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Abstract 19 

In order to rationalize a surface water quality monitoring network (WQMN), it is critical to 20 

appropriately design surface water quality sampling locations. This is due to high installation, 21 

operational, and maintenance costs for each sampling representative of the whole water system 22 

conditions. The main objective of this study was to propose an integrated method to determine the 23 

most appropriate sampling points in the Khoy watershed northwest of Iran, where financial 24 
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resources and water quality data are limited. Multi criteria evaluation method including analytic 25 

network process (ANP) and Fuzzy logic were incorporated in River Mixing Length (RML) 26 

procedure in order to identify exact locations of sampling points. Based on RML procedure, 15 27 

candidate sampling points were identified to suitably select sampling points based on budget 28 

deficiency. Relative weights for 12 criteria and 10 sub-criteria related to non-point sources and 29 

surficial rocks as well as criteria of topography were then calculated by the ANP method. 30 

According to the obtained results, a new total potential pollution score (TPPS) was presented to 31 

prioritize 15 candidate sampling points. Then, the values of TPPS were classified and fuzzified to 32 

distinguish real differences between scores. Based on current monitoring stations and budget 33 

deficiency, the hierarchy value, and Fuzzy rank, six points are proposed as the most appropriate 34 

locations for surface water quality monitoring. Furthermore, four points are identified as the 35 

second most appropriate for enhancing a robust WQMN in the study area in order for an expansion 36 

plan in the future.  The results of this study should be valuable for water quality monitoring 37 

agencies looking for a cost-effective approach for selecting exact sampling locations. 38 

Keywords: Water quality monitoring network; cost-effective siting sampling locations; Mixing 39 

Length procedure; TPPS; ANP; Fuzzy logic. 40 

 41 

1. Introduction 42 

Since industrial revolution, human activities have had negative repercussions on both quality and 43 

quantity of the surface water resources. Most countries and researchers have attempted to develop 44 

a variety of approaches in order to assess, evaluate, and monitor water quantity and quality in the 45 

watersheds (Baltacı et al., 2008; Behmel et al., 2016). Water quality monitoring (WQM) is a 46 
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technical term and good example of this scientific endeavor in the realm of water research (Sanders 47 

et al., 1983; Chapman, 1996). The main purposes of WQM include understanding of watershed 48 

health and dynamic, current conditions and trends in the surface water system, and providing 49 

reliable information to help decision-makers to interpret and manage the stakeholders’ health risk 50 

(Park et al, 2006; Strobl et al., 2006 a; Baltacı et al., 2008; Telci et al., 2009; Xiaomin et al., 2016). 51 

According to the literature on the WQMN design, every surface water monitoring network has the 52 

main tasks including definition of monitoring goals, proper locations of sampling points, selection 53 

of parameters and methods under consideration, and determination of sampling recurrence and 54 

frequencies (Telci et al., 2009; Behmel et al., 2016). For this purpose, the location of the most 55 

appropriate sampling points is a vital factor in the WQMN design (Sanders et al., 1983; Varekar 56 

et al., 2015b). In addition, appropriate monitoring sites play a key role in integrated watershed 57 

management (IWM), management of the total maximum daily load (TMDL), and improving water 58 

quality models (Park et al, 2006; Telci et al., 2009; Chen et al., 2012). More specifically, from the 59 

cost and time-efficient perspective, it is essential to appropriately locate sampling points for 60 

assessment and evaluation of temporal and spatial changes of water quality (Kovacs et al., 2016; 61 

Behmel et al., 2016).  62 

A comprehensive literature exists on selection and optimization of sampling sites in WQMN 63 

design. According to the literature,  the multivariate statistical techniques (Ouyang, 2005; 64 

Chilundo et al., 2008; Noori et al., 2010; Wang et al., 2014) and the Genetic Algorithm(GA) have 65 

been employed to select representative sampling points (Icaga, 2005; Park et al., 2006; Chen et al., 66 

2008; Karamouz et al., 2009; Telci et al., 2009; Liyanage et al., 2016). In recent years, a 67 

combination of numerical models, experiments, and matter-element analysis has been used to 68 

assess WQMNs (Chen et al., 2012, Keum and Kaluarachchi, 2015). In addition, multi objective 69 
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analysis has been increasingly utilized to optimize and propose monitoring sites (Ning and Chang, 70 

2002; Khalil et al., 2011; Aboutalebi et al., 2016). The other methods like Geostatistical techniques 71 

(Beveridge et al., 2012) and Entropy approach (Memarzadeh et al., 2013; Mahjouri and Kerachian, 72 

2011) have been employed to appropriately locate sampling points.  With presence of numerous 73 

frameworks and guidelines on selection and optimization of the sampling point numbers as well 74 

as WQM program, most of them have still not been universally utilized or accepted  to date  75 

(Varekar et al., 2015; Behmel et al., 2016). It is worth mentioning that most of researches 76 

conducted on WQMN concentrate chiefly on mathematical facets (Do et al., 2012).  In addition to 77 

above stated approaches, some researchers have introduced alternative techniques for properly 78 

designing WQMN and locating sampling points. Sharp’s procedure, as a systematic approach 79 

