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Abstract

Background: Amaranthus cruentus and A. hypochondriacus are crop plants grown for grain production in
subtropical countries. Recently, the generation of large-scale transcriptomic data opened the possibility to study
representative genes of primary metabolism to gain a better understanding of the biochemical mechanisms
underlying tolerance to defoliation in these species. A multi-level approach was followed involving gene expression
analysis, enzyme activity and metabolite measurements.

Results: Defoliation by insect herbivory (HD) or mechanical damage (MD) led to a rapid and transient reduction of
non-structural carbohydrates (NSC) in all tissues examined. This correlated with a short-term induction of foliar
sucrolytic activity, differential gene expression of a vacuolar invertase and its inhibitor, and induction of a sucrose
transporter gene. Leaf starch in defoliated plants correlated negatively with amylolytic activity and expression of a
β-amylase-1 gene and positively with a soluble starch synthase gene. Fatty-acid accumulation in roots coincided
with a high expression of a phosphoenolpyruvate/phosphate transporter gene. In all tissues there was a long-term
replenishment of most metabolite pools, which allowed damaged plants to maintain unaltered growth and grain
yield. Promoter analysis of ADP-glucose pyrophosphorylase and vacuolar invertase genes indicated the presence of
cis-regulatory elements that supported their responsiveness to defoliation. HD and MD had differential effects on
transcripts, enzyme activities and metabolites. However, the correlation between transcript abundance and
enzymatic activities was very limited. A better correlation was found between enzymes, metabolite levels and
growth and reproductive parameters.
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Conclusions: It is concluded that a rapid reduction of NSC reserves in leaves, stems and roots followed by their
long-term recovery underlies tolerance to defoliation in grain amaranth. This requires the coordinate action of
genes/enzymes that are differentially affected by the way leaf damage is performed. Defoliation tolerance in grain is
a complex process that can’t be fully explained at the transcriptomic level only.

Keywords: Carbohydrate metabolism, Carbohydrate mobilization, Carbon sequestration, Defoliation, Grain
amaranth, Plasticity, Tolerance
Background
The genus Amaranthus is comprised by more than 60
species. It belongs to the Amaranthaceae family that also
includes sugar beet, spinach, Chenopodium spp. and sev-
eral halophytes [1]. They are C4 dicotyledonous annual
plants, many of which are ubiquitous weeds (e.g. A. spi-
nosus, A. tuberculatus and A. retroflexus), whereas others
(e.g. A. tricolor and A. hybridus), are used as foliar vege-
tables of high vitamin and mineral content, mainly in
Asia and Africa [2,3]. They may be also a source of grain
(mostly A. caudatus, A. cruentus and A. hypochondria-
cus). The latter are pseudo-cereals capable of producing
seeds of high nutritive and nutraceutical value, granted
by their optimal amino-acid balance, potential to release
bioactive peptides upon digestion and relatively high
squalene levels [3,4]. They are hardy plants with the abil-
ity to grow in poor soils or under unfavorable growing
conditions, mostly involving low water availability, high
salinity and/or high light intensity [3,5,6].
Vegetable and grain Amaranthus species have been

reported to sustain high rates of infestation by herbivor-
ous insects under field conditions, with differing effects
on productivity [7,8]. Tolerance to defoliation in A.
hybridus was associated with a greater investment in
below-ground biomass relative to above-ground vegeta-
tive biomass, occurring mostly as the result of pre-
flowering allocation of carbohydrates (CHOs) and
nitrogen resources to the taproot [9,10]. Vegetable
amaranths have been shown to recover exceptionally
well from herbivore damage by grasshoppers and lepi-
dopteran larvae [11]. However, certain insect pests can
significantly reduce grain yield and increase the risk of
lodging and infection by root and stem fungal patho-
gens [12-14]. Defoliation of grain amaranths by lepidop-
teran larvae at an early developmental stage has also
been found to result in a long-term reduction in plant
size and yield [2,15,16]. Insect infestation was more
deleterious under drought-stress conditions [8]. Con-
trolled experiments indicate that several Amaranthus
species can fully recover from complete mechanical de-
foliation with small to negligible effects on fitness and
yield (Vargas-Ortiz E, unpublished data). Moreover,
mechanical removal of 10-to-40% of the primary shoot
of grain amaranth plants is practiced in certain regions
of Mexico to enhance secondary branching and biomass
productivity [17].
Plants can respond to injury, including defoliation, by

the deployment of a plethora of direct and/or indirect
defenses [18,19]. However, when defenses are costly to
produce or the resource demands for defense compete
with those of growth and reproduction, damaged plants
may undergo physiological changes such as the activation
of dormant meristems, modified plant architecture,
increased photosynthetic capacity, and/or the partitioning
of resources among growth, storage, and reproduction,
among others, in order to cope with the stress imposed by
defoliation [20-22].
Source-sink relationship and carbon allocation in plants

are regulated by complex metabolic and signaling net-
works [23]. Carbon levels in storage organs influence the
net photosynthetic activity in source tissues, whereas the
expression of photosynthesis-related enzymes in leaves is
modified by sugar levels [24-26]. However, the mechan-
isms whereby sugars act to regulate source gene expres-
sion in C4 plants remain relatively unexamined [27].
Previous studies have focused on the defoliation

responses of grain amaranth mostly in an ecological con-
text. Here, we performed a more comprehensive study,
involving a multifaceted approach, including genomic,
promoter, gene expression and metabolite analyses in
addition to enzyme activity assays. Two different defoli-
ation treatments, insect herbivory (HD) and mechanical
damage (MD), were tested considering that the
responses to artificial defoliation can differ qualitatively
and/or quantitatively from those produced by natural
herbivory [see above; also [28,29]. The available genomic
information of Amaranthus hypochondriacus (Ah) [30]
was employed as a basis for gene selection and subse-
quent design of specific primers for real time PCR ana-
lysis and to isolate and characterize key genes involved
in non-structural carbohydrate (NSC) metabolism. Gene
expression at different times was studied in both sink
and source tissues of damaged and control plants. The
response depended strongly on the way defoliation was
performed, as herbivory damage generally led to more
intense changes in expression. The levels of many tran-
scripts, enzymes and metabolites (hexoses, sucrose,
starch and fatty acids) changed as a result of defoliation
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(e.g. short term decrease followed by a long-term recov-
ery), thereby suggesting that tolerance to defoliation in
amaranth might depend on the regulated use of NSC
reserves controlled by key metabolic enzymes/genes.
Thus, candidate grain amaranth genes known to influ-
ence C allocation and sink-source relationships in other
plant models were analyzed in detail and some of them
were cloned. However, the relationships between tran-
scripts and enzymes were not always as straightforward
as desired.

Results and discussion
Selection and cloning of Amaranth genes
Previous knowledge of primary metabolism and stress
tolerance in other model species, and preliminary
expression data in amaranth directed the selection a
total of 25 genes. For a more detailed description see
Additional file 1. In addition, seven cDNAs and two
Table 1 cDNAs and predicted proteins of selected grain amar

Gene ORF1

(bp)2
Size
(bp)3

Size
(KDa)

Identity
(%)

Species Accesi
numb

AhAGPS-1 1524 2019 55.7 91 Beta vulgaris HM021

AhSuS-1 2412 2769 92.1 93 Beta vulgaris JQ0129

AhSuS-2 2436 2832 93.3 78 Beta vulgaris JQ0129

AhA/NI-1 1671 1928 63.3 74 Daucus carota JQ0129

AhA/NI-2* 903 1171 ——— 77 Vitis vinifera JQ0129

AhVI-1 1977 2282 73.8 79 Beta vulgaris JQ0129

AhCWI* 964 991 ——— 75 Beta vulgaris JQ0129

The percentage of identity with the closest annotated homolog is shown. cDNAs m
1ORF =Open Reading Frame.
2aa = amino-acids.
3 bp= base pairs.
4Ref = References.
genomic sequences of key genes involved in carbon (C)
partitioning were characterized (Tables 1 and 2). Two of
the seven sucrose synthase (SuS) isoforms detected in
the transcriptomic analysis [30] were chosen for further
analysis. The phylogenetic analysis (Additional file 2)
showed that AhSuS-1 and AhSuS-2 were highly hom-
ologous to the SBSS1-2 isoforms present in Beta vul-
garis. These have been shown to be regulated by
development and by several types of stress [31]. Plant
invertases conform another multigenic family import-
antly involved in carbohydrate (CHO) mobilization. In
grain amaranth, this family is represented by at least 19
isoforms. Two isoforms belonging to the alkaline neu-
tral invertase subfamily, AhA/NI1-2, were selected for
further study taking into account their similarity to
invertases that are localized to the chloroplast; in wheat
and Arabidopsis, their activity has been shown to be
up-regulated by environmental stresses [32,33]. On the
anth genes involved in sucrose and starch metabolism

on
er

Salient characteristics Ref4

763 The only small subunit AGPase detected in the Ah’s
transcriptome. Highly similar to AGPase isoforms of
sugar beet root and orange fruit (Citrus sinensis).

