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Distributed pressure sensing based flight control for small fixed
wing UAS

Kieran T. Wood, Sergio Araujo-Estrada, Thomas Richardson, and Shane Windsor
Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TR, UK

Small fixed-wing Unmanned Aerial Systems (UAS) might require increased agility when

operating in turbulent wind fields. In these conditions, conventional sensor suites could be

augmented with additional flow-sensing to extend the aircraft’s usable flight envelope. In-

spired by distributed sensor arrays in biological systems, a UAS with a chord-wise array of

pressure sensors was developed. Wind-tunnel testing characterised these sensors alongside a

conventional airspeed sensor and an angle-of-attack (AoA) vane, and showed a single pressure

measurement gave a linear response to AoA pre-stall. Flight tests initially manually piloted

the vehicle through pitching manoeuvres, then in a series of automated manoeuvres based on

closed-loop feedback using an estimate of AoA from the single pressure port. The AoA esti-

mate was successfully used to control the attitude of the aircraft. An Artificial Neural Network

(ANN) was trained to estimate the AoA and airspeed using all pressure ports in the array, and

validated using flight-trial data. The ANN more accurately estimated the AoA over a single

port method with good robustness to stall and unsteady flow. Distributed flow sensors could be

used to supplement conventional flight control systems, providing enhanced information about

wing flow conditions with application to systems with highly flexible or morphing wings.

I. Introduction
Small Unmanned Air Systems (UAS) flying at low levels in urban areas require high manoeuvrability to fly within

confined streets. They also have to cope with a complex aerodynamic environment with high levels of turbulence, with

air speed possibly fluctuating rapidly by more than 40% at rooftop altitudes [1]. Current control systems for small

UAS typically make use of several traditional sensors. Namely a 6-degree-of-freedom (DoF) inertial measurement unit

(IMU), a GPS receiver, a magnetometer, an anemometer, and possibly an altimeter [2]. These avionics systems are well

developed and work well for flight in simple conditions. When trying to stabilise a small UAS in challenging gusty

conditions, however, these sensors may not provide all the information required to make use of the full aircraft’s flight

envelope. For example, a short term gust might cause a temporary change in angle of attack (AoA) and induce stall on

the wings, however the flight control system will not react until the flow has separated from the wing leading to a loss of

lift resulting in a inertial disturbance as measured by the IMU or altimeter.



A potential method for enhancing UAS flight control performance is to directly measure the airflow around the

wing and use information about the state of the airflow as an input to the flight control system. This principle of

measuring distributed flow information appears to used in many biological flyers; birds sense airflow on their wings

using mechanosensors [3], bats use flow sensitive hairs in a similar way [4], and insects also have large numbers of flow

sensitive hairs [5]. A variety of different man-made sensors have also been used to measure the distribution of flow

properties on the wings of small UAS. The most common are pressure sensors [6–12], but more novel sensors such as

hotfilms [13, 14] and artificial hair sensors [15, 16] have also been used to measure flow velocity.

There are a number of potential benefits of using distributed flow sensing as part of the flight control of a small UAS:

• Extension of flight envelope - Most flight control systems for small UAS are based around a linear flight dynamics

model. The validity of this linear model will break down when pushing the aircraft to the edges of its possible

flight envelope, e.g. stall conditions. By using direct measurements of flow around the wings it may be possible

to operate in more non-linear flight regimes. For example, maintaining non-stalled flow around the wings, or

exploiting a controlled stall for more extreme manoeuvres.

• Flexible wing control - Aircraft with highly flexible wings, or morphing wings with high DoF, could benefit from

distributed flow sensing, using local flow information to tailor the flow state and associated loads over different

sections of the wing.

• Early detection - Having a distributed array of sensors may allow the earliest stages of gusts to be detected as a

flow disturbance moves across the array. Suitable control can then be implemented to mitigate the developing

effect of the gust. [17]

• Faster response - The total moment, and therefore angular acceleration, of the aircraft can be estimated by

integrating the airflow measurements over the surface of the aircraft. This in theory allows a faster response to

disturbances in attitude which are normally measured as changes in angular rate using an IMU [18].

• Damage tolerance - Flow sensors mounted within the wing structure could be more robust to damage, when

compared to probes and vanes, or other vulnerable externally mounted sensors.

Previous studies using distributed flow sensors in the wings of small UAS have shown that these arrays can be used

to measure parameters such as airspeed (V), angle of attack (AoA), and side-slip angle [6, 8, 11, 13, 14]. These are

similar to the measurements provided by the instruments on a conventional air-data boom, but with the advantage of

reduced cost and increased damage tolerance [6]. It has also been demonstrated that wing mounted arrays can be used to

estimate non-conventional parameters such as lift, drag and pitching moment [15, 16]. These estimates could potentially

be used in a physics based control approach where the total forces and moments acting on the aircraft are estimated

based on signals from distributed sensors [19].

