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ARTICLE

Modulating the thermal conductivity in hexagonal
boron nitride via controlled boron isotope
concentration
Chao Yuan1, Jiahan Li2, Lucas Lindsay3, David Cherns4, James W. Pomeroy1, Song Liu 2, James H. Edgar2 &

Martin Kuball1

Hexagonal boron nitride (h-BN) has been predicted to exhibit an in-plane thermal con-

ductivity as high as ~ 550Wm−1 K−1 at room temperature, making it a promising thermal

management material. However, current experimental results (220–420Wm−1 K−1) have

been well below the prediction. Here, we report on the modulation of h-BN thermal con-

ductivity by controlling the B isotope concentration. For monoisotopic 10B h-BN, an in-plane

thermal conductivity as high as 585Wm−1 K−1 is measured at room temperature, ~ 80%

higher than that of h-BN with a disordered isotope concentration (52%:48% mixture of 10B

and 11B). The temperature-dependent thermal conductivities of monoisotopic h-BN agree

well with first principles calculations including only intrinsic phonon-phonon scattering. Our

results illustrate the potential to achieve high thermal conductivity in h-BN and control its

thermal conductivity, opening avenues for the wide application of h-BN as a next-generation

thin-film material for thermal management, metamaterials and metadevices.

https://doi.org/10.1038/s42005-019-0145-5 OPEN

1 Center for Device Thermography and Reliability (CDTR), H. H. Wills Physics Laboratory, University of Bristol, BS8 1TL Bristol, UK. 2 Tim Taylor Department of
Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA. 3Materials Science and Technology Division, Oak Ridge National Laboratory, Oak
Ridge, TN 37831, USA. 4Materials and Devices for Energy and Communications Group, H. H. Wills Physics Laboratory, University of Bristol, BS8 1TL Bristol, UK.
Correspondence and requests for materials should be addressed to C.Y. (email: Chao.Yuan@bristol.ac.uk) or to M.K. (email: Martin.Kuball@bristol.ac.uk)

COMMUNICATIONS PHYSICS |            (2019) 2:43 | https://doi.org/10.1038/s42005-019-0145-5 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-3046-3335
http://orcid.org/0000-0002-3046-3335
http://orcid.org/0000-0002-3046-3335
http://orcid.org/0000-0002-3046-3335
http://orcid.org/0000-0002-3046-3335
mailto:Chao.Yuan@bristol.ac.uk
mailto:Martin.Kuball@bristol.ac.uk
www.nature.com/commsphys
www.nature.com/commsphys


Hexagonal boron nitride (h-BN) is a technologically
important layered material used as a dielectric spacer,
encapsulant, ultraviolet laser emitter, and hyperbolic

material in electronic and photonic applications1–3. More
recently, h-BN has attracted attention for thermal management
of electronics as theoretical calculations4 predicted an in-
plane thermal conductivity as high as kr~ 550Wm−1 K−1 at
room temperature, though, highly anisotropic with a two
orders of magnitude smaller out-of-plane thermal conductivity
(kz~ 5Wm−1 K−1). The high in-plane thermal conductivity, as
well as atomic flatness, makes h-BN an ideal substrate material
for next-generation thin-film devices since waste heat can be
spread quickly laterally through a large area, avoiding formation
of localized hot spots5,6. In addition, h-BN could be a good
reinforcing filler for thermal interface and encapsulation com-
posite materials due to its high thermal conductivity and electrical
resistivity7,8. Despite its predicted favorable thermal properties,
experimental results are few and varied. Reported kr values
range from 220 to 420Wm−1 K−1 4,9,10, well below the predicted
maximum value. Developing insight into this discrepancy and
driving h-BN thermal conductivity to higher values is of great
interest both fundamentally and for enabling enhanced thermal
engineering.

