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Hydrodynamic performance of a pile-supported OWC breakwater: an analytical study 1 

Abstract 2 

A pile-supported OWC breakwater is a novel marine structure in which an oscillating water column (OWC) is 3 

integrated into a pile-supported breakwater, with a dual function: generating carbon-free energy and providing shelter 4 

for port activities by limiting wave transmission. In this work we investigate the hydrodynamics of this novel structure 5 

by means of an analytical model based on linear wave theory and matched eigenfunction expansion method. A local 6 

increase in the back-wall draft is adopted as an effective strategy to enhance wave power extraction and reduce wave 7 

transmission. The effects of chamber breadth, wall draft and air chamber volume on the hydrodynamic performance 8 

are examined in detail. We find that optimizing power take-off (PTO) damping for maximum power leads to both 9 

satisfactory power extraction and wave transmission, whereas optimizing for minimum wave transmission penalizes 10 

power extraction excessively; the former is, therefore, preferable. An appropriate large enough air chamber volume 11 

can enhance the bandwidth of high extraction efficiency through the air compressibility effect, with minimum 12 

repercussions for wave transmission. Meanwhile, the air chamber volume is found to be not large enough for the air 13 

compressibility effect to be relevant at engineering scales. Finally, a two-level practical optimization strategy on PTO 14 

damping is adopted. We prove that this strategy yields similar wave power extraction and wave transmission as the 15 

ideal optimization approach. 16 

Keywords: oscillating water column; wave energy converter; wave transmission; wave power; air compressibility; 17 

optimization 18 

1. Introduction 19 

Conventional breakwaters, whether vertical (caisson), rubble-mound or composite, have the function of 20 

providing shelter against waves for port operations. However, with the growing marine economy, marine 21 

development and utilization gradually progress into deeper water, and there is increasing concern about the 22 

environmental effects of conventional breakwaters, particularly on coastal processes [1, 2]. By contrast, pile-23 

supported breakwaters have less environmental impact, for they permit water and sediment exchange between their 24 

seaside and leeside [3]. As wave energy is concentrated near the water surface in deeper waters, pile-supported 25 

structures can provide shelter at a cost that is far less sensitive to water depth than that of conventional breakwaters 26 

[4]. For these reasons, pile-supported breakwaters have recently emerged as an interesting alternative to traditional 27 

breakwaters in deeper waters. 28 
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At the same time, ocean waves are one of the most important marine renewable energy resources. The worldwide 1 

wave resource is substantial and widely distributed [5]. Wave energy converters (WECs) extract energy from the 2 

wave field, and thus reduce the wave height [6, 7]; under certain circumstances, they can play a similar role in 3 

breakwaters. The "Mighty Whale" WEC produces a relatively calm sea behind during the open sea tests [8]. At 4 

present, the cost of stand-alone in deeper waters remains high, which hampers the development of wave energy [9, 5 

10]. For these reasons, the integration of WECs into breakwaters has been the object of increasing research. An 6 

example is OBREC, an overtopping WEC integrated into a rubble-mound breakwater [11, 12]. The integration of 7 

oscillating water column (OWC) into vertical (caisson) breakwaters has also been investigated [13]. With respect to 8 

pile-supported breakwaters, the subject of this work, the integration of WECs can be beneficial for three main reasons 9 

[14-16]. First, pile-supported breakwaters can provide the substructure for the WECs and thus enhance their economic 10 

viability. Second, the WECs, by absorbing wave energy, contribute to reducing wave transmission past the 11 

breakwaters, and thus improve their efficiency. Finally, the WECs provide electricity to the activities protected by 12 

the pile-supported breakwaters, which are usually of certain distances from the mainland [17]. 13 

Nowadays, there has emerged a diversity of wave energy converters [18-22]. Compared with other converters, 14 

OWC type converter is notably [23-27]. An OWC converter has a pneumatic chamber with a large underwater 15 

opening. Incident waves excite the water column inside the chamber, causing it to oscillate; this oscillation forces the 16 

air inside the pneumatic chamber to drive a power take-off (PTO) system. Owing to the advantages of simple 17 

configuration, fewer moving mechanical parts, good durability and high reliability, OWC converters are particularly 18 

suitable for integration with breakwaters [16, 28-30]. Breakwater-mounted OWCs have attracted both the academic 19 

and engineering communities. The initial focus of OWC-breakwater integration was bottom-seated, caisson 20 

structures, since the work of Ojima [31] in the 1980s; then, the prototypes appeared in different regions, e.g., Sakata, 21 

Japan [32], Vizhinjam, India [33], Mutriku, Spain [34], Civitavecchia, Italy [35, 36] and GWK, Germany[37, 38]. At 22 

present, OWC-type breakwaters are considered both as bottom-seated, caisson structures and pile-supported 23 

structures for deeper water [39]. In the latter, the reduction of wave transmission becomes a key element of the 24 

structure’s performance, but further study is required. He and Huang [14] investigated the hydrodynamic performance 25 

of a pile-supported OWC breakwater through wave-flume experiments, and compared it with more than ten types of 26 

innovative pile-supported breakwaters proposed in the literature. They demonstrated that the wave transmission 27 

performance was not inferior to other types. Notwithstanding, there is still much room for improvement, not least in 28 
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relation to optimization - a fundamental objective for OWC systems [13] which has not been accomplished so far for 1 

pile-supported OWC breakwaters. 2 

For stand-alone OWC converters, there have been extensive theoretical studies. The analytical method based on 3 

potential theory is well established and could help to understand the fundamental hydrodynamic performance of 4 

OWCs. Evans [40] assumed that the water column inside a narrow pneumatic chamber moved like a rigid piston, and 5 

focused on how to determine the added mass and radiation damping of the water column. Subsequently, Evans [41] 6 

generalized the previous theory and took into account the spatial variation of the water column surface. A reciprocal 7 

relationship between the air pressure inside the pneumatic chamber and the diffraction-induced vertical flux was also 8 

derived. Sarmento and Falcão [42] considered the compressibility effects of the air inside the pneumatic chamber, 9 

and neglected wave diffraction by the immersed OWC. Given that the energy in a sea state is distributed across a 10 

range of frequencies, the fundamental objective of the theoretical studies of stand-alone OWCs is to achieve a high 11 

extraction efficiency over a broad bandwidth around the peak of the incoming wave spectrum.  12 

As for theoretical studies of OWCs integrated into breakwaters, Martin-Rivas and Mei [43] considered a 13 

cylindrical OWC standing at the tip of a thin breakwater and found that, with an appropriate volume of the pneumatic 14 

chamber, air compressibility could help broaden the bandwidth of high extraction efficiency. But for pile-supported 15 

OWC breakwaters, the effects of air compressibility on wave transmission have not been addressed yet. Sarmento 16 

[44] reported wave transmission data for a pile-supported OWC structure, but the immersion adopted was too small 17 

to make it function as a breakwater. In the small-scale laboratory tests carried out by He and Huang [14], air 18 

compressibility was negligible, and therefore its effects were not considered. One aim of the present analytical study 19 

is to explore whether air compressibility may help in reducing wave transmission over a broad bandwidth of 20 

frequencies. 21 

The optimal power extraction of the OWC is essentially achieved by the impedance matching between the 22 

radiation damping and the PTO characteristic. Since the geometry cannot be easily adjusted once the OWCs have 23 

been constructed, most of the previous theoretical studies assumed the PTO characteristic to be ideally controlled for 24 

optimization over a broad bandwidth of frequencies [45]; in practice, however, this ideal control is hard to implement. 25 