[46]

18 Member of a small multi-gene family of at least seven
different isoforms; similar to SBSS2 and CSS1proteins
identified in roots of B. vulgaris and in C. rubrum,
respectively. Classified within the Dicot SUS-1group.

[47-50]

19 Similar to the SBSS1 protein induced by wounding,
anoxia and cold-exposure in roots of B. vulgaris. Its
putative mitochondrial localization implies novel roles
apart from sucrose degradation. Classified within the
Dicot SUS-A group.

[31,50-52]

20 An A/N invertase isoform predicted to be localized to
the chloroplast (sub-clade β). Supports the general
participation of A/NIs in the carbon flux between
the cytosol and the plastids.

[53,54]

22 An A/N invertase isoform predicted to be localized
to the chloroplast (sub-clade β).

[54,55]

21 Isoform grouped within the VI clade. Similar to a VI
expressed in petioles of juvenile B. vulgaris, and to
a soluble acid β-fructofuranosidase identified in D.
carota. Its signal peptide predicts it to be a type
II membrane protein that is anchored to the
vacuolar membrane, similarly to Arabidopsis, rice,
barley, and sugarcane. Membrane anchorage of
AhVI-1 may permit a more precise control of its
destination and activity.

[34,56,57]

23 Isoform grouped within the CWI clade. Has shared
identity with CWIs from B. vulgaris and C. rubrum.
Predicted to be a secretory protein having a
hydrophobic 26 aa signal peptide that is required
for co-translational insertion into the endoplasmic
reticulum and secretion from the cell.

[34,48]

arked with an asterisk (*) are not full-length.



Table 2 Genomic sequences of two grain amaranth genes involved in sucrose and starch metabolism

Gene Size
(bp)1

No.
Exon

No.
Intron

Accesion
number

Salient characteristics2 Ref2

AhAGPS-1 5088 9 (99–297)3 8 (84–1048)3 JQ034321 The gene is highly similar (94% identity) to the B. vulgaris AGPB1 gene
(GenBank X78899.1). The complexity of this gene is shared with other
starch metabolism genes. The presence of a large first intron (1048 bp)
suggests a possible role in regulating expression as observed for a
sucrose synthase gene in Arabidopsis. The promoter region has MYCL
and GCCF boxes which are needed in maize for the transcriptional
regulation of the waxy gene coding for a GBSS.

[46,58-60]

AhVI-1 5376 7 (9–857)3 6 (85–1015)3 JQ012921 Contains the expected seven exons generally conserved in the majority
of acid invertase genes isolated from plants4. The AhVI-1 gene also
contains a membrane spanning domain in exon 1 and the motifs
NDPNG, partially encoded by mini-exon 2 encoding the tripeptide
DPN, and WECVDF (exon 3), which are essential for catalytic activity
and are conserved in this gene family5. A key feature identifying it as
vacuolar invertase was that the X residue in the conserved WECXDF
domain corresponded to a valine residue. This is characteristic of
invertases targeted to the vacuole; in the CWIs, X is a proline.

[61-63]

The percentage of identity with the closest annotated homolog is shown.
1 bp= base pairs.
2Ref = Relevant references.
3Size range (bp).
4Refer to Additional file 6A.
5Refer to Additional files 6B and 6C.
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other hand, AhVI-1 was selected from a total of four
vacuolar invertase isoforms on the basis of its high simi-
larity to a vacuolar invertase in B. vulgaris, BvVI, which
has been shown to play an important role in C partition
[34]. The only putative cell wall invertase (CWI) iso-
form identified so far in grain amaranth, AhCWI, is
related to CWIs in B. vulgaris (BvExINV), Vicia faba
(VfCWI2) and tomato (Solanum lycopersicum; SlWI1)
which are known for their capacity to regulate sink
strength in seeds and roots and participate in the
wound response, respectively [34,35] (Additional file 3).
The phylogenetic relationship between the ADP glucose
pyrophosphorylases (AGP) found in grain amaranth
suggests that the subunits that conforms the enzyme
tetramer are being codified by at least four genes, two
of which, AhAGP-L1 and −3 may be involved in stress
responses. This is implied by their similarity to AGPL1-
2 in tomato, which has been shown to be induced by
salt stress in an ABA- and osmotic-stress independent
way [36]. In contrast, only one small AGP subunit has
been identified in grain amaranth, AhAGPS-1. This pro-
tein is related to homologs in other plants, such as
tobacco, maize and pea, where they are known to par-
ticipate in development programs and in stress-
resistance responses [37-39] (Additional file 4). The par-
tial sequence of six plant invertase inhibitors, which are
small proteins (15–23 kD) targeted to the cell wall or
vacuole in a variety of species [40], was also used to de-
termine their phylogenetic relationships. The analysis
showed that AhInvI-4 had a close relationship to the
Arabidopsis AtC/VIF-1, a confirmed vacuolar invertase
inhibitor and that AhInvI1-2 resembled apoplastic-
localized inhibitors involved in both development (ZM-
INVINH1) and stress response processes (AtC/VIF-1),
respectively [41] (Additional file 5). The genomic
sequences of a vacuolar invertase (AhVI-1) and of a
plastidial ADP-glucose pyrophosphorylase small subunit
gene (AhAGPS-1) included a sizeable section of their re-
spective promoter regions. Promoter analysis of ADP-
glucose pyrophosphorylase and vacuolar invertase genes
indicated the presence of cis-regulatory elements that
supported their responsiveness to defoliation (Additional
files 6,7,8). Not surprisingly, the majority of the amaranth
genes and proteins analyzed shared the highest level of
identity with similar proteins previously reported in
sugar beet, except for AhA/NI-1, which had a higher re-
semblance to an invertase isolated from carrot [42]. This
coincided with the close phylogentic relationship shared
by Amaranthus spp. and B. vulgaris [43,44]. An interest-
ing aspect of the promoter regions of the AhAGPS-1
gene was that it had a higher representation of regulatory
elements involved in defense responses than that of an
orthologous gene identified in Solanum tuberosum [45].
On the other hand, a striking difference found between
the promoter regions of the AhVI-I and the B. vulgaris
vacuolar invertase genes, respectively, was the lower
abundance, in the former, of important cis-regulatory
elements of genes involved in ABA and JA signaling
pathways activated in response to (a)biotic stress
and wounding (e.g. ABRE, G-box and W-box motifs)
(Additional file 8). The expression of the selected genes
was analyzed and correlated to the changes in carbohy-
drate (CHO) content and enzyme activities, as described
in the following sections.
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Figure 1 Starch levels measured as glucose equivalents per g
of fresh weight at different days post partial defoliation (dppd)
in (A) source leaves1, (B) stems, (C) roots and (D) panicles of
intact control and defoliated Amaranthus cruentus plants.
Defoliation was produced either by insect herbivory (HD) or
mechanical damage (MD). Data represent means ± standard error of
three technical replicates of pooled samples taken from a
representative experiment that was replicated twice. Asterisks
indicate significant difference from controls at *P < 0.05; **P < 0.01;
***P < 0.001. 1In defoliated plants, all three source leaves sampled
were damaged.
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Changes in CHO levels produced in response to partial
defoliation in A. cruentus
Partial defoliation (� 30% loss of leaf tissue) was pro-
duced in 30-day-old plants either by mechanical damage
(mechanical defoliation, MD) or insect feeding (herbiv-
ory defoliation, HD). Measurements were made at differ-
ent days post partial defoliation (dppd): 1, 5, 30 and 110
dppd in three independent experiments. The choice of
these time points was based on preliminary experiments
[15,16].
Starch, SUC, GLC and FRC levels were determined in

source leaves, stems, roots and panicles of A. cruentus
(Ac) plants (Figures 1 and 2). The general trend was that
all non-structural carbohydrate (NSC) levels were
reduced in most tissues as a result of defoliation
(Figures 1 and 2). Starch and hexoses were the NSCs
more profoundly affected by defoliation. Starch was pre-
dominantly reduced in leaves of MD and HD plants
compared to undamaged controls (Figure 1A), whereas
hexoses were depleted in leaves, stems and roots of MD
and HD plants compared to undamaged controls
(Figure 2). The effect was rapid, since it occurred most
dramatically at 1 dppd and was still evident at 5 dppd
(Figures 1 and 2). Hexoses depletion at times when
sucrolytic activities were high (e.g. 5 dppd; see below)
suggested that their utilization rate in the defoliated
plants surpassed their enzymatic release rate from su-
crose. The rapid and general reduction in NSC reserves
occurring in response to defoliation was very similar to
the one observed when plants were C-starved by shading
for three consecutive days (Vargas-Ortiz E, unpublished
data). This similarity supports our proposal that foliar
starch and other C reserves are rapidly metabolized to
sustain growth when they are depleted by factors that
affect C acquisition in leaves, such as reduced leaf area
or light limitation.
On the long term most NSC levels recovered or main-

