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I. INTRODUCTION 

During the last decade, the emergence and spread of new avian influenza viruses (AIV) have 

caused huge economic losses in poultry production worldwide and have adversely affected 

wild bird populations (OIE, 2018a). While the infection with low pathogenic (LP) AIV is 

widespread in wild birds and leads, when transmitted to poultry, to sporadic outbreaks with 

no serious concern for animal health, the potential emergence and spread of highly 

pathogenic (HP) AIV from LPAIV precursor viruses has a high negative impact on poultry 

production (Dhingra et al., 2018; Spackman, 2008). Among all AIV, only viruses of the 

subtypes H5 and H7 have the natural potential to mutate spontaneously from LP into HP 

phenotypes (Capua et al., 2013b; Deshpande et al., 1987). Apart from causing devastating 

losses in poultry, due to the zoonotic propensity of some of these viruses, they also pose a 

threat to public health (Kalthoff et al., 2010).  

The described natural history of AIV dates back to 1878 in Northern Italy (Perroncito, 1878). 

Although the first documented isolation of influenza virus of subtype H7 

(A/Chicken/Brescia/1902 (H7N7) was made in 1902 in Italy (Horimoto et al., 2001), it was not 

before 1955 that Schäfer characterized these agents as influenza A viruses (Schäfer, 1955). 

AIV of subtype H7N7 is still endemic in wild birds in Europe and is  rarely though regularly 

isolated also from domestic poultry (Abdelwhab et al., 2014b). Moreover, several strains of 

AIV H7 also pose a threat to human health and have led to several sporadic mild to fatal 

infections in humans (Wong et al., 2006). Highly zoonotic LPAIV H7N9 surfaced in China in 

2013 and since then spread in at least five waves among poultry populations across the 

country with spill-over transmissions to humans which resulted in 1625 confirmed human 

infections and 623 deaths (FAO, 2018; Li et al., 2014; Shi et al., 2017).  

Further, subtype H5 viruses of low pathogenicity are endemic in migratory wild bird 

populations and potentially mutate into HPAIV strains following transmission into poultry 

(Swayne et al., 2000). The currently most widespread HPAIV lineage of subtype H5 emerged 

from geese in the Chinese Guangdong province in 1996 and led since then to unprecedented 

global spread and mortality in wild bird species and poultry as well as to 860 human cases 

and 454 deaths (Peiris et al., 2007; WHO, 2018b).  
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Determining the drivers of emergence and spread of HPAIV is crucial for a better 

understanding why and when certain LP strains pose a risk of evolving to HP. Although there 

are various hypotheses describing the emergence of HPAIV from LPAIV precursors (Richard 

et al., 2017), there is insufficient knowledge why the HP phenotype emerges (naturally) only 

in H5 and H7 subtypes. It is also unclear how the HP variant escapes from the index bird 

which necessarily is infected by the LP precursor. So far, only a few cases worldwide have 

been reported in which both the LPAI precursor virus and the descant HPAIV strain (i.e. a 

natural “matching LP/HPAI virus pair”) were detected and epidemiologically linked (Dhingra 

et al., 2018; Wood JM, 1985).  

Therefore, the present study is aiming at casting some light on the mechanisms by which 

HPAIV (i) emerge, (ii) initially spread in the index bird and (iii) are transmitted to in-contact 

birds.  
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II. REVIEW OF LITERATURE

1. AVIAN INFLUENZA VIRUS

Avian influenza (AI) is an infectious viral disease of birds caused by influenza A viruses 

(Lupiani et al., 2009; Swayne et al., 2000; Thomas et al., 2007). Metapopulations of wild 

waterfowl represent the primary reservoir of AIV from where the virus can be transmitted to 

domestic poultry (Alexander et al., 2009; Webster et al., 1992a). Some virus strains may also 

be of concern for mammalians including humans (Freidl et al., 2014; Herfst et al., 2014; 

Webster et al., 1992a). 

1.1 Virus taxonomy 

AIV belong to the family Orthomyxoviridae that contains seven different genera of influenza 

viruses: Influenza A, B, C and D viruses, Thogoto virus, aquatic infectious salmon anemia 

virus and Quaranjavirus (Hause et al., 2014b; ICTV, 2017; Presti et al., 2009). AIV themselves 

are members of the influenza A virus (IAV) genus and, based on the antigenic variation of the 

two integral major surface glycoproteins hemagglutinin (HA) and neuraminidase (NA), can 

theoretically be classified into 154 different subtypes (Bouvier et al., 2008). Eighteen 

subtypes of HA (H1-H18) and eleven subtypes of NA (N1-N11) have been identified so far 

(Hause et al., 2014a; ICTV, 2017; Schrauwen et al., 2014). While H1-H16 have been described 

in waterfowl (Spackman et al., 2003), H17N10 and H18N11 have been found in bats only 

(Mehle, 2014; Tong et al., 2013b). IAV can further be distinguished into several lineages 

according to their main host reservoirs including human, swine, equine, and avian influenza 

viruses (Gorman et al., 1990) and bat influenza viruses (Tong et al., 2013a). According to 

their pathogenicity in chickens, AIV can be categorized into two phenotypes: Low pathogenic 

(LP) and highly pathogenic (HP) AIV. While LPAIV cause no or only mild clinical signs in birds, 

HPAIV can cause up to 100% morbidity and mortality within a few days (Alexander, 2000). A 

standard nomenclature for influenza viruses was established in February 1980 by the World 

Health Organization (WHO): This supplies information on the influenza type A, B or C, the 

host of origin (for non-human viruses), geographical origin, strain number (laboratory 

number/code), year of isolation and the HA/NA subtype (e.g. 
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A/chicken/Germany/AR915/2015 (H7N7)) (Assaad et al., 1980). In case of human-derived 

viruses, the host origin is omitted (e.g. A/Germany/767/95 (H3N2)) (IRD, 2018).   

 

1.2. Virion structure 

IAV, including those of avian origin, are polymorphic in shape and appear as either spherical 

(about 100-120 nm in diameter) or filamentous (with a length of up to 1000 nm) particles 

(Samji, 2009). The virus particle contains a lipid bilayer envelope obtained from the host cell 

membrane after egress by budding. IAV harbor a negative-sensed, single-stranded (ss), 

encapsidated ribonucleic acid (RNA) eight-fold segmented genome of about 13.5 kilo base 

pairs (kbp) in total. Two major surface glycoproteins, the HA and NA, are anchored within 

the virus membrane. Another surface protein, the matrix-2 (M2) protein, forms a 

transmembrane ion channel. In addition to this, six internal proteins comprising of 

polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), polymerase acidic 

protein (PA), nucleoprotein (NP), matrix protein (M) and non-structural protein 2 (NS2) are 

present in the virion.  

 

 

Figure 1.  Structure of influenza A virus (Horimoto et al., 2005)*. 

* For permission rights see chapter IX. Supplement, page 188. 
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1.3. Genome organization 

The genome of AIV contains all genetic information necessary for replication and assembly 

of progeny virions (Brown, 2000) and is composed of eight gene segments (designated PB2, 

PB1, PA, HA, NP, NA, M, NS) that are numbered in order of decreasing length. These 

segments hold coding capacities for nine structural proteins (surface and/or internal 

proteins PB2, PB1, PA, HA, NP, NA, M1, M2, NS2) and up to five non-structural proteins 

which have been identified in infected cells but not in virions (PB2-S1, PB1-F2, PB1-N40, PA-X 

and NS1; (Alexander et al., 2009; Nayak, 1969; Nayak et al., 2009; Webster et al., 1992a). The 

encoded polypeptides and their respective functions are summarized in Table 1.  

Critical for the formation of the ribonucleoprotein complex (RNP) and for the binding of the 

polymerase complex (composed of each one copy of the PB2, PB1 and PA proteins), all gene 

segments harbor 12 highly conserved nucleotides in the 3´ terminus and 13 nucleotides in 

the 5´ terminus which are partially complementary and form a short double-stranded (ds) 

RNA structure known as the “panhandle” (Crescenzo-Chaigne et al., 2013; Fodor et al., 

1994). Further, each gene segment has a segment-specific packaging signal that is located in 

the noncoding and terminal coding regions of both 3´ and 5´ ends of each viral RNA (vRNA) 

to ensure packaging of one copy of each segment into mature virions (Brown, 2000; 

Rossman et al., 2011). However, this concept has recently been challenged as more than 90 

% of the virions seem to portray a wrong number or wrong combination of genome 

segments (Suarez, 2016). 

PB1, PB2 and PA are the three proteins forming the viral RNA-dependent RNA polymerase 

(RdRP) complex and are encoded on separate segments. While PB1 and PB2 are basic 

proteins (Bouvier et al., 2008; Eisfeld et al., 2015)), PA is an acidic protein and tightly 

associated with PB2 and PB1 to form a compact structure (Area et al., 2004).  

Segment 1 encodes the PB2 protein which recognizes and binds the 5´cap structures of host 

cell viral messenger RNA (mRNA). That is used as a viral mRNA transcription primer via a cap-

snatching mechanism which plays an important role during initiation of mRNA transcription 

(Dias et al., 2009). In addition to this, a newly discovered protein, PB2-S1, translated from a 

spliced PB2 mRNA, has been described to inhibit the RIG-I dependent signaling pathway in 

vitro  (Yamayoshi et al., 2015). 
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The PB1 RNA polymerase subunit is encoded by segment 2. PB1 is responsible for binding to 

the terminal 5´ and 3´ ends of both vRNA and complementary RNA (cRNA) and thus initiates 

the process of genome transcription and replication. PB1 also encodes the PB1-F2 protein 

(Chen et al., 2001) known to act as a virulence factor affecting pathogenesis, viral 

dissemination and transmission (McAuley et al., 2007). 

The PA protein is encoded by segment 3. Although no specific function has been detailed so 

far, mutations in the PA may affect both transcription and replication procedures (Fodor et 

al., 2002). PA associates with PB2 and PB1 in the cap snatching process, aids in the initiation 

of mRNA synthesis and also has proteolytic activity. PA-X is a protein encoded by an 

alternate open reading frame of the PA gene and affects host protein expression and 

pathogenicity by controlling host inflammation, cell differentiation, apoptosis and tissue 

remodeling (Hayashi et al., 2015; Jagger et al., 2012).  

The HA, as one of the two major glycoproteins, is encoded by segment 4 and embedded in 

the lipid bilayer of the viral envelope as a type I transmembrane protein (Veit et al., 2011). 

This protein is synthesized as a precursor protein (HA0) and must undergo posttranslational 

endoproteolytic cleavage into HA1 and HA2 (which remain connected by disulphide linkage) 

by cellular proteases  (Steinhauer, 1999) in order to be activated and to render progeny 

virions infectious. HA monomers form a homotrimer resulting in two structurally distinct 

domains, HA1 and HA2 (Figure 2). The HA1 domain forms a globular head comprised of anti-

parallel ß-sheets and loops that contains the receptor binding domain (RBD) and mediates 

HA attachment to the host cell surface. The HA2 part, comprised mainly of α-helices, 

function as a stalk and also harbors the membrane spanning anchor.  The HA2 amino-

terminal region, also known as the fusion peptide, is responsible for membrane fusion of the 

viral envelope with the cell endosome (Mair et al., 2014).  
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Figure 2. Structure of the hemagglutinin monomer (left) or trimer (right).  

The endoproteolytic cleavage site (CS) is shown in dark red close to the fusion peptide 

(Amorij et al., 2008)*.  

* For permission rights see chapter IX. Supplement, page 188. 

 

The NP protein is encoded by segment 5 and is one of the essential components of the RNP 

complex (Cheung et al., 2007). As the amino terminus of the NP protein contains an RNA-

binding domain, it has a structural role in binding and encapsidating vRNA through 

association with the polymerase proteins (Turrell et al., 2013).  

The NA, also known as sialidase, is encoded by segment 6. NA is a type II transmembrane 

protein and encodes the most abundant surface glycoprotein, containing both antigenic and 

enzymatic properties (Gamblin et al., 2010). It is tetrameric, mushroom-shaped and bears 

cytoplasmic, transmembrane, stalk and head domains (Bouvier et al., 2008). NA, along with 

HA, plays an important role for the virulence of IAV. The NA head domain provides sialidase 

enzymatic activity. The main function of the NA is to cleave the sialic acid (SA) residue 

attached to the newly formed virions to release the viral particle from the plasma membrane 

during the budding process (Gamblin et al., 2010). This action also prevents self-aggregation 

and reattachment of the virus to the infected cell (Luo et al., 1993; Wagner et al., 2002). 

Epithelial cells in the respiratory tract secrete a mucus layer rich in sialylated glycoproteins, 

where IAV virions may easily get stuck by binding to such glycoproteins and never reach 
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sialylated receptors on the surface of the cell. In such cases it is believed that the NA protein 

cleaves those sialylated decoys and allows the virion to penetrate the mucus and gain entry 

into the host cell (Cohen et al., 2013). 

The matrix (M) protein, encoded by segment 6, is the major structural component of the 

viral envelope, important for virus formation and induction of particle formation (Gomez-

Puertas et al., 2000) and encodes two proteins: M1 and M2. Dimeric M1 forms a layer 

beneath the viral envelope stabilizing particle integrity. M1 interacts with the viral 

ribonucleoprotein (vRNP) complexes, forming a bridge between the inner core components 

and the membrane proteins (Boulo et al., 2007). The M2 protein is a homotetrameric 

integral membrane protein that functions as an ion channel and allows protons in the 

endosomal environment to flow into the virion during viral entry to the cell; M2 is encoded 

by a spliced M gene-derived mRNA (Manzoor et al., 2017; Moorthy et al., 2014). In addition 

to this, it has a role in genome packaging and in formation of virus particles (Chen et al., 

2008).   

Segment eight of the influenza genome codes for two major non-structural (NS) proteins.  

(Bouvier et al., 2008). The principle function of NS1 is suppressing the host antiviral 

response: NS1 has been shown to antagonize interferon (IFN) expression in infected cells by 

two pathways. The first one is binding to dsRNA (synthesized during viral replication), 

inhibiting the pre-transcription pathway for activation of IFN due to inactivation of cellular 

sensors such as protein kinase R (PKR), retinoic-acid inducible gene I (RIG-I) and 2´-5´ 

oligoadenylate synthetase-RNase (2´-5´OAS). In the second pathway, NS1 interacts with 

several IFN-induced cellular proteins/factors like cleavage and polyadenylation specificity 

factor 30 (CPSF30) and polyadenine binding protein II (PABPII) that are responsible for host 

mRNA maturation and export. Thus, post-transcriptional inhibition of IFN production occurs 

via binding of the NS1 protein to these proteins/factors that paralyses cellular gene 

expression and translation (Garcia-Sastre, 2001; Guo et al., 2007; Hatada et al., 1992; Krug, 

2014; Min et al., 2006; Seo et al., 2012). The NS2 protein, renamed as nuclear export protein 

(NEP) after being demonstrated in the virion (Yasuda et al., 1993), is a structural protein 

which interacts with M1 protein (O'Neill et al., 1998) and is involved in the nuclear export of 

vRNPs and responsible for blocking the re-entry of vRNPs into nucleus (Eisfeld et al., 2015). 

More recently, a new protein product of the NS segment, NS3, was discovered and 
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tentatively described as a potential factor for adaptation of influenza A virus to mammalian 

(murine) hosts. (Selman et al., 2012). 

 

Table 1. The gene segments of avian influenza virus and their encoded proteins (modified 

from (Bouvier et al., 2008; Naguib, 2017). 

 

* Length of the proteins of PB1-F2, HA, NA and NS1 varies among different subtypes/strains. 
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2. Avian influenza ECOLOGY AND INFECTION 

2.1 Antigenic diversity and viral evolution 

AIV has the ability to generate a high degree of genetic and antigenic diversity. According to 

the antigenic variation of the two surface glycoproteins HA and NA, currently 16 HA and 9 

NA AIV subtypes are known and consequently 154 possible HA and NA combinations 

theoretically exist although not all have been described in nature (Hause et al., 2014a; ICTV, 

2017). In contrast to this, bat IAV (H17N10 and H18N11) fail to reassort with conventional 

IAVs (Ciminski et al., 2017) and are therefore not included here. 

The NP and M genes share a higher degree of conservation among all influenza viruses and 

have therefore historically been used to determine the Influenza virus type (A, B, C or D) 

(Yoon et al., 2014). Apart from their natural host reservoir, AIV is known to rapidly evolve in 

several avian hosts (Oxford J, 2003; RG. et al., 1975). Diversifying evolution of AIV is driven 

by three mechanisms: point mutations (genetic drift), genome segment rearrangement 

(reassortment; genetic shift) and RNA recombination (Shao et al., 2017).   

A high rate of both synonymous and nonsynonymous point mutations is due to error-prone 

activity of the RdRP and the fact that there is no proof-reading mechanism for replicating 

negative sensed single-stranded RNA replication in eukaryotic cells (Boni, 2008; Chen et al., 

2006). In case the two major surface glycoproteins of the AIV genome, the HA and/or NA 

gene, are affected by non-synonymous mutations, antigenic variants may result. These 

mutations may accumulate continually over time, and the process as such is often referred 

to as antigenic drift. Consequently, recognition by neutralizing antibodies (synthesized due 

to previous virus infection or vaccination) may be negatively affected (Carrat et al., 2007). 

This may compromise vaccination strategies as it is of utmost important to select vaccine 

strains that antigenically match the circulating field viruses as closely as possible. Therefore, 

influenza surveillance efforts are useful to detect short-term antigenic drift and, thus, aids in 

vaccine selection. Rates of the genetic drift of the influenza HA protein in poultry are similar 

to those observed in human H3 IAV that show approximately 7.9 nucleotide and 3.4 amino 

acid substitutions per year in the HA1 gene (Suarez et al., 2000). In contrast to this, the 

mutation rate of the HA1 protein of AIV H5 and H7 subtypes infected poultry species from 
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live bird markets in the United States showed 7.8 and 4.9 substitutions per 1000 nucleotide 

sites per year, respectively. 

Secondly, genome segment rearrangement or reassortment acts as an important mechanism 

for genetic and antigenic diversity of influenza viruses:  Simultaneous infection of a single 

cell with two different parental influenza viruses of different sub- and/or genotypes allows 

the swapping of whole gene segments during assembly of virions, thereby producing 

different genotypes among the progeny virions (Baigent et al., 2003; Scholtissek, 1990; 

Scholtissek, 1995). Hence, a new genotype can be formed if one or more of the internal gene 

segments are replaced and a new subtype if either HA and/or NA segments are exchanged 

(Steel et al., 2014). Exchanging the HA segment may lead to a complete changing of 

antigenic properties of the virus, hence it is referred to as antigenic shift. For instance, 

several reassortant influenza subtypes have been documented during the last decade that 

harbor one or more of the internal gene segments of subtype H9N2 viruses (e.g. H5N1 and 

H10N8  (Chen et al., 2014; Monne et al., 2013) or LPAIV H7N9 in China (Lam et al., 2013)). A 

pandemic may occur if a new reassortant virus (i) carrying an antigenically altered HA 

segment and (ii) readily transmissible, is introduced into an immunologically naïve global 

human population (McDonald et al., 2016; Webster et al., 1992a). Historically, AIV gene 

segments were contributing to the generation of human pandemic viruses that emerged in 

Spain in 1918-1919 (H1N1), in Asia in 1957 (H2N2), in Hong Kong in 1968 (H3N2) and in 2009 

as the so-called “swine flu” in Mesoamerica (H1N1) (Garten et al., 2009; Morens et al., 2010; 

Shao et al., 2017). All four pandemics had their origin linked to reassortant influenza viruses 

of either human and avian or swine (in 2009) origin (Kilbourne, 2006; Taubenberger et al., 

2009) and together cost the lives of an estimated more than 50 million human beings 

(Baigent et al., 2003; Johnson et al., 2002; LaRussa, 2011; Webster et al., 1992b). Due to the 

highly zoonotic character of some AIV, a continuing potential threat to human health is given 

and an influenza pandemic still remains one of the most serious threats to public health. 

As a third though rare mechanism recombination has been described to contribute to AIV 

divergence. During recombination, an insertion or shuffling of viral sequences of other than 

HA genome segments into the HA genome segment has been reported, resulting in the 

emergence of HPAIV in poultry (Dhingra et al., 2018; Holmes, 2003; Maurer-Stroh et al., 
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2013). For instance, HPAIV H7N3 in Chile (2002) and Canada (2004) appear to have arisen as 

a result of recombination with the viral NP and M genes, respectively (Pasick et al., 2005; 

Suarez et al., 2004). 

 

2.2 Avian influenza virus in a global persepective 

AI was first described as a clinical entity in poultry in Italy in 1878  (Perroncito, 1878) and 

thereafter defined as “bird/fowl plague” by the beginning of the 20th century. AIV are 

responsible for huge economic losses in the poultry industries nowadays (especially in Asia) 

and some strains pose a health risk for human beings. Based on their pathogenicity in 

chickens in vivo and the composition of the endoproteolytic cleavage site (CS, also referred 

to as HACS) of the HA protein a classification into two pathotypes is achieved (OIE, 2017). 

