snf2H enzyme in the ADP-BeFx and 

nucleosome state (cf. Table 4). These analogs display a constant mass difference of nearly 4 

Da and thus give rise to doublet signals during mass analysis. For my purpose, I cross-linked 

the ADP-BeFx-bound Snf2H enzyme in the absence and presence of 0N40 nucleosomes with 

the BS3-H4 and BS3-D4 cross-linking agent, respectively. Subsequent to the quenching of the 

cross-linking reaction, both protein fractions were mixed in a 1:1 molar ratio and the combined 

sample was subjected to tryptic digestion. Cross-linked peptides were enriched by size-

exclusion chromatography and the samples were measured in collaboration with Dr. I. Forné 

(LMU, Munich) by LC-MS/MS analysis. In a final step, I integrated the peak areas of the light- 

and heavy-labeled cross-linking candidates using the Skyline software and calculated the ratio 

between the two cross-linker analogs (cf. Materials and Methods section 4.2.4.6). 

 

In a first step, I validated the quantification approach using a simplified experimental setup. 

That is, I cross-linked the Snf2H protein under apo state conditions with either BS3-H4 or BS3-

D4 and mixed the two protein samples in a 1:1 molar ratio. Under these experimental 

conditions, I expected to find equal peak areas for the light- and heavy-labeled cross-links and 

thus a BS3-H4/BS3-D4 ratio of approximately 1. I focused on the relative quantification of five 

cross-links in this control experiment: XLSnf2H 48 and XLSnf2H 31 were consistently identified 

in all investigated Snf2H states (cf. Table 4) and the remaining cross-links XLSnf2H 3, 19, and 

29 were selected due to favorable signal intensities in combination with good fragmentation 

data during MS/MS analysis. I assigned these cross-linking candidates in the Skyline software 

based on extracted ion chromatograms and the following criteria: (i) correct retention time, (ii) 

correct assignment of the elution peak boundaries used for integration, (iii) precursor mass 

accuracy < 7.5 ppm, (iv) correct charge state, and (v) correct isotope distribution of the 

precursor ions. I then integrated the peak areas and calculated the BS3-H4/BS3-D4 ratio for each 

cross-linked peptide. The integration was performed for two technical replicates, different size-

exclusion fractions, and different charge states of the precursor ions (see blue diamond 

symbols in Figure 43C). The BS3-H4/BS3-D4 ratio for each cross-link was calculated as the 

average of all supporting ratios for that linkage (see blue bars in Figure 43C). The analyzed 

cross-links in this control experiment displayed an average BS3-H4/-D4 ratio of 0.8 ± 0.1 (see 

blue dotted line in Figure 43C), which is close to the expected value of 1. Consequently, the 
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preliminary results overall indicated that the sample preparation procedure and the defined 

assignment criteria are adequate to relatively quantify individual inter-domain cross-links for 

the Snf2H enzyme.  

 

I proceeded to study the conformational impact of nucleosome binding on the Snf2H enzyme 

as described in the above paragraphs. I therefore determined the BS3-H4/BS3-D4 ratio for 

shared inter-domain cross-links listed in Table 4 (Figure 43C). These cross-links 

predominantly connected the HSS domain with the ATPase module but sometimes also 

bridged the NegC region and ATPase lobe 2. In the case of individual NTR-HSS cross-links, I 

observed equal peak areas between the ADP-BeFx and nucleosome state suggesting that 

binding of the nucleosome did not alter the likelihood of cross-linking reactions between the 

respective Snf2H regions. Likewise, the large majority of NegC-HSS cross-links exhibited a 

BS3-H4/BS3-D4 ratio of approximately 1. However, linkages between both ATPase lobes and 

the HSS domain appeared to be enriched in the ADP-BeFx state relative to the nucleosome-

bound state with average BS3-H4/BS3-D4 ratios ranging from 1.7 to 3.6. These results imply 

that binding of the nucleosome to the Snf2H enzyme hampered the formation of cross-links 

between the HSS domain and both ATPase lobes and potentially point towards a nucleosome-

dependent reorientation of the DNA-binding domain relative to the catalytic core. In contrast, 

four out of five cross-linked residue pairs between ATPase lobe 2 and NegC exhibited a 

decreased BS3-H4/BS3-D4 ratio suggesting that the formation of ATPase lobe 2-NegC cross-

links is favorable in the presence of nucleosomes. 

In conclusion, the results for the relative quantification of inter-domain cross-links are 

consistent with the notion that binding of the nucleosome to the Snf2H enzyme resulted in a 

reorientation of the HSS domain relative to the catalytic core. These substrate-induced 

structural changes in the full-length Snf2H enzyme may encompass the partial disruption of the 

interface between the ATPase module and the HSS domain. Together with the observation that 

Snf2H-nucleosome cross-links almost exclusively mapped to the HSS domain (cf. STable 5), it 

is tempting to speculate that the position of the DNA-binding domain changes in a substrate-

dependent manner such that it can contact the nucleosome core during the catalytic cycle.  
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Figure 43: Quantitative cross-linking of the Snf2H enzyme. (A) Representative extracted ion 

chromatograms for XLSnf2H,c 71 that connected the NegC region and the HSS domain. The purple and green 

signal corresponds to the candidate cross-linked with the light and the heavy BS
3
 analog, respectively. The 

peak areas for the light- and heavy-labeled peptides are similar as indicated by a BS
3
-H4/-D4 ratio close to 1. 

(B) Representative extracted ion chromatograms for XLSnf2H,c 45 that connected ATPase lobe 2 and the HSS 

domain. This cross-linked residue pair exhibited a substantially increased BS
3
-H4/-D4 ratio suggesting that 

binding of the nucleosome to the Snf2H enzyme hampered the formation of this particular cross-link. (C) 

Quantitative analysis of inter-domain cross-links for the Snf2H enzyme. The BS
3
-H4/-D4 ratio for individual 

inter-domain cross-links listed in Table 4 (colored in grey) and the control experiment (colored in blue, see 

main text) are shown. Diamond symbols represent determined BS
3
-H4/-D4 ratios for a particular cross-linked 

residue pair with average values being shown as bars. For the control experiment, the Snf2H enzyme was 

cross-linked with either BS
3
-H4 or BS

3
-D4 under apo state conditions and individual quantified cross-links 

are denoted according to their XLSnf2H identification number provided in STable 3. The average BS
3
-H4/-D4 

ratio across all control peptides was 0.8 (blue dotted line), which is close to the expected value of 1. For 

inter-domain cross-links (‘XLSnf2H,c’, cf. STable 5) listed in Table 4, values above and below 1 signify an 

enrichment of a particular cross-link in the ADP-BeFx and nucleosome state, respectively. Cross-links, for 

which no quantification could be performed, are marked with ‘n.d.’ (n.d. = not determined). Superscript 

circles and asterisks indicate identical cross-links.  

Dr. I. Forné (LMU, Munich) collected the LC-MS/MS data that were used to quantify individual cross-links. 
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2.5.4. Binding of the HSS domain to the nucleosome 

ISWI-type remodeling enzymes have been demonstrated to interact with DNA that flanks the 

nucleosome via their characteristic HSS domain (23, 116, 127). Likewise, the SS domain of 

the ScChd1 enzyme has been observed to contact extranucleosomal DNA (24) thereby 

contributing to the affinity between the enzyme and the nucleosomal substrate (145). Recent 

experimental evidence point towards a conformational switch of the HSS domain during the 

transition from a DNA length sensing to a translocation-competent state. That is, the HSS 

domain is released from the flanking DNA stretch to interact with the core of the nucleosome 

(28, 129). XL-MS analysis provided an excellent opportunity to investigate how the HSS 

domain of the Snf2H enzyme interacts with the 0N40 mononucleosomes in the presence of 

ADP-BeFx.  

 

As indicated in Figure 41, I identified a total of 32 cross-links that connected the Snf2H 

enzyme and the histone octamer (XLSnf2H,c 150–181, STable 5; MS/MS spectra are provided in 

SFigure 11). Cross-links originating from individual histone proteins mapped to either ATPase 

lobe 1, the NegC-HSS interconnecting region (i.e., residues 690–742), the HSS domain or the 

very C-terminal segment (i.e., residues 1023–1052) of the full-length Snf2H enzyme. In 

particular, the SLIDE region of the HSS domain readily cross-linked to the histone octamer 

(XLSnf2H,c 150, 153–155, 164–167, 169, 170, 173–176, 179–181). The lack of adequate high-

resolution structural data for the histone tails, the NegC-HSS interconnecting region, and the 

very C-terminal segment of the Snf2H enzyme, however, hampered an in-depth structural 

interpretation of most Snf2H-nucleosome interactions. Instead, I noticed that the distribution of 

cross-linked lysine residues significantly differed for individual histone proteins of the octamer 

assembly. That is, inter-molecular cross-links for the H3 and H4 proteins mapped to the 

histone tails, whereas cross-linking sites for the H2A and H2B subunits were preferentially 

found at the nucleosome core (cf. STable 5). Interestingly, the cross-linked residues in H2B 

(i.e., K105, K117, and K122) were located at the αC-helix and thus were in spatial proximity 

to the solvent-exposed acidic patch of the nucleosome, which has been proposed to serve as an 

important interaction surface for the autoregulatory NTR and NegC domains of the Snf2H 

enzyme (28). Of particular interest are XLSnf2H,c 153−155, in which the BS3 cross-linker 

bridged individual residues close to the acidic patch and the SLIDE domain. We lack atomic 

coordinates in our Snf2H homology models for the remaining Snf2H-nucleosome cross-links 

that mapped to the acidic patch region (XLSnf2H,c 151, 152, 156−158, 160, and 161). 
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To visualize potential binding modes of the HSS domain to the nucleosome, our collaboration 

partner Dr. C. Schindler (TUM, Munich) modeled the DNA-binding domain of DmISWI (pdb 

1OFC) onto the Drosophila nucleosome (pdb 2PYO) in a two-body docking procedure. The 

computational docking was performed in a similar manner as described in the above sections 

and was guided by a single distance restraint (XLSnf2H,c 154, Figure 44A). The remaining 

Snf2H-nucleosome cross-links XLSnf2H,c 150, 153, and 155 could not be considered as distance 

restraints during computational modeling because these linkages were not identified until the 

docking was completed. In addition, identified inter-molecular cross-links, which mapped to 

the histone tails, could not be considered during docking due to the lack of atomic coordinates 

for the respective residues in the nucleosome structure. 

The final 200 models of the HSS-nucleosome complex were validated with respect to XL-MS 

data by assessing the Cα-Cα distances between cross-linked residue pairs of accessible, inter-

molecular linkages (XLSnf2H,c 150 and 153–155). Model #22 was most consistent with the 

experimental data among the top-ranked docking structures and is depicted in Figure 44B. 

Notably, the measured Cα-Cα distances for individual SLIDE-H2B cross-links (XLSnf2H,c 153–

155) were all compatible with model #22 of the HSS-nucleosome complex. The detected 

SLIDE-H2A cross-link (XLSnf2H,c 150), however, exceeded the BS3 distance threshold by 13 Å. 

The cross-linked K118 residue of XLSnf2H,c 150 is located in an unstructured and potentially 

flexible H2A region at the C-terminal tail, which provides a structure-based explanation for the 

violated Cα-Cα distance. 

 

In summary, our XL-MS data suggest that the SLIDE region of the Snf2H enzyme is in spatial 

proximity to the nucleosome core upon complex formation. The representative structural 

model of the HSS-nucleosome complex shown in Figure 44B illustrates a potential binding 

mode of DNA-binding domain to the histone octamer, which is largely consistent with the 

experimental XL-MS data. As such, these findings provide novel evidence for an alternative 

binding position of the HSS domain during the catalytic cycle of the Snf2H protein that are 

consistent with recent experimental results from the Narlikar laboratory (28, 129). 
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Figure 44: Proposed binding mode of the HSS domain. (A) MS/MS spectrum of XLSnf2H,c 154, which was 

used to guide the docking of the HSS-nucleosome complex shown in (B). The monoisotopic peaks of y- and 

b-fragment ions from the cross-linked H2B (blue) and SLIDE (orange) peptides are denoted. SFigure 11 

shows additional MS/MS spectra of cross-links depicted in (B). (B) Our XL-MS-based structural model of 

the HSS domain (green, pdb 1OFC) in complex with the nucleosome (grey, pdb 2PYO) is shown. Notably, 

the SLIDE domain is in close spatial proximity to residues of the acidic patch (magenta spheres) of the 

histone octamer. The black lines and spheres (labeled a–d) represent identified inter-molecular cross-links 

(i.e., XLSnf2H,c 150, 153, 154, and 155; cf. STable 5). The cross-link with an asterisk was used as a distance 

restraint during computational docking.  

Dr. I. Forné (LMU, Munich) performed the MS analysis shown in panel (A). Dr. C. Schindler (TUM, 

Munich) performed the computational docking of the HSS-nucleosome complex depicted in panel (B).  
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3. Discussion 

Changes in chromatin structure rely on the action of specialized chromatin remodeling 

complexes, which operate in any eukaryotic cell in an ATP-dependent manner and thus play a 

pivotal role in a vast variety of important cellular processes (82, 240, 241). Not surprisingly, 

mutation and misregulation of these chromatin remodeling complexes are linked to cancer and 

a plethora of severe diseases (242-244). The ISWI-family of chromatin remodeling complexes 

has been demonstrated to catalyze nucleosome assembly and sliding in vitro (85, 138, 245, 

246), and indeed most of the activity can be recapitulated by the ISWI remodeling enzyme 

itself. In the present thesis, I studied the structural architecture and function of two prototypical 

ISWI-type remodeling enzymes, DmISWI and Snf2H, using an integrative structural approach. 

The implications of the presented findings are discussed in the context of the existing structural 

and functional framework for ISWI-type and related enzymes in the following sections. 

 

 

3.1. Structure determination by an integrative approach 

X-ray crystallography and NMR spectroscopy have proven to be highly useful approaches for 

high-resolution structure elucidation of proteins and protein complexes and thus have been 

considered indispensable tools in modern structural biology. However, structure determination 

by these traditional methods often fails for larger, more heterogeneous, and/or more dynamic 

target proteins (247-249). ISWI-type chromatin remodeling enzymes have proven to be 

refractory to traditional X-ray crystallography and NMR spectroscopy, which is perhaps best 

reflected by the lack of comprehensive high-resolution structures for this class of proteins (cf. 

section 1.2.3).  

In this PhD project, I studied the structural architecture of ISWI-type remodelers across 

different steady-state conditions using an integrative structural approach that combines two 

complementary experimental data sources with computational modeling. We integrated SAXS 

and XL-MS analysis into our structural approach because we envisaged that these low and 

intermediate resolution techniques provide excellent complementary data to narrow down 

possible solution conformations of the DmISWI and Snf2H remodeling enzymes. That is, the 

combination of XL-MS data and computational modeling has proven useful to restrict the 

conformational search space during the docking procedure by implementing identified inter-

domain cross-links as distance restraints. Likewise, the global shape information provided by 

SAXS measurements was essential to select and validate individual DmISWI and Snf2H 

models from the ensemble of computed structures. The available high-resolution structures of 

related ATPases under apo state conditions differ drastically with respect to each other (Figure 

4) and thus did not provide molecular clues for the validity of the modeling outcomes. Our 
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proposed model of the DmISWI ATPase domain under apo state conditions (Figure 14A) 

exhibited a novel orientation of both ATPase lobes at the time the computational docking was 

completed. The XL-MS based model achieved an accuracy that was instrumental to driving 

further experimental investigations including for instance charge-reversal mutations in the 

putative lobe-lobe interface. Strikingly, the recently published crystal structure of the MtISWI 

protein (146) depicts an almost identical configuration of both ATPase lobes (Figure 15). 

Considering that X-ray crystal structures represent stable solid-state conformations, which is 

often a poor indicator for the most populated conformation in solution and solution-state 

dynamics (250), our structural data provide an independent validation of the MtISWI ATPase 

structure in solution. Consequently, our study is an excellent example of how docking driven 

by lower-resolution experimental data can offer an alternative to classical structure 

determination, especially when higher-resolution techniques such as X-ray crystallography 

prove difficult to be applied. Assuming that our model of the ATPase domain reflects the 

predominant conformation under apo state conditions, the implementation of XL-MS-derived 

distance restraints to guide computational docking was essential for the success of this study. 

That is, the ab-initio docking resulted in a substantially different and potentially irrelevant 

orientation of both ATPase lobes for DmISWI (Figure 16) underscoring the well-documented 

advantages of integrative modeling over ab-initio structure prediction (251).  

 

Despite the promising results for the DmISWI ATPase domain, I encountered several 

experimental challenges using the integrative structural approach. While chemical cross-

linking generally resulted in numerous cross-links between the HSS domain and the ATPase 

module for both remodeling enzymes, I identified only a limited set of linkages that connected 

both ATPase lobes. This discrepancy in terms of number of identified inter-domain cross-links 

for particular regions of the remodeling enzymes could have diverse origins. It appears most 

likely that the conformation of the ATPase domain was unfavorable for the formation of 

chemical ATPase lobe-lobe cross-links. Alternatively, these cross-linked products may exhibit 

less favorable ionization properties than other inter-domain cross-links or they were simply not 

detected/identified during MS/MS analysis due to interfering ion species and/or insufficient 

fragmentation data. The identification of cross-linked peptides based on LC-MS/MS data is 

tightly coupled to the criteria listed in Table 15. Lowering these identification criteria, 

however, increases the risk of false-positive identifications during data analysis. 

To rationalize potential reasons for the low number of identified ATPase lobe-lobe cross-links, 

I listed all theoretically possible cross-links for the full-length DmISWI model under apo state 

conditions (Figure 21) using the Xwalk software (http://www.xwalk.org/) (252) with the 

following settings: first and second residue in cross-links: Lys, intra-protein cross-links, and 

maximum Euclidean distance: 29 Å. Notably, only 7% of the predicted 399 cross-links 
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connected both ATPase lobes. Considering that solvent-accessibility of reactive sites, steric 

constraints in the DmISWI protein, and the ionization properties of the cross-linked products 

were neglected during the Xwalk approximation, I would expect to find a low number of 

ATPase lobe-lobe linkages. In line with this notion, XL-MS analysis of the Snf2H enzyme in 

the presence of substrate and ADP-BeFx by Gamarra et al. (28) resulted in a comparably low 

number of ATPase lobe-lobe connecting cross-links with less than 1% of all uniquely 

identified cross-links restricting the orientation of both ATPase lobes to each other. 

In the case of the DmISWI enzyme, we could counteract the low number of chemical cross-

links between both ATPase lobes by including previously published data from site-directed 

UV cross-linking experiments (115, 157). The broader specificity of genetically encoded Bpa 

appears to be beneficial to extract structural information at a desired position in the target 

protein, for which chemical cross-linking is less promising. In the case of the Snf2H enzyme, 

our collaboration partner Dr. C. Schindler (TUM, Munich) performed a three-body docking 

protocol in order to overcome the limited number of identified ATPase lobe-lobe cross-links. 

Thus, the conformation of the ATPase lobes in our full-length Snf2H model almost exclusively 

relied on distance restraints between the ATPase module and the HSS domain. Modeling of the 

full-length Snf2H enzyme based on identified HSS cross-links turned out to be challenging 

because the large majority of linkages used for docking involved either residues K929 or 

K990, which were also found to contact broadly distributed residues of the NTR, ATPase lobe 

1, ATPase lobe 2, and NegC (Figure 29). As a consequence, we were not able to obtain a full-

length Snf2H model under apo state conditions, in which all distance restraints used for 

docking were satisfied at the same time (Figure 31B). Most likely, I captured different 

conformational sub-states of the Snf2H enzyme that are present under the tested apo state 

conditions. However, assignment of individual cross-links to unknown states of a co-existing 

conformational ensemble was not feasible using our modeling protocol. Attempts of detailed 

modeling based on partially ambiguous and/or conflicting cross-linking data has recently been 

performed for the yeast RNA polymerase III complex using an alternative modeling software, 

termed XL-MOD (253). In contrast to our modeling protocol, the XL-MOD software allows 

for the identification of alternative conformations by automatically weighing individual cross-

links and by allowing subunit structures to be flexible during conformational sampling. While 

one could argue that the implementation of protein dynamics during conformational sampling 

might result in an even more complex and heterogeneous ensemble of computed structures, the 

classification of individual cross-links into conformation-specific subgroups is potentially 

worthwhile to explore.   
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In the present study, the modeling of ISWI-type remodeling enzymes was driven by selected 

XL-MS-derived distance restraints. The selection of distance restraints used for docking relied 

on the quality of fragmentation data obtained for cross-linked products during MS/MS 

analysis. This objective selection criterion allowed us to categorize cross-linked products as 

“low-“ and “high-confidence” cross-links thereby minimizing the risk of considering false-

positive identifications during computational modeling. Several studies have been published, 

in which a subset of “high-confidence” cross-links were used to elucidate the structural 

architecture of the target protein(s) by integrative modeling (223, 254, 255). In the case of the 

full-length DmISWI protein, the computational results were most consistent with the 

experimental XL-MS and SAXS data when we used a subset of identified distance restraints in 

a three-body docking procedure (Figure 23B). That is, the large majority of distance restraints 

were satisfied in the respective DmISWI model as further specified in STable 1 and STable 2. 

Applying the same modeling strategy to the Snf2H enzyme, however, was less successful due 

to the above-mentioned limitations in terms of number of identified ATPase lobe-lobe cross-

links as well as the ambiguous/conflicting nature of ATPase-HSS linkages. Consequently, 

performing UV cross-linking on the Snf2H protein might represent a promising future strategy 

to obtain more ATPase lobe-lobe cross-links that can be used to model the ATPase domain of 

the remodeling enzyme. Furthermore, incorporation of Bpa along the putative ATPase-HSS 

interface could give rise to complementary inter-domain distance restraints that do not include 

hotspot residues K929 and K990 of the DNA-binding domain.  

 

In conclusion, I find that our developed integrative structural approach was highly useful to 

elucidate the structural architecture of the ISWI-type DmISWI and Snf2H remodeling 

enzymes, for which only limited high-resolution structural data exist. The combination of XL-

MS, SAXS, and computational modeling allowed us to gain a first molecular glimpse of the 

full-length DmISWI enzyme under apo state conditions with the predicted ATPase domain 

sharing striking similarities with the crystallized MtISWI structure. Recent efforts of the 

Worldwide Protein Data Bank (wwPDB) to create a public database furthermore underscore 

the value of such an integrative approach and the resulting structural models (256). The 

developed modeling protocol has the potential to be applied for structural characterization of a 

large variety of proteins and protein complexes that have proven refractory to traditional 

structure determination techniques.   
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3.2. Structural characterization of ISWI-type enzymes under apo state 

conditions – A common regulatory mechanism? 

It is often assumed that proteins with similar sequences – the homologous DmISWI and Snf2H 

remodeling enzymes share approximately 75% sequence identity (94) – will also exhibit a 

similar structural fold. Kosloff and Kolodny investigated the validity of this concept and 

describe pairs of proteins, which share considerable sequence identity but display significant 

structure dissimilarity (257). Remodeling ATPases are all related to each other, yet the 

orientation of RecA-like ATPase lobes differ drastically in available apo crystal structures 

(109, 141, 146, 153, 154) (Figure 4). Does the sequence conservation between DmISWI and 

Snf2H also ensure structural (dis)similarity and are there common principles in the regulation 

of ATP-dependent chromatin remodeling activity by ISWI-type enzymes?  

We collected experimental XL-MS and SAXS data to reconstruct the structural architecture of 

these homologous remodelers under apo state conditions. These local and global structural 

information can be compared considering that individual protein regions fulfilled the 

prerequisites for comparison. That is, homology models of functionally important DmISWI 

and Snf2H domains are structurally highly similar as indicated by small RMSD values (i.e., 

RMSDHSS = 1.19 Å; RMSDATPase lobe1 = 0.24 Å; RMSDATPase lobe2-NegC = 0.18 Å). Furthermore, 

the number and distribution of chemically cross-linkable lysine residues are comparable across 

both remodeling enzymes with numerous intra-domain cross-links connecting identical/similar 

sites in the DmISWI and Snf2H proteins (Figure 45).  

 

Figure 45: Comparison of identified cross-links for the DmISWI and Snf2H proteins under apo state 

conditions. Identified cross-links for the DmISWI and Snf2H enzymes under apo state conditions are 

schematically illustrated in arc plots. The arc plots were manually aligned with residue numbering being 

denoted for both proteins. Green dots indicate the position of individual lysine residues. Identical and similar 

DmISWI and Snf2H cross-links are highlighted as pink arcs. Cross-linked peptides were considered similar if 

the cross-linking sites were within ± 10 amino acids with respect to the corresponding primary protein 

sequence. The data presented in this Figure is identical to the data shown in Figure 12 and Figure 27.   
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Applying our integrative structural approach to the full-length DmISWI enzyme under apo 

state conditions revealed a novel orientation of both ATPase lobes, which shows remarkable 

consistency with the lobe orientation observed in the MtISWI crystal structure (146) (Figure 

15). In our structural model of the DmISWI ATPase module, both ATPase lobes stack together 

with catalytically important motifs (i.e., motifs I, II, and VI) being twisted towards opposite 

directions (Figure 17A). The structural arrangement of both ATPase lobes is most consistent 

with the notion that the DmISWI protein assumes a resting conformation under apo state 

conditions in solution. Our findings thus provide a structure-based explanation for the low 

basal ATPase activity of DmISWI in the absence of substrate (140). In line with our 

interpretation of a resting DmISWI conformation, the related MtISWI protein (146) but also 

the MtSnf2 protein (153) have been proposed to adopt a catalytically incompetent state under 

apo state conditions. In order to become catalytically competent, these remodeling enzymes are 

thought to undergo activating conformational changes in their ATPase domain such that motifs 

involved in ATP binding and ATP hydrolysis are optimally positioned to cooperatively 

facilitate the enzymatic reaction. Likewise, the DmISWI protein is expected to undergo 

substantial structural rearrangements to become active (140). The active conformation of the 

DmISWI protein may be approximated by available structures of related enzymes including 

ScSnf2 (21), ScChd1 (24), and DmVasa (258), which were captured in complex with either 

RNA or the nucleosomal substrate. Superimposition of these catalytically competent structures 

shows a strikingly similar orientation of both ATPase lobes with motifs involved in catalysis 

occupying nearly identical positions in the three-dimensional space (Figure 46A). The 

convergence of these structures may point towards a common configuration of the active site 

that allows for efficient ATP hydrolysis. In order for the DmISWI enzyme to assume a 

comparable active conformation and thus to leave the resting state, we find that the ATPase 

domain has to undergo a considerable conformational change such that ATPase lobe 1 rotates 

by approximately 110−140° relative to ATPase lobe 2 around a predicted hinge region (Figure 

46B). Comparable nucleosome-dependent changes in the relative orientation of both ATPase 

lobes have been described in the context of the substrate-bound structures of ScSnf2 (21) 

(Figure 46C) and ScChd1 (24) (Figure 46D).   
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Figure 46: Conformational changes related to ATPase activation. Only the structures around central ß-

sheets of ATPase domains of distinct enzymes are shown for clarity. All structures were aligned to ATPase 

lobe 2 of our DmISWI model. Spheres indicate catalytically important motifs on both lobes with motif I and 

motif VI being colored in magenta and cyan, respectively. (A) Superimposition of the active, nucleosome-

bound ScSnf2 (grey, pdb 5X0Y) and ScChd1 (light grey, pdb 5O9G) structures as well as the active, RNA-

bound DmVasa complex (black, pdb 2DB3). Both ATPase lobes as well as the structural motifs are similarly 

arranged to each other in the depicted structures. (B) To assume a comparable active conformation as seen 

for ScSnf2 (grey) in (A), ATPase lobe 1 (yellow) of the DmISWI enzyme (cf. Figure 14A) has to rotate 

relative ATPase lobe 2 (red). (C) Liu and co-workers compared the structures of the nucleosome-ScSnf2 

complex (grey, pdb 5X0Y) and MtSnf2 in the resting state (yellow, red; pdb 5HZR) and proposed a 

comparable conformational change (21). (D) Structures of the inactive (yellow, red; pdb 3MWY) and active, 

nucleosome-bound ScChd1 enzyme (light grey, pdb 5O9G) are superimposed. Upon nucleosome binding, 

Farnung et al. suggest that ATPase lobe 1 moves relative to ATPase lobe 2 (24).  

To investigate whether the homologous DmISWI and Snf2H enzymes share a comparable 

ATPase conformation under apo state conditions, I superimposed our respective models of the 

ATPase domain for these two remodeling enzymes (Figure 47). Alignment of our structural 

models for the DmISWI and Snf2H enzymes reveals a markedly different orientation of both 

ATPase lobes in the absence of nucleotide and substrate. How can such a deviating ATPase 

conformation for closely related remodeling enzymes under comparable solution conditions be 

explained? While we had several UV and chemical lobe-lobe cross-links available to model the 

ATPase domain of the DmISWI enzyme, the predicted lobe-lobe interface in the Snf2H protein 

is insufficiently covered by experimental data. Although our collaboration partner Dr. C. 

Schindler (TUM, Munich) restrained the distance between the two structural bodies of the 

ATPase module, the identified cross-links that restrict their orientation (i.e., XLSnf2H 43, 44; 

STable 3) consistently exceeded the BS3 distance threshold in the final models of the full-

length Snf2H enzyme (Figure 31B). Consequently, the possibility of a similar ATPase 

conformation between the DmISWI and Snf2H enzyme should not be refused per se 



 97 Discussion 

considering the challenges in modeling the orientation of both ATPase lobes based on ATPase-

HSS cross-links and the overall ambiguity of the obtained full-length Snf2H models. In 

contrast, the DmISWI ATPase model displayed a remarkable model precision with the 

proposed structural architecture being largely consistent with experimental data and being 

robust across different modeling strategies.  

 

Figure 47: Superimposition of structural models of the DmISWI and Snf2H ATPase domain under apo 

state conditions. Our representative model of the DmISWI ATPase domain (yellow, red; cf. Figure 14A) is 

aligned on ATPase lobe 2 onto the catalytic core of Snf2H (grey; cf. model #1 in Figure 31A). Notably, these 

two structures display a markedly different orientation of both ATPase lobes. 

Remodeling enzymes have evolved intricate strategies to regulate their catalytic activity to 

ensure that ATP hydrolysis only takes place in the presence of substrate. ISWI-type 

remodeling enzymes comprise the NTR and NegC regions, which flank the ATPase domain 

and that are critically involved in the autoregulation of the catalytic activity (28, 114, 115, 129, 

146). How these auto-inhibitory modules are structurally organized in the full-length DmISWI 

and Snf2H enzymes, however, has remained elusive. 

In the course of this PhD project, I identified several NTR cross-links for the DmISWI and 

Snf2H remodeling enzymes. In the case of the DmISWI protein, the partner cross-linking sites 

of these NTR linkages were invariably located near the interface of both ATPase lobes (Figure 

21). Our XL-MS data for DmISWI (this study and (115)) may reflect an MtISWI-like 

conformation of the NTR, in which the autoregulatory domain bridges both ATPase lobes 

under apo state conditions. That is, in the MtISWI crystal structure (pdb 5JXR), the α3 helix of 

the NTR was found to span across the ATPase lobe-lobe interface such that the highly 

conserved AutoN motif can interact through H-bond/salt-bridge interactions with ATPase lobe 

2 (146). Binding of the NTR to ATPase lobe 2 is thought to represent an important 

autoregulatory mechanism to keep the ATPase motor domain in a catalytically incompetent 
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resting state in the absence of substrate. In line with this mode of inhibition, disruption of 

critical AutoN-ATPase lobe 2 interactions by site-directed mutagenesis or deletions of 

functionally important NTR regions has been shown to severely deregulate the activity of 

ISWI-type remodeling enzymes (114, 115, 146). Notably, the unrelated N-terminal 

chromodomains of ScChd1 also pack against a basic surface patch on ATPase lobe 2 

potentially repressing activation of the enzyme under apo state conditions (141). In the case of 

the Snf2H protein, the identified NTR-ATPase lobe 1 cross-links show consistency with both 

our results for the DmISWI enzyme as well as the MtISWI structure. The apparent lack of 

chemical NTR-ATPase lobe 2 cross-links for Snf2H should not be over-interpreted considering 

that respective distance restraints in the DmISWI enzyme were exclusively found upon UV 

irradiation of the ISWIH483B variant (115).  

Additional evidence that the NTR of the DmISWI and Snf2H assume a similar conformation in 

the absence of substrate is provided by the observation that the autoregulatory domain of both 

enzymes formed cross-linked products with the distant SLIDE region of the HSS domain. The 

notion of spatial proximity between the very N- and C-terminal domains in DmISWI and 

Snf2H are supported by chemical cross-linking results for the ScChd1 protein, for which the 

poorly conserved chromodomains were also found to form linkages to the DNA-binding 

domain in the absence of substrate (155). Overall, the detected NTR-HSS cross-links in 

DmISWI and Snf2H signify that the studied remodeling enzymes assume a compact solution 

structure with the catalytic domain being potentially caged by these domains. Implementation 

of NTR-HSS distance restraints in the modeling protocol, however, resulted in a significantly 

poorer fit of the DmISWI model to the experimental SAXS data for the full-length enzyme 

(Figure 25). Most likely, local conformational fluctuations in one or several functional 

domains of the DmISWI may not allow us to simultaneously satisfy all cross-linking 

information during rigid body docking. The possibility of false sequence assignments for the 

NTR-HSS cross-links is minimal considering the number of identified linkages and the 

concordance of experimental XL-MS data for the DmISWI, Snf2H, and ScChd1 remodeling 

enzymes (155). 