Lovas et al. [46] proposed a more practical control strategy, whereby the PTO characteristic took on only specific 26 

values, one for each frequency interval, and found that this approach can be almost as efficient as the ideal control 27 

strategy. Another aim of the present analytical study is to explore whether this practical control strategy is also 28 

effective in regard to wave transmission over a wide range of frequencies. 29 
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The main objective of the present study is to improve the performance of a pile-supported OWC breakwater by 1 

increasing power extraction and reducing wave transmission over a broader bandwidth of frequencies. To this end, 2 

the hydrodynamic performance of a pile-supported OWC breakwater is analytically investigated. A linear Wells 3 

turbine is considered for the PTO, and the compressibility of the air inside the OWC chamber is taken into account. 4 

Based on linear potential theory and the method of separation of variables, the spatial potential at any point in the 5 

water domain is expressed as a series of Fourier functions. The Galerkin approximation method is adopted to deal 6 

with the strong singularities at the sharp edges of the pile-supported OWC breakwater. As indicated by Sarmento 7 

[44], the maximum extraction efficiency is only 0.5 for the pile-supported OWC converter with identical front and 8 

back walls. In the present study a local increase in the back-wall draft is adopted to improve the performance in an 9 

economical way [47]. The effects of chamber breadth and wall draft on the power extraction and wave transmission 10 

are examined. Moreover, the air compressibility and practical control strategy are considered in detail.  11 

2. Formulation 12 

2.1 Problem description 13 

Fig.1 shows the two-dimensional pile-supported OWC breakwater in the water of finite depth under 14 

consideration in this study. The problem is formulated in a Cartesian coordinate (Oxz) system with x-axis being 15 

horizontally rightwards and z-axis being vertically upwards. The origin of the coordinate system O  is on the still 16 

water level. A train of monochromatic incident waves of small amplitude A  and wave frequency   propagates 17 

from x = − . The breadth of the pneumatic chamber is denoted by a , and the drafts by 
1d  and 

2d  for the front 18 

and back walls, respectively. The water depth, h, is constant in this study, thus the horizontal sea bed is at z h= − . 19 

The positions of the front and back walls on the x -axis are 1x x=  and 2x x= , respectively. 20 

 21 

Fig. 1. Problem definition sketch. 22 
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2.2 Governing equation and boundary conditions 1 

The fluid is assumed as incompressible, inviscid and irrotational, and the entire fluid field might be described 2 

by a velocity potential ( , , )x z t  in the frequency domain, where ( , , )x z t  is simply harmonic with angular 3 

frequency   and can be written as  4 

( , , )x z t = iRe[ ( , )e ]tx z − ,         (1) 5 

in which i 1= −  and Ф is a complex spatial velocity potential independent of the time t. Ф satisfies the Laplace 6 

equation as 7 

2 2

2 2
0

x z

   
+ =

 
.          (2) 8 

The spatial velocity potential Ф can be written as a superposition of an incident wave potential 
(0) , a diffracted 9 

wave potential 
(1)  and a radiated wave potential 

(2)  as  10 

(0) (1) (2)p =  + +  ,         (3) 11 

where p
 
is the complex amplitude of the air pressure fluctuation inside the chamber, 

(0)
 
describes the nature of 12 

incident waves, 
(1)  describes the response to incident waves due to the structure in the absence of p ,  and 

(2)  13 

describes the unit-amplitude response to p  in the absence of incident waves. This is a linear superposition, and all 14 

the spatial potentials, 
(0) , 

(1)  and 
(2) , satisfy the Laplace equation. For a train of monochromatic incident 15 

waves propagating in the x-direction (Fig. 1), the incident wave potential can be written as  16 

(0) ii cosh[ ( )]
e

cosh( )

kxgA k z h

kh

+
 = − ,

        (4)
 17 

where g  is the gravity acceleration, and k  is the wave number satisfying the dispersion relation 2 tanh( )gk kh = .  18 

The governing equation and boundary conditions for the diffracted and radiated wave potentials can be written 19 

as  20 

2 ( ) 2 ( )

2 2
0

n n

x z

   
+ =

 
,           (5) 

21 

( ) 2
( ) 0

n
n

z g


−  =


   1 2( 0, and )z x x x x=   ,      (6) 

22 

( ) 2
2,( )

in
nn

z g g






−  =


   1 2( 0, )z x x x=   ,      (7) 

23 

( )

0
n

z


=


   ( )z h= − ,           (8) 

24 

(0)( )
1,

n
n

x x

 
= −

 
   1 1 2 2( 0, and 0, )d z x x d z x x−   = −   = ,  (9) 

25 
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( )n  outgoing; finite value, x → ,        (10) 

1 

where the superscripts n =1 and 2 denote diffracted and radiated wave potentials, respectively, and ,i j is the 2 

Kronecker delta, 3 

 ,

1

0
i j

i j

i j


=
= 


.    (11) 4 

2.3 Solutions to wave diffraction and radiation 5 

From Eqs. (5)-(10), it is noted that the governing equations for diffracted and radiated wave potentials are the 6 

same except the boundary conditions on the wetted surface of the chamber walls and the water surface inside the 7 

chamber. Here, the matched eigenfunction expansion method is applied to solve both the wave diffraction and 8 

radiation problems [48]. As shown in Fig. 1, the fluid domain is divided into three subdomains as f , c  and b  9 

by two vertical dash lines, where the subscripts f , c  and b  are associated with in front of the chamber, inside 10 

and under the chamber, and at the back of the chamber, respectively. The spatial potentials of three subdomains are 11 

denoted as ( )n

f , 
( )n

c  and 
( )n

b , where the superscripts n =1 and 2 denote again wave diffraction and radiation. 12 

Applying the method of separation of variables, the diffracted and radiated wave potentials in the three 13 

subdomains can be expressed as  14 

( ) ( )

,

0

e ( )j xn n

f f j j

j

A Z z




=

 =    in f ,         (12) 15 

,2( ) ( ) ( )

, ,

0

i
( e e ) ( )j jx x nn n n

c c j c j j

j

A B Z z
  




−

=

 = + −    in c ,      (13) 16 

( ) ( )

,

0

e ( )j xn n

b b j j

j

A Z z



−

=

 =    in b ,         (14) 17 

with the normalized eigenfunctions 18 

0.5( ) cos ( )j j jZ z N h z−  = +  ,         (15) 19 

where  20 

sin(2 )1
1

2 2

j

j

j

h
N

h





 
= + 

  
.          (16) 21 
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The term j  represents the wave modes with 0j =  being the progressive waves and 0j   being the evanescent 1 

waves. ( )

,

n

f jA , ( )

,

n

c jA , ( )

,

n

c jB  and ( )

,

n

b jA  are unknown coefficients to be solved. j  is the eigenvalue of the j th wave 2 

mode, which is given as [49] 3 

0 i , 0k j = − = ,           (17) 4 

2 tan( ), 1,2,3, ...j jg h j  = − =  .       (18) 5 

The eigenfunctions in Eq. (15) form a complete set of orthogonal functions over [ ,0]h− , i.e.,  6 