While the majority of AIV is of the LP pathotype, only viruses of subtypes H5 and H7 have the 

potential to emerge to HP variants in nature.  

 

2.2.1 Low pathogenic avian influenza virus   

LPAIVs mainly run an asymptomatic course of infection in reservoir hosts (aquatic wild birds) 

and induce only mild or even no obvious clinical signs in gallinaecous poultry. Due to their 

widespread occurrence in wild bird populations, they are sporadically transmitted to poultry 

populations and rarely also to mammals, including humans. LPAIV infections of H7 and H9 

subtypes are the most frequently detected ones in domestic poultry, causing sublinical 

infections (Fusaro et al., 2011; Sun et al., 2015) which however may progress to clinical 

disease given presence of opportunistic co-pathogens (e.g. E. coli, Ornithobacterium 

rhinotracheale etc.; (Hassan et al., 2017; Samy et al., 2018)) and/or adverse environmental 

conditions (e.g. high ambient temperatures, (Harder et al., 2016)). LPAIV of subtype H9N2 

continue to circulate and are actually the most prevalent subtype in poultry worldwide. 

There are distinct lineages endemic in several Asian and Middle-East countries affecting all 

poultry sectors, including commercial farms, backyards and live bird markets (Capua et al., 

2007; Fusaro et al., 2011). Moreover, some H7 virus strains such as H7N2, H7N3, and H7N7 

have occurred sporadically in several countries in Europe, Asia and America (Abdelwhab et 

al., 2014b). LPAIV of subtype H7N9 of Chinese origin shows an increased zoonotic potential 

(although LPAIV). Since 2013, five epidemic waves of this virus have been reported, mainly 
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affecting China and involving over 1500 human cases and more than 600 deaths (FAO, 2018; 

Su et al., 2017). Although no human-to-human transmissions have been reported so far (Bui 

et al., 2016), the continuous evolution of this virus represents an ongoing long-term threat 

to public health and the poultry industry.  

Some AIV subtypes have a predilection for a narrow spectrum of avian host species (e.g. the 

“gull lineages” of H13 and H16 for Charadriiformes; (Brown et al., 2012; Munster et al., 2007) 

or vary according to time and location (e.g. H14 and H15 which seem to be confined to 

southern Siberia). Subtypes H14 and H15 have only been detected rarely even in large 

surveillance studies, (Kawaoka et al., 1990; Rohm et al., 1996) which leads to the suggestion 

that the host reservoir of these viruses may be infrequently sampled in “common studies”.  

Within their natural reservoir, subtypes H3, H4, H5, H6 and H11 are most frequently 

reported from migratory birds (Kuiken, 2013; Latorre-Margalef et al., 2014; Munster et al., 

2007; Olsen et al., 2006). Sporadically, some of these subtypes are transmitted to poultry 

and are detected in backyard flocks, commercial poultry and life-poultry markets (Lee et al., 

2010; Negovetich et al., 2011).   

 

2.2.2 Highly pathogenic avian influenza viruses 

HPAIVs cause severe clinical signs, leading to high mortality rates of up 100 % especially in 

gallinaecous species. By definition, HP pathotypes show at least two characteristic features: 

An intravenous pathogenicity index (IVPI) of >1.2 and a multibasic cleavage site (MBCS) 

within the HA protein (Anonymous, 2005; OIE, 2017).  The phenomenon of the emergence of 

HPAIV appears to be associated with the adaption of LPAIV precursors to domestic poultry, 

mainly to chickens or turkeys (Richard et al., 2017). While the majority of AIV remains LP, 

only viruses of the subtypes H5 and H7 have the potential (under natural conditions) to 

evolve from LP to HP variants (Figure 3) (Bonfanti et al., 2014; Capua et al., 2007). 

Nevertheless,  a few viruses of subtypes H10N4 and H10N5 have been considered as HP by 

IVPI, although they do not harbour a MBCS and do not cause severe clinical disease when 

inoculated occulo-nasally (Wood et al., 1996). In addition to this, four AIV of subtype H5 

have been described that express a MBCS but did not show the HP phenotype in vivo (IVPI of 

<1.2) (Londt et al., 2007). A total of 26 epizootics caused by HPAI of either subtype H5 or H7 

were documented between 1959-2008 worldwide (Alexander et al., 2009; Swayne, unkown). 
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In 1996, the goose/Guangdong (gs/GD) H5N1-lineage emerged in Southeast Asia and was 

first detected at a commercial geese farm in China, Guangdong province. Over time,  the 

HPAIV H5N1 of the gs/GD-lineage and its resassortant derivates (H5N2, H5N6, H5N5 and 

H5N8) spread widely and affected Europe, Africa and the Middle East, (Neumann, 2015; 

Wong et al., 2015; Wu et al., 2015). Some strains of this lineage even established endemic 

status in several Asian, Middle East and African countries including China, Vietnam, 

Indonesia and Egypt (Hagag et al., 2015; Kim, 2018) and repeatedly caused epizootics in 

Europe and North America (Guan et al., 2009). So far, the virus continues to evolve and has 

differentiated into ten major clades (clade 0-9) and further differentiated subclades, based 

on phylogenetic analysis of the HA gene (Smith et al., 2015). Three “major clades” are 

acutally circulating: clade 2.2.1.2 (in Egypt), clade 2.3.2.1 (mostly in Africa, Asia and Europe) 

and clade 2.3.4 (in Asia, Europe and North America). In additon to this, three “minor clades” 

(clade 1.1.2, 2.1.3.2 and 7.2) revealed an endemic status in poultry of several Asian 

countries. Transcontinental spread of gs/GD viruses had been linked to migratory wild birds 

(Capua et al., 2007; Chen et al., 2005; Viruses, 2016). Recently, outbreak waves of a new 

reassortant gs/GD HPAIV of subtype H5N8 occurred in Europe, Middle-East, Asia and Africa 

in 2016-2017 due to incursions via migratory wild birds (ECDC, 2016; Globig et al., 2017; 

Pasick et al., 2015; Pohlmann et al., 2017). Speed and extent of spread of the gs/GD-lineage 

is unprecendented to date. 
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Figure 3. Geographic distribution of highly pathogenic avian influenza H5 and H7 outbreaks 

among poultry and wild birds in 2017 (EFSA et al., 2017). 

 

 

2.3 Avian influenza virus in Europe 

Over the past decades, the impact of LPAIV and HPAIV on the poultry industry in Europe has 

increased both in terms of numbers of infected birds and costs of applied control measures 

(WHO, 2018c). A drastic restructuring of industrial poultry production since the mid 1990 

from small flocks into huge production units is believed to have contributed to this process 

(Kalthoff et al., 2010). The primary introduction of AI viruses into a poultry population often 

takes place as a result of direct or indirect contact to endemically infected wild bird 

populations (Capua et al., 2007). Therefore, the prevention of AIV incursions depends mainly 

on enforcement of biosecurity measures in poultry holdings (e.g. segregation, cleaning and 

disinfection). Europe has experienced several incursions by viruses of the H5-gs/GD lineage 

in both wild birds and poultry over the past decade. Contrary to several Asian countries and 

Egypt, no spillover infection of humans was reported from Europe until now although some 

of the gs/GD viruses in Europe showed zoonotic potential (Adlhoch et al., 2014). 
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Nevertheless, continous co-circulation in poultry in endemically infected regions in Asia and 

sporadic spillover into migratory wild bird populations of different HPAIV gs/GD H5 lineages 

poses constant risks of new incursions into Europe by migrating wild birds or in associaton 

with (illegal) poultry trading practices (Adlhoch et al., 2014).  

Eurasian-origin LPAI H5 viruses (unrelated to the gs/GD lineage) are routinely detected in 

aquatic wild bird species in Europe with a higher incidence during the autumn migration 

period (Munster et al., 2007). Each spillover infection of LPAIV of subtype H5 and H7 into 

poultry bears the risk of a de novo generation of HP phenotypes (Franca et al., 2014). A 

recent example of such emergence are the HPAIV H5 N1/N3/N9 outbreaks in France that 

were unrelated to the concurrent gs/GD epizootics of HPAIV H5N8 (clade 2.3.4.4)  that 

affected Europe in 2016-2017 (Guinat et al., 2018; Napp S et al., 2017). In addition to 

subtype H5, LPAIV of subtype H9N2 affected domestic ducks, chickens and turkeys in several 

countries in Europe since the mid-1990s, for instance Germany and Poland in 2013/2014 

(Swieton et al., 2018). In addition to this, annual presence of LPAIV H7 subtypes in Eurasian 

wild bird populations as well as sporadic HPAIV H7 outbreaks have been detected and are 

presented in chapter 2.4.   

 

2.4 Avian influenza virus H7 in Europe (low and highly pathogenic) 

Several incursions of LPAIV subtype H7 into poultry as well as the de novo generation and 

spread of HPAIV subtype H7 have been reported from Europe over the past two decades 

(Table 2;  (Abdelwhab et al., 2014b; Dietze et al., 2018; OIE, 2018a). Due to the high 

mortality rate of HPAIV in domestic poultry (Richard et al., 2017), huge economic losses of 

the poultry industry may ensue. The HPAIV H7 outbreak in Italy in 1999-2000 is the best 

known example that resulted in the death of 14 million domestic birds (Capua et al., 2000b). 

Moreover, HPAIV H7N7 occurred in the Netherlands, Belgium and Germany in 2003 and led 

to the death and culling of around 30 million chickens as well as to 89 confirmed cases of 

human infection and one fatal case in the Netherlands (Fouchier et al., 2004; Jonges et al., 

2011; Koopmans et al., 2004). HPAIV H7 outbreaks further occurred in the UK in 2008 and 

2015 (Defra, 2008, 2015; Seekings et al., 2018), in 2009/2010 in Spain (Iglesias et al., 2010), 

in Italy in 2013 (Bonfanti et al., 2014) and in Germany in 2015 (Dietze et al., 2018). In very 
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few HPAIV outbreaks, also the LPAIV precursor has been identified (Table 2). These comprise 

the H7N1 outbreak in Italy in 1999-2000 (Bonfanti et al., 2014; Monne et al., 2014), the 

H7N7 outbreak in the UK (Defra, 2008, 2015), H7N7 in Spain 2009/2010 (Iglesias et al., 2010)  

and H7N7 in Germany in 2015 (Dietze et al., 2018). Risks of new incursions into the poultry 

population in Europe are perpetuating due to the annual presence of LPAIV subtype H7 in 

Eurasian wild bird populations (Abdelwhab et al., 2014b). 
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Table 2. Outbreaks in poultry of subtype H7 avian influenza viruses of low (LP) and high (HP) 

pathogenicity in Europe, 1979–2016 (modified from (Abdelwhab et al., 2014b; Graaf et al., 

2017; OIE, 2018a; Richard et al., 2017). 

 

* Outbreaks in poultry caused by HPAIV appear in bold face and human infections are 

highlighted in blue. 
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2.5 Avian influenza - Clinical disease in avian species  

The ability of AIV to cause disease is influenced by several factors like the subtype of the 

virus, the dose of the inoculum, the host species, the age and genetic lineage of the bird, 

concurrent co-infections and environmental conditions (Alexander, 2000; Blohm et al., 2016; 

Umar et al., 2017; Werner, 2006). Aquatic birds, especially dabbling ducks (e.g. mallards - 

Anas platyrhynchos) represent the natural host reservoir for AIV (Causey et al., 2008; 

Jourdain et al., 2010). However, also other avian species and even mammals can acquire AIV 

infections (Freidl et al., 2014; Imai et al., 2013; Kalthoff et al., 2010; Parrish et al., 2015). 

According to their pathogenicity in gallinaceous poultry (e.g. chickens and turkeys), AIV can 

be distinguished into LP and HP.  Usually, LPAIV cause mild and primarily respiratory signs 

that are often not associated with severe losses in poultry (Elbers et al., 2005). Depending on 

aggravating factors as mentioned above, reduction in weight gain in broiler chickens or a 

temporary decrease in egg production in layer chickens are most notable. Mortality can 

reach, in some rarer cases, up to 30% (Halvorson, 2008; Spackman et al., 2003).  

In contrast to this, HPAIV infection in avian species, mainly in gallinaceous poultry, causes 

systemic disease leading to multiple organ dysfunction and death. HPAIV leads up to 100% 

morbidity and mortality within 36-48 hours in highly vulnerable gallinaceous species like 

chickens and turkeys (Alexander, 2000; Swayne et al., 2000). Infected birds rapidly develop 

severe clinical signs like cyanosis of the comb, wattles and legs, oedema, diarrhea, severe 

depression and various neurological signs (Anonymous, 2015). In contrast to chickens or 

turkeys, waterfowl show a protracted course of infection, ranging from nearly no clinical 

signs to benign enteric disease (Capua et al., 2001; Perkins et al., 2003; Shortridge et al., 

1998). However, few outbreaks are known so far in which ducks developed severe clinical 

signs including neurological symptoms and high mortality. This includes an HPAIV H7N1 

outbreak in Italy in 1999-2000 where muscovy ducks were severely affected (Capua et al., 

2002), an anseriform species that seems to be more vulnerable in general compared to 

mallards or Pekin ducks. In addition, some strains of HPAIV gs/GD H5N1 have caused high 

morbidity and mortality rates in domestic and wild ducks since 2002 (Londt et al., 2008; 

Pantin-Jackwood et al., 2007; Sturm-Ramirez et al., 2004), and recent HPAIV H5N8 virus 

strains of clade 2.3.4.4b have proven lethal in several species of dabbling and diving ducks 

(Grund et al., 2018; van den Brand et al., 2018).  
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2.6 Avian Influenza virus as a zoonotic agent 

The actual number of documented AIV cases in humans, although steadily growing over 

time, must be still considered as being comparatively low and as rare events (WHO, 2018c). 

Nevertheless, the potential threat to public health and society remains high due to the 

inherent capacity of AIV to donate by reassortment genome segments to human pandemic 

viruses (Freidl et al., 2014; To et al., 2012; Wei et al., 2013). In most documented cases, 

human infections - including fatal cases - have a history of exposure to infected poultry by 

either direct or indirect contact (Peiris et al., 2007). A higher zoonotic potential has been 

reported for the HPAIV gs/GD H5-lineage and for LPAIV/HPAIV H7N9 (Lai et al., 2016; Perkins 

et al., 2003; WHO, 2018c).  

An important determinant of host range, and hence of zoonotic propensity, is the receptor 

binding site (RBS) of the HA protein that is critical for cellular receptor specificity 

(Gambaryan et al., 2003; Mair et al., 2014; Wilks et al., 2012). IAV bind to terminal SA of 

glycan structures on the host cell surface to initiate infection (Byrd-Leotis et al., 2017). Based 

on their chemical composition (N-acetylneuraminic acid or N-glyconeuraminic acid) and the 

type of glycosidic linkage to the α2-carbon of the subterminal galactose residue, by α2,3 or 

α2,6 connectivity, species-specific affinity varies. HA of avian viruses mainly bind to α2,3-

linked SA, while the α2,6-SA is the predominant receptor in many mammalian species, 

including humans (Connor et al., 1994; Ito et al., 1997). Host species show different 

expression patterns of these two receptors: α2,3-linked SA is present in duck intestinal 

epithelium (Ito, 2000), while the upper respiratory tract epithelium of humans expresses 

mostly α2,6-linked SA (Baum et al., 1990). However, both avian and mammalian/human cells 

may express (often in a tissue-specific manner) SA of both linkage types, hence there is no 

absolute HA specificity (Wilks et al., 2012). For instance, the α2,3 SA is also present on 

ciliated cells of the human lower respiratory tract, and these cells can be infected with and 

are permissive for AIV (Matrosovich et al., 1999; Matrosovich et al., 2004a, b; Shinya et al., 

2006). Consequently, extensive exposure of cells in the human lower respiratory tract might 

initiate interspecies infection (Peiris et al., 2007). Several amino acid sites in the HA RBS 

govern receptor specificity: Substitutions Q226L and G228S (H3 numbering) in the HA 

protein alter the host receptor binding specificity from α2,3 (avian= Q226, G228) to α2,6 

(human=L226, S228) SA receptors in HPAIV H5 viruses of the gs/GD-lineage (Connor et al., 
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1994; Gambaryan et al., 2012). 

According to the World Health Organization (WHO), various clades of gs/GD HPAIV H5N1 

have been associated with more than 860 human cases of which 454 were fatal (WHO, 

2018b). These infections included only a few family clusters of human-to-human 

transmission but generally these viruses are not yet adapted to efficacious transmission 

between human hosts. However, several amino acid substitutions located near the RBS or 

affecting pH stability of the protein correlated with a shift in affinity of the HA skewing it 

toward a more affine binding of the human SA receptor type (Herfst et al., 2012; Imai et al., 

2012; Watanabe et al., 2011; Zhao et al., 2013). In addition, HPAIV H5N6 clade 2.3.4.4c 

recorded 19 confirmed human cases including 6 deaths in China since 2014 (WHO, 2018a).  

Chinese LPAIV subtype H7N9 raised public health concern as the only LPAIV that has caused 

severe human disease and fatalities since February 2013 due to the presence of the Q226L 

substitution in the HA gene (1625 confirmed human cases and 623 deaths) (FAO, 2018). 

However, no human-to-human transmission has been observed for these viruses so far (Bui 

et al., 2016).  

Some other H7 subtypes express zoonotic properties, and several sporadic human infections 

have been reported since 2002 (Belser et al., 2009; Belser et al., 2007), Table 2). Affected 

humans usually showed only minor clinical signs like conjunctivitis, sneezing or coughing 

(Anonymous, 2007; Nguyen-Van-Tam, 2006a; Nguyen-Van-Tam, 2006b; Puzelli et al., 2005, 

2006). During an HP H7N7 epizootic in the Netherlands in 2003, mild conjunctival infections 

in 88 human cases and one severe fatal case were recorded (Elbers et al., 2004; Fouchier et 

al., 2004). Another HPAIV H7N7 outbreak in Italy in 2013 resulted in infections of three 

poultry workers and farmers presenting with conjunctivitis and influenza-like-illness (Puzelli 

et al., 2016; Puzelli et al., 2014). Both, HPAIV H7N7 in humans of the Dutch and Italian 

outbreak, revealed a substitution at position 143 of the HA gene (A143T) known to introduce 

a potential glycosylation site at position 141 (near to the RBS) that may affect the receptor 

binding specificity or affinity of the HA (de Wit et al., 2010b). 

In addition, LPAIV subtype H9N2 of the G1 lineage have caused 31 human infections in 

several Asian countries; these viruses carry HA aa substitutions H191 and L234 (H9 

numbering) that enable binding of a wider range of SA receptors including human ones (Sun 
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et al., 2015; Wan et al., 2007). Moreover, LPAIV H9N2 in Egypt that also acquired human-like 

α2-6 SA receptor specificity (Matrosovich et al., 2001), provoked four human cases with only 

mild symptoms and no evidence of human-to-human transmission until now (Flutrackers, 

2017; WHO, 2018c). In December 2013, a severe disease was triggered by LPAIV subtype 

H10N8 in China where two out of three infected humans died (Chen et al., 2014; Liu et al., 

2015). There is actually only a single human case of H6N1 infection that took a benign course 

(Yan et al., 2014). 

3. Avian influenza PATHOGENESIS

3.1 Definition of avian influenza pathogenicity 

Based on the pathogenicity in chickens, AIV has been distinguished as phenotypes of low and 

high pathogenicity. The World Organization for Animal Health (OIE) established criteria for 

the pathotype identification based on (i) the nucleotide sequence of the HA cleavage site 

(CS) and (ii) in vivo testing in either eight four-to-eight week-old or 10 six-week-old chickens 

(IVPI) (OIE, 2015b). Therefore, any H5 or H7 virus with a multibasic HACS, or any AIV that 

expresses an IVPI of >1.2 (equivalent to at least 75% mortality of four-to-eight-week old 

chickens within 10 days after intravenous inoculation) is considered to be of the HP 

phenotype. All other viruses are referred to as LPAIV.  

3.2 Molecular basis of pathogenicity 

Determining the AIV pathotype is mandatory for any legal binding diagnosis during 

surveillance, investigations of suspect cases and establishment of control measures of 

notifiable AIV infections. Molecular pathotyping by nucleotide sequencing of the HACS has 

been routinely established in order to save time to diagnosis and avoid animal experiments. 

The activation of HA by endoproteolytic cleavage into two subunits (HA1 and HA2) is 

indispensable for AIV infectivity (Klenk et al., 1975), and differences in pathogenicity of AIV 

subtypes H5 and H7 are mainly due to structural variations at the HACS (Chen et al., 1998). 