The structural information gained from XL-MS analysis provided a further rationale to the 

regulation and autoinhibition mechanism of the full-length DmISWI and Snf2H enzymes by 

the NegC domain. The NegC domain has been suggested to play an important role in inhibiting 

the coupling of ATP hydrolysis to nucleosome sliding (114), DNA linker length sensing and 

nucleosome centering (129), as well as regulating the transition from a DNA length sensing to 

a translocation competent state (28, 129). Two different conformations of the NegC domain 

have been described for related chromatin remodeling enzymes. While the NegC domain 

protrudes from the globular ATPase domain to interact with a neighboring protomer in the 

MtISWI structure (pdb 5JXR) (146), the autoregulatory region bridges both ATPase lobes in 
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the monomeric structure of ScChd1 (pdb 3MWY) (141) (Figure 26A). The identified NegC-

ATPase cross-links for the Snf2H and DmISWI proteins were strikingly similar (compare 

Figure 30B with Figure 30C), which argues for a comparable arrangement of NegC in these 

homologous remodeling enzymes under apo state conditions. The observed cross-linking 

pattern for the NegC region are consistent with the ScChd1 structure with the large majority of 

NegC-ATPase distance restraints being furthermore satisfied in the proposed ScChd1-based 

structural models of the full-length DmISWI (Figure 21) and Snf2H proteins (Figure 30A). In 

stark contrast, I find that most distance restraints are markedly violated in the structure of a 

single MtISWI protomer (Figure 30B, C). I considered the possibility that the detected NegC-

ATPase linkages may derive from intermolecular cross-linking of DmISWI and Snf2H 

homodimers. However, the results from size-exclusion chromatography of native and cross-

linked protein (Figure 26B and SFigure 1B) as well as SAXS data for DmISWI (Figure 22) 

and Snf2H (Figure 32) argue against dimer formation under apo state conditions, in overall 

accordance with previous experimental data (140, 150, 157). Thus, the protruding NegC 

conformation observed in the MtISWI structure probably represents a physiologically 

irrelevant crystallization artifact. This notion is supported by the observation that NegC of 

protomer 1 contacts the ATPase domain of protomer 2 in a ScChd1-like manner in the MtISWI 

structure (Figure 26A). A ScChd1-like NegC conformation, in which both ATPase lobes are 

contacted, potentially enables the regulatory domain to sense and influence catalytic core 

actions (141).  

 

Although the fundamental nucleosome sliding reaction does not rely on the HSS domain in 

DmISWI (140) and Snf2H (129), the DNA-binding domain has been suggested to facilitate 

chromatin remodeling by increasing the affinity and specificity of the enzyme for the 

nucleosomal substrate. In addition, the HSS domain may form interactions with accessory 

proteins in the multi-protein remodeling factors (105) and contributes to nucleosome 

positioning and spacing (23, 151, 259). Applying our integrative structural approach to 

DmISWI and Snf2H allowed us to resolve the relative orientation of the HSS domain in the 

full-length remodeling enzymes under apo state conditions.  

In the case of DmISWI, implementing as set of reliable ATPase-HSS distance restraints during 

computational modeling resulted in a compact structural model, in which the HSS domain 

packs against the catalytic core (Figure 21). In a study by Hota and co-workers (127), residues 

in the presumable ATPase-HSS interface of ScIsw2 were mutated and resulted in almost an 

order of magnitude reduced nucleosome remodeling and ATP hydrolysis activity of the 

enzyme. The respective mutated residues are very close or being part of the predicted interface 

between the ATPase module and HSS domain in our structural model of the full-length 

DmISWI protein (Figure 48). Notably, the predicted ATPase-HSS interface was well 
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restrained by experimental data with individual cross-links originating from complementary 

UV- and chemical cross-linking approaches connecting residues of both domains. 

Consequently, our structural DmISWI model reveals the previously predicted ATPase-HSS 

interface for ScIsw2, which might be of functional importance for catalysis and could be 

investigated in future studies. 

 

Figure 48: The proposed ATPase-HSS interface in DmISWI. The ATPase-HSS interface of our structural 

model of the full-length DmISWI enzyme (yellow, red, green; cf. Figure 21) is displayed. Residues of the 

ATPase-HSS interface in the DmISWI model were identified using an adapted version of the 

‘InterfaceResidue’ script (Vertrees, 2009; https://pymolwiki.org/) and are shown in stick and surface 

representation. A previous study mutated residues in ScIsw2 (127). The corresponding four residues (i.e., 

K900, R954, R955, and R965) are shown as spheres and are very close or being part of the ATPase-HSS 

interface in the structural model of DmISWI. Cross-links originating from the interface are shown as grey 

lines and are numbered according to STable 2. The Figure was adapted from (1) in accordance with 

Elsevier’s policies. 

As a consequence of the tight packing of the HSS domain against the ATPase module, it 

appears unlikely that such a compact conformation is compatible with DNA binding to the 

HSS domain. That is, superimposition of the DNA-bound HSS domain of ScISW1a (pdb 

2Y9Z, (151)) onto our structural model of the full-length DmISWI resulted in a direct steric 

clash between the DNA strand and the ATPase domain (Figure 24). This finding is consistent 

with the notion that the DmISWI protein is trapped in a resting state under apo state conditions 

with the HSS domain being unable to bind DNA. An occluded DNA-binding site on the HSS 

domain in the resting state may represent a regulatory strategy to prevent binding to unrelated 

DNA. In line with this argumentation, the ATPase-HSS interface is expected to break up upon 

activation of the DmISWI enzyme such that the HSS domain can reach its binding sites on 

flanking DNA (23, 116, 151) and the nucleosome core (28, 129) during the catalytic cycle.   
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In the case of the Snf2H enzyme, I also identified numerous cross-links that connected 

individual residues of the ATPase module and the HSS domain. As for DmISWI, the majority 

of these linkages mapped to the SLIDE region of the HSS domain. However, the key 

difference between the XL-MS data sets for the DmISWI and Snf2H remodeling enzymes 

under apo state conditions relies on the distribution of cross-linked residues in the HSS 

domain. That is, residues K929 and K990 in Snf2H represented cross-linking hotspots within 

the HSS domain, which accounted for 70% of all identified intra- and inter-domain cross-links 

that mapped to the DNA-binding domain (Figure 29A and STable 3). Comparable hotspot 

residues were absent for the DmISWI enzyme although the number and localization of lysine 

residues in the HSS domain appears to be highly similar for the homologous remodeling 

enzymes (data not shown). How can such cross-linking hotspots be explained? The tendency 

of individual residues to excessively form linkages to diverse target sites has been observed in 

cross-linking studies of human serum albumin (260) and the photosystem II protein complex 

(261). The diversity of Snf2H cross-links involving K929 and K990 might be best explained 

by assuming that these hotspot residues are easy accessible for the BS3 cross-linker and that the 

C-terminal region of the HSS domain exhibits a pronounced dynamic behavior under apo state 

conditions. This notion is supported by the observation that the BS3 cross-linking agent 

preferentially reacts with flexible regions of proteins (261, 262). An enhanced flexibility of the 

SLIDE region may increase the likelihood of the chemical cross-linker to first react with either 

K929 or K990, which is followed by scanning for a reachable target residue located in a less 

flexible part of the protein. Thus, the unequal distribution of cross-linked HSS residues 

between the DmISWI and Snf2H proteins could point towards different local dynamics in the 

DNA-binding domains. The conflicting nature of identified HSS-ATPase cross-links for the 

Snf2H enzyme may furthermore reflect the dynamic equilibrium of co-existing structures 

under apo state conditions with individual conformations of the Snf2H enzyme being present at 

a different ratio than for the DmISWI protein. This could explain the fact that our collaboration 

partner Dr. C. Schindler (TUM, Munich) was unable to obtain a single Snf2H model that 

satisfied all identified distance restraints at once. Notably, several other chromatin remodeling 

enzymes such as ALC1 (263) and SsoRad54 (158) have been suggest to exhibit a high degree 

of conformational heterogeneity under a given steady-state condition revealing potentially 

interesting parallels to our findings.  

 

In overall conclusion, our integrative approach allowed us to delineate and compare the 

structural architecture of the full-length DmISWI and Snf2H remodeling enzymes under apo 

state conditions. Although we cannot claim for an identical domain arrangement between these 

homologous enzymes in the absence of substrate, our results point towards a shared molecular 

mechanism to regulate the ATPase activity of ISWI-types remodelers. That is, the XL-MS data 
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for both DmISWI and Snf2H are consistent with an MtISWI-like conformation of the NTR 

domain (pdb 5JXR) as well as a ScChd1-like orientation of NegC (pdb 3MWY). These 

autoregulatory domains have been suggested to bridge the ATPase lobe-lobe interface thereby 

trapping the enzymes in a resting conformation under apo state conditions. In the case of the 

DmISWI enzyme, our structural model reveals that catalytically important motifs of the 

ATPase lobes are twisted towards opposite directions with productive ATP hydrolysis being 

unlikely to happen. The number of identified ATPase-HSS cross-links for both studied 

remodeling enzymes furthermore imply that the HSS domain is packing against the catalytic 

core with the very N- and C-terminal regions being in close spatial proximity to each other. As 

such, DmISWI and Snf2H appear to assume an overall compact conformation under apo state 

conditions. Given our more reliable model of the DmISWI protein, activation of ISWI-type 

remodelers would require a series of conformational changes including a reorientation of both 

ATPase lobe, release of the autoinhibition by NegC and NTR, and the HSS domain in order to 

become catalytically competent.  

 

 

3.3. Impact of ADP-BeFx-binding on ISWI-type remodeling enzymes  

To uncover and visualize potential activating conformational changes in the catalytic core of 

ISWI-type remodeling enzymes, we applied our integrative structural approach to the 

prototypical Snf2H enzyme in the presence of a molar excess of the nucleotide analog ADP-

BeFx. That is, ADP-BeFx has been suggested to shift the conformational ensemble of ISWI-

type remodelers from a presumably inactive conformation towards various nucleotide-

dependent states including the functionally important transition state during the ATP 

hydrolysis reaction (159). This notion is supported by X-ray crystallography data for other SF2 

ATPases such as the yeast DEAD box protein Mss116p (264). Notably, using 3 mM ADP-

BeFx during chemical cross-linking and SAXS analysis, the large majority of Snf2H molecules 

should be bound to the nucleotide analog given the preliminary results from the competitive, 

TLC-based ATPase assay (SFigure 2).  

 

Although I identified many identical/similar cross-linked residue pairs between the apo and 

ADP-BeFx-bound Snf2H state (Table 2), I repeatedly detected several nucleotide analog-

dependent inter-domain cross-links (Table 3). These ADP-BeFx-dependent cross-links 

predominantly connected residues of either the NTR or ATPase lobe 1 with the HSS domain. 

Including a subset of these ATPase lobe 1-HSS cross-links as distance restraints during 

computational docking of individual Snf2H domains resulted in markedly different 

conformation of the ATPase domain. That is, comparison of structural models of the full-

length Snf2H enzyme in the apo and ADP-BeFx-bound states (Figure 38) suggested that 
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binding of the nucleotide analog caused an approximately 180° rotation of ATPase lobe 1 

relative to ATPase lobe 2. Interestingly, the ATPase lobes of several chromatin remodeling 

enzymes have been suggested to undergo large-scale reorientations in a nucleotide- and 

substrate-dependent manner (21, 24, 141, 154, 158). For instance, the Snf2 family ATPase core 

of the Rad54 protein from Sulfolobus solfataricus (SsoRad54) has been crystallized with and 

without bound DNA revealing an unexpected, outward-oriented placement of motifs IV to VI 

of ATPase lobe 2 in both states (154). The authors hypothesized that it requires a 180° flip of 

ATPase lobe 2 relative to ATPase lobe 1 in order to align structural motifs for efficient 

catalysis. Results from FRET experiments on the same SsoRad54 construct in the presence and 

absence of DNA and different nucleotides showed consistency with a highly dynamic 

conformational ensemble of the remodeling enzyme, in which one ATPase lobe may 

undergoes a 180° flip during the catalytic cycle (158). Thus, a high degree of flexibility 

between the two ATPase lobes may be of functional importance for chromatin remodeling and 

activity regulation furthermore explaining the substantially different conformations of the 

ATPase domain observed for distinct remodeling enzymes (Figure 4).  

The notion of nucleotide-dependent conformational rearrangements in the ATPase domain was 

also substantiated by our SAXS measurements on the full-length DmISWI enzyme and the 

DmISWI∆HSS construct (Figure 39). Binding of ADP-BeFx to DmISWI and DmISWI∆HSS 

decreased the Rg value by 7% and 5%, respectively. These findings collectively imply that the 

DmISWI enzyme assumes a more compact conformation upon nucleotide analog binding than 

under apo state conditions with structural rearrangements primarily taking place within the 

ATPase module. Notably, the full-length Snf2H enzyme exhibited a highly similar 

conformational response upon ADP-BeFx binding when compared to the SAXS results of the 

DmISWI protein (Figure 39). Interestingly, a nucleotide-dependent compaction has also been 

described in the context of the ScIsw2 remodeling enzyme (265). Furthermore, individual 

remodeling enzymes such as SsoRad54 (158) and ScChd1 (24, 141) have been proposed to 

sample distinct “open” and “closed” ATPase conformations during the catalytic cycle. It is 

tempting to speculate that the observed nucleotide-dependent compaction of DmISWI and 

Snf2H in the present study derives from the reorientation of both ATPase lobes. Thus, ADP-

BeFx may shift the conformational ensemble of the studied ISWI-type remodeling enzymes 

towards a closed ATPase conformation, in which both ATPase lobes are not splayed apart 

anymore.  

Our developed XL-MS protocol could also be applied to probe the conformational impact of 

ADP-BeFx binding on the DmISWI enzyme. However, due to time constraints, XL-MS 

analyses were not performed for the DmISWI protein in the presence of ADP-BeFx. Taking 

into consideration that our structural model of the ATPase module of the DmISWI enzyme 

showed a remarkable model precision under apo state conditions, a comparison of XL-MS data 
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for the DmISWI enzyme in the absence and presence of ADP-BeFx would be a promising 

approach to further pinpoint ADP-BeFx-dependent conformational changes in ISWI-type 

remodeling enzymes. 

 

In overall conclusion, our XL-MS and SAXS data are consistent with ADP-BeFx-dependent 

conformational changes in the DmISWI and Snf2H proteins. These remodeling enzymes 

assume a more compact conformation in the presence of the nucleotide analog, which may 

reflect structural properties of a closed ATPase conformation and potentially involves a 

substantial reorientation of the ATPase lobes. The homologous DmISWI and Snf2H enzymes 

appear to respond in a similar manner to ADP-BeFx and thus may share a common molecular 

mechanism to reach a state primed for catalysis.  

 

 

3.4. Structural characteristics of the Snf2H-nucleosome complex 

The molecular interactions between chromatin remodeling enzymes and their nucleosomal 

substrates are of key importance for a large variety of essential cellular processes (82, 240, 

241). Shedding light on structural characteristics of enzyme-nucleosome complexes is thought 

to increase our mechanistic understanding of how the chromatin landscape is remodeled in an 

ATP-dependent manner. In the present study, we probed the interaction between the ADP-

BeFx-bound Snf2H enzyme and 0N40 mononucleosomes using XL-MS analysis in 

combination with computational modeling. We envisaged that we could delineate the impact of 

nucleosome binding on the higher-order structure of the Snf2H enzyme by comparing the XL-

MS data for the Snf2H-nucleosome complex and ADP-BeFx-bound state from a qualitative and 

quantitative perspective. Furthermore, we reasoned that this comparison of XL-MS data might 

provide information about the molecular mechanism related to substrate recognition by ISWI-

type remodeling enzymes.  

According to EMSA analysis, the chosen conditions to study the structural characteristics of 

Snf2H-nucleosome complexes by XL-MS analysis resulted in considerable sample 

heterogeneity. That is, staining of the native PAGE gels by ethidium bromide revealed multiple 

Snf2H-nucleosome complexes, which differed in the Snf2H to nucleosome stoichiometry 

(Figure 40 and SFigure 3). I observed that up to three Snf2H molecules may bind to a single 

nucleosome with higher molecular weight complexes being preferentially formed at a molar 

excess of the Snf2H enzyme. Our findings from EMSA analysis thus show consistency with 

previous studies for ISWI-type remodeling enzymes, in which similar sample heterogeneity 

was detected in the presence of substrate (150, 236, 237). Fluorescence microscopy and 

spectroscopy experiments on living human cells indicated that the total concentration of all 
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chromatin remodelers in the cell nucleus might be in the 10 µM range (266). Given an average 

nucleosome concentration of 140 µM in human cells (267), it has been inferred that the 

predominant bound Snf2H species in vivo is monomeric (237). In stark contrast, biophysical 

measurements on Snf2H (129, 150) and the human ACF complex (136) suggested that these 

remodelers modulate the chromatin landscape by acting as a dimeric ATPase motor on the 

nucleosomal substrate. Consequently, it may be important to understand how two Snf2H 

molecules can bind to a single nucleosome in order to cooperatively slide the substrate along 

DNA. The observation of (Snf2H)3-nucleosome complexes in the present study could be a 

structural consequence of an additional Snf2H binding site on the 40 bp flanking DNA as 

suggested recently (237). Given a dissociation constant of approximately 260 nM for the 

Snf2H-0N40 complex in the presence of ADP-BeFx (150), there was likely also a fraction of 

unbound Snf2H molecules under the employed solution conditions. The possibility of having 

unbound and complexed Snf2H molecules during chemical cross-linking complicated the 

structural interpretation of identified inter-domain cross-links for the remodeling enzyme. In 

particular, the origin of inter-domain cross-links that were identified in the ADP-BeFx as well 

as nucleosome-bound state (cf. Table 4) remained ambiguous. I therefore pursued a 

quantitative cross-linking strategy for these shared inter-domain cross-links to uncover 

potential nucleosome-dependent conformational changes in the Snf2H enzyme. Interestingly, I 

found that the formation of cross-links between both ATPase lobes and the HSS domain was 

consistently less favorable in the nucleosome-bound state than for the ADP-BeFx-bound state 

(Figure 43C). This finding may be interpreted as a reorientation of the DNA-binding domain 

relative to both ATPase lobes upon nucleosome binding, which could be accompanied by 

partial disruption of the predicted ATPase-HSS interface. Alternatively, the HSS domain may 

simply be less flexible in the presence of substrate such that the formation of ATPase-HSS 

cross-links is hampered in the nucleosome-bound state without disruption of the ATPase-HSS 

interface. The detected inter-molecular cross-links between the Snf2H enzyme and the histone 

octamer, however, collectively argue against the latter binding scenario. These inter-molecular 

cross-links exclusively derive from Snf2H-nucleosome complexes and they may only be 

explained by assuming that the SLIDE region of the HSS domain contacts the core of the 

nucleosomal substrate in the presence of ADP-BeFx. Thus, it appears most likely that the 

ATPase-HSS interface is disrupted in the presence of substrate with Snf2H assuming an 

overall less compact conformation than in the apo and ADP-BeFx-bound states.  

Importantly, our findings show consistency with recent experimental results by the Narlikar 

laboratory for the Snf2H remodeling enzyme (28, 129). That is, results from a FRET-based 

assay, in which the dyes were attached to the end of a single 20 bp flanking DNA and the 

SLIDE region of the HSS domain, implied that the HSS domain moves away from the well-

documented binding site on flanking DNA in a nucleotide-dependent manner (129). Using this 
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approach, Leonard and Narlikar observed that the degree of energy transfer between the donor 

and acceptor dye was significantly higher in the presence of ADP than ADP-BeFx. Together 

with thermodynamic data on the Snf2H-nucleosome complex, the authors speculated that the 

HSS domain is stabilizing the binding of the remodeling enzyme to the nucleosome core prior 

to the DNA translocation step. The notion of a nucleotide-dependent conformational switch of 

the HSS domain during the catalytic cycle of the Snf2H enzyme has subsequently been 

substantiated by XL-MS analysis using the zero-length, carbodiimide-based reagent EDC (28). 

Cross-links between the HSS domain and the H2A/H2B subunits thereby suggested that the 

DNA-binding domain binds to the acid patch region of the nucleosome in the presence of 

ADP-BeFx. In the same study, Gamarra et al. provided experimental evidence for the acidic 

patch to be involved in the relief of autoinhibition by the NegC and NTR region and that these 

autoregulatory domains of the Snf2H enzyme also bind to the nucleosome core during the 

catalytic cycle. Interestingly, the acid patch may also play an important role in the catalysis of 

other ISWI-type remodeling enzymes (27) as well as the INO80 complex (28). Furthermore, a 

large variety of unrelated proteins and peptides including Bre1 (268), RCC1 (pdb 3MVD) 

(269), Sir3 (pdb 3TU4) (270), PRC1 (pdb 4R8P) (271), LANA peptide (pdb 1ZLA) (272), and 

CENP-C peptide (pdb 4INM) (273) were found to use the acidic patch as a nucleosome 

anchor.  

Notably, our identified inter-molecular cross-links shown in Figure 44B also provide direct 

evidence for a HSS binding site in close proximity to the acidic patch. As such, our XL-MS 

data are most consistent with the notion of a translocation-competent Snf2H-nucleosome 

complex in the presence of ADP-BeFx as opposed to a DNA length sensing enzyme 

conformation. Interestingly, binding of the HSS domain to the acid patch may be accompanied 

by conformational changes within the DNA-binding domain itself. That is, I identified several 

nucleosome-dependent, intra-domain cross-links that connected distant residues of the SLIDE 

and HAND regions (Figure 42C). These long-range intra-domain linkages consistently violated 

the Cα-Cα distance threshold of the BS3 cross-linker pointing towards the possibility of a 

bended HSS conformation in the presence of the nucleosomal substrate. Alternatively, these 

incompatible HSS cross-links may be formed between two nucleosome-bound Snf2H 

protomers and thus do not reflect binding-induced structural transitions in the HSS domain. 

Considering the recent findings by Gamarra et al. (28), adjacent interaction sites of the HSS 

domain and both autoregulatory domains in the nucleosome-bound state may provide an 

explanation for the unchanged BS3-H4/-D4 ratio for the studied NTR-HSS and NegC-HSS 

linkages during quantitative cross-linking (Figure 43C). The enrichment of ATPase lobe 2-

NegC cross-links in the presence of substrate points towards a nucleosome-dependent 

reorientation of the NegC region within the full-length Snf2H enzyme (Figure 43C). The 

enrichment of these inter-domain cross-links in the nucleosome-bound state could be a 
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consequence of changed steric constraints that favor the formation of covalent linkages 

between individual residues of ATPase lobe 2 and NegC using the BS3 cross-linking agent.  

Taken together, our XL-MS data are consistent with a translocation-competent Snf2H-

nucleosome complex, in which the HSS domain bridges the nucleosome core to contact 

individual residues of the acidic patch region. The XL-MS-based structural model of the HSS-

nucleosome complex (Figure 44B) visualizes a potential binding mode of the DNA-binding 

domain to the nucleosomal substrate that is largely consistent with the experimental XL-MS 

data. 

 

 

3.5. Nucleosome sliding by ISWI-type remodeling enzymes 

In the present study, we studied the mechanism of ISWI-type remodeling enzymes across 

different steady-state conditions using XL-MS and SAXS analyses in combination with 

computational modeling. Combining our results for the homologous DmISWI and Snf2H 

proteins with the structural and functional framework for ISWI-type enzymes as well as 

unrelated chromatin remodelers allows me to propose the following, speculative model of the 

nucleosome sliding mechanism (Figure 50). 

Under apo state conditions (Figure 50A), DmISWI and Snf2H appear to assume a resting 

conformation in solution with catalytically important motifs of both ATPase lobes being 

twisted towards opposite directions. The proposed arrangement of ATPase lobes provides a 

structure-based explanation for the repressed basal ATPase activity of DmISWI (140). The 

autoregulatory NTR and NegC domains thereby keep the remodeling enzymes in a 

catalytically incompetent state by bridging the ATPase lobe-lobe interface. In addition, the 

HSS domain packs against the catalytic core to form an overall compact enzyme conformation 

with the very N- and C-termini of ISWI-type remodelers being in close spatial proximity to 

each other.  
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Figure 49: Proposed binding mode of ISWI-type remodeling enzymes to nucleosomes. The DmISWI 

enzyme assumes a compact resting conformation under apo state conditions. The NTR (cyan, pdb 5JXR) 

(146) and HSS domain (green) thereby pack against ATPase lobe 1 (yellow) and ATPase lobe 2 (dark red). 

This representative DmISWI model may bind to the nucleosome (grey, adapted from pdb 5O9G) via ATPase 

lobe 1. A series of conformational changes are expected to take place upon docking to the nucleosomal 

substrate (indicated by arrows) to reach a similar enzyme-nucleosome state as observed for the nucleosome-

bound ScChd1 structure (pdb 5O9G) (24). The ATPase domain of the ScChd1 structure was aligned with our 

representative DmISWI model on ATPase lobe 1 with ATPase lobe 2 of the ScChd1 enzyme being colored in 

light red. The Figure was adapted and reprinted from (1) in accordance with Elsevier’s policies. 

How does the remodeling enzyme become catalytically active? Our representative model of 

the resting DmISWI enzyme could theoretically bind the nucleosome at SHL +2 via ATPase 

lobe 1 without causing a direct steric clash with the substrate or relying on a prior 

conformational change (Figure 49). ATPase lobe 2 is expected to rotate relative to lobe 1 in 

order to reach its binding site on the nucleosomal substrate (Figure 49, red arrow) and to align 

the conserved structural motifs for efficient ATP binding and hydrolysis. The active site of the 

ATPase in DmISWI and Snf2H may share many structural features with the nucleosome-

bound ScSnf2 (pdb 5X0Y) (21) and ScChd1 (pdb 5O9G) (24) structures, which are partially 

shown and aligned in Figure 46A. Our quantitative XL-MS data suggest that the interface 

between the ATPase and HSS domains disrupts in the presence of the nucleosomal substrate. 

As a consequence, the DNA binding site on the HSS domain may no longer be occupied such 

that it can bind to flanking DNA (Figure 49, green arrow) (23, 129, 151) giving rise to a DNA 

length sensing state (Figure 50B). Recognition of flanking DNA by the HSS domain likely 

represents the molecular basis to form evenly spaced nucleosomal arrays (22, 84, 259), which 

is followed by several conformational changes that facilitate the formation of a DNA 

translocation-competent enzyme-nucleosome complex (Figure 50C). That is, our identified 

inter-molecular cross-links between the Snf2H enzyme and the histone octamer (Figure 44B) 

as well as recent experimental findings by the Narlikar laboratory (28, 129) are consistent with 

the notion that the HSS domain is released from flanking DNA and that it binds to the 
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nucleosome core in a nucleotide-dependent manner. While it is possible that binding of the 

HSS domain to the nucleosome core assists in stabilizing the translocation-competent enzyme-

nucleosome complex (129), the mechanistic significance of this interaction with regard to 

DNA translocation remains to be further elucidated. Relief of autoinhibition by the NTR and 

NegC in the translocation-competent complex is presumably achieved by direct interactions of 

these regulatory domains with the acidic patch of the nucleosome core (28). Notably, the 

herein identified nucleosome-dependent, inter-domain cross-links for the NTR and NegC 

region (Table 5) are supportive of substrate-induced conformational changes in these domains 

for the Snf2H remodeling enzyme. Furthermore, it has been demonstrated that the basic patch 

of the H4 tail (not indicated in Figure 50) represents an important nucleosomal epitope for 

ISWI-type remodelers during the catalytic cycle (71, 114, 159). The underlying molecular 

mechanisms that confer maximal remodeling activity upon engagement of the H4 tail (124, 

125), however, remain largely elusive taking into account recent experimental findings that 

argue against overlapping AutoN and H4 tail binding sites on ATPase lobe 2 (115, 146). 

Alternating switching between the DNA length sensing and the translocation-competent states 

allows ISWI-type remodeling enzymes to move nucleosomes relative to DNA by one (138) or 

more (28, 136) base pairs per catalytic cycle in an ATP-dependent manner (28, 129). The 

coupling of ATP hydrolysis to DNA translocation as well as the fundamental principles of the 

actual sliding reaction, however, are poorly understood.  
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Figure 50: Model of nucleosome sliding by ISWI-type enzymes. (A) ISWI-type enzymes assume a 

compact resting conformation under apo state conditions with accessory domains packing against the ATPase 

domain. Motifs involved in ATP binding and hydrolysis are twisted towards opposite directions. (B) Several 

conformational changes are predicted upon nucleosome binding to reach a DNA length sensing state of the 

enzyme-nucleosome complex. These structural rearrangements include the reorientation of the ATPase 

domain as well as disruption of the HSS-ATPase domain such that the HSS domain can bind to flanking 

DNA (23, 129, 151). The NTR and NegC domains inhibit DNA translocation by the ATPase domain. (C) 

The DNA length sensing state is in equilibrium with the translocation-competent state (28). In this active 

enzyme-nucleosome configuration, the HSS domain binds to the nucleosome core and autoinhibition by 

NegC and NTR is relieved due to direct interaction of these autoregulatory domains with the acidic patch. 

Furthermore, the H4 tail (not indicated in the model) binds to ATPase lobe 2 (115, 146). (D) The nucleosome 

is moved relative to DNA in the translocation-competent state in an ATP-dependent manner.  
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3.6. Future perspectives 

Despite groundbreaking achievements in establishing a structural and functional framework for 

chromatin remodeling enzymes, the underlying molecular mechanism by which the chromatin 

landscape is modulated by these proteins have remained elusive. The mechanism of action of 

ISWI-type remodelers appears to rely on a series of complex conformational changes that are 

difficult to capture by traditional structure determination techniques such as X-ray 

crystallography and NMR spectroscopy. In the present thesis, I probed the conformation of the 

prototypical DmISWI and Snf2H enzymes across different steady-state conditions using an 

integrative structural approach that combines XL-MS and SAXS analyses with computational 

modeling. Our findings for Snf2H and DmISWI provide valuable information about the 

structural architecture and conformational response of these remodeling enzymes to substrate 

and ADP-BeFx binding in a near-native environment. The obtained structural models for 

DmISWI and Snf2H resulted in several work hypotheses for the catalytic cycle of ISWI-type 

enzymes, which invite future investigations. In particular, it will be important to validate the 

herein proposed domain interfaces for the studied remodeling enzymes and to better 

understand the sequence of conformational rearrangements and the underlying allosteric 

couplings in the enzyme-nucleosome complex that facilitate chromatin remodeling.  

To validate and/or refine our structural models for DmISWI and Snf2H, it might be beneficial 

to pursue an UV-based cross-linking strategy. The site-specific incorporation of Bpa at 

strategically favorable positions may not only result in additional, shorter distance restraints 

that can be used to guide computational modeling but also allows the interrogation of the 

current DmISWI and Snf2H models. Furthermore, it would be desirable to develop a modeling 

algorithm that can deal with distance restraints that derive from co-existing conformations in 

solution. Alternatively, one could consider finding solution conditions under which the sample 

heterogeneity is minimized.  

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) could represent a promising, 

complementary biophysical approach to probe the higher-order structure and dynamics of 

ISWI-type remodeling enzymes as well as their interactions with nucleosomes under near-

native conditions in solution. The exchange of hydrogen to deuterium of backbone amides in a 

protein is critically dependent on the hydrogen bonding status with exchange rates being 

significantly slower when the amide hydrogens engage in a stable inter- or intra-molecular 

hydrogen bond (274-276). The target protein(s) are typically diluted into deuterated buffer and 

labeled for distinct time intervals. The exchange reaction is subsequently quenched, the sample 

subjected to proteolysis, and the deuterium uptake for individual protein regions determined by 

LC-MS analysis (277). As such, the HDX-MS technique has proven useful to map binding 

interfaces and to identify and characterize functionally important allosteric couplings within 

the target protein(s) (278-280). In particular, the potential of the HDX-MS approach to uncover 

allosteric couplings could be interesting in order to better understand how the chromatin 

landscape is remodeled in ATP-dependent manner by ISWI-type remodeling enzymes.  
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4. Materials and Methods 

4.1. Materials 

4.1.1. Technical devices 

 

Table 6: Technical devices used in this study. 

Description  Manufacturer 

Centrifuge rotor, SW 41 Ti Beckman Coulter 

Centrifuge rotors, Sorvall SLA3000 and SS34 ThermoFisher Scientific 

Centrifuge, Eppendorf 5417C  Eppendorf 

Centrifuges, Sorvall RC 6 Plus, Heraeus Megafuge 2.0,  

Heraeus Multifuge X3R 
ThermoFisher Scientific 

Fluorescent Image Analyzer, FLA-3000  Fujifilm 

FPLC systems ÄKTA FPLC, ÄKTApurifier, and ÄKTA Pure GE Healthcare Life Sciences 

French Pressure Cell Press, Model FA-078 Thermo Spectronic 

Gel imaging system, ChemiDoc Bio-Rad Laboratories 

Gradient Master BioComp 

HPLC systems, UltiMate 3000 and RSLCnano ThermoFisher Scientific 

Incubator shaker, HT Multitron  Infors 

Incubator shaker, New Brunswick Innova Eppendorf 

Lyophilizer Alpha 1–2 and connected pump RZ 2.5 Christ; Vacuubrand 

Mass spectrometer, LTQ-Orbitrap XL and Q-Exactive HF  ThermoFisher Scientific 

Microfluidizer, LM10 Microfluidics 

Peristaltic pump, MINIPULS Evolution Gilson 

Sonicator, Sonifier S-250 D digital Branson Ultrasonics 

Spectralphotometer, PowerWave HT BioTek 

Thermocycler, Applied Biosystems 2720 Thermal Cycler ThermoFisher Scientific 

Thermomixer comfort Eppendorf 

Ultracentrifuge, Optima MAX-XP Beckman Coulter 

UV lamp Ultra Violet Products 

UV-Crosslinker, Bio-Link 365  Vilber 

UV-Vis Spectrophotometer, NanoDrop ND1000 Peqlab Biotechnologie GmbH 

UV-Vis Spectrophotometer, Ultrospec 2000 Pharmacia Biotech 

Vacuum centrifuge, Concentrator Plus Eppendorf 

Whatman Elutrap electroelution system GE Healthcare 
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4.1.2. Chemicals and Consumables 

 

Table 7: Chemicals and consumables used in this study. 