Quantized lattice vibrations (phonons) in crystals synthesized
from elements with natural isotopic concentration scatter due to
mass variations of the isotopes in the lattice, thus reducing thermal
conductivity11. Enhanced thermal conductivity has been demon-
strated in monoisotopic materials (isotopically purified to >99%
one isotope), such as in silicon12, germanium13, gallium arsenide14,
diamond15, and graphene16. Naturally occurring BN materials are
made with two stable B isotopes (19.9% 10B and 80.1% 11B), which
present a large mass modulation, and an opportunity to control its
thermal conductivity by manipulating the B isotope concentration.
Large B isotope effect has been observed in BN nanotubes17, whereas
experimental evidence of isotope effects in h-BN has not been
possible to date because suitable samples have not been available.
In terms of theoretical predictions, the conventional Callaway
approach13,18,19 based on the Boltzmann transport equation (BTE)
and formulated within a single-mode relaxation time approximation
(RTA) has been widely used to study the isotope effect in numerous
material systems, but has challenges in anisotropic layered systems
such as h-BN. Often, phonon scattering processes in layered systems
cannot be treated as independent resistive processes, an assumption
of the RTA20. Ab initio approaches based on full solution of the
BTE in combination with first principles density functional theory
(DFT) have demonstrated accuracy in describing the thermal con-
ductivity of anisotropic layered materials with natural isotopic
concentrations21,22, however, experimental data for monoisotopic
layered materials are not available for model validations.

Only recently have isotopically engineered h-BN crystals become
available23–25. To date, investigations have focused on fundamental
isotope effects related to Raman phonon lifetimes and the electronic
bandgap23,24. In this work, we experimentally demonstrate the effect
of boron isotope concentration on the thermal conductivity of bulk
h-BN crystals using a transient thermoreflectance (TTR) technique.
The monoisotopic 10B h-BN crystals have in-plane thermal con-
ductivity as high as 585Wm−1 K−1 at room temperature, ~ 80%
larger than that of h-BN with disordered isotope concentrations
(52%:48% mixture of 10B and 11B). Our measurements are compared
with state-of-the-art ab initio thermal conductivity calculations.

Results
h-BN crystals and microstructural characterization. h-BN
crystals were prepared from monoisotopic boron powders
(10B and 11B), with the process described in Liu et al.25. This

allowed the control of the boron isotope composition from
50%:50% (the most disordered composition) to monoisotopic 10B
or 11B. Four h-BN crystals were grown, with input isotope
compositions of 99% 10B (monoisotopic 10B), 48% 11B (iso-
topically disordered), 78% 11B (near-natural), and 99% 11B
(monoisotopic 11B), respectively (see Methods). Supplementary
Fig. 1 shows an optical micrograph of typical flake-like samples
with size around 1 mm. Flake thicknesses were determined by
optical microscopy to be 15 ± 2 µm by measuring the height
difference between the sample surface and the underlying sub-
strate. Figure 1a shows Raman spectra of the high-energy E2g
mode from the different isotopically engineered h-BN crystals
(see Methods). The energy of this E2g phonon is 1393 cm−1, 1379
cm−1, 1367 cm−1, and 1357 cm−1 for monoisotopic 10B, iso-
topically disordered, near-natural and monoisotopic 11B h-BN,
respectively. The Raman shifts of the samples were benchmarked
against the established relationship between Raman shifts and the
isotope ratios24, verifying that the resulting h-BN crystals have
the same isotope ratios as the input material (see details in
Supplementary Note 1). As expected, the Raman linewidths are
much narrower for the monoisotopic 10B h-BN (2.9 cm−1) and
monoisotopic 11B h-BN (3.1 cm−1) than for the isotopically
disordered h-BN (7.6 cm−1) and near-natural h-BN (7.9 cm−1).
The linewidths are in part determined by phonon–isotope
interactions in the disordered materials, a feature that was cor-
related with low-loss phonon-polariton modes in monoisotopic
h-BN previously24.