While LPAIV harbor a monobasic CS that is also referred to as single-basic cleavage site 

(SBCS) with a single basic amino acid (aa) (either arginine “R” or lysine “K”) at position -3 or   
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-4, HPAIV possess multibasic CS motifs with more than one R and/or K at least at positions -2

and -3, therefore considered as multi-basic CS (MBCS) (Figure3). An SBCS is processed by 

extracellular trypsin-like enzymes that are limited to the respiratory and intestinal tract 

(Bottcher-Friebertshauser et al., 2014). Due to the specific tissue distribution of these 

proteases, the spread of LPAIV infection in avian and mammalian hosts is limited. MBCSs are 

processed by subtilisin-like enzymes like furin which are ubiquitous in all tissues (Garten et 

al., 2008a); viruses expressing an MBCS therefore are capable of systemic infection. 

Nevertheless, the MBCS is apparently not always the sole feature that defines the HP 

phenotype (Abolnik et al., 2009; Londt et al., 2007; Stech et al., 2009; Veits et al., 2012). 

Thus, shifting of pathogenicity is not fully limited to the molecular composition of the HACS 

but further, as yet ill-defined, mechanisms and/or other gene segments may be also involved 

(Abdelwhab et al., 2013). 

A list of HACS motifs obtained from outbreaks around the world has been published by the 

“OIE FAO network of expertise on animal influenza” (OFFLU et al., 2018) that lists variations 

in the sequence and critical number of basic aa and represents a helpful tool in defining 

molecular HP criteria. An isolate should be considered as HP pathotype, if the aa motif is 

similar to at least one of the HP isolates in that list.   
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(a) 

(b) 

Figure 4a-b. Hemagglutinin cleavage sites (HACS) of LP and HPAIV subtypes H7 and H5, 

respectively. The figures show the HACS of an LPAIV isolate with a single-basic HACS with a 

single basic residue and a corresponding HPAIV isolate with more than one basic residue. 

Basic amino acids residues K (lysine) or R (arginine) present at the HACS (excluding position -

1) are highlighted in red. Figure (a) shows the pair of LP/HP H7N7 viruses (deposited in the

EpiFluTM database (platform.gisaid.org) under accession numbers EPI_ISL_191763-64 and 

EPI_ISL_191941-42) that has been detected in Germany in 2015. In Figure (b) the HACS of a 

typically Eurasian wild bird LPAIV subtype H5 is shown (accession number CY107849) and the 

MBCS of a gs/GD descending HPAIV H5 of clade 2.3.4.4a (accession number AM408215.1). 

3.3 Mutational switch from low to high pathogenicity 

The exact molecular mechanisms that favor a mutation from LP to HPAIV are still unknown. 

Conceivable mechanisms for the emergence of HPAIV from LP precursors by converting a 

single-basic to a multibasic HACS have been proposed based on outbreaks that have occured 

in nature (Table 3). The three commonly observed “major mechanisms” are (i) substitution, 
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(ii) insertion and (iii) recombination (Perdue et al., 2003).

Nucleotide substitution refers to the mechanism, during which one or more bases of a codon 

in the HACS are mutated non-synonymously leading to the coding of an additional R or K. 

Until now, this mechanism has only been observed in association with the insertion of 

nucleotides (mechanism ii). HPAIV outbreaks that included base substitutions have been 

described in Mexico in 1994-1995 (H5N2; (Garcia et al., 1996; Horimoto et al., 1995b; Perdue 

et al., 1997), in Pakistan in 1995/1995 (H7N3; (Abbas et al., 2010) and in the UK in 2008 and 

2015 (H7N7; (Defra, 2008, 2015; Seekings et al., 2018). 

Insertion (ii) of a series of untemplated A and G residues encoding basic aa at the HACS as a 

result of repeated reading and duplication of an existing template by a polymerase 

stuttering mechanism seems to be the most frequent mechanism (Pasick et al., 2005). For 

instance, this mechanism has been proposed at the basis of outbreaks in chickens of HPAIV 

H7N7 in Australia in 1976 (Bashiruddin et al., 1992), Spain in 2009/2010 (Iglesias et al., 

2010), Germany in 2015 (Dietze et al., 2018) and recently in turkeys in the United States, 

Indiana, 2016 (H7N8; (Killian et al., 2016), in Mexico in 1994-1995 (H5N2), in Pakistan in 

1995 and 2003 (H7N3), and in England 2008 and 2015 (H7N7). 

Rarely observed non-homologous recombination (iii) results in the insertion of nucleotides 

from another viral gene segment or other non-viral (host) sources into the HACS. For 

instance, the HACS of an H7N1 LPAIV from Italy mutated into unique HPAIV HACS motifs in 

1999-2000 (PEIPKGSRMRR*GLF or PEIPKRSRVRR*GLF, respectively) by insertion of four aa 

(underlined) likely by a recombination step from an unknown source (Banks et al., 2001; 

Capua et al., 2002; Monne et al., 2014). As further experiments with these viruses showed, 

the MBCS was not sufficient for conversion to high virulence alone; accordingly, further 

virulence markers i.e. three aa substitutions in the HA2 domain were found to be required 

for full virulence conversion in chickens (Abdelwhab et al., 2016a). In addition, the HACS of 

an H7N3 virus in Chile in 2002, and an H7N3 virus from Canada in 2004 harbored several 

nucleotides from the NP and the M gene, respectively, at the HACS (Pasick et al., 2005; 

Suarez et al., 2004). Two examples of recombination with chicken ribosomal RNA were seen 

in Canada in 2005 (H7N3, 18 nucleotides; (Berhane et al., 2009) and in Mexico in 2012 

(H7N3, 24 nucleotides; (FAO, 2012; Maurer-Stroh et al., 2013). 
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Positive selection of minor variants of HPAIV (Domingo, 2010) from a quasispecies cloud of 

LP variants have been proposed as a further HPAIV emergence mechanism, for example 

during the H7N1 outbreak in Italy in 1999-2000 or the German HPAIV H7N7 outbreak in 

2015. In both examples, next generation sequencing (NGS) technology detected minor 

variants of HPAIV that existed as a minor population in the quasispecies of the LPAI 

progenitor virus (Dietze et al., 2018; Monne et al., 2014).  

Unusual in comparison to other HPAI viruses, four AIV of subtype H5 that mutated to HP 

variants have been described that expressed a MBCS but did not show the HP phenotype in 

vivo (IVPI of <1.2) (Londt et al., 2007), confirming that virulence markers need not be limited 

to the HACS. For instance, the HPAIV H5N2 strain A/chicken/Pennsylvania/1370/83 isolated 

during an epizootic in Pennsylvania, mutated from a LPAI precursor virus that was in 

circulation for months and already harbored a MBCS, even though it was of low 

pathogenicity in chickens. When suddenly a HP variant of this virus popped up, sequencing 

revealed a non-synonymous mutation at position 11 of the HA protein which resulted in the 

loss of a glycosylation site (Deshpande et al., 1987; Ohuchi et al., 1989). It is postulated that 

the glycosylation at HA11 shielded access of furin-like proteases which only became fully 

processible after loss of the glycosylation.  

Historically, layer chickens appeared to be mainly involved in the natural genesis of HPAI 

variants; exceptions are two events in turkeys (H5N9 in Ontario in 1996, H7N8 in Indiana, 

2016 (Table 2)). In addition to this, the majority of naturally occurring emergence events 

with known LPAIV precursors is of subtype H7 compared to relatively few ones of subtype 

H5 (Richard et al., 2017). The reason for this is still unknown but highlights that the 

emergence of HPAIV H7 (and H5) remains a major concern for the global poultry industry as 

long as LP precursor viruses are in circulation as has been demonstrated repeatedly and 

recently in England in 2008 and 2015, Spain in 2009, Italy 2013 and Germany in 2015, 

demonstrating that mutation of subtypes H7 from LPAIV to HPAIV poses a recent threat 

(OIE, 2018b).  

In vitro, in vivo and in ovo experiments or rather a combination of these methods have been 

established to mimic the natural mutation of LPAIV to HPAIV in the field and to further 

explain the mechanisms involved in the emergence by either passaging and/or the use of 
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reverse genetics. The emergence of HPAIV has been successful several times in vitro (in 

chicken embryo cells and Madin Darby Canine Kidney (MDCK) cells) and in ovo following 

passaging of LPAIV H5 and H7, and resulted in the insertion of basic amino acid at the HACS 

(Brugh, 1988; Horimoto et al., 1995b; Khatchikian et al., 1989; Li et al., 1990; Orlich et al., 

1994; Orlich et al., 1990). Further successful attempts of HPAIV generation were achieved by 

chicken air sac passaging, followed by cerebral passaging of LPAIV H5N2 and H5N3 in 

chickens (Ito et al., 2001; Soda et al., 2011b). Regarding reverse genetic techniques, several 

studies have shown that the furin-sensitive HACS motif plays a major, but not exclusive, role 

in the conversion of phenotypes, when inserting a MBCS into a LPAIV strain of either H5 or 

H7 subtype (Abdelwhab et al., 2016a; Bottcher-Friebertshauser et al., 2014; Gohrbandt et 

al., 2011; Munster et al., 2010). Some studies failed to generate HPAIV by use of this 

technique (Schrauwen et al., 2011; Stech et al., 2009) indicating that further, as yet 

undefined, arrangements (in addition to the insertion of a MBCS) in either the HA and/or 

other gene segments of the AIV are required (Abdelwhab et al., 2013; Diederich et al., 2015; 

Soda et al., 2011b).  
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Table 3. Naturally occurring cases of HPAIV emergence from known LP precursor viruses 

(modified from Seekings (2017)). 
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Study objectives 

III. STUDY OBJECTIVES

Although several studies already support the concept of HPAIV emergence from LPAIV 

precursors after transmission of subtype H5 and H7 AI viruses from wild birds to poultry, the 

present knowledge of the factors governing the mutation event and the spread of de novo 

generated HPAIV remains patchy. This project defined three objectives to improve the 

understanding of these processes: 

1. Complementing the AI diagnostic algorithm by developing rapid, sequencing-

independent pathotyping assays based on real-time RT-PCRs (RT-qPCR) (chapters 4.1 and 

4.2, pp. 39-52 and 53-66). 

Risks of new incursions of LPAIV and HPAIV H5 and H7 into wild birds and poultry 

populations in Europe are perpetuating and justify stringent control measures. Rapid 

differentiation between LP and HP phenotypes of these subtypes is an essential step in the 

diagnosis of these notifiable infections. In order to circumvent biological pathotyping (virus 

isolation, animal inoculation) as well as nucleotide sequencing (molecular pathotyping) and 

to gain precious time,  development of sensitive RT-qPCRs that allow identification and 

distinction of Eurasian subtype H5 and H7 by probe-assisted detection of the HACS was 

attempted.  

2. Dissecting the LP precursor/HP relationship by molecular and epidemiological analysis 

of a linked LP/HPAIV H7N7 outbreak in Germany in 2015 (chapter 4.3, pp. 67-91). 

Direct evidence from the field of LP to HP mutations has rarely been reported. By use of 

available specimens of two spatio-temporally linked outbreaks of H7N7 in layer chickens in 

Germany in 2015, molecular characterization enabled the identification of a potential LPAIV 

precursor and an HPAIV effector virus. Epidemiological and molecular factors fostering this 

conversion were investigated taking advantage of the tools developed under item 1 of the 

objectives. 

35 



Study objectives 

36 

3. Understanding the escape of the HP effector virus following de novo generation from its 

LP precursor by experimental co-infection studies in chickens and in embryonated chicken 

eggs (chapter 4.4, pp. 93-138). 

Determining the drivers of HPAIV emergence from LPAIV is crucial for a better understanding 

why and when certain LP strains pose a risk of becoming HP. There is insufficient knowledge 

how the two AIV pathotypes interact when simultaneously infecting poultry. In vivo and in 

ovo co-infection experiments were conducted using the natural pair of LPAIV and HPAIV 

H7N7 identified in item 2 of the objectives, involving the tools developed under item 1. The 

study concentrated on how a minority of mutated HP virions after de novo generation in a 

single host might individually amplify and spread in that host and become transmitted within 

a poultry population that experiences concurrent infection by an antigenically identical LP 

precursor virus.  
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IV. RESULTS 

The reference section of each manuscript/the results is presented in the style of the 

respective journal and is not included at the end of this document. The numeration of 

figures and tables corresponds to the published form of each manuscript. 
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Supplemental material 

Additional file 1. Nucleotide sequences encoding the HA endoproteolytic cleavage site of 

H7N7 low pathogenic avian influenza viruses generated within this study. 
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Additional file 2. Nucleotide sequences encoding the HA endoproteolytic cleavage site of 

H7N7 highly pathogenic avian influenza viruses generated within this study. 
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Supplemental material 

Table: Results of real time RT-PCR (RT-qPCR) investigation using RT-qPCRs specific for a 

generic target (M), for subtype H7 (H7), and for the LP and HP pathotypes of H7 (H7 HP, H7 

LP) in farms A (LPAIV H7) and B (HPAIV). 

(A) Swab samples

 9 June 2015

Farm Stable M PCR H7 H7 HP H7 LP

1 A/ck/Ger/AR909/2015 A N/A neg neg N/A N/A

2 A/ck/Ger/AR910/2015 A N/A neg neg N/A N/A

3 A/ck/Ger/AR911/2015 A N/A neg neg N/A N/A

4 A/ck/Ger/AR912/2015 A N/A neg neg N/A N/A

5 A/ck/Ger/AR913/2015 A N/A neg neg N/A N/A

6 A/ck/Ger/AR914/2015 A N/A 30.94 37.5 N/A 36.5

7 A/ck/Ger/AR915/2015 A N/A 29.1 31.12 neg 33.38

8 A/ck/Ger/AR916/2015 A N/A neg neg N/A N/A

9 A/ck/Ger/AR917/2015 A N/A 32.99 33.4 N/A 33.8

10 A/ck/Ger/AR918/2015 A N/A neg neg N/A N/A

11 A/ck/Ger/AR919/2015 A N/A neg neg N/A N/A

12 A/ck/Ger/AR920/2015 A N/A neg neg N/A N/A

13 A/ck/Ger/AR921/2015 A N/A neg neg N/A N/A

14 A/ck/Ger/AR922/2015 A N/A neg neg N/A N/A

15 A/ck/Ger/AR923/2015 A N/A neg neg N/A N/A

16 A/ck/Ger/AR924/2015 A N/A neg neg N/A N/A

17 A/ck/Ger/AR925/2015 A N/A neg neg N/A N/A

18 A/ck/Ger/AR926/2015 A N/A neg neg N/A N/A

19 A/ck/Ger/AR927/2015 A N/A neg neg N/A N/A

20 A/ck/Ger/AR928/2015 A N/A neg neg N/A N/A

21 A/ck/Ger/AR929/2015 A N/A 39.79 38.8 N/A 35.66

22 A/ck/Ger/AR930/2015 A N/A 39.85 39.35 N/A 35.35

23 A/ck/Ger/AR931/2015 A N/A neg neg N/A N/A

24 A/ck/Ger/AR932/2015 A N/A neg neg N/A N/A

25 A/ck/Ger/AR933/2015 A N/A neg neg N/A N/A

26 A/ck/Ger/AR934/2015 A N/A 38.58 35.56 N/A neg

27 A/ck/Ger/AR935/2015 A N/A neg neg N/A N/A

28 A/ck/Ger/AR936/2015 A N/A neg neg N/A N/A

29 A/ck/Ger/AR937/2015 A N/A neg neg N/A N/A

30 A/ck/Ger/AR938/2015 A N/A neg neg N/A N/A

31 A/ck/Ger/AR939/2015 A N/A neg neg N/A N/A

32 A/ck/Ger/AR940/2015 A N/A neg neg N/A N/A

33 A/ck/Ger/AR941/2015 A N/A neg neg N/A N/A

34 A/ck/Ger/AR942/2015 A N/A 32.01 29.84 neg 28.89

35 A/ck/Ger/AR943/2015 A N/A 36.88 34.54 neg 34.17

36 A/ck/Ger/AR944/2015 A N/A 37.22 34.29 neg 35.75

37 A/ck/Ger/AR945/2015 A N/A 39.15 38.04 neg 35.08

38 A/ck/Ger/AR946/2015 A N/A 38.59 34.92 neg 35.17

39 A/ck/Ger/AR947/2015 A N/A neg neg N/A N/A

Real-time RT-PCR
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25 July 2015

Farm Stable M PCR H7 H7 HP H7 LP

40 A/ck/Ger/AR1382/2015 B N/A 30.06 36.22 33.48 neg

41 A/ck/Ger/AR1383/2015 B N/A 27.95 32.95 32.33 neg

42 A/ck/Ger/AR1384/2015 B N/A 31.03 36.48 36.6 neg

43 A/ck/Ger/AR1385/2015 B N/A 18.76 27.03 19.01 neg

44 A/ck/Ger/AR1386/2015 B N/A 24.29 28.05 17.34 neg

45 A/ck/Ger/AR1387/2015 B N/A neg N/A N/A N/A

46 A/ck/Ger/AR1388/2015 B N/A neg N/A N/A N/A

47 A/ck/Ger/AR1389/2015 B N/A neg N/A N/A N/A

48 A/ck/Ger/AR1390/2015 B N/A neg N/A N/A N/A

49 A/ck/Ger/AR1391/2015 B N/A neg N/A N/A N/A

50 A/ck/Ger/AR1392/2015 B N/A neg N/A N/A N/A

51 A/ck/Ger/AR1393/2015 B N/A neg N/A N/A N/A

52 A/ck/Ger/AR1394/2015 B N/A neg N/A N/A N/A

53 A/ck/Ger/AR1395/2015 B N/A neg N/A N/A N/A

54 A/ck/Ger/AR1396/2015 B N/A neg N/A N/A N/A

55 A/ck/Ger/AR1397/2015 B N/A neg N/A N/A N/A

56 A/ck/Ger/AR1398/2015 B N/A neg N/A N/A N/A

57 A/ck/Ger/AR1399/2015 B N/A neg N/A N/A N/A

58 A/ck/Ger/AR1400/2015 B N/A neg N/A N/A N/A

59 A/ck/Ger/AR1401/2015 B N/A neg N/A N/A N/A

60 A/ck/Ger/AR1402/2015 B N/A neg N/A N/A N/A

61 A/ck/Ger/AR1403/2015 B N/A neg N/A N/A N/A

62 A/ck/Ger/AR1404/2015 B N/A neg N/A N/A N/A

63 A/ck/Ger/AR1405/2015 B N/A neg N/A N/A N/A

64 A/ck/Ger/AR1406/2015 B N/A neg N/A N/A N/A

65 A/ck/Ger/AR1407/2015 B N/A neg N/A N/A N/A

66 A/ck/Ger/AR1408/2015 B N/A 37.98 N/A neg 33.48

67 A/ck/Ger/AR1409/2015 B N/A 38.37 N/A neg 32.33

68 A/ck/Ger/AR1410/2015 B N/A neg N/A N/A N/A

69 A/ck/Ger/AR1411/2015 B N/A 38.52 N/A neg 36.6

70 A/ck/Ger/AR1412/2015 B N/A 38.33 N/A neg 36.89

71 A/ck/Ger/AR1413/2015 B N/A 36.77 neg 37.58 neg

72 A/ck/Ger/AR1414/2015 B N/A neg N/A N/A N/A

73 A/ck/Ger/AR1415/2015 B N/A neg N/A N/A N/A

74 A/ck/Ger/AR1416/2015 B N/A 30.12 neg 30.69 neg

75 A/ck/Ger/AR1417/2015 B N/A neg N/A N/A N/A

76 A/ck/Ger/AR1418/2015 B N/A neg N/A N/A N/A

77 A/ck/Ger/AR1419/2015 B N/A neg N/A N/A N/A

78 A/ck/Ger/AR1420/2015 B N/A neg N/A N/A N/A

79 A/ck/Ger/AR1421/2015 B N/A 29.88 36.23 31.14 neg

80 A/ck/Ger/AR1422/2015 B N/A neg N/A N/A N/A

81 A/ck/Ger/AR1423/2015 B N/A neg N/A N/A N/A

82 A/ck/Ger/AR1424/2015 B N/A neg N/A N/A N/A

83 A/ck/Ger/AR1425/2015 B N/A neg N/A N/A N/A

84 A/ck/Ger/AR1426/2015 B N/A neg N/A N/A N/A

85 A/ck/Ger/AR1427/2015 B N/A neg N/A N/A N/A

86 A/ck/Ger/AR1428/2015 B N/A neg N/A N/A N/A

87 A/ck/Ger/AR1429/2015 B N/A neg N/A N/A N/A

88 A/ck/Ger/AR1430/2015 B N/A neg N/A N/A N/A

89 A/ck/Ger/AR1431/2015 B N/A neg N/A N/A N/A

90 A/ck/Ger/AR1432/2015 B N/A neg N/A N/A N/A

Real-time RT-PCR
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25 July 2015