In this study we developed a small UAS system with a chord-wise distributed array of pressure sensors in the wing.

Wind tunnel testing was then used to characterise these sensors alongside a conventional airspeed sensor and an AoA
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vane. The same fixed wing UAS was then flight tested, firstly manually piloted through a series of pitching manoeuvres,

then in a series of automated manoeuvres based on closed loop feedback using an estimate of AoA from a single

pressure port. Post-processing of wind tunnel and flight testing data was then used to train an ANN to estimate the

AoA and V of the UAS based on signals from all of the pressure ports in the array. This study extends previous work

by demonstrating the feasibility of using pressure sensors for attitude control during outdoor flight testing, as well as

demonstrating the ability of distributed pressure arrays to be used to estimate AoA and V under stall conditions.

II. System Description
This section gives details of the complete UAS comprising; a base flight platform, traditional autopilot avionics,

additional pressure sensing electronics, and a ground station with a pilot. The overall system architecture is shown

in Fig. 1. The same system was used for both wind tunnel testing and outdoor flight testing. The additional pressure

sensing sub-systems comprised: the rapid-prototyped wing insert, a set of pressure transducers, and a micro-controller.

This sub-system passed wing pressure valued directly to the auto-pilot. Note there are two sources of data logging

available; the pressure sensor system micro-controller is storing raw analogue samples at 200 Hz and the auto-pilot logs

a variety of measurements (for example airspeed, GPS location, and pitch angle) between 10 Hz and 25 Hz.
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Fig. 1 Aircraft control system architecture.
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A. Flight Vehicle

The focus of this investigation was the integration and utilisation of pressure sensors for longitudinal control of a

small UAS, and not the development of an entirely new airframe, hence the platform chosen was a recreational model

plane (Bixler-2, Hobbyking, UK) as shown in Fig. 2. This UAS is a battery powered, high wing, push propeller, model

aircraft with dimensions given in Table 1. It is mostly constructed from Expanded PolyOlefin (EPO) with structural

stiffening provided by a carbon tube main wing spar, and a carbon rod running along the tail boom. For this reason

the airframe can be modified easily with basic construction methods to embed additional sensors in the wings and

avionics within the main body. The original vehicle has four sets of servo actuated control surfaces: elevator, rudder,

ailerons, and flaps. Note however, the modifications for the pressure sensors removed the ability to use the flaps. Thrust

is provided by a 7"×5" propeller driven by small brushless motor with a 20 A electronic speed controller (ESC). From

previous research experience [20], the unmodified vehicle is comfortably capable of carrying approximately 400 g of

additional payload at flight speeds of approximately 15 m s−1. In Fig. 2, the additional wing pressure sensors insert can

be seen in the starboard wing, with all other additional avionics contained within the fuselage. The secondary Pitot tube

is mounted adjacent to the wing insert. The angle-of-attack sensor is mounted on the port side of the nose.

Fig. 2 The modified aircraft.

Table 1 Airframe main characteristics

Parameter Value

Mass (airframe only) 0.760 kg
Mass (total w/o battery) 0.975 kg
Mass (total with battery) 1.175 kg
Wing span 1.500 m
Wing chord 0.198 m
Wing area 0.242 m2

Length 0.963 m
Wing loading 47.677 N m−2

Cruise Speed 15 m s−1

Aspect Ratio 7.6
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B. Flight Control System

The vehicle was equipped with a core set of avionics to enable fully automatic flight, including take-off, way-point

following, longitudinal manoeuvring, and landing. The automation of all flight segments made the outdoor flight testing

both reliable and repeatable. The core flight control systems comprised a flight computer (Pixhawk by 3DRobotics,

USA), GPS & magnetometer unit (UBlox NEO-7 GPS, 3DRobotics, USA), and telemetry radio module (SiK Radio v2,

3DRobotics, USA). The vehicle was also equipped with a digital Pitot tube dedicated to the flight computer. The flight

computer acted as an autopilot and used a traditional IMU for roll/pitch/yaw stability, while updating servo commands

at 50 Hz. Is also has an additional TTL serial interface operating with 3.3 V logic levels which was used for a direct

interface to the pressure sensing micro-controller.

A pilot safety link comprised a radio receiver (X8R, FrSky, China) and a transmitter (Taranis X9D-Plus, FrSky,

China). The safety link allowed a human pilot to reliably issue commands to initiate and cancel experimental modes to

the autopilot, and also assume manual control of the vehicle at any time. The entire system was powered from a 3S

2000 mA h lithium polymer battery (Nanotech, Turnigy, China). Two independent 5 V power regulators were used for

the auto-pilot and the additional avionics to ensure any problems with the experiential hardware could not interfere

with the core flight control. With the additional weight and power requirements of the pressure sensing system, the

maximum flight duration was approximately 12 min.