The crystal microstructure of the h-BN samples was character-
ized with selected area electron diffraction (SAED), transmission
electron microscopy (TEM), scanning electron microscopy (SEM),
and electron back-scattered diffraction (EBSD) (see Methods),
with results shown in Fig. 1b–h from a representative h-BN
specimen (monoisotopic 10B h-BN; for results of all samples
see Supplementary Fig. 2). The SAED pattern (Fig. 1b) showed
a single-oriented hexagonal crystal structure consistent with a
[0001] surface. The SEM image (Fig. 1c) and EBSD inverse pole
figure (Fig. 1d) confirmed the size of single crystal domains are
larger than >150 μm. There were steps between these large
domains, which are natural features in hexagonal crystals grown
from solutions26. Using TEM, the single crystal domain was found
to have areas a few tens of microns across which are free of
defects. In some locations, in-plane (near-screw) dislocations with
Burgers vectors a=3h11�20i were observed, as seen in the bright-
field TEM image in Fig. 1f. Such dislocations describe a rotation
about [0001] between successive layers, estimated to be up to
~0.02° in Fig. 1f. In the dark-field TEM in Fig. 1g, taken in weak-
beam diffracting conditions, the in-plane perfect dislocations are
seen to be dissociated into closely spaced partial a=3h10�10i
dislocations on a fine scale. In some areas, sub-grain boundaries
were observed, visible as fringes in the bright-field TEM image in
Fig. 1h. The boundary indicates the misorientation (tilt) between
the two grains with the misorientation angle estimated to be up
to ~ 1°. This conclusion is consistent with that from EBSD
(Fig. 1e). The misorientations (tilt) between the grains across the
sample were small, about 2° or less. In short, the fabricated h-BN
samples had high-quality large single-crystalline domains with
a very low density of dislocations and tilt.

Anisotropic thermal conductivity characterization. The thermal
conductivity of h-BN, kr—in-plane and kz—out-of-plane, were
measured using a nano-second laser-based TTR technique27–29

(see Methods). Figure 2a shows the schematics of the TTR
technique. The h-BN crystal was coated with a 50 nm Au thin
film, which serves as a transducer. A 10 ns, 355 nm pulsed pump
laser heats the surface of the Au transducer, creating a
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temperature response. A continuous 532 nm laser was used to
monitor the surface temperature response via the induced change
in Au reflectivity. Figure 2b shows an example of the monitored
normalized thermoreflectance transient. An analytical photo-
thermal pulses-induced thermal transport model was built based
on the geometric and temporal characteristics of the pump
pulse, experimental structure and boundary conditions shown
in Fig. 2c to analyze the measured transients. We use Sx0 ¼

∂ lnTð Þ
∂ lnx0ð Þ

to quantify the sensitivity of the temperature response (T) to the
parameter, x0, which is either of the thermal conductivities of
h-BN (kr, kz) or the thermal boundary resistance between the Au
transducer and h-BN (TBReff) (see Methods). Figure 2d shows the
calculated sensitivity results. The sensitivity to kz (Sz) and TBReff
(STBR) increases rapidly from 10 to 100 ns, whereas sensitivity
to kr (Sr) remains mostly constant. With further increasing time,
Sz remains relatively constant and STBR increases slowly, whereas
Sr gradually increases and exceeds STBR and Sz at ~ 500 ns. Taking
advantage of the distinct sensitivity time scales of the thermore-
flectance transients, the parameters, kz, kr, and TBReff, were
determined simultaneously via fitting the monitored TTR tran-
sients with the analytical thermal transport model (see Methods).
The best fit of our model results to an example measured
transient for the monoisotopic 10B h-BN sample at 300 K is given

in Fig. 2b. The ±25% bound curves shown in Fig. 2b illustrate
that TTR signals are mainly sensitive to kz at short time
scales (10–500 ns) and more sensitive to kr at longer time scales
(>500 ns).