(Sharp, 1971) was modified by Sanders et al. (1983) in order to identify exact locations of sampling 80 

points. In Sharp’s procedure, river network is subdivided into equal segments which are selected 81 

as sampling points by identifying the centroids, while in Sanders’ procedure, pollution loadings 82 

and the number of outfalls are employed (Varekar et al., 2015b). Although several studies have 83 

been conducted by using both these methods (Park et al., 2006; Do et al., 2011; Varekar et al., 84 

2015a, b), there are some limitations in employing these methods for a river without tributaries as 85 

well as short or long rivers. Moreover, in order to use these procedures, reliable and long-term data 86 

collection of water quality must be in place, which is often not feasible in developing country (e.g. 87 

Iran).   88 

Do et al. (2012), in turn, proposed a new procedure by modifying Sanders’ procedure and taking 89 

river mixing length (Day, 1977) into account for removing the aforementioned problems. This 90 

modified approach was incorporated with pollution potential of each land-use by considering event 91 

mean concentration (EMC) and human activities. It is highly suitable for a river system suffering 92 
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from inaccurate and unreliable data on hydraulic and flow characteristics (Do et al., 2012). 93 

However, limitations of study conducted by Do et al. (2012) was to use analytic hierarchy process 94 

(AHP) which do not consider inter-dependencies of criteria (correlation between water quality 95 

variables). Since water quality parameters are not independent of each other (Newell et al., 1992; 96 

Barid et al., 1996; Harper, 1998; Baldys et al., 1998; Line et al., 2002), a robust multi-criteria 97 

decision making approach such as the ANP method is needed to consider their relationship. 98 

Considering distance zone based on linear surface ground was the other limitations (Varekar et al., 99 

2015a). More importantly, watershed geology (surficial rocks), which plays a vital role in the 100 

chemistry of water bodies (McCartan et al., 1998; Zektser et al, 2007; Olson, 2012), has not been 101 

considered in the recent studies (Sanders., 1983; Park et al., 2006; Do et al., 2011; Do et al., 2012; 102 

Varekar et al., 2015 a, b, Alilou et al., 2018). In addition, under case study of the Xiangxi River in 103 

China and the Portland Metropolitan area in the USA, Ye et al. 2009 and Pratt and Chang, 2012 104 

showed that watershed topography is responsible for 25% of water quality variation mostly in dry 105 

season and more specifically some water quality variables, for example, nitrate nitrogen (NO3-N) 106 

and total phosphorus (TP) having negative and positive correlation with topography, respectively 107 

(D'Arcy and Carignan, 1997), was neglected. Therefore, it is of vital importance to consider 108 

watershed geology, topography, and interdependencies of water quality variables when it comes 109 

to design sampling points. Also, the lack of reliable and regular long-term water quality data 110 

collection as well as data on hydraulic and flow characteristics in Iranian watersheds motivate us 111 

to present this study. 112 

The main objective of this study is to apply robust multi-criteria evaluation approach in the first 113 

stage by using analytic network process (ANP) in order to determine relative weights of water 114 

quality variables as well as proposing a new pollution potential for non-point sources, surficial 115 
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rocks, and watershed topography. The second stage involves using the modified approach (Do et 116 

al., 2012) to select potential sampling points. The third stage is to determine total potential 117 

pollution scores (TPPS) for each candidate sampling point to rank priority for setting new 118 

monitoring stations. Last but not least, in order to prioritize ranking and distinguish real differences 119 

of each sampling point’s scores, the fuzzy theory is applied in this study.  120 

2. Material and methods 121 

2.1. Description of the study area    122 

The Khoy watershed located in West Azerbaijan province in Iran (Fig.1) has a drainage area of 123 

approximately 3166 km2; its elevation varies significantly from about 938 m to 3670 m above sea 124 

level, with an average slope of 23.16 %. It consists of three rivers: Qutor Chai as the main stream 125 

(110.13 km long), Qudox Bogan (98 km long), and Gazan Chai (around 40 km long) flowing from 126 

Turkey Mountains to the Caspian Sea. The Khoy watershed has a semiarid climate with annual 127 

precipitation of 281.92 mm, which decreases from approximately 400 mm in the west with high 128 

elevation to about 190 mm in the north east. Nowadays, these rivers are facing several 129 

environmental issues and mismanagement: 1) rangeland overgrazing, which drives rapid erosion 130 

and transfer of sediment into rivers; 2) industrialization and land-use changes along the rivers, 131 

especially industrial park founded in upstream of the Gazan Chai; 3) currently irregular data 132 

collection and inappropriate location of current stations (please see Fig. 1). Fig. 1 indicates that 133 

the number of currently operated monitoring sites is six. Two of them are located in the south west 134 

of the study area where there is no highly populated area and anthropogenic activities. The water 135 

quality sampling frequency is one per month or one per season. Moreover, water quality variables 136 

measured are mainly concentrated on physical characteristics (e.g. temperature and the total solids 137 
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content), chemical characteristics (e.g. major cations and anions), and inorganic Indicators (e.g. 138 

hardness and conductivity). However, organic materials (e.g. total phosphorus, total nitrogen, and 139 