Description  Manufacturer 

[γ-32P]ATP PerkinElmer 

384 well plate  Greiner Bio One International GmbH 

Acetic acid Promega 

Acetone Merck 

ACN Carl Roth GmbH & Co 

Acrylamide/bisacrylamide solution, Rotiphorese  

Gel 30 (37.5:1) 
Carl Roth GmbH & Co 

ADP Merck 

Agarose Bio&SELL GmbH 

Amicon Ultra-4 centrifugal filter units, 10 and 30 kDa 

MWCO 
Merck Millipore 

Ampicillin Carl Roth GmbH & Co 

AMP-PNP Merck 

Aprotinin Genaxxon Bioscience 

APS Sigma 

ATP Merck 

Benzonase Merck Millipore 

Bpa Bachem 

Bromophenol blue Merck 

BS2G-H4/D4 ProteoChem 

BS3-H4/D4 ProteoChem 

BSA Merck 

Chloramphenicol Carl Roth GmbH & Co 

Complete Protease Inhibitor Cocktail tablet Roche Diagnostics GmbH 

Coomassie Brilliant Blue R Merck 

DMSO Merck 

DTT Carl Roth GmbH & Co 

EDTA Merck 

Ethanol Carl Roth GmbH & Co 

Ethidium bromide Merck 

Formic acid Merck 

Glycerol VWR 

Guanidine hydrochloride Merck 

Hepes Serva Electrophoresis GmbH 

HisTrap HP column, 1 and 5 mL GE Healthcare 

HiTrap Q HP column, 5 mL GE Healthcare 

HiTrap SP column, 5 mL GE Healthcare 

HPF Millex syringe filter Merck Millipore 

IAA Merck 

Igepal CA-630 Merck 

Imidazole Carl Roth GmbH & Co 

IPTG Carl Roth GmbH & Co 

KCl Merck 

KOAc Merck 
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LB agar Serva Electrophoresis GmbH 

Leupeptin Genaxxon Bioscience 

LiCl Merck 

L-lysine–HCl Merck 

Mg(OAc)2 Merck 

MgCl2 VWR 

Mono Q 5/50 GL column GE Healthcare 

Mono S 5/50 GL column  GE Healthcare 

MultiScreen HTS plate, 96 well Merck Millipore 

NaCl ThermoFisher Scientific 

NADH Merck 

NaH2PO4 VWR 

NaOAc VWR 

NH4HCO3 Merck 

OMIX C18 pipette tip, 10–100 µL Agilent Technologies 

PEG 8000 Promega 

Pepstatin  Genaxxon Bioscience 

PMSF Genaxxon Bioscience GmbH 

Polypropylene tube, 14 x 89 mm Beckman Coulter 

SDS-PAGE gel, NuPAGE Bis-Tris Protein Gel, 10%, 

12%, and 4-16% 
Invitrogen 

ReproSil-Pur C18-AQ 2.4 μm  Dr. Maisch GmbH 

Rotilabo-syringe filter, 0.2 and 0.45 µm Carl Roth GmbH & Co 

Salmon sperm DNA ThermoFisher Scientific 

SDS Serva Electrophoresis GmbH 

Sep-Pak tC18 cartridge Waters 

Slide-A-Lyzer MINI dialysis device, 7000 Da MWCO ThermoFisher Scientific 

Spectra/Por dialysis tubing, 3500, 7000, and 6000–8000 

Da MWCO 
Spectrum 

Superdex 200 10/300 GL column GE Healthcare 

Superdex 200 HiLoad 16/60 column GE Healthcare 

Superdex 200 Increase 10/300 GL column GE Healthcare 

Superdex Peptide PC 3.2/300 column GE Healthcare 

TCA Merck 

TEMED Carl Roth GmbH & Co 

TFA Merck 

Thiourea Merck 

TLC PEI cellulose F plate Merck Millipore 

Tris Diagonal GmbH & Co. KG 

Triton X-100  Merck 

Trypton BD Biosciences 

Tween 20 Merck 

Urea Merck 

Yeast extract BD Biosciences 
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4.1.3. Enzymes, Kits and Markers 

 

Table 8: Enzymes, kits and markers used in this study. 

Description  Manufacturer 

1 kb ladder New England BioLabs 

100 bp ladder New England BioLabs 

dNTP mix New England BioLabs 

DpnI New England BioLabs 

Lactate dehydrogenase  Merck 

NucleoSpin Plasmid EasyPure Macherey-Nagel GmbH & Co 

peqGOLD protein marker IV VWR 

peqGOLD protein marker V VWR 

Phosphoenolpyruvate Molekula 

Phusion High-Fidelity DNA polymerase with 5x HF 

reaction buffer 
New England BioLabs 

Plasmid Mini, Midi, and Giga Kit Qiagen 

Pyruvate kinase  Merck 

SmaI with 5x Buffer 4 New England BioLabs 

T5 exonuclease New England BioLabs 

Taq ligase New England BioLabs 

Trypsin, Sequencing Grad Modified, with Trypsin 

Respuspension Buffer 
Promega 

 

4.1.4. Bacterial strains 

 

Table 9: E. coli strains used in this study. 

Strain  Manufacturer 

BL21-Gold(DE3) Agilent Technologies 

RosettaTM 2(DE3) Merck 

DH5α NEB 5-alpha, New England BioLabs 

 

4.1.5. Plasmids 

 

Table 10: Plasmids used in this study. 

Name Encoded sequence  Origin Vector Tag 

pFMP210 ISWI 1−1027; full-length Drosophila  pProExHT His6-TEV  

pFMP383 ISWI; full-length K337D Drosophila  pProExHT His6-TEV  

pFMP384 ISWI; full-length D485K Drosophila  pProExHT His6-TEV  

pFMP386 ISWI; full-length K337D D485K Drosophila  pProExHT His6-TEV  

pFMP163 
ISWI full-length with TAG amber 

codon at amino acid position 578 
Drosophila  pProEX-Htb His6-TEV  

pFMP302 Snf2H 1−1052; full-length Human  pBH4 His6-TEV  

pFMP375 ISWI 691−1027 Drosophila  pProEX-Htb His6-TEV  
     

  * continues next page * 
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pFMP153 

Suppressor tRNA and synthetic 

tRNA synthetase for genetically 

encoding Bpa 

  His6-TEV  

pFMP114 ISWI 26−648 Drosophila  pProEX-Htb His6-TEV  

pFMP128 Histone H2A 
Drosophila, codon 

optimized 
pET15b  none 

pFMP129 Histone H2B 
Drosophila, codon 

optimized 
pET15b  none 

pFMP186 Histone H3 Drosophila  pET3c none 

pFMP187 Histone H4 Drosophila  pET3c none 

pFMP151 187 bp Widom 601 derivative  pUC18 none 

pFMP109 147 bp Widom 601 derivative  pT7blue3 none 
 

 

4.1.6. Oligonucleotides 

 

Table 11: Oligonucleotides used in this study. 

Name 5‘-3‘ Sequence Usage 

oFMP219 TGGATGATTTCGCTTTACGA 
Forward primer, sequencing of 

pFMP210/383/384/386/114 

oFMP220 GACGAATGGTTCAACACGAA 
Forward primer, sequencing of 

pFMP210/383/384/386/114 

oFMP221 GAATTTAACATGGACAACAGCG 
Forward primer, sequencing of 

pFMP210/383/384/386  

oFMP222 CAATTCGAGGGTGAGGATTG 
Forward primer, sequencing of 

pFMP210/383/384/386 

oFMP223 GATGCACTGAGTTGCAGGAT 
Forward primer, sequencing of 

pFMP210/383/384/386/375 

oFMP224 CAGAGATATGGTCTGCAGGG 
Reverse primer, sequencing of 

pFMP210/383/384/386 

oFMP709 GACCGCTAATCGTCTACTTATCAC 
Forward primer, sequencing of 

pFMP386 

oFMP742 
GTGCTGGACCCTTTCCTGCTCCGTC

GTC 

Forward primer, point mutation in full-

length DmISWI K337D: AAA to GAC 

oFMP743 
CAGGAAAGGGTCCAGCACGGCATG

CAAAC 

Reverse primer, point mutation in full-

length DmISWI K337D: AAA to GAC 

oFMP744 
CACGAAAAGCGTAACAGGCAGATT

CAGGAA 

Forward primer, point mutation in full-

length DmISWI D485K: GAT to AAG 

oFMP745 
CCTGTTACGCTTTTCGTGCGGCGTC

TGA 

Reverse primer, point mutation in full-

length DmISWI D485K: GAT to AAG 
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4.1.7. Buffers and solutions 

 

Table 12: Buffers and solutions. All buffers and solutions used for FPLC analysis were sterile filtered.  

Buffer/so- 

lution name 
Composition Usage (section) 

0.5x TBE  
4.5 mM Tris-HCl (pH 8.3), 45 mM boric 

acid, 0.1 mM EDTA (pH 8.0) 

Agarose gel electrophoresis 

(4.2.1.5) 

1x TAE  
40 mM Tris-HCl (pH 8.0), 20 mM acetic 

acid, 1 mM EDTA (pH 8.0) 

Agarose gel electrophoresis 

(4.2.1.5) 

5x Laemmli 

loading  

250 mM Tris-HCl (pH 6.8), 10% (w/v) SDS, 

0.1% (w/v) bromophenol blue, 50% (v/v) 

glycerol, 0.5 M DTT 

SDS-PAGE analysis (4.2.1.7) 

ATPase 

assay 

25 mM Hepes-KOH (pH 7.6), 3 mM MgCl2, 

0.1 mM EDTA (pH 8.0), 10% (v/v) glycerol, 

50 mM NaCl, 0.2 mg/mL BSA 

NADH-coupled ATPase assay 

(4.2.7.2.2) 

Coomassie 

Blue 

staining  

0.1% (w/v) Coomassie Brilliant Blue R, 

50% (v/v) ethanol, 10% (v/v) acetic acid 
SDS-PAGE analysis (4.2.1.7) 

c-XL #1 

25 mM Hepes-KOH (pH 7.6), 0.1 mM 

EDTA (pH 8.0), 10% (v/v) glycerol, 100 

mM KOAc, 1.5 mM MgCl2, 2 mM DTT 

Chemical cross-linking (4.2.4.1.2) 

c-XL #2 

25mM Hepes-KOH (pH 7.6), 210 mM KCl, 

10% (v/v) glycerol, 1 mM MgCl2, 1 mM 

DTT 

Chemical cross-linking (4.2.4.1.2) 

c-XL #3 20 mM Hepes-KOH (pH 8.3) Chemical cross-linking (4.2.4.1.2) 

c-XL #4 

25 mM Hepes-KOH (pH 7.6), 1 mM MgCl2, 

0.1 mM EDTA (pH 8.0), 10% (v/v) glycerol, 

50 mM NaCl, 1 mM DTT 

Chemical cross-linking (4.2.4.1.2) 

c-XL #5 

15 mM Hepes-KOH (pH 7.6), 4% (v/v) 

glycerol, 70 mM KCl, 1.5 mM MgCl2, 1 

mM DTT 

Chemical cross-linking (4.2.4.1.2) 

EMSA #1 

15 mM Hepes-KOH (pH 7.6), 0.1 mM 

EDTA (pH 8.0), 10% (v/v) glycerol, 70 mM 

KCl, 0.5 mM MgCl2, 1 mM DTT 

EMSA (4.2.7.1) 

EMSA #2 

15 mM Hepes-KOH (pH 7.6), 0.1 mM 

EDTA (pH 8.0), 10% (v/v) glycerol, 70 mM 

KCl, 0.5 mM MgCl2, 0.1 mg/mL BSA, 1 

mM DTT 

EMSA (4.2.7.1) 

EMSA #3 

15 mM Hepes-KOH (pH 7.6), 0.1 mM 

EDTA (pH 8.0), 10% (v/v) glycerol, 70 mM 

KCl, 0.5 mM MgCl2, 5% (w/v) sucrose, 1 

mM DTT  

EMSA (4.2.7.1) 

EMSA #4 

15 mM Hepes-KOH (pH 7.6), 4% (v/v) 

glycerol, 70 mM KCl, 1 mM MgCl2, 1 mM 

DTT 

EMSA (4.2.7.1) 

EMSA #5 

15 mM Hepes-KOH (pH 7.6), 4% (v/v) 

glycerol, 70 mM KCl, 1 mM MgCl2, 0.02% 

(v/v) Igepal CA-630, 1 mM DTT  

EMSA (4.2.7.1) 
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Histone Q-A 15 mM Tris-KOH (pH 8.0) 
Purification of histones, RHP 

protocol (4.2.2.4.2) 

Histone Q-B 15 mM Tris-KOH (pH 8.0), 2 M NaCl 
Purification of histones, RHP 

protocol (4.2.2.4.2) 

Histone-

unfolding 

7 M guanidine-HCl, 20 mM Tris-HCl (pH 

7.5), 10 mM DTT 

Purification of histones, IBP 

protocol (4.2.2.4.1) 

Histone-

wash 

50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1 

mM EDTA (pH 8.0), 5 mM DTT, 0.2 mM 

PMSF 

Purification of histones, IBP 

protocol (4.2.2.4.1) 

HSS-

Dialysis 

20 mM Tris-HCl (pH 7.6), 500 mM NaCl, 

20 mM imidazole (pH 7.4) 
Purification of HSSISWI (4.2.2.2.4) 

HSS-NiA 20 mM Tris-HCl (pH 7.6), 500 mM NaCl  Purification of HSSISWI (4.2.2.2.4) 

HSS-NiB  
20 mM Tris-HCl (pH 7.6), 500 mM NaCl, 

500 mM imidazole (pH 7.4) 
Purification of HSSISWI (4.2.2.2.4) 

HSS-SEC  20 mM Tris-HCl (pH 7.4), 500 mM NaCl Purification of HSSISWI (4.2.2.2.4) 

ISWI 

dialysis 

150 mM NaCl, 15 mM Tris-HCl (pH 7.4), 1 

mM DTT 

Purification of ISWWT, ISWIK337D, 

ISWID485K, ISWIK337D D485K, 

(4.2.2.2.1); ISWIM578B (4.2.2.2.2) 

ISWI His-A 50 mM Tris-HCl (pH 7.4), 300 mM NaCl 

Purification of ISWWT, ISWIK337D, 

ISWID485K, ISWIK337D D485K, 

(4.2.2.2.1); ISWIM578B (4.2.2.2.2) 

ISWI His-B 
50 mM Tris-HCl (pH 7.4), 300 mM NaCl, 

400 mM imidazole (pH 7.4) 

Purification of ISWWT, ISWIK337D, 

ISWID485K, ISWIK337D D485K, 

(4.2.2.2.1); ISWIM578B (4.2.2.2.2) 

ISWI 

MonoS-A 
15 mM Tris-HCl (pH 7.4), 1 mM DTT 

Purification of ISWWT, ISWIK337D, 

ISWID485K, ISWIK337D D485K 

(4.2.2.2.1) 

ISWI 

MonoS-B 

15 mM Tris-HCl (pH 7.4), 2 M NaCl, 1 mM 

DTT 

Purification of ISWWT, ISWIK337D, 

ISWID485K, ISWIK337D D485K 

(4.2.2.2.1) 

ISWI SEC 

50 mM Hepes-KOH (pH 7.6), 0.2 mM 

EDTA (pH 8.0), 200 mM KOAc, 1 mM 

DTT 

Purification of ISWWT, ISWIK337D, 

ISWID485K, ISWIK337D D485K, 

(4.2.2.2.1); ISWIM578B (4.2.2.2.2) 

ISWI ΔHSS 

Lysis 
50 mM Tris-HCl (pH 7.4), 300 mM NaCl 

Purification of ISWIΔHSS 

(4.2.2.2.3) 

ISWI ΔHSS 

SEC 

20 mM Hepes-KOH (pH 7.6), 200 mM KCl, 

0.2 mM EDTA (pH 8.0), 1 mM DTT 

Purification of ISWIΔHSS 

(4.2.2.2.3) 

ISWI 

ΔHSS-A 

25 mM Tris-HCl (pH 7.4), 130 mM KOAc, 

0.06% (v/v) Tween 20, 10% (v/v) glycerol 

Purification of ISWIΔHSS 

(4.2.2.2.3) 

ISWI 

ΔHSS-B 

25 mM Tris-HCl (pH 7.4), 130 mM KOAc, 

0.06% (v/v)Tween 20, 10% (v/v) glycerol, 

400 mM imidazole (pH 7.4) 

Purification of ISWIΔHSS 

(4.2.2.2.3) 

LB medium 
10 g/L trypton, 5 g/L yeast extract, 10 g/L 

NaCl 

Cultivation of E. coli cells 

(4.2.1.3) 

LB medium, 

rich 

20 g/L trypton, 10 g/L yeast extract, 10 g/L 

NaCl 

Expression of Snf2H in E. coli 

cells (4.2.2.1) 

Mononuc-0 
20 mM Tris-HCl (pH 7.7), 0.1 mM, EDTA 

(pH 8.0), 1 mM DTT 

Nucleosome reconstitution 

(4.2.3.3) 
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Mononuc-

2000 

20 mM Tris-HCl (pH 7.7), 0.1 mM EDTA 

(pH 8.0), 2M KCl, 1 mM DTT 

Nucleosome reconstitution 

(4.2.3.3) 

Nucleosome 

binding 

15 mM Hepes-KOH (pH 7.6), 70 mM KCl, 

4% (v/v) glycerol, 1 mM MgCl2, 1 mM DTT 

Enzyme-nucleosome complex 

formation (4.2.3.3); EMSA 

(4.2.7.1) 

Octamer 

refolding  

2M NaCl, 10 mM Tris-HCl (pH 7.5), 1 mM 

EDTA (pH 8.0), 1 mM DTT 
Octamer reconstitution (4.2.3.2) 

Octamer 

unfolding 

7 M guanidine-HCl, 20 mM Tris-HCl (pH 

7.5), 10 mM DTT 
Octamer reconstitution (4.2.3.2) 

SAU 

7.5 M Urea, 40 mM NaOAc (pH 5.2), 1 mM 

EDTA (pH 8.0), 10 mM L-lysine–HCl, 5 

mM DTT 

Purification of histones, IBP and 

RHP protocol (4.2.2.4) 

SAXS 

50 mM Hepes-KOH (pH 7.6), 1.5 mM 

Mg(OAc)2, 0.2 mM KOAc, 10% (v/v) 

glycerol, 1 mM DTT 

Preparation of proteins for SAXS 

measurements (4.2.5.1) 

SDS-PAGE 

fixing  
10% (v/v) acetic acid, 50% (v/v) ethanol SDS-PAGE analysis (4.2.1.7) 

SDS-PAGE 

running  

25 mM Tris-HCl (pH 6.8), 192 mM glycine, 

0.1% (w/v) SDS 
SDS-PAGE analysis (4.2.1.7) 

SEC mobile 

phase 

70% (v/v) water, 30% (v/v) acetonitrile, 

0.1% (v/v) TFA 

Enrichment of tryptic peptides 

(4.2.4.3) 

Snf2H 

Elution  

25 mM Hepes-HCl (pH 7.0), 300 mM KCl, 

400 mM imidazole (pH 7.4), 1 mM DTT 
Purification of Snf2H (4.2.2.3) 

Snf2H Lysis  

25 mM Hepes-KOH (pH 8.0), 300 mM KCl, 

7.5 mM imidazole (pH 7.4), 10% (v/v) 

glycerol, 1 mM DTT 

Purification of Snf2H (4.2.2.3) 

Snf2H-SEC 
25 mM Hepes-KOH (pH 7.5), 300 mM KCl, 

1 mM DTT 
Purification of Snf2H (4.2.2.3) 

Snf2H-

storage 

25 mM Hepes-KOH (pH 7.5), 210 mM KCl, 

15% (v/v) glycerol, 1 mM DTT 
Purification of Snf2H (4.2.2.3) 

SPE elution 
50% (v/v) water, 50% (v/v) acetonitrile, 

0.1% (v/v) formic acid 

Solid-phase extraction of tryptic 

peptides (4.2.4.3) 

SPE wash 
95% (v/v) water, 5% (v/v) acetonitrile, 0.1% 

(v/v) formic acid  

Solid-phase extraction of tryptic 

peptides (4.2.4.3) 

TE  
10 mM Tris-KOH (pH 8.0), 0.1 mM EDTA 

(pH 8.0) 

Preparation of DNA fragments 

(4.2.3.1) 

TLC 

developer  
0.3 M NaH2PO4, 1 M LiCl  

TLC-based ATPase assay 

(4.2.7.2.1) 

TLC quench  
2 mM EDTA (pH 8.0), 1 M LiCl, 0.3 M 

NaH2PO4 

TLC-based ATPase assay 

(4.2.7.2.1) 

TLC 

reaction  

25 mM Hepes-KOH (pH 7.6), 1.5 mM 

Mg(OAc)2, 0.1 mM EDTA (pH 8.0), 10% 

(v/v) glycerol, 100 mM KOAc, 0.2 g/L 

BSA, 1 mM DTT 

TLC-based ATPase assay 

(4.2.7.2.1) 

Urea loading  

9 M urea, 25 mM Tris-HCl (pH 6.8), 1% 

(w/v) SDS, 1 mM EDTA (pH 8.0), 0.02% 

(w/v) bromophenol blue, 100 mM DTT 

SDS-PAGE analysis (4.2.1.7) 

UV-XL  

25 mM Hepes-KOH (pH 7.6), 0.1 mM 

EDTA (pH 8.0), 10% (v/v) glycerol, 100 

mM KOAc, 1.5 mM MgCl2, 1 mM DTT 

UV cross-linking (4.2.4.1.1) 

   

  
* continues next page * 
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UZ-10% 

glycerol 

20 mM Hepes-KOH (pH 7.4), 0.005% (v/v) 

Igepal CA-630, 0.1 mM EDTA (pH 8.0), 

10% (v/v) glycerol 

Nucleosome reconstitution 

(4.2.3.3) 

UZ-30% 

glycerol 

20 mM Hepes-KOH (pH 7.4), 0.005% (v/v) 

Igepal CA-630, 0.1 mM EDTA (pH 8.0), 

30% (v/v) glycerol 

Nucleosome reconstitution 

(4.2.3.3) 

XL-

denaturation 

6 M urea, 2 M thiourea, 10 mM Hepes-KOH 

(pH 8.0), 200 mM NH4HCO3 

In-solution tryptic digestion 

(4.2.4.2.2) 

 

 

 

 

 

4.2. Methods 

4.2.1. Molecular biology methods 

4.2.1.1. Cloning of ISWI constructs 

Point mutations were introduced into DmISWIWT (i.e., ISWIK337D, ISWID485K, and ISWIK337D 

D485K) using the Gibson assembly cloning method (281).  

Each polymerase chain reaction (PCR) sample comprised the following components: 50 ng of 

the template plasmid (pFMP210, pFMP383 or pFMP384, cf. Table 10), 5 µL of 5x HF reaction 

buffer, 0.5 µL of 10 mM deoxynucleotide triphosphates (dNTPs) solution mix, 1.3 µL of 10 

µM forward and reverse primers (cf. Table 11), and 0.5 µL of 2 U/µL Phusion High-Fidelity 

DNA polymerase. The components were mixed on ice and the volume of the reaction mixture 

adjusted to 25 µL with H2O. The PCR was performed using a thermocycler and relied on the 

following thermal cycling protocol: Initialization at 98 °C for 3 min followed by 25 cycles of 

DNA denaturation (98 °C for 30 s), primer annealing (63 °C for 30 s), and DNA elongation 

(72 °C for 120 s).  

To digest the parental plasmid, 1 µL of the DpnI restriction enzyme (10 U/µL) was added to 

the PCR product and the sample was incubated at 37 °C for 1 h. The restriction enzyme was 

subsequently inactivated by heat (80 °C for 20 min). 

The assembly of amplified DNA fragments was initiated by mixing 5 µL of the digested PCR 

product with 15 µL of the Gibson master mix [117 mM Tris-HCl (pH 7.5), 6.5% (v/v) 

polyethylene glycol (PEG) 8000, 13 mM MgCl2, 13 mM DTT, 0.26 mM dNTPs, 1.3 mM 

nicotinamide adenine dinucleotide (NAD), 0.005 U/µL T5 exonuclease, 0.033 U/µL Phusion 

polymerase, and 5.3 U/µL Taq ligase]. Following incubation of the reaction mixture at 50 °C 

for 1 h, the assembled DNA was transformed into competent E. coli cells (cf. section 4.2.1.2) 

and the sequence verified by DNA sequencing (cf. section 4.2.1.4). 
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4.2.1.2. Transformation in E. coli 

The competent E. coli strains BL21-Gold(DE3), RosettaTM 2(DE3) or DH5α (cf. Table 9) were 

transformed with plasmid DNA using the heat shock method (282). That is, approximately 100 

µL E. coli cells were thawed on ice and 40−100 ng of purified plasmid DNA was added. After 

10 min of incubation on ice, the E. coli cells were heat shocked at 42 °C for 45 s and the 

suspension was immediately placed back on ice for another 10 min. Following addition of 1 

mL lysogeny broth (LB) medium (cf. Table 12), the cell suspension was incubated at 37 °C for 

10 to 60 min under gentle shaking (600 rpm, Thermomixer comfort). In a last step, the E. coli 

cells were plated on LB agar plates containing the appropriate antibiotics for the plasmid 

vector (cf. section 4.2.1.3). 

 

4.2.1.3. Culture of E. coli 

The different E. coli strains were grown at 37 °C either on LB agar plates [1.5% (w/v) LB 

agar] or in liquid LB medium (cf. Table 12) under constant shaking. The LB agar plates and 

the LB medium were supplemented with 100 µg/mL ampicillin and/or 34 µg/mL 

chloramphenicol depending on the plasmid vector. In the case of the ISWIM578B construct, the 

transformed bacteria culture was grown in LB medium supplemented with 200 µg/mL 

ampicillin, 34 µg/mL chloramphenicol, and 1 mM Bpa (0.2 M Bpa stock solution, dissolved in 

1 M NaOH). 

 

4.2.1.4. Isolation of plasmid DNA and sequencing 

Single colonies of DH5α cells, which had been transformed with plasmid DNA (cf. section 

4.2.1.2), were picked from LB agar plates and used for inoculation in LB medium 

supplemented with the appropriate antibiotics (cf. section 4.2.1.3). The E. coli cells were 

incubated overnight at 37 °C and harvested by centrifugation (4000 rpm, Sorvall SLA3000 

rotor). The amplified plasmid DNA was extracted from cells using a commercially available 

kit (NucleoSpin Plasmid EasyPure, Plasmid Mini, Midi or Giga, cf. Table 8) according to the 

manufacturer’s protocol. To verify the correct DNA sequence, purified plasmids were sent for 

DNA sequencing to Eurofins Genomics in Munich. 

 

4.2.1.5. Agarose gel electrophoresis 

DNA fragments were separated according to size by agarose gel electrophoresis. Agarose gels 

were casted by dissolving 0.8 to 1.2% (w/v) agarose in either TAE buffer or in 0.5x TBE 

buffer (cf. Table 12) supplemented with 5 µg/mL ethidium bromide. DNA samples were 

mixed with an appropriate volume of 6x Gel Loading Dye and then run alongside a DNA 
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ladder (100 bp and/or 1 kb ladder, cf. Table 8) by applying a constant voltage of 140 V. In a 

last step, agarose gels were digitized using the ChemiDoc imaging system. 

 

4.2.1.6. Native polyacrylamide gel electrophoresis 

For native polyacrylamide gel electrophoresis (PAGE), 4.5% polyacrylamide gels were casted 

using a 30% acrylamide/bisacrylamide stock solution, 0.6% (v/v) tetramethylethylenediamine 

(TEMED), and 0.4% (w/v) ammonium persulfate (APS) in 0.2 to 1.0x TBE buffer. Each gel 

was run at 4 °C and 100 V for 60 min prior to sample loading. Samples were mixed with an 

appropriate volume of 6x Orange G-based loading dye supplemented with 5% (v/v) glycerol 

and were separated at 4 °C by applying a constant voltage ranging from 100 to 140 V. DNA 

detection was accomplished by measuring the intrinsic fluorescence of DNA with an UV lamp 

at 254 nm wavelength. Alternatively, polyacrylamide gels were stained with 50 µg/mL 

ethidium bromide in TBE buffer at room temperature for 60 min, rinsed with water, and 

digitized employing the ChemiDoc gel documentation instrument. 

 

4.2.1.7. SDS-PAGE analysis 

Proteins were separated according to size by SDS-PAGE (283). The sample preparation 

procedure for SDS-PAGE analysis of whole cell extracts and purified protein samples slightly 

differed. In the case of whole cell extracts, pelleted samples were resuspended in urea loading 

buffer [100 µl loading buffer per optical density at 600 nm (OD600) value, Table 12]. The 

resuspended cells were heated at 65 °C for 15 min and were well mixed to shear genomic 

DNA. For purified proteins, pelleted samples were resuspended in an appropriate volume of 5x 

Laemmli loading buffer (cf. Table 12) and boiled at 95 °C for 5 min. Individual samples were 

loaded onto precast SDS-PAGE gels and were separated alongside PeqGOLD protein marker 

IV or V by applying a constant current of 25 mA and using SDS-PAGE running buffer (cf. 

Table 12). Subsequent to electrophoresis, gels were fixed with SDS-PAGE fixing solution and 

proteins were stained with Coomassie Blue staining solution (Table 12). Excess of dye was 

removed with water and the gel was digitized using the ChemiDoc gel documentation 

instrument. 

 

4.2.1.8. Protein precipitation 

Proteins were precipitated either to reduce the sample volume required for SDS-PAGE 

analysis or to exchange the sample buffer. The volume of the sample was adjusted to 100 µL 

using a matching sample buffer and trichloroacetic acid (TCA) was added to a final 

concentration of 15% (v/v). Following an incubation period of 20 min on ice, the precipitated 

proteins were separated by centrifugation (13000 rpm, SS34 rotor, Sorvall RC 6 Plus) at 4 °C 
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for 30 min. The supernatant was discarded and the pellet was washed two times with 300 µl of 

cold acetone. The air-dried pellet was resuspended in the corresponding buffer needed for 

downstream application. 

 

4.2.2. Protein expression and purification 

4.2.2.1. Protein expression in E. coli 

For the expression of Drosophila core histones and several ISWI constructs (i.e., ISWIWT, 

ISWI∆HSS, HSSISWI, ISWIK337D, ISWID485K, and ISWIK337D D485K), BL21-Gold(DE3) cells were 

transformed with the corresponding expression plasmid (cf. section 4.2.1.2 and Table 10) and 

were subsequently plated on selective LB agar plates (cf. section 4.2.1.3). A single colony was 

used to inoculate approximately 15–150 mL of LB medium supplemented with 100 µg/mL 

ampicillin and the pre-culture was incubated overnight at 37 °C under constant shaking. The 

main culture encompassed 2 L of LB medium supplemented with 100 µg/mL ampicillin, which 

was inoculated to an OD600 value of approximately 0.005 or 0.01 using an Ultrospec 2000 

spectrophotometer. Following incubation at 37 °C under constant shaking, protein expression 

was induced at an OD600 value of 0.6 to 0.8 using 1 mM isopropyl-β-D-thiogalactopyranosid 

(IPTG) and the cell suspension was incubated overnight at 18 °C. The E. coli cells were 

harvested by centrifugation (4000 rpm, Sorvall SLA3000 rotor) at 4 °C for 10 min. The cell 

pellet was washed with either water or the first purification buffer, flash frozen in liquid 

nitrogen, and stored at -80 °C until further use.  

For the expression of the His6-ISWIM578B variant, the corresponding plasmid DNA was 

transformed into BL21-Gold(DE3) cells that already contained a plasmid (pFMP153, Table 

10) encoding for both a Bpa-comprising mutant tRNA as well as a Bpa-specific aminoacyl-

tRNA synthetase. The anticodon of the mutant tRNA was complementary to the TAG stop 

codon in order to facilitate the site-specific incorporation of the photo-reactive amino acid Bpa 

during translation. A single colony from chloramphenicol/ampicillin-selective LB agar plates 

was used to inoculate approximately 15 mL of LB medium supplemented with 34 µg/mL 

chloramphenicol and 200 µg/mL ampicillin and the pre-culture was incubated overnight at 37 

°C under constant shaking. The main culture encompassed 2 L of LB medium supplemented 

with 34 µg/mL chloramphenicol, 200 µg/mL ampicillin, and 1 mM Bpa. Protein expression 

was induced at an OD600 value of 0.6 to 0.8 using 0.2 mM IPTG and cells were allowed to 

grow overnight at 18 °C under constant shaking. Subsequent preparatory steps were identical 

to the ones described above for Drosophila proteins.  

For the expression of the Snf2H enzyme, I transformed RosettaTM 2 (DE3) cells with the 

corresponding expression plasmid (cf. Table 10). A single colony from 
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chloramphenicol/ampicillin-selective LB agar plates was used to inoculate approximately 15–

150 mL of LB medium supplemented with 34 µg/mL chloramphenicol and 100 µg/mL 

ampicillin and the pre-culture was incubated overnight at 37 °C under constant shaking. The 

main culture encompassed 2 L of “rich” LB medium (cf. Table 12) supplemented with 34 

µg/mL chloramphenicol and 100 µg/mL ampicillin. Protein expression was induced at an 

OD600 value of 0.6 to 0.8 using 0.4 mM IPTG. Subsequent preparatory steps were identical to 

the ones described above. 

The overexpression of proteins was generally monitored by SDS-PAGE analysis. That is, 

during each protein expression, 1 mL of the cell culture prior to IPTG-induced overexpression 

and cell harvesting were removed, pelleted, and processed as described in section 4.2.1.7.  

 

4.2.2.2. Purification of ISWI constructs 

4.2.2.2.1. Purification of DmISWIWT and additional point mutation constructs 

Pellets of E. coli cells expressing either His6-tagged DmISWIWT or point-mutant constructs 

(i.e., ISWIK337D, ISWID485K, and ISWIK337D D485K) were resuspended in 30 mL ISWI His-A 

buffer (cf. Table 12). The ISWI His-A buffer was supplemented with 1 mg/L aprotinin, 1 mg/L 

leupeptin, 0.7 mg/L pepstatin, 1 mM phenylmethylsulfonyl fluoride (PMSF), and 1 Complete 

Protease Inhibitor Cocktail tablet to prevent protein proteolysis. The bacteria cells were lysed 

by passing the suspension three times through a French Press (1500 psi, French Pressure Cell 

Press Model FA-078) followed by sonication (Sonifier S-250 D) for a total time of 1 min at an 

amplitude of 25% on ice. Alternatively, E. coli cells were lysed employing a microfluidizer 

instrument (5 runs at 1000 bar, Microfluidizer LM10). Following addition of benzonase (1000 

U/L cell culture) to degrade DNA and RNA, the cell lysate was centrifuged for 30 min at 

19000 rpm and 4 °C (SS34 rotor, Sorvall RC 6 Plus) and the soluble fraction was filtered using 

0.45 µm Rotilabo-syringe filters. 