Figures 3a, b give the measured values of kr and kz for the four
crystals, as a function of temperature. Also shown are the
results of (BTE)/(DFT) calculations using three-phonon and
phonon–isotope scattering from quantum perturbation methods
as inputs4 (see Methods). The predicted curves for monoisotopic
10B h-BN and 11B h-BN give the h-BN intrinsic thermal
conductivities determined solely by three-phonon scattering
processes. Theory and experiment for kr are in good quantitative
agreement for the monoisotopic h-BN for temperatures >150 K.
Discrepancies for <150 K are likely due to the extrinsic scattering
of phonons from crystal imperfections not included in the
theoretical calculations. Such extrinsic defects may include
sub-grain boundaries, dislocations (apparent in TEM micro-
graphs Fig. 1f–h), and point defects such as vacancies and
carbon impurities (carbon impurity concentrations of 7.5–27 ×
1019 cm−3 have been measured in h-BN crystals grown from
identical synthesis methods24). The phonon mean free paths in
h-BN at 100–150 K range from a few hundred nanometers to
10 μm, and the lower the temperature the longer the phonon
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mean free paths4. This suggests that sub-grain boundaries are a
possible contributor to reducing the thermal conductivity of
h-BN at low temperature considering the long phonon mean
free path is comparable to the grain size, as evident in TEM and
EBSD micrographs (Figs 1e, h). Point defects, such as carbon
impurities, may also scatter phonons as strongly as isotope
variations due to the mass and force fluctuations around the
defect sites30,31. Such defects, like isotope variations, become
more important at lower temperature where the intrinsic
phonon–phonon scattering is weak. Figure 3a also shows the
theoretical kr of natural and isotopically disordered h-BN.
The measured results compare well with theoretical calculations
>225 K; differences at lower temperatures again may arise from
the presence of defects. As shown in Fig. 3b, the out-of-plane
thermal conductivities (kz) for all samples compare favorably
with the calculations, over the temperature range measured.
Weak van der Waals bonding between h-BN planes gives smaller

acoustic velocities perpendicular to the planes, whereas strong
in-plane covalent bonding of the light B and N atoms gives fast
phonons along the planes4. Thus, kz is much smaller than kr.
There is a relatively small but apparent increase in thermal
conductivity for the monoisotopic samples compared with the
disordered ones. Extrinsic phonon scattering from grain bound-
aries and point defects is expected to have a smaller effect on kz
due to the much shorter phonon mean free paths (about a few
tens of nanometers4) in the out-of-plane direction, and therefore
agreement between simulations and measurements over a
broader temperature range is found.

The in-plane thermal conductivities kr of 585 ± 80Wm−1 K−1

and 550 ± 75Wm−1 K−1 measured at 300 K for the monoiso-
topic 10B and 11B h-BN, respectively, are the highest room
temperature values reported to date in the literature for h-BN.
The measured kr value for near-natural h-BN (78% 11B) is 408 ±
60Wm−1 K−1 is consistent with previously reported values for
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natural h-BN (80% 11B) by Sichel et al.10 and Jiang et al.4, and
about twice larger than that measured by Simpson et al.9.
Isotopically disordered h-BN has the lowest measured kr, 330 ±
42Wm−1 K−1. At 300 K, the measured out-of-plane thermal
conductivities, kz, are 3.5 ± 0.8Wm−1 K−1, 4.5 ± 1.4Wm−1 K−1,
3.3 ± 0.8Wm−1 K−1 and 2.3 ± 0.5Wm−1 K−1 for the mono-
isotopic 10B, monoisotopic 11B, near-natural and isotopically
disordered h-BN crystals, respectively. All these values are
comparable to those reported for natural h-BN in Jiang et al.4

and Simpson et al.9. Note that the isotope effect on kz is not
clearly distinguishable experimentally due to relatively large error
bars of experimental data.