nitrate nitrogen) and organic indicators (biochemical oxygen demand) are not sampled because of 140 

financial problems.  141 

Thus, these issues made an urgent need to design and select robust sampling points for water 142 

quality monitoring, based on the traditional, recent policies and technologies objectives of 143 

monitoring networks, listed as follow (Liebetrau, 1979; Lettenmaier, 1979; Park et al., 2006): 1) 144 

understanding temporal variations of water quality parameters in short and/or long-term trends; 2) 145 

supporting application of water resources; 3) testing short-term changes in water quality; 4) early 146 

detection of pollution; 5) calculation of pollution loads of a given area to accomplish TMDL 147 

analyses; 6) creation of data-base system for water resources management. To achieve the 148 

aforementioned objectives of monitoring program, appropriate locations of monitoring networks 149 

paly main role.  150 

2.2. Design of potential sampling point locations 151 

Do et al., (2012) proposed the RML method to remove limitation of Sanders’ procedure (Sanders 152 

et al., 1983) and identify sampling point locations in more detail. Fig.2 illustrates the differences 153 

between these two methods. In the mixing length method to compensate the lack of tributes and 154 

differences in the length of branches, rivers and branches are divided into small segments, which 155 

are equal to mixing length of rivers. “River mixing length is a distance over which an upstream 156 

water parcel will keep its original properties before dispersing those characteristics into the 157 

surrounding downstream water” (Do et al., 2012). Thus, each of the segments (river’s mixing 158 

length) is considered as a potential sampling point. First, we calculated the mixing lengths for each 159 

branch or river only using a simple equation, L = 25W (Day, 1977; Do et al., 2012).  To do so, 160 
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Google earth software is used to measure the stream width because of its spatial resolution (15m-161 

15cm) (http://earth.google.com). After that, 100 bridges over the rivers are measured by field 162 

works (Telci et al., 2009) to ensure the accuracy of the measured stream width. Then, Arc-GIS 9.3 163 

is applied to divide a river into small segments, equal to the river mixing length with different 164 

lengths. Subsequently, the total number of segments of a branch or river is determined by Eq. (1) 165 

(Do et al., 2012). Finally, Eq. (2) is applied to determine the total number of segments for an entire 166 

river network or the number of total potential (Do et al., 2012). 167 

𝑁𝑗 =
𝑙𝑗

𝐿𝑗
=

𝑙𝑗

25𝑊𝑗
                                                                                                                                          (1) 168 

𝑁 =
1

25
∑

𝑙𝑗

𝑊𝑗

𝑛
𝑗=1                                                                                                                                           (2) 169 

where lj is the total length of river j; n name of rivers; Lj indicates river’s mixing length of each 170 

segment; Wj is the stream width; Nj is the total number of segments of river j; and  N is the total 171 

number potential sampling points of entire river system. 172 

In the second step, we used Eq. (3) introduced by Sanders et al., (1983) was used to determine the 173 

number of stations needed in the study area. In this study, based on existing stations and budget 174 

limitations of the regional water authority, i is assumed as four. Therefore, the number of stations 175 

need is 15. 176 

𝑆𝑖 = 2𝑖 − 1                                                                                                                                (3) 177 

where i is hierarchy of sampling points and Si is the number of stations; i is a natural number. A 178 

low-hierarchy value point has a higher priority than a high-hierarchy value point in selecting 179 

http://earth.google.com/
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sampling points (Sanders et al., 1983) (Fig. 2). In the third step, the locations of 15 sampling points 180 

with different ith hierarchy values are identified by Eqs. (4) – (5) (Do et al., 2012).  181 

𝑀𝑖 =
𝑁−𝑘+1

2
=

(
1

25
∑

𝑙𝑗

𝑊𝑗
)−𝑘+1𝑛

𝑗=1

2
                                                                                             (4)                                                     182 

𝑀𝑖 + 1 =
𝑀𝑖+1

2
                                                                                                                         (5)                                                183 

where K is the total number of junctions and Mi is the river mixing length’s magnitude at the ith 184 

hierarchy. After determining segments that should be placed as sampling points with different ith 185 

hierarchy, these points are named as “candidate sampling points”. Each candidate sampling points 186 

is given a code C1 to Cn, n stands for name of candidate points. 187 

2.3. Contributing area 188 

It is obvious that the land unit areas being far away from river cannot have pollution potential for 189 

surface water bodies (DO et al., 2012). Sivertun and Prange (2003) proposed that pollutants 190 

produced at the distance more than 1000 meter cannot reach to the river and influence water quality 191 

of the rivers. Therefore, to precisely estimate the contributing area affecting water quality a buffer 192 

zone (1000 m) is applied. In the present study, flow length of each unit area, which has less than 193 

