
 Bartoli, V., Dixon, D., & Gorochowski, T. (2018). Automated Visualization
of Genetic Designs Using DNAplotlib. In J. Braman (Ed.), Synthetic Biology:
Methods and Protocols (pp. 399-409). (Methods in Molecular Biology; Vol.
1772). Humana Press. https://doi.org/10.1007/978-1-4939-7795-6_22

Peer reviewed version

Link to published version (if available):
10.1007/978-1-4939-7795-6_22

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Springer at https://link.springer.com/protocol/10.1007/978-1-4939-7795-6_22. Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/199236907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-1-4939-7795-6_22
https://doi.org/10.1007/978-1-4939-7795-6_22
https://research-information.bris.ac.uk/en/publications/automated-visualization-of-genetic-designs-using-dnaplotlib(d2788384-26d8-4ec2-9683-d645745d40bc).html
https://research-information.bris.ac.uk/en/publications/automated-visualization-of-genetic-designs-using-dnaplotlib(d2788384-26d8-4ec2-9683-d645745d40bc).html

1

Automated visualization of genetic designs using DNAplotlib

Vittorio Bartoli, Daniel O.R. Dixon and Thomas E. Gorochowski

2

Abstract

Visualization of complex genetic systems can help efficiently communicate important design

features and clearly illustrate overall structures. To aid in the creation of such diagrams, standards

like the Synthetic Biology Open Language Visual (SBOLv) have been established to ensure that

specific symbols and shapes convey the same meaning for genetic parts across the field. Here, we

describe several ways that the computational tool DNAplotlib can be used to automate the

generation of SBOLv standard-compliant diagrams covering simple genetic designs to large libraries

of genetic constructs.

Keywords: visualization; genetic design; standardization; SBOLv; synthetic biology; systems biology.

1. Introduction

Synthetic biology aims to apply engineering principles to biology, introducing the concepts of

abstraction, modularization and standardization to aid in the creation of biologically-based systems

with novel functionality. Several major efforts have been established to support these efforts. One

of the most prominent is the Synthetic Biology Open Language (SBOL) developed to provide a

standardized way to describe, store and exchange biological design information [1]. Tools that adopt

SBOL can seamlessly exchange information, allowing for the creation of complex workflows that can

span multiple design tools and enable many research groups to collaborate effectively [2, 3].

More recently, this standard has been complimented by SBOL Visual (SBOLv), a set of agreed upon

symbols and rules to create coherent visualizations of biological designs [4]. As with other more

mature engineering fields, such as electrical engineering, the ability to graphically represent

elements of a system in a commonly defined way greatly improves the communication of both

design principles and the overall structure of a system. Many computational genetic design tools

have begun to adopt SBOLv [5–10]. However, these have tended to restrict the ability of users to

customize aspects of their design such as the color and shape of symbols and the overall layout.

To address this limitation, we developed a computational library called DNAplotlib [11]. This allows

for users to write visualization scripts in the Python programming language [12, 13] or use built in

scripts to rapidly generate highly customizable and standard-compliant genetic diagrams from data

in spreadsheets. The ability to directly access DNAplotlib through a programming language has also

led to it being integrated into several other genetic design tools, such as Cello [14]. Here, we

3

describe several different ways that DNAplotlib can be used to generate genetic diagrams and the

ways that they can be easily customized for specific requirements.

2. Materials

2.1 Dependencies

1. Several applications and supporting libraries must be available to install and use DNAplotlib.

These include: Python 2.7 or later, and matplotlib 1.8 or later. We recommend using a packaged

Python distribution such as Anaconda (https://www.continuum.io) or Enthought

(https://www.enthought.com), which includes all the necessary dependencies by default.

2. Optionally, to allow for the reading of genetic design information from SBOL files, the pySBOL

2.0 or later library must also be present (for further details regarding installation see:

https://github.com/SynBioDex/pySBOL).