The calculations of kr and kz for monoisotopic 10B h-BN
predict it to be somewhat larger than those of monoisotopic 11B
h-BN, despite both systems being free of phonon–isotope
scattering. Phonon frequencies roughly scale with mass−1/2. This
results in slightly faster acoustic phonons and less scattering from
higher frequency optic phonons in monoisotopic 10B h-BN
compared with monoisotopic 11B h-BN. These both lead to larger
thermal conductivities (kr and kz) in monoisotopic 10B h-BN.
This variance is within the error bars of the measured data
and therefore not clearly distinguishable experimentally. The
enhancement of the thermal conductivity, kr, in monoisotopic 10B
h-BN and 11B h-BN, with respect to the natural BN is 43
and 35%, respectively, at room temperature. This is smaller than
monoisotopic enhancements reported in graphene (~ 58%16) and
diamond (~ 50%15), although the natural isotopic disorder and
resulting mass variance is larger in naturally occurring h-BN
(19.9% 10B and 80.1% 11B) than in naturally occurring carbon
materials (98.9% 12C and 1.1% 13C). One important factor to
consider when comparing the carbon-based materials and bulk h-
BN is the discrepancy between the frequency scales of their
phonon dispersions. Covalent C-C bonds are stronger than that
of B-N bonds, which results in “harder” phonons in graphene and
diamond. Besides reducing acoustic phonon velocities, the softer
phonons in h-BN exhibit two important effects, which reduce
the kr enhancement: (1) h-BN has weaker phonon–isotope
scattering as this scales as frequency to the power four32, and
(2) h-BN has stronger intrinsic phonon–phonon scattering as the
phase space for interactions increases as the dispersion frequency
scale decreases33. The stronger intrinsic phonon scattering in
h-BN compared with diamond and graphene is indirectly
observed when comparing the isotopically purified thermal
conductivities: 585 ± 80Wm−1 K−1, ~ 4000Wm−1 K−1 16, and
~ 3300Wm−1 K−1 15 for monoisotopic 10B h-BN, graphene
and diamond, respectively.

The predicted anisotropic ratio (kr/kz) is as high as 125 at 300 K,
displayed in Fig. 3c, in reasonable agreement with measurements.
We note that the difference in measured kr/kz between mono-
isotopic and isotopically disordered samples is large (>40 for
T < 200 K) despite the presence of point defects reducing kr at
low temperatures. This demonstrates that isotope engineering
makes tuning of the thermal conductivity anisotropy possible in
h-BN over a large range. Recently, tuning thermal anisotropy
in materials has been demonstrated to allow precise manipulation
of heat flux including for heat shielding, heat concentrators,
macroscopic diodes, chip heat management, and energy harvest-
ing34–38. Traditional thermal metamaterials used for these
applications are designed from two or more constituent materials
with large thermal conductivity contrast, to realize the required
anisotropic and inhomogenous conductivity profiles by spatially
adjusting their volume filling ratios. Coefficient of thermal
expansion contrast can then result in challenges including
mechanical instability and complicated fabrication processes35.
Clearly, engineering materials via isotope concentration alone is
more straightforward, and the resulting product is a single phase

2000
a

b

c

1600

1200

In
-p

la
ne

 k
r (

W
/m

K
)

O
ut

-o
f-

pl
an

e 
k z

 (
W

/m
K

)
A

ni
st

ro
pi

c 
ra

tio
 k

r/
k z

 (
a.

u.
)

800

400

25

20

15

10

5

300

250

200

150

100

50

100 150 200
T (K)

250 300

100 150 200
T (K)

250 300

100 150 200
T (K)

250 300

Calculations Measurements
100% 10B

100% 11B

80% 11B (natural)

50% 11B 48% 11B

78% 11B

99% 11B

99% 10B

Calculations Measurements

100% 10B

100% 11B

80% 11B (natural)

50% 11B 48% 11B

78% 11B

99% 11B

99% 10B

Calculations Measurements
100% 10B

100% 11B

80% 11B

50% 11B 48% 11B

78% 11B

99% 11B

99% 10B

Fig. 3 Temperature-dependent thermal conductivities and anisotropic
ratio of hexagonal boron nitride (h-BN) crystals, and comparison with
model predictions: a in-plane thermal conductivity kr, b out-of-plane
thermal conductivity kz, and c anisotropic ratio (kr/kz) for h-BN samples
with differently tuned isotope ratios. Lines for the experimental data are
guides for the eye. The error bars in (a, b) correspond to the uncertainty
of measured thermal conductivity results (see Methods for the details of
uncertainty analysis)

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0145-5 ARTICLE

COMMUNICATIONS PHYSICS |            (2019) 2:43 | https://doi.org/10.1038/s42005-019-0145-5 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


material with negligible differences of heat capacity (see
Supplementary Fig. 7), density23, and temperature-dependent
lattice constant23 (leading to similar thermal expansion), provid-
ing a promising route to enhanced thermal metamaterials and
metadevices.