The His6-tagged ISWI constructs were subsequently purified by nickel affinity 

chromatography (1 or 5 mL HisTrap HP columns) using an ÄKTA FPLC system. That is, the 

instrument was pre-equilibrated with ISWI-His-A buffer supplemented with 20 mM imidazole 

and the clarified lysate was loaded onto the HisTrap HP column. Unwanted protein species 

were washed off the column using ISWI-His-B buffer (cf. Table 12) and the following step 

imidazole gradient: 10 column volumes (CVs) of 20 mM imidazole, 6 CVs of 40 mM 

imidazole, and 1 CV of 80 mM imidazole. The flow-rate for the 1 and 5 mL HisTrap HP 

columns during the wash procedure was set to 1.5 and 2.5 mL/min, respectively. The full-

length ISWI proteins were subsequently eluted by applying a linear gradient from 80 to 400 

mM imidazole over 10 CVs at a flow rate of 1 mL/min or 2 mL/min. ISWI fractions were 

pooled and the combined sample supplemented with His-tagged TEV protease (prepared in-
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house) to a final concentration of 0.06 mg/mL. The sample was subsequently dialyzed against 

ISWI dialysis buffer (1 L for at least 1 h, 1 L overnight, cf. Table 12) using 6000–8000 Da 

molecular weight cut-off (MWCO) Spectra/Por dialysis tubing. TEV-cleaved ISWI proteins 

were separated from unwanted protein species and reaction products by means of nickel 

affinity chromatography. The collected flow-through was subsequently diluted four-fold with 

buffer [10 mM Tris-HCl (pH 7.6), 10% (v/v) glycerol, and 1 mM DTT] to lower the salt 

concentration prior to cation exchange chromatography and the sample was filtered using 0.2 

µm syringe filters. ISWI proteins were immobilized on a Mono S 5/50 GL ion exchange 

column, which had been pre-equilibrated with ISWI MonoS-A buffer (cf. Table 12) 

supplemented with 40 mM NaCl. Unwanted protein species were washed off the column with 

17 CVs of ISWI MonoS-A buffer supplemented with 40 mM NaCl. ISWI proteins were eluted 

by applying a 6.67 min linear gradient at a constant flow-rate of 1.5 mL/min and increasing 

concentrations (40 to 600 mM) of NaCl. ISWI fractions were pooled and the combined sample 

concentrated using Amicon Ultra-4 centrifugal filter units (30 kDa MWCO). In a final step, 

ISWI samples were subjected to size-exclusion chromatography. The sample was loaded onto 

a Superdex 200 column (i.e., Superdex 200 HiLoad 16/60, Superdex 200 Increase 10/300 GL, 

or Superdex 200 10/300 GL) that had been pre-equilibrated with ISWI SEC buffer (cf. Table 

12). Fractions that contained ISWI proteins were pooled and concentrated to 1–10 mg/mL 

using 30 kDa MWCO Amicon Ultra-4 centrifugal filter units. Small aliquots of the purified 

protein were flash frozen in liquid nitrogen and stored at -80 °C until further use. The yield for 

DmISWIWT was between 0.5 and 3.1 mg per liter cell culture (n = 4). Purification of ISWI 

point-mutant constructs (i.e., ISWIK337D, ISWID485K, and ISWIK337D D485K) typically yielded 

between 0.2 to 0.5 mg of protein per liter cell culture (n = 1). 

 

4.2.2.2.2. Purification of ISWIM578B 

Pellets of E. coli cells expressing the His6-tagged ISWIM578B construct were resuspended in an 

identical manner as described for DmISWIWT in section 4.2.2.2.1. Cell lysis was achieved by 

passing the suspension five times through a microfluidizer instrument (1000 bar, 

Microfluidizer LM10). Following addition of benzonase (1000 U/L cell culture), the cell lysate 

was cleared by centrifugation and filtration and the sample was subjected to nickel affinity 

chromatography in an identical manner as specified for DmISWIWT in section 4.2.2.2.1. 

Notably, the UV light of the FPLC instrument was switched off during the purification 

procedure to prevent unwanted cross-linking reactions of the ISWIM578B variant. Following 

TEV-mediated cleavage of the His6-tag, ISWIM578B samples were further purified by nickel 

affinity and size-exclusion chromatography as described for DmISWIWT in section 4.2.2.2.1. 

The yield was 0.4 mg per liter cell culture (n = 1).  
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4.2.2.2.3. Purification of ISWIΔHSS 

Cells expressing His6-ISWIΔHSS were resuspended in 35 mL of ISWIΔHSS lysis buffer (cf. Table 

12). The lysis buffer was supplemented with 1 mM PMSF, 20 mM imidazole, 1 mM DTT, and 

1 Complete Protease Inhibitor Cocktail tablet. The bacterial cells were lysed by passing the 

suspension five times through a microfluidizer instrument (1000 bar, Microfluidizer LM10). 

Following addition of benzonase (1000 U/L cell culture), the cell lysate was cleared by 

centrifugation and filtration as specified for DmISWIWT in section 4.2.2.2.1. The sample was 

subsequently subjected to nickel affinity chromatography and thus was loaded onto a 1 mL 

HisTrap HP column, which had been pre-equilibrated with ISWI ΔHSS-A buffer (cf. Table 12) 

supplemented with 20 mM imidazole. Most sample impurities were efficiently removed at a 

constant flow-rate of 1 mL/min using ISWI ΔHSS-B buffer (cf. Table 12) and the following 

step imidazole gradient: 7 CVs of 40 mM imidazole, followed by 5 CVs of 80 mM imidazole, 

and 2.5 CVs of 120 mM imidazole. The final wash step encompassed a 1 min linear gradient at 

a constant flow-rate of 1 mL/min and increasing concentrations (120−160 mM) of imidazole. 

Prior to elution of the ISWIΔHSS protein with 400 mM imidazole, a pre-equilibrated 5 mL 

HiTrap Q HP anion exchange column was mounted down-stream to the nickel affinity column 

in order to remove negatively charged contaminants. ISWIΔHSS fractions were pooled and the 

combined sample was subjected to size-exclusion chromatography. That is, ISWIΔHSS samples 

were loaded onto a 120 mL Superdex 200 HiLoad 16/60 column, which had been pre-

equilibrated with ISWI ΔHSS SEC buffer (cf. Table 12). Individual ISWIΔHSS fractions were 

pooled and concentrated to approximately 7 mg/mL using 30 kDa MWCO Amicon Ultra-4 

centrifugal filter units before being flash frozen in liquid nitrogen and stored as small aliquots 

at -80 °C. The yield was 6.3 mg of protein per liter cell culture (n = 1). 

 

4.2.2.2.4. Purification of HSSISWI 

Pellets of E. coli cells expressing the His6-tagged HSSISWI protein were resuspended in 30 mL 

HSS-NiA buffer (cf. Table 12). The HSS-NiA buffer was supplemented with 1 mg/L aprotinin, 

1 mg/L leupeptin, 0.7 mg/L pepstatin, 1 mM PMSF, 0.5 mM DTT, and 1 Complete Protease 

Inhibitor Cocktail tablet. Bacterial cells were lysed as described for DmISWIWT in section 

4.2.2.2.1. Following addition of benzonase (1000 U/L cell culture), the cell lysate was cleared 

by centrifugation and filtration as described in section 4.2.2.2.1. The His6-tagged HSSISWI 

protein was subsequently purified by nickel affinity chromatography. The cleared cell lysate 

was loaded onto a 5 mL HisTrap HP column, which had been pre-equilibrated with HSS-NiA 

buffer (cf. Table 12). Contaminating protein species were washed off the column using HSS-

NiB buffer (cf. Table 12) and the following step imidazole gradient: 8 CVs of HSS-NiA buffer 

followed by 4 CVs of 20 mM imidazole. The HSSISWI protein was eluted by applying a linear 

gradient over 13 CVs at a flow-rate of 1 mL/min and increasing (20–500 mM) imidazole 
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concentrations. HSSISWI fractions were pooled and the sample was supplemented with TEV 

protease to a final concentration of 0.06 mg/mL. The sample was subsequently dialyzed 

overnight against 1 L HSS-Dialysis buffer (cf. Table 12) using 6000–8000 Da MWCO 

Spectra/Por dialysis tubing. The TEV-cleaved HSSISWI protein was further purified by means 

of nickel affinity chromatography and the flow-through was collected and was subsequently 

concentrated to 0.5–1 mL using Amicon Ultra-4 centrifugal filter units (10 kDa MWCO). The 

protein sample was further purified by size-exclusion chromatography. Thereby, the sample 

was loaded onto either a Superdex 200 Increase 10/300 GL or a Superdex 200 10/300 GL 

column, which had been pre-equilibrated with HSS-SEC buffer (cf. Table 12). In a final step, 

the eluted HSSISWI protein was pooled and concentrated to 2–5 mg/mL before being flash 

frozen in liquid nitrogen and stored as small aliquots at -80 °C. The yields were 0.4 and 6.5 mg 

of protein per liter cell culture (n = 2). 

 

4.2.2.3. Purification of Snf2H 

Pellets of E. coli cells overexpressing His6-tagged Snf2H were resuspended in Snf2H lysis 

buffer (20 mL/L cell culture, cf. Table 12). The Snf2H lysis buffer was supplemented with 1 

mg/L aprotinin, 1 mg/L leupeptin, 0.7 mg/L pepstatin, 1 mM PMSF, and 1 Complete Protease 

Inhibitor Cocktail tablet. Cell lysis was accomplished as described in section 4.2.2.2.1 by 

passing the suspension through a French Press followed by sonication or by employing a 

Microfluidizer LM10 instrument. Following addition of benzonase (1000 U/L cell culture), the 

cell lysate was cleared by centrifugation and filtration as specified in section 4.2.2.2.1. The 

His6-tagged Snf2H protein was subsequently purified by nickel affinity chromatography. The 

sample was loaded onto a 5 mL HisTrap HP column, which had been pre-equilibrated with 

Snf2H lysis buffer, at a flow rate of 1.0 mL/min. Unwanted protein species were washed off 

the column using 8 CVs of Snf2H lysis buffer at a flow-rate of 1.5 mL/min. The Snf2H 

enzyme was eluted by applying a linear gradient over 8 CVs from 0 to 100% Snf2H elution 

buffer (cf. Table 12) at a constant flow-rate of 1.5 mL/min. Enzyme fractions were 

subsequently pooled and subjected to anion exchange chromatography in order to separate 

Snf2H molecules from contaminating DNA. The protein sample was loaded onto a Mono Q 

5/50 GL column, which had been pre-equilibrated with Snf2H-SEC buffer (cf. Table 12). The 

flow-through was collected and concentrated to 0.5–1 mL per liter cell culture using Amicon 

Ultra-4 centrifugal filter units (30 kDa MWCO). Following addition of TEV protease to a final 

concentration of 0.075–0.15 mg/mL, the protein sample was dialyzed overnight against 1 L of 

Snf2H-SEC buffer using Spectra/Por dialysis tubing (6000–8000 Da MWCO). The purity of 

the Snf2H sample was further enhanced using size-exclusion chromatography. The filtered 

sample (0.2 µm syringe filter) was loaded onto a 120 mL Superdex 200 HiLoad 16/60 column, 
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which had been pre-equilibrated with Snf2H-SEC buffer. Snf2H fractions were pooled and 

concentrated (Amicon Ultra-4 centrifugal filter unit, 30 kDa MWCO) before being dialyzed 

against 0.5 L of Snf2H-storage buffer (cf. Table 12) for at least 16 hours. Small aliquots of 

purified Snf2H were flash frozen in liquid nitrogen and stored at -80 °C. The purification 

yielded 3.0 and 4.4 mg of protein per liter cell culture (n = 2).  

 

4.2.2.4. Purification of core histones 

4.2.2.4.1. Histone purification according to the IBP protocol 

Pellets of E. coli cells overexpressing a Drosophila core histone protein (i.e., H2A, H2B, H3, 

or H4) were resuspended in 35 mL of histone-wash buffer (cf. Table 12). The histone-wash 

buffer was supplemented with 1 mg/L aprotinin, 1 mg/L leupeptin, and 0.7 mg/L pepstatin. 

The bacterial cells were lysed by sonication (Digital Sonifier S-250 D) for a total time of 2 min 

at an amplitude of 30% followed by passing the suspension three times through a French Press 

(1500 psi, French Pressure Cell Press Model FA-078). The cell lysate was pelleted by 

centrifugation for 30 min at 19000 rpm and 4 °C (SS34 rotor, Sorvall RC 6 Plus). Inclusion 

bodies were purified by a series of washing steps, in which the insoluble fraction of the lysate 

was repeatedly resuspended in buffer and pelleted by centrifugation. During the first washing 

step, the pelleted lysate was resuspended in histone-wash buffer, which was supplemented with 

1% (v/v) of the Triton X-100 surfactant. During the following two cycles, the insoluble 

fraction was washed with histone-wash buffer without any additives. Extraction of histone 

proteins was accomplished by suspension of the inclusion bodies in histone-unfolding buffer 

(cf. Table 12) and incubation of the sample for 1 hour under constant rotation. The sample was 

subsequently dialyzed overnight against 1 L of SAU buffer supplemented with 200 mM NaCl 

(cf. Table 12, the buffer was exchanged three times) using Spectra/Por dialysis tubing (6000–

8000 Da MWCO). Following filtration of the sample using 0.45 µm syringe filters, histone 

proteins were purified by means of cation exchange chromatography. The sample was loaded 

onto a 5 mL HiTrap SP column, which had been pre-equilibrated with SAU buffer 

supplemented with 200 mM NaCl. Unwanted protein species were washed off the column 

using SAU buffer and the following step NaCl gradient: 5 CVs of 200 mM NaCl, followed by 

3 CVs of 250 mM NaCl, and 3 CVs of 300 mM NaCl. Histone proteins were eluted by 

applying a nonlinear gradient from 300 to 800 mM NaCl (increase to 350 mM NaCl over 5 

CVs followed by an increase to 800 mM NaCl over 7 CVs) at a constant flow-rate of 1.7 

mL/min. Histone fractions were pooled and dialyzed overnight against 3 L of deionized water 

(water was exchanged three times) using Spectra/Por dialysis tubing (6000–8000 Da MWCO). 

The concentration of individual histone proteins was determined by UV absorption 

measurements at 280 nm using a NanoDrop spectrophotometer and taking into account the 
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respective extinction coefficient (Table 13). Sample purity was calculated as described by 

Glasel (229). Small aliquots of purified histone proteins were flash frozen in liquid nitrogen 

and stored at -80 °C until further use. 

 

 

Table 13: Histone extinction coefficients. Extinction coefficients of individual Drosophila core histones are 

listed according to Klinker et al. (227).  

Histone MW [Da] ε280 [M
-1 cm-1] 

H2A 13232 4470 

H2B 13565 7450 

H3 15257 4470 

H4 11250 5960 

 

 

4.2.2.4.2. Histone purification according to the RHP protocol 

Pellets of E. coli cells overexpressing a Drosophila core histone protein (i.e., H2A, H2B, H3, 

or H4) were resuspended in 35 mL of SAU buffer (cf. Table 12). The SAU buffer was 

supplemented with 200 mM NaCl, 1 mg/L aprotinin, 1 mg/L leupeptin, 0.7 mg/L pepstatin, 

and 1 mM PMSF. Bacterial cells were lysed by sonication (Digital Sonifier S-250 D) for a total 

time of 2 min at an amplitude of 30% followed by passing the suspension three times through a 

French Press (1500 psi, French Pressure Cell Press Model FA-078). The lysate was pelleted by 

centrifugation for 30 min at 19000 rpm and 4 °C (SS34 rotor, Sorvall RC 6 Plus) and the 

supernatant was filtered using HPF Millex syringe filters. 

In the RHP “Variant 1” protocol (cf. Figure 8B), histone proteins were subsequently purified 

by cation exchange chromatography in an identical manner as described in section 4.2.2.4.1. 

Histone fractions were pooled and dialyzed overnight against 1.5 L of deionized water (the 

dialysate was exchanged three times) using Spectra/Por dialysis tubing (6000–8000 Da 

MWCO). Protein samples were supplemented with 15 mM Tris-HCl (pH 8.0), filtered using 

0.45 µm syringe filters, and subjected to anion exchange chromatography in order to remove 

contaminating DNA. The sample was loaded onto a 5 mL HiTrap Q HP column, which had 

been pre-equilibrated with 15 mM Tris-HCl (pH 8.0). Following collection of the flow-

through, protein concentration and sample purity were determined as specified in section 

4.2.2.4.1. Small aliquots of purified histone proteins were flash frozen in liquid nitrogen and 

stored at -80 °C until further use. 
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In the RHP “Variant 2” protocol (cf. Figure 8B), removal of contaminating DNA was coupled 

to cation exchange chromatography by placing the HiTrap Q HP column upstream of the 

HiTrap SP HP column during histone purification. Once the protein sample bound to the cation 

exchange column, the HiTrap Q HP column was simply detached from the FPLC system and 

the purification procedure proceeded as described above for “Variant 1” of the RHP protocol. 

 

4.2.3. Reconstitution of nucleosomes 

4.2.3.1. DNA digestion and purification 

DNA that was used during nucleosome reconstitution (cf. section 4.2.3.3) was prepared from 

plasmid DNA harboring the 601 positioning sequence (235) using restriction enzyme-mediated 

digestion in combination with size separation by native PAGE.  

The corresponding plasmid (i.e., pFMP109 or pFMP151, cf. Table 10) was transformed into 

DH5α E. coli cells for amplification (cf. section 4.2.1.2). The plasmid DNA was subsequently 

isolated and purified as described in section 4.2.1.4. 

Restriction enzyme-mediated digestion of the plasmid DNA was initiated by diluting the DNA 

to a final concentration of 1 mg/mL in 1x Buffer 4 supplemented with 70 U/mL of SmaI. The 

reaction mixture was subsequently incubated at 37 °C for 18 to 20 h. Notably, digestion of 

plasmid pFMP151 with the SmaI enzyme results in four identical DNA fragments of 187 bp 

length with terminal nucleosome positioning sequence. Following precipitation of DNA with 

1/10 volume of 3 M sodium acetate (pH 5.2) and 2.5-times the initial volume of ethanol, the 

sample was centrifuged for 30 min at 19000 rpm and 4 °C (SS34 rotor, Sorvall RC 6 Plus). 

DNA fragments were subsequently dissolved in approximately 500 µL TE buffer (cf. Table 

12) at room temperature and the sample was separated by native PAGE (cf. section 4.2.1.6). 

UV shadowing using an UV lamp (Ultra Violet Products) at 254 nm allowed the localization 

and isolation of the target DNA fragments. The DNA fragments were subsequently eluted from 

the polyacrylamide slices using the Whatman Elutrap electroelution system according to the 

manufacturer’s guidelines at 100−140 V for at least 3 h. The eluted DNA was precipitated as 

described above and then resuspended in TE buffer. DNA concentration was determined by 

UV measurements at 254 nm employing a NanoDrop ND1000 spectrophotometer. 
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4.2.3.2. Octamer reconstitution 

Each of the purified core histones was lyophilized overnight (Alpha 1–2 and RZ 2.5) and 

solubilized in octamer unfolding buffer (cf. Table 12) to a concentration of approximately 4 

mg/mL. Following incubation for 30 min under constant rotation at room temperature, the 

concentration of each histone was determined as described in section 4.2.2.4.1. The four core 

histones H2A, H2B, H3, and H4 were subsequently mixed in a molar ratio of 1.6:1.4:1:1, 

respectively, and histone stoichiometry was evaluated by SDS-PAGE analysis (cf. section 

4.2.1.7). The sample was dialyzed overnight at 4 °C against octamer refolding buffer (cf. Table 

12) using Spectra/Por dialysis tubing (3500 Da MWCO). Following centrifugation of the 

sample at 19000 rpm (SS34 rotor, Sorvall RC 6 Plus) for 30 min, the supernatant was 

concentrated to 2–4 mL using 30 kDa MWCO Amicon Ultra-4 centrifugal filter units. 

Assembled octamers were separated from different protein species by means of size-exclusion 

chromatography. The sample was therefore loaded onto a 120 mL Superdex 200 HiLoad 16/60 

column, which had been pre-equilibrated with octamer refolding buffer. Histone octamers 

exhibiting correct subunit stoichiometry typically eluted at approximately 60 mL. The 

respective fractions were pooled and octamer concentration was determined using a NanoDrop 

ND1000 spectrophotometer and assuming an extinction coefficient of 44700 M-1cm-1. Small 

aliquots of purified core histone octamers were flash frozen in liquid nitrogen and stored at -80 

°C. 

 

4.2.3.3. Nucleosome reconstitution 

Mononucleosomes were reconstituted by salt gradient dialysis using purified histone octamers 

(cf. 4.2.2.4) and defined DNA fragments of 187 bp length (cf. section 4.2.3.1) in a 300 µL 

reaction volume.  

To find an optimal molar ratio between DNA and histone octamers in preliminary experiments, 

increasing amounts of histone octamers were mixed with 0.3 µg/µL DNA in buffer [20 mM 

Tris-HCl (pH 7.7), 2 M KCl, and 10 mM DTT] and nucleosome formation was evaluated by 

native PAGE analysis (cf. section 4.2.1.6). Nucleosome reconstitution was typically found to 

be most efficient at a molar DNA:octamer ratio of approximately 1 (i.e., 0.93 ± 0.14, n = 25). 

Salt gradient dialysis was performed at 4 °C using either Slide-A-Lyzer MINI dialysis devices 

(7000 Da MWCO) or a custom-built dialysis chamber equipped with 7000 Da MWCO 

Spectra/Por dialysis tubing. Salt gradient dialysis was initiated by dialyzing the sample against 

100 mL of Mononuc-2000 buffer (cf. Table 12). The salt concentration of the buffer was 

lowered over time using Mononuc-0 buffer (cf. Table 12) and a peristaltic pump (MINIPULS 

Evolution). The flow-rate of the peristaltic pump was thereby set to 0.35 rpm for the initial 24 

hours and was then increased to 0.8 rpm for at least another 3 h. The volume of the dialysate 

was kept constant throughout dialysis procedure. 
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Following centrifugation for 15 min at 13000 rpm (Eppendorf 5417C centrifuge) and 4 °C, 

nucleosome concentration was estimated by UV measurements at 254 nm using a NanoDrop 

ND1000 spectrophotometer and the quality of the sample assessed by native PAGE analysis 

(cf. section 4.2.1.6). 

 

Samples subjected to XL-MS analysis, mononucleosomes were further purified by glycerol 

gradient ultracentrifugation. The gradient ranging from 10 to 30% glycerol was prepared in 

polypropylene tubes (14 x 89 mm) by mixing UZ-10% and UZ-30% solutions (cf. Table 12) 

with the help of the Gradient Master instrument and the following settings: 2.25 min, 81.5°, 11 

rpm, and UP rotation. The nucleosome sample (V < 500 µL) was layered on top of the glycerol 

gradient and centrifuged for 19 hours at 34000 rpm (SW 41 Ti rotor) and 4 °C. Drop fractions 

of 200–300 µL were collected from the bottom of the glycerol gradient by the use of a 20-

gauge needle and the quality of the sample was evaluated by native PAGE analysis (cf. section 

4.2.1.6). Qualitatively satisfying nucleosome fractions (i.e., high nucleosome concentrations, 

low concentration of unbound DNA) were pooled and concentrated to 2–5 µM using 30 kDa 

MWCO Amicon Ultra-4 centrifugal filter units. Nucleosome concentration was estimated by 

UV measurements at 254 nm using a NanoDrop spectrophotometer and the quality of the 

sample assessed by native PAGE analysis. Purified mononucleosomes were stored up to six 

weeks in the fridge at approximately 8 °C.  

 

4.2.4. Protein cross-linking coupled to mass spectrometry 

4.2.4.1. Protein cross-linking  

4.2.4.1.1. UV cross-linking 

UV cross-linking was performed essentially as described previously by Forné et al. (157). 

Briefly, 100 µL samples comprising 1.0 µM of purified ISWIM578B protein and UV-XL buffer 

(cf. Table 12) were exposed to long-wave UV light (365 nm) in a Bio-Link 365 UV-

Crosslinker system on ice. Following UV irradiation for various time intervals (i.e., 0, 30, and 

120 min), 30 µL of the sample was removed and subjected to SDS-PAGE analysis (cf. section 

4.2.1.7) and in-gel tryptic digestion (cf. section 4.2.4.2.1). 

 

4.2.4.1.2. Chemical cross-linking  

Enzyme-nucleosome and enzyme-ADP-BeFx complexes were formed by incubating the 

respective molecules for 10 min on ice in the respective c-XL buffer (cf. Table 12) in order to 

allow binding to equilibrate. The ADP-BeFx solution was prepared by mixing equal volumes 

of a 50 mM ADP-Mg2+ stock solution (prepared by dissolving ADP and MgCl2 in an 

equimolar ratio in water at pH 7) with a premixed solution containing 50 mM BeSO4 and 150 
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mM NaF. Following centrifugation of protein samples for 10 min at 13000 rpm and 4 °C 

(Eppendorf 5417C centrifuge), chemical cross-linking was initiated by addition of either the 

BS2G or the BS3 cross-linking agent (dissolved in DMSO). Table 14 summarizes the distinct 

cross-linking conditions for the DmISWI and Snf2H enzymes that resulted in productive XL-

MS data for different functional states of the catalytic cycle (cf. STable 1–STable 5).  

 

 

Table 14: Chemical cross-linking conditions for the DmISWI and Snf2H enzymes. The specific cross-

linking conditions that resulted in productive XL-MS data are summarized for each protein state. The cross-

linking buffers c-XL #1–5 are specified in Table 12. 

Protein state 
Enzyme 

[µM] 

Nucleotide 

[mM] 

Nucleosome 

[µM] 

BS2G 

[mM] 

  

BS3  

[mM] 
Buffer or 

  

DmISWI - Apo 1.0–1.5 0 0 0.5–3.0   1.0 c-XL #1 

Snf2H - Apo 1.0–8.0 0 0 0   0.7–1.4 c-XL #2 / #3  

Snf2H - ADP-BeFx 1.0–1.5 3.0 0 0   1.0 c-XL #2 / #4 

Snf2H - Nucleosome 1.5 3.0 0.8 or 1.5 0   1.0 c-XL #5 

 

 

Following incubation of the sample for 30 min on ice or at 30 °C, the cross-linking reaction 

was quenched by adding NH4HCO3 to a final concentration of 200 mM and the sample was 

incubated for another 20 min on ice. Potential protein aggregates were removed by 

centrifugation for 10 min at 13000 rpm and 4 °C (Eppendorf 5417C centrifuge). Notably, each 

XL-MS experiment also included a DMSO-treated negative control sample, in which target 

protein(s) were processed in an identical manner in the absence of a chemical cross-linker. 

 

Cross-linked proteins were subsequently precipitated by TCA (cf. section 4.2.1.8) and 

subjected to in-solution tryptic digestion (cf. section 4.2.4.2.2). Alternatively, selected samples 

(cf. column “Size selection” in STable 1–STable 5) were subjected to size-exclusion 

chromatography prior to in-solution digestion. Size-exclusion chromatography was performed 

by loading the sample onto either a Superdex 200 Increase 10/300 GL or a Superdex 200 

10/300 GL column, which had been pre-equilibrated with ISWI SEC or c-XL #2 buffer for 

DmISWI and Snf2H samples, respectively. Enzyme fractions were pooled, proteins were 

precipitated by TCA, and the sample was subjected to in-solution tryptic digestion (cf. section 

4.2.4.2.2).   



 134 Materials and Methods 

4.2.4.2. Protein proteolysis 

4.2.4.2.1. In-gel tryptic digestion 

Cross-linked ISWIM578B samples (cf. section 4.2.4.1.1) were separated by SDS-PAGE analysis 

and stained with Coomassie Blue. Bands corresponding to ISWIM578B were excised from the 

polyacrylamide gel and each gel slice was thoroughly washed with water and 40 mM 

NH4HCO3 at room temperature. The gel slices were subsequently shrunken by submerging 

them in acetonitrile (ACN) for 20 min at room temperature. The gel slices were air-dried for 2 

min and then rehydrated under reducing solution conditions (10 mM DTT in 40 mM 

NH4HCO3). Following incubation of the sample for 1 hour at room temperature, thiol groups 

were alkylated with 55 mM iodoacetamide (IAA) in the absence of light for another 30 min at 

room temperature. Each gel slide was subsequently washed three times with 40 mM NH4HCO3 

and ACN before being air-dried for 5 min. Tryptic digestion was initiated by rehydrating each 

gel slice with 10 µL digestion buffer (200 ng sequencing grade modified trypsin, 5 mM acetic 

acid, and 36 mM NH4HCO3). Following an initial incubation period of 2–3 min on ice, the 

volume of the reaction mixture was adjusted to 50 µL using 40 mM NH4HCO3 and the sample 

incubated for another 5 min. Following addition of another 40 µL of 40 mM NH4HCO3, the 

sample was incubated overnight at 37 °C under constant shaking (600 rpm, Thermomixer 

comfort). The solution was transferred to a new tube and the sample was acidified by addition 

of trifluoroacetic acid (TFA) to a final concentration of 0.1% (v/v). The tryptic peptide mixture 

was subsequently desalted and concentrated by solid-phase extraction (SPE) as described in 

section 4.2.4.3. 

 

4.2.4.2.2. In-solution tryptic digestion 

Chemically cross-linked protein samples, which had been precipitated by TCA (cf. section 

4.2.4.1.2), were solubilized in XL-denaturation buffer (cf. Table 12) to a final protein 

concentration of approximately 1 mg/mL. Disulfide bonds were reduced by addition of DTT to 

a final concentration of 5 mM and incubation of the sample for 1 hour at room temperature. 

Reactive thiol groups were subsequently alkylated in the presence of 10 mM IAA for 30 min in 

the dark at room temperature. Following dilution of the sample with 25 mM NH4HCO3 to a 

final concentration of 1 M urea, protein proteolysis was initiated by addition of trypsin (200 

ng/µL sequencing grade modified trypsin in 50 mM acetic acid) in a 1:50 enzyme to substrate 

ratio. Tryptic digestion was allowed to proceed overnight at 37 °C under constant shaking (600 

rpm, Thermomixer comfort). Trypsin was inactivated by lowering pH to 2–3 using formic acid 

and the sample was subsequently desalted and concentrated by SPE as described in section 

4.2.4.3.   
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4.2.4.3. Solid-phase extraction and enrichment of tryptic peptides 

The tryptic peptide mixture was subjected to SPE using either OMIX C18 pipette tips (10–100 

µL) or Sep-Pak tC18 cartridges. 

In the case of the OMIX C18 pipette tips, the chromatography resin was activated and 

equilibrated by flushing the pipette tips three times with 100 µL of 50% (v/v) ACN and 100 µL 

of 0.1% (v/v) TFA, respectively. The acidified tryptic digest was loaded onto the C18 resin and 

was washed five times with 100 µL of 0.1% (v/v) TFA. Tryptic peptides were eluted in 50 µL 

of 60% (v/v) ACN supplemented with 0.25% (v/v) TFA. 

In the case of the Sep-Pak tC18 cartridges, the chromatography resin was activated and 

equilibrated by flushing the cartridges with 700 µL ACN and two times 700 µL of SPE wash 

solution (cf. Table 12), respectively. Following acidification of the tryptic digest to pH 2−3 

with formic acid, the sample was loaded onto the resin and the cartridge was washed twice 

with 700 µL SPE wash solution. Tryptic peptides were eluted in 500 µL of SPE elution 

solution (cf. Table 12). 

Following SPE by either OMIX C18 pipette tips or Sep-Pak tC18 cartridges, samples were 

evaporated to dryness in a vacuum centrifuge at 30 °C. Tryptic peptides were subsequently 

resuspended in either 10−20 µL of 0.1% (v/v) TFA and the sample subjected to LC-MS/MS 

analysis (cf. section 4.2.4.4) or in 25 µL of SEC mobile phase (cf. Table 12) for size-exclusion 

chromatography. 

Selected samples were subjected to size-exclusion chromatography in order to enrich cross-

linked peptides as described previously by Leitner et al. (284). The peptide mixture was loaded 

onto a Superdex Peptide PC 3.2/300 column, which had been pre-equilibrated with 30% (v/v) 

ACN supplemented with 0.1% (v/v) TFA. Fractions were collected every 2 min at a flow-rate 

of 50 µL/min in 96-well MultiScreen HTS plates. Samples were subsequently evaporated to 

dryness as described above and were resuspended in 10−20 µL of 0.1% (v/v) TFA before 

being subjected to LC-MS/MS analysis. 

 

4.2.4.4. LC-MS/MS analysis 

LC-MS/MS analysis was kindly performed by Dr. I. Forné (LMU, Munich). Samples were 

injected into an UltiMate 3000 or RSLCnano HPLC system, which had been equipped with a 

15 cm analytical C18 nano column (75 μm ID, packed with ReproSil-Pur C18-AQ 2.4 μm). 

Peptides were gradually eluted by applying a 40−60 min linear gradient and increasing 

concentrations (i.e., 5−60%) of ACN in 0.1% formic acid. The effluent was directly 

electrosprayed into the ion source of either a LTQ-Orbitrap XL or Q-Exactive HF mass 

spectrometer. Both instruments were operated in positive ionization mode with precursor and 

fragment ions being detected in data-dependent acquisition mode with high resolution and 

accuracy. 
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In the case of the LTQ-Orbitrap XL instrument, ionization was accomplished by applying a 

constant spray voltage of 1.4 kV and a capillary temperature of 200 °C in the absence of any 

sheath or auxiliary gas flow. Precursor ions were detected in survey full-scan MS mode 

ranging from 300−2000 m/z with a resolution of 60000 at m/z 400. The six most abundant 

peptide ions with charge states between 2+ and 5+ were sequentially isolated to a target value 

of 10000 and fragmented in the linear ion trap by collision-induced dissociation (CID, 35% 

normalized collision energy). The collision voltage and activation time was set to q = 0.25 and 

30 ms, respectively. The ion selection threshold was set to 10000 counts for MS/MS. Fragment 

ion spectra were recorded with the Orbitrap detector. Internal calibration was achieved as 

described previously by Forné et al. (157) using a total of three lock mass ions from ambient 

air (m/z = 371.10123, 445.12002, and 519.13882). 

In the case of the Q-Exactive HF mass spectrometer, spray voltage and capillary temperature 

were set to 1.5 kV and 250 °C, respectively. Sheath and auxiliary gas flow were turned off. 

Precursor ions were detected in survey full-scan MS mode ranging from 375−1600 m/z with 

high resolution as specified above. The ten most intense peptide ions with charge states 

between 3+ and 5+ were sequentially isolated to a target value of 100000 and subjected to CID 

fragmentation at 27% normalized collision energy. The ion selection threshold was set to 

33000 counts for MS/MS. 

Thermo binary raw files were converted into mzXML or mgf format using msconvert 

(ProteoWizard Tools, http://proteowizard.sourceforge.net/tools.shtml) and Proteome 

Discoverer 1.4-PostSearch Recalibrator Node (ThermoFisher Scientific), respectively. 

 

4.2.4.5. Data analysis and identification of cross-linked peptides 

Cross-linked peptides were identified using the Crossfinder software (157, 200). In the case of 

chemical cross-linking data, only lysine residues of the target protein(s) were considered as 

potential cross-linking sites. In contrast, all residues of the ISWIM578B variant were considered 

to facilitate the Bpa-mediated formation of cross-links upon UV irradiation. The number of 

missed trypsin cleavage sites was set to 2 or 3. Oxidation of methionine and 

carbamidomethylation of cysteine residues were defined as variable and fixed modifications, 

respectively. Peptide hits for individual steady-state conditions were subsequently filtered 

according to the Crossfinder score, fragmentation quality, and peptide length as specified in 

Table 15. Precursor and fragment ion mass accuracy was set to 9 and 12.5 parts per million 

(ppm), respectively. The FDR did not exceed 7% for any functional state when applying these 

filtering criteria.  
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Table 15: Peptide identification criteria. 

