
                          Bartoli, V., Dixon, D., & Gorochowski, T. (2018). Automated Visualization
of Genetic Designs Using DNAplotlib. In J. Braman (Ed.), Synthetic Biology:
Methods and Protocols (pp. 399-409). (Methods in Molecular Biology; Vol.
1772). Humana Press. https://doi.org/10.1007/978-1-4939-7795-6_22

Peer reviewed version

Link to published version (if available):
10.1007/978-1-4939-7795-6_22

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Springer at https://link.springer.com/protocol/10.1007/978-1-4939-7795-6_22. Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/199236907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-1-4939-7795-6_22
https://doi.org/10.1007/978-1-4939-7795-6_22
https://research-information.bris.ac.uk/en/publications/automated-visualization-of-genetic-designs-using-dnaplotlib(d2788384-26d8-4ec2-9683-d645745d40bc).html
https://research-information.bris.ac.uk/en/publications/automated-visualization-of-genetic-designs-using-dnaplotlib(d2788384-26d8-4ec2-9683-d645745d40bc).html


 

 
1 

 
 
 
 
 
 
 
 
 
 
 
 

Automated visualization of genetic designs using DNAplotlib 

Vittorio Bartoli, Daniel O.R. Dixon and Thomas E. Gorochowski 

 

 

 

  



 

 
2 

Abstract 

Visualization of complex genetic systems can help efficiently communicate important design 

features and clearly illustrate overall structures. To aid in the creation of such diagrams, standards 

like the Synthetic Biology Open Language Visual (SBOLv) have been established to ensure that 

specific symbols and shapes convey the same meaning for genetic parts across the field. Here, we 

describe several ways that the computational tool DNAplotlib can be used to automate the 

generation of SBOLv standard-compliant diagrams covering simple genetic designs to large libraries 

of genetic constructs. 

 

Keywords: visualization; genetic design; standardization; SBOLv; synthetic biology; systems biology. 

 

1.   Introduction 

Synthetic biology aims to apply engineering principles to biology, introducing the concepts of 

abstraction, modularization and standardization to aid in the creation of biologically-based systems 

with novel functionality. Several major efforts have been established to support these efforts. One 

of the most prominent is the Synthetic Biology Open Language (SBOL) developed to provide a 

standardized way to describe, store and exchange biological design information [1]. Tools that adopt 

SBOL can seamlessly exchange information, allowing for the creation of complex workflows that can 

span multiple design tools and enable many research groups to collaborate effectively [2, 3]. 

 

More recently, this standard has been complimented by SBOL Visual (SBOLv), a set of agreed upon 

symbols and rules to create coherent visualizations of biological designs [4]. As with other more 

mature engineering fields, such as electrical engineering, the ability to graphically represent 

elements of a system in a commonly defined way greatly improves the communication of both 

design principles and the overall structure of a system. Many computational genetic design tools 

have begun to adopt SBOLv [5–10]. However, these have tended to restrict the ability of users to 

customize aspects of their design such as the color and shape of symbols and the overall layout. 

 

To address this limitation, we developed a computational library called DNAplotlib [11]. This allows 

for users to write visualization scripts in the Python programming language [12, 13] or use built in 

scripts to rapidly generate highly customizable and standard-compliant genetic diagrams from data 

in spreadsheets. The ability to directly access DNAplotlib through a programming language has also 

led to it being integrated into several other genetic design tools, such as Cello [14]. Here, we 
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describe several different ways that DNAplotlib can be used to generate genetic diagrams and the 

ways that they can be easily customized for specific requirements. 

 

2.   Materials 

2.1   Dependencies 

1. Several applications and supporting libraries must be available to install and use DNAplotlib. 

These include: Python 2.7 or later, and matplotlib 1.8 or later. We recommend using a packaged 

Python distribution such as Anaconda (https://www.continuum.io) or Enthought 

(https://www.enthought.com), which includes all the necessary dependencies by default.  

 

2. Optionally, to allow for the reading of genetic design information from SBOL files, the pySBOL 

2.0 or later library must also be present (for further details regarding installation see: 

https://github.com/SynBioDex/pySBOL). 