Discussion
Through isotope engineering, we have experimentally demon-
strated the manipulation of the thermal conductivity of h-BN.
The measured temperature-dependent thermal conductivity of
monoisotopic h-BN provides a means for the verification of DFT
calculations of thermal conductivity as solely impacted by
intrinsic phonon–phonon scattering processes. At room tem-
perature, the in-plane thermal conductivity (kr) of monoisotopic
10B h-BN was measured as high as 585Wm−1 K−1, the highest
room temperature values for h-BN reported in the literature, and
in good agreement with theoretical predictions. The enhanced kr
in monoisotopic h-BN makes it a promising candidate for
managing heat in higher power dissipation compact thin-film
devices. A highly tuneable conductivity anisotropy ratio of h-BN
by isotope engineering, may extend the application of h-BN to
thermal metamaterial and metadevice applications.

Methods
h-BN crystal growth. h-BN single crystals were synthesized using the Ni-Cr flux
method. High-purity 10B (99.22 at%) and 11B (99.41 at%) powders were mixed
with Ni and Cr powders to give overall concentrations of 4 wt% B, 48 wt% Ni, and
48 wt% Cr. Manipulating the mass ratio of 10B to 11B in the source material renders
different isotope compositions of resulting h-BN crystals. After loading the cru-
cible, the furnace was evacuated, then filled with N2 and forming gas (5% hydrogen
in balance argon) to ~850 torr. The N2 and forming gases continuously flowed
through the system during crystal growth with flow rates of 125 sccm and 25 sccm,
respectively. The system was heated to 1550 °C for a dwell time of 24 h. The h-BN
crystals were formed by cooling at a rate of 0.5 °C h−1 to 1525 °C, then quenched
to room temperature. Four different mass ratios of 10B to 11B (100%:0, 50%:50%,
20%:80%, and 0:100%) were input as source material, resulting in four different
isotope compositions (1, 48, 78, and 99% 11B) in the resulting h-BN crystals.
Crystals ranged up to a few mm in size.

Raman measurements. Raman measurements were performed using a 532 nm
laser line with a Renishaw Raman microscope. In all, <10 mW laser power was
directed at the sample through a 50 × 0.75 N.A. objective, with the Raman scattered
light collected back through the same objective. The scattered light was dispersed
using a 2400 groove mm−1 grating onto a silicon charge-coupled device. The
spectral positions of the Raman lines were calibrated against a silicon reference
sample. For each h-BN crystal studied, four measurements were performed,
reporting the average spectral position and linewidth.

Microscopic analysis. SAED and TEM plan-view images were acquired at 200 kV
in a Philips EM430 TEM. The dark-field and bright-field TEM was operated in the
two beam diffracting conditions with g ¼ 11�20. SEM and EBSD measurements
were performed on Zeiss Evo MA10 LaB6 with an instrument probe equipped with
EBSD. The EBSD mapping image was constructed by scanning a ~ 600 µm2 rec-
tangular area with a 1 µm step size. Lattice constants of h-BN were taken from
literature reported data23 for the EBSD analysis.

For the SAED and TEM analysis, small pieces of h-BN were crushed from the
as-grown crystals and then adhered onto a holey silicon nitride support membrane
for imaging. For the SEM and EBSD analysis, the as-grown crystals were mounted
on the carbon tape and the first few layers were exfoliated using Scotch tape to
expose the clean surface for imaging.