Protein ISWIWT ISWIM578B Snf2H  Snf2H 
Snf2H-

nucleosome 

Cross-linker 
BS2G, 

BS3 
UV BS3 BS3 BS3 

Ligand none none none ADP-BeFx ADP-BeFx 

Score > 800 > 400 > 1000 > 700 > 1200 

Relative filter score  100 100 100 100 100 

Number of fragment ions per 

spectrum 
> 6 > 5 > 5 > 5 > 6 

Number of fragment ions per peptide > 2 > 2 > 2 > 2 > 3 

Fractional intensity of assigned MS2 

peaks 
> 0.05 > 0.05 > 0.05 > 0.05 > 0.05 

Minimal peptide length 1 1 1 1 3 

False-discovery rate (FDR) < 0.05 < 0.05 < 0.07 < 0.05 < 0.03 

 

 

Peptide hits were manually discarded from further analysis if one of the following was true: (i) 

the same candidate was identified in the negative (i.e., DMSO-treated or unirradiated) control 

sample, (ii) the spacing between cross-linked residues of intra-domain linkages was below ten, 

and (iii) the cross-linked lysine residue was at the C-terminal end of the peptide (285). 

Sequence assignments were subsequently manually verified by assessing the correct 

assignment of precursor and fragment ions in MS/MS spectra. A tabular overview of identified 

cross-links for the DmISWI and Snf2H remodeling enzymes across different functional states 

is provided in STable 1–STable 5. Notably, STable 1 furthermore includes previously 

published Bpa-mediated cross-links for ISWIM578B (157) and ISWIH483B (115) that were used 

during computational modeling and data interpretation of the DmISWI enzyme as well as an 

unpublished data set, which was kindly provided by Dr. Felix Müller-Planitz (LMU, Munich). 

 

4.2.4.6. Relative quantification of cross-linked peptides 

The relative quantification of cross-linked peptides relied on the use of isotopically labeled 

BS3-H4 and BS3-D4 cross-linking agents. The Snf2H enzyme was chemically cross-linked in 

the apo, ADP-BeFx-, and nucleosome-bound state with either BS3-H4 or BS3-D4 as described in 

section 4.2.4.1.2. Following quenching of the cross-linking reaction, heavy and light cross-

linked samples were mixed in an equimolar ratio and then subjected to in-solution tryptic 

digestion (cf. section 4.2.4.2.2), size-exclusion chromatography (cf. section 4.2.4.3), and LC-

MS/MS analysis (cf. section 4.2.4.4). Identification of cross-linked peptides was accomplished 

using the Crossfinder software as detailed in section 4.2.4.5. Individual pairs of heavy and light 

cross-linked peptides were further analyzed with the Skyline software package (version 

3.5.0.9319; https://skyline.ms/) (286). In the Skyline software, the sequence of identified cross-
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links was linearized and included customized modifications to account for the BS3-H4 cross-

linker (156.078644 Da) and the mass difference between the isotopically labeled cross-linking 

agents (4.025107 Da). The elution peaks of these linearized cross-links were subsequently 

found in Thermo binary raw files and integrated in a semi-automated manner in the Skyline 

software. Each peak assignment was manually verified on the basis of the following criteria: (i) 

correct retention time (tolerance: 2 min), (ii) correct and appropriate elution peak boundaries, 

(iii) correct charge state of the precursor ion, (iv) transition items for the precursor ion > 0.75, 

and (v) precursor mass accuracy < 7.5 ppm. Peak assignments that did not meet the 

aforementioned criteria were discarded from further analysis. The average BS3-H4/BS3-D4 ratio 

for individual cross-links was obtained as described in section 2.5.3.  

 

4.2.5. SAXS 

4.2.5.1. Sample preparation 

Freshly purified protein samples (V = 0.3−1.1 mL) were dialyzed against 500 mL SAXS buffer 

(cf. Table 12, the dialysate was exchanged three times) for approximately 24 hours at 4 °C 

using 3000–6000 Da MWCO Spectra/Por dialysis tubing. Following centrifugation for 10 min 

at 13000 rpm and 4 °C (Eppendorf 5417C centrifuge), samples were concentrated to 1−7 

mg/mL (cf. Table 16) using Amicon Ultra-4 centrifugal filter units (10 or 30 kDa MWCO). 

Protein concentrations were determined by measuring the UV absorption at 280 nm employing 

a NanoDrop ND1000 spectrophotometer. Extinction coefficients for DmISWI and Snf2H 

proteins were obtained using the ProtParam tool from the ExPASy Proteomics server 

(http://web.expasy.org/protparam/). Sample purity was evaluated by SDS-PAGE analysis (cf. 

section 4.2.1.7). Finally, small aliquots of the purified proteins as well as respective buffer 

samples were flash frozen in liquid nitrogen and stored at -80 °C until further use.  

 

 

Table 16: Prepared protein samples for SAXS measurements.  

# Enzyme 

Enzyme con-

centration [g/l]  

ADP-BeFx 

[mM]  # Enzyme 

Enzyme con- 

centration [g/l]  

ADP-BeFx 

[mM] 

1 ISWIWT 1.00 0  11 His6-ISWIΔHSS 3.34 3 

2 ISWIWT 2.00 0  12 His6-ISWIΔHSS 6.67 3 

3 ISWIWT 4.00 0  13 HSSISWI 1.83 0 

4 ISWIWT 1.00 3  14 HSSISWI 4.58 0 

5 ISWIWT 2.00 3  15 Snf2H  1.00 0 

6 ISWIWT 4.00 3  16 Snf2H 2.00 0 

7 His6-ISWIΔHSS 1.50 0  17 Snf2H 4.00 0 

8 His6-ISWIΔHSS 3.34 0  18 Snf2H 1.00 3 

9 His6-ISWIΔHSS 7.00 0  19 Snf2H 2.00 3 

10 His6-ISWIΔHSS 1.50 3  20 Snf2H 4.00 3 
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4.2.5.2. Data acquisition and analysis 

SAXS measurements of different ISWI and Snf2H samples (cf. Table 16) as well as data 

analysis were kindly performed by Dr. L. Brützel (LMU, Munich) as described in (1). Briefly, 

data were collected at beamline BM29, ESRF, Grenoble (287) at an X-ray wavelength (λ) of 

0.99 Å using a sample-to-detector distance of 2.87 m and a Pilatus 1M detector. This 

experimental setup resulted in an acceptable q-range of approximately 0.1−3.5 nm−1 [q = 

4π⋅sin(θ)/λ, where θ is defined as the total scattering angle]. Following syringe filtration (0.22 

µm) and centrifugation for 10 min at 13500 rpm (tabletop centrifuge from Eppendorf), each 

protein sample listed in Table 16 was measured 10 times using an exposure time of 4 s in 

‘flow’ mode at room temperature. Matching buffer samples were measured in an identical 

manner before and after each protein sample. Neither protein nor buffer samples exhibited 

signs of radiation damage.  

The collected SAXS data were processed by means of a custom-written MATLAB script (The 

MathWorks Inc.). That is, matching protein sample profiles were averaged and then 

background corrected by subtracting the averaged profiles of the respective buffer. In a final 

step, SAXS data of the lowest and highest concentrated protein sample were scaled and 

merged for the low- and high q-region, respectively. 

Radii of gyration were calculated for each protein construct and condition by Guinier analyses 

using a custom-written MATLAB script. That is, the logarithm of the scattering intensity was 

fitted as a function of q2 to a straight line for small values of q (288). The respective mean and 

standard deviation for each protein construct were obtained by repeating Guinier analysis ten 

times for varying fitting ranges between 1.0 < qmax⋅Rg < 1.3. 

Low-resolution density maps for individual protein constructs and conditions were generated 

by applying a simulated annealing protocol in the DAMMIF software (289). For each 

scattering profile, 20 independent runs in the “slow” mode were performed with default 

parameters and assuming no symmetry. The low-resolution structures of each molecule were 

subsequently aligned using a normalized spatial discrepancy (NSD) criterion (290) and 

averaged in the DAMAVER software (291). Notably, models for each protein and condition 

were structurally similar as indicated by pairwise NSD values between zero and one. The 

aligned bead models were averaged and loosely connected beads were removed by filtering. 

These models were subsequently converted into electron density maps using the pdb2vol 

program from the SITUS package (version 2.7.2) (292) and aligned to the respective atomic 

structures. The nominal resolution of the scattering data may be expressed on the basis of the 

highest measured q-values (i.e., 3.5 nm−1) as 2π/qmax (293). According to this equation, we 

obtained a nominal resolution of approximately 2 nm. However, the resolution assessment for 

ab-initio shape reconstructions is not clearly defined; the resolution of individual models 

determined from the SAXS scattering data is estimated to be in the range of 2–3 nm (Prof. Dr. 
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Jan Lipfert, LMU, personal communication). Finally, molecular envelope shapes with aligned 

structures were prepared using visual molecular dynamics (294).  

 

4.2.6. Computational modeling 

XL-MS-driven modeling of all DmISWI and Snf2H structures was kindly performed by Dr. C. 

Schindler (TUM, Munich).  
 

4.2.6.1. Structure preparation 

The input structures for rigid body docking were prepared by homology modeling of individual 

DmISWI and Snf2H domains based on available X-ray structures of related remodeling 

enzymes using the MODELLER software (295). The ATPase modules of DmISWI and Snf2H 

were homology modeled from the X-ray structure of ScChd1 (pdb 3MWY) (141). Residues N- 

and C-terminal to residue 116 and 637, respectively, were excluded from the final models due 

to poor sequence conservation and structure dissimilarities in these regions between different 

experimental structures. The ATPase domain was subsequently cleaved at a predicted hinge 

region (i.e., residues 351–352 in DmISWI) (Emekli et al., 2008) that connects both ATPase 

lobes. Consequently, the two rigid bodies of the ATPase domain used for docking of the 

DmISWI enzyme comprised residues 116–351 and 352–637. Likewise, the two lobes used for 

docking of the Snf2H enzyme comprised residues 120–403 and 404–689. There was no need to 

homology model the HSS domain of the DmISWI enzyme because the structure of the DNA-

binding domain has been successfully determined by X-ray crystallography (116). The HSS 

domain of Snf2H in turn was homology modeled from the HSS structure of the DmISWI 

enzyme (pdb 1OFC). In a final step, protein structures were transformed into the ATTRACT 

coarse-grained (296, 297) and all-atom representation (298, 299) using the ATTRACT tools 

‘reduce’ and ‘aareduce’. Missing atoms were reconstructed with PDB2PQR (300, 301). 

Protonation states were assigned with PropKa (302). 

 

4.2.6.2. Rigid body docking 

Rigid body docking was performed using a custom-modified ATTRACT protein-protein 

docking protocol (303) that enabled the implementation of XL-MS-derived distance restraints 

between pairs of Cα atoms. The distance between Cα atoms of selected cross-linked residue 

pairs was restrained by an upper harmonic potential with a maximum distance of 25 and 29 Å 

for chemical BS2G and BS3 cross-links, respectively. Likewise, the maximum distance for 

Bpa-mediated cross-links was set to 20 Å. Cross-links that were implemented in the docking 

protocol yielded excellent fragmentation data during MS/MS analysis (cf. Figure 19, Figure 

44A, and SFigure 5–SFigure 7) and are marked in STable 1–STable 5. In addition, the distance 
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between residues of the predicted hinge region of the ATPase domain (i.e., residues 351–352 

and 403–404 in DmISWI and Snf2H, respectively) was restrained in order to keep these 

adjacent residues within a maximum distance of 10 Å during computational docking. 

In the case of the DmISWI enzyme, integrative modeling of the ATPase domain was initiated 

by generating 100000 starting configurations with both rigid bodies being placed at random 

positions and orientations. For each starting configuration, the center-of-mass translation and 

orientation of rigid bodies was optimized in a potential energy minimization using the 

ATTRACT coarse-grained force field (296, 297) and XL-MS-derived distance restraints for 

the ATPase domain (cf. STable 1). Notably, ab-initio docking of the ATPase domain was 

performed in an identical manner in the absence of XL-MS-derived distance restraints. The 

different structures were ranked on the basis of their ATTRACT score evaluated within a 

squared cutoff of 50 Å2 and the restraint potentials. The top-ranked 200 ATPase structures 

were considered for further refinement with the flexible interface refinement method 

iATTRACT (304). The XL-MS-derived distance restraints were also implemented during 

flexible refinement. The convergence of individual structures was assessed by calculating the 

model precision as the minimal average pair-wise Cα RMSD (305) between the respective 200 

final models. 

To model the full-length DmISWI enzyme, the ten best models of the ATPase domain were 

docked against the crystal structure of the HSS domain (pdb 1OFC) (116) in an ensemble 

docking approach. The above described modeling procedure was repeated with 100000 starting 

configurations for each of the ten ATPase structures. The computational docking was guided 

by selected, XL-MS-derived distance restraints between the ATPase domain and the HSS 

domain as further specified in STable 2.  

In the case of the Snf2H enzyme, the modeling strategy had to be slightly adapted compared to 

the one described for the DmISWI enzyme in order to overcome the limited number of 

identified cross-links between both rigid bodies of the ATPase domain. That is, integrative 

modeling of the full-length Snf2H protein was initiated by placing individual Snf2H domains 

(i.e., both rigid bodies of the ATPase domain and the HSS homology model) at random 

positions and orientations (1x105 starting configurations). Using a three-body docking 

protocol, the arrangement of both ATPase lobes in the modeled Snf2H structures would 

primarily depend on their relative orientation towards the HSS domain. Optimization of each 

starting configuration in terms of potential energy minimization and flexible refinement was 

identical as described above and was guided by selected XL-MS-derived distance restraints (cf. 

STable 3and STable 4) between individual structural bodies. 

 

Individual enzyme models were compared against SAXS data using FoXS with defaults 

settings. The calculated values are reported as reduced χ-values (306). The model with the best 
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χ-fit to the SAXS data was typically selected as representative structural model. Finally, 

DmISWI and Snf2H models were visualized with the PyMOL software (versions 1.1eval and 

1.30) and identified cross-links mapped onto the structures for the evaluation of Cα-Cα 

distances (cf. STable 1–STable 5).  

 

4.2.7. Functional assays 

4.2.7.1. Electrophoretic mobility shift assay 

The formation of enzyme-nucleosome complexes was investigated by an electrophoretic 

mobility shift assay (EMSA). That is, increasing amounts of either DmISWI or Snf2H were 

titrated to a constant amount of 0N40 mononucleosomes in EMSA buffer #1–5 (cf. Table 12). 

Protein concentrations and buffer conditions that were used during EMSA analysis are 

specified in Figure 40 and SFigure 3. In addition, selected samples contained 3 mM of a 

particular nucleotide (i.e., ADP, ADP-BeFx, and AMP-PNP) and/or 0N0 instead of 0N40 

mononucleosomes. Following incubation for 10 min on ice, the sample was separated by 

native PAGE/0.2x TBE as described in section 4.2.1.6. To evaluate the impact of chemical 

cross-linking on complex formation, the sample was supplemented with either the BS2G or BS3 

cross-linking agent. Following incubation for 20 min on ice, the cross-linking reaction was 

quenched with 200 mM NH4HCO3 and the sample was separated by native PAGE/0.2x TBE.  

 

4.2.7.2. ATPase assays 

4.2.7.2.1. Thin-layer chromatography ATPase assay 

ATP hydrolysis of DmISWI and Snf2H was assessed by means of a thin-layer chromatography 

(TLC)-based ATPase assay as described previously (140). Briefly, individual samples were 

prepared by mixing the remodeling enzyme, salmon sperm DNA, and increasing 

concentrations of ADP-BeFx according to Table 17 in TLC reaction buffer (cf. Table 12).  

 

 

Table 17: Prepared protein samples for TLC ATPase assay.  

# Enzyme 
Enzyme concen- 

tration [nM] 

Salmon sperm 

DNA [g/L] 

ADP-BeFx 

[mM] 

1 Snf2H 300 0.2 0, 0.5 or 5.0 

2 Snf2H 1000 0 0, 0.5 or 5.0 

3 Snf2H 6000 0 0, 0.5 or 5.0 

4 ISWIWT 80 0.2 0, 0.5 or 5.0 

5 ISWIWT 6000 0 0, 0.5 or 5.0 

6 ISWIWT 1000 0 0, 0.5 or 5.0 

7 ISWI∆HSS 6000 0 0, 0.5 or 5.0 
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ATP hydrolysis was initiated by addition of 1 µM Mg2+-ATP and 0.2 µCi [γ-32P]ATP (3000 

Ci/mmol) and the sample was incubated for various time intervals at 28 °C. Data for the 0 min 

time point were collected in the absence of the respective remodeling enzyme. The enzymatic 

reaction was quenched by diluting the sample into 3 volumes of TLC quench solution (cf. 

Table 12). A total of 0.5 µL of the quenched sample was subsequently spotted onto TLC PEI 

cellulose F plates, which were developed in TLC developer solution (cf. Table 12) for 

approximately 20 min. Air-dried plates were exposed for approximately four hours to an 

imaging plate, which was read out by a Fluorescent Image Analyzer FLA-3000 instrument. 

The signals corresponding to unhydrolyzed ATP and free phosphate were quantified using the 

AIDA Image Analyzer software (Elysia-Raytest GmbH). The percentage of hydrolyzed ATP 

was calculated for each time point and condition. These values were plotted as a function of 

time and were fitted to a linear function to deduce the slope that corresponds to the percentage 

of hydrolyzed ATP per minute. Finally, results from the TLC-based ATPase assay were 

normalized for enzyme concentration and the number of ATP molecules hydrolyzed per 

enzyme per minute was plotted as a function of ADP-BeFx concentration. 

 

4.2.7.2.2. NADH-coupled ATPase assay 

ATP hydrolysis of DmISWI and individual point-mutant constructs (i.e., ISWIK337D, 

ISWID485K, and ISWIK337D D485K) was measured using a NADH-coupled ATPase assay as 

described previously (140). Individual samples were prepared by mixing the enzyme (300 

nM), pyruvate kinase (15.5 U/mL), phosphoenolpyruvate (6 mM), lactate dehydrogenase (15.5 

U/mL), reduced nicotinamide adenine dinucleotide (NADH, 1.2 mM), and varying amounts of 

salmon sperm DNA (0–1.3 g/L) in ATPase assay buffer (cf. Table 12). ATP hydrolysis was 

subsequently initiated by addition of 3 mM ATP-Mg2+. The ATPase assay was performed in 

flat bottom 384 well plates at 26 °C using a final reaction volume of 30 µL. The concentration 

of NADH was monitored by absorption measurements for 30 min employing a PowerWave 

HT 384 well plate reader. ATPase activities were calculated from linear fits to the data. To 

determine the maximal turnover rate of individual remodeling enzymes at saturating DNA 

concentrations, the ATPase activities were subsequently fitted to the Michaelis-Menten 

equation using the KaleidaGraph software (version 4.03). To ensure equal enzyme amounts 

during the NADH-coupled ATPase assay, a fraction of each reaction mixture was analyzed by 

SDS-PAGE and Coomassie Blue staining. Bands corresponding to DmISWI were quantified 

with the Bio-Rad Image Lab 5.2.1 software (cf. Figure 17D). 
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6. Appendix 

6.1. Enrichment of cross-linked peptides by size-exclusion chromatography 

I optimized the chemical cross-linking workflow by implementing an additional enrichment 

step for cross-linked peptides, in a similar manner as described previously (284). Briefly, 

following chemical cross-linking of the remodeling enzyme using either the BS2G or the BS3 

agent (SFigure 1A), the sample was subjected to size-exclusion chromatography (SFigure 1B) 

and in-solution tryptic digestion. The tryptic digest was subsequently separated by size-

exclusion chromatography (SFigure 1C), which resulted in an enrichment of cross-linked 

peptides relative to the input sample (SFigure 1D). The enrichment of cross-linked peptides 

was beneficial in terms of number of identified cross-links that could be used as distance 

restraints during computational modeling. 

 

SFigure 1: Enrichment of cross-linked peptides by size-exclusion chromatography. (A) Chemical cross-

linking of the Snf2H enzyme using increasing concentrations of the BS
3
 cross-linker viewed by SDS-PAGE 

analysis. (B) The results from size-exclusion chromatography of cross-linked and DMSO-treated Snf2H 

samples are shown. Notably, the elution profiles for the Snf2H enzyme (1 µM) in the presence of either 
 

* continues next page * 
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DMSO (green) or 1 mM BS
3
 (blue) did not provide evidence for protein di- or multimerization under the 

tested conditions. Fractions corresponding to the colored peak areas were pooled and subjected to in-solution 

tryptic digestion. (C) The results from the separation of the tryptic peptide mixture by size-exclusion 

chromatography are shown. Fractions #1–6 were subsequently analyzed by LC-MS/MS measurements. (D) 

The total number of identified cross-linked (blue) and linear peptides (grey) for BS
3
- (left) and DMSO-

treated (right) samples are presented. The enrichment of cross-linked peptides prior to LC-MS/MS analysis 

resulted in more cross-link identifications for fractions #4–6 relative to the input sample, which was not 

subjected to size-exclusion chromatography. Peptides were identified using the Crossfinder software using 

comparable identification criteria as specified in Table 15. 

Dr. I. Forné (LMU, Munich) performed the LC-MS/MS analysis. 

 

6.2. Studying the impact of ADP-BeFx-binding on ATP hydrolysis of ISWI-

type remodeling enzymes 

I determined the impact of the non-hydrolysable ADP-BeFx analog on ATP turnover rate of 

Snf2H, DmISWI, and DmISWI∆HSS using a TLC-based ATPase assay as described in section 

4.2.7.2.1. Increasing concentrations of ADP-BeFx readily inhibited ATP hydrolysis of the 

studied ISWI-type remodeling enzymes in a dose-dependent manner (SFigure 2). Results 

should be considered as preliminary as the assay was only performed once. 

 

SFigure 2: Preliminary results from the TLC-based ATPase assay for individual ISWI-type enzymes. 

The number of ATP molecules that were hydrolyzed per enzyme per minute is plotted against increasing 

concentrations of ADP-BeFx for (A) Snf2H, (B) DmISWI, and (C) DmISWI∆HSS. Unfilled and filled symbols 

refer to data collected in the absence and presence of 0.2 g/L salmon sperm DNA (n = 1). Individual sample 

conditions #1–7 are specified in Table 17. The results from the TLC-based ATPase assay collectively 

suggested that ATP hydrolysis of the studied Snf2H and DmISWI constructs is inhibited at > 0.5 mM ADP-

BeFx.   
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6.3. Studying the formation of enzyme-nucleosome complexes by EMSA 

SFigure 3 summarizes my efforts on finding optimal solution conditions to chemically cross-

link the Snf2H and DmISWI remodeling enzymes in complex with the nucleosomal substrate. 

The formation of enzyme-nucleosome complexes was monitored by EMSA as further specified 

in section 4.2.7.1. Notably, SFigure 3 is related to Figure 40 of the main text and thus includes 

replicate measurements as well as data for additionally tested conditions for the DmISWI and 

Snf2H remodeling enzymes.  
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* continues next page * 

 

SFigure 3: Monitoring the formation of enzyme-nucleosome complexes by EMSA. The interaction of 

either Snf2H or DmISWI with mononucleosomes was studied for different solution conditions by EMSA. 

Protein species were separated by a 4.5% native PAGE/0.2x TBE approach and were stained with ethidium 

bromide (cf. section 4.2.1.6). The composition of individual EMSA buffers #1–6 is specified in Table 12. 

DNA ladders are denoted as ‘M1’ and ‘M2’. Asterisks (*) indicate overassembled nucleosomes. (A, B) 

Increasing concentrations of the Snf2H enzyme were incubated with a constant amount of 0N40 

mononucleosomes and ADP-BeFx in EMSA buffer #4. (C) Increasing concentrations of the DmISWI enzyme 

were incubated with a constant amount of 0N40 nucleosomes in EMSA buffer #1. (D) The DmISWI enzyme 

was incubated in the presence or absence of the indicated nucleotide (ADP or ADP-BeFx) with a constant 

amount of 0N40 nucleosomes in EMSA buffer #1. (E) The DmISWI enzyme was incubated in the presence 

or absence of ADP with a constant amount of 0N40 nucleosomes in EMSA buffer #1 containing different 

concentrations of Mg
2+

. (F, G) The DmISWI protein was incubated in the presence of the indicated 

nucleotide (ADP, ADP-BeFx or AMP-PNP) with a constant amount of either 0N40 or 0N0 nucleosomes in 

EMSA buffer #5. The enzyme-nucleosome complex was chemically cross-linked using 1 mM of the BS
2
G 

cross-linking agent. (H–L) In order to evaluate the impact of the different EMSA buffers on complex 

formation, DmISWI was incubated with a constant amount 0N40 nucleosomes in distinct buffers. Notably, 

the samples were supplemented with the indicated nucleotide and/or chemical cross-linking agent. 
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6.4. Sequence alignments of remodeling enzymes 

 

SFigure 4: Sequence alignments of remodeling enzymes. The protein sequences of DmISWI, Snf2H, MtISWI, and ScChd1were aligned using the Clustal Omega 

webserver (https://www.ebi.ac.uk/Tools/msa/clustalo/). Numbers and colored bars below the sequence alignments specify the range of enzyme domains, i.e. NTR (cyan), 

ATPase lobe 1 (yellow), ATPase lobe 2 (red), and HSS (green), for the Snf2H enzyme. Grey and black arrows indicate the positions of Bpa-substituted amino acids and 

positions of point mutations, respectively, which were introduced into full-length DmISWI. Rectangles indicate structural motifs I, II, and VI.  
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6.5. Tabular overview of identified cross-links for DmISWI and Snf2H 

 

STable 1: Cross-links within the ATPase module of the DmISWI enzyme under apo state conditions. Cross-linked peptides are listed in an ordered manner according 

to their cross-link identification number (XLISWI 1–30) together with information about the cross-linked residues and MS-related identification parameters (e.g., precursor 

mass and charge state). Cross-linked sites are color-coded according to the domain architecture in Figure 12 with respective residues being underlined in the peptide 

sequences (B signifies Bpa). Data derive from four independent XL-MS experiments using either BS
2
G or BS

3
 as well as from additional data sources as specified in table 

footnotes. Accordingly, each cross-link was categorized into one of the following ‘reproducibility groups’: (I) the cross-linked peptide was independently reproduced, (II) 

the cross-linked residue pair was independently reproduced, (III) the cross-linked residue pair was repoduced in technical replicates, and (IV) not reproduced. The Cα-Cα 

distances of individual cross-links were measured in the indicated structures using PyMOL. Orange and red values signify Cα-Cα distances that violated the defined 

distance threshold by < 5 Å and > 5 Å, respectively. The table was adapted from (1) in accordance with Elsevier’s policies. 

XL 

ISWI 
Vari-
ant 

Site 
1 

Site 
2 Peptide 1 sequence  Peptide 2 sequence  

Mass 
(Da) 

Charg
e 

Error 
(ppm) 

DmISWI 
protein 

Cross-
linker 

Repro-
ducibility 

group 

Size 
selec-
tion 

Cα-Cα distances (Å) 

cf. model 
in Figure 

14A 

cf. model 
in Figure 

14E 

cf. model 
in Figure 

16 

cf. model 
in Figure 

23B 

cf. model 
in Figure 

26D 

[Cross-linking sites 1, 
2 in pdb 5JXR] 

cf. structure in  
Figure 26C 

1
ǂ
 a 578 172 BVIQGGR HFK 1309.693 3 0.1 M578B Bpa I In-gel 13.8

x
 13.8

x
 45.9 13.3

x
 16.8 16.9 [637, 230] 

1
ǂ
 b 578 172 BVIQGGR TLQTISLLGYLKHFK  2640.479 4 9.0 M578B Bpa I In-gel 13.8

x
 13.8

x
 45.9 13.3

x
 16.8 16.9 [637, 230] 

2
ǂ
  578 120 LDKBVIQGGR  FDASPAYIK  2246.174 3 8.3 M578B Bpa I In-gel 11.2

x
 10.0

x
 39.4 10.6

x
 12.4 12.3 [637, 179] 

3
ǂ
  338 483 LHAVLKPFLLR  LDGQTPBEDR  2586.396 4 8.0 H483B Bpa I In-gel 12.8

x
 10.2

x
 23.9 20.7

x
 18.1 18.1 [395, 542] 

4 a 547 350 IGQKKQVR  LKAEVEKR  2065.237 4 0.1 WT BS
3
 II SEC 10.2 11.4

x
 21.4 17.0 9.8 9.7 [606, 407] 

4 b 547 350 IGQKK LKAEVEKR 1682.009 3 0.3 WT BS
3
 I SEC 10.2 11.4

x
 21.4 17.0 9.8 9.7 [606, 407] 

4 c 547 350 IGQKKQVR  LKAEVEKR  2065.237 4 0.1 WT BS
3
 II SEC 10.2 11.4

x
 21.4 17.0 9.8 9.7 [606, 407] 

5  337 547 LHAVLKPFLLRR  IGQKK  2172.363 4 -0.1 WT BS
3
 IV none 28.9 23.9

x
 29.8 17.7 20.7 21.0 [395, 606] 

6 a 350 353 LKAEVEKR LKPKKEMK 2110.255 5 -0.8 WT BS
3
 II SEC 10.9 9.0

x
 16.7 12.5 9.7 9.6 [407, 410] 

6
†
 b 350 353 AEVEKR  LKPK  1310.756 4 1.4 WT BS

2
G II SEC 10.9 9.0

x
 16.7 12.5 9.7 9.6 [407, 410] 

6
†
 c 350 353 LKAEVEKR  LKPK  1551.935 3 4.1 WT BS

2
G I SEC 10.9 9.0

x
 16.7 12.5 9.7 9.6 [407, 410] 

7  169 578 TLQTISLLGYLKHFK  LDKBVIQGGR  2996.685 4 5.1 M578B Bpa I In-gel 11.9 12.0
x
 41.0 13.3 18.4 18.4 [227, 637] 

8  637 345 TAEQKAALDSLGESSLR  LKAEVEKR  2884.551 4 1.9 WT BS
3
 IV none 34.1 30.9

x
 20.8 27.1 51.7 51.2 (34.2

$
) [705, 402] 

9 a 637 577 TAEQKAALDSLGESSLR  LDKMVIQGGR  3028.587 3 2.2 WT BS
3
 I SEC 13.7 13.9 13.9 13.9 26.8 26.5 (12.4

$
) [705, 636] 

9 b 637 577 GEAKTAEQKAALDSLGESSLR  LDKMVIQGGR  3413.783 4 1.1 WT BS
3
 II SEC 13.7 13.9 13.9 13.9 26.8 26.5 (12.4

$
) [705, 636] 

9 c 637 577 GEAKTAEQKAALDSLGESSLR  LRLDKMVIQGGR  3682.968 5 1.2 WT BS
3
 II SEC 13.7 13.9 13.9 13.9 26.8 26.5 (12.4

$
) [705, 636] 

9
†
 d 637 577 TAEQKAALDSLGESSLR  LDKMVIQGGR  2986.540 3 3.9 WT BS2G II SEC 13.7 13.9 13.9 13.9 26.8 26.5 (12.4

$
) [705, 636] 

9
†
 e 637 577 TAEQKAALDSLGESSLR  LRLDKMVIQGGR  3271.720 4 6.0 WT BS2G II SEC 13.7 13.9 13.9 13.9 26.8 26.5 (12.4

$
) [705, 636] 

10
†
 a 637 356 TAEQKAALDSLGESSLR  KEMK  2405.211 3 6.6 WT BS2G II SEC 16.8 16.8 16.8 16.8 44.7 43.9 (13.2

$
) [705, 413] 

10 b 637 356 TAEQKAALDSLGESSLR  KEMKIFVGLSK  3191.711 4 2.8 WT BS
3
 II SEC 16.8 16.8 16.8 16.8 44.7 43.9 (13.2

$
) [705, 413] 

11 a 391 595 DIDVVNGAGKVEKMR  SNQLNKDEMLNIIR  3454.792 4 1.4 WT BS
3
 I SEC 4.8 4.8 4.8 4.8 53.0 54.8 (6.1

$
) [450, 654] 

11
†
 b 391 595 VEKMR SNQLNKDEMLNIIR 2444.252 4 6.0 WT BS

2
G II SEC 4.8 4.8 4.8 4.8 53.0 54.8 (6.1

$
) [450, 654] 

11
†
 c 391 595 DIDVVNGAGKVEKMR  SNQLNKDEMLNIIR  3412.745 3 7.2 WT BS

2
G I SEC 4.8 4.8 4.8 4.8 53.0 54.8 (6.1

$
) [450, 654] 

11
†
 d 391 595 DIDVVNGAGKVEKMR  SNQLNKDEMLNIIR  3870.101 4 9.6 WT BS

2
G I SEC 4.8 4.8 4.8 4.8 53.0 54.8 (6.1

$
) [450, 654] 

12 a 388 595 VLLKDIDVVNGAGKVEK SNQLNKDEMLNIIR  3620.981 4 -0.7 WT BS
3
 I SEC 9.4 9.4 9.5 9.4 55.9 60.3 (11.8

$
) [445, 654] 

12 b 388 595 DIDVVNGAGKVEK  SNQLNKDEMLNIIR  3167.650 3 0.8 WT BS
3
 II SEC 9.4 9.4 9.5 9.4 55.9 60.3 (11.8

$
) [445, 654] 

12 c 388 595 VLLKDIDVVNGAGKVEK  LVDNRSNQLNKDEMLNIIR  4218.305 5 1.5 WT BS
3
 II SEC 9.4 9.4 9.5 9.4 55.9 60.3 (11.8

$
) [445, 654] 

12
†
 d 388 595 VLLKDIDVVNGAGKVEKMR  SNQLNKDEMLNIIR  3870.101 4 7.8 WT BS

2
G I SEC 9.4 9.4 9.5 9.4 55.9 60.3 (11.8

$
) [445, 654] 

13
†
  337 70 LHAVLKPFLLR  SPTKPK  2058.236 4 6.0 WT BS

2
G IV SEC N/A N/A N/A N/A 25.4 25.3 [394, 119] 

14  52 70 RFDFLLKQTEIFTHFMTNSAK  SPTKPK  3329.742 4 4.5 WT BS
2
G I SEC N/A N/A N/A N/A 17.2 17.6 [101, 119] 

15  276 247 EFKTANR  KFNWR  1751.911 3 0.7 WT BS
3
 III none 8.1 8.1 8.1 8.1 8.6 8.5 [334, 305] 
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16
†
  276 246 EFKTANR  SVFKK  1567.836 3 1.8 WT BS

2
G I SEC 7.4 7.4 7.4 7.4 7.1 7.1 [334, 304] 

17
†
  186 267 NQAGPHIVIVPKSTLQNWVNEFK SKLSEILR  3658.984 3 7.9 WT BS

2
G III SEC 17.7 17.7 17.7 17.7 15.9 16.2 [244, 325] 

18
†
  267 242 SKLSEILR  EKSVFK 1776.999 3 4.5 WT BS

2
G I SEC 10.4 10.4 10.4 10.4 12.5 12.5 [325, 300] 

19 a 564 577 LITESTVEEKIVER  LDKMVIQGGR  2898.574 4 -0.3 WT BS
3
 III none 22.6 22.6 22.6 22.9 20.4 20.2 [623, 636] 

19 b 564 577 LITESTVEEKIVERAEVK  LRLDKMVIQGGR  3595.002 4 0.6 WT BS
3
 III none 22.6 22.6 22.6 22.9 20.4 20.2 [623, 636] 

20  356 548 KEMKIFVGLSK  IGQKKQVR 2372.398 5 0.9 WT BS
3
 III none 11.8 11.8 11.8 11.8 11.3 11.3 [413, 607] 

21  353 547 LKPKKEMK  IGQKK  1711.043 3 -0.7 WT BS
3
 I SEC 6.9 6.9 6.9 6.9 7.9 7.8 [410, 606] 

22
†
  353 548 LKPKKEMK  KQVR  1629.990 4 1.4 WT BS

2
G I SEC 6.7 6.7 6.7 6.7 7.9 7.1 [410, 607] 

23
†
  391 675 VEKMR  EKQK 1288.681 3 4.1 WT BS

2
G IV SEC N/A N/A N/A N/A N/A N/A [450, 735] 

24
 ǂ

 a 578 664 BVIQGGR AALDSLGESSLR 2097.086 3 6.3 M578B Bpa II SEC N/A N/A N/A N/A N/A 10.3 [637, 712] 

24
 ǂ

 b 578 664 LDKBVIQGGR AALDSLGESSLR 2453.292 3 9.0 M578B Bpa II SEC N/A N/A N/A N/A N/A 10.3 [637, 712] 

24
 ǂ

 c 578 664 LRLDKBVIQGGR AALDSLGESSLR 2722.477 4 5.0 M578B Bpa II SEC N/A N/A N/A N/A N/A 10.3 [637, 712] 

25
 ǂ

  578 665 BVIQGGR AALDSLGESSLR 2097.086 3 6.3 M578B Bpa II SEC N/A N/A N/A N/A N/A 8.6 [637, 713] 

26 a 693 577 KANYAVDAYFREALR  LRLDKMVIQGGR  3308.782 5 -0.8 WT BS
3
 IV none N/A N/A N/A N/A N/A N/A [752, 638] 

26 b 693 577 KANYAVDAYFR  LDKMVIQGGR  2570.332 4 0.9 WT BS
3
 IV none N/A N/A N/A N/A N/A N/A [752, 638] 

27 a 693 564 KANYAVDAYFR LITESTVEEKIVER 3099.613 4 1.4 WT BS
3
 III none N/A N/A N/A N/A N/A N/A [623, 752] 

27 b 693 564 KANYAVDAYFREALR  LITESTVEEKIVER  3568.878 5 2.7 WT BS
3
 III none N/A N/A N/A N/A N/A N/A [752, 623] 

28 a 613 693 
FGANQVFSSKETDITDEDIDVILER
GEAK 

KANYAVDAYFR  4680.288 5 4.0 WT BS
3
 III none N/A N/A N/A N/A N/A N/A [672, 752] 

28 b 613 693 FGANQVFSSKETDITDEDIDVILER  KANYAVDAYFR  4295.091 4 3.6 WT BS
3
 III none N/A N/A N/A N/A N/A N/A [672, 752] 

29  637 693 TAEQKAALDSLGESSLR  KANYAVDAYFR  3229.626 4 1.1 WT BS
3
 IV none N/A N/A N/A N/A N/A N/A [705, 752] 

30 a 595 693 LVDNRSNQLNKDEMLNIIR  KANYAVDAYFREALR  4208.180 5 -3.7 WT BS
3
 III none N/A N/A N/A N/A N/A N/A [654, 752] 

30 b 595 693 SNQLNKDEMLNIIR  KANYAVDAYFR  3141.592 3 1.1 WT BS
3
 III none N/A N/A N/A N/A N/A N/A [654, 752] 

30 c 595 693 LVDNRSNQLNKDEMLNIIR  KANYAVDAYFR  3754.910 5 1.8 WT BS
3
 III none N/A N/A N/A N/A N/A N/A [654, 752] 

30 d 595 693 SNQLNKDEMLNIIR KANYAVDAYFREALR 3626.852 5 -0.3 WT BS
3
 III none N/A N/A N/A N/A N/A N/A [752, 654] 

 

ǂ
 Cross-link was described in either Forné et al. (157) or Ludwigsen et al. (115). 