 

2.2   Installation 

1.  DNAplotlib is distributed via the Python Package Index (PyPI) and uses the Pip Installs Packages 

(PIP) package management system to install and handle updates to the software. The pip system 

is included by default with Python 2.7.9 and later, and Python 3.4 and later. If a working version 

of a Python environment is available (see §2.1), then the latest stable release of DNAplotlib can 

be installed by running: 

pip install dnaplotlib 

 

2. To test that the installation has been successful, the following commands should successfully run 

without error: 

python 

>>> import dnaplotlib 

 

3.   Methods 

In the following sections, we detail a range of ways that DNAplotlib can be used to generate genetic 

design visualizations. We focus on the use of built-in scripts to simplify the plotting of basic designs 

(Quick Plot) and the generation of diagrams for entire design libraries from data contained in 

spreadsheets (Library Plot). To learn more about the advanced features that directly call internal 

functionality using Python scripts, we recommend consulting our previous publication [11] and 

exploring the documentation and examples at the project website: www.dnaplotlib.org.  
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3.1   Quick Plot 

1. Quick Plot is the fastest and easiest way to generate a figure with DNAplotlib. A single command 

can generate basic designs incorporating 7 common types of genetic part in 14 different colors 

(see Figure 1 for an example). 

 

2. To use Quick Plot, the ‘quick.py’ script must be accessible from the command line. We 

recommend downloading the latest version from the ‘apps’ folder at www.dnaplotlib.org and 

either: 1. placing it in a central location and adding this to the user’s PATH environment variable, 

or 2. placing it directly in the current working directory (see Note 1). 

 

3. A design is specified by a single line of text that is composed of individual elements for each part 

to be displayed. Each part is defined by a part type (a single letter or symbol), a dot and then the 

color that the part should be drawn in (Figure 1). For example, a red promoter would be defined 

as ‘p.red’. To display a part in a reverse orientation, a minus symbol is placed directly before the 

part type. Thus, a red promoter in a reverse direction is defined by ‘-p.red’. A full design consists 

of a sequence of these part definitions separated by spaces. 

 

4. Once the text for a design has been produced, this is passed to the ‘quick.py’ script that will 

render an image of the construct. The script takes two arguments: 1. ‘-input’ defines the design 

of the construct, and 2. ‘-output’ provides the output filename for the visualization. It is 

important that the input design is encased in quotes to ensure that spaces are interpreted 

correctly, and the extension of the output file (e.g. pdf, png, etc.) will define the type of file that 

is produced (see Note 2). The command used to generate Figure 1 is shown below: 

python quick.py -input "=.red p.green i.black r.black c.orange t.black -

t.black -c.green -r.gray -i.black -p.blue -s.lightblue =.red s.orange 

p.orange r.gray c.blue t.black" -output QuickPlot.pdf 

 

3.2   Library Plot 

1. Library Plot enables the plotting of many genetic designs from data contained within 

spreadsheets (see Figures 2 and 3 for some examples). Information about parts, regulation, and 

designs is stored in separate spreadsheets and Library Plot uses this information to generate a 

combined plot of them all. Because separate spreadsheets are used for part and design 

information, the parts spreadsheet can be easily reused and shared across many different plots. 

For example, the same parts spreadsheet can be used by everyone in a lab to ensure the 
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formatting of genetic elements is consistent. Some examples of the required spreadsheets and 

their formats are available from the project website: www.dnaplotlib.org. 

 

2. To use Library Plot, the ‘library_plot.py’ script must be accessible from the command line. We 

recommend downloading the latest version from the ‘apps’ folder at www.dnaplotlib.org and 

either: 1. placing it in a central location and adding this to the user’s PATH environment variable, 

or 2. placing it directly in the current working directory (see Note 3). 

 

3. Next, a spreadsheet must be created that contains all the parts that are featured in the plot. We 

recommend calling this file ‘parts.csv’ and it must be saved in a comma-separated values (CSV) 

format. This spreadsheet should have columns for each of the options listed in Table 1 with a 

header row containing each option’s name. Each row under this header defines a part that can 

be later used. It is essential that the ‘part_name’ option is filled in as this will be referred to in 

the design and regulation spreadsheets. The ‘type’ option must also be specified. Table 1 

provides details of every option and the formats that are accepted. 

  

3. A similar spreadsheet should be created that contains all the designs to be plotted. We 

recommend calling this file ‘designs.csv’ and it must be saved in a comma-separated values 

(CSV) format. The first row will be ignored, but we recommend using the headings 

‘design_name’ for the first column and ‘parts’ for the second. Each row under this header then 

defines a design that will be processed. For each design, a ‘design_name’ must be given in the 

first column (see Note 4), and then the proceeding cells define the order of the parts making it 

up. The ‘part_name’ should be used to define the element at each position and to plot parts in 

reverse orientation, the letter ‘r’ should be placed directly before the name of the part. For 

example, if the part is called ‘RBS1’, then ‘rRBS1’ would be entered to plot the part in a reverse 

orientation. 