Farm Stable M PCR H7 H7 HP H7 LP

91 A/ck/Ger/AR1433/2015 B N/A neg N/A N/A N/A

92 A/ck/Ger/AR1434/2015 B N/A neg N/A N/A N/A

93 A/ck/Ger/AR1435/2015 B N/A neg N/A N/A N/A

94 A/ck/Ger/AR1436/2015 B N/A neg N/A N/A N/A

95 A/ck/Ger/AR1437/2015 B N/A neg N/A N/A N/A

96 A/ck/Ger/AR1438/2015 B N/A neg N/A N/A N/A

97 A/ck/Ger/AR1439/2015 B N/A neg N/A N/A N/A

98 A/ck/Ger/AR1440/2015 B N/A neg N/A N/A N/A

99 A/ck/Ger/AR1441/2015 B N/A neg N/A N/A N/A

100 A/ck/Ger/AR1442/2015 B N/A neg N/A N/A N/A

101 A/ck/Ger/AR1443/2015 B N/A neg N/A N/A N/A

102 A/ck/Ger/AR1444/2015 B N/A neg N/A N/A N/A

103 A/ck/Ger/AR1445/2015 B N/A neg N/A N/A N/A

104 A/ck/Ger/AR1446/2015 B N/A neg N/A N/A N/A

105 A/ck/Ger/AR1447/2015 B N/A neg N/A N/A N/A

106 A/ck/Ger/AR1448/2015 B N/A neg N/A N/A N/A

107 A/ck/Ger/AR1449/2015 B N/A neg N/A N/A N/A

108 A/ck/Ger/AR1450/2015 B N/A neg N/A N/A N/A

109 A/ck/Ger/AR1451/2015 B N/A neg N/A N/A N/A

110 A/ck/Ger/AR1452/2015 B N/A neg N/A N/A N/A

111 A/ck/Ger/AR1453/2015 B N/A neg N/A N/A N/A

112 A/ck/Ger/AR1454/2015 B N/A neg N/A N/A N/A

113 A/ck/Ger/AR1455/2015 B N/A neg N/A N/A N/A

114 A/ck/Ger/AR1456/2015 B N/A neg N/A N/A N/A

115 A/ck/Ger/AR1457/2015 B N/A neg N/A N/A N/A

116 A/ck/Ger/AR1458/2015 B N/A 38.59 N/A neg neg

117 A/ck/Ger/AR1459/2015 B N/A neg N/A N/A N/A

118 A/ck/Ger/AR1460/2015 B N/A neg N/A N/A N/A

119 A/ck/Ger/AR1461/2015 B N/A neg N/A N/A N/A

120 A/ck/Ger/AR1462/2015 B N/A 26.28 33.92 27.43 neg

Real-time RT-PCR
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30 July 2015

Farm Stable M PCR H7 H7 HP H7 LP

121 A/ck/Ger/AR1536/2015 B 2b 31.17 38.14 32.17 neg

122 A/ck/Ger/AR1537/2015 B 2b 32.1 neg 33.75 N/A

123 A/ck/Ger/AR1538/2015 B 2b neg neg n.d. neg

124 A/ck/Ger/AR1539/2015 B 2b 31.04 38.76 31.4 neg

125 A/ck/Ger/AR1540/2015 B 2b 33.49 neg 34.46 neg

126 A/ck/Ger/AR1541/2015 B 2b 31.87 neg 33.18 neg

127 A/ck/Ger/AR1542/2015 B 2a neg neg neg N/A

128 A/ck/Ger/AR1543/2015 B 2a neg neg N/A N/A

129 A/ck/Ger/AR1544/2015 B 2a neg neg N/A N/A

130 A/ck/Ger/AR1545/2015 B 2a neg neg N/A neg

131 A/ck/Ger/AR1546/2015 B 2a 43008 34.7 31.46 N/A

132 A/ck/Ger/AR1547/2015 B 2a neg neg N/A N/A

133 A/ck/Ger/AR1548/2015 B 1b neg neg N/A N/A

134 A/ck/Ger/AR1549/2015 B 1b neg neg N/A N/A

135 A/ck/Ger/AR1550/2015 B 1b neg neg N/A N/A

136 A/ck/Ger/AR1551/2015 B 1b neg neg N/A N/A

137 A/ck/Ger/AR1552/2015 B 1b neg neg N/A N/A

138 A/ck/Ger/AR1553/2015 B 1b neg neg N/A N/A

139 A/ck/Ger/AR1554/2015 B 1a neg neg N/A N/A

140 A/ck/Ger/AR1555/2015 B 1a neg neg N/A N/A

141 A/ck/Ger/AR1556/2015 B 1a neg neg N/A N/A

142 A/ck/Ger/AR1557/2015 B 1a neg neg N/A N/A

143 A/ck/Ger/AR1558/2015 B 1a neg neg N/A N/A

144 A/ck/Ger/AR1559/2015 B 1a neg neg N/A N/A

Real-time RT-PCR

 

(B) Environmental samples  

29 July 2015

Farm Stable M PCR H7 H7 HP H7 LP

145 A/env/Ger/AR1526/2015 B 2b 33.83 neg 36.34 neg

146 AA/env/Ger/R1527/2015 B 2a 32.14 neg 26.83 31.86

147 A/env/Ger/AR1528/2015 B 2a 29.37 37.85 neg 35.54

148 A/env/Ger/AR1529/2015 B 2b 29.37 neg neg 38.03

149 A/env/Ger/AR1530/2015 B 2b 37.87 37.56 35.04 neg

150 A/env/Ger/AR1531/2015 B 2b 33.4 neg neg 36.29

151 A/env/Ger/AR1532/2015 B 2b 34.2 N/A neg N/A

152 A/env/Ger/AR1533/2015 B 2b neg N/A N/A neg

Real-time RT-PCR

 

Threshold cycles for RT-qPCRs M and H7 PCR: ≤40; H7 LP and H7 HP PCR: ≤38 

Neg, no positive signal detected (Cq > 40), 

N/A, not applicable 

Green color: positive in at least one RT-qPCR; Yellow color: positive in virus isolation 



Results – From low to high pathogenicity – Characterization of H7N7 avian influenza viruses in two 
epidemiologically linked outbreaks 

85 

Figures A-G: Phylogenetic analysis by maximum likelihood of genome segments of avian 

influenza viruses. Representative H7N7 viruses that were sequenced in this study are 

indicated in red. 

(A) PB2
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(B) PB1
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(C) PA
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(D) NP  

 



Results – From low to high pathogenicity – Characterization of H7N7 avian influenza viruses in two 
epidemiologically linked outbreaks 

89 

(E) NA
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(F) MP
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Supplemental material 

Supplemental Table 1a. P-values of clinical scores (supplement to Figure 1a). 

Group infected sentinel 

C1 vs M1 NA 0.331753367 

C3 vs. M3 5.58E-09 0.066627494 

C4 vs. M4 2.35E-05 0.290733828 

C5 vs. M5 0.8287837 0.333533006 

C5.7 vs. M5.7 0.2372944 0.886651032 

B vs. M6 2.78E-11 0.00038952 

 

Supplemental Table 1b. P-values of survival probabilities (supplement to Figure 1b). 

 Group infected sentinel 

C1 vs M1 1 1 

C3 vs. M3 4.16E-07 0.0000374 

C4 vs. M4 2.08E-03 0.0000585 

C5 vs. M5 0.000666797 0.1631753 

C5.7 vs. M5.7 0.037529348 0.0101169 

B vs. M6 3.22E-18 0.0000527 



Results - A viral race for primacy: Co-infection of a natural pair of low and highly pathogenic H7N7 avian 
influenza viruses in chickens and embryonated chicken eggs 

108 

Supplemental Table 2. RT-qPCR results of in vivo experiments (supplement to Figure 1c). 

dpi status animal ID M1.2 OP M1.2 CL H7 LP OP H7 LP CL H7 HP OP H7 HP CL

1 1 inoculated C1-1 29.14 neg 30.72 neg neg neg

2 1 inoculated C1-2 33.51 neg neg neg neg neg

3 1 inoculated C1-3 28.74 neg 31.55 neg neg neg

4 1 inoculated C1-4 26.12 neg 28.06 neg neg neg

5 1 inoculated C1-5 35.54 neg neg neg neg neg

6 1 inoculated C1-6 33.07 neg 35.99 neg neg neg

7 1 inoculated C1-7 34.48 neg neg neg neg neg

8 1 inoculated C1-8 31.06 neg 37.61 neg neg neg

9 1 inoculated C1-9 38.36 neg neg neg neg neg

10 1 inoculated C1-10 30.30 neg 32.11 neg neg neg

11 1 sentinel C1-11 neg neg neg neg neg neg

12 1 sentinel C1-12 neg neg neg neg neg neg

13 1 sentinel C1-13 neg neg neg neg neg neg

14 1 sentinel C1-14 36.48 neg neg neg neg neg

15 2 inoculated C1-1 31.94 neg 32.85 neg neg neg

16 2 inoculated C1-2 31.23 neg 33.55 neg neg neg

17 2 inoculated C1-3 32.14 39.71 32.42 neg neg neg

18 2 inoculated C1-4 29.05 neg 30.90 neg neg neg

19 2 inoculated C1-5 32.21 neg 33.67 neg neg neg

20 2 inoculated C1-6 31.76 neg 33.19 neg neg neg

21 2 inoculated C1-7 33.19 neg 34.90 neg neg neg

22 2 inoculated C1-8 31.11 neg 34.07 neg neg neg

23 2 inoculated C1-9 neg neg neg neg neg neg

24 2 inoculated C1-10 36.42 neg neg neg neg neg

25 2 sentinel C1-11 neg neg neg neg neg neg

26 2 sentinel C1-12 neg neg neg neg neg neg

27 2 sentinel C1-13 neg neg neg neg neg neg

28 2 sentinel C1-14 neg neg neg neg neg neg

30 4 inoculated C1-2 34.59 neg neg neg neg neg

31 4 inoculated C1-3 32.35 neg neg neg neg neg

32 4 inoculated C1-4 34.11 28.11 neg neg neg neg

33 4 inoculated C1-5 28.12 36.32 30.66 neg neg neg

34 4 inoculated C1-6 29.08 37.20 35.08 neg neg neg

35 4 inoculated C1-7 36.78 neg neg neg neg neg

36 4 inoculated C1-8 neg neg neg neg neg neg

37 4 inoculated C1-9 neg neg neg neg neg neg

38 4 inoculated C1-10 neg neg neg neg neg neg

41 4 sentinel C1-13 38.09 37.07 neg neg neg neg

44 6 inoculated C1-2 35.17 36.66 neg neg neg neg

45 6 inoculated C1-3 37.45 28.20 neg 30.47 neg neg

46 6 inoculated C1-4 34.66 neg neg neg neg neg

47 6 inoculated C1-5 34.06 35.20 neg 37.24 neg neg

48 6 inoculated C1-6 neg 32.00 neg neg neg neg

49 6 inoculated C1-7 neg 25.06 neg 31.38 neg neg

50 6 inoculated C1-8 37.52 33.24 35.82 neg neg neg

51 6 inoculated C1-9 neg neg neg neg neg neg

53 6 sentinel C1-10 neg 37.13 neg neg neg neg

55 6 sentinel C1-13 27.85 neg 32.00 neg neg neg

58 9 inoculated C1-2 neg 39.51 neg neg neg neg

59 9 inoculated C1-3 38.66 33.10 neg 34.89 neg neg

60 9 inoculated C1-4 neg 35.24 neg neg neg neg

61 9 inoculated C1-5 neg 37.64 neg neg neg neg

62 9 inoculated C1-6 neg 34.89 neg neg neg neg

63 9 inoculated C1-7 neg 34.55 neg neg neg neg

64 9 inoculated C1-8 neg 32.66 neg 33.25 neg neg

65 9 inoculated C1-9 neg 33.87 neg neg neg neg

68 9 sentinel C1-10 neg 32.75 neg neg neg neg

69 9 sentinel C1-13 31.12 31.16 36.05 neg neg neg

72 13 inoculated C1-2 neg neg neg neg neg neg

73 13 inoculated C1-3 neg neg neg neg neg neg

74 13 inoculated C1-4 neg neg neg neg neg neg

75 13 inoculated C1-5 neg neg neg neg neg neg

76 13 inoculated C1-6 neg neg neg neg neg neg

77 13 inoculated C1-7 neg 32.07 neg neg neg neg

78 13 inoculated C1-8 neg neg neg neg neg neg

79 13 inoculated C1-9 neg neg neg neg neg neg

82 13 sentinel C1-10 neg neg neg neg neg neg

83 13 sentinel C1-13 neg 32.16 neg 36.84 neg neg

Real-time RT-PCR
group C1
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dpi status animal ID M1.2 OP M1.2 CL H7 LP OP H7 LP CL H7 HP OP H7 HP CL

1 1 inoculated C3-1 32.39 neg 35.10 neg neg neg

2 1 inoculated C3-2 30.04 neg 32.86 neg neg neg

3 1 inoculated C3-3 32.03 neg 36.32 neg neg neg

4 1 inoculated C3-4 neg neg neg neg neg neg

5 1 inoculated C3-5 27.66 neg 31.80 neg neg neg

6 1 inoculated C3-6 28.42 neg 31.09 neg neg neg

7 1 inoculated C3-7 24.03 neg 27.29 neg neg neg

8 1 inoculated C3-8 26.45 36.65 29.80 neg neg neg

9 1 inoculated C3-9 23.39 35.03 26.67 neg neg neg

10 1 inoculated C3-10 34.45 neg neg neg neg neg

11 1 sentinel C3-11 neg neg neg neg neg neg

12 1 sentinel C3-12 neg neg neg neg neg neg

13 1 sentinel C3-13 neg neg neg neg neg neg

14 1 sentinel C3-14 neg neg neg neg neg neg

15 2 inoculated C3-1 28.51 36.06 30.82 neg neg neg

16 2 inoculated C3-2 31.24 neg 30.24 neg neg neg

17 2 inoculated C3-3 29.77 neg 31.80 neg neg neg

18 2 inoculated C3-4 31.28 35.70 34.02 neg neg neg

19 2 inoculated C3-5 29.64 neg 33.02 neg neg neg

20 2 inoculated C3-6 29.63 neg 31.75 neg neg neg

21 2 inoculated C3-7 30.96 32.26 33.62 neg neg neg

22 2 inoculated C3-8 31.99 21.13 neg 23.85 neg neg

23 2 inoculated C3-9 30.30 38.88 33.91 neg neg neg

24 2 inoculated C3-10 31.66 neg 34.66 neg neg neg

25 2 sentinel C3-11 38.46 neg neg neg neg neg

26 2 sentinel C3-12 38.22 neg neg neg neg neg

27 2 sentinel C3-13 33.91 neg neg neg neg neg

28 2 sentinel C3-14 31.02 38.23 34.70 neg neg neg

29 4 inoculated C3-1 39.02 neg neg neg neg neg

30 4 inoculated C3-2 neg 38.63 neg 36.51 neg neg

32 4 inoculated C3-4 36.95 neg neg neg neg neg

33 4 inoculated C3-5 27.22 neg 30.79 neg neg neg

34 4 inoculated C3-6 30.83 35.46 30.27 neg neg neg

35 4 inoculated C3-7 31.85 38.25 35.80 neg neg neg

37 4 inoculated C3-9 27.55 30.85 31.39 neg neg neg

38 4 inoculated C3-10 26.26 31.02 30.16 neg neg neg

39 4 sentinel C3-11 34.42 27.13 neg neg neg neg

42 4 sentinel C3-14 neg neg neg neg neg neg

43 6 inoculated C3-1 38.92 30.81 neg 31.91 neg neg

44 6 inoculated C3-2 33.37 neg 37.08 neg neg neg

46 6 inoculated C3-4 29.11 neg 31.99 neg neg neg

47 6 inoculated C3-5 35.30 neg neg neg neg neg

48 6 inoculated C3-6 27.27 35.45 30.12 neg neg neg

49 6 inoculated C3-7 35.14 22.78 neg 24.03 neg neg

51 6 inoculated C3-9 31.23 38.33 35.81 neg neg neg

52 6 inoculated C3-10 37.43 36.51 36.09 36.32 neg neg

53 6 sentinel C3-11 33.31 neg 37.51 neg neg neg

56 6 sentinel C3-14 38.19 29.17 neg 30.39 neg neg

57 9 inoculated C3-1 neg 24.17 neg 29.50 neg neg

58 9 inoculated C3-2 neg 38.00 neg neg neg neg

60 9 inoculated C3-4 35.20 37.99 neg neg neg neg

61 9 inoculated C3-5 neg 38.03 neg neg neg neg

62 9 inoculated C3-6 36.29 neg 38.99 neg neg neg

63 9 inoculated C3-7 neg 35.00 neg neg neg neg

65 9 inoculated C3-9 35.68 32.73 neg 37.46 neg neg

66 9 inoculated C3-10 neg 37.52 neg neg neg neg

67 9 sentinel C3-11 36.27 neg neg neg neg neg

70 9 sentinel C3-14 neg 32.61 neg 38.16 neg neg

71 13 inoculated C3-1 neg 33.57 neg neg neg neg

72 13 inoculated C3-2 34.83 neg 35.31 neg neg neg

74 13 inoculated C3-4 37.86 37.80 neg neg neg neg

75 13 inoculated C3-5 neg neg neg neg neg neg

76 13 inoculated C3-6 35.95 neg neg neg neg neg

77 13 inoculated C3-7 neg 34.38 neg neg neg neg

79 13 inoculated C3-9 neg 37.87 neg neg neg neg

80 13 inoculated C3-10 neg neg neg neg neg neg

81 13 sentinel C3-11 neg neg neg neg neg neg

82 13 sentinel C3-14 neg 31.80 neg 33.46 neg neg

group C3
Real-time RT-PCR
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dpi status animal ID M1.2 OP M1.2 CL H7 LP OP H7 LP CL H7 HP OP H7 HP CL

1 1 inoculated C4-1 24.51 neg 30.15 neg 28.36 neg

2 1 inoculated C4-2 20.65 neg 23.44 neg neg neg

3 1 inoculated C4-3 23.66 neg 27.28 neg neg neg

4 1 inoculated C4-4 26.50 neg 29.56 neg neg neg

5 1 inoculated C4-5 26.07 neg 29.49 neg neg neg

6 1 inoculated C4-6 23.88 35.79 25.75 neg neg neg

7 1 inoculated C4-7 26.08 neg 28.70 neg neg neg

8 1 inoculated C4-8 26.43 neg 29.86 neg neg neg

9 1 inoculated C4-9 33.63 neg neg neg neg neg

10 1 inoculated C4-10 25.34 neg 27.13 neg neg neg

11 1 sentinel C4-11 neg neg neg neg neg neg

12 1 sentinel C4-12 neg neg neg neg neg neg

13 1 sentinel C4-13 neg neg neg neg neg neg

14 1 sentinel C4-14 neg neg neg neg neg neg

15 2 inoculated C4-1 28.41 neg neg neg 29.29 neg

16 2 inoculated C4-2 30.11 neg 30.27 30.86 neg neg

17 2 inoculated C4-3 29.22 neg 30.35 neg neg neg

18 2 inoculated C4-4 30.04 37.18 32.42 neg neg neg

19 2 inoculated C4-5 31.69 22.02 neg neg neg 27.29

20 2 inoculated C4-6 32.46 neg neg neg neg neg

21 2 inoculated C4-7 28.19 neg 30.36 neg neg neg

22 2 inoculated C4-8 27.55 neg 29.28 neg neg neg

23 2 inoculated C4-9 34.15 neg neg neg neg neg

24 2 inoculated C4-10 26.32 37.41 28.07 neg neg neg

25 2 sentinel C4-11 35.64 neg neg neg neg neg

26 2 sentinel C4-12 neg neg neg neg neg neg

27 2 sentinel C4-13 neg neg neg neg neg neg

28 2 sentinel C4-14 29.63 neg 33.89 neg neg neg

29 4 inoculated C4-1 neg 24.23 neg neg neg 30.31

30 4 inoculated C4-2 38.10 35.09 neg 30.37 33.24 neg

31 4 inoculated C4-3 35.25 35.63 36.07 neg 32.34 34.35

32 4 inoculated C4-4 neg neg neg neg neg neg

33 4 inoculated C4-5 33.07 36.27 37.03 neg neg neg

34 4 inoculated C4-8 36.42 32.77 31.78 neg neg neg

35 4 inoculated C4-9 29.38 25.97 neg neg neg neg

36 4 inoculated C4-10 23.03 29.12 25.44 27.17 neg neg

37 4 sentinel C4-11 33.13 neg neg neg neg neg

38 4 sentinel C4-14 27.20 22.54 neg neg 27.99 neg

39 5 inoculated C4-3 26.56 26.45 neg neg 23.40 24.96

40 6 inoculated C4-2 33.30 26.04 neg 27.33 neg neg

41 6 inoculated C4-4 34.60 38.32 37.53 neg neg neg

42 6 inoculated C4-5 33.47 35.69 37.01 neg neg neg

43 6 inoculated C4-8 33.47 33.82 37.07 neg neg neg

44 6 inoculated C4-9 neg neg neg neg neg neg

45 6 inoculated C4-10 36.33 32.02 36.26 33.93 neg neg

46 6 sentinel C4-11 36.20 22.72 neg 25.94 neg neg

47 6 sentinel C4-14 35.78 27.06 neg 30.10 neg neg

48 9 inoculated C4-2 neg 32.18 neg 34.75 neg neg

50 9 inoculated C4-4 38.24 38.17 neg neg neg neg

51 9 inoculated C4-5 neg neg neg neg neg neg

52 9 inoculated C4-8 neg 39.93 neg neg neg neg

53 9 inoculated C4-9 36.88 neg neg neg neg neg

54 9 sentinel C4-10 34.40 32.50 neg 37.80 neg neg

55 9 sentinel C4-11 35.64 30.24 neg 36.10 neg neg

56 9 sentinel C4-14 neg 31.81 neg 35.01 neg neg

57 13 inoculated C4-2 neg 33.13 neg 34.68 neg neg

58 13 inoculated C4-4 neg 37.92 neg neg neg neg

59 13 inoculated C4-5 neg neg neg neg neg neg

60 13 inoculated C4-8 neg 39.15 neg neg neg neg

61 13 inoculated C4-9 neg neg neg neg neg neg

62 13 sentinel C4-10 neg 31.04 neg 37.74 neg neg

63 13 sentinel C4-11 37.90 34.39 neg neg neg neg

64 13 sentinel C4-14 neg 38.33 neg neg neg neg

group C4
Real-time RT-PCR
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dpi status animal ID M1.2 OP M1.2 CL H7 LP OP H7 LP CL H7 HP OP H7 HP CL