†
 Cross-link was identified in an unpublished data set provided by Dr. F. Müller-Planitz (LMU, Munich). 

x
 Cross-link was used as distance restraint during rigid body docking.  

$
 Cα-Cα distance between two protomers in the crystal structure. 

N/A = Not available, at least one amino acid is missing in the structure. 

 

  



 
170 Appendix 

STable 2: Cross-links originating from the HSS domain of the DmISWI enzyme under apo state conditions. Cross-linked peptides are listed in an ordered manner 

according to their cross-link identification number (XLISWI 31–61). The table is structured in an identical manner as described for STable 1. Data derive from five 

independent UV-induced or chemical cross-linking experiments as well as from an additional data source as specified in table footnotes. The table was adapted from (1) in 

accordance with Elsevier’s policies. 

XL 

ISWI 
Vari-
ant 

Site 
1 

Site 
2 Peptide 1 sequence Peptide 2 sequence 

Mass 
(Da) Charge 

Error 
(ppm) 

DmISWI 
protein 

Cross-
linker 

Repro-
ducibility 

group 

Size 
selec-
tion 

Cα-Cα distances (Å) 

cf. model in 
Figure 21 

cf. model in 
Figure 23A 

cf. model in 
Figure 23B 

cf. model in 
Figure 25 

cf. model in 
Figure 26D 

31
†□

 a 391 900 VEKMR GKNYTEIEDR 1980.958 3 5.2 WT BS
2
G I SEC 25.7

x
 39.8

x
 23.9

x
 25.6

x
 33.3

x
 

31
†
 b 391 900 DIDVVNGAGKVEKMR  GKNYTEIEDR  2949.450 3 8.4 WT BS

2
G I SEC 25.7

x
 39.8

x
 23.9

x
 25.6

x
 33.3

x
 

32
□
 a 595 810 LVDNRSNQLNKDEMLNIIR  DFNQFIKANEK  3774.937 4 -2.0 WT BS

3
 II SEC 31.7

x
 32.6

x
 29.0

x
 N/A 37.2

x
 

32
†
 b 595 810 SNQLNKDEMLNIIR  DFNQFIKANEK  3135.566 3 6.4 WT BS

2
G II SEC 31.7 32.6

x
 29.0 N/A 37.2 

32 c 595 810 SNQLNKDEMLNIIR  DFNQFIKANEK  3177.613 3 1.8 WT BS
3
 I SEC 31.7

x
 32.6

x
 29.0

x
 N/A 37.2

x
 

33
†□

  388 810 DIDVVNGAGKVEK  DFNQFIKANEK  2791.403 3 6.6 WT BS
2
G II SEC 23.7

x
 26.0

x
 22.6

x
 34.5

x
 33.8

x
 

34
†◊

  124 900 FDASPAYIKSGEMR  GKNYTEIEDR  2890.345 3 5.4 WT BS
2
G IV SEC 19.4

x
 33.0

x
 21.4

x
 18.6

x
 27.0

x
 

35
†□

  124 945 FDASPAYIKSGEMR  FDWFIKSR  2764.332 3 7.5 WT BS
2
G I SEC 29.1

x
 31.8

x
 25.8

x
 33.3

x
 33.9

x
 

36  865 391 GEGKIQR  VEKMR  1585.861 3 1.1 WT BS
3
 II SEC 26.2 30.1

x
 23.3 32.4 34.5 

37  945 247 ASPQFRFDWFIKSR  KFNWR  2671.381 4 0.2 WT BS
3
 IV none 49.6 32.7

x
 52.2 31.7 54.2 

38  973 353 RCNTLITLIERENIELEEKER  LKPKK  3369.859 3 -3.2 WT BS
2
G II SEC 59.6 46.2

x
 63.9 31.4 52.7 

39 a 564 945 LITESTVEEKIVERAEVK  FDWFIKSR  3307.771 4 2.3 WT BS
3
 II SEC 25.7 34.7

x
 17.8 28.4 7.9 

39
†
 b 564 945 LITESTVEEKIVER  FDWFIKSR  2838.481 3 5.8 WT BS

2
G I SEC 25.7 34.7

x
 17.8 28.4 7.9 

40  359 874 EMKIFVGLSK  KALDQK  2006.112 3 3.3 WT BS
3
 IV none 53.7 32.4

x
 49.9 35.1 44.0 

41  578 942 BVIQGGR  FDWFIK  1733.893 3 -2.2 M578B Bpa IV In-gel 18.6 27.1 15.2 31.0 20.8 

42 a 595 865 SNQLNKDEMLNIIR  GEGKIQR  2611.375 4 0.5 WT BS
3
 I SEC 24.9 27.7

x
 22.2 N/A 31.5 

42 b 595 865 LVDNRSNQLNKDEMLNIIR  GEGKIQR  3208.699 5 -0.1 WT BS
3
 II SEC 24.9 27.7

x
 22.2 N/A 31.5 

43  595 874 SNQLNKDEMLNIIR  KALDQK  2526.348 4 0.0 WT BS
3
 III none 33.3 21.8

x
 30.2 N/A 40.1 

44  595 879 SNQLNKDEMLNIIR  ALDQKMSR  2772.426 4 0.3 WT BS
3
 III none 34.5 22.1

x
 31.3 N/A 43.2 

45  595 900 SNQLNKDEMLNIIR  GKNYTEIEDR  3048.519 4 3.6 WT BS
3
 IV none 22.0 36.1

x
 20.2 N/A 37.7 

46
†
  900 70 GKNYTEIEDR  SPTKPK  1975.985 3 5.2 WT BS

2
G IV SEC N/A N/A N/A 33.2

x
 57.6 

47
†
  900 72 GKNYTEIEDR  SPTKPKGRPK  2414.256 4 4.4 WT BS

2
G IV SEC N/A N/A N/A 29.2

x
 53.1 

48  898 70 LQYGNNKGK  SPTKPK  1772.942 4 2.0 WT BS
2
G I SEC N/A N/A N/A 39.2

x
 62.1 

49  810 865 DFNQFIKANEK  GEGKIQR  2277.176 3 -0.5 WT BS
3
 I SEC 13.6 13.6 13.6 13.6 13.6 

50  810 825 DFNQFIKANEKYGR  DDIDNIAKDVEGK  3297.616 5 0.0 WT BS
3
 IV none 12.2 12.2 12.2 12.2 12.2 

51 a 879 945 ALDQKMSR  FDWFIKSR  2183.120 3 0.2 WT BS
3
 III none 25.2 25.2 25.2 25.2 25.2 

51 b 879 945 ALDQKMSR ASPQFRFDWFIKSR 2869.470 4 1.1 WT BS
3
 III none 25.2 25.2 25.2 25.2 25.2 

52
†
  756 712 VPKNTELGSDATK  VSEPKAPK  2309.212 3 5.8 WT BS

2
G I SEC N/A N/A N/A N/A N/A 

53
†
  814 865 ANEKYGRDDIDNIAK  GEGKIQR  2603.294 3 4.8 WT BS

2
G IV SEC 9.0 9.0 9.0 9.0 9.0 

54  830 810 DDIDNIAKDVEGKTPEEVIEYNAVFWER  DFNQFIKANEKYGR  5118.453 5 7.2 WT BS
2
G I SEC 14.3 14.3 14.3 14.3 14.3 

55  898 945 LQYGNNKGK  FDWFIKSR  2256.169 3 7.5 WT BS
3
 IV none 19.0 19.0 19.0 19.0 19.0 

56 a 945 874 FDWFIKSR  KALDQK  1937.041 4 0.5 WT BS
3
 III none 28.5 28.5 28.5 28.5 28.5 

56 b 945 874 ASPQFRFDWFIKSR  KALDQK  2623.391 5 0.6 WT BS
3
 III none 28.5 28.5 28.5 28.5 28.5 

57 a 756 693 TVGYKVPKNTELGSDATK  KANYAVDAYFR  3361.720 4 -0.1 WT BS
3
 III none N/A N/A N/A N/A N/A 

57 b 756 693 TVGYKVPKNTELGSDATK  KANYAVDAYFREALR  3830.985 5 0.4 WT BS
3
 III none N/A N/A N/A N/A N/A 

58  693 874 KANYAVDAYFR  KALDQK  2156.127 3 1.0 WT BS
3
 III none N/A N/A N/A N/A N/A 

59
†
  677 865 QKLNALGNWIEPPKR  GEGKIQR  2645.440 5 5.3 WT BS

2
G IV SEC N/A N/A N/A N/A N/A 

60
†
  865 675 GEGKIQR  EKQK  1413.758 3 5.6 WT BS

2
G IV SEC N/A N/A N/A N/A N/A 

61
†
  1023 1010 KSEVVATSSNSKK  ASQKR  2048.086 4 6.1 WT BS

2
G I SEC N/A N/A N/A N/A N/A 

 

†
 Cross-link was identified in an unpublished data set provided by Dr. F. Müller-Planitz (LMU, Munich). 

◊
, 

□ 
MS/MS spectra are provided in Figure 19 and SFigure 5, respectively. 

x
 Cross-link was used as distance restraint during rigid body docking. 

N/A = Not available, at least one amino acid is missing from the structure.   



  
171 Appendix 

STable 3: Cross-links for the Snf2H enzyme under apo state conditions. Cross-linked peptides are listed in an ordered manner according to their cross-link 

identification number (XLSnf2H 1–84). The table is structured in an indentical manner as described for STable 1 with cross-linked sites being color-coded according to the 

domain architecture in Figure 27. Data derive from two independent XL-MS experiments. 

XL 

Snf2H 
Vari- 
ant 

Site 
1

#
 

Site 
2 Peptide 1 sequence Peptide 2 sequence 

Mass 
(Da) Charge 

Error 
(ppm) 

Cross-
linker 

Repro-
ducibility 

group 

Size 
selec-
tion 

Peptide 
enrich- 
ment 

Cα-Cα distances (Å) 

cf. model #1 in  
Figure 31A 

1 
 

899 176 CNELQDIEKIMAQIER  FEDSPSYVKWGK  3568.7221 3 4.8 BS
3
 IV SEC + 42.5 

2 
 

929 314 YKAPFHQLR  IKNEK  1927.0681 5 -0.8 BS
3
 IV SEC + 24.3 

3 
 

929 328 YKAPFHQLR  EFKTTNR  2191.1540 3 0 BS
3
 III SEC + 30.5 

4 
 

397 758 RIKADVEK  VSEPKAPK  1950.1152 3 0.5 BS
3
 IV SEC + 56.4 

5 a 397 799 RIKADVEK  TIGYKVPR  2028.1734 3 0.5 BS
3
 III SEC + 64.4 

5 b 799 397 TIGYKVPR  IKADVEK  1872.0722 3 -0.1 BS
3
 III SEC + 64.4 

6 a 990 397 FDWFLKSR  IKADVEK  2037.0937 3 0.9 BS
3
 II none + 43.2 

6 b 990 397 FDWFLKSR  RIKADVEK  2193.1948 3 2.3 BS
3
 II SEC + 43.2 

7 a 929 397 YKAPFHQLR  IKADVEK  2098.1577 3 1.1 BS
3
 III SEC + 28.8

x
 

7
□
 b 929 397 YKAPFHQLR  RIKADVEK  2254.2588 3 3.0 BS

3
 III SEC + 28.8

x
 

8
□
 

 
264 929 SVCLIGDKEQR  YKAPFHQLR  2600.3536 4 0.7 BS

3
 III SEC + 19.1

x
 

9
□
 

 
176 855 FEDSPSYVKWGK  DFNQFIKANEK  2932.4285 3 2.0 BS

3
 IV SEC + 31.3

x
 

10
□
 

 
223 929 TLQTISLLGYMKHYR  YKAPFHQLR  3119.6745 4 2.1 BS

3
 III SEC + 31.8

x
 

11
□
 a 264 990 SVCLIGDKEQR  FDWFLKSR  2539.2896 3 -1.1 BS

3
 I SEC + 33.7

x
 

11 b 264 990 SVCLIGDKEQR  FDWFLKSR  2543.3147 3 -0.8 BS
3
 I none + 33.7

x
 

12
□
 

 
176 929 FEDSPSYVKWGK  YKAPFHQLR  2738.3859 3 0.4 BS

3
 IV SEC + 29.2

x
 

13 
 

160 929 RTEQEEDEELLTESSKATNVCTR  YKAPFHQLR  4020.9490 5 3.1 BS
3
 III SEC + 39.9 

14
□
 a 176 990 FEDSPSYVKWGK  FDWFLKSR  2677.3219 3 2.0 BS

3
 I SEC + 31.3

x
 

14 b 176 990 FEDSPSYVKWGK  FDWFLKSR  2681.3470 4 0.4 BS
3
 I none + 31.3

x
 

15 
 

160 990 TEQEEDEELLTESSKATNVCTR  FDWFLKSR  3803.7839 3 2.9 BS
3
 III SEC + 51.1 

16 
 

847 264 LLTQGFTNWNKR  SVCLIGDKEQR  2918.5075 3 3.1 BS
3
 III SEC + 69.7 

17 
 

990 408 FDWFLKSR  KEVK  1737.9456 3 0.3 BS
3
 IV none + 45.3 

18 a 929 408 YKAPFHQLR  KEVK  1803.0347 4 -1.0 BS
3
 IV none + 41.8 

18 b 408 929 SLPPKKEVK  YKAPFHQLR  2321.3262 5 1.7 BS
3
 II SEC + 41.8 

19 
 

855 418 DFNQFIKANEK  IYVGLSKMQR  2684.3998 3 2.0 BS
3
 III SEC + 33.0 

20 
 

929 494 YKAPFHQLR  LLPKLK  2007.2035 3 0.3 BS
3
 IV SEC + 43.3 

21 
 

990 600 FDWFLKSR  IGQTKTVR  2137.1686 3 -1.6 BS
3
 IV SEC + 49.6 

22 
 

929 600 YKAPFHQLR  IGQTKTVR  2198.2326 3 1.1 BS
3
 II SEC + 51.1 

23 
 

418 758 IYVGLSKMQR  VSEPKAPK  2202.2084 3 1.1 BS
3
 II SEC + 51.1 

24 
 

430 855 ILMKDIDILNSAGK  DFNQFIKANEK  3020.5895 3 -1.6 BS
3
 III SEC + 48.5 

25
∆
 

 
430 929 ILMKDIDILNSAGK  YKAPFHQLR  2826.5468 4 -2.8 BS

3
 IV SEC + 48.4 

26
□
 

 
418 929 IYVGLSKMQR  YKAPFHQLR  2490.3571 3 1.8 BS

3
 III SEC + 38.4

x
 

27 
 

407 929 SLPPKKEVK  YKAPFHQLR  2321.3262 5 1.7 BS
3
 IV SEC + 45.2 

28
□
 

 
430 990 ILMKDIDILNSAGK  FDWFLKSR  2765.4828 3 1.3 BS

3
 III SEC + 31.5

x
 

29
□
 

 
418 990 IYVGLSKMQR  FDWFLKSR  2429.2932 3 -0.3 BS

3
 I SEC + 19.1

x
 

30
◊
 a 647 929 IGKDEMLQMIR  YKAPFHQLR  2629.3875 4 -3.3 BS

3
 IV SEC + 51.7 

30 b 647 929 YKAPFHQLR  IKKDEK  2056.1471 5 -0.4 BS
3
 III SEC + 51.7 

31
◊
 

 
665 990 HGATHVFASKESEITDEDIDGILER FDWFLKSR  4003.9595 5 3.0 BS

3
 I none + 13.5 

32 
 

694 990 LSKMGESSLR  FDWFLKSR  2358.2044 4 -1.8 BS
3
 IV SEC + N/A 

33
◊
 

 
990 128 FDWFLKSR  IKKDEK  1995.0831 3 0.6 BS

3
 IV SEC + 23.7 

34
◊
 

 
990 121 FDWFLKSR  MKPGRPR  2076.1093 5 -0.3 BS

3
 III SEC + 25.0 

35
◊
 a 132 990 DEKQNLLSVGDYR  FDWFLKSR  2771.3921 4 0.9 BS

3
 III SEC + 20.5 

35 b 132 990 KDEKQNLLSVGDYR  FDWFLKSR  2899.4871 4 -0.3 BS
3
 III SEC + 20.5 

36 
 

97 990 ANRFEYLLKQTELFAHFIQPAAQK  FDWFLKSR  4098.1522 5 0.6 BS
3
 III SEC + N/A 

37 
 

71 990 QKEIQEPDPTYEEK  FDWFLKSR  2968.4497 3 0 BS
3
 IV SEC + N/A 
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38 
 

71 299 QKEIQEPDPTYEEK  KFNWR  2620.2811 4 -1.6 BS
3
 III SEC + N/A 

39 
 

71 328 QKEIQEPDPTYEEK  EFKTTNR  2765.3398 4 -0.3 BS
3
 III SEC + N/A 

40 a 160 121 RTEQEEDEELLTESSKATNVCTR  MKPGRPR  3702.7944 5 -0.7 BS
3
 III SEC + 32.5 

40 b 160 121 TEQEEDEELLTESSKATNVCTR  MKPGRPR  3546.6933 4 1.6 BS
3
 III SEC + 32.5 

41 a 160 128 RTEQEEDEELLTESSKATNVCTR  IKKDEK  3621.7683 5 -0.5 BS
3
 III SEC + 35.4 

41 b 160 128 TEQEEDEELLTESSKATNVCTR  IKKDEK  3465.6671 5 0.5 BS
3
 III SEC + 35.4 

42 a 160 129 RTEQEEDEELLTESSKATNVCTR  IKKDEK  3621.7683 4 2.5 BS
3
 III SEC + 33.6 

42 b 160 129 TEQEEDEELLTESSKATNVCTR  IKKDEK  3465.6671 5 1.4 BS
3
 III SEC + 33.6 

43 
 

397 624 IKADVEK  AEMKLR  1701.9337 3 0.6 BS
3
 II SEC + 35.3 

44
□
 

 
160 644 TEQEEDEELLTESSKATNVCTR  LVDQNLNKIGKDEMLQMIR 4963.4104 5 2.8 BS

3
 IV SEC + 37.2

x
 

45
◊
 

 
440 647 DIDILNSAGKMDK  IGKDEMLQMIR  2889.4652 3 -1.8 BS

3
 II SEC + 8.8 

46 a 644 443 LVDQNLNKIGKDEMLQMIR  MDKMR  3078.6002 4 -0.9 BS
3
 I none + 16.8 

46
◊
 b 644 443 LVDQNLNKIGK  MDKMR  2058.0967 3 3.1 BS

3
 II SEC + 16.8 

47
◊
 

 
647 443 IGKDEMLQMIR  MDKMR  2150.0722 3 0.7 BS

3
 II SEC + 8.0 

48
◊
 a 665 418 HGATHVFASKESEITDEDIDGILER  IYVGLSKMQR  4100.0527 4 3.5 BS

3
 I SEC + 21.5 

48 b 665 418 HGATHVFASK  IYVGLSKMQR  2385.2629 3 -0.2 BS
3
 IV SEC + 21.5 

49
◊
 

 
665 430 HGATHVFASKESEITDEDIDGILER  ILMKDIDILNSAGK  4436.2424 4 2.2 BS

3
 III SEC + 21.5 

50
∆
 

 
684 408 KTAEMNEK  KEVK  1593.8587 3 0.1 BS

3
 I none + 9.1 

51 a 665 683 HGATHVFASKESEITDEDIDGILER  GAKK  3308.6527 3 3.3 BS
3
 II SEC + 28.3 

51 b 665 683 HGATHVFASK  GAKK  1593.8629 4 -1.1 BS
3
 II SEC + 28.3 

52 a 665 684 HGATHVFASKESEITDEDIDGILER  KTAEMNEK  3855.8475 4 -0.2 BS
3
 III SEC + 29.4 

52 b 665 684 HGATHVFASK  KTAEMNEK  2141.0577 3 1.2 BS
3
 III SEC + 29.4 

53 
 

407 494 SLPPKKEVK  LLPKLK  1873.2018 3 0.8 BS
3
 I SEC + 19.5 

54  407 600 SLPPKKEVK  IGQTKTVR  2068.2560 4 0.6 BS
3
 I none + 9.2 

55 
 

408 494 SLPPKKEVK  LLPKLK  1873.2018 3 -0.5 BS
3
 I SEC + 17.9 

56 a 408 600 SLPPKKEVK  IGQTKTVR  2064.2309 3 -1.0 BS
3
 I SEC + 11.8 

56 b 600 408 IGQTKTVR  KEVK  1545.9394 3 0.7 BS
3
 I none + 11.8 

57 
 

430 418 ILMKDIDILNSAGK  IYVGLSKMQR  2861.5761 4 3.2 BS
3
 III SEC + 18.8 

58 
 

494 407 MVVLDKLLPKLK  SLPPKKEVK  2558.5851 3 1.4 BS
3
 II SEC + 19.5 

59 a 494 408 MVVLDKLLPKLK  KEVK  2036.2685 3 1.3 BS
3
 II SEC + 17.9 

59 b 494 408 LLPKLK  KEVK  1350.8852 3 -0.6 BS
3
 I SEC + 17.9 

59 c 494 408 MVVLDKLLPKLK  SLPPKKEVK  2574.5800 4 0.5 BS
3
 II SEC + 17.9 

59 d 494 408 LLPKLKEQGSR  KEVK  1908.1410 4 -0.2 BS
3
 II SEC + 17.9 

59 e 494 408 MVVLDKLLPKLK  SLPPKKEVK  2558.5851 3 1.4 BS
3
 II SEC + 17.9 

60 a 494 411 MVVLDKLLPKLK  KEVK  2036.2685 4 0.8 BS
3
 III SEC + 17.7 

60 b 494 411 LLPKLK  KEVK  1350.8852 3 -0.7 BS
3
 III SEC + 17.7 

60 c 494 411 LLPKLKEQGSR  KEVK  1908.1410 3 0.6 BS
3
 III SEC + 17.7 

61 a 494 600 MVVLDKLLPKLK  IGQTKTVR  2435.4915 4 -0.1 BS
3
 III SEC + 17.9 

61 b 600 494 IGQTKTVR  LLPKLK  1750.1082 3 0.7 BS
3
 III SEC + 17.9 

62 a 600 496 IGQTKTVR  LKEQGSR  1860.0732 4 0.8 BS
3
 I SEC + 15.5 

63 
 

600 624 IGQTKTVR  AEMKLR  1790.0388 3 -0.4 BS
3
 I none + 29.3 

64 
 

264 294 SVCLIGDKEQR  EKSVFK  2178.1357 3 0.1 BS
3
 III SEC + 13.9 

65 
 

264 298 SVCLIGDKEQR  EKSVFKK  2306.2307 3 0.1 BS
3
 IV SEC + 17.7 

66 
 

264 299 SVCLIGDKEQR  KFNWR  2195.1461 4 -0.3 BS
3
 I none + 19.1 

67 
 

264 314 SVCLIGDKEQR  IKNEK  2072.0938 4 0.1 BS
3
 III SEC + 29.4 

68 
 

264 317 SVCLIGDKEQR  IKNEKSK  2287.2208 4 0 BS
3
 IV SEC + 26.7 

69 a 264 319 SVCLIGDKEQR  SKLSEIVR  2372.2736 3 -0.1 BS
3
 III SEC + 20.5 

69 b 264 319 WVPTLRSVCLIGDKEQR  SKLSEIVR  3124.7070 3 4.7 BS
3
 III SEC + 20.5 

70 
 

767 847 APRPPKQPNVQDFQFFPPR  LLTQGFTNWNKR  3880.0328 5 2.1 BS
3
 III SEC + 20.6 

71  929 990 YKAPFHQLR  FDWFLKSR  2394.2639 3 5.5 BS
3
 III SEC + 26.8 

72 
 

847 761 LLTQGFTNWNKR  APKAPRPPK  2575.4389 3 -1.1 BS
3
 III SEC + 22.3 

73 
 

899 847 CNELQDIEKIMAQIER  LLTQGFTNWNKR  3603.8180 3 -0.8 BS
3
 III SEC + 15.2 

74 a 814 799 NPELPNAAQAQKEEQLK  KTIGYKVPR  3105.6825 4 -0.8 BS
3
 II SEC + 10.0 

             
 

* continues next page * 



  
173 Appendix 

              

74 b 814 799 NPELPNAAQAQKEEQLK  TIGYKVPR  2977.5875 3 2.2 BS
3
 II SEC + 10.0 

75 a 799 758 TIGYKVPR  VSEPKAPK  1925.0988 3 0.2 BS
3
 I SEC + 20.2 

75 b 799 758 KTIGYKVPR  VSEPKAPK  2053.1937 3 0.5 BS
3
 II SEC + 20.2 

76 a 71 121 QKEIQEPDPTYEEK  MKPGRPR  2711.3591 5 -0.6 BS
3
 III SEC + N/A 

76 b 71 121 QKEIQEPDPTYEEK  TPTSPLKMKPGRPR  3435.7710 5 -2.9 BS
3
 IV SEC + N/A 

77 
 

71 128 QKEIQEPDPTYEEK  IKKDEK  2630.3329 4 -2.8 BS
3
 III SEC + N/A 

78 
 

71 129 QKEIQEPDPTYEEK  IKKDEK  2630.3329 4 0.6 BS
3
 IV SEC + N/A 

79 a 83 121 EIQEPDPTYEEKMQTDR  MKPGRPR  3086.4804 4 -2.8 BS
3
 III SEC + N/A 

79 b 83 121 EIQEPDPTYEEKMQTDRANR  MKPGRPRIKK  3812.9304 4 -7.9 BS
3
 IV SEC + N/A 

80 
 

97 121 ANRFEYLLKQTELFAHFIQPAAQK  MKPGRPR  3841.0616 5 3.8 BS
3
 II SEC + N/A 

81 a 97 128 ANRFEYLLKQTELFAHFIQPAAQK  IKKDEK  3760.0355 4 2.2 BS
3
 III SEC + N/A 

81 b 97 128 FEYLLKQTELFAHFIQPAAQK  IKKDEK  3418.8543 5 -0.7 BS
3
 III SEC + N/A 

82 a 97 129 ANRFEYLLKQTELFAHFIQPAAQK  KDEK  3518.8564 4 -3.8 BS
3
 III SEC + N/A 

82 b 97 129 FEYLLKQTELFAHFIQPAAQK  IKKDEK  3418.8543 5 3.4 BS
3
 III SEC + N/A 

83 a 855 739 DFNQFIKANEK  KANYAVDAYFR 2807.3921 3 2.1 BS
3
 I none + N/A 

83 b 855 739 RDFNQFIKANEK  KANYAVDAYFR  2963.4932 4 0.9 BS
3
 II SEC + N/A 

84 
 

919 1020 KALDTK  EKAEK  1415.7873 4 0.8 BS
3
 I none + N/A 

 

□
, 

◊
, 

∆
 MS/MS spectra are provided in SFigure 6, SFigure 9A, and SFigure 10A, respectively. 

x
 Cross-link was used as distance restraint during rigid body docking. 

N/A = Not available, at least one amino acid is missing in the structure. N/D = Not determined.  

 
 

 

 

 
 

 

 

 
 

 

STable 4: Cross-links for the Snf2H enzyme in the presence of ADP-BeFx. Cross-linked peptides are listed in an ordered manner according to their cross-link 

identification number (XLSnf2H,nt 1–154). The table is structured in an indentical manner as described for STable 1 with cross-linked sites being color-coded according to 

the domain architecture in Figure 27. Data derive from three independent XL-MS experiments. 