2.2 Installation

1. DNAplotlib is distributed via the Python Package Index (PyPI) and uses the Pip Installs Packages

(PIP) package management system to install and handle updates to the software. The pip system

is included by default with Python 2.7.9 and later, and Python 3.4 and later. If a working version

of a Python environment is available (see §2.1), then the latest stable release of DNAplotlib can

be installed by running:

pip install dnaplotlib

2. To test that the installation has been successful, the following commands should successfully run

without error:

python

>>> import dnaplotlib

3. Methods

In the following sections, we detail a range of ways that DNAplotlib can be used to generate genetic

design visualizations. We focus on the use of built-in scripts to simplify the plotting of basic designs

(Quick Plot) and the generation of diagrams for entire design libraries from data contained in

spreadsheets (Library Plot). To learn more about the advanced features that directly call internal

functionality using Python scripts, we recommend consulting our previous publication [11] and

exploring the documentation and examples at the project website: www.dnaplotlib.org.

4

3.1 Quick Plot

1. Quick Plot is the fastest and easiest way to generate a figure with DNAplotlib. A single command

can generate basic designs incorporating 7 common types of genetic part in 14 different colors

(see Figure 1 for an example).

2. To use Quick Plot, the ‘quick.py’ script must be accessible from the command line. We

recommend downloading the latest version from the ‘apps’ folder at www.dnaplotlib.org and

either: 1. placing it in a central location and adding this to the user’s PATH environment variable,

or 2. placing it directly in the current working directory (see Note 1).

3. A design is specified by a single line of text that is composed of individual elements for each part

to be displayed. Each part is defined by a part type (a single letter or symbol), a dot and then the

color that the part should be drawn in (Figure 1). For example, a red promoter would be defined

as ‘p.red’. To display a part in a reverse orientation, a minus symbol is placed directly before the

part type. Thus, a red promoter in a reverse direction is defined by ‘-p.red’. A full design consists

of a sequence of these part definitions separated by spaces.

4. Once the text for a design has been produced, this is passed to the ‘quick.py’ script that will

render an image of the construct. The script takes two arguments: 1. ‘-input’ defines the design

of the construct, and 2. ‘-output’ provides the output filename for the visualization. It is

important that the input design is encased in quotes to ensure that spaces are interpreted

correctly, and the extension of the output file (e.g. pdf, png, etc.) will define the type of file that

is produced (see Note 2). The command used to generate Figure 1 is shown below:

python quick.py -input "=.red p.green i.black r.black c.orange t.black -

t.black -c.green -r.gray -i.black -p.blue -s.lightblue =.red s.orange

p.orange r.gray c.blue t.black" -output QuickPlot.pdf

3.2 Library Plot

1. Library Plot enables the plotting of many genetic designs from data contained within

spreadsheets (see Figures 2 and 3 for some examples). Information about parts, regulation, and

designs is stored in separate spreadsheets and Library Plot uses this information to generate a

combined plot of them all. Because separate spreadsheets are used for part and design

information, the parts spreadsheet can be easily reused and shared across many different plots.

For example, the same parts spreadsheet can be used by everyone in a lab to ensure the

5

formatting of genetic elements is consistent. Some examples of the required spreadsheets and

their formats are available from the project website: www.dnaplotlib.org.

2. To use Library Plot, the ‘library_plot.py’ script must be accessible from the command line. We

recommend downloading the latest version from the ‘apps’ folder at www.dnaplotlib.org and

either: 1. placing it in a central location and adding this to the user’s PATH environment variable,

or 2. placing it directly in the current working directory (see Note 3).

3. Next, a spreadsheet must be created that contains all the parts that are featured in the plot. We

recommend calling this file ‘parts.csv’ and it must be saved in a comma-separated values (CSV)

format. This spreadsheet should have columns for each of the options listed in Table 1 with a

header row containing each option’s name. Each row under this header defines a part that can

be later used. It is essential that the ‘part_name’ option is filled in as this will be referred to in

the design and regulation spreadsheets. The ‘type’ option must also be specified. Table 1

provides details of every option and the formats that are accepted.

3. A similar spreadsheet should be created that contains all the designs to be plotted. We

recommend calling this file ‘designs.csv’ and it must be saved in a comma-separated values

(CSV) format. The first row will be ignored, but we recommend using the headings

‘design_name’ for the first column and ‘parts’ for the second. Each row under this header then

defines a design that will be processed. For each design, a ‘design_name’ must be given in the

first column (see Note 4), and then the proceeding cells define the order of the parts making it

up. The ‘part_name’ should be used to define the element at each position and to plot parts in

reverse orientation, the letter ‘r’ should be placed directly before the name of the part. For

example, if the part is called ‘RBS1’, then ‘rRBS1’ would be entered to plot the part in a reverse

orientation.