1000 meter length, is considered because it would remove linear surface ground problem(simple 194 

buffer zone) mentioned in Do et al., (2012) study. The buffer zone between the candidate points is 195 

divided into watersheds with different pollution sources, affecting water quality changes. The area 196 

of each pollution source in each watershed is then calculated using Arc-GIS. 197 

2.4. Multi-criteria evaluation 198 
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Multi-criteria evaluation is an efficient approach for considering all factors (pollution sources) and 199 

prioritizing their effect on WQMN designs (Chang and Lin, 2014a). Therefore, in this section, we 200 

first determined pollution sources (criteria and sub-criteria), and then potential pollution weights 201 

were calculated for criteria by ANP approach.  202 

2.4.1. Selection of criteria and sub-criteria  203 

Based on literature reviewed and expert opinions (Vieux and Farajalla, 1994; Chapman, 1996; 204 

McCartan et al., 1998; Strobl et al., 2006 a; Chang and Lin, 2014b), non-point sources, lithology, 205 

and topography were selected as factors, indicating the chemical and physical characteristics of 206 

water quality for the rivers under study. One of the most important contributors to the degradation 207 

of water quality is non-point source pollution (Chang and Lin, 2014a). In present study, unlike the 208 

previous studies, six non-point sources were used as criteria such as residential, agriculture, 209 

rangeland, forest/wooded, water bodies, and highway/road (Fig. 3). Furthermore, event mean 210 

concentrations (EMC) of each non-point sources, which represents the concentration of a specific 211 

pollutant contained in runoff coming from a particular non-point source within a watershed, 212 

including total phosphorus (TP), total nitrogen (TN), total suspended solids (TSS), biochemical 213 

oxygen demand (BOD), and nitrate nitrogen (NO3-N), were used as sub-criteria (Table 1). 214 

Among critical factors affecting river water quality in the absence of anthropogenic activities, 215 

watershed geology (surficial rocks) plays a vital role in the chemistry of water bodies (McCartan 216 

et al., 1998; Zektser et al, 2007; Olson, 2012). According to the nature of surficial rocks/criteria 217 

(sedimentary, metamorphic, and igneous rocks), under natural conditions (chemical weathering), 218 

dissolved elements from a given lithological unit would enter into and effect water quality of river 219 

systems (Meybeck, 1987).Therefore, dissolved elements of different surficial rocks under the 220 

study area  are divided into three main water quality variables/sub-criteria including: trace 221 
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elements (e.g. heavy metals), major ions (e.g. salinity and alkaline), and nutrients (Meybeck, 1987; 222 

McCartan et al., 1998;  Chapman, 1996; Zektser et al., 2007).  In addition, relative erosion rate, 223 

reflecting dissolved elements value derived from chemical weathering of each rock-type, is 224 

considered as a sub-criterion in order to more precisely compute the pollution weight (Meybeck, 225 

1987) (Table 2 and Fig. 4). 226 

As it mentioned in the introduction section, apart from the watershed geology and land-use, the 227 

position of each land unit plays a main role in transporting pollutants and their pollution potential 228 

(Strobl et al., 2006a). Hydrological process of pollutant transporting is similar to the sediment 229 

transport (Sivertun and Prange, 2003). Since the factors influencing sediment transport can affect 230 

pollutant transport, the most common topography indices including sediment transport index 231 

(STI), stream power index (SPI), and topographic wetness index (TWI), which are used to 232 

calculate soil loss, can be employed to identify pollution weight (Fig. 5). These indices can be 233 

easily computed by Arc-GIS (Lanni et al., 2012).The effect of topography on soil loss has been 234 

particularly determined by sediment transport index (STI) (Moore and Burch, 1986). It reflects the 235 

capacity of overland flow in transporting sediment (Pourghasemi et al., 2012) and this index shows 236 

the total phosphorus (TP) transporting mechanism (Strobl et al., 2006 a). STI can be calculated 237 

with the following relation (Moore and Burch, 1986): 238 

𝑆𝑇𝐼 =  (
𝐴𝑠

22.13
)

0.06
∗ (

sin 𝛽

0.0896
)

1.3
                                                                                                                  (6) 239 

where As is the area of a given watershed (m2), β is the slope (in degree), STI is sediment transport 240 

index (dimensionless) (Strobl et al., 2006 a).  241 
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TWI as a well-accepted indicator reflecting soil moisture distribution at different position for 242 

surface runoff generation (Beven and Kirkby, 1979; Pourghasemi et al., 2012; Conoscenti et al., 243 

2014) is used in this study.  TWI is defined as (Beven and Kirkby, 1979): 244 

 TWI = ln (
𝐴𝑠

𝑡𝑎𝑛 𝛽
)                                                                                                                                                 (7)  245 

  where TWI is topographic wetness index; As and β were introduced in Eq. (6). High TWI 246 

indicates that a given cell can generate more runoff than the other cells having low TWI (Beven 247 

and Kirkby, 1979). Therefore, generated runoff can carry more particles from soil and affect the 248 

water quality (Dube et al., 2014). The other index is stream power index (SPI); it indicates the 249 

erosive power of overland flow (Moore et al., 1993).  250 

𝑆𝑃𝐼 =  𝐴𝑠 ∗ tan 𝛽                                                                                                                                               (8)   251 

where SPI is stream power index (unit less) (Strobl et al., 2006a). High value of SPI reflects the 252 

area being more prone to runoff erosive power (Moore et al., 1993). All in all, 12 criteria and 10 253 

sub-criteria are selected to identify pollution potential in present study. 254 

2.4.2. Identification of pollution potential  255 

After selection of criteria, the ANP method was implemented with SuperDecisions software as a 256 

multi-criteria evaluation to determine potential pollution weights for non-point sources, different 257 

kind of surficial rocks, and topography. Potential pollution weights show relative effect of each 258 

criterion on water quality. Among multi-criteria decision-making (MCDM) approaches (e.g., 259 