0

,( ) ( )dj l j l
h
Z z Z z z h

−
= .          (19) 7 

As indicated by Falnes and McIver [50], this system can be truncated into a finite number of coefficients and 8 

solved with the employment of standard eigenfunction matching methods at the interfaces between adjacent 9 

subdomains. Since there exist strong singularities at the sharp edges of the chamber walls, the convergence of the 10 

system with increasing the number of the truncated terms was found rather slow and it was generally necessary to 11 

extrapolate from a sequence of values [50]. To reduce this problem to the solution of a small number of algebraic 12 

equations, we adopted the Galerkin approximation method proposed by Evans and Porter [45] to handle the 13 

singularities. The following auxiliary functions are introduced to express the water velocities at the x-values of the 14 

chamber walls, 15 

( ) ( ) ( ) ( )1 1, 1,

0

n n

q q

q

U z A u z


=

= ,         (20) 16 

and  17 

( ) ( ) ( ) ( )2 2, 2,

0

n n

q q

q

U z A u z


=

= ,          (21) 18 

where 
( )
1,

n

qA  and 
( )
2,

n

qA  are unknown coefficients to be determined, while 1,qu  and 2,qu  are expressed as 19 

( )
( )

( ) ( )
1, 2

2 2
1

1

2 1

π

q

q q

z h
u z T

h dh d z h

−  +
=  

− − − +
,       (22) 20 

and 21 

( )
( )

( ) ( )
2, 2

2 2
2

2

2 1

π

q

q q

z h
u z T

h dh d z h

−  +
=  

− − − +
,       (23) 22 

which gives, with 2qT  as a Chebyshev polynomial [45], 23 

( ) ( ) ( ) 
1 0.5

1, 2 1d
d

q l l q l
h

u z Z z z N J h d
−

−

−
= − ,        (24)

 24 
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and  1 

( ) ( ) ( ) 
2 0.5

2, 2 2d
d

q l l q l
h

u z Z z z N J h d
−

−

−
= − ,        (25) 

2 

where 2qJ  is the Bessel function of order 2q . 3 

The diffracted and radiated wave potentials must satisfy the continuity conditions for both the normal velocity 4 

and the pressure at the interfaces between adjacent subdomains:  5 

( ) ( )

( ) ( )

(0)

,1 1 1

1 1 1

, 0

,

n

nf

n

x x d z
x

x
U x x h z d


 
− = −   

= 
  = −   −

,       (26)  6 

( ) ( )

( ) ( )

(0)

,1 1 1

1 1 1

, 0

,

n
nc

n

x x d z
x

x
U x x h z d


 
− = −   

= 
  = −   −

,       (27) 7 

( ) ( )

( ) ( )

(0)

,1 2 2

2 2 2

, 0

,

n
nc

n

x x d z
x

x
U x x h z d


 
− = −   

= 
  = −   −

,    (28) 8 

( ) ( )

( ) ( )

(0)

,1 2 2

2 2 2

, 0

,

n
nb

n

x x d z
x

x
U x x h z d


 
− = −   

= 
  = −   −

,    (29) 9 

( ) ( ) ( )1 1,
n n

f c x x h z d = = −   − ,    (30) 10 

( ) ( ) ( )2 2,
n n

c b x x h z d = = −   − .    (31) 11 

After multiplying both sides of Eqs. (26)-(31) by ( )lZ z , integrating over [ ,0]h−  and truncating the infinite 12 

series into lN (number of ( )lZ z  functions, l =0,1,2, …, lN ) and qN  (number of Chebyshev polynomial terms 13 

2qT , q =0,1,2,…, qN ), the unknown coefficients can be obtained by solving the linear complex matrix equations. 14 

2.4 Volume flux inside pneumatic chamber  15 

The excitation volume flux can be obtained through an integration of the vertical water velocity, induced by the 16 

joint action of incident and diffracted wave potentials, across the free surface inside the chamber as 17 
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( )( ) ( )( )

( )
( ) ( ) ( ) ( ) ( )

2 2

1 1

2 1 2 1

2 1

1(0)
2

1(0)

0 0

1 1
2

, ,
i i

0

d d

e e e e 0
e e

j j j j

x xc

e z c z
x x

x x x x

c j c j j
kx kx

j j

Q x x
z g

A B ZA

k g

   



 



= =

− −


=

  +
= =  +



 − − −
 

= − − +

 



.    (32) 1 

Correspondingly, the radiation volume flux can be obtained through an integration of the vertical water velocity, 2 

induced by the radiated wave potential 
(2) , across the free surface inside the chamber as 3 

( )
( )

( ) ( ) ( ) ( ) ( )
( )

2 2

1 1

2 1 2 1

2 2
2

0 0

2 2
2

, ,

0

i
d d

e e e e 0
i

j j j j

x x
c

R z c z
x x

x x x x

c j c j j

j j

Q x x
z g g

A B Z
c

g

   

 








= =

− −


=

 
= =  + 

  

 − − −
 

= = − −

 



,    (33)  4 

where ( )Re Rc Q= −  and ( )Im RQ =  are the so-called radiation conductance and radiation susceptance in [45]. 5 

By using the Haskind relation [49], which can be derived from Green’s identity, over a large fluid domain enclosing 6 

the OWC chamber, the excitation volume flux can also be evaluated by  7 

( )

( )

2

,0

0

2i

0

f

e

gAkhA
Q

Z


= .          (34) 8 

Based on Green’s theorem or the energy conservation law, the radiation conductance can also be written in terms of 9 

the far-field coefficients as  10 

( ) ( ) ( ) ( )( )2 2 2 2

,0 ,0 ,0 ,0f f b bc kh A A A A  = + .        (35) 11 

2.5 Wave power extraction 12 

Following Sarmento and Falcão [42] and Lovas et al. [46], there is a relationship between the complex amplitude 13 

of the total volume flux and the air pressure: 14 

( )PTO PTOie RQ pQ c p+ = − ,        (36) 15 

with  16 

PTO

0

KD
c

N
=           (37) 17 

representing the PTO damping, and  18 

0

PTO 2

0a

V

c





=           (38) 19 
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representing the effects of air compressibility, where K  is an empirical coefficient describing the turbine, D  is 1 

the outer diameter of the turbine rotor, N  is the rotational speed of turbine blades, 
0  is the static air density, 

0V  2 

is the initial air volume inside the pneumatic chamber and 
ac  is the sound velocity in air. Combining Eqs. (33) and 3 

(36), the air pressure fluctuation inside the chamber p  can be calculated by 4 

( )PTO PTOi

eQ
p

c c  
=

+ − +
.         (39) 5 

The time-averaged wave power extraction over one wave period can be expressed as 6 

( ) ( )

2

PTO

2 2

PTO PTO

1

2

ec Q
P

c c  
=

+ + +
.         (40) 7 

Thus, the wave power extraction efficiency can be calculated by 8 

2

2

g

P

gA C



= ,           (41) 9 

where gC  is the group velocity of the incident wave, 10 

( )

2
1

2 sinh 2
g

kh
C

k kh

  
= + 

  

.         (42) 11 

There is an optimal PTO damping which maximizes the wave power extraction efficiency   at each wave 12 

frequency. This optimal PTO damping, opt,c  , can be obtained by imposing PTO 0c  =  [43, 46], which yields  13 

( )
22

opt, PTOc c  = + + .         (43) 14 

The maximum time-averaged power output attainable at the wave frequency corresponding to opt,c   is  15 

( )