4. (Optional step) If regulation is present in any of the designs, a third regulatory spreadsheet

should be created. We recommend calling this file ‘regulation.csv’ and it must be saved in a

comma-separated values (CSV) format. This spreadsheet should have columns for each of the

options listed in Table 2, with a header row containing each option’s name. Each row under this

header defines a regulatory arc. It is essential that the ‘from_partname’ and ‘to_partname’

options are present and refer to parts present in the parts spreadsheet (see Note 5). These

6

options define the source and target of the regulatory arc, respectively. The ‘type’ option must

also be specified as either Activation, Repression or Connection (see Note 6).

5. The final spreadsheet to be created contains general parameters that influence the overall

plotting of the designs. We recommend calling this file ‘parameters.csv’ and it must be saved in

a comma-separated values (CSV) format. This spreadsheet should have columns for each of the

options listed in Table 3, with a header row containing each option’s name. Each row under this

header defines a parameter setting. For every parameter, a value must be set.

6. Once these spreadsheets have been produced, they are passed to the ‘library_plot.py’ script

that will render an image of all the constructs. The script takes five arguments: 1. ‘-params’

provides the filename of the parameters spreadsheet, 2. ‘-parts’ provides the filename of the

parts spreadsheet, 3. ‘-designs’ provides the filename of the designs spreadsheet, 4. ‘-regulation’

provides the filename of the regulation spreadsheet, and 5. ‘-output’ provides the output

filename for the visualization. The extension of the output file (e.g. pdf, png, etc.) will define the

type of file that is produced (see Note 3). The command used to generate Figure 3 is shown

below (we assume that recommended names are used for each spreadsheet):

python library_plot.py -params parameters.csv -parts parts.csv -

regulation regulation.csv -designs designs.csv -output LibraryPlot.pdf

4. Notes

1. To test that quick.py is available, type “python quick.py” at the command line. This should return

details of how to use the command and not throw an error. If an error is shown then check that

the quick.py script is in the current directory or is present at a directory listed in the PATH

environment variable.

2. The format of the output file is determined by the file extension. Standard available file formats

and their file extensions include: PGF code for LaTeX (pgf), Scalable Vector Graphics (svgz),

Tagged Image File Format (tif or tiff), Joint Photographic Experts Group (jpg or jpeg), Raw RGBA

bitmap (raw), Portable Network Graphics (png), Postscript (ps), Scalable Vector Graphics (svg),

Encapsulated Postscript (eps), Raw RGBA bitmap (rgba), and Portable Document Format (pdf).

Note that the actual image formats supported may vary due to differences in Python

distributions.

7

3. To test that library_plot.py is available, type “python library_plot.py” at the command line. This

should return details of how to use the command and not throw an error. If an error is shown

then check that the library_plot.py script is in the current directory or is present at a directory

listed in the PATH environment variable.

4. Designs are plotted in alphabetical order of the ‘design_name’. We recommend using a

numbering format (e.g. 001, 002) as a prefix so that you can easily control the order in which

parts are printed. These will not show up in the plot unless you set the ‘show_title’ option to ‘Y’

in the parameters spreadsheet (Table 3).

5. Note that regulatory arcs can only go between parts on the same design and cannot go between

parts on different designs on the same library plot.

6. If regulatory arcs disappear off the top of the plot, increase the value for ‘axis_y’ option in the

parameters spreadsheet (Table 3).

Acknowledgements

T.E.G. was supported by BrisSynBio, a BBSRC/EPSRC Synthetic Biology Research Centre (grant

BB/L01386X/1). V.B. and D.O.R.D acknowledge funding from the EPSRC & BBSRC Centre for Doctoral

Training in Synthetic Biology (grant EP/L016494/1). We also thank Mario di Bernardo and Nigel

Savery for comments.