AHP, DEA, and TOPSIS), the ANP method is the most appropriate method (Saaty and Vargas's, 260 

2006; Kucukaltan et al., 2016), as it takes into account the criteria’s dependencies and the 261 

calculation of their relative weights (Lin et al., 2009).  For this purpose, the interdependency 262 
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(correlation) of water quality variables (sub-criteria) was firstly determined based on the experts’ 263 

opinions and literature review (Table 3). Then, questionnaires based on Fig. 3, Tables 1(criteria) 264 

and 3(sub-criteria) were designed and gave out to 20 experts (hydrologists and geologists) in order 265 

to do pair-wise comparison and calculate the relative weights of each criteria by ANP method. 266 

2.5. Scoring sampling points 267 

In present study, to prioritize and select sampling points, the weighted method, which has been 268 

used for solving the multiple criteria evaluation problem (Chang and Lin, 2014b), is selected. 269 

Therefore, new total potential pollution scores (TPPS) was introduced to prioritize candidate 270 

sampling points (Eq. 9). The high value of TPPI indicates high priority for candidate sampling 271 

points. 272 

𝑇𝑃𝑃𝑆 = (𝑊𝑖 ∗ 𝑁𝑃𝑃) + (𝑊𝑖 ∗ 𝐺𝑃𝑃) + (𝑊𝑖 ∗ 𝑇𝑃𝑃)                                                                          (9)                                          273 

𝑁𝑃𝑃 = ∑ 𝑊𝑖

6

𝑖=1

∗ 𝐴𝑖, 𝑡ℎ𝑒𝑛 ≫ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 − 1                                                                     (10) 274 

𝐺𝑃𝑃 = ∑ 𝑊𝑖

3

𝑖=1

∗ 𝐴𝑖 ,       𝑡ℎ𝑒𝑛 ≫ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 − 1                                                                       (11) 275 

𝑇𝑃𝑃 = (𝑊𝑖 ∗ 𝑇𝑊𝐼𝑛) + (𝑊𝑖 ∗ 𝑆𝑃𝐼𝑛) + (𝑊𝑖 ∗ 𝑆𝑇𝐼𝑛)                                                                                 (12) 276 

where Wi is the potential pollution weight of each criterion achieved by the ANP; Ai is the 277 

percentage of each non-point sources/surficial rocks in the buffer zone between candidate 278 

sampling points; TWIn, SPIn,  and STIn are normalized value of topographic indices; and NPP, 279 

GPP, and TPP are non-point sources pollution potential, geological pollution potential, 280 

topographic pollution potential, respectively. 281 
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2.6. Fuzzy logic theory and ranking sampling points 282 

In order to rank the priorities of candidate sampling points, the fuzzy logic theory is applied. It can 283 

help to differentiate real differences between the estimated TPPS for candidate points. The natural 284 

break approach and fuzzy logic theory proposed by Chang and Lin, (2014b) were employed to 285 

classify the candidate sampling points into four grades and data classification. This section 286 

contains three following steps. First, the values of each candidate point estimated by Eq. (9) are 287 

normalized and fixed between 0 and 1. The normalized value of TPPS is symbolized as TPPSn. 288 

Second, this study applied three fuzzy membership functions proposed by Chang and Lin, (2014b), 289 

as indicated in Fig. 7. According to Fig. 7, it shows that each of candidate points has the values of 290 

low (l (TPPSn)), medium (m (TPPSn)), and high (h (TPPSn)). They are calculated by Eqs. (15), 291 

(16), and (17). The total fuzzy score for 15 candidate points, Fj (j =1~15), is calculated by using 292 

Eq. (16) (Chang and Lin, 2014b).  293 

 𝑙(𝑇𝑃𝑃𝑆𝑛) =  {
−2 𝑇𝑃𝑃𝑆𝑛 + 1          𝑇𝑃𝑃𝑆𝑛 < 0.5                            

0                    𝑇𝑃𝑃𝑆𝑛 > 0.5             
                                                         (13) 294 

𝑚(𝑇𝑃𝑃𝑆𝑛) =  {
2 𝑇𝑃𝑃𝑆𝑛                   𝑇𝑃𝑃𝑆𝑛 < 0.5                  

−2 𝑇𝑃𝑃𝑆𝑛 + 2           𝑇𝑃𝑃𝑆𝑛 > 0.5                        
                                                            (14) 295 

ℎ(𝑇𝑃𝑃𝑆𝑛) =  {
0                              𝑇𝑃𝑃𝑆𝑛 < 0.5                  

 2 𝑇𝑃𝑃𝑆𝑛 − 1           𝑇𝑃𝑃𝑆𝑛 > 0.5                        
                                                               (15) 296 