2

max
22

PTO

1

4

eQ
P

c c  
=

+ + +
,        (44) 16 

and the maximum power extraction efficiency attainable at the same frequency is 17 

max

max 2

2

g

P

gA C



= .          (45) 

18 

2.6 Wave reflection and transmission 19 

The modes of evanescent waves can be neglected at the water domain far away from the pile-supported OWC 20 

breakwater. On the radiation boundaries x x=  , the velocity potentials can be written as 21 
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Consequently, by calculating the wave amplitudes at the radiation boundaries x x=  , the wave reflection 4 

coefficient R  and wave transmission coefficient T  can be evaluated as 5 

( ) ( ) ( )( )1 20

,0 ,0

0
f f
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
= + ,         (48) 6 
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i 0
1 b b
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gA


= + + .        (49) 7 

There is an optimal PTO damping, opt,Tc , which minimizes wave transmission T  at each wave frequency, and can 8 

be obtained by imposing PTO 0T c  = . As the expression of opt,Tc  is somewhat cumbersome, it is given in the 9 

Appendix. The minimum wave transmission coefficient corresponding to opt,Tc  is  10 

( ) ( )
( )
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.      (50) 11 

3. Results and discussion 12 

The above analytical solution was implemented through a self-programming code. A convergence test was 13 

carried out to examine the truncated number lN  of ( )lZ z  functions and the truncated number qN  of Chebyshev 14 

polynomial terms 2qT . It was demonstrated that lN =50 and qN =10 are enough to guarantee sufficiently accurate 15 

results for the entire computed range of wave conditions in the present study. In the subsequent computations, the 16 

following values are used, unless otherwise specified: density ratio 0/  =1000, sound velocity in air ac =340 m/s, 17 

gravity acceleration g =9.81 2m/s , and air chamber volume 0 0.1V ah= . 18 
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3.1 Model validation 1 

The present model is firstly validated with the analytical results published by Falnes and McIver [50]. For 2 

comparison, the analytical results in this subsection follow the definition of dimensionless variables in Falnes and 3 

McIver [50] as 4 

gc
c

a




= , 

g

a

 



= , e

e

Q
Q

aA
= , ( )arge eQ = .      (51) 

5 

In this case the parameters for the calculation are: 
1 /d h =0.15, 

2 /d h =0.25, /a h =0.1 and 
0 0.1V ah= . Fig. 2 6 

compares the dimensionless excitation volume flux, in terms of amplitude and phase, versus the dimensionless wave 7 

number kh with the corresponding results in Falnes and McIver [50], while Fig.3 compares the dimensionless 8 

radiation conductance and susceptance. In calculations, the reciprocal relation linking the scattering problem to the 9 

radiation problem is also checked for validation. The excitation volume flux evaluated based on the Haskind relation 10 

in Eq. (34) is presented in Fig.2, while the radiation conductance evaluated in terms of far-field coefficients in Eq. 11 

(35) is presented in Fig.3. Both Figs.2 and 3 evidently show that various results obtained by the present model agree 12 

excellently with the analytical results published by Falnes and McIver [50]. The present model is well validated.  13 

   14 

Fig.2 Dimensionless excitation volume flux versus dimensionless wave number kh  for 1 /d h =0.15, 2 /d h15 

=0.25, /a h =0.1 and 0 0.1V ah= : (a) amplitude and (b) phase. [In the legend, DR and HR indicate that eQ  is 16 

calculated directly from Eq. (32) or based on the Haskind relation in Eq. (34), respectively]. 17 
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    1 

Fig.3 Dimensionless radiation coefficients versus dimensionless wave number kh  for 1 /d h =0.15, 2 /d h =0.25, 2 

/a h =0.1 and 0 0.1V ah= : (a) radiation conductance c  and (b) radiation susceptance  . [In the legend, DR and 3 

FFC indicate that c  is calculated directly from Eq. (33) or in terms of far-field coefficients in Eq. (35), 4 

respectively]. 5 

Besides, the conservation of wave energy for the present model is also checked. Fig. 4 shows the variations of 6 

wave reflection coefficient R , wave transmission coefficient T , power extraction efficiency  , and a sum of 7 

power ratio 
2 2R T + +  versus the dimensionless wave number kh .  8 

  9 

Fig.4 Variations of R , T ,   and 
2 2R T + +  versus dimensionless wave number kh  for h =20 m,

 1 /d h10 

=0.15, 2 /d a =0.25, /a h =0.1, 0 0.1V ah=  and 
PTO 6.0c h g = . 11 
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Here the calculating parameters are: 
1 /d h =0.15, 

2 /d h =0.25, /a h =0.1, 
0 0.1V ah=  and 1 

PTO 6.0c h g = . It can be seen that the total power ratio 
2 2R T + +  is always unity, which means that wave 2 

energy is conserved, i.e., the present model is conservative. The conservation of wave energy validates the present 3 

model from yet another aspect. 4 

In the following, the validated analytical model will be adopted to study the effects of ratio of wall drafts, 5 

chamber breadth, wall draft and air chamber volume on the power extraction and wave transmission. From the next 6 

subsection, we will follow the non-dimension definition in Lovas et al. [46] as 7 

PTO PTOc c g h= , 
0

0 PTO 2

0 a

V g h
g h

c

 
  


= − = − , opt, opt,c c g h =  , opt, opt,T Tc c g h=   (52) 

8 

and the radiation susceptance is correspondingly renormalized as /g h = . 9 

Hereinafter, the subscript “ opt, ” represents the corresponding physical quantities; thus, opt,c  , opt,T   and 10 

opt,R  , for instance, correspond to the case in which wave power extraction is optimized as 
max . Conversely, the 11 

subscript “ opt,T ” denotes the corresponding physical quantities, so opt,Tc , opt,T  and opt,TR  are obtained when 12 

wave transmission is optimized as minT . 13 

3.2 Ratio of wall drafts 14 

Sarmento [44] indicated that the peak of optimal power extraction efficiency attainable at each wave frequency 15 

could reach only 0.5 if the front and back walls of a pile-supported OWC converter are identical. Intuitively, a locally 16 

increased back-wall draft could reflect part of wave energy into the OWC chamber and thus contribute to reducing 17 

wave transmission past the back wall [47]. In this study, a local increase in the back-wall draft is explored as an 18 

effective strategy to improve the performance of a pile-supported OWC breakwater. The effects of the ratio of wall 19 

drafts on the wave power extraction and the protection against wave action are examined. 20 

The variations in optimal power extraction efficiency max  and corresponding wave transmission coefficient 21 

opt,T   versus the ratio of wall drafts 2 1/d d  are shown in Fig. 5. The calculation parameters are: /a h =0.1, 1 /d h22 

=0.15 and 0 0.1V ah= . If the 2 1/d d  ratio reaches 20/3, the back wall will penetrate the water depth to the sea bed 23 

and the geometry will become a bottom-seated OWC-type caisson breakwater. Here we should mention that the 24 
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present analytical model is not suitable for this limiting condition and thus we confine the range of 
2 1/d d  within 1 

[1, 5]. As shown in Fig. 5(a), the local increase in the back-wall draft significantly affects the 
max  for 

2 1/d d  2 

ranging from 1.0 to a certain value, whereas a further increase in 
2 1/d d  has only little influence. This certain value 3 

of 
2 1/d d  differs with wave frequency ( kh ) and is generally smaller for shorter waves. This is mainly because the 4 

exponential decay of fluid velocity with increasing underwater depth is faster for shorter waves. Except for the longest 5 

wave ( kh =2), 
max  is mainly affected within the range 

2 11.0 / 3.0d d  , implying that a locally increased back-6 

wall draft contributes to enhancing wave power extraction. Taking kh =4 as an example, there exists an optimal 7 