C. Pressure Sensing Array

To enable the direct measurement of the wing surface static pressure, an insert was created to hold a chord-wise array

of pressure tappings aligned perpendicular to the surface. The wing insert, shown in Fig. 3, was created from Polylactic

Acid (PLA) thermoplastic using a rapid prototyping method. It was designed to match the aerodynamic cross-section of

the aircraft wing at approximately the quarter span, whilst also allowing space for pressure tubing and an attachment to

the main spar. Holes were also added for carbon rods which acted as partial span spars to improve strength and stiffness

around the insert. The insert was 45 mm wide, full chord, and completely rigid, hence the trailing edge flap became

permanently fixed in position. The insert was installed on the starboard wing at 0.15 m (20% semi-span) from the wing

root as shown in Fig. 2. This arrangement of sensor ports allowed the pressure distribution to be measured where the

flow was likely to be minimally affected by the wing tip vortex, giving a good representation of the flow over the inboard

portion of the wing from which aerodynamic parameters such as AoA could be estimated. Additional inserts could be

used in the future to measure the spanwise pressure distribution if required.

A total of seven pressure tapping points (p1−7) were added to the insert; six on the upper surface at 3, 10, 20, 30, 50,

75% chord, and one on the lower surface at 10% chord. The pressure ports were created from 1 mm ID brass tubes

bonded to the outer wall of the insert and then trimmed flush with the surface. The free end of the brass tubes extended a

short distance into small voids within the structure to allow for the attachment of silicone tubing. In addition to the static
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pressure ports, a Pitot tube (p8) was installed in the vicinity of the insert such that a local airspeed could be calculated

without having to modify the Pitot tube dedicated to the flight computer.
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Fig. 3 Rapid prototyped wing insert and diagram showing the chord-wise potion of the pressure ports.

D. Pressure Transducers

The pressure ports were connected to pressure transducers located in the aircraft fuselage via short lengths of

silicone tubing. The internal space allowed for the mounting of two custom PCB boards, each holding four pressure

transducers. Seven of the pressure transducers were connected to static ports p1−7, leaving the reference pressure side

unoccupied. Therefore the static surface pressure on the wing was relative to the static pressure within the fuselage.

Since this volume was not sealed, the sensed pressure varied with external pressure. Both connections of the eighth

pressure transducer were connected to the wing Pitot tube.

The selected pressure transducers (MPXV7002, Freescale) measuring range is ±2 kPa, with a maximum output error

equal to 6.25% of the full measuring span. The transducers output an analogue voltage proportional to the differential

pressure with a gain of 1 V kPa−1 and an offset of 2.5 V. Therefore the normal output varied over the range 0.5 V -

4.5 V. Custom PCB boards were used to mount the transducers, providing each transducer with power and scaling the

analogue output using a potential divider to be within the range of the micro-controller electronics.
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E. Micro-Controller

A micro-controller development board (Teensy3.6, PJRC) was used to sample, store, and forward the pressure

information to the auto-pilot. In addition to the eight analogue signals from the pressure transducers, the micro-controller

was also used to sample the angle of attack sensor and supply voltage; hence a total of 10 channels were sampled at

200 Hz. These values are stored raw on the local SD card and a subset of filtered data was forwarded to the auto-pilot

via a wired serial link. The filter was a first-order low-pass design implemented at 200 Hz with a bandwidth of 1.6 Hz.

A common timestamp was shared between the Teensy and auto-pilot such that the higher rate SD card data could be

aligned with the standard Pixhawk telemetry log files.

F. Angle-of-Attack Vane

An AoA sensor was used to provide an additional source of ground truth information as AoA is not directly measured

by conventional auto-pilot sensors (inertial, barometric, airspeed, and GPS). The angle of attack sensor comprised a

balanced wind vane (Fig. 2) and a single turn precision potentiometer (157S103MB9002, Vishay). This potentiometer

can rotate an infinite number of turns, however the resistance varies between between 0 and the 10 kΩ maximum once

per revolution. The components were installed on the side of the fore-fuselage to ensure the vane was exposed to almost

free-stream flow.

III. Wind Tunnel Testing
A series of wind tunnel tests were performed to characterise the relationship between surface pressure measurements

and AoA. At the same time the vane based AoA sensor and wing mounted Pitot tube were also calibrated. The airframe

was rigidly fixed atop a servo actuated mount and installed in the University Of Bristol Open-Jet Wind Tunnel at as shown

in Fig. 4. The mount has the ability to automatically orientate the model over a range of incidence angles, and since the

model was fixed in all translational axes, the pitch and the AoA become equivalent. For all tests the control surfaces were

set to neutral positions and the main motor was disabled. The range of airspeeds was Us = [8, 10, 12, 14, 16]m s−1 which

covered the nominal cruise speed of 15 m s−1 and the lower speeds expected when operating at higher angle-of-attack.