tained control levels at 30 dppd, and in some isolated
cases surpassed them (Figure 2). It was also evident that
MD and HD led to similar changes in NSC levels, except
in panicles, where HD had a strong negative effect in all
NSCs except SUC (Figures 1 and 2).
Starch was the most abundant NSC reserve in the

leaves of Ac plants (Figure 1). This agreed with the high
starch accumulation in leaves of sugar beet, a close rela-
tive of amaranth [64]. Starch levels in leaves and panicles
were ~10 times higher than roots and stems (Figure 1).
Starch increased approximately 2-fold during develop-
ment, but the HD and MD treatments consistently
decreased starch levels compared to the control plants
(Figure 1). This pattern suggested that the mobilization
of the ample starch reserves in leaves of Ac could be a
key factor for recovery after defoliation. It was in agree-
ment with the frequently observed mobilization of starch
reserves to sustain new plant growth after defoliation
and with the proposed role of leaf and stem starch as a
buffer against abiotic and biotic stresses [65]. Curiously,
these results had a closer resemblance to the long-term
responses to defoliation reported in woody plants than
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to those registered in annual grasses and shrubs. In the
former species, defoliation has been frequently found to
cause short-term reductions in C stores, present primar-
ily in leaves, but no long term depletion after repeated
defoliation [66-70]. On the other hand, seasonal defoli-
ation studies performed with C3 grasses (e.g. Agropyron
spp. and Lolium perenne) and shrubs (e.g. Caragana kor-
shinskii and Ruellia nudiflora), have reported more di-
verse outcomes. These include, in L. perenne, an
accumulation of C reserves that was subsequently used
to secure survival after repeated grazing [71]. In con-
trast, a drastic reduction in soluble carbon pools was
detected in Agropyron bunchgrasses after severe
defoliation treatments that impeded full recovery due to
a limited replenishment capacity [72]. In shrubs, reduced
leaf longevity and accumulation of below-ground carbon
reserves allowed full compensation in terms of fruit out-
put in defoliated R. nudiflora [73], whereas C. korshinskii
relied on the preferential resource allocation to vegetative
tissues for regrowth, at the cost of fruit production [74].
It must be noted that in one experiment, in which

starch levels in leaves were 2-fold higher than usual, MD
led to a 2-to-3 fold increase of starch in stems and roots
at 30 dppd (Additional file 9B and C). This suggests a
plastic response to defoliation in Ac plants, which can
sequester C in less vulnerable storage tissues when
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favorable growth conditions permit the accumulation of
high foliar starch. Also, the tissue- and ontogenetic
dependent changes in NSC levels observed (Figures 1, 2),
implied that C resources can be preferentially allocated
to certain tissues at certain developmental stages to be
used for growth, reproduction or, perhaps, defense. This
raised the question of which enzymes could be regulating
C allocation in grain amaranth.

Changes in SuS activities and expression in response to
partial defoliation in A. cruentus
The observed fluctuations in NSC levels in sink and
source tissues in response to partial defoliation (Figure 2)
could have been caused by changes in different sucroly-
tic activities present in different subcellular compart-
ments and tissues. Therefore, the activities of SuS,
neutral invertases, soluble acid and cell-wall-bound
invertases were determined at different times after HD
or MD. The enzymatic assays were complemented with
a qPCR expression analysis of selected isoforms and
genes associated with C allocation and transport
(Tables 3,4,5,6).
SuS activity in undamaged plants remained relatively

stable for the duration of the defoliation experiment, ex-
cept for transient peaks in activity in stems and roots of
35 day-old plants (equivalent to the 5 dppd in defoliated
plants) (Figure 3). Defoliation had an evident effect on
SuS activity (Figure 3). For example, in leaves, both MD
and HD induced a 2- to 4-fold increase in SuS activity at
1 and 5 dppd (Figure 3A). The effect was reversed at
30 dppd, where both treatments led to a drastic reduc-
tion of SuS activity (Figure 3A). The changes of SuS ac-
tivity might have reflected a shift in the metabolic
status of leaves, from sink to source tissues, as they
gradually recovered their NSC reserves, as observed in
Figures 1 and 2.
The AhSuS-1 and AhSuS-2 genes were more sensitive

to HD than to MD (Table 3). The latter treatment only
affected the expression of these genes in stems, where
they showed a contrasting behavior (Table 3; see below).
Moreover, no concordance was found between the bi-
phasic pattern of AhSuS gene expression in leaves of HD
plants (low at 1dppd and high at 30 dppd) and enzyme
activity levels, which were higher than controls shortly
after defoliation and then dropped to almost undetect-
able levels at 30 dppd.
In stems of MD plants, SuS activity was temporarily

induced above those in undamaged controls at 1 and 5
dppd. HD, in contrast, led to a rapid decline at 1 dppd,
but maintained a long-term stability that led to higher
activity levels than controls at 30 dppd (Figure 3B). The
significantly higher SuS activity that persisted in stems
of HD plants at 30 dppd coincided with the late induc-
tion of both AhSuS-1 and AhSuS-2 (Table 3). In roots,
MD had a fast inductive effect on SuS activity that was
not accompanied by the induction of either of the
AhSuS-1 and AhSuS-2 genes. Similarly, the ~2-fold re-
duction in SuS activity in panicles of HD plants was con-
trary to the induced expression of both AhSuS genes in
these tissues in HD plants (Figure 3D and Table 3). The
lack of direct correlation observed between AhSuS-1 and
AhSuS-2 expression levels and SuS activity resembled the
disparity observed between SuS gene expression and en-
zyme activity in sugar beet roots subjected to wounding
or anoxia, which was attributed to post-transcriptional
mechanisms [31,75]. The discrepancy between SuS activ-
ity and expression could also be explained by the partici-
pation of other putative SuS isoforms. Similarly to
various other plant species [76], SuS genes in grain ama-
ranth conform a multi-gene family consisting at least
seven different members [30].
The systemic induction of both AhSuS genes and ac-

tivity in stems, roots and/ or panicles of defoliated plants
was consistent with the frequent induction of SuS genes
in roots and/or shoots of plants under stress conditions
[77]. This argues in favor of the generation of a wound-
derived systemic signal in defoliated amaranth plants,
which could have been JA, a related oxylipin or even
H2O2 (see below).

Changes in invertase activities and expression in
response to partial defoliation in A. cruentus
Soluble acid invertase (SAI) activity (e.g. “vacuolar invert-
ase”) was comparatively high in leaves of damaged young
Ac plants (31 and 35 days-old-plants), intermediate in
stems and low in roots (Figure 4A-C). SAI activity
declined sharply in all tissues of 60 days-old-plants (30
dppd), except in panicles where SAI activity levels were
similar to those detected in stems of young plants
(Figure 4D). In leaves, the defoliation effect on SAI was
very similar to the one observed on SuS activity (except
that no induction was observed at 5 dppd in MD plants)
(Figure 4A). In stems, the short term effect of HD, at 1
and 5 dppd, was negative, whereas MD was neutral
(Figure 4B). In roots, the effect of defoliation was negative
at 5 dppd, although a transient induction was observed in
MD plants at 1 dppd, whereas increased SAI activity was
detected in panicles of HD plants (Figure 4C and D).
AhVI-1 expression could explain the increase of SAI ac-

tivity in leaves of HD, at 1 and 5 dppd, and MD plants, at
5 dppd, and in stems of MD plants, at 5 dppd (Table 3). In
addition, the late induction of the putative AhInvI-4 in-
hibitor gene predicted to target AhVI-1 [41] (Additional
file 5) correlated with the abated SAI activity levels
observed in leaves of HD and MD plants at 30 dppd
(Table 3 and Figure 4A). The repressed expression of this
inhibitor gene observed in leaves at 1 dppd could have
also contributed to the increased SAI activity detected.