2 1/d d =2.72 which makes 
max  reach a peak of 0.92; by contrast, 

max  is only 0.26 when the front and back walls 8 

are identical (i.e., 2 1/d d =1). 9 

The local increase in the back-wall draft may affect the wave transmission in two ways. On the one hand, a 10 

deeper back wall could increase the shelter effect; on the other, the new chamber geometry would alter both the 11 

resonance frequency and the radiation damping of the water column inside the chamber, so the interference between 12 

scattered and radiated waves could be affected. Fig. 5(b) shows that opt,T   generally decreases with increasing 13 

2 1/d d . To obtain a small value of opt,T  , a smaller value of 2 1/d d  is required for the shorter incident waves. 14 

Taking opt,T  =0.09 as an example, 2 1/d d =1.0, 1.3, 1.9, 2.2 and 3.1 is required for kh =7, 6, 5, 4, and 3, respectively, 15 

from which it can be inferred that the increased shelter effect dominates. For kh =5, there exists a local valley of 16 

opt,T  =0.50 at 2 1/d d =1.06 which is due to the resonance, but its influence on the wave transmission is negligible 17 

compared with the shelter effect. 18 
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 1 

Fig. 5 (a) Optimal power extraction efficiency 
max  and (b) the corresponding wave transmission coefficient opt,T   2 

versus the ratio of wall drafts 2 1/d d  for different dimensionless wave numbers kh  [ h =20 m, /a h =0.1, 3 

1 /d h =0.15 and 0 0.1V ah= ]. 4 

3.3 Chamber breadth and wall draft 5 

The breadth and draft are two important parameters affecting the hydrodynamic performance and the 6 

construction costs of a pile-supported breakwater [14]. The effects of chamber breadth and wall draft of pile-7 

supported OWC breakwater on the wave power extraction and the protection against wave action are examined in 8 

this subsection. In the previous subsection it was concluded that a local increase in the back-wall draft could increase 9 

wave power extraction and decrease wave transmission, yet a too large 2 1/d d  may increase the construction costs. 10 

In the subsequent computations, a local increase of 0.1h  in the back-wall draft, i.e., 2 1 0.1d d h= + , will be used 11 

unless otherwise specified. Two optimization methods, i.e., optimizing the PTO damping as opt,c   to maximize wave 12 

power extraction efficiency ( max = ) at each wave frequency, and optimizing the PTO damping as opt,Tc  to 13 

minimize wave transmission ( minT T= ) at each wave frequency, are adopted. Both the optimal wave power extraction 14 

efficiency max  with the corresponding wave transmission opt,T   and the optimal wave transmission minT  with the 15 

corresponding wave power extraction opt,T  will be considered. 16 
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Fig. 6 illustrates the effects of chamber breadth when the PTO damping is optimized for maximizing the wave 1 

power extraction efficiency. The calculation parameters are: h =20 m,
 1 /d h =0.15, 

2 /d h =0.25, 
0 0.1V ah= , 2 

/a h =0.05, 0.1, 0.15, 0.2 and 0.3. The variations of optimal power extraction efficiency 
max , optimal dimensionless 3 

PTO damping opt,c  , wave transmission coefficient opt,T   and wave reflection coefficient opt,R   are shown versus 4 

dimensionless wave number kh . We can see from Fig. 6(a) that the peaks of 
max  are 0.984, 0.955, 0.923, 0.893 5 

and 0.836 for /a h = 0.05, 0.1, 0.15, 0.2 and 0.3, and occur at kh =5.1, 4.5, 4.1, 3.8 and 3.4, respectively. In general, 6 

the peak of 
max  is a little lower for a wider chamber and occurs at a longer wave. The observation of unequal peaks 7 

of 
max  for different chamber breadths is different from the bottom-seated OWC device whose peaks of 

max  are 8 

always 1.0 [45]. This is because that a wider chamber resonates at a longer wave which can more easily pass through 9 

the back wall of the pile-supported OWC breakwater and the transmitted wave energy reduces the extracted wave 10 

power at resonance. Nevertheless, the peaks of 
max

 
still remain at a high level. In addition, it is noted that the 11 

bandwidth of 
max  is broader for a wider chamber, which is consistent with the bottom-seated OWC device [45]. 12 

Comparing Fig. 6 (b) with Fig. 6(a), the corresponding peaks of opt,c 
 
occur at roughly the same wave frequencies. 13 

The peak of 
max  is in principle achieved by two conditions, i.e., the OWC resonates at the natural frequency and 14 

meanwhile the PTO damping matches the radiation damping [43]. Fig. 6 (b) indicated that a larger optimal PTO 15 

damping is desired for a wider chamber when resonance occurs. 16 

As shown in Fig. 6(c), when the PTO damping is optimized for 
max , the corresponding wave transmission 17 

opt,T   is not markedly different. Indeed, the largest difference in opt,T   for a given kh  is only 0.181 between the 18 

widest chamber ( /a h =0.3) and narrowest chamber ( /a h =0.05), over all wave frequencies tested in this study. The 19 

trends of opt,T   for all chamber breadths are of approximately monotonic decrease with increasing kh . It is 20 

interesting noted that opt,T   for each chamber breadth has a local valley at kh  slightly smaller than resonance and 21 

a local peak at kh  slightly larger than resonance. This local impact to the approximately monotonic decreasing 22 

opt,T   can be seen as relatively weak. Fig. 6(d) shows that with increasing kh , opt,R   firstly increases to a turning 23 

point, then decreases to a local minimum of nearly zero around kh  where resonance occurs, after that opt,R   24 
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monotonically increases, and finally reaches almost one at the largest kh . A narrower chamber has a higher turning 1 

point and generally reflects more wave energy for long waves, e.g., kh <3.0, whereas reflects less for short waves, 2 

e.g., kh>5.0. 3 

 4 

 5 

Fig.6 (a) Optimal power extraction efficiency max , (b) optimal dimensionless PTO damping opt,c  , (c) wave 6 

transmission coefficient opt,T   and (d) wave reflection coefficient opt,R   versus dimensionless wave number kh  7 

for different chamber breadths /a h  [ h =20 m,
 1 /d h  =0.15, 2 /d h  =0.25 and 0 0.1V ah= ]. 8 

Fig. 7 illustrates the effects of chamber breadth when the PTO damping is optimized in the range of 9 

PTO [0,10]c  , i.e., ul 10c = , for minimizing the wave transmission. The variations of power extraction efficiency 10 

opt,T , optimal dimensionless PTO damping opt,Tc , optimal wave transmission coefficient minT  and wave reflection 11 

coefficient opt,TR  are shown versus dimensionless wave number kh . Comparing Fig. 7(a) with Fig. 6(a), the main 12 
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difference is that there exists a local sharp valley of opt,T
 
for each chamber, which occurs at longer wave for a wider 1 

chamber. This nearly-zero local valley greatly harms the wave power extraction around. We can see from Fig. 7(b) 2 

that the opt,Tc  corresponding to the valley of opt,T  is nearly zero. With increasing kh , the opt,Tc  value of a wider 3 

chamber reaches the nearly-zero value and the set upper limit 
ulc  more rapidly, and remains at 

ulc  over a wider 4 

range of wave frequencies. This is markedly different from the trends of opt,c   that can be observed in Fig. 6(b). 5 