The characterisation comprised a sweep of pitch angles from −4° to 16° (step size 2° from -4 to 6, then 1° steps)

over a range of airspeeds. A script was created to automatically step through a range of pitch angles with a short pause

at each to collect pressure samples. Note that although the demanded pitch angles were set to integer values, the actual

pitch of the aircraft covers a non-uniform distribution due to non-linearities in the actuation system and backlash in the

mechanism. For this reason the auto-pilot inertial sensor was used as the pitch measurement.
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Fig. 4 Flow sensing airframe installed in University of Bristol Open Jet Wind Tunnel

A. Sensor calibration

Both the wing Pitot tube and AoA vane were calibrated during the wind tunnel tests. The wing Pitot tube was

characterised by comparing the measured differential pressure with airspeed measured by the pre-calibrated auto-pilot

sensor over air speeds from 8 m s−1 to 16 m s−1. The AoA vane was calibrated against the gravity referenced pitch

measurement from the IMU.

The data collected from the static pressure ports was analysed to identify the relationship between pressure

measurements on the wing surface and AoA. The pressure measurements for pressure port 1 are shown in Fig. 5a over

the range of airspeeds and AoAs; from this the stall angle is identified to be approximately 12°. Another noticeable

feature is the near zero differential pressure at −3° AoA which suggests the stagnation point is close to the 3 % chord

location on the upper surface. For AoA below 12° there is a monotonic relationship between the wing surface pressure

and AoA, however there is also a dependence upon airspeed. To remove this dependence and create a more reliable

AoA measurement, the pressures are normalised using the airspeed measurement from the wing Pitot tube (Vw
2).

Figure 5b shows the same data after it has been normalised by a factor of q = 0.5ρVw
2, where the air density is assumed

constant at ρ = 1.225 kg m−3. The normalisation has made the coefficient of pressure invariant to airspeed, hence there

is now a linear relationship between Cp1 and AoA up to 10°. It was not possible to completely remove the airspeed

dependency for the pressure measured from ports 2 to 7. As the measured pressure from these ports was within the

sensor’s maximum error region, it is likely that the observed airspeed dependency was a measurement error effect.

It should be noted that by only using the signals from a single pressure port a lot of potentially useful information is

lost. An alternative is to feed the full sensing array information into an ANN and train it to learn an appropriate model

to estimate the angle of attack. This approach is presented in Section IV.C.
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Fig. 5 Wing pressure and pressure coefficient for pressure port 1 at various AoAs and airspeeds.

IV. Outdoor Flight Testing
The outdoor flight campaign was conducted in a sequential manner to build up an understanding of how the

longitudinal control of a small UAS could be augmented with real-time wing pressure information. By design, the

vehicle tested in the wind tunnel was fully airworthy and could be flown outdoors without modification. The initial

flights were conducted to collect data for analysis of both cruise and stall behaviours. Follow-on flights sought to replace

the inertial pitch sensor with the pressure based AoA measurement for closed-loop flight control.

A. Flying Site

All experimental work was conducted at the University of Bristol outdoor flight test facility as shown in Fig. 6. An

automatic waypoint mission was created to fly the vehicle in a racetrack pattern with each test comprising several laps:

1) From the take-off point the vehicle ascended to a target altitude of 80 m over the duration of a single lap.

2) The vehicle then maintained altitude and speed for several laps whilst experiments were conducted on the upwind

leg.

3) During the final lap, the vehicle descends and lands.

The track was set to have straight lengths of 120 m which was a compromise between allowing the vehicle to straighten

out after the turns, whilst also keeping the vehicle close enough that a pilot could safely take command in unexpected

situations. The track was orientated such that one of the straight legs was directly into the wind. A diagram of the

waypoints is shown in Fig. 6. The racetrack waypoint path is shown with the take-off (green circle) and landing (red

square) points. The experimental pressure based control tests were conducted along the 120 m upwind leg only. The

cruise speed was set to 15 m s−1 at all times.
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Fig. 6 UoB outdoor experimental flight facility located at Fenswood Farm (51.423322N, 2.671129W).

B. Closed-loop Angle of Attack Control

The outdoor experimental data comprises a mix of manual and automatic flights. During the manual flights, all

degrees of freedom were under the direct control of the pilot. In the automatic flights, the auto-pilot system was

responsible for stabilisation and navigation, including take-off and landing. The stock autopilot code (ArduPlane version

3.7.1) was modified to include an experimental mode whereby the elevator and throttle control could be temporarily

altered as detailed in Fig. 7. The stock fly-by-wire (FBW) pitch control is normally updated with an error between the

Attitude and Heading Reference System (AHRS) pitch angle and the desired pitch angle from the navigation controller.