Table 3 Relative transcript abundance of sucrolytic and related regulatory genes

Gene1 Treatment dppd Leaf Stem Root Panicle

AhSuS-1 HD 1 0.18 ± 0.00 1.50 ± 0.20 2.09± 0.10 —

5 1.38 ± 0.05 0.87 ± 0.21 0.83 ± 0.08 —

30 3.01± 0.24 2.15± 0.40 1.03 ± 0.19 2.15± 0.08

MD 1 0.63 ± 0.06 NE 0.95 ± 0.16 —

5 0.87 ± 0.07 0.84 ± 0.07 0.53 ± 0.08 —

30 1.23 ± 0.27 1.06 ± 0.30 0.55 ± 0.01 1.47 ± 0.35

AhSuS-2 HD 1 0.36 ± 0.03 2.10± 0.10 1.64± 0.21 —

5 1.21 ± 0.02 0.77 ± 0.09 1.52± 0.03 —

30 2.62± 0.07 1.58± 0.14 1.77± 0.25 1.91± 0.05

MD 1 0.76 ± 0.04 2.36± 0.41 1.19 ± 0.10 —

5 0.86 ± 0.08 0.66 ± 0.01 0.86 ± 0.23 —

30 1.13 ± 0.08 2.00± 0.21 1.10 ± 0.06 1.07 ± 0.04

AhVI-1 HD 1 2.19± 0.18 3.00± 0.90 1.37 ± 0.13 —

5 3.74± 0.00 6.58± 0.26 2.49± 0.05 —

30 0.91 ± 0.25 1.12 ± 0.15 1.20 ± 0.18 1.38 ±0.02

MD 1 0.82 ± 0.01 1.25 ± 0.06 1.96± 0.14 —

5 2.57± 0.06 2.71± 0.76 1.30 ± 0.43 —

30 1.24 ± 0.04 1.11 ± 0.13 0.77 ± 0.06 1.65± 0.04

AhInvI-4 (VI inhibitor) HD 1 0.40 ± 0.17 1.00 ± 0.30 1.54± 0.11 —

5 1.00 ± 0.01 0.89 ± 0.34 0.78 ± 0.22 —

30 1.77± 0.29 0.60 ± 0.06 0.72 ± 0.18 1.30 ± 0.22

MD 1 0.68 ± 0.40 1.12 ± 0.39 0.86 ± 0.09 —

5 0.96 ± 0.06 0.61 ± 0.34 0.61 ± 0.16 —

30 2.89± 0.53 1.86± 0.04 0.98 ± 0.10 0.76 ± 0.09

Ah-γVPE HD 1 4.40± 0.54 0.70 ± 0.10 1.41 ± 0.19 —

5 0.10 ± 0.01 1.91± 0.25 2.74± 0.52 —

30 5.83± 0.92 0.98 ± 0.30 1.61± 0.13 2.09± 0.11

MD 1 0.49 ± 0.20 0.59 ± 0.27 1.15 ± 0.11 —

5 0.35 ± 0.04 0.39 ± 0.12 0.13 ± 0.01 —

30 3.59± 0.01 1.10 ± 0.55 1.39 ± 0.14 1.76± 0.09

AhInvI-2 (CWI inhibitor) HD 1 0.23 ± 0.02 1.40 ± 0.20 1.51± 0.23 —

5 1.59± 0.14 0.85 ± 0.06 0.75 ± 0.10 —

30 1.94± 0.28 1.12 ± 0.02 0.97 ± 0.03 1.39 ± 0.16

MD 1 0.35 ± 0.19 2.45± 1.69 1.29 ± 0.16 —

5 1.30 ± 0.00 0.56 ± 0.04 1.00 ± 0.06 —

30 0.88 ± 0.01 2.56± 0.15 0.94 ± 0.16 1.26 ± 0.10

AhInvI-1 (CWI inhibitor) HD 1 0.20 ± 0.03 2NE 0.29 ± 0.06 —

5 0.53 ± 0.09 0.96 ± 0.01 0.98 ± 0.00

30 1.03 ± 0.13 0.91 ± 0.16 0.70 ± 0.03 1.05 ± 0.13

MD 1 0.70 ± 0.05 NE 1.22 ± 0.16 —

5 0.63 ± 0.04 1.19 ± 0.51 1.86± 0.54 —

30 0.94 ± 0.22 2.48± 0.23 2.08± 0.19 0.93 ± 0.15

AhA/NI-1 HD 1 0.09 ± 0.20 0.79 ± 0.26 NE —

5 0.94 ± 0.37 3.59± 0.31 NE —
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Table 3 Relative transcript abundance of sucrolytic and related regulatory genes (Continued)

30 NE 1.38 ± 0.16 NE NE

MD 1 0.11 ± 0.20 1.64± 0.06 NE —

5 0.22 ± 0.47 6.10± 0.22 NE —

30 NE 0.80 ± 0.17 NE NE

AhSNRK-1 HD 1 1.87± 0.05 — — —

5 1.29 ± 0.38 — — —

30 0.40 ± 0.27 — — —

MD 1 0.18 ± 0.16 — — —

5 4.70± 0.50 — — —

30 3.87± 0.27 — — —

Expression was measured at different days post partial defoliation (dppd) by insect (HD) or mechanical (MD) damage in different plant tissues of Amaranthus
cruentus. Transcript levels were measured by qRT-PCR. Values represent means ± SE of a representative experiment with three replicates. They indicate the fold-
change in gene expression levels present in tissues of defoliated plants relative to those in tissues of intact control plants. A given gene was considered induced
when its relative expression values was≥ 1.5, whereas it was considered repressed when its relative expression values was≤ 0.5. These are shown in bold text and
bold italics, respectively.
1The expression of the neutral invertase AhA/NI-2 and sucrose phosphate synthase (AhSPS) genes was not detected in any of the tissues examined.
2NE =Not Expressed.
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The expression of a vacuolar processing enzyme
gamma gene (Ah-γVPE) in response to defoliation was
also monitored in this study because of its known par-
ticipation in the regulation of vacuolar invertase activity
in planta [56,78,79]. However, only its late induction in
leaves in response to both HD and MD, at 30 dppd, and
its early and strong repression in MD plants, at 1 dppd,
coincided with modified SAI activity levels (Table 3 and
Figure 4). Curiously, a strong repression of this gene was
observed in leaves of defoliated plants at 5 dppd. Apart
from leaves, an evident damage-dependent effect on the
expression of this gene was observed at this time point
in stems and roots, being positive in HD plants and
negative in MD plants. The general lack of correlation
between Ah-γVPE expression and SAI levels in Ac indi-
cated other possible functions of this gene in stressed
plants, similar to what was recently reported in Nicoti-
ana benthamiana [80].
Increased AhVI-1 transcript abundance and acid in-

vertase activity in damaged leaves and sink tissues of
defoliated Ac plants was in accordance with the known
up-regulation of invertases often observed after leaf
damage by wounding or insect herbivory in several plant
species, where they are believed to contribute to the
altered source-sink relationships occurring in damaged
leaves [21,35,81,82]. Moreover, the pattern of AhVI-1 ex-
pression and SAI activity suggest that this particular
sucrolytic enzyme, perhaps in combination with SuS ac-
tivity (see above), may play an important role in the early
utilization of C reserves, predominantly in leaves, to
support growth under defoliation stress in Ac plants.
Insoluble (e.g. “cell wall-bound”) acid invertase (IAI)

activity was, in general, the most active type of invertase
detected in Ac plants. IAI levels were similar in leaves
and stems and lower in roots, of undamaged young Ac
plants and diminished in these tissues as plants aged.
IAI activity in young panicles was relatively high
(Figure 5). The defoliation effect on IAI activity in leaves
was sporadic, only induced in leaves by HD and MD at
1 and 5 dppd, respectively, and in stems, at 5 dppd
(Figure 5A and B). These minor changes in CWI activity
were mirrored by no apparent changes in AhCWI gene
expression levels (results not shown).
AhInvI-2 (coding for a putative inhibitor of CWIs)

showed widely different patterns of expression (Table 3
and Figure 5). The expression of this inhibitor gene in
leaves of HD plants also showed an inverse correlation
with the pattern of CWI activity (Figure 5A and Table 3),
since its down-regulation, at 1 dppd, correlated with
augmented levels of CWI activity. The AhInvI-1 gene,
coding for another putative CWI inhibitor, also showed
tissue- and damage-dependent expression, since HD led
to strong and transient repression at 1 dppd in all tissues
examined, whereas MD mostly led to a retarded to late
induction, at 5 and 30 dppd, in stem and leaves. How-
ever, the target enzymes and physiological roles of these
particular inhibitors in SUC metabolism in Ac plants re-
main to be determined.
Neutral (e.g. “cytoplasmic”) invertase (NI) was, in gen-

eral, the least active type of invertase detected in Ac
plants. NI activity levels did not vary much at first in all
tissues of undamaged young Ac plants examined, but
similarly to SAI and IAI, NI activity declined sharply in
60 days-old-plants, reaching undetectable levels in leaves
(Figure 6). This coincided with the low to undetectable
levels of expression of the neutral invertase AhA/NI-1
gene in leaves and roots of control and defoliated plants
at 30 dppd (Table 3). Similar to other sucrolytic



Table 4 Relative transcript abundance of genes involved in starch biosynthesis or breakdown