TTR measurements. The TTR measurement configuration is shown in Fig. 2a.
To prepare the samples for the TTR measurements, the h-BN flakes were first
cleaned with acetone, and then attached to a large glass slide using carbon tape.
The first few layers were exfoliated using Scotch tape, to create a clean surface,
before depositing a 50 nm (±5%) Au transducer film, with a 10 nm Ti interlayer
for good adhesion. The Au film serves as a transducer in the TTR measurements.
The schematic of TTR sample is shown in Fig. 2b mounted on a copper disk in
the Linkam THMS600 cryostat, which was used to control the sample temperature
from 100 K to 300 K during the measurements. The pump beam is a 10 ns, 355 nm
frequency tripled Nd:YAG laser with a 30 kHz repetition rate. After passing
through a beam expander and dichroic beam splitter, it is directed through a
15 × 0.3 N.A. quartz objective to a de-focused spot on the sample with a Gaussian
profile (1/e2 radius of 41 μm). The pump laser power incident at the sample surface

is less than 5 mW (time averaged, peak of 15W). The transient surface reflectivity
change is monitored using a CW 532 nm laser probe beam focused at the sample
surface to 2 μm, in the central location of the pump spot. The reflected beam
intensity is sampled by a beam splitter and detected by a silicon photodiode
transimpedence amplifier (2.3 ns rise time) and a digital oscilloscope (300MHz
bandwidth). To ensure no residual light from the pump beam is detected, a long-
pass filter is placed before the detector. We note alternative to TTR often time
domain thermoreflectance (TDTR)39,40 is employed to measure thermal con-
ductivity. However, TTR is more sensitive to anisotropy of thermal conductivities.
TDTR, typically uses ultrashort (fs/ps) high-frequency pulse lasers. As the thermal
penetration depth of a short laser pulse is much smaller than that of the laser spot
size, one-dimensional heat transfer is generally assumed making the conventional
TDTR insensitive to radial heat conduction. Although, e.g., pump and probe offset
TDTR41 and variable pump spot size TDTR42 has been employed to enable an
increased sensitivity to radial heat conduction and hence allow measurement of
anisotropic thermal conductivities, the TTR technique is easier to use.

Analytical photothermal pulses-induced thermal transport model for the
analysis of the TTR data. The thermal conductivity of h-BN was determined by
comparing the measured TTR transients with an analytical photothermal pulses-
induced thermal transport model. The model considers heat conduction in N-layer
films (in this study: N= 3 (Au, Ti and h-BN layers)). The i-th layer of the film
with thickness di, is taken having an in-plane thermal conductivities (ki-r), out-of-
plane thermal conductivities (ki-z), density (ρi), and specific heat capacity Ci, with
i= 1, 2, …N. The material (carbon tape) used for mounting the h-BN sample,
indexed as N+ 1, is considered a thermal insulator due to its low thermal con-
ductivity. At time t= 0 when the system is in thermal equilibrium with ambient
temperature T0, an energy pulse is absorbed on the top surface of the film, resulting
in heat diffusion in the out-of-plane (z) direction as well as in the in-plane (r)
directions. Considering the anisotropic thermal properties, the heat conduction
equation for temperature rise εi= T− T0 in layer i is given by

ki�r
∂2εi
∂r2

þ ki�r
1
r
∂εi
∂r

þ ki�z
∂2εi
∂z2

¼ ρici
∂εi
∂t

ð1Þ

For the heat absorption on the top surface,

k1
∂

∂z
ε1 r; z; tð Þ ¼ Q r; tð Þ ð2Þ

where Q(r, t) is the input energy flux, which is spatially and temporally dependent.
Here, we adopted the approach described by Hui et al.43,44 to solve Eqs. (1) and (2)
by using Laplace and Hankel transforms:

Vi β; z; sð Þ ¼
Z1

0

dt expð�stÞ
Z1

0

εi r; z; tð ÞrJ0ðβrÞdr ð4Þ

The problem defined by (1) and (2) can be recast to obtain the transformed
temperature in the spatial and temporal frequency domain (β, s) as

d2

dz2
Vi β; z; sð Þ � γ2i V β; z; sð Þ ¼ 0 ð5Þ

�k1
d
dz

Vi β; z; sð Þ ¼ Q β; sð Þ ð6Þ
Repeating the solution procedure described in43,44 yields identical analytical

results for εi, except γi in Eq. (5) is defined by

γi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρici
ki�r

þ ki�z

ki�r
β2

s
ð7Þ

This analytical model was validated against the solutions obtained by a finite
elements method in ANSYS for the same problem, yielding identical results for
both cases (see Supplementary Note 2).