Comparing Fig. 7(c) with Fig. 6(c), there still exist a local valley and a local peak of wave transmission for each 6 

chamber breadth. The local valley of minT  is much lower than the local valley of opt,T   for the same chamber 7 

breadth, and the local peaks of minT  and opt,T   are comparable. From around kh  where the local valley occurs, 8 

minT  is a little lower than opt,T   over a certain range of kh , and this range is broader for a wider chamber. In 9 

contrast, for kh  lower than where the local valley occurs, minT  is almost the same as opt,T  . That is, minT  is only 10 

smaller than opt,T   at the wave frequencies where the wave transmission is already small, whereas at the wave 11 

frequencies with large wave transmission, minT  and opt,T   are almost the same. Compared with optimizing the PTO 12 

damping as opt,c   for max , optimizing the PTO damping as opt,Tc  for minT  hardly improves the performance in 13 

terms of providing wave shelter, but does hamper the performance in terms of wave power extraction. Taking /a h14 

=0.10 as an example, the local valley of minT  is nearly zero at kh =4.3. The corresponding opt,T  at kh =4.3 in 15 

Fig. 7(a) and opt,Tc  at kh =4.3 in Fig. 7(b) are also nearly zero, whereas the corresponding opt,TR  at kh =4.3 in Fig. 16 

7(d) is nearly one, implying that the turbine practically stops and almost all the wave energy is reflected. Comparing 17 

Fig. 7(d) with Fig. 6(d), it is clear that opt,Tc  makes the pile-supported OWC breakwater function more as a reflective 18 

structure than as an absorbing system, thereby violating its original multifunction conception. 19 
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 1 

 2 

Fig.7 (a) Power extraction efficiency opt,T , (b) optimal dimensionless PTO damping opt,Tc , (c) optimal wave 3 

transmission coefficient minT  and (d) wave reflection coefficient opt,TR  versus dimensionless wave number kh  4 

for different chamber breadths /a h  [ h =20 m, 1 /d h =0.15, 2 /d h =0.25 and 0 0.1V ah= ]. 5 

Fig. 8 illustrates the effects of wall draft when the PTO damping is optimized for maximizing the wave power 6 

extraction. The calculating parameters are: h =20 m,
 

/a h =0.1, 2 /d h = 1 /d h +0.1, 0 0.1V ah= , 1 /d h =0.05, 0.1, 7 

0.15, 0.2 and 0.25. The variations in optimal power extraction efficiency max , optimal dimensionless PTO damping 8 

opt,c  , wave transmission coefficient opt,T   and wave reflection coefficient opt,R   are shown versus the 9 

dimensionless wave number kh . We can see from Fig. 8(a) that the peaks of max  are 0.988, 0.973, 0.955, 0.942 10 

and 0.919 for 1 /d h =0.05, 0.1, 0.15, 0.2 and 0.25, and occur at kh =8.9, 5.9, 4.5, 3.6 and 3.0, respectively. In 11 
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general, the peak of 
max  is slightly lower for a deeper wall draft and occurs at a longer wave. The reason of unequal 1 

peaks of 
max  for different wall drafts is analogical to the effects of chamber breadth. A deeper draft resonates at a 2 

longer wave which can more easily pass through the back wall of the pile-supported OWC breakwater and the 3 

transmitted wave energy reduces the extracted wave power at resonance. It is also found the bandwidth of 
max  is 4 

broader for a shallower wall draft. Fig. 8 (b) indicates that a larger optimal PTO damping is desired for a deeper draft 5 

when resonance occurs. 6 

Fig. 8(c) illustrates that when the PTO damping is optimized for 
max , the effects of wall draft on the 7 

corresponding wave transmission are remarkable. The trends of opt,T   for all wall drafts are a monotonic decrease 8 

for increasing kh . opt,T   reduces to below 0.5 at kh =2.6, 2.9, 3.3, 3.9 and 4.9 for 1 /d h =0.25, 0.2, 0.15, 0.1 and 9 

0.05, respectively. The largest difference in opt,T   at each kh  can be up to 0.694 between the deepest draft ( 1 /d h10 

=0.25) and the shallowest draft ( 1 /d h =0.05) over all wave frequencies tested in this study. For each draft, there 11 

exists a local valley of opt,T   at kh  slightly smaller than resonance and a local peak of opt,T   at kh  slightly larger 12 

than resonance, and again this local impact to the approximately monotonic decreasing opt,T   can be seen as 13 

relatively weak. As shown in Fig. 8(d), with increasing kh , opt,R   firstly increases to a turning point, then decreases 14 

to a local minimum at kh  where resonance occurs, and after that opt,R   increases monotonically. A deeper draft 15 

generally reflects more wave energy, except for kh  values around resonance. 16 

Fig. 9 illustrates the effects of wall draft when the PTO damping is optimized for minimizing the wave 17 

transmission. The variations of power extraction efficiency opt,T , optimal dimensionless PTO damping opt,Tc , 18 

optimal wave transmission coefficient minT  and wave reflection coefficient opt,TR  are shown versus the 19 

dimensionless wave number kh . Comparing Fig. 9(a) with Fig. 8(a), there is at least one local valley of opt,T  in 20 

the computed range of kh, which greatly harms the wave power extraction around. The valleys shift towards lower 21 

frequencies with the increase in d1/h. We can see from Fig. 9(b) that the opt,Tc  corresponding to the first valley of 22 

opt,T  is nearly zero. With increasing kh , opt,Tc  of a deeper draft reaches the nearly-zero value and the set upper 23 
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limit 
ulc  more rapidly but keeps at 

ulc  over a narrower range of wave frequencies. After that, opt,Tc  sharply drops 1 

to zero again and keeps at zero.  2 

 3 

 4 

Fig.8 (a) Optimal power extraction efficiency 
max , (b) optimal dimensionless PTO damping opt,c  , (c) wave 5 

transmission coefficient opt,T   and (d) wave reflection coefficient opt,R   versus dimensionless wave number kh  6 

for different wall drafts 
1 /d h  [ h =20m, /a h =0.1, 

2 /d h =
1 /d h +0.1 and 

0 0.1V ah= ]. 7 

Comparing Fig. 9(c) with Fig. 8(c), there still exists a local valley and a local peak of wave transmission for 8 

each wall draft. The local valley of 
minT  is lower than the local valley of opt,T   for the same wall draft, and the 9 

local peaks of 
minT  and opt,T   are comparable. From around kh  where the local valley occurs, 

minT  is a little 10 

lower than opt,T   over a certain range of kh , and this range is broader for a shallower draft. In contrast, for kh  11 

lower than that where the local valley occurs, 
minT  is almost the same as opt,T  . Fig. 9(d) shows that opt,Tc  results 12 
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in the pile-supported OWC breakwater functioning as a reflective structure rather than as an absorbing system. Indeed, 1 

opt,Tc  contributes mainly to enhancing wave reflection, rather than to improving the power extraction. For all wall 2 

drafts, opt,Tc  hardly improves the performance in terms of protection against wave action, but does diminish the 3 

wave power extraction. 4 

 5 

 6 

Fig.9 (a) Power extraction efficiency opt,T , (b) optimal dimensionless PTO damping opt,Tc , (c) optimal wave 7 

transmission coefficient 
minT  and (d) wave reflection coefficient opt,TR  versus dimensionless wave number kh  8 

for different wall drafts 
1 /d h  [ h =20 m, /a h =0.1, 

2 /d h =
1 /d h +0.1 and 

0 0.1V ah= ]. 9 

 10 

To sum up, optimizing the PTO damping as opt,c   to maximize the wave power extraction allows opt,c   to 11 

match the radiation damping at each wave frequency. Instead, optimizing the PTO damping as opt,Tc  to minimize 12 

the wave transmission causes opt,Tc  to lose this matching relationship with the radiation damping. Compared with 13 