When the experiment mode is active, this error is replaced with the difference between the pressure based AoA

measurement and a pre-set ramp function. Simultaneously, the throttle was also set to a constant value. The pressure

based AoA measurement used the AoA estimate based on the identified linear relationship between the coefficient of

pressure at pressure port 1 and AoA.
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Fig. 7 The structure of the experimental AoA control.
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C. Estimation Using Neural Networks

Following wind tunnel and outdoor flight testing, a series of feed-forward Artificial-Neural-Networks (ANN) were

trained to estimate the AoA and airspeed of the UAS using data from all of the pressure ports. The training was carried

out by combining all of the wind tunnel data sets and four outdoor test flights. Both wind tunnel and test flight data were

used in order to improve the estimation performance of the ANN, as the airspeed range and testing conditions (e.g.

turbulence, atmospheric conditions) between data sets were different. The estimation performance was validated using

four outdoor flights data sets independent from those used in training.

Figure 8 shows the general structure of the ANN used for estimation of the AoA and airspeed. Each ANN consisted

of three main layers; an input, hidden, and output layer. The input layer scaled the pressure sensors inputs based on

the mean values and range of the expected inputs. The neurons in the hidden layers used hyperbolic tangent sigmoid

functions as activation functions. The output layer scaled the signals produced by the hidden layer to match the

magnitude of the target function. The AoA and V readings were used as target functions using the pressure signals from

all wing ports as inputs. 32 ANNs with a range of different structures were trained to estimate either the AoA or V .

The sum of the Mean-Square-Error (MSE) for training and validation was used as selection criteria to find the ANN

that best fitted the data. The ANN were trained using MATLAB Version 9.2 and Neural Network Toolbox Version

10.0, Release 2017a (The MathWorks, Inc., Natick, Massachusetts, United States), employing the Levenberg-Marquardt

backpropagation algorithm as the training function. The resulting ANNs for both AoA and airspeed estimation each

have 3 hidden layers, with 17 neurons in total for AoA estimation (7 in the input layer; 5, 3 and 1 in the hidden layers;

and 1 in the output layer) and 21 neurons in total for V estimation (7 in the input layer; 7, 5 and 1 in the hidden layers;

and 1 in the output layer).

V. Results

A. Manual Flight

The initial flights were conducted to log and assess the quality of the pressure measurements under typical outdoor

free-flight conditions. An experienced pilot manually guided the aircraft in the racetrack pattern including two deliberate

stall manoeuvres achieved by gradually reducing the throttle whilst simultaneously applying nose-up elevator commands

until the vehicle could not maintain flight.

Figure 9a shows the time-histories for the two airspeed measurement methods and three AoA measurement methods

over a period of trimmed flight. The airspeed measured by the wing Pitot tube was calculated based on the wind tunnel

calibration. There was generally a good correlation between the two airspeed measurements with a RMS error between

the signals of 0.40 m s−1 for the period shown. The vane AoA and single pressure port based AoA (for port p1) were

also calculated using the relationships identified in the wind tunnel, while the ANN-based AoA was computed using the
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Fig. 8 General structure of ANN used for estimation of angle of attack and airspeed based on input from
pressure sensor (PS) data.

ANN described in Section IV.C. The vane AoA and ANN AoA measurements matched well, with many of the same

transient features appearing in both sets of data with similar magnitudes. The RMS error of the ANN AoA estimate was

1.05° compared to the AoA vane. The single pressure port based AoA measurement reproduced the transient features

well, although the agreement with the vane AoA was not as good as that of the ANN AoA, with a noticeable offset

resulting in an RMS error of 2.86°.
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Fig. 9 Airspeed and angle-of-attack measurements during manually piloted flight. ANN estimates are shown
for validation flight data.

Later during the same flight, two stall manoeuvres were attempted with the telemetry data shown in Fig. 9b. At

approximately 190 s the aircraft entered a full stall as indicated by the AoA measurements temporarily diverging and V
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dropping. Shortly after the stall, the pilot recovered to level flight and the three AoA measurements converged. Earlier

in the flight (179 s) another stall manoeuvre was attempted, however in this case a full stall did not develop; this can be

attributed to the airspeed remaining significantly higher. Although now showing poorer accuracy than in straight and

level flight, the ANN-based AoA measurement remained accurate within an RMS error of 1.78° even during the large

airspeed fluctuations. Even though the single pressure port based AoA measurement tracked the main transient features,

the RMS error increased to 2.91°. This was not unexpected as the single pressure port based AoA calibration was only

valid for AoA up to 10°.