 

4. (Optional step) If regulation is present in any of the designs, a third regulatory spreadsheet 

should be created. We recommend calling this file ‘regulation.csv’ and it must be saved in a 

comma-separated values (CSV) format. This spreadsheet should have columns for each of the 

options listed in Table 2, with a header row containing each option’s name. Each row under this 

header defines a regulatory arc. It is essential that the ‘from_partname’ and ‘to_partname’ 

options are present and refer to parts present in the parts spreadsheet (see Note 5). These 
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options define the source and target of the regulatory arc, respectively. The ‘type’ option must 

also be specified as either Activation, Repression or Connection (see Note 6). 

 

5. The final spreadsheet to be created contains general parameters that influence the overall 

plotting of the designs. We recommend calling this file ‘parameters.csv’ and it must be saved in 

a comma-separated values (CSV) format. This spreadsheet should have columns for each of the 

options listed in Table 3, with a header row containing each option’s name. Each row under this 

header defines a parameter setting. For every parameter, a value must be set. 

 

6. Once these spreadsheets have been produced, they are passed to the ‘library_plot.py’ script 

that will render an image of all the constructs. The script takes five arguments: 1. ‘-params’ 

provides the filename of the parameters spreadsheet, 2. ‘-parts’ provides the filename of the 

parts spreadsheet, 3. ‘-designs’ provides the filename of the designs spreadsheet, 4. ‘-regulation’ 

provides the filename of the regulation spreadsheet, and 5. ‘-output’ provides the output 

filename for the visualization. The extension of the output file (e.g. pdf, png, etc.) will define the 

type of file that is produced (see Note 3). The command used to generate Figure 3 is shown 

below (we assume that recommended names are used for each spreadsheet): 

python library_plot.py -params parameters.csv -parts parts.csv -

regulation regulation.csv -designs designs.csv -output LibraryPlot.pdf 

 

4.   Notes 

1. To test that quick.py is available, type “python quick.py” at the command line. This should return 

details of how to use the command and not throw an error. If an error is shown then check that 

the quick.py script is in the current directory or is present at a directory listed in the PATH 

environment variable. 

 

2. The format of the output file is determined by the file extension. Standard available file formats 

and their file extensions include: PGF code for LaTeX (pgf), Scalable Vector Graphics (svgz), 

Tagged Image File Format (tif or tiff), Joint Photographic Experts Group (jpg or jpeg), Raw RGBA 

bitmap (raw), Portable Network Graphics (png), Postscript (ps), Scalable Vector Graphics (svg), 

Encapsulated Postscript (eps), Raw RGBA bitmap (rgba), and Portable Document Format (pdf). 

Note that the actual image formats supported may vary due to differences in Python 

distributions. 
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3. To test that library_plot.py is available, type “python library_plot.py” at the command line. This 

should return details of how to use the command and not throw an error. If an error is shown 

then check that the library_plot.py script is in the current directory or is present at a directory 

listed in the PATH environment variable. 

 

4. Designs are plotted in alphabetical order of the ‘design_name’. We recommend using a 

numbering format (e.g. 001, 002) as a prefix so that you can easily control the order in which 

parts are printed. These will not show up in the plot unless you set the ‘show_title’ option to ‘Y’ 

in the parameters spreadsheet (Table 3). 

 

5. Note that regulatory arcs can only go between parts on the same design and cannot go between 

parts on different designs on the same library plot. 

 

6. If regulatory arcs disappear off the top of the plot, increase the value for ‘axis_y’ option in the 

parameters spreadsheet (Table 3). 
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Figures Captions 

 

Figure 1: Quick Plot options. (A) Descriptions of all allowed part types and colors. The minus 

sign before a part type causes the part to be drawn in a reverse orientation. An example of the 

command to generate the diagram is shown. (B) Visualization generated by the design description in 

panel A. SBOL visual symbols are used; coding sequences are denoted by the large arrows and their 

expression produces a protein product that repress their cognate promoter (shown in the same 

color). (C) Three examples of simple constructs where the color and orientation of the coding region 

is varied. 

 

Figure 2:  Overview of parts available when using Library Plot. (A) All SBOLv parts in a 

forward orientation. The type of each part is labelled. (B) All parts in a reverse orientation. (C) 

Examples of some customization options available to alter the default shape and color of symbols. 