XL 

Snf2H,nt 
Vari- 
ant Site 1 Site 2 Peptide 1 sequence Peptide 2 sequence 

Mass 
(Da) Charge 

Error 
(ppm) 

Cross-
linker 

Repro-
ducibility 

group 

Size 
selec-
tion 

Peptide 
enrich- 
ment 

Cα-Cα distances (Å) 

cf. model #1 in  
Figure 37A 

1
∆
  176 847 FEDSPSYVKWGK  LLTQGFTNWNKR  3056.5398 3 2.3 BS

3
 III none + 54.5 

2
□
  176 855 FEDSPSYVKWGK  DFNQFIKANEK  2932.4285 3 0.2 BS

3 I SEC + 43.8
x
 

3
□
  176 929 FEDSPSYVKWGK  YKAPFHQLR  2738.3859 3 1.9 BS

3 I SEC + 18.3
x
 

4
□
  176 990 FEDSPSYVKWGK  FDWFLKSR  2677.3219 3 3.5 BS

3 I SEC + 40.8
x
 

5  223 855 TLQTISLLGYMKHYR  DFNQFIKANEK  3313.7171 3 3.4 BS
3 IV none + 45.5 

6
□
  223 929 TLQTISLLGYMKHYR  YKAPFHQLR  3119.6745 4 -1.1 BS

3 I SEC + 26.5
x
 

7  264 758 SVCLIGDKEQR  VSEPKAPK  2296.2099 3 -6.0 BS
3 IV SEC + 47.8 

8
□
  264 929 SVCLIGDKEQR  YKAPFHQLR  2600.3536 4 -1.6 BS

3 III SEC + 32.3
x
 

9
□
  264 990 SVCLIGDKEQR  FDWFLKSR  2539.2896 3 3.8 BS

3 III SEC + 25.2
x
 

10  758 397 VSEPKAPK  IKADVEK  1794.0140 3 0.9 BS
3 IV SEC + 86.4 

11
□
  847 264 LLTQGFTNWNKR  SVCLIGDKEQR  2918.5075 3 2.9 BS

3 IV SEC + 32.8
x
 

12
□
  855 299 DFNQFIKANEK  KFNWR  2240.1380 3 1.1 BS

3 I SEC + 40.1
x
 

13
□
  929 299 YKAPFHQLR  KFNWR  2046.0954 3 -3.0 BS

3 I SEC + 35.9
x
 

14  929 328 YKAPFHQLR  EFKTTNR  2191.1540 3 -1.0 BS
3 I SEC + 32.8 

15
□
 a 929 397 YKAPFHQLR  IKADVEK  2098.1577 3 1.2 BS

3 I SEC + 15.6
x
 

15 b 929 397 YKAPFHQLR  RIKADVEK  2254.2588 5 -0.3 BS
3 I SEC + 15.6 

16
□
  990 299 FDWFLKSR  KFNWR  1985.0314 4 -2.2 BS

3 I SEC + 33.7
x
 

17
□
  990 328 FDWFLKSR  EFKTTNR  2130.0900 3 1.1 BS

3 I none + 33.4
x
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18
□
 a 990 397 FDWFLKSR  IKADVEK  2037.0937 3 0.2 BS

3 I none + 33.4
x
 

18 b 990 397 FDWFLKSR  RIKADVEK  2193.1948 3 0.3 BS
3 II none + 33.4 

18 c 990 397 NSPQFRFDWFLKSR  IKADVEK  2766.4496 4 3.1 BS
3 II none + 33.4 

18 d 990 397 NSPQFRFDWFLKSR  RIKADVEK  2922.5507 4 2.3 BS
3 II none + 33.4 

19  176 1036 FEDSPSYVKWGK  KMDGAPDGR  2525.1899 4 4.1 BS
3 I none + N/A 

20  264 1036 SVCLIGDKEQR  KMDGAPDGR  2403.1525 4 2.8 BS
3 III SEC + N/A 

21  223 739 TLQTISLLGYMKHYR  KANYAVDAYFR  3277.6960 3 1.1 BS
3 I none + N/A 

22  176 739 FEDSPSYVKWGK  KANYAVDAYFR  2896.4074 3 2.2 BS
3 I none + N/A 

23  418 929 IYVGLSKMQR  YKAPFHQLR  2490.3571 3 2.4 BS
3 I none + 38.1 

24
□
  418 990 IYVGLSKMQR  FDWFLKSR  2429.2932 3 2.1 BS

3 I none + 24.8
x
 

25  430 855 ILMKDIDILNSAGK  DFNQFIKANEK  3020.5895 3 3.1 BS
3 I none + 73.4 

26
□
 a 430 990 ILMKDIDILNSAGK  FDWFLKSR  2765.4828 3 4.7 BS

3 I SEC + 36.2
x
 

26 b 430 990 ILMKDIDILNSAGKMDK  FDWFLKSR  3139.6452 4 0.1 BS
3 II none + 36.2 

26 c 430 990 ILMKDIDILNSAGK  NSPQFRFDWFLKSR  3494.8387 4 3.6 BS
3 III none + 36.2 

27  440 990 ILMKDIDILNSAGKMDK  FDWFLKSR  3139.6452 4 1.7 BS
3 IV none + 43.9 

28  990 624 FDWFLKSR  AEMKLR  1982.0450 3 -1.0 BS
3 I SEC + 40.4 

29  990 496 FDWFLKSR  LKEQGSR  2052.0794 3 0.3 BS
3 IV SEC + 39.8 

30  418 1036 IYVGLSKMQR  KMDGAPDGR  2277.1612 3 3.4 BS
3 I none + N/A 

31  430 739 ILMKDIDILNSAGK  KANYAVDAYFR  2984.5684 4 -0.3 BS
3 I SEC + N/A 

32  71 684 QKEIQEPDPTYEEK  KTAEMNEK  2820.3377 3 1.8 BS
3 I SEC + N/A 

33  160 644 TEQEEDEELLTESSKATNVCTR  LVDQNLNKIGKDEMLQMIR 4963.4104 5 -1.1 BS
3 III SEC + 72.3 

34  496 129 LKEQGSR  IKKDEK  1713.9627 3 -1.4 BS
3 IV SEC + 54.3 

35  83 328 EIQEPDPTYEEKMQTDR  EFKTTNR  3140.4610 3 -0.2 BS
3 IV SEC + N/A 

36  97 328 ANRFEYLLKQTELFAHFIQPAAQK  EFKTTNR  3895.0423 5 4.1 BS
3 IV SEC + N/A 

37  71 929 QKEIQEPDPTYEEK  YKAPFHQLR  3029.5137 4 1.6 BS
3 I SEC + N/A 

38  71 990 QKEIQEPDPTYEEK  FDWFLKSR  2968.4497 3 0.1 BS
3 I SEC + N/A 

39  83 929 EIQEPDPTYEEKMQTDR  YKAPFHQLR  3404.6349 4 1.0 BS
3 IV SEC + N/A 

40  97 990 ANRFEYLLKQTELFAHFIQPAAQK  FDWFLKSR  4098.1522 5 -4.3 BS
3 IV SEC + N/A 

41
∆
  132 990 DEKQNLLSVGDYR  FDWFLKSR  2771.3921 3 -0.7 BS

3 IV SEC + 36.9 

42 a 160 929 RTEQEEDEELLTESSKATNVCTR  YKAPFHQLR  4020.9490 5 -1.4 BS
3 III SEC + 36.4 

42 b 160 929 TEQEEDEELLTESSKATNVCTR  YKAPFHQLR  3864.8479 4 4.0 BS
3 III SEC + 36.4 

43
∆
  929 128 YKAPFHQLR  IKKDEK  2056.1471 3 0.6 BS

3 IV SEC + 24.9 
44

∆
  990 129 FDWFLKSR  IKKDEK  1995.0831 3 -0.9 BS

3 I SEC + 27.9 
45

∆
 a 990 128 FDWFLKSR  IKKDEK  1995.0831 3 1.2 BS

3 II SEC + 25.2 

45 b 990 128 NSPQFRFDWFLKSR  IKKDEK  2724.4390 4 4.8 BS
3 II none + 25.2 

46
∆
 a 990 121 FDWFLKSR  MKPGRPR  2076.1093 4 -0.5 BS

3 I SEC + 36.6 

46 b 990 121 NSPQFRFDWFLKSR  MKPGRPR  2805.4652 5 1.3 BS
3 II none + 36.6 

47  97 128 ANRFEYLLKQTELFAHFIQPAAQK  IKKDEK  3760.0355 5 0.8 BS
3 I none + N/A 

48 a 160 128 RTEQEEDEELLTESSKATNVCTR  IKKDEK  3621.7683 5 1.6 BS
3 II SEC + 35.7 

48 b 160 128 TEQEEDEELLTESSKATNVCTR  IKKDEK  3465.6671 3 1.0 BS
3 II SEC + 35.7 

49  83 121 EIQEPDPTYEEKMQTDR  MKPGRPR  3086.4804 5 2.9 BS
3 II none + N/A 

50
∆
 a 647 443 LVDQNLNKIGKDEMLQMIR  MDKMR  3074.5751 3 2.4 BS

3 II none + 8.0 

50 b 647 443 IGKDEMLQMIR  MDKMR  2150.0722 3 1.1 BS
3 I none + 8.0 

51
∆
 a 440 647 DIDILNSAGKMDK  IGKDEMLQMIR  2889.4652 3 2.5 BS

3 I SEC + 8.8 

51 b 440 647 ILMKDIDILNSAGKMDK  IGKDEMLQMIR  3374.7688 5 2.6 BS
3 II SEC + 8.8 

51 c 440 647 DIDILNSAGKMDKMR  IGKDEMLQMIR  3176.6068 4 3.6 BS
3 II none + 8.8 

52
∆
  665 430 HGATHVFASKESEITDEDIDGILER ILMKDIDILNSAGK  4436.2424 4 2.0 BS

3 I SEC + 21.5 
53

∆
  665 418 HGATHVFASKESEITDEDIDGILER  IYVGLSKMQR  4100.0527 4 1.2 BS

3 I none + 5.6 

54
∆
  647 929 LVDQNLNKIGKDEMLQMIR  YKAPFHQLR  3553.8904 4 1.0 BS

3 I none + 45.5 
55

∆
 a 647 990 LVDQNLNKIGKDEMLQMIR  FDWFLKSR  3492.8264 4 1.8 BS

3
  none + 43.1 

55 b 647 990 IGKDEMLQMIR  FDWFLKSR  2568.3235 3 0.4 BS
3 I none + 43.1 

56
□
  665 929 HGATHVFASKESEITDEDIDGILER  YKAPFHQLR  4065.0235 5 1.4 BS

3 I none + 36.8
x
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57
∆
  665 990 HGATHVFASKESEITDEDIDGILER  FDWFLKSR  4003.9595 4 -1.3 BS

3 I none + 20.1 

58  990 684 FDWFLKSR  KTAEMNEK  2185.0880 3 5.5 BS
3 IV SEC + 32.5 

59  665 684 HGATHVFASKESEITDEDIDGILER KTAEMNEK  3855.8475 4 1.4 BS
3 I SEC + 29.4 

60  665 724 HGATHVFASKESEITDEDIDGILER QKIAFTEWIEPPKR  4648.3452 5 5.7 BS
3 IV SEC + N/A 

61  665 735 HGATHVFASKESEITDEDIDGILER  IAFTEWIEPPKR  4392.1917 5 3.3 BS
3 IV none + N/A 

62 a 665 739 HGATHVFASKESEITDEDIDGILER KANYAVDAYFR  4223.0450 4 -1.8 BS
3 I SEC + N/A 

62 b 665 739 HGATHVFASKESEITDEDIDGILER ERKANYAVDAYFR  4508.1887 5 1.2 BS
3 IV SEC + N/A 

63  647 739 IGKDEMLQMIR  KANYAVDAYFR  2787.4090 3 -0.8 BS
3 I none + N/A 

64  665 1036 HGATHVFASKESEITDEDIDGILER KMDGAPDGR  3851.8275 4 0.2 BS
3 I SEC + N/A 

65  694 683 TAEMNEKLSKMGESSLR  GAKK  2450.2511 3 1.5 BS
3 III none + N/A 

66  694 758 LSKMGESSLR  VSEPKAPK  2115.1247 3 1.3 BS
3 IV SEC + N/A 

67  223 176 TLQTISLLGYMKHYR  FEDSPSYVKWGK  3402.7325 3 0.2 BS
3 IV none + 14.4 

68  249 298 STLHNWMSEFK  SVFKK  2140.0665 3 -6.6 BS
3 IV none + 26.8 

69  264 294 SVCLIGDKEQR  EKSVFK  2178.1357 4 1.1 BS
3 III SEC + 13.9 

70 a 264 299 SVCLIGDKEQR  KFNWR  2191.1210 3 0.5 BS
3 III none + 19.1 

70 b 264 299 SVCLIGDKEQR  SVFKKFNWR  2652.3849 3 3.9 BS
3 IV SEC + 19.1 

71  264 317 SVCLIGDKEQR  IKNEKSK  2287.2208 4 1.2 BS
3 IV SEC + 26.7 

72  264 319 SVCLIGDKEQR  SKLSEIVR  2372.2736 3 1.4 BS
3 IV SEC + 20.5 

73  292 319 DVLLPGEWDVCVTSYEMLIKEK  SKLSEIVR  3691.9096 3 5.8 BS
3 IV SEC + 11.1 

74  319 298 SKLSEIVR  SVFKK  1675.9874 3 0.3 BS
3 IV SEC + 13.0 

75  319 294 SKLSEIVR  EKSVFK  1805.0300 3 0.3 BS
3 IV SEC + 10.3 

76 a 328 299 EFKTTNR  KFNWR  1781.9215 4 2.7 BS
3 I none + 8.2 

76 b 328 299 LSEIVREFKTTNR  KFNWR  2479.3338 4 0.6 BS
3 II none + 8.2 

77 a 328 298 EFKTTNR  SVFKK  1639.8935 3 -1.0 BS
3 I SEC + 7.6 

77 b 328 298 LSEIVREFKTTNR  SVFKK  2337.3058 4 -4.0 BS
3 III none + 7.6 

78 a 397 314 IKADVEK  IKNEK  1573.9230 3 -0.8 BS
3 I none + 26.1 

78 b 397 314 RIKADVEK  IKNEK  1725.9991 3 -0.7 BS
3 I SEC + 26.1 

79  694 397 LSKMGESSLR  IKADVEK  2046.1033 3 -0.1 BS
3 I SEC + N/A 

80  724 176 QKIAFTEWIEPPKR  FEDSPSYVKWGK  3321.7076 5 3.7 BS
3 IV SEC + N/A 

81 a 739 397 KANYAVDAYFR  IKADVEK  2256.1792 3 0.4 BS
3 I none + N/A 

81 b 739 397 KANYAVDAYFR  RIKADVEK  2412.2804 3 -1.8 BS
3 III none + N/A 

82  739 328 KANYAVDAYFR  EFKTTNR  2349.1755 3 0.9 BS
3 IV SEC + N/A 

83  739 299 KANYAVDAYFR  KFNWR  2204.1169 3 3.9 BS
3 I none + N/A 

84 a 402 600 ADVEKSLPPK  IGQTKTVR  2122.2000 3 -0.1 BS
3 II SEC + 15.8 

84 b 402 600 IKADVEKSLPPK  IGQTKTVR  2363.3790 3 -3.1 BS
3 II SEC + 15.8 

85  407 600 SLPPKKEVK  IGQTKTVR  2064.2309 3 1.1 BS
3 I none + 9.2 

86 a 494 408 MVVLDKLLPKLK  KEVK  2036.2685 3 2.0 BS
3 III none + 17.9 

86 b 494 408 LLPKLKEQGSR  KEVK  1908.1410 3 -0.3 BS
3 III none + 17.9 

86 c 494 408 LLPKLK  KEVK  1350.8852 3 -2.2 BS
3 III none + 17.9 

86 d 494 408 LLPKLKEQGSR  SLPPKKEVK  2430.4576 3 3.4 BS
3 III none + 17.9 

86 e 494 408 MVVLDKLLPKLK  SLPPKKEVK  2558.5851 4 1.8 BS
3 III none + 17.9 

87  494 600 MVVLDKLLPKLK  IGQTKTVR  2435.4915 4 2.0 BS
3 III none + 17.9 

88 a 600 496 IGQTKTVR  LKEQGSR  1856.0481 3 -1.3 BS
3 IV SEC + 15.5 

88 b 600 494 IGQTKTVR  LLPKLK  1750.1082 3 0.8 BS
3 I SEC + 15.5 

89 a 408 600 SLPPKKEVK  IGQTKTVR  2064.2309 3 0.2 BS
3 I none + 11.7 

89 b 600 408 IGQTKTVR  KEVK  1545.9394 3 -0.5 BS
3 I none + 11.7 

89 c 600 408 AHRIGQTKTVR  KEVK  1906.1114 4 -1.1 BS
3 II none + 11.7 

90  624 443 AEMKLR  MDKMR  1563.7937 3 3.3 BS
3 IV none + 24.7 

91  739 600 KANYAVDAYFR  IGQTKTVR  2356.2541 3 3.4 BS
3 I SEC + N/A 

92  739 496 KANYAVDAYFR  LKEQGSR  2271.1650 3 -0.3 BS
3 II SEC + N/A 

93  739 418 KANYAVDAYFR  IYVGLSKMQR  2648.3787 3 1.4 BS
3 I none + N/A 

94 a 761 799 APKAPRPPK  TIGYKVPR  2031.1995 3 0.6 BS
3 I SEC + 12.0 

94 b 761 799 APKAPRPPK  KTIGYKVPR  2159.2945 4 -1.6 BS
3 I none + 12.0 
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94 c 761 799 APKAPRPPKQPNVQDFQFFPPR  TIGYKVPR  3631.9782 5 0.3 BS
3 II SEC + 12.0 

95  767 847 APRPPKQPNVQDFQFFPPR  LLTQGFTNWNKR  3880.0328 5 3.3 BS
3 IV SEC + 20.6 

96  794 758 KTIGYKVPR  VSEPKAPK  2053.1937 4 1.3 BS
3 IV SEC + 23.6 

97 a 799 758 KTIGYKVPR  VSEPKAPK  2053.1937 3 -0.8 BS
3 I SEC + 20.2 

97 b 799 758 TIGYKVPR  VSEPKAPK  1925.0988 3 0.3 BS
3 I none + 20.2 

98 a 814 799 NPELPNAAQAQKEEQLK  KTIGYKVPR  3105.6825 5 2.5 BS
3 I SEC + 10.0 

98 b 814 799 NPELPNAAQAQKEEQLK  TIGYKVPR  2977.5875 3 2.6 BS
3 III none + 10.0 

99  847 761 LLTQGFTNWNKR  APKAPRPPK  2575.4389 3 -0.8 BS
3 I SEC + 22.3 

100  847 758 LLTQGFTNWNKR  VSEPKAPK  2469.3382 3 1.3 BS
3 I none + 21.6 

101 a 859 918 ANEKWGRDDIENIAR  ISIKK  2511.3448 4 1.9 BS
3 III none + 18.0 

101 b 859 918 ANEKWGRDDIENIAR  RISIKK  2667.4459 4 0.1 BS
3 III none + 18.0 

102 a 899 855 CNELQDIEKIMAQIER  DFNQFIKANEK  3479.7068 3 -1.8 BS
3 III SEC + 12.4 

102 b 899 855 CNELQDIEKIMAQIER  RDFNQFIKANEK  3635.8079 5 -0.5 BS
3 III SEC + 12.4 

103  899 847 CNELQDIEKIMAQIER  LLTQGFTNWNKR  3603.8180 3 0.4 BS
3 I SEC + 15.2 

104 a 929 918 YKAPFHQLR  ISIKK  1884.0987 4 -4.9 BS
3 I SEC + 18.6 

104 b 929 918 YKAPFHQLR  RISIKK  2040.1998 5 -1.6 BS
3 II SEC + 18.6 

105  929 990 YKAPFHQLR  FDWFLKSR  2394.2639 3 -3.8 BS
3 IV SEC + 26.8 

106  990 919 FDWFLKSR  KALDTK  1910.0304 3 4.3 BS
3 IV SEC + 28.2 

107  990 918 FDWFLKSR  ISIKK  1823.0347 3 1.0 BS
3 IV none + 25.9 

108  1020 919 ENMELEEKEKAEK  KALDTK  2418.2202 3 2.2 BS
3 I none + N/A 

109 a 691 943 TAEMNEKLSK  ISYGTNKGK  2254.1517 3 0.8 BS
3 III none + N/A 

109 b 691 943 KTAEMNEKLSK  ISYGTNKGK  2382.2467 3 -1.7 BS
3 III none + N/A 

110 a 691 990 TAEMNEKLSK  FDWFLKSR  2385.2041 3 -1.8 BS
3 I SEC + N/A 

110 b 691 990 KTAEMNEKLSK  FDWFLKSR  2513.2990 3 -3.2 BS
3 II none + N/A 

111  694 758 LSKMGESSLR  VSEPKAPK  2099.1298 3 -1.7 BS
3 III none + N/A 

112  694 929 LSKMGESSLR  YKAPFHQLR  2403.2735 3 3.5 BS
3 IV SEC + N/A 

113  694 943 LSKMGESSLR  ISYGTNKGK  2211.1571 3 -0.1 BS
3 I SEC + N/A 

114  694 990 LSKMGESSLR  FDWFLKSR  2342.2095 3 1.1 BS
3 I none + N/A 

115  724 919 QKIAFTEWIEPPKR  KALDTK  2554.4161 5 -1.0 BS
3 IV SEC + N/A 

116  724 929 QKIAFTEWIEPPKR  YKAPFHQLR  3038.6497 5 -3.5 BS
3 IV SEC + N/A 

117  724 990 QKIAFTEWIEPPKR  FDWFLKSR  2977.5857 4 2.7 BS
3 IV SEC + N/A 

118  735 761 IAFTEWIEPPKR  APKAPRPPK  2584.4532 4 1.2 BS
3 IV SEC + N/A 

119  735 855 IAFTEWIEPPKR  DFNQFIKANEK  2976.5388 3 3.5 BS
3 IV SEC + N/A 

120  735 919 IAFTEWIEPPKR  KALDTK  2298.2626 4 1.8 BS
3 IV SEC + N/A 

121 a 739 758 KANYAVDAYFR  VSEPKAPK  2309.2058 3 0.3 BS
3 I none + N/A 

121 b 739 758 KANYAVDAYFREALR  VSEPKAPK  2778.4707 4 2.2 BS
3 II none + N/A 

122  739 761 KANYAVDAYFR  APKAPRPPK  2415.3065 3 -2.1 BS
3 I SEC + N/A 

123 a 739 799 KANYAVDAYFR  TIGYKVPR  2387.2640 3 -2.6 BS
3 

 
SEC + N/A 

123 b 739 799 KANYAVDAYFR  KTIGYKVPR  2515.3589 4 1.6 BS
3 IV SEC + N/A 

124  739 918 KANYAVDAYFR  ISIKK  2042.1202 3 -0.9 BS
3 I none + N/A 

125  739 919 KANYAVDAYFR  KALDTK  2129.1159 3 2.3 BS
3 I none + N/A 

126  739 929 KANYAVDAYFR  YKAPFHQLR  2613.3494 3 -2.3 BS
3 III none + N/A 

127  739 943 KANYAVDAYFR  ISYGTNKGK  2421.2330 3 0.9 BS
3 IV SEC + N/A 

128  739 990 KANYAVDAYFR  FDWFLKSR  2552.2854 3 3.8 BS
3 I SEC + N/A 

129  767 739 APRPPKQPNVQDFQFFPPR  KANYAVDAYFR  3719.9004 4 0.5 BS
3 IV SEC + N/A 

130  847 739 LLTQGFTNWNKR  KANYAVDAYFR  2931.5034 3 -0.2 BS
3 I SEC + N/A 

131  855 739 DFNQFIKANEK  KANYAVDAYFR  2807.3921 3 2.5 BS
3 I SEC + N/A 

132  855 694 DFNQFIKANEK  LSKMGESSLR  2597.3161 3 1.3 BS
3 I SEC + N/A 

133  859 739 ANEKWGRDDIENIAR  KANYAVDAYFR  3240.5955 5 0.3 BS
3 IV SEC + N/A 

134  875 724 EVEGKTPEEVIEYSAVFWER  QKIAFTEWIEPPK  4120.0724 5 4.1 BS
3 IV none + N/A 

135 a 899 739 CNELQDIEKIMAQIER  KANYAVDAYFR  3443.6856 4 1.3 BS
3 III SEC + N/A 

135 b 899 739 CNELQDIEKIMAQIERGEAR  KANYAVDAYFR  3856.8879 5 0.9 BS
3 III SEC + N/A 

136 a 1029 919 RGPKPSTQKR  KALDTK  1966.1325 4 0.3 BS
3 II none + N/A 
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136 b 1029 919 GPKPSTQKR  KALDTK  1810.0314 4 -0.6 BS
3 I SEC + N/A 

136 c 1029 919 GPKPSTQK  KALDTK  1653.9303 4 -2.0 BS
3 II SEC + N/A 

137 a 1034 919 GPKPSTQKR  KALDTK  1810.0314 3 -3.6 BS
3 I SEC + N/A 

137 b 1034 919 RGPKPSTQKR  KALDTK  1966.1325 4 -0.8 BS
3 I SEC + N/A 

138 a 1036 929 KMDGAPDGR  YKAPFHQLR  2242.1319 3 -0.8 BS
3 I none + N/A 

138 b 1036 929 KMDGAPDGRGR  YKAPFHQLR  2455.2545 4 1.2 BS
3 II none + N/A 

139 a 1036 919 KMDGAPDGR  KALDTK  1757.8984 3 -0.4 BS
3 II none + N/A 

139 b 1036 919 RKMDGAPDGR  KALDTK  1929.9944 4 1.1 BS
3 II SEC + N/A 

139 c 1036 919 KMDGAPDGRGR  KALDTK  1971.0210 3 2.4 BS
3 II none + N/A 

140 a 1036 918 KMDGAPDGR  RISIKK  1827.0038 4 0 BS
3 II none + N/A 

140 b 1036 918 KMDGAPDGR  ISIKK  1670.9027 3 2.4 BS
3 II none + N/A 

140 c 1036 918 KMDGAPDGRGR  ISIKK  1884.0253 4 1.3 BS
3 II none + N/A 

141 a 694 1036 LSKMGESSLR  KMDGAPDGR  2190.0775 3 -0.7 BS
3 I none + N/A 

141 b 694 1036 TAEMNEKLSKMGESSLR  KMDGAPDGR  2993.4259 3 1.7 BS
3 II none + N/A 

142  722 694 NFTMDTESSVYNFEGEDYREKQK  LSKMGESSLR  4060.8673 5 4.7 BS
3 I SEC + N/A 

143  722 691 NFTMDTESSVYNFEGEDYREKQK  TAEMNEKLSK  4103.8619 4 0.2 BS
3 III none + N/A 

144  722 1036 NFTMDTESSVYNFEGEDYREKQK  KMDGAPDGR  3899.7257 4 1.7 BS
3 III none + N/A 

145  724 739 QKIAFTEWIEPPKR  KANYAVDAYFR  3196.6712 5 0.4 BS
3 I SEC + N/A 

146  724 694 QKIAFTEWIEPPKR  LSKMGESSLR  2986.5952 4 1.0 BS
3 IV SEC + N/A 

147  735 694 IAFTEWIEPPKR  LSKMGESSLR  2730.4417 3 -2.5 BS
3 IV SEC + N/A 

148  735 1036 IAFTEWIEPPKR  KMDGAPDGR  2569.3001 4 -1.1 BS
3 IV SEC + N/A 

149  739 694 KANYAVDAYFR  LSKMGESSLR  2577.2899 3 2.6 BS
3 I SEC + N/A 

150  739 691 KANYAVDAYFR  KTAEMNEKLSK  2732.3846 3 2.5 BS
3 I SEC + N/A 

151  739 691 KANYAVDAYFR  TAEMNEKLSK  2604.2896 3 1.4 BS
3 I none + N/A 

152 a 739 1036 KANYAVDAYFR  KMDGAPDGR  2400.1534 4 -4.7 BS
3 III none + N/A 

152 b 739 1036 KANYAVDAYFR  KMDGAPDGRGR  2613.2760 4 -3.3 BS
3 III none + N/A 

152 c 739 1036 ERKANYAVDAYFR  KMDGAPDGR  2685.2972 3 -5.6 BS
3 III none + N/A 

153  739 1051 KANYAVDAYFR  LKL  1826.9932 3 3.0 BS
3 III none + N/A 

154  1020 1036 ENMELEEKEKAEK  KMDGAPDGR  2689.2577 3 0 BS
3 I SEC + N/A 

 

□
, 

∆
 MS/MS spectra are provided in SFigure 7 and SFigure 9B, respectively. 

x
  Cross-link was used as distance restraint during rigid body docking.  

N/A = Not available, at least one amino acid is missing in the structure. 
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STable 5: Cross-links for the Snf2H enzyme in the presence of nucleosomes. Cross-linked peptides are listed in an ordered manner according to their cross-link 

identification number (XLSnf2H,c 1–181). The table is structured in an indentical manner as described for STable 1 with cross-linked sites being color-coded according to 

the domain architecture in Figure 41. Data derive from two independent XL-MS experiments. 

XL 

Snf2H,c 
Vari- 
ant 

Site 
1 

Site 
2 

Pro- 
tein 1 

Pro- 
tein 2 Peptide 1 sequence Peptide 2 sequence 

Mass 
(Da) Charge 

Error 
(ppm) 

Cross-
linker 

Repro-
ducibility 

group 

Size 
selec-
tion 

Peptide 
enrich- 
ment 

Cα-Cα distances (Å) 

cf. structure (pdb 2PYO)  
in Figure 42A 

1  17 7 H2B H2B AQKNITK TSGKAAK 1604.9401 3 0 BS
3
 III none + N/A 

2  31 82 H2B H2B KESYAIYIYK LAHYNKR 2319.2567 4 -0.5 BS
3
 IV none + 13.3; 13.7 

3  14 4 H3 H3 KSTGGKAPR TKQTAR 1746.0052 4 -2.8 BS
3
 III none + N/A 

4  14 37 H3 H3 KSTGGKAPR KPHR 1578.9258 4 -1.6 BS
3
 II none + N/A 

5  18 4 H3 H3 KQLATK TKQTAR 1532.9189 3 -0.2 BS
3
 I none + N/A 

6 a 23 4 H3 H3 KQLATKAAR TKQTAR 1831.0943 4 -0.2 BS
3
 I none + N/A 

6 b 23 4 H3 H3 KQLATKAAR TKQTARK 1959.1893 5 -2.0 BS
3
 II none + N/A 

7 a 23 9 H3 H3 KQLATKAAR KSTGGKAPR 2028.2108 4 -0.6 BS
3
 I none + N/A 

7 b 23 9 H3 H3 KQLATKAAR KSTGGK 1704.0197 4 -2.7 BS
3
 I none + N/A 

8  23 37 H3 H3 KQLATKAAR KPHR 1664.0149 4 -0.4 BS
3
 I none + N/A 

9 a 27 4 H3 H3 KSAPATGGVKKPHR TKQTAR 2278.3173 5 -1.4 BS
3
 I none + N/A 

9 b 27 4 H3 H3 KSAPATGGVK TKQTAR 1760.0096 3 0.9 BS
3
 I none + N/A 

10 a 27 9 H3 H3 KSAPATGGVK KSTGGKAPR 1957.1260 4 -1.3 BS
3
 I none + N/A 

10 b 27 9 H3 H3 KSAPATGGVK KSTGGK 1632.9350 3 -4.9 BS
3
 II none + N/A 

11 a 27 14 H3 H3 KSAPATGGVKKPHR KSTGGKAPR 2475.4338 5 1.1 BS
3
 II none + N/A 

11 b 27 14 H3 H3 KSAPATGGVKKPHR STGGKAPR 2347.3388 5 -0.5 BS
3
 I none + N/A 

11 c 27 14 H3 H3 KSAPATGGVK KSTGGKAPR 1957.1260 4 2.5 BS
3
 I none + N/A 

11 d 27 14 H3 H3 KSAPATGGVK STGGKAPR 1829.0311 3 3.7 BS
3
 I none + N/A 

12  36 18 H3 H3 KSAPATGGVKKPHR KQLATK 2262.3476 4 -1.0 BS
3
 I none + N/A 

13 a 36 23 H3 H3 SAPATGGVKKPHR KQLATKAAR 2432.4280 5 -2.2 BS
3
 II none + N/A 

13 b 36 23 H3 H3 KSAPATGGVKKPHR KQLATKAAR 2560.5229 5 -0.9 BS
3
 I none + N/A 

14  37 14 H3 H3 SAPATGGVKKPHR KSTGGKAPR 2347.3388 4 -0.6 BS
3
 IV none + N/A 

15 a 56 18 H3 H3 YQKSTELLIR KQLATK 2079.2243 3 -1.2 BS
3
 I none + N/A 

15 b 56 18 H3 H3 RYQKSTELLIR KQLATK 2235.3254 4 3.7 BS
3
 II none + N/A 

16  8 20 H4 H4 GKGGKGLGK KVLR 1456.9393 3 -1.4 BS
3
 IV none + N/A 

17  20 8 H4 H4 KVLRDNIQGITKPAIR GKGGKGLGK 2763.6751 5 0.2 BS
3
 IV none + N/A 

18  31 35 H2B H2A RKESYAIYIYK KGNYAER 2411.2789 4 -1.7 BS
3
 III none + 15.5; 15.9 

19  12 23 H4 H3 GLGKGGAKR KQLATKAAR 1970.2053 4 1.8 BS
3
 III none + N/A 

20  8 23 H4 H3 GKGGKGLGK KQLATKAAR 1928.1835 4 0.2 BS
3
 IV none + N/A 

21  56 73 H3 H2A RYQKSTELLIR DNKK 2051.1679 3 0.8 BS
3
 IV none + 15.3; 15.7 

22 a 56 74 H3 H2A YQKSTELLIR DNKKTR 2152.2155 3 0 BS
3
 II none + 15.5;15.9 

22 b 56 74 H3 H2A RYQKSTELLIR DNKKTR 2308.3167 4 -0.9 BS
3
 II none + 15.5;15.9 

23  27 8 H3 H4 KSAPATGGVK GKGGKGLGK 1857.0987 3 0.4 BS
3
 III none + N/A 

24  105 79 H2B H3 LLLPGELAKHAVSEGTK EIAQDFKTDLR 3238.7753 3 1.5 BS
3
 I none + 16.3; 16.6 

25  35 7 H2A H2B KGNYAER TSGKAAK 1639.8833 3 0.4 BS
3
 IV none + N/A 

26  35 82 H2A H2B KGNYAER LAHYNKR 1879.0004 4 1.8 BS
3
 I none + 19.9; 20.3 

27  91 35 H4 H2A TVTAMDVVYALKR KGNYAER 2444.3037 4 2.1 BS
3
 IV none + 25.6; 25.7 

28  23 118 H3 H2A KQLATKAAR KTEK 1631.9874 3 -1.5 BS
3
 IV none + N/A 

29 a 117 14 H2B H2A AVTKYTSSK GKAKSR 1771.0143 3 0.2 BS
3
 I none + 13.4; 14.0 

29 b 117 14 H2B H2A HAVSEGTKAVTKYTSSK AKSR 2395.3011 5 -0.2 BS
3
 I none + 13.4; 14.0 

29 c 117 14 H2B H2A HAVSEGTKAVTKYTSSK GKAKSR 2580.4175 5 0.1 BS
3
 I none + 13.4; 14.0 

29 d 117 14 H2B H2A AVTKYTSSK AKSR 1585.8979 3 0.2 BS
3
 IV none + 13.4; 14.0 

30 a 117 10 H2B H2A HAVSEGTKAVTKYTSSK VKGK 2365.3157 4 0.2 BS
3
 IV none + N/A 

30 b 117 10 H2B H2A AVTKYTSSK GGKVKGK 1798.0504 3 0.6 BS
3
 IV none + N/A 

30 c 117 10 H2B H2A HAVSEGTKAVTKYTSSK GGKVKGK 2607.4536 5 -1.2 BS
3
 IV none + N/A 
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31  117 8 H2B H2A AVTKYTSSK GKGGKVK 1798.0504 3 -0.7 BS
3
 I none + N/A 

32
◊
 

 
176 847 Snf2H Snf2H FEDSPSYVKWGK LLTQGFTNWNKR 3060.5649 3 1.7 BS

3
 IV none + N/D 

33
◊
  176 929 Snf2H Snf2H FEDSPSYVKWGK YKAPFHQLR 2742.4110 3 -2 BS

3
 III none + N/D 

34
◊
  176 990 Snf2H Snf2H FEDSPSYVKWGK FDWFLKSR 2681.3470 3 0.4 BS

3
 III none + N/D 

35
◊
  929 264 Snf2H Snf2H YKAPFHQLR SVCLIGDK 2191.1764 4 -6.5 BS

3
 IV none + N/D 

36
◊
  929 299 Snf2H Snf2H YKAPFHQLR KFNWR 2050.1204 4 1.4 BS

3
 IV none + N/D 

37
◊
  990 299 Snf2H Snf2H FDWFLKSR KFNWR 1989.0565 4 1.2 BS

3
 III none + N/D 

38  176 739 Snf2H Snf2H FEDSPSYVKWGK KANYAVDAYFR 2900.4325 3 0.8 BS
3
 I none + N/A 