𝐹𝑗 = 0 ∗ 𝑙(𝑇𝑃𝑃𝑆𝑛) + 5 ∗ 𝑚(𝑇𝑃𝑃𝑆𝑛) + 10 ∗ ℎ(𝑇𝑃𝑃𝑆𝑛)        𝐹𝑗(𝑗 = 1~15)                                            (16)                 297 

The candidate points can be classified into four grades based on the F value. First grade is classified 298 

between 7.5 and 10, as it shows the most appropriate sampling point. The sampling points are 299 

classified as second grade with the value of larger than 5 to less than 7.5. The third and the fourth 300 

grades are classified from larger than 2.5 to less than 5, and less than 2.5, respectively. Finally, in 301 
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order to identify the most appropriate sampling points, low value of both hierarchy(Sanders et al., 302 

1983) and the fuzzy rank for each candidate point (Chang and Lin, 2014b), and considering high 303 

anthropogenic activities through land-use maps (Do et al., 2012; Varekar et al., 2015a) are 304 

combined. Graphical diagram shows an outline of the full study (Fig. 8). 305 

 306 

3. Results and discussion 307 

3.1. Location of potential sampling points 308 

Based on existing stations as well as considering budget deficiency in the study area (Fig. 1), the 309 

number of candidate sampling points is 15 (Eq. 3). The main rivers with differences in width were 310 

divided into different reaches. Guotor Chai was divided into three different sections in the 311 

upstream, middle, and downstream with the average river widths of 33.5m, 74.6m, and 28.1m, 312 

respectively. The average river widths for Gudox Bogan and Gazan Chai were 26.4m and 19.0m, 313 

respectively. Therefore, the total number of 360 potential sampling points and their locations 314 

determined based on Eqs. (1) − (2) (Fig. 10a). Eqs. (4)– (5) were applied to discern the location of 315 

15 candidate sampling points at different ith hierarchy and Mi (Fig. 10b and Table 4).  Also, the 316 

catchments between candidate points, which are identified by flow length, are shown in Fig.10b. 317 

The results are similar to the findings of the research conducted by Sanders et al. (1983) and Do 318 

et al., (2012) that sampling points are located in the downstream and upstream sections of the 319 

watershed. Sampling point locations are generally subdivided into microlocations for critical 320 

points and macrolacations for routine monitoring (strobl and Robillard, 2008). Macroloctions are 321 

systematically designed; moreover, microlocations are functions of macroloctions. Since 15 322 

sampling points are evenly distributed in both the downstream and upstream of the study watershed 323 
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and are systematically designed, they will partially help critical point monitoring (emergency 324 

monitoring). In addition, if there be a sudden water pollution reached to the rivers, the 360 potential 325 

sampling points can be used to recognize pollution sources (including amount of pollutant and 326 

source location), since they are designed based on river mixing length theory. The result showed 327 

that a buffer zone between candidate points should be achieved by considering the flow length of 328 

each unit area because areas calculated by flow length were reduced 17%and 27% in C1 and C4, 329 

respectively, in contrast to linear surface ground buffer zone. In the light of results, findings 330 

corroborated that river mixing length procedure was the best method to the study area which suffer 331 

from the lack of reliable data collection on hydraulic and flow characteristics (Day, 1977, Do et 332 

al., 2012).  333 

 334 

3.2. The results obtained from multi criteria evaluation  335 

3.2.1. Relative weights computed by ANP for criteria  336 

Relative potential pollution weights for non-point sources, calculated by ANP method, are shown 337 

in Fig. 6a. According to the Fig. 9a, the residential hits a peak of 0.27 pollution weights which is 338 

more than triple the pollution weights of water bodies (0.07). The weights of Highway/road, 339 

agriculture, rangeland, and forest/wooded are 0.24, 0.18, 0.13, 0.120, respectively. Furthermore, 340 

the results also show that TSS and BOD have the highest relative weights among sub-criteria for 341 

non-point sources, with the totals of 0.26 and 0.25, respectively (Fig. 9a). High weights of TSS 342 

and BOD are the result of inter-relationship between sub-criteria. Based on the literature review, 343 

suspended sediment (e.g. TSS) plays a main role in transporting pollutants (Chapman, 1996) and 344 

BOD has  a good correlation with the other water quality variables (Ouyang, 2005) (Fig. 6 and 345 
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Table 3). The pattern of high relative pollution weights for residential areas and agriculture was 346 

demonstrated in Do et al., (2012); however, in the mentioned study its pollution weight was 347 

achieved by AHP method. In addition, highway/road, NO3-N, and TKN were not considered as 348 

well as the inter-relationship between sub-criteria calculated by the ANP approach.  349 

For surficial rocks (Fig. 9b), it is sedimentary rocks which stands out with far more relative 350 

pollution weight than the other two rocks (0.43).  In contrast, igneous rocks represent the second 351 

relative weight (0. 49), which is followed by metamorphic rocks with the weight of 0.0.36. In 352 

addition, the results for sub-criteria demonstrated that relative erosion rate has a major effect on 353 

the total potential weight (0.41) (Fig. 9b). The relative weights for major ions, nutrients, and trace 354 

elements are 0.23, 0.16, and 0.18, respectively. The high relative weight of sedimentary rocks is 355 

due to the high amount of relative erosion rate and major ions in sedimentary rocks (Table 2). 356 