8

References

1. Galdzicki M, Clancy KP, Oberortner E, Pocock M, Quinn JY, Rodriguez CA, Roehner N, Wilson ML,

Adam L, Anderson JC, Bartley BA, Beal J, Chandran D, Chen J, Densmore D, Endy D, Grunberg R,

Hallinan J, Hillson NJ, Johnson JD, Kuchinsky A, Lux M, Misirli G, Peccoud J, Plahar HA, Sirin E,

Stan GB, Villalobos A, Wipat A, Gennari JH, Myers CJ, Sauro HM (2014) The Synthetic Biology

Open Language (SBOL) provides a community standard for communicating designs in synthetic

biology. Nature Biotechnology 32: 545-550.

2. Myers CJ, Beal J, Gorochowski TE, Kuwahara H, Madsen C, McLaughlin JA, Misirli G, Nguyen T,

Oberortner E, Samineni M, Wipat A, Zhang M, Zundel Z. (2017) A Standard-Enabled Workflow

for Synthetic Biology. Biochemical Society Transactions.

3. Roehner N, Beal J, Clancy K, Bartley B, Misirli G, Grünberg R, Oberortner E, Pocock M, Bissell M,

Madsen C, Nguyen T, Zhang M, Zhang Z, Zundel Z, Densmore D, Gennari JH, Wipat A, Sauro HM,

Myers CJ (2016) Sharing Structure and Function in Biological Design with SBOL 2.0. ACS Synthetic

Biology (6): 498-506. (DOI: 10.1021/acssynbio.5b00215)

4. Quinn JY, Cox RS III, Adler A, Beal J, Bhatia S, Cai Y, Chen J, Clancy K, Galdzicki M, Hillson NJ, Le

Novère N, Maheshwari AJ, McLaughlin JA, Myers CJ, Umesh P, Pocock M, Rodriguez C, Soldatova

L, Stan G-BV, Swainston N, Wipat A, Sauro HM (2015) SBOL Visual: A Graphical Language for

Genetic Designs. PLoS Biology 13(12): e1002310. (DOI: 10.1371/journal.pbio.1002310)

5. Lu G, Moriyama EN (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Briefings in

Bioinformatics 5: 378-388.

6. Chandran D, Bergmann FT, Sauro HM (2009) TinkerCell: modular CAD tool for synthetic biology.

Journal of Biological Engineering 3: 19.

7. Czar MJ, Cai Y, Peccoud J (2009) Writing DNA with GenoCAD. Nucleic Acids Research 37: W40-47.

8. Chen J, Densmore D, Ham TS, Keasling JD, Hillson NJ (2012) DeviceEditor visual biological CAD

canvas. Journal of Biological Engineering 6: 1-12.

9. Bhatia S, Densmore D (2013) Pigeon: a design visualizer for synthetic biology, ACS Synthetic

Biology 2: 348-350.

10. McLaughlin JA, Pocock M, Misirli G, Madsen C, Wipat A (2016) VisBOL: Web-Based Tools for

Synthetic Biology Design Visualization, ACS Synthetic Biology 5: 874-876.

11. Der BS, Glassey E, Bartley BA, Enghuus C, Goodman DB, Gordon DB, Voigt CA, Gorochowski TE

(2016) DNAplotlib: programmable visualization of genetic designs and associated data. ACS

Synthetic Biology. (DOI: 10.1021/acssynbio.6b00252)

9

12. Sanner MF (1999) Python: a programming language for software integration and development.

Journal of Molecular Graphics and Modelling 17: 57-61.

13. Hunter JD (2007) Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering 9:

90-95.

14. Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D,

Voigt CA (2016) Genetic circuit design automation. Science 352: aac7341.

10

Figures Captions

Figure 1: Quick Plot options. (A) Descriptions of all allowed part types and colors. The minus

sign before a part type causes the part to be drawn in a reverse orientation. An example of the

command to generate the diagram is shown. (B) Visualization generated by the design description in

panel A. SBOL visual symbols are used; coding sequences are denoted by the large arrows and their

expression produces a protein product that repress their cognate promoter (shown in the same

color). (C) Three examples of simple constructs where the color and orientation of the coding region

is varied.

Figure 2: Overview of parts available when using Library Plot. (A) All SBOLv parts in a

forward orientation. The type of each part is labelled. (B) All parts in a reverse orientation. (C)

Examples of some customization options available to alter the default shape and color of symbols.

Figure adapted from Der et al. [11]. Accompanying spreadsheets can be found in the gallery at

www.dnaplotlib.org.