Gene1 Treatment dppd Leaf Stem Root Panicle

AhAGPS-1 HD 1 0.99 ± 0.38 0.80 ± 0.11 1.24 ± 0.13 —

5 1.17 ± 0.11 0.49 ± 0.09 0.59 ± 0.07 —

30 0.65 ± 0.25 0.31 ± 0.13 0.74 ± 0.04 1.30 ± 0.14

MD 1 1.06 ± 0.47 1.88± 0.57 1.25 ± 0.14 —

5 1.68± 0.23 1.04 ± 0.24 1.08 ± 0.29 —

30 0.69 ± 0.04 1.12 ± 0.25 1.36 ± 0.21 1.13 ± 0.18

AhAGPL-1 HD 1 0.17 ± 0.02 2NE 1.14 ± 0.16 —

5 0.87 ± 0.15 0.85 ± 0.25 0.86 ± 0.22 —

30 1.10 ± 0.12 0.74 ± 0.00 1.02 ± 0.09 0.87 ± 0.33

MD 1 0.40 ± 0.01 1.19 ± 0.02 0.80 ± 0.11 —

5 0.77 ± 0.17 0.49 ± 0.11 0.55 ± 0.13 —

30 0.53 ± 0.01 0.97 ± 0.18 0.55 ± 0.08 0.74 ± 0.16

AhAGPL-2 HD 1 1.31 ± 0.13 0.90 ± 0.00 2.08± 1.02 —

5 1.98± 0.10 1.87± 0.37 3.12± 0.27 —

30 0.68 ± 0.22 1.36 ± 0.16 2.11± 0.51 2.19± 0.11

MD 1 0.92 ± 0.15 1.29 ± 0.35 1.12 ± 1.06 —

5 1.46 ± 0.18 1.16 ± 0.25 0.88 ± 0.21 —

30 0.88 ± 0.01 2.56± 0.15 0.94 ± 0.16 1.26 ± 0.10

AhAGBSS HD 1 1.10 ± 0.18 0.64 ± 0.10 NE —

5 0.92 ± 0.05 0.55 ± 0.33 NE —

30 0.35 ± 0.00 0.95 ± 0.05 NE 1.00 ± 0.31

MD 1 1.22 ± 0.17 0.61 ± 0.19 NE —

5 0.47 ± 0.28 0.54 ± 0.13 NE —

30 0.55 ± 0.99 1.27 ± 0.12 NE 0.56 ± 0.67

AhSS-IV HD 1 0.17 ± 0.38 — — —

5 0.92 ± 0.54 — — —

30 39.64± 0.60 — — —

MD 1 1.38 ± 0.08 — — —

5 0.68 ± 0.06 — — —

30 9.59± 0.18 — — —

AhBMY-1 HD 1 2.10± 0.45 — — —

5 0.44 ± 0.37 — — —

30 NE — — —

MD 1 0.78 ± 0.64 — — —

5 12.12± 0.31 — — —

30 NE — — —

Expression was measured at different days post partial defoliation (dppd) by insect (HD) or mechanical (MD) damage in different plant tissues of Amaranthus
cruentus. Refer to Table 3 for further details.
1The expression of the soluble starch synthase AhSS-III genes was not detected in any of the tissues examined.
2NE =Not Expressed.
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enzymes, the development-related decrease in NI activity
was not observed in panicles, where levels remained
similar to those detected in younger vegetative tissues
(Figure 6D). However, the gene expression assays indi-
cated that the persistent NI activity observed in panicles
was not due to the AhA/NI-1 gene, where the expression
of this gene was not detected. On the other hand, the
strong up-regulation of this gene at 5 dppd in stems of
HD and MD plants coincided only with the significantly
higher NI activity levels in MD stems. No such correl-
ation was observed in older stems, where the unexpect-
edly high activity detected at 30 dppd in HD plants, was



Table 5 Relative transcript abundance of transport genes associated with carbohydrate metabolism and/or sink-source
relationships

Gene1 Treatment dppd Leaf Stem Root Panicle

AhSUT-1 HD 1 3.04± 0.03 2NE 1.18 ± 0.14 —

5 1.11 ± 0.01 0.63 ± 0.10 0.32 ± 0.04 —

30 0.90 ± 0.12 1.59± 0.10 1.16 ± 0.05 1.58± 0.08

MD 1 1.23 ± 0.10 NE 0.68 ± 0.00 —

5 0.69 ± 0.01 0.69 ± 0.05 0.63 ± 0.03 —

30 0.70 ± 0.00 1.05 ± 0.00 0.57 ± 0.01 1.11 ± 0.03

AhPPT HD 1 0.15 ± 0.06 0.79 ± 0.25 1.15 ± 0.13 —

5 2.03± 0.05 0.23 ± 0.21 22.09± 0.64 —

30 1.28 ± 0.61 1.09 ± 0.04 1.43 ± 0.64 0.88 ± 0.03

MD 1 1.44 ± 0.27 1.28 ± 0.12 2.32±0.08 —

5 1.91± 0.05 2.54± 0.31 25.45 ± 1.29 —

30 0.35 ± 0.03 0.94 ± 0.11 6.86±0.51 0.73 ± 0.29

Expression was measured at different days post partial defoliation (dppd) by insect (HD) or mechanical (MD) damage in different plant tissues of Amaranthus
cruentus. Refer to Table 3 for further details.
1The expression of the Glucose-6-phosphate transporter AhG6PT gene was not detected in any of the tissues examined.
2NE =Not Expressed.
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not accompanied by a concomitant increase in AhA/NI-
1 expression (Figure 6B and Table 3). The AhA/NI-1
expression pattern observed suggested a rigid tissue-
specificity, since it was not detected in roots and pani-
cles, was mostly down-regulated in leaves, and was
Table 6 Relative transcript abundance of wound-response- (A
development- (AhSAG) marker genes

Gene Treatment dppd Leaf

AhKTI HD 1 5.18± 0.70

5 6.40± 0.69

30 0.77 ± 0.19

MD 1 1.66± 0.85

5 3.22± 0.10

30 0.20 ± 0.03

AhLOX2 HD 1 5.39± 0.53

5 2.09± 0.00

30 1.59± 0.03

MD 1 0.71 ± 0.83

5 0.97 ± 0.03

30 1.29 ± 0.18

AhSAG HD 1 0.10 ± 0.04

5 1.80± 0.41

30 4.38± 0.13

MD 1 0.70 ± 0.05

5 1.27 ± 0.01

30 1.41 ± 0.02

Expression was measured at different days post partial defoliation (dppd) by insect
cruentus. Refer to Table 3 for further details.
1NE =Not Expressed.
strongly induced in stems at 5 dppd. This likewise sug-
gests the participation of other AhA/NI genes in deter-
mining defoliation-induced changes in alkaline/ neutral
invertase activity in the cytoplasm, and possibly in plas-
tids and/ or mitochondria [83]. This is in agreement with
hKTI), jasmonic acid- (AhLOX2) and senescence/

Stem Root Panicle

0.90 ± 0.20 2.04± 0.51 —

0.87 ± 0.02 1.06 ± 0.06 —

1.44 ± 0.03 1.08 ± 0.12 1.54± 0.30

6.40±0.10 0.94 ± 0.23 —

1.19 ± 0.36 1.92± 0.36 —

2.49±0.17 0.74 ± 0.25 1.46 ± 0.24

0.89 ± 0.10 0.59 ± 0.29 —

0.14 ± 0.10 1NE —

1.22 ± 0.15 NE 1.36 ± 0.04

1.18 ± 0.16 1.51± 0.46 —

0.24 ± 0.03 NE —

1.46 ± 0.03 NE 0.75 ± 0.08

NE 1.58± 0.48 —

0.56 ± 0.18 0.84 ± 0.01 —

NE 1.07 ± 0.11 26.0 ± 0.00

0.12 ± 0.00 2.02± 0.32 —

0.73 ± 0.25 1.14 ± 0.07 —

1.55±0.05 1.03 ± 0.10 1.28 ± 0.16

(HD) or mechanical (MD) damage in different plant tissues of Amaranthus
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Figure 4 Soluble acid (vacuolar) invertase (SAI) activity levels
measured as μmoles of glucose equivalents per g of fresh
weight released per minute at different days post partial
defoliation (dppd) in (A) source leaves, (B) stems, (C) roots and
(D) panicles of intact control and defoliated Amaranthus
cruentus plants. Defoliation was produced either by insect
herbivory (HD) or mechanical damage (MD). For further details refer
to Figure 1.
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Figure 3 Sucrolytic sucrose synthase activity levels measured
as μmoles of glucose equivalents per g of fresh weight
released per minute at different days post partial defoliation
(dppd) in (A) source leaves, (B) stems, (C) roots and (D) panicles
of intact control and defoliated Amaranthus cruentus plants.
Defoliation was produced either by insect herbivory (HD) or
mechanical damage (MD). For further details refer to Figure 1.
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the detection of at least 14 other putative NI isoforms in
grain amaranth [30].