24 

 

opt,c  , opt,Tc  improve the protection performances against wave action to a very limited extent, but diminishes wave 1 

power extraction notably. The optimization to maximize power production generally improves coastal protection as 2 

well, given that the more energy that is absorbed by the structure, the less energy that is transmitted. For a pile-3 

supported OWC breakwater, therefore, it is likely that by optimizing the PTO damping towards minimum wave 4 

transmission, the loss (in terms of power extraction) far outweighs the gain (in terms of wave protection). For this 5 

reason, only the results with the optimal PTO damping opt,c   will be reported in the following. 6 

3.4 Air chamber volume 7 

When the air chamber volume is large enough, air compressibility becomes an important factor determining the 8 

wave power extraction and can no longer be ignored. It has been concluded that the bandwidth of high extraction 9 

efficiency with an appropriate volume can be broadened by considering the effect of air compressibility [43]. The 10 

effects of air chamber volume of pile-supported OWC breakwater on the wave power extraction and the protection 11 

against wave action are examined in this subsection. 12 

The variations of optimal power extraction efficiency 
max , optimal dimensionless PTO damping opt,c  , wave 13 

transmission coefficient opt,T   and wave reflection coefficient opt,R   versus dimensionless wave number kh  are 14 

shown in Fig. 10. The calculation parameters are: h =20 m,
 /a h =0.1, 

1 /d h =0.15, 
2 /d h =0.25, 

0V =0, 0.5ah , 15 

1.5ah , 3ah  and 5ah . The degree of air compressibility increases with 
0V , and 

0V =0 means the air is 16 

incompressible. We can see from Fig. 10(a) that two peaks of 
max  appear for 

0V = 0.5ah  and 1.5ah . The presence 17 

of these two peaks, reported by Sarmento and Falcão [42] and Martins-Rivas and Mei [43], is attributed to the 18 

counteraction of radiation susceptance and air compressibility, i.e. 
PTO =0 + . Recall that 

0  is defined as 19 

PTO g h −  and   is defined as /g h . Fig. 11 shows the variations of 
0  for different air chamber 20 

volumes 
0V  and   versus dimensionless wave number kh . As 

0V  increases, the 
0  curves are getting more 21 

and more downwardly oblique. There exists two interaction points between 
0  curve and   curve for 

0V = 0.5ah  22 

and 1.5ah , corresponding to the presences of two peaks of 
max . When 

0V  exceeds a certain value, e.g., 
0V = 5ah , 23 

0  curve begins to have no interaction with   curve. Correspondingly, the peak 
max  for 

0V = 5ah  is lower than 24 
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other air chamber volumes. In addition, Fig. 10 (b) indicated that a larger optimal PTO damping is desired for a larger 1 

air chamber volume when resonance occurs. 2 

 3 

 4 

 5 

Fig.10 (a) Optimal power extraction efficiency 
max , (b) optimal dimensionless PTO damping opt,c  , (c) wave 6 

transmission coefficient opt,T   and (d) wave reflection coefficient opt,R   versus dimensionless wave number kh  7 

for different air chamber volumes 
0V  [ h =20 m, /a h =0.1, 

1 /d h =0.15 and 
2 /d h =0.25]. 8 

As shown in Fig. 10(c), wave transmission for different air chamber volumes is not fundamentally different. It 9 

is interesting to note that around the values of kh  where peaks of 
max  occur, there are corresponding local peaks 10 

of opt,T  , albeit not very marked. It may be inferred that the resonances increase somewhat the wave energy passing 11 

through the back-wall of the pile-supported OWC breakwater. For 
0V = 0.5ah  and 1.5ah , which correspond to two 12 
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peaks of 
max , there exists a second local peak for opt,T  , but it is a little lower than the first local peak and happens 1 

for shorter waves. It can be concluded that air compressibility increases the transmission coefficient for certain 2 

particular wave conditions, but at an insignificant level. 3 

In brief, for a pile-supported OWC breakwater, the effect of air compressibility can counteract the radiation 4 

susceptance more than once in the computed range of wave conditions with appropriate air chamber volumes. The 5 

multiple counteractions can enhance the bandwidth of high extraction efficiency by the appearance of multi-peak of 6 

max , but are detrimental to the protection against wave action fortunately at an insignificant level. For multiple 7 

counteractions to occur, the air chamber volume should be large enough. As illustrated in Fig. 11, at least 
0V = 0.5ah  8 

is required in this case. It means that the freeboard height of the air chamber must be 0.5h , i.e., half of the water 9 

depth, which is too large from the standpoint of engineering practice. For a more reasonable value, e.g., 
0V = 0.1ah , 10 

the air compressibility may be ignored.  11 

 12 

Fig. 11 
0  coefficient of different air chamber volumes 

0V  and dimensionless radiation susceptance   versus 13 

dimensionless wave number kh  [ h =20 m, /a h =0.1, 
1 /d h =0.15 and 

2 /d h =0.25]. 14 

3.5 Practical optimization strategy 15 

 Hereinbefore, the optimization of PTO damping for maximizing wave power extraction over all wave 16 

frequencies was ideal, in the sense that the characteristics of the turbine system, e.g., the blade angles or rotational 17 

speed, were assumed to be adjusted in real time according to the incoming wave spectrum. This ideal optimization is 18 

hard to achieve in practice. A more practical optimization strategy, proposed by Lovas et al. [46], considered only a 19 
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discrete series of values for the PTO damping, each value corresponding to a certain frequency band. In the following, 1 

this strategy is adopted, and the resulting wave power extraction and protection against wave action are examined. 2 

As an example, the calculation parameters are: h =20 m, /a h =0.1, 
1 /d h =0.15,

 2 /d h =0.25 and 
0V =3 

0.1ha . The variations of dimensionless PTO damping 
PTOc , power extraction efficiency   and wave transmission 4 

coefficient T  from the ideal optimization strategy are shown in Fig. 12 as solid black lines for comparison. As 5 

shown in Fig. 12(a), two values of dimensionless PTO damping are taken as 
1c =2.067 being the opt,c   for peak of 6 

max  and 
2c =0.550 being the arithmetic mean of opt,c   over 0 10kh  . The corresponding power extraction 7 

efficiency   and wave transmission coefficient T  for 
1c  and 

2c  are shown in Figs. 12(b) and 12(c) as blue 8 

and red symbols, respectively. We can see from Fig. 12(b),   for 
1c  is almost identical with 

max  over a certain 9 

range of kh  around where the peak 
max  occurs, and   for 

2c  is very close to 
max  over other kh . Two 10 

intersection points between the curves of   for 
1c  and   for 

2c  occur at kh =3.8 and kh =5.2. For the 11 

practical optimization strategy, the dimensionless PTO damping 
PTOc  piecewise constants are: 