There is no study conducted to determine the pollution weights for surficial rocks affecting surface 357 

water quality as well as to involve their weights in WQMN design. However, the ANP method 358 

helped to propose a new pollution weight for surficial rocks in the present study. According to the 359 

results for topography’s criteria (Fig. 9c), the relative weight of TWI, which is 0.41, is the largest 360 

relative weight among the other criteria. In contrast, SPI and STI have the relative weights of 0.36 361 

and 0.23, respectively. All in all, non-point sources, geology, and topography have its own relative 362 

weight in determining sampling points (Eq. 9). Relative weights by TPPS’s criteria are 0.41, 0.34, 363 

and 0.26 for NPP, GPP, and TPP, respectively (Fig. 9d).  364 

3.2.2. Potential pollution score 365 

Although the study area is dominated by rangeland, a high percentage of anthropogenic activities 366 

are seen in the downstream area (Do et al., 2012). C4, C13, and C14 accounted for 7.28, 14.46, 367 
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and 12.49 percent of residential area in these catchments. Moreover, a majority of agricultural 368 

activities are in lower catchments, especially, in C4 to C8 and C13 to C15. Furthermore, in the 369 

catchments of C2, C3, and C10 more forest/wooded are located with the percentages of 2.27, 5.71, 370 

and 2.18, respectively. Unlike the previous studies conducted (please refer to Strobl et al., 2008 a; 371 

Do et al., 2011; Do et al., 2012; Chang and Lin, 2014b), highway/road is taken into account as 372 

individual land-use in the present study, as it can be shown that highways/roads are mainly close 373 

to the studied rivers. Thus, it is essential to consider highway/road as individual land-use. After 374 

calculating NPP by Eq. (10), the normalized scores of NPP for individual candidate sampling 375 

points are given in Table 4. According to the table, catchments of C13 and C14 represent the 376 

highest number of NPPn (about 0.70), while C3 and C10 accounted the smallest number of NPPn 377 

(about 0.38) among candidate points. Variations between the scores for the sampling points could 378 

be explained by the more human activities in the lower catchments than the upper catchments.  379 

According to the results, 67 percent of the study area is occupied by the outcrop of sedimentary 380 

rocks, which is more than twice of igneous rocks (26%), while metamorphic rocks is accounted 381 

about 7 percent of the surficial rocks. The same as the results for non-point sources, the percentage 382 

of the surficial rocks in buffer zone (catchments) was significantly different from the whole study 383 

area. The results show that 100 percent of C4, C6 to C8, and C13 to C15 is sedimentary rocks. 384 

There are more igneous rocks in C9 and C10 with the total of 51.40 and 87.47 percent, respectively. 385 

In contrast, only C2 recorded highest amount of metamorphic rocks, being about 33 percent of this 386 

catchment. According to the analysis given in Table 4, the highest normalized scores of GPPn are 387 

addressed for those candidate points which have high percentage of the sedimentary rocks. 388 

Furthermore, C10, C9, and C2 accounted smallest normalized number of GPPn (0.224, 0.544, and 389 

0.586, respectively) due to the presence of different surficial rocks (Table 4). 390 
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Based on the analysis carried out in Table 4, the catchments of C9 and C10 have the lowest 391 

normalized values of TPPn, 0 and 0.11, respectively. In contrast, the highest normalized value of 392 

TPPn is related to C7. These differences between normalized values are due to the variation in the 393 

slope gradient in the upstream and downstream of the study area (Fig. 1).  In recent years, 394 

topography indices have been applied to determine the main role of topography in natural events 395 

such as flood and erosion (Dube et al., 2014; Conoscenti et al., 2014). Nevertheless, there is little 396 

literature to identify the major role of topography in selecting the sampling points (Strobl et al., 397 

2006a). By representing the TPP method in this study, a novel method is put forward to precisely 398 

determine right locations of sampling points. 399 

The values of TPPS and their normalized values, based on Eq. (9), for individual candidate points 400 

are given in Table 4. According to the obtained results, candidate points of C6, C7, and C8 stand 401 

out, accounting for 0.83, 0.82, and 0.80 of TPPS value, respectively. On the contrary, the lowest 402 

values of TPPS are recorded for C10 (0.23), C9 (0.38), and C11 (0.43). Moreover, these numbers 403 

indicate that pollution sources between C10, C9, and C11 pose lower risk than the other candidate 404 

points for river water quality in the study area.   405 

3.3. Selection of appropriate sampling points for water quality monitoring 406 

To distinguish real differences between the values of TPPS for individual candidate points, they 407 

need to be classified by reliable methods. The classified data, which are calculated by the Fuzzy 408 

method and natural break approach, are given in Table 4 for candidate points. Table 4 indicates 409 

the spatial variability of the candidate points with different fuzzy ranks attached according to the 410 

real need for enhanced water quality sampling points. In order to propose appropriate sampling 411 

points for water quality monitoring, the low fuzzy rank, low value of hierarchy (Do et al., 2012), 412 
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and considering high anthropogenic activities (Sanders et al., 1983; Varekar et al., 2015a) are 413 

combined. As a result, the most appropriate locations were determined for water quality sampling. 414 