Genes of starch metabolism in response to partial
defoliation in A. cruentus
The expression of AhAGPS-1 and AhGBSS was mostly
unaffected or down-regulated by defoliation (Table 4).
Moreover, no expression of the soluble starch synthases
class III gene (AhSS-III) was detected. In contrast, the
two AhAGPL genes examined in this study, showed
completely different patterns of expression in response
to defoliation, both with respect to AhAGPS-1 and to
each other (Table 4). Defoliation had a neutral to nega-
tive effect on the expression of AhAGPL-1, and was most
strongly manifested at the early stages after defoliation
(1 and 5 dppd) in leaves and stems of damaged plants.
In contrast, AhAGPL-2 was shown to be highly sensitive
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Figure 5 Insoluble acid (cell wall) invertase (IAI) activity levels
measured as μmoles of glucose equivalents per g of fresh
weight released per minute at different days post partial
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to HD plants in a time- and tissue dependent manner, as
manifested by its induced expression in all tissues exam-
ined, particularly at 5 dppd, and its consistent up-
regulation in roots at all times after HD. MD was a
weaker stimulus and did not lead to systemic induction
in roots. Interestingly, defoliation by both means
strongly induced this gene in panicles, which was not
reflected by starch accumulation in these tissues. These
above results show that the expression of these starch
biosynthesis genes in Ac plants is tissue-dependent and
is influenced by the type of damage used for defoliation.
However, the expression patterns did not coincide with
the short- and long-term changes in starch levels
observed in response to defoliation. This could be
reflecting the complex post-translational regulation of
starch synthesis known to operate in plants [84-86].



Castrillón-Arbeláez et al. BMC Plant Biology 2012, 12:163 Page 14 of 22
http://www.biomedcentral.com/1471-2229/12/163
However, the strong and late expression of AhSS-IV,
observed in leaves of both HD and MD plants at 30
dppd, could have contributed to the recovery of foliar
starch levels in defoliated plants, similar to those in in-
tact controls (Table 4). This possibility is supported by
the important role played by soluble starch synthase
genes in starch biosynthesis in Arabidopsis [87,88].
On the other hand, the short-term reduction of the

leaf starch reserves which was followed by a subsequent
recovery, correlated inversely with the pattern of amylo-
lytic activity shown in Figure 7. Hence, induced activity
at 1 and 5 dppd (except in HD plants at 5 dppd), coin-
cided with reduced starch levels, whereas an almost
two-fold reduction of activity at 30 dppd might have
been associated with the recovery of foliar starch levels
in defoliated plants. The expression pattern of a β-
amylase-1 gene in leaves of defoliated plants (Table 4)
was also consistent with the observed changes in both
starch levels and amylolytic activity. These results were
in agreement with a report showing that starch break-
down is the primary function of β-amylase in plants
[89], and also with several studies in which the starch
degradation produced in response to defoliation was
found to correlate with augmented amylolytic activity
and/or induced amylase gene expression [90-92].
The induced expression of a putative SnRK1 regulatory

gene in leaves of defoliated plants suggests the involve-
ment of this gene in the control of C partitioning pro-
duced in response to leaf loss, presumably to alter
resource allocation to allow increased tolerance to de-
foliation, similarly to what was reported in wild tobacco
[93]. Interestingly, the expression of this gene was fast
and transient in HD plants, whereas it was delayed and
persistent in MD plants (Table 4).
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Figure 7 Amylolytic activity levels measured as μg of maltose per mg
partial defoliation (dppd) in source leaves of intact control and defoli
by insect herbivory (HD) or mechanical damage (MD). For further details re
Changes in the expression of a sucrose transporter gene
(AhSUT1) produced in response to partial defoliation in A.
cruentus
Even though the mechanism of phloem loading in Ac
plants is not known, the identification of AhSUT1, cod-
ing for a sucrose transporter gene, supports the partici-
pation of an apoplastic phloem loading process,
similarly to what has been reported in several other
plant species [94].
This gene was also differentially affected by the way Ac

plants were defoliated, being more responsive to HD
than to MD. The effect was also tissue-, and time-
dependent, since AhSUT1 was strongly induced in HD
plants in leaves (at 1 dppd) and panicles, whereas the ef-
fect in roots was negative at 5 dppd; roots of MD plants
also showed repression of this gene at 30 dppd. In stems,
a strong early repression was observed in both HD and
MD plants at 1 dppd. In HD, this effect was reversed at
30 dppd (Table 5). A close resemblance with several
other studies showing a rapid and transient expression
of SUC transporters in response to defoliation by grazing
or insect herbivory [21,71,90,95,96], supports an import-
ant role for AhSUT1, as a facilitator of SUC transport
from the leaves, in the tolerance response to defoliation
in grain amaranth.
Changes in the expression of a putative phosphoenol-

pyruvate/ Pi translocator (AhPPT) gene in response to
partial defoliation in A. cruentus: possible relation-
ship with transient fatty acid accumulation in roots.
In contrast to most genes examined, the pattern of ex-

pression of a putative phosphoenolpyruvate/ Pi translo-
cator (AhPPT) showed that, except for a few cases, MD
induced a generalized accumulation of AhPPT tran-
scripts in all tissues examined, which was particularly
 30 dppd
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MD***
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of fresh weight released per minute at different days post
ated Amaranthus cruentus plants. Defoliation was produced either
fer to Figure 1.
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strong in roots (Table 5). The strong induction of this
gene detected in roots of both HD and MD plants at 5
dppd correlated with the transient accumulation of fatty
acids detected in roots (Figure 8; Additional file 10).
Such correlation was in agreement with the fact that
PPTs are part of a known spectrum of plastidic phos-
phate translocators in non-photosynthetic plastids that
deliver phosphoenolpyruvate (PEP) from the cytosol to
plastids to support fatty acid biosynthesis via the action
of pyruvate kinase [97,98]. In addition, the high expres-
sion this gene in leaves, at 5 dppd, could have been
needed to import PEP into chloroplasts to support tissue
recovery after damage [99].
Changes in the expression of a putative Kunitz pro-

tease inhibitor (AhKTI) and lipoxygenase (AhLOX2)
genes as markers of the wound response and jasmo-
nic acid signaling in partially defoliated A. cruentus.
The protease inhibitor AhKTI gene used as a marker

of the wound response showed the expected rapid and
stable induction in leaves in response to HD and MD, as
shown by a significant increase in expression at 1 and 5
dppd (Table 6). The stronger effect on AhKTI expression
produced by HD was consistent with the differential ex-
pression of trypsin inhibitor activity produced in leaves
of A. hypochondriacus plantlets subjected to mechanical
wounding or herbivory [100]. The induction of this gene
in unwounded tissues, such as roots of HD (at 1 dppd)
and MD (at 5 dppd) plants, and stems of MD plants
(which showed a biphasic pattern of expression at 1 and
30 dppd) further supports the generation of a yet un-
defined wound induced signal needed for the systemic
expression of this and most other genes analyzed in this
study. Defoliation also led to unexpectedly high levels of
AhKTI expression in panicles. Also interesting was the
delayed down-regulation of AhKTI observed at 30 dppd
in leaves of MD plants. In contrast, AtLOX2 used as a
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Figure 8 Total fatty acid levels in μg of fatty acids per mg of dry weig
roots of intact control and defoliated Amaranthus cruentus plants. De
damage (MD). For further details refer to Figure 1.
marker of JA synthesis, was predominantly expressed in
leaves of HD plants, although altered expression of this
gene was also detected in roots, where MD led to an
early induction at 1 dppd, whereas HD repressed it
(Table 6). A clear repression of this gene was detected in
stems of both HD and MD plants at 5 dppd. The high
expression of the AhLOX2 gene in leaves of HD plants
was somehow expected considering the well-established
spike in JA levels that is usually produced when plants
are attacked by leaf chewing herbivores in order to in-
duce resistance or tolerance responses [101-103]. More-
over, high AtLOX2 expression in leaves of HD plants,
presumably leading to augmented JA levels, could have
been a factor influencing the noticeable difference be-
tween gene expression between HD and MD plants
observed in this study. Insect herbivory might have also
impacted the stress signaling network through its effect
on reactive oxygen species (ROS) synthesis and cellular
redox metabolism [104]. Likewise, the possible role of JA
as a systemic signal for the distal induction of genes in
HD plants is in agreement with data generated in A.
hypochondriacus showing that jasmonates can modulate
defense responses vs. insects [8,100] and strongly induce
the systemic expression of various herbivory-responsive
genes including AOC, a JA biosynthetic gene [105]. It is
important to notice that JA can also induce changes in
resource allocation to enhance plant tolerance to defoli-
ation [101,106-108]. However, the proposed signaling
role of JA in resistance/ tolerance responses in grain am-
aranth remains to be determined.
Different responses to insect herbivory and mechanical