1 1 inoculated C5-1 23.54 36.09 27.67 neg 28.02 neg

2 1 inoculated C5-2 25.23 neg 30.44 neg 28.71 neg

3 1 inoculated C5-3 23.08 35.12 28.94 neg 23.79 neg

4 1 inoculated C5-4 28.20 neg neg neg 29.48 neg

5 1 inoculated C5-5 25.02 neg 32.15 neg 25.87 neg

6 1 inoculated C5-6 25.61 neg 36.91 neg 26.62 neg

7 1 inoculated C5-7 24.48 neg 28.94 neg 25.66 neg

8 1 inoculated C5-8 25.01 38.78 neg neg 26.67 neg

9 1 inoculated C5-9 24.30 neg 30.85 neg 25.43 neg

10 1 inoculated C5-10 24.56 neg 34.27 neg 25.98 neg

11 1 sentinel C5-11 neg neg neg neg neg neg

12 1 sentinel C5-12 neg neg neg neg neg neg

13 1 sentinel C5-13 neg neg neg neg neg neg

14 1 sentinel C5-14 neg neg neg neg neg neg

15 2 inoculated C5-1 30.11 28.38 neg 28.80 neg neg

16 2 inoculated C5-2 27.52 37.03 35.66 35.32 30.42 neg

17 2 inoculated C5-3 27.54 29.76 neg neg 29.78 35.16

18 2 inoculated C5-4 29.20 33.24 neg neg 32.09 neg

19 2 inoculated C5-5 29.87 27.02 35.44 neg neg 28.61

20 2 inoculated C5-6 29.64 37.07 neg neg 32.78 neg

21 2 inoculated C5-7 31.50 22.61 neg 27.48 32.35 22.91

22 2 inoculated C5-8 29.53 26.89 neg neg 33.10 27.59

23 2 inoculated C5-9 30.34 35.58 neg neg 32.39 neg

24 2 inoculated C5-10 28.24 31.97 neg neg 29.66 neg

25 2 sentinel C5-11 38.15 neg neg neg neg neg

26 2 sentinel C5-12 34.54 neg neg neg neg neg

27 2 sentinel C5-13 35.83 neg neg neg neg neg

28 2 sentinel C5-14 38.47 neg neg neg neg neg

29 3 inoculated C5-3 28.65 29.32 neg neg 30.60 32.54

31 4 inoculated C5-1 24.71 26.34 29.17 neg 24.58 27.77

32 4 inoculated C5-2 24.85 26.86 31.39 neg 30.09 30.19

33 4 inoculated C5-5 24.28 neg 31.38 neg neg neg

34 4 inoculated C5-6 neg 28.76 neg 30.31 neg 25.41

35 4 inoculated C5-8 28.50 27.90 31.02 neg 27.23 26.11

36 4 inoculated C5-9 25.26 24.42 32.06 neg 26.44 29.78

37 4 inoculated C5-10 25.14 23.69 31.39 neg 28.94 30.09

38 4 inoculated C5-11 28.94 neg 34.33 neg neg neg

39 4 sentinel C5-13 23.95 31.56 33.06 neg 38.00 33.30

41 5 inoculated C5-1 24.71 27.65 27.87 29.79 20.97 25.55

42 5 inoculated C5-2 24.85 25.43 28.30 neg 24.60 28.76

43 5 inoculated C5-8 31.09 29.17 31.38 neg neg 29.69

44 5 inoculated C5-9 neg 31.39 neg neg 24.89 25.42

45 5 inoculated C5-10 25.14 34.35 neg neg 24.26 29.50

46 5 inoculated C5-11 30.02 neg 31.83 neg 35.51 neg

47 5 sentinel C5-13 23.95 neg 33.06 neg neg neg

48 6 sentinel C5-11 30.71 34.33 neg neg 30.75 35.26

group C5
Real-time RT-PCR
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dpi status animal ID M1.2 OP M1.2 CL H7 LP OP H7 LP CL H7 HP OP H7 HP CL

1 1 inoculated C5.7-1 23.16 36.77 neg neg 24.37 neg

2 1 inoculated C5.7-2 24.72 neg 33.32 neg 25.21 neg

3 1 inoculated C5.7-3 25.61 neg 33.86 neg 26.37 neg

4 1 inoculated C5.7-4 29.10 neg 36.15 neg neg neg

5 1 inoculated C5.7-5 23.42 neg neg neg 24.56 neg

6 1 inoculated C5.7-6 25.39 neg neg neg 26.29 neg

7 1 inoculated C5.7-7 26.57 39.75 neg neg 27.46 neg

8 1 inoculated C5.7-8 28.62 38.78 neg neg 30.09 neg

9 1 inoculated C5.7-9 25.28 neg 36.21 neg 26.38 neg

10 1 inoculated C5.7-10 22.15 neg neg neg 22.17 neg

11 1 sentinel C5.7-11 37.73 neg neg neg neg neg

12 1 sentinel C5.7-12 neg 27.18 neg 32.80 neg neg

13 1 sentinel C5.7-13 neg neg neg neg neg neg

14 1 sentinel C5.7-14 neg neg neg neg neg neg

15 2 inoculated C5.7-1 28.64 neg neg neg 29.05 35.36

16 2 inoculated C5.7-2 29.26 32.98 neg neg 29.65 neg

17 2 inoculated C5.7-3 28.22 37.08 neg neg 29.08 neg

18 2 inoculated C5.7-4 28.41 26.37 36.73 neg 35.34 neg

19 2 inoculated C5.7-5 26.75 20.21 neg neg 27.99 neg

20 2 inoculated C5.7-6 30.35 35.99 neg neg 35.77 neg

21 2 inoculated C5.7-7 28.13 35.44 neg neg 29.66 neg

22 2 inoculated C5.7-8 29.09 34.09 neg neg 29.38 21.47

23 2 inoculated C5.7-9 31.80 34.36 neg neg 34.84 28.13

24 2 inoculated C5.7-10 33.24 34.17 neg neg neg neg

25 2 sentinel C5.7-11 32.26 31.00 neg neg neg neg

26 2 sentinel C5.7-12 neg 28.38 neg neg neg neg

27 2 sentinel C5.7-13 neg 31.53 neg neg neg neg

28 2 sentinel C5.7-14 neg neg neg neg neg neg

29 4 inoculated C5.7-1 23.28 19.29 neg neg 24.19 20.54

30 4 inoculated C5.7-3 23.98 24.82 neg neg 24.42 24.48

31 4 inoculated C5.7-4 25.39 24.46 neg neg 25.62 25.23

32 4 inoculated C5.7-5 22.51 23.13 neg neg 24.01 24.63

33 4 inoculated C5.7-7 25.46 26.38 neg 37.46 26.06 28.14

34 4 inoculated C5.7-8 22.67 24.78 neg neg 23.32 26.43

35 4 inoculated C5.7-9 21.10 24.39 38.20 neg 21.81 25.22

36 4 inoculated C5.7-10 28.16 29.33 neg neg 28.39 29.22

37 4 sentinel C5.7-11 29.29 neg neg neg 29.86 neg

38 4 sentinel C5.7-12 29.25 37.34 35.31 neg 31.09 21.74

39 5 inoculated C5.7-7 29.22 33.04 neg neg 22.47 23.61

40 5 inoculated C5.7-10 24.27 23.14 neg neg 27.40 22.76

41 6 sentinel C5.7-11 27.27 25.51 neg neg 29.40 29.73

42 6 sentinel C5.7-12 21.56 25.82 neg neg 24.50 26.02

43 7 sentinel C5.7-11 26.26 25.49 neg neg 28.68 26.74

group C5.7
Real-time RT-PCR

 



Results - A viral race for primacy: Co-infection of a natural pair of low and highly pathogenic H7N7 avian 
influenza viruses in chickens and embryonated chicken eggs 

113 

 

dpi status animal ID M1.2 OP M1.2 CL H7 LP OP H7 LP CL H7 HP OP H7 HP CL

1 1 inoculated M1-1 neg neg neg neg neg neg

2 1 inoculated M1-2 neg neg neg neg neg neg

3 1 inoculated M1-3 neg neg neg neg neg neg

4 1 inoculated M1-4 neg neg neg neg neg neg

5 1 inoculated M1-5 neg neg neg neg neg neg

6 1 inoculated M1-6 neg neg neg neg neg neg

7 1 inoculated M1-7 neg neg neg neg neg neg

8 1 inoculated M1-8 neg neg neg neg neg neg

9 1 inoculated M1-9 neg neg neg neg neg neg

10 1 inoculated M1-10 neg neg neg neg neg neg

11 1 sentinel M1-11 neg neg neg neg neg neg

12 1 sentinel M1-12 neg neg neg neg neg neg

13 1 sentinel M1-13 neg neg neg neg neg neg

14 1 sentinel M1-14 neg neg neg neg neg neg

15 2 inoculated M1-1 neg neg neg neg neg neg

16 2 inoculated M1-2 neg neg neg neg neg neg

17 2 inoculated M1-3 neg neg neg neg neg neg

18 2 inoculated M1-4 neg neg neg neg neg neg

19 2 inoculated M1-5 neg neg neg neg neg neg

20 2 inoculated M1-6 neg neg neg neg neg neg

21 2 inoculated M1-7 neg neg neg neg neg neg

22 2 inoculated M1-8 neg neg neg neg neg neg

23 2 inoculated M1-9 neg neg neg neg neg neg

24 2 inoculated M1-10 neg neg neg neg neg neg

25 2 sentinel M1-11 neg neg neg neg neg neg

26 2 sentinel M1-12 neg neg neg neg neg neg

27 2 sentinel M1-13 neg neg neg neg neg neg

28 2 sentinel M1-14 neg neg neg neg neg neg

29 4 inoculated M1-1 neg neg neg neg neg neg

30 4 inoculated M1-2 neg neg neg neg neg neg

31 4 inoculated M1-3 neg neg neg neg neg neg

32 4 inoculated M1-4 neg neg neg neg neg neg

33 4 inoculated M1-5 neg neg neg neg neg neg

34 4 inoculated M1-6 neg neg neg neg neg neg

35 4 inoculated M1-9 neg neg neg neg neg neg

36 4 inoculated M1-10 neg neg neg neg neg neg

37 4 sentinel M1-11 neg neg neg neg neg neg

38 4 sentinel M1-12 neg neg neg neg neg neg

39 6 inoculated M1-1 neg neg neg neg neg neg

40 6 inoculated M1-2 neg neg neg neg neg neg

41 6 inoculated M1-3 neg neg neg neg neg neg

42 6 inoculated M1-4 neg neg neg neg neg neg

43 6 inoculated M1-5 neg neg neg neg neg neg

44 6 inoculated M1-6 neg neg neg neg neg neg

45 6 inoculated M1-9 neg neg neg neg neg neg

46 6 inoculated M1-10 neg neg neg neg neg neg

47 6 sentinel M1-11 neg neg neg neg neg neg

48 6 sentinel M1-12 neg neg neg neg neg neg

49 9 inoculated M1-1 neg neg neg neg neg neg

50 9 inoculated M1-2 neg neg neg neg neg neg

51 9 inoculated M1-3 neg neg neg neg neg neg

52 9 inoculated M1-4 neg neg neg neg neg neg

53 9 inoculated M1-5 neg neg neg neg neg neg

54 9 inoculated M1-6 neg neg neg neg neg neg

55 9 inoculated M1-9 neg neg neg neg neg neg

56 9 inoculated M1-10 neg neg neg neg neg neg

57 9 sentinel M1-11 neg neg neg neg neg neg

58 9 sentinel M1-12 neg neg neg neg neg neg

59 13 inoculated M1-1 neg neg neg neg neg neg

60 13 inoculated M1-2 neg neg neg neg neg neg

61 13 inoculated M1-3 neg neg neg neg neg neg

62 13 inoculated M1-4 neg neg neg neg neg neg

63 13 inoculated M1-5 neg neg neg neg neg neg

64 13 inoculated M1-6 neg neg neg neg neg neg

65 13 inoculated M1-9 neg neg neg neg neg neg

66 13 inoculated M1-10 neg neg neg neg neg neg

67 13 sentinel M1-11 neg neg neg neg neg neg

68 13 sentinel M1-12 neg neg neg neg neg neg

group M1
Real-time RT-PCR
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dpi status animal ID M1.2 OP M1.2 CL H7 LP OP H7 LP CL H7 HP OP H7 HP CL

1 1 inoculated M3-1 neg neg neg neg neg neg

2 1 inoculated M3-2 neg neg neg neg neg neg

3 1 inoculated M3-3 neg neg neg neg neg neg

4 1 inoculated M3-4 neg neg neg neg neg neg

5 1 inoculated M3-5 neg neg neg neg neg neg

6 1 inoculated M3-6 neg neg neg neg neg neg

7 1 inoculated M3-7 neg neg neg neg neg neg

8 1 inoculated M3-8 neg neg neg neg neg neg

9 1 inoculated M3-9 38.36 neg neg neg neg neg

10 1 inoculated M3-10 neg neg neg neg neg neg

11 1 sentinel M3-11 neg neg neg neg neg neg

12 1 sentinel M3-12 neg neg neg neg neg neg

13 1 sentinel M3-13 neg neg neg neg neg neg

14 1 sentinel M3-14 neg neg neg neg neg neg

15 2 inoculated M3-1 neg neg neg neg neg neg

16 2 inoculated M3-2 neg neg neg neg neg neg

17 2 inoculated M3-3 neg neg neg neg neg neg

18 2 inoculated M3-4 neg neg neg neg neg neg

19 2 inoculated M3-5 neg neg neg neg neg neg

20 2 inoculated M3-6 neg neg neg neg neg neg

21 2 inoculated M3-7 neg neg neg neg neg neg

22 2 inoculated M3-8 neg neg neg neg neg neg

23 2 inoculated M3-9 35.86 39.91 neg neg neg neg

24 2 inoculated M3-10 neg neg neg neg neg neg

25 2 sentinel M3-11 neg neg neg neg neg neg

26 2 sentinel M3-12 neg neg neg neg neg neg

27 2 sentinel M3-13 neg neg neg neg neg neg

28 2 sentinel M3-14 neg neg neg neg neg neg

29 4 inoculated M3-2 neg neg neg neg neg neg

30 4 inoculated M3-3 32.46 37.18 neg neg 34.60 neg

31 4 inoculated M3-4 38.37 neg neg neg neg neg

32 4 inoculated M3-5 38.28 neg neg neg neg neg

33 4 inoculated M3-7 33.25 neg neg neg neg neg

34 4 inoculated M3-8 30.35 neg neg neg 30.08 neg

35 4 inoculated M3-9 31.61 29.82 neg neg 32.79 30.47

36 4 inoculated M3-10 32.06 neg neg neg neg neg

37 4 sentinel M3-11 38.40 neg neg neg neg neg

38 4 sentinel M3-12 34.03 neg neg neg neg neg

39 6 inoculated M3-2 34.49 neg neg neg neg neg

40 6 inoculated M3-3 34.43 22.21 neg neg neg 22.73

41 6 inoculated M3-4 36.05 31.84 neg neg neg neg

42 6 inoculated M3-5 30.96 35.11 neg neg 34.02 neg

43 6 inoculated M3-7 32.49 31.95 neg neg 39.19 37.07

44 6 inoculated M3-8 32.07 29.83 neg neg neg 31.62

45 6 inoculated M3-9 28.16 20.35 neg neg 28.49 21.55

46 6 inoculated M3-10 32.43 25.97 neg neg 37.30 27.03

47 6 sentinel M3-11 24.62 26.30 neg neg 24.39 27.44

48 6 sentinel M3-12 27.21 24.53 neg neg 28.06 24.82

49 7 inoculated M3-9 25.93 23.07 neg neg 28.21 24.19

50 8 inoculated M3-3 27.29 26.35 neg neg 27.36 27.15

51 8 inoculated M3-5 24.25 26.85 neg neg 25.18 29.00

52 8 inoculated M3-7 26.72 24.44 neg neg 27.54 25.40

53 8 inoculated M3-8 24.94 28.02 neg neg 24.51 29.23

54 8 inoculated M3-10 25.86 28.56 neg neg 26.18 31.29

55 9 inoculated M3-2 37.53 neg neg neg neg neg

56 9 inoculated M3-4 27.07 29.10 neg neg neg 29.18

57 10 inoculated M3-2 36.95 neg neg neg neg neg

group M3
Real-time RT-PCR
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dpi status animal ID M1.2 OP M1.2 CL H7 LP OP H7 LP CL H7 HP OP H7 HP CL

1 1 inoculated M4-1 neg neg neg neg neg neg

2 1 inoculated M4-2 neg neg neg neg neg neg

3 1 inoculated M4-3 31.51 neg neg neg 35.61 neg

4 1 inoculated M4-4 neg neg neg neg neg neg

5 1 inoculated M4-5 neg neg neg neg neg neg

6 1 inoculated M4-6 neg neg neg neg neg neg

7 1 inoculated M4-7 26.37 neg neg neg 26.55 neg

8 1 inoculated M4-8 33.97 neg neg neg neg neg

9 1 inoculated M4-9 28.97 neg neg neg 28.83 neg

10 1 inoculated M4-10 29.52 neg neg neg 30.52 neg

11 1 sentinel M4-11 neg neg neg neg neg neg

12 1 sentinel M4-12 neg neg neg neg neg neg

13 1 sentinel M4-13 neg neg neg neg neg neg

14 1 sentinel M4-14 neg neg neg neg neg neg

15 1 inoculated M4-1 neg neg neg neg neg neg

16 1 inoculated M4-2 25.93 neg neg neg 27.27 neg

17 1 inoculated M4-3 32.70 neg neg neg 38.80 neg

18 1 inoculated M4-4 neg neg neg neg neg neg

19 1 inoculated M4-5 neg neg neg neg neg neg

20 1 inoculated M4-6 neg 37.46 neg neg neg neg

21 1 inoculated M4-7 28.99 35.40 neg neg 31.12 neg

22 1 inoculated M4-8 34.07 neg neg neg neg neg

23 1 inoculated M4-9 29.36 27.60 neg neg 33.10 31.52

24 1 inoculated M4-10 27.68 33.17 neg neg 28.87 neg

25 1 sentinel M4-11 neg neg neg neg neg neg

26 1 sentinel M4-12 neg neg neg neg neg neg

27 1 sentinel M4-13 neg neg neg neg neg neg

28 1 sentinel M4-14 neg neg neg neg neg neg

29 4 inoculated M4-1 36.16 neg neg neg neg neg

30 4 inoculated M4-3 30.85 29.53 neg neg 32.79 29.53

31 4 inoculated M4-4 34.64 40.45 neg neg neg neg

32 4 inoculated M4-5 36.20 neg neg neg neg neg

33 4 inoculated M4-6 34.08 32.42 neg neg neg neg

34 4 inoculated M4-8 30.42 25.98 neg neg 32.81 26.62

35 4 inoculated M4-9 31.90 27.92 neg neg neg 29.07

36 4 inoculated M4-10 22.51 25.98 neg neg 22.21 25.75

37 4 sentinel M4-11 37.54 33.11 neg neg neg 33.54

38 4 sentinel M4-12 37.12 32.63 neg neg neg 32.67

39 6 inoculated M4-1 35.02 neg neg neg neg neg

40 6 inoculated M4-3 26.04 29.14 neg neg 26.71 30.98

41 6 inoculated M4-4 32.80 33.81 neg neg neg neg

42 6 inoculated M4-5 37.29 35.20 neg neg neg neg

43 6 sentinel M4-11 24.68 31.12 neg neg 24.64 26.12

44 6 sentinel M4-12 32.47 32.27 neg neg neg 27.59

45 7 sentinel M4-12 28.19 25.45 neg neg 28.89 25.85

46 8 inoculated M4-3 35.00 30.86 neg neg neg 24.03

47 8 inoculated M4-4 23.21 22.80 neg neg 23.83 neg

48 9 inoculated M4-1 neg 24.91 neg neg neg 26.32

49 9 inoculated M4-5 neg 30.10 neg neg neg 32.11

50 10 inoculated M4-5 30.06 27.60 neg neg 29.43 28.85

group M4
Real-time RT-PCR
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dpi status animal ID M1.2 OP M1.2 CL H7 LP OP H7 LP CL H7 HP OP H7 HP CL