Based on the analytical model, the measured transients are a function of the
h-BN out-of-plane (kz) and in-plane (kr) thermal conductivities, density, specific
heat capacity, thickness of each layer/material, and geometrical and temporal
characteristics of the pump pulse. Except for the anisotropic thermal conductivity
(kz and kr) of h-BN, and the thermal boundary resistance between the Au
transducer and h-BN (TBReff), all other parameters are input as fixed values (see
Supplementary Note 3). Therefore, TBReff, kz, and kr are treated as free variables,
adjusted to fit the analytical model results to the measured traces. A least squares
algorithm was built for multi-parameter fitting. The uncertainty (error bar) was
determined by individually varying each variable about the solution minima and
finding the change in the variable that causes a 5% change in the least squares
value, i.e., the error bar represents a 95% confidence level. Note that TBReff is
determined by the ratio of Ti thickness to its fitted thermal conductivity. All fitted
results of TBReff are shown in Supplementary Fig. 3. Supplementary Fig. 4 shows
the simulated temperature rise (ΔT) at the surface of h-BN. The maximum ΔT
is ~ 45 K. At 100 ns, ΔT drops to 10 K and after 1000 ns, ΔT reduces to ~ 1 K.
Thus, the fitted h-BN thermal property values approximate the values at ambient
temperature. To ensure that the measured thermal conductivity results are reliable
and repeatable, at the beginning of each h-BN sample measurement, we tested an
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in-house-made reference sample (Au/Ti coated undoped high-purity single crystal
silicon) to make sure the measured silicon thermal conductivity result at room
temperature is always equal to the standard value, 150W/mK45,46.

Sensitivity analysis. The sensitivity of the temperature decay curve (T) to a
parameter, x0, which is either thermal conductivity or thermal boundary resistance,
is defined as:28

Sx0 ¼
∂ lnTð Þ
∂ lnx0ð Þ ð8Þ

When x0 changes by ±10% within the timescale of interest:

Sx0 ¼
∂ lnTð Þ
∂ lnx0ð Þ �

ln T1:1x0

� �
� ln T0:9x0

� �
ln 1:1x0ð Þ � ln 0:9x0ð Þ

ð9Þ

Figure 2d shows an example of the sensitivity to kr, kz and TBReff for a h-BN
sample (the properties are taken as kr= 400Wm−1 K−1, kz= 4Wm−1 K−1,
Cp= 740 J kg−1 K−1 and TBReff= 50 m2 K GW−1, which are typical values for
h-BN4,42).

First principles thermal conductivity calculations. Calculations of the thermal
conductivity of h-BN are derived from Peierls–Boltzmann phonon transport32,47,48

with interatomic force constants (harmonic and third-order anharmonic) from
DFT49–51 as implemented by the plane-wave Quantum Espresso package51

within the local density approximation using norm-conserving pseudopotentials.
Electronic structure and relaxation (12 × 12 × 8 integration grid and 110 Ryd
plane-wave energy cutoff) gave lattice parameters, a= 2.478 Å and c= 6.425 Å4,
somewhat smaller than measurements52. Density functional perturbation theory50

(8 × 8 × 6 integration grid) was used to calculate harmonic force constants and
long range Coulomb corrections. Γ-point-only electronic structure calculations
(200 atom supercells, interactions restricted to 2.8 Å within the plane and 4.2 Å
for neighboring layers) were used to determine third-order anharmonic force
constants for constructing three-phonon matrix elements4. Thermal resistance
from three-phonon interactions32,47 and phonon–isotope scattering11,53,54 is
determined from quantum perturbation theory. More details specific to the
DFT calculations and phonon properties (e.g., dispersions and scattering rates)
are given in4.

Data availability
The data that support the plots and findings of this paper are available at https://doi.org/
10.5523/bris.16v9rfpzb3pl221yzel7x5u5ce.
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