Figure adapted from Der et al. [11]. Accompanying spreadsheets can be found in the gallery at 

www.dnaplotlib.org. 

 

Figure 3: States of an XNOR genetic circuit visualized using Library Plot. Colored genes 

correspond to repressor proteins and their cognate promoters are shown in the same color. For 

each state only active regulatory links are displayed. Active promoters are shown in black or are 

strongly colored. Genes that are expressed are filled in color with their name shown. 
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Tables 

Table 1: Library Plot parts spreadsheet options 

Option Description Format / Values Default 

part_namea Name of part Alphanumeric n/a 

typea Type of part Promoter | RBS | CDS | Terminator | 

Ribozyme | Scar | Spacer | 

Ribonuclease | ProteinStability | 

Protease | Operator | Origin | Insulator 

| 5Overhang | 3Overhang | 

RestrictionSite | BluntRestrictionSite | 

PrimerBindingSite | 

5StickyRestrictionSite | 

3StickyRestrictionSite | UserDefined | 

Signature | Repressor | EmptySpaceb 

n/a 

x_extent Horizontal length of part Decimal – c 

y_extent Vertical height of part Decimal – c 

start_pad Empty space at start of part Decimal – c 

end_pad Empty space at end of part Decimal – c 

color Color of part (Red, Green, Blue)d – c 

hatche Hatch pattern type / | // | /// | //// | /////f (none) 

arrowhead_heightg Height of arrow head Decimal – c 

arrowhead_lengthg Length of arrow head Decimal – c 

linestyleg Line style - | -- | --. | :f - 

linewidth Line width Decimal 1 

fill_colori Color of inside of part (Red, Green, Blue)d (1, 1, 1) 

edge_colorj Color of part’s edge (Red, Green, Blue)d (1, 1, 1) 

site_spacek Empty space between 

restriction site cuts 

Decimal 1.5 

end_spacel Space either side of sticky 

restriction site cuts 

Decimal 1 

label Label text Alphanumeric (none) 

label_style Label text style normal | italic | bold normal 

label_size Font size of label Decimal 7 

label_y_offset Vertical label position Decimal 0 

label_x_offset Horizontal label position Decimal 0 

label_color Color of label text (Red, Green, Blue) (0, 0, 0) 

a.   Required option. 

b.   See Figure 2 for examples of each part type.  
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c.   Dependent on part type. 

d.   Red, green and blue components are given in the range 0 to 1. 

e.   Only valid for coding region (CDS) part types. 

f.   Line and hatch styles follow the matplotlib format (see www.matplotlib.org for details). 

g.   Only valid for coding region (CDS) and Promoter part types. 

h.   Only valid for Ribozyme, Scar, Spacer, Ribonuclease, ProteinStability, 5Overhang, 3Overhang, 

RestrictionSite, BluntRestrictionSite, 5StickyRestrictionSite, 3StickyRestrictionSite and Signature part types. 

i.   Only valid for UserDefined and Signature part types. 

j.   Only valid for coding region (CDS) and RBS part types. 

k.   Only valid for BluntRestrictionSite part types. 

l.   Only valid for 5StickyRestrictionSite and 3StickyRestrictionSite part types. 
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Table 2: Library Plot regulation spreadsheet options 

Option Description Format / Values Default 

from_partnamea Part at start of regulation arc part_name in ‘parts’ spreadsheet n/a 

to_partnamea Part at end of regulation arc part_name in ‘parts’ spreadsheet n/a 

typea Type of regulation arc Activation | Repression | Connection n/a 

arrowhead_length Length of arc head Decimal 4 

linestyle Style of arc line - | -- | -. | :b - 

linewidth Line width of arc Decimal 1.0 

color Color of arc (Red, Green, Blue)c (0, 0, 0) 

arc_height Height of arc above backbone  Decimal 20 

arc_height_const Sets position of arc above 

backbone minus spacing 

Decimal 15 

arc_height_spacing Vertical spacing between arcs Decimal 5 

arc_height_start Vertical start position of arc Decimal 10 

arc_height_end Vertical end position of arc Decimal 15 

a.   Required option. 
b.   Line styles follow the matplotlib format (see www.matplotlib.org for details). 
c.   Red, green and blue components are given in the range 0 to 1. 
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Table 3: Library Plot parameters spreadsheet options 

Option Description Format / Values Default 

linewidth Default line width for all parts Decimal 1 

show_title Display titles on each design Y | N N 

axis_y Vertical extent of each design Decimal 35 
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Figure 1 
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Figure 2 
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Figure 3 
 

 
 