1c =2.067 for 12 

3.8 5.2kh   and 
2c =0.550 for 3.8kh   and 5.2kh  , as replotted in Fig. 13(a). The corresponding power 13 

extraction efficiency   and wave transmission coefficient T  with the practical optimization strategy are shown 14 

in Figs. 13(b) and 13(c). It is found that it is possible to obtain a power extraction efficiency close to 
max  and a 15 

wave transmission coefficient close to opt,T   with only two values of PTO damping. Indeed, with two values the 16 

largest difference between the ideal and practical optimization strategies is only 0.08 in terms of power extraction 17 

efficiency (difference between 
max  and  ) and a mere 0.03 in terms of wave transmission (difference between 18 

opt,T   and T ). Although these differences can be further diminished by setting more piecewise constants for 
PTOc , 19 

the two-level optimization strategy has been proven to be efficient enough over all wave frequencies. The fewer 20 

levels of 
PTOc , the easier it is to implement the strategy in practice. With the two-level optimization strategy, both 21 

the wave power extraction and the protection against wave action can be guaranteed for the pile-supported OWC 22 

breakwater. 23 
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1 

 2 

Fig.12 (a) Dimensionless PTO damping 
PTOc , (b) power extraction efficiency   and (c) wave transmission 3 

coefficient T  versus dimensionless wave number kh  from ideal optimization of PTO damping and two values 4 

of PTO damping [ h =20 m, /a h =0.1, 
1 /d h =0.15, 

2 /d h =0.25 and 
0 0.1V ah= ]. 5 

 6 

 7 
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 1 

 2 

Fig.13 Optimization of (a) dimensionless PTO damping 
PTOc , (b) power extraction efficiency   and (c) wave 3 

transmission coefficient T  from ideal strategy and practical two-level strategy [ h =20 m, /a h =0.1, 
1 /d h4 

=0.15, 
2 /d h =0.25 and 

0 0.1V ah= ]. 5 

4. Conclusions 6 

 The hydrodynamic performance of a pile-supported OWC breakwater was modeled analytically based on linear 7 

wave theory and the method of matched eigenfunction expansion. A local increase in the back-wall draft, proposed 8 

as an economical means to enhance performance, was shown to effectively increase wave power extraction and 9 

decrease wave transmission. Initially, the PTO damping was optimized ideally, targeting two objectives: maximum 10 

power extraction and minimum wave transmission. The effects of chamber breadth, wall draft and air chamber 11 

volume were examined. Given the difficulties for the practical implementation of the ideal optimization strategy, a 12 
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more practical strategy to optimize PTO damping was explored too, with the same objectives. The following 1 

conclusions can be drawn from this study.  2 

First, an optimization towards maximum power extraction can also lead to satisfactory wave transmission, but 3 

an optimization towards minimum wave transmission results in a significant reduction in wave power extraction. For 4 

this reason, optimizing the PTO damping towards maximum power extraction is preferable. 5 

Second, as regards the effects of the chamber breadth, a wider chamber can enhance the extraction bandwidth 6 

for longer waves, albeit at the expense of a slightly lower peak value; wave transmission and, therefore, protection 7 

against wave action was found to be little sensitive to chamber breadth. As for the wall draft, a shallower wall can 8 

enhance the power extraction bandwidth for shorter waves, but at the expense of greater wave transmission. This sets 9 

a limit to the minimum draft that is required for practical applications. 10 

Third, the air compressibility effect can enhance the bandwidth of high extraction efficiency with appropriate 11 

air chamber volumes, but can also increase slightly the transmission coefficient for certain particular wave conditions. 12 

In any case, it is found that, at engineering scales, the air chamber volume is too small for the air compressibility 13 

effect to play a significant role in the performance of the pile-supported OWC breakwater. 14 

Finally, applying the two-level optimization strategy, both the wave power extraction and the protection against 15 

wave action can be as efficient as the ideal optimization of PTO damping, with the advantage of being easier to 16 

implement in practice.  17 

In summary, the pile-supported OWC breakwater, with the dual function of generating carbon-free energy and 18 

providing shelter against wave action, was shown to be a promising multifunction marine structure with the potential 19 

to protect maritime activities in deeper water than conventional breakwaters (e.g., far away from the mainland) and 20 

provide electricity efficiently for the same, or other, activities. Future work will consider the effect of non-linear PTO 21 

system, e.g., a radial or bi-radial turbine, in the time-domain as well as the performance in irregular wave conditions, 22 

which may lead to more realistic results. 23 
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Appendix  1 

After inserting the expression of the air pressure fluctuation inside the chamber p
 
into Eq. (49), we have 2 

( ) ( )

( )
( )1 2

0 ,0 ,0

PTO PTO

i
1 0

i

e

b b

Q
T Z A A

gA c c



 

 
= + +  + + + 

,      （A1）
 

3 

from which it can be inferred that for an absolute value of the PTO damping coefficient tending to infinity 4 

(
PTOc → ), the wave transmission coefficient will tend to  5 

( ) ( )1

0 0 b,0

i
1 0T Z A

gA


= + .          （A2） 

6 

Fig. A1 presents an example which illustrates the effect of PTO damping on the wave transmission. Here the 7 

calculating parameters are: h =20 m, /a h =0.1, 
1 /d h =0.15, 

2 /d h =0.25, 
0 0.1V ah=  and 4.0kh = . With 8 

increasing 
PTOc , the wave transmission coefficient T  firstly increases from just above 

0T  to the peak value, later 9 

shaply drops to the valley value in a relatively narrow range of 
PTOc , and finally increases to just below 

0T . Actually, 10 

for any certain wave condition tested in this study, the variation of T  versus 
PTOc  is a curve shaped like the letter 11 

“N” and intersect with 
0T  at 

PTOc  around zero. 12 

 13 

Fig. A1 Wave transmission coefficient T  versus dimensionless PTO damping 
PTOc [ h =20 m, /a h =0.1, 

1 /d h14 

=0.15, 
2 /d h =0.25, 

0 0.1V ah=  and 4.0kh = ]. 15 
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The PTO damping coefficients 
1c  and 

2c , corresponding to the peak and valley values of T , respectively, 1 

can be evaluated by letting 
PTO 0T c  =  as 2 

( )( )22 2

PTO
1

2

4min

max 2

t t t t t

t

a a b b c a cc

c b

 
   −  + + + −       

=     
     
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3 

where 4 

( ) ( ) ( )

( )
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2
2 2 1
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5 

and 6 

( ) ( )

( )
2 1

b,0 b,0

0

i
Re

0
t e

gA
b Q A A

Z


  

= +   
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7 

For all the cases tested in this study, both 
ta  and 

tb  are positive and meanwhile 
1 20c c  , therefore the optimal 8 

PTO damping coefficient for minimizing the wave transmission is  9 

( )( )22 2

PTO

opt,

4

2

t t t t t

T

t

a a b b c a c

c
b

  − + + + + −
  

= .      （A6）
 

10 

Since in practice the value of PTO damping coefficient will not be too large, here we set an upper limit for the PTO 11 

damping coefficient as 
ulc , i.e., 

PTOc  is always not larger than 
ulc . The optimal PTO damping coefficient at the 12 

range of [0, 
ulc ] for minimizing the wave transmission is  13 

( )( )22 2

PTO

opt, ul

4

min ,
2

t t t t t

T

t

a a b b c a c

c c
b

 
  − + + + + −    

=  
 
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