B. Normalized Pressure-Based AoA Feedback in Cruise

A series of experiments were conducted to assess the ability to directly control the AoA of the vehicle using wing

flow sensing. Using the experimental control structure (Fig. 7) with a ramp rate of 2 ° s−1, the aircraft was commanded

to fly at 6° and 8° AoA with representative time-histories shown in Fig. 10a and Fig. 10b respectively. Vertical lines

representing the time bounds of when the vehicle was under closed-loop control have been overlaid. For the 6° demand

case, the vehicle successfully increased its AoA and achieved a new steady state at the desired set-point for approximately

10 s. At the end of the experimental period was a sudden jump in AoA as the vehicle automatically recovered to the

original flight path. The start of the 8° AoA case begun similarly, however at approximately 218 s there was a sudden

additional elevator command. This briefly stalled the wing as indicated by the drop in AoA to 5° despite a nose up

elevator command. The vehicle then entered an unstable oscillation with repeated stalls. The event was attributed to a

gust as indicated by the gyro measurements immediately before the elevator command. Based on this behavior, the

remaining AoA control experiments were conducted with a maximum 6° demand. Note that the controller gains used for

these experiments were designed for inertial feedback control, which is less tolerant of atmospheric perturbations and

that this AoA demand limit could be relaxed with more appropriate control tuning. The 6° case showed the potential

advantages of directly controlling the AoA using flow sensing. For instance, as the throttle was set to 80 %, the vehicle

increased altitude due to the additional wing lift, even when the airspeed decreased to approximately 8 m s−1. This

suggests that the throttle could be used for controlling the rate of climb. An example of this application is discussed

further in Section V.C.

Since the vehicle had not visually stalled, the ramp rate was increased to 4 ° s−1 with a demand of 20° AoA to

ensure a stall event within the up-wind leg of the circuit. The test was repeated and the results are shown in Fig. 11. In

this case the elevator demand quickly saturated and a stall occurred at approximately 9° AoA. The vehicle then enters

an oscillatory motion, exchanging speed and altitude. This confirmed that for outdoor conditions, the tolerable AoA

without stall was lower than in the wind-tunnel environment.
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Fig. 10 Various signals from 6° and 8° AoA flight. ANN estimates are shown for validation flight data.

C. Climb rates

To assess the performance benefits of flying at a set AoA, a series of tests were conducted with various throttle limits

between 0 and 100%. In each case the vehicle was set to use the AoA feedback control and fly at 6°. Depending on the

throttle, the vehicle would either ascend or descend. For each case the climb rate and airspeed were extracted for a short

section of flight after the vehicle had achieved the demanded AoA. Figure 12 shows the linear relationship between the

throttle percentage and the flight path angle (γ), this shows that for this vehicle a throttle setting of approximately 50%

is required for level flight.

D. ANN Performance

The ANN’s were trained based on the wind tunnel data and four outdoor flight tests, with four different flight tests

used for validation. The RMS error statistics for both the angle of attack and airspeed estimation are given in Table 2.

The angle of attack estimation error distribution for the wind tunnel data set is shown in Fig. 13a. The error distribution

for the vane, ANN and single pressure sensor AoA estimation were very similar. However, the single pressure sensor
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Fig. 12 Throttle vs. flight path angle (γ) for a fixed 6° AoA. Effectively the throttle becomes responsible for
controlling the rate of climb.

error spread well into the 12° region implying that is was sometimes significantly under-predicting. Looking at the

relationship between AoA and estimation error (Fig. 14a) shows that before the stall region the three methods gave

comparable estimation error. But after stall (AoA > 12°) the single pressure sensor based estimation error increased

significantly. For the outdoor flights data set (Fig. 13b), the mean and standard deviation of the error for the ANN-based
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AoA estimation in relation to the vane measurements were considerably smaller than that of the single pressure sensor

estimate (0.30° vs −0.92° for the mean error and 1.77° vs 2.66° for the error standard deviation). The error distribution

shows two peaks for both the single pressure sensor estimate and the ANN estimate. This appeared to be due to a

zeroing error with the AoA vane in one of the validation flights indicating that the results presented are likely to be an

underestimate of the accuracy of the AoA estimates.

To test if any sensor was particularly influential in the ANN estimate of AoA, a series of tests were conducted where

the ANN was trained and validated with each individual sensor signal excluded from the data in turn. It was found that

all the ANN’s using six sensor ports performed with a similar level of accuracy as the full seven sensor ANN, with the

worst performing ANN having a RMS error of 2.25° compared to 1.79° for the full sensor ANN (Table 3). This was

also true when only looking at the post-stall performance of the networks. This indicates that no single sensor signal

was essential for good performance of the ANN estimate of AoA.

Figure 14b shows the ANN-based airspeed estimation error distribution. The estimation performance is similar for

both wind tunnel and flight testing training data, but degrades as one goes from training data to the outdoor validation

datasets.
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Fig. 13 Angle of attack estimation error distribution for: (a) wind tunnel and (b) outdoor flights data sets.