Based on the results, six sample points including C4, C6, C8, C12, C14, and C15 are chosen as the 415 

most appropriate locations for WQM (Table 4 and Fig. 10c). The fuzzy rank for these points is 1, 416 

and their hierarchy values are 2, 3, 1, 2, 3, and 4, respectively.  Furthermore, the priorities of C2, 417 

C5, C7, and C13, as shown in Table 4 with two stars, were also proposed as the second most 418 

appropriate locations in order for WQM sampling points expansion plan in the future. The other 419 

catchments indicate the least appropriate locations (Fig. 10c).  420 

All in all, it is clear that the most appropriate locations have the highest values of TPPS and fuzzy 421 

rank; as a result of human activities (Do et al., 2012; Varekar et al., 2015a), and existing 422 

sedimentary rocks in the catchments between candidate points. This research also highlights that 423 

to properly monitor water quality in the study area, six appropriate points according to the current 424 

stations; and four points in the future are needed, providing that the budget limitation in the 425 

regional water authority could be solved or there will be an expansion plan (Fig. 10, black and red 426 

stars). In addition, with a combination of fuzzy ranks and hierarchy values, the selection and 427 

priority of appropriate sampling points for WQM becomes an easy task. Therefore, our findings 428 

complement previous results by Do et al. (2012) and Chang and Lin, (2014b), with the results that 429 

sampling points are evenly distributed in the upstream and downstream and, especially, the 430 

catchments which really need WQM. The proposed points have shown that none of current stations 431 

are located in appropriate locations in order for WQM in the study area (Figs. 1 and 10). The 432 

proposed sampling points will be able to better track pollution sources because the present study 433 

has used the natural processes and human activities to enhance sampling points of WQM (Baird 434 

et al., 1996; Park et al., 2006; strobl et al., 2006b). Previous studies such as Sanders et al., 1983; 435 
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Karamouz et al., 2009; Telci et al., 2009; Chen et al., 2012; Varekar et al., 2015 a, b are too 436 

complicated and too case specific for a watershed manager to implement easily (Behmel et al., 437 

2016). This study can be classified in cost-effective method to determine sampling points, since it 438 

uses only available watershed data, technical and expert resources. Proposed framework will be 439 

useful for regional water authorities struggling with limited financial resources and looking for a 440 

method to determine sampling points location for the first time, in particular, for developing 441 

countries like Iran.   442 

4. Conclusion 443 

This study, conducted on the Khoy watershed, describes a novel methodology in order to 444 

appropriately locate the existing stations and proposing new sampling points for surface water 445 

quality monitoring. 12 criteria (residential area, agriculture, rangeland, forest /wooded, water 446 

bodies, highway/road, sedimentary rocks, metamorphic rocks, igneous rocks, TWI, TPI, and STI) 447 

and 10 sub-criteria (TSS, TP, TN, TKN, BOD, NO3-N, major ions, trace elements, nutrients, and 448 

relative erosion rate) have been selected to determine the suitable locations of sampling points for 449 

WQM. 450 

 It can be concluded that an integrated application of the multi criteria evaluation methods 451 

including ANP can assist the identification of exact relative pollution weights of factors involved 452 

in appropriately locating sampling sites. Relative pollution weights for residential, highway/road, 453 

agriculture, rangeland, forest/wooded, and water bodies are 0.27, 0.24, 0.18, 0.13, 0.12, and 0.07, 454 

respectively. In the light of the results, TSS and BOD are shown as the most important parameters 455 

in identifying relative pollution weights for non-point sources. This study also introduces new 456 

relative pollution potential weights for surficial rocks so that sedimentary, igneous, and 457 
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metamorphic rocks’ pollution weights are derived as 0.49, 0.28, and 0.23, respectively. In addition, 458 

relative erosion rate and major ions are addressed as sub-criteria having more effect on pollution 459 

weights for outcropped rocks. Furthermore, weights for topography indices of TWI, SPI, and STI 460 

are 0.41, 0.36, and 0.23, respectively. 461 

Pollution potential scores for non-point sources, surficial rocks, and topography are combined by 462 

the weighted procedure to introduce new total potential pollution index, when extensive watershed 463 

information is available but there is the lack of water quality data. This index is classified and 464 

ranked by the fuzzy theory for each candidate point. A combination of mixing length method, 465 

fuzzy rank and hierarchy value assists us in prioritizing and proposing new locations of the 466 

sampling sites in the whole river system. In summary, six points as the most appropriate (current 467 

situation) and four points as the second most appropriate sampling sites (in the future) are proposed 468 

in order to relocate the current stations and enhancing WQMNs in the study area. The present 469 

study provides a novel prescription and practical recommendation for water quality monitoring 470 

agencies, which have been suffered from reliable water quality data and cost-effective method for 471 

selecting the exact location of sampling sites.  The proposed methodology has a huge potential to 472 

be applied in other countries around the world, especially in developing countries with limited 473 

financial resources. The method also does not require water quality data as an input, so could be 474 

applied in settings where those data are scarce. 475 

 476 
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