1 1 inoculated M5-1 neg neg neg neg neg neg

2 1 inoculated M5-2 neg neg neg neg neg neg

3 1 inoculated M5-3 38.97 neg neg neg neg neg

4 1 inoculated M5-4 neg neg neg neg neg neg

5 1 inoculated M5-5 31.43 neg neg neg 32.30 neg

6 1 inoculated M5-6 35.49 neg neg neg neg neg

7 1 inoculated M5-7 neg neg neg neg neg neg

8 1 inoculated M5-8 neg neg neg neg neg neg

9 1 inoculated M5-9 neg neg neg neg neg neg

10 1 inoculated M5-10 28.39 neg neg neg 29.17 neg

11 1 sentinel M5-11 neg neg neg neg neg neg

12 1 sentinel M5-12 neg neg neg neg neg neg

13 1 sentinel M5-13 33.29 neg neg neg 31.22 neg

14 1 sentinel M5-14 neg neg neg neg neg neg

15 2 inoculated M5-1 31.86 37.46 neg neg 35.73 neg

16 2 inoculated M5-2 neg neg neg neg neg neg

17 2 inoculated M5-3 32.68 neg neg neg 36.79 neg

18 2 inoculated M5-4 neg neg neg neg neg neg

19 2 inoculated M5-5 31.73 25.57 neg neg 37.93 26.70

20 2 inoculated M5-6 38.47 38.30 neg neg neg neg

21 2 inoculated M5-7 neg 39.86 neg neg neg neg

22 2 inoculated M5-8 neg neg neg neg neg neg

23 2 inoculated M5-9 39.07 neg neg neg 28.62 neg

24 2 inoculated M5-10 26.53 36.27 neg neg neg neg

25 2 sentinel M5-11 33.82 28.18 neg neg neg 32.59

26 2 sentinel M5-12 neg neg neg neg neg neg

27 2 sentinel M5-13 32.04 36.18 neg neg 34.27 neg

28 2 sentinel M5-14 34.74 neg neg neg neg neg

29 4 inoculated M5-1 31.17 33.07 neg neg 30.59 neg

30 4 inoculated M5-2 33.68 27.44 neg neg neg 28.28

31 4 inoculated M5-3 27.64 30.64 neg neg 26.86 32.14

32 4 inoculated M5-4 neg neg neg neg neg neg

33 4 inoculated M5-5 25.46 27.13 neg neg 25.66 26.23

34 4 inoculated M5-7 30.62 28.00 neg neg 31.63 28.23

35 4 inoculated M5-8 32.98 34.17 neg neg neg neg

36 4 sentinel M5-9 31.56 33.39 neg neg 31.77 neg

37 4 sentinel M5-11 27.29 27.15 neg neg 26.66 28.36

38 4 sentinel M5-13 26.08 25.32 neg neg 26.15 25.27

39 5 inoculated M5-1 27.08 28.86 neg neg 28.48 26.73

40 5 inoculated M5-3 26.52 24.55 neg neg 26.08 28.36

41 5 sentinel M5-11 28.00 neg neg neg 24.55 23.44

42 6 inoculated M5-2 28.39 27.50 neg neg 27.60 27.16

43 6 inoculated M5-4 25.87 26.82 neg neg 26.36 27.15

44 6 inoculated M5-7 27.20 27.73 neg neg 26.40 26.41

45 6 inoculated M5-8 28.02 27.52 neg neg 27.71 26.33

46 6 inoculated M5-9 27.69 29.19 neg neg 27.27 28.79

47 7 inoculated M5-7 19.55 26.10 neg neg 19.14 25.64

48 7 sentinel M5-14 25.64 22.45 neg neg 25.30 22.14

group M5
Real-time RT-PCR
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dpi status animal ID M1.2 OP M1.2 CL H7 LP OP H7 LP CL H7 HP OP H7 HP CL

1 1 inoculated M5.7-1 neg neg neg neg neg neg

2 1 inoculated M5.7-2 23.01 neg neg neg 25.27 neg

3 1 inoculated M5.7-3 33.19 neg neg neg neg neg

4 1 inoculated M5.7-4 23.87 35.23 neg neg 27.07 neg

5 1 inoculated M5.7-5 25.00 neg neg neg 27.49 neg

6 1 inoculated M5.7-6 25.43 38.44 neg neg 27.30 neg

7 1 inoculated M5.7-7 24.65 38.05 neg neg 27.06 neg

8 1 inoculated M5.7-8 26.57 neg neg neg 28.58 neg

9 1 inoculated M5.7-9 21.50 36.21 neg neg 22.79 neg

10 1 inoculated M5.7-10 22.69 33.09 neg neg 23.90 neg

11 1 sentinel M5.7-11 neg neg neg neg neg neg

12 1 sentinel M5.7-12 36.30 36.57 neg neg neg neg

13 1 sentinel M5.7-13 neg neg neg neg neg neg

14 1 sentinel M5.7-14 neg neg neg neg neg neg

15 2 inoculated M5.7-1 38.65 neg neg neg neg neg

16 2 inoculated M5.7-2 29.51 24.67 neg neg 30.74 26.43

17 2 inoculated M5.7-3 38.13 25.03 neg neg neg neg

18 2 inoculated M5.7-4 30.83 24.15 neg neg 36.54 neg

19 2 inoculated M5.7-5 29.42 35.06 neg neg 29.97 25.59

20 2 inoculated M5.7-6 26.64 24.47 neg neg 27.01 25.22

21 2 inoculated M5.7-7 30.86 27.18 neg neg 33.94 neg

22 2 inoculated M5.7-8 28.07 35.30 neg neg 29.72 26.10

23 2 inoculated M5.7-9 31.02 35.63 neg neg 37.01 30.20

24 2 inoculated M5.7-10 29.44 31.76 neg neg neg neg

25 2 sentinel M5.7-11 neg 37.42 neg neg neg neg

26 2 sentinel M5.7-12 neg neg neg neg neg neg

27 2 sentinel M5.7-13 36.71 neg neg neg neg neg

28 2 sentinel M5.7-14 38.17 neg neg neg 33.96 neg

29 3 inoculated M5.7-7 26.59 25.05 neg neg 27.77 25.37

30 3 inoculated M5.7-9 25.15 25.40 neg neg 26.55 26.28

31 3 inoculated M5.7-10 26.10 29.20 neg neg 27.27 30.08

32 4 inoculated M5.7-1 26.36 24.17 neg 27.96 32.17 24.44

33 4 inoculated M5.7-4 28.50 28.20 neg neg 26.20 25.06

34 4 inoculated M5.7-5 23.37 22.88 neg neg 28.25 28.46

35 4 inoculated M5.7-6 27.58 neg neg neg 33.22 24.06

36 4 inoculated M5.7-7 neg neg neg neg neg neg

37 4 inoculated M5.7-8 21.08 26.31 neg neg neg 26.28

38 4 inoculated M5.7-9 neg neg neg neg 21.00 27.05

39 4 sentinel M5.7-12 neg 39.62 neg neg neg neg

40 4 sentinel M5.7-13 neg 37.15 neg neg neg neg

41 5 inoculated M5.7-4 24.26 28.06 neg neg 26.84 26.48

42 5 inoculated M5.7-6 17.33 24.50 neg neg 16.25 23.57

43 6 inoculated M5.7-1 26.54 23.44 neg neg 25.41 22.13

44 6 sentinel M5.7-12 31.08 32.77 neg neg 32.87 neg

45 6 sentinel M5.7-13 36.01 36.41 neg neg neg neg

46 8 sentinel M5.7-12 27.77 27.45 neg neg 27.37 27.31

47 9 sentinel M5.7-13 24.63 34.20 neg neg 23.47 neg

group M5.7
Real-time RT-PCR
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group M6

dpi status animal ID M1.2 OP M1.2 CL H7 LP OP H7 LP CL H7 HP OP H7 HP CL

1 1 inoculated M6-1 32.49 neg neg neg neg neg

2 1 inoculated M6-2 31.82 neg neg neg 34.12 24.45

3 1 inoculated M6-3 38.26 neg neg neg neg 34.34

4 1 inoculated M6-4 neg neg neg neg neg neg

5 1 inoculated M6-5 31.54 neg neg neg 32.88 neg

6 1 inoculated M6-6 37.54 neg neg neg neg neg

7 1 inoculated M6-7 24.11 neg neg neg 24.10 neg

8 1 inoculated M6-8 30.29 neg neg neg 31.22 neg

9 1 inoculated M6-9 22.13 37.44 neg neg neg neg

10 1 inoculated M6-10 33.41 neg neg neg neg neg

11 1 sentinel M6-11 neg neg neg neg neg neg

12 1 sentinel M6-12 neg neg neg neg neg neg

13 1 sentinel M6-13 neg neg neg neg neg neg

14 1 sentinel M6-14 neg neg neg neg neg neg

15 2 inoculated M6-1 35.28 35.60 neg neg neg neg

16 2 inoculated M6-2 31.63 36.07 neg neg 35.08 neg

17 2 inoculated M6-3 36.01 39.55 neg neg neg neg

18 2 inoculated M6-4 31.10 35.87 neg neg 32.45 neg

19 2 inoculated M6-5 34.89 36.06 neg neg neg neg

20 2 inoculated M6-6 31.68 29.47 neg neg 34.42 34.16

21 2 inoculated M6-7 23.07 29.20 neg neg 23.26 35.23

22 2 inoculated M6-8 35.71 neg neg neg neg neg

23 2 inoculated M6-9 28.54 26.72 neg neg 29.72 27.05

24 2 inoculated M6-10 31.54 35.22 neg neg 32.02 neg

25 2 sentinel M6-11 neg neg neg neg neg neg

26 2 sentinel M6-12 neg neg neg neg neg neg

27 2 sentinel M6-13 neg neg neg neg neg neg

28 2 sentinel M6-14 neg neg neg neg neg neg

29 3 inoculated M6-4 27.11 28.04 neg neg 28.54 28.98

30 3 inoculated M6-5 28.87 31.31 neg neg 30.04 32.90

31 3 inoculated M6-6 28.47 30.49 neg neg 30.04 33.28

32 4 inoculated M6-1 29.22 27.83 neg neg 30.14 30.73

33 4 inoculated M6-2 26.82 23.61 neg neg 26.66 25.15

34 4 inoculated M6-3 29.60 30.52 neg neg 29.59 neg

35 4 inoculated M6-7 25.01 35.29 neg neg 25.62 neg

36 4 inoculated M6-10 27.71 27.06 neg neg 28.54 29.24

37 4 sentinel M6-12 29.37 27.62 neg neg 30.21 28.54

38 4 sentinel M6-14 34.01 33.25 neg neg neg neg

39 5 inoculated M6-2 26.21 26.11 neg neg 25.04 25.08

40 5 inoculated M6-7 25.00 25.26 neg neg 23.35 24.68

41 6 inoculated M6-3 25.05 25.45 neg neg 24.74 24.29

42 6 inoculated M6-10 22.06 28.53 neg neg 20.92 26.55

43 6 sentinel M6-12 32.83 34.68 neg neg 35.27 neg

44 6 sentinel M6-14 32.69 28.30 neg neg neg 27.45
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group B

dpi status animal ID M1.2 OP M1.2 CL H7 LP OP H7 LP CL H7 HP OP H7 HP CL

1 1 inoculated B-1 30.29 neg 34.61 neg neg neg

2 1 inoculated B-2 25.81 38.69 29.43 neg neg neg

3 1 inoculated B-3 22.24 36.74 26.40 neg neg neg

4 1 inoculated B-4 23.24 38.38 26.30 neg neg neg

5 1 inoculated B-5 25.97 neg 29.14 neg neg neg

6 1 inoculated B-6 25.68 36.66 29.37 neg neg neg

7 1 inoculated B-7 22.44 neg 27.66 neg neg neg

8 1 inoculated B-8 32.16 neg 36.07 neg neg neg

9 1 inoculated B-9 27.61 neg 31.17 neg neg neg

10 1 inoculated B-10 25.59 neg 30.63 neg neg neg

11 1 sentinel B-11 neg neg neg neg neg neg

12 1 sentinel B-12 neg neg neg neg neg neg

13 1 sentinel B-13 neg neg neg neg neg neg

14 1 sentinel B-14 neg neg neg neg neg neg

15 2 inoculated B-1 neg neg neg neg neg neg

16 2 inoculated B-2 37.42 31.98 33.80 neg neg neg

17 2 inoculated B-3 neg 38.04 neg neg neg neg

18 2 inoculated B-4 35.38 35.24 neg neg neg neg

19 2 inoculated B-5 27.12 neg 30.64 neg neg neg

20 2 inoculated B-6 30.09 38.42 37.29 34.56 neg neg

21 2 inoculated B-7 35.09 neg neg neg neg neg

22 2 inoculated B-8 30.45 neg neg neg neg neg

23 2 inoculated B-9 29.72 neg 36.43 neg neg neg

24 2 inoculated B-10 26.29 21.09 32.91 neg neg neg

25 2 sentinel B-11 31.72 28.05 neg neg neg neg

26 2 sentinel B-12 38.20 neg neg neg neg neg

27 2 sentinel B-13 neg neg neg neg neg neg

28 2 sentinel B-14 neg 38.13 neg neg neg neg

29 4 inoculated B-2 26.98 36.86 30.41 neg neg neg

30 4 inoculated B-3 29.08 37.00 30.88 neg neg neg

31 4 inoculated B-4 27.67 24.65 31.41 30.47 neg neg

32 4 inoculated B-5 27.45 32.79 32.30 32.68 neg neg

33 4 inoculated B-6 26.44 24.38 33.11 29.05 neg neg

34 4 inoculated B-7 30.28 24.92 31.03 29.52 neg neg

35 4 inoculated B-8 27.70 neg 34.64 neg neg neg

36 4 inoculated B-10 neg 29.06 33.32 32.07 neg neg

37 4 sentinel B-12 36.22 22.61 33.59 26.42 neg neg

38 4 sentinel B-13 37.27 30.83 neg neg neg neg

39 6 inoculated B-2 neg 33.80 neg neg neg neg

40 6 inoculated B-3 34.95 neg neg neg neg neg

41 6 inoculated B-4 35.87 30.08 neg 35.61 neg neg

42 6 inoculated B-5 30.42 35.42 29.07 neg neg neg

43 6 inoculated B-6 31.55 33.76 31.58 neg neg neg

44 6 inoculated B-7 32.24 32.57 34.91 neg neg neg

45 6 inoculated B-8 neg 36.46 neg neg neg neg

46 6 inoculated B-10 35.15 neg 34.19 neg neg neg

47 6 sentinel B-12 35.34 37.45 neg neg neg neg

48 6 sentinel B-13 38.49 33.24 neg neg neg neg

49 9 inoculated B-2 neg neg neg neg neg neg

50 9 inoculated B-3 neg neg neg neg neg neg

51 9 inoculated B-4 neg 33.58 neg neg neg neg

52 9 inoculated B-5 37.96 31.35 neg neg neg neg

53 9 inoculated B-6 neg 31.64 neg neg neg neg

54 9 inoculated B-7 40.90 30.61 neg 37.34 neg neg

55 9 inoculated B-8 neg neg neg neg neg neg

56 9 inoculated B-10 neg neg neg neg neg neg

57 9 sentinel B-12 neg neg neg neg neg neg

58 9 sentinel B-13 neg 37.80 neg neg neg neg

59 13 inoculated B-2 neg 38.10 neg neg neg neg

60 13 inoculated B-3 neg 37.02 neg neg neg neg

61 13 inoculated B-4 neg 32.84 neg 36.92 neg neg

62 13 inoculated B-5 29.59 38.32 31.59 neg neg neg

63 13 inoculated B-6 neg 34.26 neg 38.03 neg neg

64 13 inoculated B-7 neg neg neg neg neg neg

65 13 inoculated B-8 neg 38.85 neg neg neg neg

66 13 inoculated B-10 neg neg neg neg neg neg

67 13 sentinel B-12 neg 35.23 neg neg neg neg

68 13 sentinel B-13 neg 25.30 neg 31.71 neg neg

Real-time RT-PCR
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Supplemental Table 3a. Area-under-curve (AUC) values from viral shedding analyses of the 

inoculated chickens (supplement to Figure 1c).  

    AUC values 

Group Shedding* Co-infection group Mono-infection group 

C1 & M1 OP 0 0 

C3 & M3 OP 0 35.206 

C4 & M4 OP 46.7115 40.1555 

C5 & M5 OP 36.48566667 48.637375 

C5.7 & M5.7 OP 48.68225 58.0387619 

B & M6 OP 0 53.929 

C1 & M1 CL 0 0 

C3 & M3 CL 0 46.4385 

C4 & M4 CL 41.435 46.377 

C5 & M5 CL 25.95425 43.797 

C5.7 & M5.7 CL 35.434125 55.40552381 

B & M6 CL 0 41.0825 

 

*OP = oropharyngeal swab; *CL = cloacal swab 

 

Supplemental Table 3b. P-values of viral shedding analyses (supplement to Figure 1c). 

Group CL* OP* 

C3 vs. M3 0.02913886 0.06293646 

C4 vs. M4 0.16270325 0.14744695 

C5 vs. M5 0.58302491 0.79220779 

C5.7 vs. M5.7 0.83066424 0.76190476 

B vs. M6 0.00277843 0.00277843 

 

*OP = oropharyngeal swab; *CL = cloacal swab 
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Supplemental Table 4a. Mean death time calculations of 10-and 14-day old embryonated 

chicken eggs (supplement to Figure 3a). 

10-day-old ECE 14-day-old ECE

C1-1 72 72

C1-2 72 72

C1-3 72 120

C1-4 72 96

C1-5 72 120

M1-1 120 120

M1-2 120 120

M1-3 120 120

M1-4 120 120

M1-5 120 120

C3-1 48 96

C3-2 72 48

C3-3 72 72

C3-4 48 96

C3-5 48 72

M3-1 48 48

M3-2 42 48

M3-3 48 48

M3-4 48 48

M3-5 48 48

C4-1 48 76

C4-2 72 76

C4-3 72 72

C4-4 72 72

C4-5 48 72

M4-1 42 42

M4-2 24 42

M4-3 42 42

M4-4 42 42

M4-5 42 42

C5-1 52 76

C5-2 52 76

C5-3 48 76

C5-4 48 24

C5-5 48 48

M5-1 28 42

M5-2 28 42

M5-3 42 42

M5-4 42 42

M5-5 28 42

C5.7-1 48 48

C5.7-2 48 48

C5.7-3 24 76

C5.7-4 48 76

C5.7-5 48 48

M5.7-1 28 42

M5.7-2 28 42

M5.7-3 28 42

M5.7-4 42 24

M5.7-5 42 42

B-1 96 96

B-2 96 120

B-3 48 76

B-4 120 120

B-5 120 76

M6-1 24 24

M6-2 28 42

M6-3 28 24

M6-4 24 24

M6-5 42 42

M5.7

B

M6

MDT (hpi)

C5

Group Embryo

M5

C5.7

C1

M1

C3

M3

C4

M4
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Supplemental Table 4b. P-values of in ovo experiments: (A) comparison of MDTs between 

co- and mono-infection groups in 10- and 14-day old embryonated chicken eggs (Mantel-

Haenszel-logrank test) and (B) comparison of MDTs of each of the mono- and co-infection 

groups within 10- and 14-day old ECEs (supplement to Figure 3a). 

(A) 

  ECEs 

Group 10-day old  14-day old  

C1 vs. M1 9.63E-07 0.023185644 

C3 vs. M3 0.01332194 4.94E-05 

C4 vs. M4 9.34E-06 3.41E-07 

C5 vs. M5 1.60E-05 0.000315491 

C5.7 vs. M5.7 0.00402611 9.34E-06 

B vs. M6 1.60E-09 4.63E-09 

 

(B) 

Group 

10- vs. 14-day old 

ECEs 

C1 0.00134865 

C3 0.010914202 

C4 0.016791821 

C5 0.014158931 

C5.7 0.006742087 

M1 1 

M3 0.291840545 

M4 0.28274546 

M5 0.026888454 

M5.7 0.235044451 

M6 0.67087816 

B 0.919851039 
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 Supplemental Table 5. RT-qPCR results of harvested amnio-allantoic fluids of 10-and 14-day 

old embryonated chicken eggs infected with LP and/or HPAIV (in ovo experiment) 

(supplement to Figure 3b). 