Figure 3: States of an XNOR genetic circuit visualized using Library Plot. Colored genes

correspond to repressor proteins and their cognate promoters are shown in the same color. For

each state only active regulatory links are displayed. Active promoters are shown in black or are

strongly colored. Genes that are expressed are filled in color with their name shown.

11

Tables

Table 1: Library Plot parts spreadsheet options

Option Description Format / Values Default

part_namea Name of part Alphanumeric n/a

typea Type of part Promoter | RBS | CDS | Terminator |

Ribozyme | Scar | Spacer |

Ribonuclease | ProteinStability |

Protease | Operator | Origin | Insulator

| 5Overhang | 3Overhang |

RestrictionSite | BluntRestrictionSite |

PrimerBindingSite |

5StickyRestrictionSite |

3StickyRestrictionSite | UserDefined |

Signature | Repressor | EmptySpaceb

n/a

x_extent Horizontal length of part Decimal – c

y_extent Vertical height of part Decimal – c

start_pad Empty space at start of part Decimal – c

end_pad Empty space at end of part Decimal – c

color Color of part (Red, Green, Blue)d – c

hatche Hatch pattern type / | // | /// | //// | /////f (none)

arrowhead_heightg Height of arrow head Decimal – c

arrowhead_lengthg Length of arrow head Decimal – c

linestyleg Line style - | -- | --. | :f -

linewidth Line width Decimal 1

fill_colori Color of inside of part (Red, Green, Blue)d (1, 1, 1)

edge_colorj Color of part’s edge (Red, Green, Blue)d (1, 1, 1)

site_spacek Empty space between

restriction site cuts

Decimal 1.5

end_spacel Space either side of sticky

restriction site cuts

Decimal 1

label Label text Alphanumeric (none)

label_style Label text style normal | italic | bold normal

label_size Font size of label Decimal 7

label_y_offset Vertical label position Decimal 0

label_x_offset Horizontal label position Decimal 0

label_color Color of label text (Red, Green, Blue) (0, 0, 0)

a. Required option.

b. See Figure 2 for examples of each part type.

12

c. Dependent on part type.

d. Red, green and blue components are given in the range 0 to 1.

e. Only valid for coding region (CDS) part types.

f. Line and hatch styles follow the matplotlib format (see www.matplotlib.org for details).

g. Only valid for coding region (CDS) and Promoter part types.

h. Only valid for Ribozyme, Scar, Spacer, Ribonuclease, ProteinStability, 5Overhang, 3Overhang,

RestrictionSite, BluntRestrictionSite, 5StickyRestrictionSite, 3StickyRestrictionSite and Signature part types.

i. Only valid for UserDefined and Signature part types.

j. Only valid for coding region (CDS) and RBS part types.

k. Only valid for BluntRestrictionSite part types.

l. Only valid for 5StickyRestrictionSite and 3StickyRestrictionSite part types.

13

Table 2: Library Plot regulation spreadsheet options

Option Description Format / Values Default

from_partnamea Part at start of regulation arc part_name in ‘parts’ spreadsheet n/a

to_partnamea Part at end of regulation arc part_name in ‘parts’ spreadsheet n/a

typea Type of regulation arc Activation | Repression | Connection n/a

arrowhead_length Length of arc head Decimal 4

linestyle Style of arc line - | -- | -. | :b -

linewidth Line width of arc Decimal 1.0

color Color of arc (Red, Green, Blue)c (0, 0, 0)

arc_height Height of arc above backbone Decimal 20

arc_height_const Sets position of arc above

backbone minus spacing

Decimal 15

arc_height_spacing Vertical spacing between arcs Decimal 5

arc_height_start Vertical start position of arc Decimal 10

arc_height_end Vertical end position of arc Decimal 15

a. Required option.
b. Line styles follow the matplotlib format (see www.matplotlib.org for details).
c. Red, green and blue components are given in the range 0 to 1.

14

Table 3: Library Plot parameters spreadsheet options

Option Description Format / Values Default

linewidth Default line width for all parts Decimal 1

show_title Display titles on each design Y | N N

axis_y Vertical extent of each design Decimal 35

15

Figure 1

16

Figure 2

17

Figure 3