Table 2 Estimation RMS error statistics

Data set AoA RMS error [°] V RMS error [m s−1]
Vane Single PS ANN Vane Single PS ANN ANN

Overall AoA > 10° Overall AoA > 10°

WT training 0.949 2.934 0.933 1.167 4.694 1.243 0.274 0.332
Outdoors training - 1.762 0.776 - 4.642 3.852 0.402 1.226
Outdoors validation - 2.813 1.792 - 11.409 3.681 0.758 1.644
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Fig. 14 Estimation performance: (a) angle of attack wind tunnel data comparison and (b) ANN-based airspeed
estimation error distribution.

Table 3 AoA estimation errors with one sensor removed

Sensor removed Training Validation
Overall RMSE [°] AoA>10° RMSE Overall RMSE [°] AoA>10° RMSE

None 0.877 1.287 1.792 3.680
PS01 1.123 1.377 1.789 2.977
PS02 0.882 1.280 1.921 3.974
PS03 0.739 1.049 1.766 3.870
PS04 1.046 1.519 1.773 3.159
PS05 0.905 1.397 2.212 3.692
PS06 0.905 1.392 2.246 5.637
PS07 1.203 1.927 1.556 4.513

VI. Discussion
Using wind tunnel testing the characteristics of a chord-wise distributed array of pressure sensors were measured.

Simultaneously a conventional airspeed sensor and an AoA vane were also characterised and calibrated. The same

fixed wing UAS was then flight tested, firstly manually piloted through a series of pitching manoeuvres, then in a

series of automated manoeuvres based on closed loop feed back using an estimate of AoA from a single pressure port.

Post-processing of wind tunnel and flight testing data was then used to train an ANN to estimate the AoA and V of the

UAS based on signals from all of the pressure ports in the array.

A. AoA and V estimation

During wind tunnel testing it was found that the signal from a single port pressure at 3% chord could be used to

provide a reasonable estimate of AoA pre-stall (AoA < 10°) when normalised by dynamic pressure, but that post-stall

this signal fluctuated greatly (Fig. 5b). This pattern of behaviour is likely to be due to the position of the suction peak on
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the upper surface of the wing being located close to 3% chord. Up to stall the Cp of the peak would be expected to scale

linearly with AoA. Once the wing had stalled the flow appeared to be separated near the leading edge, with the pressure

becoming unsteady in the region of separated flow. This agrees with previous studies where pressure ports near the

leading edge were shown to provide signals that have a strong relationship with AoA [6, 8], which then breaks down in

stall conditions [10].

An ANN using the signals from all of the pressure ports was able to provide reliable estimates of AoA throughout the

range of AoA tested in the wind tunnel (−4° to 16°) with an RMS error practically equal to that of the AoA vane (0.93°

vs 0.95°). This level of performance is comparable to other wind tunnel studies where wing mounted arrays of sensors

have been used to estimate AoA [6, 11, 13–15]. The ANN estimate of AoA was comparable to the vane estimate and

appeared to provide a similar estimate to the vane post-stall (Fig. 14a). It was found that the estimate of post-stall AoA

was not reliant on the signal from pressure port 7, the only pressure port on the lower surface of the wing. All of the

signals from the upper surface ports became unsteady in the post-stall region, while port 7 remained steady. However,

when port 7 was excluded from the data set used to train and validate the ANN a reasonable estimate of the AoA was

still obtained (Table 3). This indicates that the ANN was able to cope with the noise in the unsteady pressure signals to

extract a reasonable approximation of the AoA. Previous studies with pressure ports mounted on the aircraft nose cone

have been able to estimate AoA in the post-stall region [21–23], but studies with wing mounted ports have not explored

this region in the context of estimating the AoA based on the unsteady signals using an ANN. These results indicate that

wing mounted pressure ports may be able to be used to give a useful estimate of AoA even once the wing has stalled.

During outdoor flight testing the single pressure port estimate of AoA was again reasonable pre-stall, but not so

post-stall (Table 2). The ANN AoA estimate was comparable to the vane AoA estimate. The ANN AoA outdoor

validation RMS error (1.79°) was larger than the wind tunnel (0.93°) and the outdoor training set error (0.78°), this

is likely to be due to the increased turbulence present outdoors and the validation flight conditions falling outside of

the range of the training data at times. During the outdoor test flights when the aircraft was deliberately manually

stalled (Fig. 9) the three estimates of AoA diverged during stall. The divergence of the single pressure port estimate was

expected due to flow separation as was seen in wind tunnel testing. The ANN estimated a markedly higher AoA than the

vane during the abrupt stall, unlike during less abrupt stalls that occurred during close-loop flight tests (Fig. 10) where it

agreed more closely with the vane measurement. This may have been due to the pressure signal having a faster dynamic

response than the AoA vane which has a certain level of inertia as can be seen by its smoother response in Fig. 9 and

Fig. 10.