M1.2 H7 LP H7 HP M1.2 H7 LP H7 HP

C1-1 14.83 20.14 32.32 17.69 21.17 neg

C1-2 13.47 18.97 neg 17.01 20.16 neg

C1-3 15.39 20.02 neg 17.09 20.47 neg

C1-4 13.77 19.66 neg 16.39 19.36 neg

C1-5 18.31 23.2 neg 18.95 22.09 neg

C3-1 13.87 20.04 neg 17.51 21.63 neg

C3-2 14.05 19.41 25.22 neg 20.51 neg

C3-3 14.75 20.02 neg neg 21.66 neg

C3-4 21.08 26.37 neg 15.86 19.66 neg

C3-5 16.64 19.03 neg 18.07 22.29 neg

C4-1 13.99 19.51 neg 15.06 17.84 34.07

C4-2 13.1 18.77 neg 14.4 17.26 31.23

C4-3 13.15 19.18 26.91 17.01 19.7 neg

C4-4 13.23 18.36 neg 15.64 18.35 neg

C4-5 13.48 18.48 neg 15.21 18.12 neg

C5-1 13.6 19.49 neg 17.99 21.23 24.76

C5-2 13.11 18.3 neg 16.78 19.68 28.83

C5-3 14.4 20.04 neg 21.98 25.95 neg

C5-4 13.2 18.49 neg 18.05 22.52 35.52

C5-5 13.11 18.33 31.45 13.96 17.42 neg

C5.7-1 13.82 19.53 neg 15.26 18.69 25.58

C5.7-2 14.32 19.67 32.5 18.17 20.89 34.47

C5.7-3 13.93 19.32 neg 18.12 22.05 29.19

C5.7-4 13.32 19.4 34.29 18.74 23.46 23.7

C5.7-5 34.23 neg neg 17.66 21.9 34.18

M1-1 14.78 neg 19.55 14.56 neg 20.13

M1-2 13.86 neg 18.21 14.67 neg 20.23

M1-3 13.24 neg 17.58 13.64 neg 18.72

M1-4 13.63 neg 16.65 14.63 neg 19.83

M1-5 14.36 neg 16.77 14.38 neg 20.18

M3-1 14.64 neg 17.69 14.04 neg 19.79

M3-2 13.12 neg 17.47 14.61 neg 20.29

M3-3 13.91 neg 18.25 13.97 neg 19.25

M3-4 13.24 neg 18.87 13.44 neg 19.02

M3-5 13.33 neg 17.58 15.15 neg 19.64

M4-1 16.639 neg 19.75 15.63 neg 20.53

M4-2 13.98 neg 19.2 13.94 neg 19.2

M4-3 14.97 neg 20.82 14.54 neg 20.82

M4-4 15.98 neg 17.72 16.21 neg 17.72

M4-5 15.61 neg 15.54 14.36 neg 15.54

M5-1 13.64 neg 15.11 14.64 neg 16.57

M5-2 13.86 neg 15.78 15.8 neg 17.99

M5-3 14.18 neg 15.58 16.06 neg 17.89

M5-4 13.99 neg 14.68 13.76 neg 15.68

M5-5 14.36 neg 16.74 15.52 neg 17.46

M5.7-1 15.72 neg 17.56 16.92 neg 18.4

M5.7-2 14.33 neg 15.26 15.16 neg 16.86

M5.7-3 15.69 neg 16.11 15.28 neg 16.66

M5.7-4 14.25 neg 15.09 15.01 neg 17.06

M5.7-5 14.39 neg 16.63 15.48 neg 17.53

M6-1 14.83 neg 15.15 14.53 neg 16.47

M6-2 15.88 neg 21.26 18.07 neg 19.26

M6-3 15.97 neg 18.67 16.29 neg 18.37

M6-4 14.11 neg 15.45 14.71 neg 16.62

M6-5 14.21 neg 16.52 15.29 neg 17.78

B-1 15.82 19.02 neg 18.15 21.13 neg

B-2 14.28 18.08 neg 17.58 21.21 neg

B-3 15.43 18.51 neg 17.75 21.12 neg

B-4 15.07 18.38 neg 17.65 21.41 neg

B-5 19.6 23.29 neg 14.54 18.09 neg

Egg ID
10-day-old ECE 14-day-old ECE
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Supplemental Table 6. RT-qPCR results of tissues selected from of 10-and 14-day old 

embryonated chicken eggs infected with LP/HPAIV (in ovo experiment; co-infections). 

Group embryo ID M1.2 H7 LP H7 HP M1.2 H7 LP H7 HP M1.2 H7 LP H7 HP

C1-1 22.16 neg neg 20.08 neg 27.89 20.38 26.84 neg

C1-2 20.37 neg neg 22.13 neg 25.35 20.78 26.74 neg

C1-3 20.34 neg neg 20.56 neg 27.31 20.63 neg neg

C3-1 15.79 20.4 19.12 15.5 20.66 21.08 15.82 23.65 18.85

C3-2 13.93 25.45 16.9 13.13 19.38 17.53 15.11 neg 19.34

C3-3 14.71 neg 17.24 15.25 neg 18.11 16.4 neg 19.38

C4-1 17.87 25.59 22.11 16.74 23.98 28.78 19.12 25.42 27.74

C4-2 13.87 neg 16.86 13.75 neg 17.23 16.44 34 20.55

C4-3 13.27 neg 15.55 14.8 25.75 18.2 15.87 21.62 19.55

C5-1 15.14 neg 18.42 14.24 neg 18.96 13.94 neg 17

C5-2 15.17 neg 16.6 14.69 neg 17.07 16.06 neg 18.45

C5-3 13.95 neg 16.69 14.52 neg 18.13 15.33 neg 18.78

C5.7-1 12.79 neg 15 14.84 neg 16.56 13.55 neg 16.16

C5.7-2 16.75 neg 18.48 18.29 neg 20.09 17.4 neg 20.05

C5.7-3 13.47 neg 15.55 14.56 neg 17.51 14.47 neg 19.2

B-1 neg neg neg neg neg neg neg neg neg

B-2 37.3 neg neg neg neg neg neg neg neg

B-3 neg neg neg 38.05 neg neg neg neg neg

Group embryo ID M1.2 H7 LP H7 HP M1.2 H7 LP H7 HP M1.2 H7 LP H7 HP

C1-1 33.74 neg neg 27.21 neg neg 30.55 neg neg

C1-2 27.22 neg neg 23.03 26.61 neg 26.6 neg neg

C1-3 31.75 neg neg 28.74 neg neg 30.04 neg neg

C3-1 31.85 neg neg 25.27 neg neg 27.54 neg 36.7

C3-2 30.9 neg neg 24.94 neg neg 25.1 35.69 neg

C3-3 30.7 neg neg 25.87 neg neg 26.23 neg neg

C4-1 18.13 neg 19.41 17.49 neg 18.42 21.4 neg 24.49

C4-2 18.54 neg 20 17.74 neg 19.13 20.25 neg 22.55

C4-3 17.21 neg 18.17 17.45 neg 18.09 19.42 neg 20.61

C5-1 17.63 neg 18.64 18.1 neg 18.85 19.11 neg 19.16

C5-2 25.12 neg 25.58 23.84 neg neg 24.2 neg 31.27

C5-3 25.63 neg 24.4 19.57 neg 21.41 31.1 neg 28.95

C5.7-1 18.22 neg 19.36 18.93 neg 19.5 20.22 neg 21.65

C5.7-2 16.37 neg 17.42 18.15 neg 19.64 19.86 neg 21.16

C5.7-3 16.31 neg 17.31 19.48 neg 20.46 19.86 neg 19.85

B-1 neg neg neg 38.38 neg neg neg neg neg

B-2 neg neg neg neg neg neg neg neg neg

B-3 neg neg neg neg neg neg neg neg neg

10-day-old ECE

C1

C3

C4

C5

C5.7

B

heart brain

14-day-old ECE

liver

heart brain liver

C1

C3

C4

C5

C5.7

B
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Supplemental Figure 1. Serologic reactions after infection with AIVs of subtypes H7N7 LP 

and/or HPAIV based on indirect NP-ELISA (OD650. IDEXX) on day 2, 6 and 13 pi. (A) shows co-

infection groups C1-C5.7, (B) mono-infection groups M1-M5.7 and (C) control groups B (LP) 

and M6 
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Supplemental Figures 2a-d. Histopathological findings and virus tropism as revealed by IHC 

in inoculated chickens sacrificed at 2 dpi.  

(a) Severitiy of necrotizing inflammation.

0 = negative; 1 = mild; 2 = moderate; 3 = severe. 
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(b) Severity of lymphocytic apoptosis.

0 = negative; 1 = mild; 2 = moderate; 3 = severe. 
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(c) Distribution of parenchymal influenza A matrixprotein.  

0 = negative; 1 = focal/oligofocal; 2 = multifocal; 3 = coalesing/diffuse.   
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(d) Distribution of endothelial influenza A matrixprotein.  

0 = negative; 1 = focal/oligofocal; 2 = multifocal; 3 = coalesing/diffuse.  
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Supplemental Figure 3. Light microscopy revealed no obvious pathological findings in 

chicken infected with low pathogenic avian influenza (supplement to Figure 2). 

 

(A) Chicken, P17-884, group B, scheduled euthanasia at 2 dpi, respiratory mucosa. The 

respiratory mucosa is characterized by a pseudostratified columnar epithelium with 

prominent apical cilia (arrow) and multifocal intraepithelial mucous glands. The submucosa 

contains unremarkable blood vessels and nerves (arrowhead). (B) Chicken, P17-884, group B, 

scheduled euthanasia at 2 dpi, respiratory mucosa. The respiratory epithelial cells which can 

be identified based on their ciliated apical border (arrow) and the submucosal nerve fascicles 

(arrowhead) display no influenza A virus-matrixprotein immunoreactivity. (C) Chicken, P17-

887, group B, scheduled euthanasia at 2 dpi, caecum. The caecal crypts extend deeply into 

the lymphoreticular tissue of the caecal tonsil and are lined by a columnar epithelium with 

typical brush border (arrow). (D) Chicken, P17-887, group B, scheduled euthanasia at 2 dpi, 

caecum. The lymphoreticular tissue of the caecal tonsils as well as the mucosa of the caecal 

crypts display no influenza A virus-matrixprotein immunoreactivity. (E) Chicken, P17-885, 
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group B, scheduled euthanasia at 2 dpi, brain. Neurons and glia within the brain show no 

obvious pathological alterations. (F) Chicken, P17-885, group B, scheduled euthanasia at 2 

dpi, brain. There is no influenza A virus-matrixprotein immunoreactivity within the brain. (G) 

Chicken. P17-887. group B scheduled euthanasia at 2 dpi, spleen. A small artery (arrowhead) 

is surrounded by small differentiated lymphocytes with round,, heterochromatic nuclei 

(arrows) forming the  periarteriolar lymphoid sheath. (H) Chicken, P17-887, group B 

scheduled euthanasia at 2 dpi, spleen. There are no influenza A virus-matrixprotein 

immunoreactivity cells within the lymphoreticular tissue of the spleen. A. C. E. G: 

Hematoxylin eosin. B. D. F. H: Influenza A virus-matrixprotein IHC, avidin-biotin-peroxidase 

complex method, using as first antibody  a murine monoclonal antibody directed against the 

matrixprotein of anti-influenza A virus (strain PR8 (A/PR/8/34. H1 N1); clone M2-1C6-4R3 

(ATCC® HB-64™).  American Type Culture Collection. Manassas. USA), 3-amino-9-ethyl-

carbazol as chromogen and hematoxylin counterstain. A-F: bar = 50 µm. G. H: bar = 20 µm.  
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Supplemental Figure 4a-f. Histopathological findings and virus tropism in chorioallantoic 

membrane and embryonal organs (supplement to Figure 4).  

(a) 10-day old chicken embryos; Severity of necrotizing inflammation. 

0 = negative; 1 = mild; 2 = moderate; 3 = severe. 
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(b) 14-day old chicken embryos; Severity of necrotizing inflammation. 

0 = negative; 1 = mild; 2 = moderate; 3 = severe. 
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(c) 10-day old chicken embryos; Distribution of parenchymal and epithelial influenza A

matrixprotein.  

0 = negative; 1 = focal/oligofocal; 2 = multifocal; 3 = coalesing/diffuse. 
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(d) 10-day old chicken embryos; Distribution of endothelial influenza A matrixprotein.

0 = negative; 1 = focal/oligofocal; 2 = multifocal; 3 = coalesing/diffuse. 

0 1 2 3

c h o rio a lla n to is

b ra in

h e a rt

in te s tin e

k id n e y

liv e r

lu n g s

n a s a l c a v ity

p a n c re a s

s k in

s p le e n

s to m a c h

D is tr ib u tio n  o f e n d o th e lia l in flu e n z a  A  m a tr ix p ro te in  [s e m iq u a n tita t iv e  s c o re ]

B

C 1

C 3

C 4

C 5

C 5 .7

M e d ia n  w ith  ra n g e



Results - A viral race for primacy: Co-infection of a natural pair of low and highly pathogenic H7N7 avian 
influenza viruses in chickens and embryonated chicken eggs 

136 

(e) 14-day old chicken embryos; Distribution of parenchymal and epithelial influenza A

matrixprotein.  

0 = negative; 1 = focal/oligofocal; 2 = multifocal; 3 = coalesing/diffuse. 
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(f) 14-day-old chicken embryos; Distribution of endothelial influenza A matrixprotein.  

0 = negative; 1 = focal/oligofocal; 2 = multifocal; 3 = coalesing/diffuse.   
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Statistical analyses 

The Mantel-Haenszel logrank test and the Mann Whitney test were used to compare survival 

rates and morbidity index as well as MDT values, respectively, applying the R software 

environment and the following packages: “stats”, “survival”, “survminer”, “gridExtra” and 

“ggplot2”. P values <0.05 were considered significant. For comparisons between the total 

amount of virus shedding of HPAIV in the mono- and co-infected groups, area-under-the-

curve graphs were computed by using R software packages “stats”, “survival”, “survminer” 

and “ggplot2”. The mean average of Cq values of all animals sampled at the indicated dpi in 

a specific group were calculated and used to draw the curves. Animals negative in RT-qPCR 

at that date scored with a value of 40.  
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V. DISCUSSION

Over the past decades, both sporadic and enzootic outbreaks of notifiable LP as well as HP 

infections of AIV subtypes H5 and H7 continue worldwide causing devastating losses in 

poultry production. In some cases of zoonotic AIV, they also represent a significant public 

health problem by increasing the likelihood of sustained human-to-human transmission of 

avian-derived IAV which may spark  a new human influenza pandemic (FAO, 2018; Kim et al., 

2016; Peiris et al., 2007; Zanin et al., 2017). The most compelling approach to curtail such 

pandemic threats is to effectively control AIV in poultry (Peiris et al., 2016). In this line, the 

present study was designed to improve crucial steps in the diagnostic algorithm for subtypes 

H5 and H7 and to achieve a better understanding of the processes involved in the 

emergence of HPAIV from LPAIV precursors of these subtypes. 

5.1 Diagnostic challenges – Developing improved tools for more effective surveillance 

(Study objective 1; chapters 4.1, 4.2, pp. 39-52, 53-66) 

Apart from preventive measures, including in particular heightened biosecurity for poultry 

holdings, thorough surveillance and early detection of virus incursions are the main 

prerequisites for timely control. Swift diagnosis with rapid pathotype classification is of 

utmost importance to arrange for pondered, appropriate notification and control measures. 

Along with intravenous pathogenicity testing (IVPI) by an animal experiment, pathotyping of 

AIV is classically based on the nucleotide sequence analysis of the hemagglutinin cleavage 

site (HACS) encoding either single- (LP) or multibasic (HP) amino acid (aa) sequences using 

time consuming Sanger sequencing.   

Here, rapid sequencing-independent assays targeting the HACS were developed to 

distinguish LP and HP variants of subtypes H7 and H5, respectively, by RT-qPCRs (chapters 

4.1 and 4.2). The performance characteristics of these RT-qPCRs were determined to be 

closely similar to the generic M-specific PCR (Hoffmann et al., 2010), and PCR pathotyping of 

field samples led to the same results obtained with nucleotide sequencing. Nonetheless, the 

introduced pathotyping PCRs cannot be used generically but, owing to the sequence 

variability at the HACS especially of HP H7 viruses (see list of HACS motifs obtained from 
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outbreaks around the world published by the “OIE FAO network of expertise on animal 

influenza” (OFFLU et al., 2018)), require tailoring especially of the probe sequence to the 

respective strains in circulation. In cases when probe mismatches interfere with real time 

detection, nucleotide sequencing is still possible to confirm the pathotype by using the 

amplificates generated with the broadly reacting primers of these RT-qPCRs (chapter 4.1). A 

similar method and conclusions for RT-qPCR-directed pathotyping for gs/GD H5 viruses of 

clade 2.2 had been published earlier (Gall et al., 2009). Based on the pathotyping RT-qPCRs, 

we here propose an updated workflow for the molecular diagnosis of HPAIV H5 or H7 

circulating in Europe: Firstly, the generic M-gene-specific RT-qPCR by Hoffmann et al. (2010) 

confirms the presence of influenza A viral RNA; several additional IAV generic RT-qPCRs can 

be used alternatively or in addition (M - Nagy et al. (2010), NP - Fereidouni et al. (2012), PB1 

–Grund et al. (2018)). Secondly, subtype identification (for H5 and H7) using specific 

subtyping RT-qPCRs which are also embedded in the so called “RITA” (Riems influenza A 

typing array) is conducted (Hoffmann et al., 2016). If positive for H5 or H7, pathotyping is 

carried out by use of the newly developed pathotype-specific RT-qPCRs (chapter 4.1 and 

4.2).  

5.2 How HPAIV emerge – Investigating the relationship of LPAIV precursor and HPAIV 

effector viruses using newly developed diagnostic tools (Study objective 2; chapter 4.3, pp. 

67-91)

There is convincing evidence from outbreaks and in vitro experiments that suggest HPAIV 

evolves from subtype H5 and H7 LP precursor viruses once introduced from wild birds into 

poultry (Alexander, 2007; Banks et al., 2001; Bean et al., 1985; Berhane et al., 2009; Capua et 

al., 2000a; Garcia et al., 1996; Perdue et al., 2003; Rohm et al., 1995; Rojas et al., 2002). Wild 

birds, especially aquatic birds act as reservoirs for AIV (Webster et al., 1992a). AIV mutation 

rates in chickens seem to be higher than in wild birds but it is unknown whether this and/or 

other factors also increase the likelihood of LP-to-HP mutations in this species (Fourment et 

al., 2015). For these reasons, all LPAIV H5 and H7 infections in poultry are notifiable and 

subject to statutory control as if HPAIV had been detected already. On-the-spot-evidence of 

spontaneous LP-to-HP mutations in the field is rare (Iglesias et al., 2010; Killian et al., 2016; 
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Monne et al., 2014; Seekings et al., 2018) or failed (de Wit et al., 2010a), and in most cases 

the precise source of LP introduction had been difficult to identify.  

Here, a matching LP/HPAI virus pair was identified in specimens obtained from an H7N7 

outbreak in two neighboring layer chicken farms in Germany in 2015 (chapter 4.3). The 

newly developed pathotyping RT-qPCRs in concert with next-generation sequencing (NGS) 

aided in confirming the emergence of the HP variant in a single epidemiological unit of the 

second farm following transmission of the LP variant from the first holding (chapter 4.3).  

Mutation from LP to HPAIV appears to be governed by both viral and host-specific factors 

including host species, age, the immunological status of the host, genetic and environmental 

pressures etc. (Capua et al., 2013a; Vandegrift et al., 2010). The presence of an MBCS in the 

HA protein remains the main genetic determinant of HPAIV (Horimoto et al., 1994a; Klenk et 

al., 1975; Soda et al., 2011a). In the case of the German LP/HP H7N7 matching virus pair, the 

insertion of six nucleotides at the HACS as well as a single transitional nucleotide 

substitution were sufficient to convert the HACS from a single- to a multibasic pattern 

(chapter 4.3). Most probably, a stuttering mechanism of the viral replication complex when 

copying the sequence encoding the SBCS during antigenome and/or genome replication is at 

the basis of the insertional mutations of untemplated A and G residues, which finally 

translate into an MBCS (Pasick et al., 2005).  

Experimental in vitro, in vivo and in ovo induction of LP-to-HP mutations by serial passaging 

of LPAIV or genetically engineering of an MBCS into the HA of LPAIV have been conducted 

and were successful in converting LPAIV to HPAIV in several but not all attempts (Abdelwhab 

et al., 2013; Abdelwhab et al., 2016a; Abdelwhab et al., 2016b; Abolnik et al., 2009; Banks et 

al., 2001; Bottcher-Friebertshauser et al., 2014; Brugh, 1988; Gohrbandt et al., 2011; 

Horimoto et al., 1994a, 1995a; Howard et al., 2007; Ito et al., 2001; Khatchikian et al., 1989; 

Li et al., 1990; Munster et al., 2010; Orlich et al., 1994; Orlich et al., 1990; Schrauwen et al., 

2011; Soda et al., 2011b; Stech et al., 2009; Veits et al., 2012). However, presence of a MBCS 

was not always associated with a HP phenotype indicating that other viral factors within the 

HA gene segment or other gene segments have an influence on the HP phenotype 

expression (Abolnik et al., 2009; Londt et al., 2007). 