39
□
  176 758 Snf2H Snf2H FEDSPSYVKWGK VSEPKAPK 2438.2673 3 1.9 BS

3
 III none + N/D 

40
□
  176 799 Snf2H Snf2H FEDSPSYVKWGK TIGYKVPR 2516.3255 3 -0.8 BS

3
 III none + N/D 

41  176 1036 Snf2H Snf2H FEDSPSYVKWGK KMDGAPDGR 2529.2150 3 -1.8 BS
3
 IV none + N/A 

42  724 176 Snf2H Snf2H QKIAFTEWIEPPKR FEDSPSYVKWGK 3325.7327 5 -1.7 BS
3
 IV none + N/A 

43
◊
  418 990 Snf2H Snf2H IYVGLSKMQR FDWFLKSR 2433.3182 3 0.3 BS

3
 IV none + N/D 

44
□
  430 929 Snf2H Snf2H ILMKDIDILNSAGK YKAPFHQLR 2830.5719 4 0.9 BS

3
 IV none + N/D 

45
◊
  430 990 Snf2H Snf2H ILMKDIDILNSAGK FDWFLKSR 2769.5079 3 -0.8 BS

3
 III none + N/D 

46  418 1036 Snf2H Snf2H IYVGLSKMQR KMDGAPDGR 2281.1863 3 -3.2 BS
3
 IV none + N/A 

47  430 739 Snf2H Snf2H ILMKDIDILNSAGK KANYAVDAYFR 2988.5935 3 -1.4 BS
3
 III none + N/A 

48  739 418 Snf2H Snf2H KANYAVDAYFR IYVGLSKMQR 2652.4038 3 2.1 BS
3
 III none + N/A 

49  440 739 Snf2H Snf2H ILMKDIDILNSAGKMDK KANYAVDAYFR 3362.7559 4 -0.5 BS
3
 III none + N/A 

50
□
  119 328 Snf2H Snf2H TPTSPLKMKPGRPR EFKTTNR 2601.4365 4 -1.2 BS

3
 IV none + N/A 

51
□
  319 121 Snf2H Snf2H SKLSEIVREFK MKPGRPR 2333.3193 3 -2.9 BS

3
 IV none + N/D 

52
□
  176 121 Snf2H Snf2H FEDSPSYVKWGK MKPGRPR 2424.2564 3 0.4 BS

3
 III none + N/D 

53
□
 a 83 990 Snf2H Snf2H EIQEPDPTYEEKMQTDR FDWFLKSR 3347.5960 4 -4.2 BS

3
 III none + N/A 

53 b 83 990 Snf2H Snf2H EIQEPDPTYEEKMQTDR NSPQFRFDWFLKSR 4076.9519 4 1.8 BS
3
 III none + N/A 

54
□
 

 
112 814 Snf2H Snf2H QTELFAHFIQPAAQKTPTSPLK 

VPRNPELPNAAQAQKE
EQLK 

4853.6021 5 0.5 BS
3
 IV none + 

N/A 

55
◊
 

 
119 990 Snf2H Snf2H TPTSPLKMKPGRPR FDWFLKSR 2804.5464 4 -1.6 BS

3
 III none + N/A 

56
◊
 

 
121 990 Snf2H Snf2H TPTSPLKMKPGRPR FDWFLKSR 2804.5464 4 -1.6 BS

3
 III none + N/A 

57
◊
 

 
929 121 Snf2H Snf2H YKAPFHQLR MKPGRPR 2141.1984 5 -3.4 BS

3
 IV none + N/A 

58
◊
 

 
990 129 Snf2H Snf2H FDWFLKSR IKKDEK 1999.1082 4 -1.9 BS

3
 III none + N/D 

59
□
 a 647 490 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR MVVLDKLLPK 3553.9954 4 3.5 BS

3
 III none + N/D 

59 b 647 490 Snf2H Snf2H IGKDEMLQMIR MVVLDKLLPK 2629.4925 3 2.8 BS
3
 III none + N/D 

60
□
 

 
665 490 Snf2H Snf2H HGATHVFASKESEITDEDIDGILER MVVLDKLLPK 4065.1285 4 -3.9 BS

3
 III none + N/D 

61
□
 

 
490 684 Snf2H Snf2H MVVLDKLLPK KTAEMNEK 2246.2570 3 2.5 BS

3
 IV none + N/D 

62
◊
 a 644 443 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR MDKMR 3078.6002 3 -1.5 BS

3
 III none + N/D 

62 b 644 443 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR DIDILNSAGKMDKMR 4105.1348 4 2.2 BS
3
 III none + N/D 

63
◊
 a 443 647 Snf2H Snf2H DIDILNSAGKMDKMR IGKDEMLQMIR 3180.6319 3 1.8 BS

3
 III none + N/D 

63 b 647 443 Snf2H Snf2H IGKDEMLQMIR MDKMR 2154.0973 3 1.1 BS
3
 III none + N/D 

63 c 647 443 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR DIDILNSAGKMDKMR 4105.1348 5 0.1 BS
3
 III none + N/D 

64
◊
 a 440 647 Snf2H Snf2H DIDILNSAGKMDK IGKDEMLQMIR 2893.4903 3 6.4 BS

3
 III none + N/D 

64 b 440 647 Snf2H Snf2H DIDILNSAGKMDKMR IGKDEMLQMIR 3180.6319 4 1.3 BS
3
 III none + N/D 

64 c 440 647 Snf2H Snf2H ILMKDIDILNSAGKMDK IGKDEMLQMIR 3378.7939 4 0.9 BS
3
 III none + N/D 

64 d 647 440 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR DIDILNSAGKMDK 3817.9932 4 6.6 BS
3
 III none + N/D 

64 e 647 440 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR DIDILNSAGKMDKMR 4105.1348 5 -4.8 BS
3
 III none + N/D 

65
□
 a 430 647 Snf2H Snf2H ILMKDIDILNSAGK IGKDEMLQMIR 3004.6315 3 -1.2 BS

3
 III none + N/D 

65 b 647 430 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR ILMKDIDILNSAGK 3929.1344 4 0.9 BS
3
 III none + N/D 

66
◊
 

 
665 430 Snf2H Snf2H HGATHVFASKESEITDEDIDGILER ILMKDIDILNSAGKMDK 4814.4299 5 -2.9 BS

3
 IV none + N/D 

67
◊
 

 
665 418 Snf2H Snf2H HGATHVFASKESEITDEDIDGILER IYVGLSKMQR 4104.0778 4 -2.9 BS

3
 III none + N/D 

68
□
 

 
418 684 Snf2H Snf2H IYVGLSKMQR KTAEMNEK 2285.2063 3 -1.9 BS

3
 III none + N/D 

69
□
 

 
408 684 Snf2H Snf2H SLPPKKEVK KTAEMNEK 2116.1753 4 0.3 BS

3
 IV none + N/D 

70
□
 

 
407 684 Snf2H Snf2H SLPPKKEVK KTAEMNEK 2116.1753 4 0.3 BS

3
 III none + N/D 

71
◊
 

 
665 929 Snf2H Snf2H HGATHVFASKESEITDEDIDGILER YKAPFHQLR 4069.0486 5 -0.1 BS

3
 I none + N/D 

72
◊
 

 
647 929 Snf2H Snf2H IGKDEMLQMIR YKAPFHQLR 2633.4126 4 0.1 BS

3
 IV none + N/D 

73
◊
 

 
665 990 Snf2H Snf2H HGATHVFASKESEITDEDIDGILER FDWFLKSR 4007.9846 4 -0.4 BS

3
 III none + N/D 
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74 a 990 647 Snf2H Snf2H NSPQFRFDWFLKSR IGKDEMLQMIR 3301.7044 4 4.4 BS
3
 III none + N/D 

74
◊
 b 647 990 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR FDWFLKSR 3496.8515 4 0.5 BS

3
 III none + N/D 

74 c 647 990 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR NSPQFRFDWFLKSR 4226.2073 5 -0.4 BS
3
 III none + N/D 

74 d 647 990 Snf2H Snf2H IGKDEMLQMIR FDWFLKSR 2572.3486 4 0.7 BS
3
 III none + N/D 

75 
 

694 684 Snf2H Snf2H LSKMGESSLR KTAEMNEK 2198.1226 4 0.7 BS
3
 III none + N/A 

76 
 

694 683 Snf2H Snf2H LSKMGESSLR GAKK 1650.9278 3 1.2 BS
3
 IV none + N/A 

77 
 

665 694 Snf2H Snf2H HGATHVFASKESEITDEDIDGILER LSKMGESSLR 4016.9942 4 -3.0 BS
3
 IV none + N/A 

78 a 647 691 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR TAEMNEKLSK 3548.8557 4 -1.6 BS
3
 III none + N/A 

78 b 647 691 Snf2H Snf2H IGKDEMLQMIR TAEMNEKLSK 2624.3527 3 2.6 BS
3
 III none + N/A 

79 a 647 694 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR LSKMGESSLR 3505.8611 5 2.5 BS
3
 III none + N/A 

79 b 647 694 Snf2H Snf2H IGKDEMLQMIR LSKMGESSLR 2581.3582 3 1.4 BS
3
 III none + N/A 

79 c 644 694 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR LSKMGESSLR 3505.8611 4 2.6 BS
3
 III none + N/A 

80 a 665 735 Snf2H Snf2H HGATHVFASKESEITDEDIDGILER IAFTEWIEPPKRER 4681.3605 4 -1.3 BS
3
 III none + N/A 

80 b 665 735 Snf2H Snf2H HGATHVFASKESEITDEDIDGILER IAFTEWIEPPKR 4396.2168 4 4.8 BS
3
 III none + N/A 

81 a 647 739 Snf2H Snf2H IGKDEMLQMIR KANYAVDAYFR 2791.4341 3 -0.7 BS
3
 II none + N/A 

81 b 647 739 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR KANYAVDAYFR 3715.9370 3 1.4 BS
3
 II none + N/A 

81 c 739 647 Snf2H Snf2H ERKANYAVDAYFR IGKDEMLQMIR 3076.5778 5 0.8 BS
3
 II none + N/A 

82 
 

644 739 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR KANYAVDAYFR 3715.937 4 0.4 BS
3
 I none + N/A 

83 
 

665 1036 Snf2H Snf2H HGATHVFASKESEITDEDIDGILER KMDGAPDGR 3855.8526 4 5.5 BS
3
 IV none + N/A 

84 a 647 684 Snf2H Snf2H IGKDEMLQMIR KTAEMNEK 2424.2366 3 -0.3 BS
3
 III none + N/A 

84 b 647 684 Snf2H Snf2H LVDQNLNKIGKDEMLQMIR KTAEMNEK 3348.7396 4 1.0 BS
3
 III none + N/A 

85 
 

665 683 Snf2H Snf2H HGATHVFASKESEITDEDIDGILER GAKK 3312.6778 3 0.8 BS
3
 IV none + N/A 

86 a 665 684 Snf2H Snf2H HGATHVFASKESEITDEDIDGILER KTAEMNEKLSK 4188.0837 5 3.4 BS
3
 II none + N/A 

86 b 665 684 Snf2H Snf2H HGATHVFASKESEITDEDIDGILER KTAEMNEK 3859.8726 5 -2.4 BS
3
 I none + N/A 

87 
 

97 121 Snf2H Snf2H ANRFEYLLKQTELFAHFIQPAAQK MKPGRPR 3845.0867 5 -3.5 BS
3
 IV none + N/A 

88 
 

97 128 Snf2H Snf2H ANRFEYLLKQTELFAHFIQPAAQK IKKDEK 3764.0606 4 0.3 BS
3
 III none + N/A 

89 
 

112 128 Snf2H Snf2H QTELFAHFIQPAAQKTPTSPLK IKKDEK 3353.8539 4 1.1 BS
3
 IV none + N/A 

90 a 160 176 Snf2H Snf2H RTEQEEDEELLTESSK FEDSPSYVKWGK 3505.6565 4 1.0 BS
3
 III none + N/D 

90
□
 b 160 176 Snf2H Snf2H TEQEEDEELLTESSK FEDSPSYVKWGK 3349.5553 3 3.4 BS

3
 III none + N/D 

91
□
 

 
176 128 Snf2H Snf2H FEDSPSYVKWGK IKKDEK 2343.2302 3 2.1 BS

3
 IV none + N/D 

92 a 176 249 Snf2H Snf2H FEDSPSYVKWGK STLHNWMSEFKR 3118.5162 3 2.1 BS
3
 I none + N/D 

92 b 176 249 Snf2H Snf2H FEDSPSYVKWGKLR STLHNWMSEFKR 3387.7014 4 2.1 BS
3
 II none + N/D 

93 
 

176 397 Snf2H Snf2H FEDSPSYVKWGK IKADVEK 2385.2408 3 -2.0 BS
3
 IV none + N/D 

94 
 

223 176 Snf2H Snf2H TLQTISLLGYMKHYR FEDSPSYVKWGK 3406.7576 4 -0.4 BS
3
 IV none + N/D 

95 
 

319 298 Snf2H Snf2H SKLSEIVREFK SVFKK 2084.2185 4 1.4 BS
3
 III none + N/D 

96 
 

328 298 Snf2H Snf2H EFKTTNR SVFKK 1643.9186 3 -0.2 BS
3
 IV none + N/D 

97  328 299 Snf2H Snf2H EFKTTNR KFNWR 1785.9466 4 0.9 BS
3
 IV none + N/D 

98  397 314 Snf2H Snf2H IKADVEK IKNEK 1573.9230 3 -0.2 BS
3
 IV none + N/D 

99  407 600 Snf2H Snf2H SLPPKKEVK IGQTKTVR 2068.2560 4 -1.6 BS
3
 III none + N/D 

100 a 600 408 Snf2H Snf2H IGQTKTVR KEVK 1545.9394 3 2.3 BS
3
 III none + N/D 

100 b 408 600 Snf2H Snf2H SLPPKKEVK IGQTKTVR 2068.2560 4 -1.6 BS
3
 III none + N/D 

101  411 490 Snf2H Snf2H KEVKIYVGLSK MVVLDK 2108.2470 3 -0.7 BS
3
 IV none + N/D 

102  494 407 Snf2H Snf2H MVVLDKLLPKLK SLPPKKEVK 2562.6102 3 -1.1 BS
3
 IV none + N/D 

103 a 494 408 Snf2H Snf2H LLPKLKEQGSR SLPPKKEVK 2434.4827 3 -0.5 BS
3
 III none + N/D 

103 b 494 408 Snf2H Snf2H LLPKLKEQGSR KEVK 1912.1661 4 -1.4 BS
3
 III none + N/D 

103 c 494 408 Snf2H Snf2H MVVLDKLLPKLK KEVK 2040.2936 3 -1.4 BS
3
 III none + N/D 

103 d 494 408 Snf2H Snf2H MVVLDKLLPKLK SLPPKKEVK 2562.6102 3 -1.1 BS
3
 III none + N/D 

104  929 919 Snf2H Snf2H YKAPFHQLR KALDTK 1975.1195 3 4.2 BS
3
 I none + N/D 

105 a 929 918 Snf2H Snf2H IGRYKAPFHQLR ISIKK 2214.3305 4 0.5 BS
3
 I none + N/D 

105 b 929 918 Snf2H Snf2H YKAPFHQLR ISIKK 1888.1238 3 3.7 BS
3
 I none + N/D 

105 c 929 918 Snf2H Snf2H YKAPFHQLR RISIKK 2044.2249 5 -2.3 BS
3
 I none + N/D 

106  847 859 Snf2H Snf2H LLTQGFTNWNKRDFNQFIK ANEKWGRDDIENIAR 4297.1973 5 0.5 BS
3
 IV none + N/D 

107  943 929 Snf2H Snf2H ISYGTNKGK YKAPFHQLR 2267.2366 5 -3.0 BS
3
 IV none + N/D 
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108  814 799 Snf2H Snf2H NPELPNAAQAQKEEQLK TIGYKVPR 2981.6126 4 -2.4 BS
3
 I none + N/D 

109 a 761 799 Snf2H Snf2H APKAPRPPK KTIGYKVPR 2163.3196 4 -1.7 BS
3
 III none + N/D 

109 b 761 799 Snf2H Snf2H APKAPRPPK TIGYKVPR 2035.2246 3 1.1 BS
3
 III none + N/D 

110 
 

758 799 Snf2H Snf2H EALRVSEPKAPK TIGYKVPR 2398.3888 3 -0.1 BS
3
 III none + N/D 

111 a 799 758 Snf2H Snf2H TIGYKVPR VSEPKAPK 1929.1239 3 1.1 BS
3
 III none + N/D 

111 b 799 758 Snf2H Snf2H KTIGYKVPR VSEPKAPK 2057.2188 3 0 BS
3
 III none + N/D 

112  943 990 Snf2H Snf2H ISYGTNKGK FDWFLKSR 2206.1726 3 3.2 BS
3
 IV none + N/D 

113 a 929 990 Snf2H Snf2H IGRYKAPFHQLR FDWFLKSR 2724.4956 5 -0.3 BS
3
 II none + N/D 

113 b 990 929 Snf2H Snf2H NSPQFRFDWFLKSR YKAPFHQLR 3127.6448 4 1.2 BS
3
 II none + N/D 

113 c 929 990 Snf2H Snf2H YKAPFHQLR FDWFLKSR 2398.289 3 2.7 BS
3
 I none + N/D 

114 a 990 919 Snf2H Snf2H FDWFLKSR KALDTK 1914.0555 4 -1.4 BS
3
 II none + N/D 

114 b 990 919 Snf2H Snf2H NSPQFRFDWFLKSR KALDTK 2643.4113 4 2.4 BS
3
 I none + N/D 

115  847 761 Snf2H Snf2H LLTQGFTNWNKR APKAPRPPK 2579.4640 3 -2.7 BS
3
 III none + N/D 

116 a 758 847 Snf2H Snf2H EALRVSEPKAPK LLTQGFTNWNKR 2942.6282 4 2.5 BS
3
 III none + N/D 

116 b 847 758 Snf2H Snf2H LLTQGFTNWNKR VSEPKAPK 2473.3633 3 0.2 BS
3
 III none + N/D 

116 c 847 758 Snf2H Snf2H LLTQGFTNWNKRDFNQFIK VSEPKAPK 3365.8076 3 1.3 BS
3
 III none + N/D 

117
►

  929 799 Snf2H Snf2H YKAPFHQLR TIGYKVPR 2233.2675 3 0.7 BS
3
 IV none + N/D 

118
►

  990 799 Snf2H Snf2H FDWFLKSR TIGYKVPR 2172.2035 3 1.5 BS
3
 IV none + N/D 

119
►

  990 758 Snf2H Snf2H NSPQFRFDWFLKSR VSEPKAPK 2823.5012 4 0.5 BS
3
 IV none + N/D 

120  847 739 Snf2H Snf2H LLTQGFTNWNKR KANYAVDAYFR 2935.5285 3 -0.2 BS
3
 IV none + N/A 

121  739 758 Snf2H Snf2H KANYAVDAYFR VSEPKAPK 2313.2309 3 1.3 BS
3
 I none + N/A 

122  1036 990 Snf2H Snf2H KMDGAPDGR FDWFLKSR 2185.0930 3 1.5 BS
3
 I none + N/A 

123  990 1049 Snf2H Snf2H FDWFLKSR KLKL 1740.0278 3 0.3 BS
3
 IV none + N/A 

124  739 799 Snf2H Snf2H KANYAVDAYFR TIGYKVPR 2391.2891 3 -0.5 BS
3
 I none + N/A 

125  990 1051 Snf2H Snf2H FDWFLKSR KLKL 1740.0278 3 -0.4 BS
3
 III none + N/A 

126  694 758 Snf2H Snf2H LSKMGESSLR VSEPKAPK 2103.1549 4 -0.3 BS
3
 IV none + N/A 

127  1034 943 Snf2H Snf2H GPKPSTQKR ISYGTNKGK 2106.1737 3 0.7 BS
3
 III none + N/A 

128  943 1036 Snf2H Snf2H ISYGTNKGK KMDGAPDGR 2054.0406 3 0.4 BS
3
 III none + N/A 

129  1018 919 Snf2H Snf2H ENMELEEKEKAEK KALDTK 2422.2453 3 0.1 BS
3
 III none + N/A 

130 a 919 1020 Snf2H Snf2H KALDTK EKAEK 1419.8124 3 1.2 BS
3
 IV none + N/A 

130 b 1020 919 Snf2H Snf2H ENMELEEKEKAEK KALDTK 2422.2453 3 1.1 BS
3
 IV none + N/A 

131 a 929 1034 Snf2H Snf2H IGRYKAPFHQLR GPKPSTQKR 2624.4967 5 -4.0 BS
3
 II none + N/A 

131 b 1034 929 Snf2H Snf2H GPKPSTQKR YKAPFHQLR 2298.2901 5 -0.9 BS
3
 I none + N/A 

131 c 1034 929 Snf2H Snf2H RGPKPSTQKR YKAPFHQLR 2454.3912 5 1.8 BS
3
 I none + N/A 

132 a 929 1036 Snf2H Snf2H IGRYKAPFHQLR KMDGAPDGR 2572.3637 5 2.5 BS
3
 I none + N/A 

132 b 929 1036 Snf2H Snf2H IGRYKAPFHQLR KMDGAPDGRGR 2801.4811 5 2.0 BS
3
 II none + N/A 

132 c 1036 929 Snf2H Snf2H KMDGAPDGRGR YKAPFHQLR 2475.2745 5 1.1 BS
3
 II none + N/A 

132 d 1036 929 Snf2H Snf2H KMDGAPDGR YKAPFHQLR 2246.1570 4 -0.5 BS
3
 I none + N/A 

133  1029 919 Snf2H Snf2H GPKPSTQKR KALDTK 1814.0565 4 -0.3 BS
3
 I none + N/A 

134 a 1034 919 Snf2H Snf2H GPKPSTQKR KALDTK 1814.0565 4 0.4 BS
3
 II none + N/A 

134 b 1034 919 Snf2H Snf2H RGPKPSTQKR KALDTK 1970.1576 4 -1.9 BS
3
 I none + N/A 

135  855 739 Snf2H Snf2H DFNQFIKANEK KANYAVDAYFR 2811.4172 3 -1.9 BS
3
 IV none + N/A 

136 a 919 1036 Snf2H Snf2H ISIKKALDTK KMDGAPDGR 2219.2135 4 -1.0 BS
3
 II none + N/A 

136 b 919 1036 Snf2H Snf2H KALDTKIGR KMDGAPDGR 2104.1250 4 -0.3 BS
3
 II none + N/A 

136 c 1036 919 Snf2H Snf2H KMDGAPDGRGR KALDTK 1975.0461 4 -0.5 BS
3
 II none + N/A 

136 d 1036 919 Snf2H Snf2H KMDGAPDGR KALDTK 1761.9235 3 -0.5 BS
3
 II none + N/A 

137  1036 918 Snf2H Snf2H KMDGAPDGR ISIKK 1674.9278 3 0.8 BS
3
 IV none + N/A 

138 a 929 1051 Snf2H Snf2H YKAPFHQLR LKL 1672.9968 3 0 BS
3
 III none + N/A 

138 b 929 1051 Snf2H Snf2H YKAPFHQLR KLKL 1801.0918 4 0.5 BS
3
 III none + N/A 

139  739 929 Snf2H Snf2H KANYAVDAYFR YKAPFHQLR 2617.3745 4 -0.2 BS
3
 I none + N/A 

140  694 943 Snf2H Snf2H LSKMGESSLR ISYGTNKGK 2215.1822 3 -1.5 BS
3
 III none + N/A 

141  739 990 Snf2H Snf2H KANYAVDAYFR FDWFLKSR 2556.3105 3 1.5 BS
3
 IV none + N/A 

142  691 990 Snf2H Snf2H TAEMNEKLSK FDWFLKSR 2389.2292 3 2.7 BS
3
 III none + N/A 

143  1036 1049 Snf2H Snf2H KMDGAPDGR KLKL 1587.8958 3 -4.3 BS
3
 I none + N/A 
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144  1036 1051 Snf2H Snf2H KMDGAPDGR KLKL 1587.8958 4 -3.7 BS
3
 I none + N/A 

145  722 694 Snf2H Snf2H NFTMDTESSVYNFEGEDYREKQK LSKMGESSLR 4064.8924 4 -4.6 BS
3
 II none + N/A 

146  694 739 Snf2H Snf2H TAEMNEKLSKMGESSLR KANYAVDAYFR 3368.6685 4 -2.1 BS
3
 III none + N/A 

147  739 691 Snf2H Snf2H KANYAVDAYFR TAEMNEKLSK 2608.3147 3 -2.0 BS
3
 III none + N/A 

148  1036 758 Snf2H Snf2H KMDGAPDGR VSEPKAPK 1942.0134 4 0.1 BS
3
 III none + N/A 

149 a 739 1036 Snf2H Snf2H KANYAVDAYFR KMDGAPDGR 2404.1785 3 -5.1 BS
3
 I none + N/A 

149 b 739 1036 Snf2H Snf2H KANYAVDAYFR KMDGAPDGRGR 2633.2960 4 2.5 BS
3
 II none + N/A 

149 c 694 1036 Snf2H Snf2H LSKMGESSLR KMDGAPDGR 2194.1026 4 -1.2 BS
3
 I none + N/A 

           
 

 
  

 

Cα-Cα distances (Å) 
               cf. model in Figure 44B 

150°  990 118 Snf2H H2A FDWFLKSR KTEK 1743.9499 3 4.8 BS
3
 III none + 42.4 

151°  105 739 H2B Snf2H LLLPGELAKHAVSEGTK KANYAVDAYFR 3220.7436 3 2.5 BS
3
 I none + N/A 

152°  105 758 H2B Snf2H LLLPGELAKHAVSEGTK VSEPKAPK 2758.5785 3 3.9 BS
3
 IV none + N/A 

153°  990 117 Snf2H H2B NSPQFRFDWFLKSR AVTKYTSSK 2952.5438 4 1.9 BS
3
 IV none + 27.0 

154
▼

  105 929 H2B Snf2H LLLPGELAKHAVSEGTK YKAPFHQLR 3062.7221 5 0.8 BS
3
 III none + 14.7

x
 

155°  105 990 H2B Snf2H LLLPGELAKHAVSEGTK FDWFLKSR 3001.6581 3 4.8 BS
3
 III none + 19.8 

156°  105 1036 H2B Snf2H LLLPGELAKHAVSEGTK KMDGAPDGR 2849.5261 3 -5.3 BS
3
 I none + N/A 

157°  105 1049 H2B Snf2H LLLPGELAKHAVSEGTK KLKL 2404.4609 3 1.8 BS
3
 III none + N/A 

158°  117 1036 H2B Snf2H AVTKYTSSK KMDGAPDGR 2071.0559 3 4.9 BS
3
 III none + N/A 

159°  739 11 Snf2H H2B KANYAVDAYFR KAGK 1861.0038 3 2.5 BS
3
 IV none + N/A 

160°  739 117 Snf2H H2B KANYAVDAYFR AVTKYTSSK 2442.2735 3 1.7 BS
3
 III none + N/A 

161°  739 122 Snf2H H2B KANYAVDAYFR AVTKYTSSK 2442.2735 3 1.2 BS
3
 IV none + N/A 

162°  249 4 Snf2H H3 STLHNWMSEFKR TKQTAR 2380.2261 4 1.3 BS
3
 IV none + N/A 

163°  739 4 Snf2H H3 KANYAVDAYFR TKQTAR 2162.1424 3 0.2 BS
3
 IV none + N/A 

164°  929 4 Snf2H H3 YKAPFHQLR TKQTAR 2004.1208 3 0.5 BS
3
 I none + N/A 

165° a 990 4 Snf2H H3 NSPQFRFDWFLKSR TKQTAR 2672.4127 4 1.5 BS
3
 III none + N/A 

165 b 990 4 Snf2H H3 FDWFLKSR TKQTAR 1943.0569 3 2.5 BS
3
 III none + N/A 

166°  9 929 H3 Snf2H KSTGGKAPR YKAPFHQLR 2201.2373 5 -0.1 BS
3
 III none + N/A 

167° a 929 14 Snf2H H3 YKAPFHQLR STGGKAPR 2073.1423 3 -1.1 BS
3
 II none + N/A 

167 b 14 929 H3 Snf2H KSTGGKAPR YKAPFHQLR 2201.2373 5 -0.6 BS
3
 I none + N/A 

168°  919 18 Snf2H H3 KALDTK KQLATK 1503.9175 3 -0.2 BS
3
 III none + N/A 

169°  929 18 Snf2H H3 YKAPFHQLR KQLATK 1988.1511 3 0.6 BS
3
 I none + N/A 

170° a 990 18 Snf2H H3 FDWFLKSR KQLATK 1927.0871 4 -0.9 BS
3
 I none + N/A 

170 b 990 18 Snf2H H3 NSPQFRFDWFLKSR KQLATK 2656.4429 5 1.3 BS
3
 I none + N/A 

171°  1036 18 Snf2H H3 KMDGAPDGRGR KQLATK 2004.0726 5 -1.4 BS
3
 IV none + N/A 

172°  23 919 H3 Snf2H KQLATKAAR KALDTK 1802.0929 3 -0.4 BS
3
 IV none + N/A 

173°  23 929 H3 Snf2H KQLATKAAR YKAPFHQLR 2286.3264 4 -0.5 BS
3
 I none + N/A 

174°  27 929 H3 Snf2H KSAPATGGVK YKAPFHQLR 2215.2417 4 -0.5 BS
3
 I none + N/A 

175°  27 943 H3 Snf2H KSAPATGGVK ISYGTNKGK 2023.1253 3 2.8 BS
3
 IV none + N/A 

176° a 990 27 Snf2H H3 NSPQFRFDWFLKSR KSAPATGGVK 2883.5336 4 2.2 BS
3
 I none + N/A 

176 b 27 990 H3 Snf2H KSAPATGGVK FDWFLKSR 2154.1777 3 -3.5 BS
3
 II none + N/A 

177°  27 1036 H3 Snf2H KSAPATGGVKKPHR KMDGAPDGR 2536.3484 5 -3.6 BS
3
 II none + N/A 

178°  56 758 H3 Snf2H YQKSTELLIR VSEPKAPK 2246.2826 3 7.8 BS
3
 IV none + N/A 

179° a 929 8 Snf2H H4 YKAPFHQLR GGKGLGK 1916.0936 4 0.1 BS
3
 III none + N/A 

179 b 8 929 H4 Snf2H GKGGKGLGK YKAPFHQLR 2101.2100 5 -1.2 BS
3
 III none + N/A 

180° a 12 929 H4 Snf2H GLGKGGAKR YKAPFHQLR 2143.2318 4 1.5 BS
3
 III none + N/A 

180 b 929 12 Snf2H H4 YKAPFHQLR GLGKGGAK 1987.1307 3 -0.2 BS
3
 III none + N/A 

181 a 16 929 H4 Snf2H GLGKGGAKR YKAPFHQLR 2143.2318 5 -0.9 BS
3
 I none + N/A 

181° b 929 16 Snf2H H4 YKAPFHQLR GGAKR 1788.0098 4 -1.0 BS
3
 II none + N/A 

181 c 929 16 Snf2H H4 IGRYKAPFHQLR GGAKR 2114.2165 5 -0.4 BS
3
 II none + N/A 

 

▼
, 

►
, 

◊
, 

□
, °  MS/MS spectra are provided in Figure 44A, SFigure 8, SFigure 9C, SFigure 10B, and SFigure 11, respectively.  

x
 Cross-link was used as distance restraint during rigid body docking. 

N/A = Not available, at least one amino acid is missing in the structure. N/D = Not determined.  
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6.6. MS/MS spectra of cross-linked peptides 

6.6.1. Additional MS/MS spectra of cross-links used for modeling 
 

  

SFigure 5: Additional MS/MS spectra of cross-links used to model the full-length DmISWI enzyme. 

Related to Figure 21. Cross-links (A)–(D) are denoted according to their XLISWI identification number 

provided in STable 2. Adapted and reprinted from (1) in accordance with Elsevier’s policies. 
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SFigure 6: MS/MS spectra of cross-links used to model the structure of Snf2H under apo state 

conditions. Related to Figure 31A. Cross-links (A)–(K) are denoted according to their XLSnf2H identification 

number provided in STable 3. 
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SFigure 7: MS/MS spectra of cross-links used to model the structure of Snf2H in the presence of ADP-

BeFx. Related to Figure 37A. Cross-links (A)–(P) are denoted according to their XLSnf2H,nt identification 

number provided in STable 4. 

 



  
191 Appendix 

6.6.2. Additional MS/MS spectra of cross-links for the Snf2H enzyme 

 
SFigure 8: MS/MS spectra of identified cross-links XLSnf2H,c 117–119. Related to Figure 42C. These 

cross-links connect residues within the HSS domain of the Snf2H enzyme in the presence of nucleosomes 

and exceed the BS
3
 distance threshold in the respective homology model. Cross-links are denoted according 

to their XLSnf2H,c identification number provided in STable 5. 



 
192 Appendix 



  
193 Appendix 



 
194 Appendix 



  
195 Appendix 



 
196 Appendix 



  
197 Appendix 



 
198 Appendix 

 
SFigure 9: MS/MS spectra of Snf2H cross-links that are listed in Table 4. Identical and similar inter-

domain cross-links for the Snf2H enzyme in the (A) apo, (B) ADP-BeFx, and (C) nucleosome state. Cross-

links are denoted according to their XL identification number provided in STable 3–STable 5. Individual 

cross-links listed in Table 4 were implemented during computation modeling and thus the MS/MS spectra for 

these cross-linked peptides (i.e., XLSnf2H 8, 12, 14, 28, 29 and XLSnf2H,nt 3, 4, 8, 13, 16, 24, 26, 56) can be 

found in either SFigure 6 or SFigure 7. 
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SFigure 10: MS/MS spectra of nucleosome-dependent inter-domain cross-links for the Snf2H enzyme 

listed in Table 5. Cross-links for the Snf2H enzyme in the (A) apo and (B) nucleosome state are denoted 

according to their XL identification number provided in STable 3 and STable 5, respectively. 
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SFigure 11: Additional MS/MS spectra of inter-molecular cross-links between the Snf2H enzyme and 

the histone octamer. Cross-links are denoted according to their XLSnf2H,c identification number provided in 

STable 5. 
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