damage have been frequently reported in plants and are
attributed to the inability to simulate insect herbivory by
mechanical means, which often underestimate the dam-
age produced by insect feeding. Moreover, instantaneous
removal of leaf tissue by mechanical means is markedly
       30 dppd
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different from the slower tissue removal caused by insect
mandibles. Other subtle effects not generally recognized
can be caused by trampling, defecating or the dispersal
of pathogens by the herbivore [28], whereas a well-
defined determinant of response differentiation is the
insect’s saliva. In this respect, it has been amply demon-
strated that resistance signaling is elicited differently
from simple wounding when herbivore-specific elicitors
(e.g. fatty acid conjugates such as volicitin) contained in
the insect’s saliva or oral secretions are introduced into
wounds [109-112].
Changes in the expression of a senescence associated
(AhSAG) gene as a marker of ageing and development in
partially defoliated in A. cruentus
The expression of the AhSAG gene, used as a marker
of development and senescence, produced the expected
pattern in leaves of HD plants, where a reduction/repression
of its expression at 1 dppd was followed by clearly aug-
mented levels at 5 and 30 dppd (Table 6). A similar ten-
dency, although weaker, was observed in leaves and stems
MD plants, whereas in stems of HD plants, the expression
of the AhSAG gene was strongly repressed. The early ex-
pression in roots of HD and MD plants at 1 dppd sug-
gests that this gene may be a systemic marker of wound
stress and not development, in this tissue. This is sup-
ported by several reports showing that several genes that
are up-regulated during senescence also accumulate in re-
sponse to biotic and abiotic stress [113]. Panicles of HD
plants showed a very high expression of this gene. This
was probably reflecting the accelerated onset of the flow-
ering stage consistently observed in HD plants (results not
shown). The differential effect of HD and MD on gene
expression was again evidenced in stems, where a clearly
contrasting effect on the expression of AhSAG was
observed at 30 dppd.
In addition to early flowering, HD reduced leaf longev-

ity and increased branching (data not shown). These
changes, however, did not negatively affect plant height
or seed yield in physiologically mature plants (data not
shown). These changes indicate that insect herbivory
produced a stronger ontogenetic shift than mechanical
wounding in grain amaranth. The difference was mani-
fested by premature flowering (an escape strategy?) and
the accelerated senescence of mature leaves. This is in
partial agreement with a related study that found that
clipping in A. cruentus produced drastic changes in plant
architecture, and led to an overcompensation response
that increased seed yield [17].

Conclusions
Grain amaranth plants are known to thrive under harsh
ambient conditions that are inhospitable to other crops,
particularly cereals. The mechanisms responsible for
drought and saline stress resistance have been attributed
to several physiological, biochemical and/ or genetic
adaptations, including superior water use efficiency,
changes in root length and architecture, the accumula-
tion of compatible solutes and/ or the expression of key
stress-related genes [30]. Conversely, not much is known
regarding the observed ability of grain amaranth to sus-
tain defoliation. The NSC data obtained in this work
showed that a single defoliation event in young grain
amaranth plantlets led to a rapid reduction in NSC
levels in both sink tissues and source leaves that recov-
ered some time after defoliation. We propose that the
rapid mobilization of foliar starch reserves followed by
an efficient recovery of all NSC reserves supported the
tolerance response to defoliation in grain amaranth, as
manifested by unaltered plant growth and reproductive
fitness. Moreover, the long-term sequestration of starch
in roots and stems that was observed when the starch
levels in leaves were unusually high, together with the
temporary accumulation of fatty acids in roots, suggest a
plastic response to defoliation in grain amaranth. Re-
markably, only a few changes in gene expression and en-
zyme activity could be associated with the above
changes. This outcome was in agreement with the highly
complex nature of the CHO metabolic flux in plants,
over which individual genes are predicted to have only a
limited influence, if any. Also large differences in gene
expression patterns were observed between HD and MD
plants, even though the responses of plants to both
treatments were very similar. This could have been asso-
ciated with the stronger ontogenetic shift caused insect
herbivory, which was manifested by premature flower-
ing, altered plant architecture and accelerated leaf
senescence.
In accordance with this and other related studies, it

can be concluded that a better understanding of how C
partitioning influences tolerance to defoliation, and per-
haps to other stresses including excessive salinity [36],
has a great potential for use in the future improvement
of cultivated crops, particularly those that are stress and
defoliation intolerant, such as maize.

Methods
Plant material, insects and treatments
Seeds of the two genotypes employed in this study,
Amaranthus cruentus cultivar “Tarasca” and Amar-
anthus hypochondriacus cultivar “Revancha”, were kindly
provided by Eduardo Espitia (INIFAP, México). Seeds
were germinated as described previously [30]. Larvae of
the Hawaiian beet webworm Spoladea recurvalis, a com-
mon pest of amaranth and related species, were reared
in a colony established from specimens collected in
nearby fields. The seedlings were subsequently
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transplanted to 16 L plastic pots, containing sterile gen-
eral soil mixture, 21 days after germination, and were
transported to a greenhouse where the experiments were
conducted. The plantlets were fertilized once, one week
after transplant, with a 20: 10: 20 (N: P: K) nutrient soil
drench solution according to the manufacturer’s instruc-
tions (Peters Professional; Scotts-Sierra Horticultural
Products, Marysville, OH, USA) until they had 6 to 8
expanded leaves. All herbivory experiments were per-
formed with 30-days-old A. cruentus plants in a green-
house localized at Cinvestav-Irapuato, México, (20°
4001800N 101°2004800W) under natural conditions of light
and temperature. The choice of A. cruentus for the de-
foliation experiments was based on its insensitivity to
the photo-period, a useful characteristic which allowed
extended experimentation during early and late periods
of the year, which are unsuitable for A. hypochondriacus
[12]. Defoliation by insect herbivory was performed by
placing three larvae per plant for 4 days, which resulted
in a leaf tissue loss of approximately 30%. Defoliation by
mechanical damage was performed by removing the
same percentage of foliar tissue with a 0.5 cm diameter
cork-borer. Care was exercised to match the pattern of
mechanical tissue removal with that of herbivory. Sam-
ples of damaged source leaves (three per plant), stem
(15 cm segments, starting from the base) and roots were
collected from three plants at 0, 1, 5 and 30 days after
the defoliation treatment. Panicles were sampled soon
after their emergence, 30 days after treatment. Control
experiments with undamaged plants were performed
simultaneously. Plant height and total number of leaves
were measured at the three time points. The number of
internodes per stem was determined at 30 dppd. In two
experiments, seeds were harvested from groups of con-
trol and defoliated plants allowed to reach full maturity
(≥ 110 dppd). Tissue samples of each three plant group
were pooled and were flash frozen with liquid N2 and
stored at −80°C until use. Pooled samples were used for
analysis of NSC, fatty acids, gene expression and sucro-
lytic activity levels. Each experiment was repeated three
times, once in the fall-winter of 2010 and twice in the
spring of 2011.
Leaf tissue of intact A. hypochondriacus and A. cruen-

tus plants was used for RNA extraction and genomic
DNA extraction for full-length cDNA and gene
isolation.

Extraction of total RNA and cDNA preparation
Total RNA was extracted from 100–200 mg of frozen
tissue with the Trizol reagent (Invitrogen, Carlsbad, CA,
USA), according to the manufacturer’s instructions, with
modifications. These consisted of the addition of a salt
solution (sodium citrate 0.8 M+1.2 M NaCl) during
precipitation in a 1:1 v/v ratio with isopropanol and
further purification with LiCl (8 M) for one hour at 4°C.
All RNA samples were analyzed by formaldehyde agar-
ose gel electrophoresis and visual inspection of the ribo-
somal RNA bands upon ethidium bromide staining.
Total RNA samples (1 μg) were reverse-transcribed to
generate the first-strand cDNA using an oligo dT20 pri-
mer and 200 units of SuperScript II reverse transcriptase
(Invitrogen).