NGS technology enables a sensitive detection of variants in quasispecies genomes of 
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influenza A viruses (Monne et al., 2014; Van den Hoecke et al., 2015), and thus depicts 

diversity in viral populations more accurately compared to Sanger sequencing methods. In 

our study (chapter 4.3, page 69), presence of mutations distinguishing LP from HP H7N7 

outside the HACS were found by NGS as minor variants already in the LP progenitor 

quasispecies. We suggested that the emergence of the HP phenotype requires both, a 

selection of variants of the inner genome segments already present in the LP quasispecies 

population and a subsequent mutational shift in the HACS triggered by a stuttering RdRp. A 

similar mechanism has been furnished for the emergence of HPAIV H7N1 from LP precursor 

viruses during the Italian epizootic in 1999-2001 (Monne et al., 2014).  

It has been proposed that the RNA secondary structure immediately distal of the HACS may 

be involved in fostering RdRp stuttering (Nao et al., 2017), and a similar stem loop structure 

was also identified in the LP precursor virus in our study (chapter 4.3, page 70). However, in 

our analyses, no differences in this part of the genome were seen between LP viruses that 

eventually yielded a HP mutant or did not give rise to such phenotype (chapter 4.3). 

Moreover, limited published data is available on the characterization of viruses possessing a 

di-basic CS (DBCS or also referred to as “mid-length” or intermediate HACS) (Luczo et al.,

2018; Seekings, 2017). These studies speculated whether such DBCS is a requirement for 

further stepwise mutations towards a full MBCS since a DBCS has been shown to contribute 

to enhanced cleavage of HA, resulting in increased pathogenicity for poultry (Bashiruddin et 

al., 1992; Metreveli et al., 2010).  No DBCS, however, has been identified in the quasispecies 

of our LP and HPAIV H7N7 viruses. 

In addition to the HACS, other sides within the HA protein but outside the HACS were shown 

to enhance pathogenicity in poultry (Abdelwhab et al., 2013; Bogs et al., 2010; Diederich et 

al., 2015; Long et al., 2013; Post et al., 2013; Stech et al., 2009; Veits et al., 2012; Wang et al., 

2010). For instance, the HP phenotype may be possibly modulated by an interrelationship 

between the number of N-linked glycosylation sites on the HA1 and NA stalk length 

(Matrosovich et al., 1999). Both mechanisms are believed to facilitate adaptation to 

gallinaceous poultry (Banks et al., 2001; Byrd-Leotis et al., 2017; de Wit et al., 2010b), but 

ultimate proof is lacking whether such factors are directly related to an increase in 

pathogenicity (Banks et al., 2003; Banks et al., 2001; Fouchier et al., 2004; Jonges et al., 

2011). 
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Thus, no predictive markers are currently available nor could they be deduced from our 

study that would aid in assessing the risk of a certain LP H5/H7 virus to mutate to the HP 

phenotype. Deeper insights into the mutation processes and pathomechanisms governing 

the emergence of HPAIV would help to develop improved risk-based intervention strategies 

for notifiable LPAIV infections. So far, restriction measures must be taken for all LP H5 and 

H7 infected poultry (e.g. slaughter or culling of birds). Availability of quantifiable prognostic 

markers rendering a given LPAIV unlikely to progress to the HP phenotype would prevent 

culling of the affected flock. Although our pathotyping RT-qPCRs are a significant step 

forward in detecting LP/HPAIV variants, no such predictive markers emerged from our study. 

5.3 “The winner takes it all” - Understanding the early processes after de novo emergence 

of HPAIV from LP precursor viruses (Study objective 3, chapter 4.4, pp. 93-138) 

Understanding the patterns and dynamics of HPAIV emergence from a poultry population in 

which LPAIV is circulating, its transmission to other birds and further spread within flocks is 

important to select appropriate counteracting measures. In order to identify conditions that 

favor the spread and transmission of HPAIV over LPAIV and to understand how a minority of 

HP virions after de novo generation in a single host might gain primacy over LPAIV, co-

infection studies in chapter 4.4 were initiated employing again the pathotyping tools of 

chapter 4.1 and the natural LP/HP matching virus pair of chapter 4.3. We attempted to 

mimic the initial moments of HPAIV emergence after de novo generation within an individual 

bird and in poultry population, respectively, that experiences concurrent infection by an 

antigenically identical LP precursor virus, as was the case in the layer hen flock from which 

our LP and HP H7 variants originated (chapter 4.3).  

In the individual bird or ECE, direct and immediate interference between LP and HPAI H7N7 

viruses was evident. HPAIV replication and, hence, its spread in the infected individual bird 

and excretion via the oropharynx and cloaca was severely hampered in the presence of an at 

least 100fold excess of antigenically identical LPAIV (chapter 4.4, page 91). This was 

confirmed both in co-infected chickens and ECEs. The factors responsible for the 

interference have not been studied here, but it seems likely that innate immune 

mechanisms such as interferon activity play a role (Tanikawa et al., 2017). In order to “avoid” 
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such LPAIV excess and to allow the HP phenotype to gain primacy, we assumed that LP–to-

HP mutations should occur very early after LPAIV infection. Transmission from the index bird 

in which the HP phenotype emerged is not limited to oropharyngeal and cloacal secretions: 

due to the systemic course of HPAIV infection, infectious virus has been shown to be present 

in a multitude of tissues including muscle, feather cones, and eggs. Therefore, ingestion after 

picking on such tissues or mechanical transmission by haematophagous ectoparasites may 

be sufficient  (Bertran et al., 2011; Sommer et al., 2016; Uchida et al., 2016; van den Brand et 

al., 2015; Yamamoto et al., 2017).  

Since the LPAIV precursor-specific immunity just like immunization with a perfectly matching 

modified live virus vaccine effectively reduces susceptibility to homologous HPAIV infection 

and decreases HPAIV transmission efficacy (Nickbakhsh et al., 2016; Seo et al., 2001a; Van 

der Goot et al., 2003; van der Goot et al., 2005), spread in flocks of HP mutants after escape 

from an index bird depends on the presence of hosts that remain susceptible, i.e. non-

exposed to the LP variant. 

Therefore, at poultry flock level, the emerging HP phenotype would profit from a low 

prevalence of LP-specific adaptive immunity to avoid specific interference through adaptive 

immunity, and a low incidence of active LP precursor virus infection to prevent direct 

competition. Populations showing high seroconversion rates pose a low risk from an animal-

disease-control perspective.   

Our in ovo studies mirrored similar hampering effects of LPAIV infection on the replication 

kinetics of HPAIV co-infected embryos. In addition to this, the in ovo model further verified 

pathotype definitions such as endotheliotropism, a characteristic of HPAIV (Feldmann et al., 

2000; Horimoto et al., 1998; Rott et al., 1980). 

Considering all the obstacles that impede HP variants to gain primacy over its LP precursor, 

the de novo emergence of HP viruses at flock level is likely a very rare event. Nevertheless, 

several such HPAIV outbreaks have been described during the last two decades. It is 

tempting to speculate that conversely, many further LP-to-HP mutations may have remained 

undetected as the HP variants remained captured in the index birds or failed to spread in the 

population. Hence, it would be interesting to screen more LPAIV-positive field samples from 

regions where LPAIV has been circulating using our newly developed tools (chapter 4.1, 4.2) 
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and NGS technology to see whether HACS conversion events have occurred silently. In this 

line, the ECE infection model may be useful to study the LP-to-HP mutation frequency of 

different LPAIV in ovo.  

5.4 Outlook on improved control of AIV in Europe and worldwide 

Early-warning systems essentially require swift diagnosis facilitated by our newly developed 

diagnostic tools. These help to speed up measures aimed at repressing the spread of 

(potentially zoonotic) notifiable LPAIV and HPAIV. The relevance and versatility of these RT-

qPCRs has been proven during HPAIV H7 emergence (chapter 4.1), continuing HPAIV H5 

outbreaks (chapter 4.2) in the field as well as in pathogenesis research (chapters 4.3 and 

4.4). As risks of new incursions into poultry are perpetuating due to the annual presence of 

LPAIV subtypes in wild bird populations, a long-term strategy with clearly defined goals is 

required. Essential steps consist of  

1) intensification of syndrome surveillance to provide targeted, appropriate and timely 

intervention in LPAI infected poultry. Thus, the spread of an emerging virus with 

altered clinical and pathological as well as zoonotic potential must be prevented.

2) continuing adaptations and further developments of diagnostic tools.

3) depopulation of infected premises of all birds, once AI infection with notifiable 

subtypes H5 and H7 is confirmed. Financial compensation offered to poultry farmers 

is essential to build trust between the authorities and the poultry keepers.

4) However, due e.g. to limited financial resources, a stamping out policy alone cannot 

be used in endemically infected countries.

5) a “one health” approach including unified efforts from both veterinary and public 

health authorities for surveillance at the animal-human interface. Close contacts at 

the human-animal interface should be mitigated to decrease potential human 

exposure as well as possible subsequent human-to-human transmission. Public 

awareness concerning biosafety measures is mandatory.

6) reduction of transport of live poultry. This bears enhanced risks of virus spread. 

Biosecurity measures and poultry farming procedures must be tailored to the actual
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epidemiologic situation. This includes wherever and whenever possible, housing of 

poultry indoor and situated away from open water sources to minimize possible 

interactions with wild birds.  

7) the use of vaccination as a further tool depending on the epidemiological framework.

It is important, however, that the pros and cons of a vaccination strategy are 

assessed individually beforehand. Vaccination alone is insufficient to eradicate AIV 

from an endemically infected population.

In general, these goals must all be flexibly selected and adapted according to epidemiology, 

poultry population structure and regional socio-cultural traditions. 
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VI. SUMMARY 

Avian influenza viruses (AIV) are one of the most dominating and complex animal health 

threats in poultry production globally. Due to the zoonotic propensity of some AIV strain 

they may also have public health significance. According to their virulence in chickens, AIV 

can be distinguished into low pathogenic (LP) and highly pathogenic (HP) AIV. LPAIV of 

subtypes H5 and H7 have the ability to mutate into HP phenotypes through spontaneous 

insertional mutations in the hemagglutinin (HA) gene. The replication of LPAIV H5 or H7 in 

galliform poultry seems to be a prerequisite for the development of LP-to-HP mutations. 

There are continuing risks of new LPAIV incursions from the wild bird population as well as 

lateral spread of LP and HPAIV in domestic poultry and their re-transmission into wild bird 

populations. The continuing adaptation of appropriate diagnostic, control and prevention 

measures to meet viral evolution is of utmost importance. The work collected in this thesis 

presents the development of improved diagnostic methods for pathotyping. By using real-

time quantitative polymerase chain reactions (RT-qPCRs) that characterize the HACS of AIV 

subtypes H5 and H7, we are capable to differentiate LP and HPAIV based on the HACS 

nucleotide sequences. They represent an alternative to animal experiments and sequencing-

dependent pathotyping and thus aid in speeding up time-to-diagnosis and reduce reaction 

times of veterinary authorities in the context of notifiable outbreak infection events. In 

addition to this, the suitability of the newly developed diagnostic tools as a routine method 

in the field at the population level was applied in molecular-epidemiological follow-up 

studies of a combined LP/HPAIV H7N7 outbreak in two laying hen holdings in Germany in 

2015. Using the H7 pathotyping RT-qPCRs, detection of LP/HP co-infections in swab 

specimens of the HPAI outbreak farm was achieved and, along with full-genome sequencing 

and H7-specific seroconversion of parts of the chicken population, a LP progenitor virus and 

its de novo mutant HP successor were demonstrated in the field. Finally, the new 

pathotyping diagnostic tools also proved advantageous in pathogenesis research on the 

spread of LP and HPAI viruses in tissues of experimentally co-infected chickens and 

embryonated chicken eggs (ECE). For this purpose, the recently detected natural LP/HP 

H7N7 pair of viruses was used to mimic the development and amplification of HPAIV 

mutants in LPAIV-infected animals. Chickens or ECE were co-infected with a constant 
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amount of LPAIV and increasing HPAIV titres. Pathotype-specific RT-qPCRs were used to 

demonstrate that LP co-infection had a significant inhibitory effect on HP H7 replication, viral 

excretion kinetics, and viral transmission to non-infected contact animals. Clinical, 

immunohistological and serological data confirmed these observations and revealed that HP 

variants arising de novo in an animal already infected with the antigenically identical LP 

precursor have to overcome obstacles related to direct viral interference, innate and 

adaptive immunity in order to be spread to other chickens. The methods developed here 

add an important optimization to the diagnosis of AI infections in birds. In addition, they 

contribute as tools in research to a deeper understanding of basic processes in the de novo 

generation and spread of HPAIV from LPAIV precursors. Nevertheless, the described 

diagnostic tests have limitations and are intended to be used mainly in screening programs, 

especially in regions with longer-term AI infection waves. When it comes to the initial 

recognition and characterization of new AIV outbreaks, the new pathotyping RT-qPCRs may 

need to be adapted based on the specific CS sequence of the actual virus strain in 

circulation. 
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VII. ZUSAMMENFASSUNG 

Aviäre Influenzaviren (AIV) stellen eine der dominantesten und komplexesten 

Tiergesundheitsgefahren in der weltweiten Geflügelproduktion dar und können aufgrund 

ihres teilweise zoonotischen Charakters auch Bedeutung für die öffentliche Gesundheit 

erlangen. Nach ihrer Virulenz in Hühnern werden niedrig- (LP) und hoch pathogene (HP) AIV 

unterschieden. LPAIV der Subtypen H5 und H7 können durch spontane insertionelle 

Mutationen im HA Gen zu HP Phänotypen mutieren. Die Replikation von LPAIV H5 bzw. H7 in 

galliformen Hausgeflügel scheint eine Voraussetzung für das Entstehen der LP-zu-HP 

Mutationen darzustellen. Es bestehen kontinuierliche Risiken neuer LPAIV Einträge aus der 

Wildvogelpopulation sowie der lateralen Verbreitung einmal entstandener HPAIV in 

Hausgeflügel und deren Rückübertragung in Wildvogelpopulationen. Die stete Anpassung 

geeigneter Diagnose-, Kontroll- und Präventionsmaßnahmen an die virale Evolution ist von 

äußerster Wichtigkeit. Die in dieser Dissertation zusammengefassten Arbeiten betreffen die 

Entwicklung verbesserter diagnostischer Verfahren zur Pathotypisierung. Mithilfe von 

quantitativen Echtzeit-Polymerase-Kettenreaktionen (RT-qPCRs), welche die Hämagglutinin 

Spaltstelle von AIV der Subtypen H5 und H7 charakterisieren, ist es möglich, die LP- und HP-

typische Nukleotidsequenzen in diesem Bereich zu differenzieren. Sie stellen eine 

Alternative zur tierversuchs- und sequenzierungs-abhängigen Pathotypisierung dar und 

beschleunigen somit die Diagnose und reduzieren die Reaktionszeiten im Rahmen 

anzeigepflichtiger Infektionsgeschehen. Außerdem konnte die Eignung der entwickelten 

diagnostischen Tests als Routinemethode im Feld auf Populationsebene durch Anwendung 

in der molekular-epidemiologischen Aufarbeitung eines LP/HPAIV H7N7 

Ausbruchsgeschehens in zwei Legehennenbeständen in Deutschland im Jahr 2015 belegt 

werden. So gelang der Nachweis eines LP-Vorläufervirus und dessen mutierter HP-Version in 

Tupferproben der HPAI Ausbruchsfarm mittels der pathotypspezifischen RT-qPCR, 

Vollgenomsequenzen und H7-spezifischen serologischen Tests. Ein weiterer Einsatz der 

neuen diagnostischen Verfahren ergab sich in der Pathogeneseforschung zur Ausbreitung 

von LPAIV und HPAIV in Geweben experimentell infizierter Hühner und embryonierten 

Hühnereiern. Dazu wurden Ko-Infektionen unter Verwendung des beschriebenen 

natürlichen LP/HP H7N7 Viruspaares durchgeführt. Hierdurch sollte die Entstehung von HP 
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Mutanten in mit LP Virus infizierten Tieren simuliert werden. Hühner bzw. embryonierte 

Hühnereier wurden mit einer konstanten LPAIV-Inokulumdosis und steigenden HPAIV Titern 

ko-infiziert. U.a. mittels pathotyp-spezifischer RT-qPCRs konnte gezeigt werden, dass die LP-

Ko-Infektion einen signifikant hemmenden Einfluss auf die HP H7-Replikation, die virale 

Ausscheidungskinetik sowie die Virusübertragung auf nicht infizierte Kontakttiere zur Folge 

hatte. Klinische, immunhistologische und serologische Daten bestätigten diese 

Beobachtungen. Es konnte gezeigt werden, dass HP-Varianten, die de novo in einem bereits 

mit dem antigenetisch identischen LP-Vorläufer infizierten Tier entstehen, Hindernisse in 

Bezug auf direkt virale Interferenz, angeborene und adaptive Immunität überwinden 

müssen, um auf andere Hühner überzutragen zu werden.   

Die hier erarbeiteten Methoden stellen eine wichtige Optimierung der Diagnostik von AI 

Infektionen dar. Darüber hinaus konnten die neuen Techniken als Forschungs-Werkzeuge hin 

zu einem tieferen Verständnis grundlegender Prozesse in der de novo Entstehung von HPAIV 

aus LPAIV Vorläufern beitragen. Die beschriebenen diagnostischen Tests weisen dennoch 

Limitationen auf und sind hauptsächlich für den Einsatz in Screening-Programmen, 

insbesondere in Regionen mit längerfristig ablaufenden AI-Infektionswellen, vorgesehen. 

Wenn es um die Ersterkennung und -charakterisierung neuer AIV-Ausbrüche geht, müssen 

die neu entwickelten Tests ggf. anhand der spezifischen Spaltstellensequenz adaptiert 

werden.   
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IX. SUPPLEMENT 

1. LIST OF ABBREVIATIONS  

Aa  Amino acid 

AI  Avian influenza 

AIV  Avian influenza virus 

BLAST  Basic local alignment search tool 

cRNA  complementary ribonucleic acid 

CPSF30 Cleavage and polyadenylation specificity factor 30  

CS  Cleavage site 

Ct  Cycle threshold 

Cq  Cyle of quantification 

ds  double-stranded 

Dpi  Days post infection 

DNA  Deoxyribonucleic acid 

ECE  Embryonated chicken egg 

EFE  Embryonated fowl egg 

EID50  50% egg infectious dose 

FAO  Food and Agriculture Organization of the United Nations 

FLI   Friedrich-Loeffler-Institute 

GISAID  Global initiative on sharing all influenza data 

Gs/GD  Goose/Guangdong  

HA  Hemagglutinin 

HACS  Hemagglutinin cleavage site 

HAU  Hemagglutinating units 

HI  Hemagglutinin inhibition assay 

HP  Highly pathogenic 

HPAI  High pathogenic avian influenza 

HPAIV  High pathogenic avian influenza virus 

Hpi  Hours post infection 

IAV  Influenza A virus  
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IHC   Immunohistochemistry 

IVPI  Intravenous pathogenicity index 

K  Lysine 

Kbp  Kilo base pair 

LBM  Live bird market 

LP  Low pathogenic 

LPAI  Low pathogenic avian influenza 

LPAIV  Low pathogenic avian influenza virus 

M   Matrix gene 

MB  Multi-basic 

MBCS   Multi-basic cleavage site 

MDT  Mean death time 

mRNA  messenger RNA 

NA  Neuraminidase  

NCBI   National center for biotechnology 

NEP  Nuclear export protein 

NGS  Next generation sequencing 

NP  Nucleoprotein 

NS  Non-structural protein 

Nt  Nucleotide 

2´-5´OAS 2´-5´ oligoadenylate synthetase 

OFFLU  OIE/FAO Influenza Network   

OIE  World Organization for Animal Health 

PA  Polymerase acidic protein 

PABPII   polyadenine binding protein II 

PB1  Polymerase basic-1 protein  

PB2  Polymerase basic-2 protein 

PBS  Phosphate buffer saline 

PCR  Polymerase chain reaction 

R  Arginine 

RIG-I   Retinoic acid-inducible gene I 
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RBD Receptor binding domain 

RBS Receptor binding site 

RdRp RNA-dependent RNA-polymerase 

RNA Ribonucleic acid 

RNP Ribonucleoprotein 

RNA Ribonucleic acid 

RT-qPCR Quantitative real time RT-PCR 

SA Sialic acid 

SBCS Single basic cleavage site 

SPF Specific pathogen free 

ss single-stranded 

TCID Tissue culture infectious dose 

vRNA viral ribonucleic acid 

vRNP viral ribonucleoprotein 

WHO World Health Organization 
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