The performance of an ANN in estimating airspeed based all of the distributed pressure port information was

assessed against the airspeed measurements from a Pitot tube mounted on the wing close to the wing insert. This ANN

also had a level of performance comparable to other wind tunnel studies with wing mounted sensors [6, 11, 13–15]. In

outdoor test flights there were occasions when the ANN and Pitot estimates of V differed significantly (Fig. 10 and

18



Table 2), this occurred when the aircraft was flying at a high AoA (> 10°) and is thought to be due to the high angle of

incidence of the pitot tube which led to an under estimate of the dynamic pressure. This effect was also seen in wind

tunnel testing. This suggests that ANN estimates of V based on distributed flow sensing may have an advantage over

conventional pitot based measurements by incorporating high AoA effects.

These results show the feasibility of using a distributed array of flow sensors on the wing of a UAS to estimate

AoA and airspeed. This has previously been demonstrated in wind tunnel studies, but data from flight tests outdoors is

sparse. Previous flight tests with pressure ports on the nose cone of aircraft [22, 24] have shown the feasibility of these

systems, also known as Flush Air Data Systems (FADS) to estimate a range of aerodynamic parameters including AoA

and V . The potential advantages of having the flow sensor array on the wing, rather that the nose cone, is that direct

measurement of flow states such as stall are possible, while still providing estimates of the vehicles overall air velocity

vector. However, it is likely some estimates such as side-slip angle may be more accurate based on measurements made

on the nose cone than the wing. Alternatively parameter estimates could be optimised by placing sensors in a range of

locations on the aircraft [11].

B. AoA based attitude control

The closed loop flight tests based on holding a set AoA as estimated using the signal from the 3% chord pressure

port showed that it is possible to control the attitude of an aircraft with reference to AoA rather than pitch angle as is

done conventionally. A potential advantage of using an AoA reference for attitude control is that the attitude of the

aircraft is referenced relative to the airspeed vector of the aircraft rather than gravity. This means that the aircraft is

referenced to the relative direction of the airflow including the effect of wind. This has potential advantages when

operating in strong wind fields, such as can occur close to terrain and buildings. For instance, there is potential for

the control system to avoid commanding an attitude that could cause the aircraft to stall if the wind field has a strong

vertical component. AoA based control could also potentially help mitigate some of the effects of unsteady wind by

acting to maintain a constant lift rather than constant pitch attitude, as demonstrated by the climb rate results.

C. Future development

The results shown here are for a system where pressure sensing has been used in place of a conventional IMU for

longitudinal attitude control to demonstrate the feasibility of the concept. In future developments, the idea would be

to supplement the information available from IMU and GPS sensors with the airflow information available from the

pressure sensors. This has the potential to allow the usable flight envelop of a UAS to be extended. For example, the

flow sensors can be used to detect flow separation and stall in different regions of the wing, offering the potential to

operate much closer to the stall limits of the aircraft. Previous work [7, 25], has used manually selected thresholds

for properties of the pressure distribution to detect stall, but it would seem that an ANN approach would also be well
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suited for this task if a training set with direct measurements of stall state were available (which was not the case in

this work). Taking the idea of stall detection further, the controller could intentionally stall the aircraft during extreme

manoeuvres and then recover by sensing when the flow has reattached to the wing. Due to the chaotic nature of stalled

flow, reattachment is difficult to predict, but quite feasible to measure directly with flow sensors.

A further extension of this concept would be to incorporate more sensors into UAS wings and tails to measure the

distribution of flow across the wing span and on the tail planes. This would give the potential to also use flow sensors as

part of the lateral attitude control system. Having a more distributed array with a greater number of sensors also offers

the opportunity to monitor the flow state over different parts of the wing. This could offer many advantages for the

control of highly flexible winged aircraft, where the flow state has the potential to be very different over different parts

of the wing due to aero-elastic effects [26]. The type of arrangement would be very similar to that seen in biological

flyers, where distributed force and flow sensors appear to be used with highly flexible wings where aero-elastic effects

play a major role in flight performance and control.

D. Conclusions

This study presented both a new method of sensing the angle-of-attack of a small UAS and successfully used this

additional signal for closed-loop flight control. A single pressure sensor located near the leading edge of the wing can

be used to measure angle of attack in sub-stall conditions via a characterisation using wind-tunnel testing. This method

can be used to control the longitudinal axis of a UAS such that a set AoA is maintained via feedback control. A second

method of estimating AoA, using artificial neural networks, used of the full array of chord-wise pressure ports and

yielded a more robust estimate of AoA and additionally estimated velocity. The ANN method could also provide an

improved measurement of AoA in the stall region when compared to the single port method.

This work moved beyond simulation and controlled laboratory tests and proved the system under real-world

conditions with experimental validation from outdoor flight testing. Future work will more closely integrate the ANN

estimation method into the flight control system and expand the quantity and distribution of pressure ports, with an aim

of robustly maintaining stability at the edges of the flight envelope.
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