Gene expression analysis by quantitative real-time RT-PCR
(qRT-PCR)
The cDNA employed for the qRT-PCR assays was ini-
tially prepared from 4 μg total RNA. It was then diluted
ten-fold in sterile deionized-distilled (dd) water prior to
qRT-PCR. Amplifications were performed using SYBR
Green detection chemistry and run in triplicate in 48-
well reaction plates with the StepOne™ Real-Time PCR
System (Applied Biosystems, Perkin-Elmer, Foster City,
CA, USA). Reactions were prepared in a total volume of
8 μl containing: 1 μl of template, 0.8 μl of each amplifi-
cation primer (2 μM), 4 μl of SYBRW Green JumpStart™
Taq Ready Mix™ (Sigma-Aldrich St. Louis, MO, USA)
and 1.4 μl of sterile dd water. Quantitative real-time
PCR was performed in triplicate for each sample using
the primers listed in Additional file 11. Primers were
designed for each gene, based on partial cDNA
sequences derived from the transcriptomic analysis of
Ah [30] or from complete cDNAs generated in this
study (see above). Primer design was performed using
DNA calculator software (Sigma-Aldrich) and included,
when possible, part of unique 3’ non-coding regions to
ensure specificity.
The following protocol was followed for all qRT-PCR

runs: 15 min at 95°C to activate the JumpStart™ Taq
Polymerase (Sigma-Aldrich), followed by 40 cycles of de-
naturation at 95°C for 15 s and annealing at 60°C for
1 min. Slow amplifications requiring an excess of
32 cycles were not considered for analysis. The specifi-
city of the amplicons was verified by melting curve ana-
lysis after 40 cycles and agarose gel electrophoresis.
Baseline and threshold cycles (Ct) were automatically
determined using Real-Time PCR System software. PCR
efficiencies for all genes tested were greater than 95%.
Relative expression was calculated using the comparative
cycle threshold method [114], where delta (Δ) cycle
threshold of cDNA from undamaged controls was
defined as 100% transcript presence.
Transcript abundance data were normalized against

the average transcript abundance of three reference
genes: actin (isotig 10321), β-tubulin (isotig 05486) and
elongation factor 1α (EF1α) (isotig 13098). These were
obtained from the above transcriptomic study. The fold
change in expression of the target genes in each
treatment was calculated using the following equation:
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2-ΔΔCt, where ΔΔCt = (Ct target gene - average Ct refer-
ence genes)treatment - (Ct target gene - average Ct refer-
ence genes)control. Values reported are the mean of three
repetitions ± SE of one representative experiment. The
qRT-PCR expression analysis of the majority of the
genes included in this study, except for all sucrolytic,
AGP and invertase inhibitor genes that were previously
shown to have reproducible patterns of expression by
semi-quantitative RT-PCR assays (not shown), was vali-
dated in at least two independent experiments.
Full-length cDNA amplification
In order to amplify full-length AhSuS-1, AhSuS-2,
AhAGPS-1, AhA/NI-1 and AhVI-1 cDNAs, total RNA
samples (1 μg) from leaves of grain amaranth plantlets
were reverse-transcribed to generate the first-strand
cDNA as described above. An aliquot of these reactions
(2 μl) was then directly used as template in all PCR reac-
tions in the presence of 100 pmol each of specific pri-
mers designed on the basis of sequences obtained from
the Ah transcriptome [30] (see Additional file 12). The
fragments obtained were cloned and sequenced to con-
firm that they corresponded to the gene of interest. The
amplification of the 5’ and 3’ cDNA ends was carried out
by RACE (Rapid Amplification of cDNA Ends) with the
SMARTer™ RACE cDNA Amplification Kit (Clontech,
Laboratories, Mountain View, CA), according to the man-
ufacturer’s instructions. All complete cDNA sequences
were deposited in the GenBank as JQ012918 (AhSuS-1),
JQ012919 (AhSuS-2), JQ012920 (AhA/NI-1), JQ012921
(AhVI-1) and HM021763 (AhAGPS-1).
PCR amplification of a partial cDNA sequences of cell wall
invertase (AhCWI)
Degenerate oligonucleotides OIN3 (50 CCTTCACYT
NTTYTAYCARYAYAAYCC 30, [115] and INV5 (50 N
GTCTTGGWDGCGTAAATAYTTMCCATA 30) were
deduced from conserved cell wall invertase (CWI)
sequences in Beta vulgaris (AJ278531), Chenopodium
rubrum (X81792-94) and Daucus carota (M58362.1),
and used as primers for PCR amplification. PCR reac-
tions were performed in a 25 μl reaction volume with
2 μl cDNA from A. hypochondriacus as template, pri-
mers (100 pmol each), dNTPs (100 mM each), 10 ×Taq
reaction buffer, 50 mM MgCl2 and 1 U of Taq polymer-
ase (Invitrogen). After a pre-denaturing step at 94°C for
3 min, the amplification consisted of 35 cycles of 30 s at
94°C, 30 s at 60°C and 45 s at 72°C and a final extension
of 10 min at 72°C. The resulting PCR fragments were
separated and purified by agarose gel electrophoresis.
The PCR fragments from the major bands were purified,
cloned and sequenced.
Full length genomic amplification
Genomic DNA was extracted from leaves of A. hypo-
chondriacus plantlets as instructed [116] and digested
with four different restriction enzymes (DraI, EcoRV,
PvuI, StuI). The resulting fragments were blunt-end
ligated to the Genome-Walker Adaptor provided by the
Genome-Walker kit (Clontech) to generate the corre-
sponding libraries. These libraries were used as tem-
plates for PCR and nested PCR using primers (see
Additional file 12) designed on the complete cDNAs for
AhVI-1 and AhAGPS-1 obtained previously (see above).
Amplifications were done in both 3' and 5' directions to
obtain the complete sequences of these genes, including
a sizeable portion of their promoter regions. The overlap
between the genomic sequences thus obtained and their
respective cDNA templates confirmed the identity of the
newly generated fragments. All PCR amplicons obtained
were cloned using the TOPO TA cloning kit (Invitrogen)
and sequenced. Both AhVI-1 and AhAGPS-1 genomic
sequences were deposited in the GenBank as JQ012921
and JQ034321, respectively.

DNA sequencing and sequences analysis
Recombinant plasmid DNA was prepared and then
sequenced. Sequencing was provided as a service by the
National Laboratory of Genomics for Biodiversity (Langebio,
at Cinvestav- Irapuato) and the Biotechnology Institute
(IBT-UNAM, México). Computer analysis was performed
using FastPCR 6.0, AnnHyb 4.944 and Chromas-Lite 2.01
software. Sequence homologies were verified against
GenBank databases using BLAST programs [117].

Phylogenetic analyses
Alignment of amino acid sequences and phylogenetic
analyses were conducted using the PhyML method
within the Bosque 1.7.157 software.

Putative sub-cellular localization
Putative sub-cellular localization of the genes was per-
formed in silico by the following programs, available online:
PSORT, SignalP, TargetP, Protein Prowler and MitoProt.
(psort.hgc.jp/form.html, www.cbs.dtu.dk/services/TargetP/,
pprowler.imb.uq.edu.au/, www.cbs.dtu.dk/services/SignalP/
and ihg.gsf.de/ihg/mitoprot.html).

Bio-informatic analysis
The promoter sequences of the AhVI-1 and AhAGPS-1
genes were subjected to an in silico analysis with the
following databases: PLACE (www.dna.affrc.go.jp/PLACE/),
PlantCARE (http://bioinformatics.SlPSb.ugent.be/wetools/
plantcare/html/), the SolGenomics Network (solgenomics.
net) and the Genomatix software suite (www.genomatix.de)
in order to identify the presence of putative cis-regulatory
elements.

http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/SignalP/
ihg.gsf.de/ihg/mitoprot.html
http://www.dna.affrc.go.jp/PLACE/
http://bioinformatics.SlPSb.ugent.be/wetools/
http://www.genomatix.de
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Determination of non-structural carbohydrate levels
All tissues (leaves, stems, roots and panicles) were col-
lected at the beginning of the dark period (6:30 p.m.) and
flash frozen in liquid nitrogen. Frozen ground tissue
(200 mg) was extracted with 500 μl 80% aqueous ethanol
(v/v) and incubated at 4°C for 10 min with stirring. After
refrigerated centrifugation at 10,000 rpm (4°C for 10 min),
the cleared supernatants were transferred into new tubes
and concentrated by centrifugation (Heto Maxi Dry Lyo,
Heto-Holten, Denmark). The residue was re-dissolved in
500 μl of 100 mM Hepes buffer, pH 7.4, and 5 mM MgCl2,
and used for the determination de soluble sugars. The pel-
let derived from the centrifugation step was used for the
determination of starch. To this end, it was homogenized
with 500 μl of 10 mM KOH and incubated at 99°C for two
hours. Sucrose (SUC), glucose (GLC), fructose (FRC) and
starch contents were measured using enzyme-based meth-
ods as instructed (Boehringer Mannheim/R-Biopharm,
Darmstadt, Germany), except that the final reaction vol-
ume was reduced to fit a micro-plate format (250 μl per
reaction).

Determination of fatty acid levels
Fatty acids were determined according to [118] with
modifications: i) the methylation step was performed
with BF3 at slightly harsher conditions (100°C for
15 min), and ii) the organic phase was dried under a
stream of N2 and re-dissolved in isooctane before load-
ing into the gas chromatograph.

Invertase, sucrose synthase and amylase activities in vitro
Acid soluble (vacuolar) and insoluble (cell wall), neutral
(cytoplasmic) invertase and sucrose synthase activities
were determined according to [119,120]. Total amyloly-
tic activity was determined as described in [121].

Statistical analysis
The statistical analysis of the data was performed in the
R statistical language (R Development Core Team 2004,
Version 1.9.0; http://www.R-project.org).
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