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Wave radiation from a truncated cylinder of arbitrary cross section 1 

 2 

Abstract: In this paper, a semi-analytical model for solving wave radiation from a truncated 3 

cylinder of arbitrary cross section is presented based on linear potential flow theory. The water 4 

domain is divided into the interior domain beneath the cylinder and the exterior domain outside 5 

the vertical cylinder column. Radiated spatial potentials in these subdomains are expressed as a 6 

series expansion of eigen-functions using the method of separation of variables. The continuity 7 

conditions for pressure and velocity are satisfied at the interface of the two domains, where the 8 

Fourier series expansion method is employed to deal with the radius function associated terms. 9 

Therefore, the unknown coefficients in the radiated potential expressions are determined by means 10 

of the eigen-function matching method. Hydrodynamic coefficients of the truncated cylinder are 11 

evaluated directly based on the radiated spatial potentials. Case studies on wave radiation from a 12 

truncated cylinder with “cosine” and “circular” cross sections show a good agreement between the 13 

semi-analytical results of added-mass/radiation damping and numerical ones/published data. The 14 

validated semi-analytical model is then adopted to study the hydrodynamic characteristics of 15 

truncated cylinders with “circular”, “cosine”, “elliptical” and “quasi-elliptical” sections. For the 16 

latter case, the influence of draft on wave radiation is also investigated. 17 

 18 

Keywords: Potential flow; Semi-analytical model; Added-mass; Radiation damping; Truncated 19 

cylinder; Wave-structure interaction 20 

1. Introduction 21 

The prediction of hydrodynamic forces is important for both researchers and engineers for 22 

the design and optimization of offshore marine structures. Indeed, the radiation forces acting on a 23 

structure, which are due to the wave radiated as a result of the structure’s oscillation, are the object 24 

of considerable research interest. 25 

In ocean engineering, truncated circular cylinders have been widely used in many marine 26 

structures, such as wave energy converters and Spar platforms (Sudhakar and Nallayarasu, 2011; 27 

Zheng and Zhang, 2018). To attenuate waves, large, bluff, ship-like bodies whose cross-section 28 

closely resembles an ellipse turn out to be one of the options of floating breakwaters (Williams 29 

and Darwiche, 1988). Vertical cylinders with elliptical cross sections can be adopted as the 30 

foundations of some coastal/offshore bridges as well (Wan et al., 2017). A more common shape of 31 

the bridge’s foundation, however, might be a quasi-elliptical section (Liu et al., 2017; Eidem 32 

2017). For all these marine structures, the radiation problem of a cylinder with different 33 

cross-sections is involved in either their operation or installation. 34 

As early as 1980s, Yeung (1981) proposed an analytical model to study wave radiation by a 35 

truncated circular cylinder floating in finite-depth water. Bessel and modified Bessel functions 36 

were used in his model to describe the spatial velocity potential in the water domain in a polar 37 

coordinate system. Later, Bhatta and Rahman (2003) and Bhatta (2007) studied both wave 38 

diffraction and radiation problems from a truncated cylinder with an analytical method. It was 39 

revealed that a larger heave added-mass could be obtained for the cylinder with a larger draft. For 40 

the same draft of the cylinder, added mass was found to be larger for smaller water depths. 41 

Analytical studies on wave radiation from a vertical circular cylinder in other situations, e.g. in a 42 

channel, floating in shallow water, submerged in finite water depth, floating in front of a vertical 43 
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wall, were also carried out (Linton and Evans, 1992; Drobyshevski, 2004; Jiang, et al., 2013; 1 

Zheng and Zhang, 2016). The hydrodynamic analysis of arrays of circular cylinders has received 2 

attention as well, the brief review of which was given in our previous work (Zheng and Zhang, 3 

2015; 2016; 2018). 4 

As an expansion for the investigation of circular cylinder, wave radiation by a truncated 5 

elliptical cylinder either totally submerged and resting on the seabed or partially immersed and 6 

floating on the free water surface was considered by Williams and Darwiche (1990). In their study, 7 

the expressions for the velocity potential were written in terms of infinite series involving Mathieu 8 

and modified Mathieu functions in elliptical coordinates. The analytical results revealed that, for 9 

the floating cylinder case, the values of the added-mass in pitch mode due to pitch motion did not 10 

vary significantly with changing eccentricity. Later, a similar analytical approach was utilized by 11 

Zhang and Williams (1996) to study the radiation problem by a horizontally submerged disk of 12 

elliptic cross section. Analytical study on the hydrodynamic of arrays of bottom mounted or 13 

truncated elliptical cylinders can be found in Chatjigeorgiou and Mavrakos (2010), and 14 

Chatjigeorgiou (2013), respectively. 15 

All of the research works mentioned above are concerned with the vertical cylinder with 16 

either circular or elliptical cross section, and the corresponding analytical models are not able to 17 

deal with the more general radiation problem by a cylinder with a different cross section, 18 

e.g.“rectangular” or “quasi-elliptical”. Recently, Liu et al. (2016; 2017) solved the wave 19 

diffraction problem of a uniform (i.e. bottom mounted) and a truncated cylinder with 20 

non-circular/elliptical cross section, respectively. The Fourier series expansion method was used to 21 

describe the radius function of the cylinder surface and Bessel functions. The semi-analytical 22 

results of both wave excitation forces and water elevation around the cylinder agreed rather well 23 

with the numerical ones. Additionally, the problem of wave diffraction from a bottom-mounted 24 

cylinder was also considered by Disibüyük et al. (2017) with an asymptotic approach. The 25 

asymptotic solution of the wave run-up around the cylinder with cosine-type perturbation cross 26 

section provided good agreement with those by Liu et al. (2016).  27 

In the present paper, we limit our attention to the solution of the radiation problem from a 28 

truncated cylinder with an arbitrary cross section. A semi-analytical model for solving such 29 

problem is presented based on linear potential flow theory. The Fourier series expansion method 30 

previously used by Liu et al. (2016; 2017) for wave diffraction problem is applied to deal with the 31 

radius function associated terms. The rest of the paper is organized as follows. Section 2 presents 32 

the governing equations and boundary conditions of the radiation problem by a floating truncated 33 

cylinder of arbitrary cross section. Expressions and solutions of the radiated potentials are given in 34 

Section 3. Expressions of hydrodynamic coefficients are derived in Section 4. Upon validation 35 

with numerical modelling results, the semi-analytical model is applied to study the hydrodynamic 36 

characteristics of the cylinder with different cross sections, i.e. “circular”, “cosine”, “elliptical” 37 

and “quasi-elliptical”, in Section 5. Conclusions are summarized in Section 6. 38 

2. Mathematical model 39 

Consider a floating vertical truncated cylinder with an arbitrary cross section oscillating 40 

time-harmonically in water of depth h (Fig. 1). The draught of the cylinder is d. Let the Oxy plane 41 

be the horizontal mean water surface, and let (r,θ) be polar coordinates in the horizontal plane 42 

with the Oz- axis pointing upwards. The rotation motion is assumed about the point (0,0,z0), which 43 

can also be used as a reference point to calculate the radiation moment acting on the cylinder. 44 
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   1 

Fig. 1. Definition sketch: (a) plan view; (b) side view. 2 

The shape of the cylinder cross section can be described in polar coordinate system Orθz as 3 

r=R(θ), which represents the radius of any point at cross section at θ. To describe the unit normal 4 

vector at the side surface of the cylinder, the S function is introduced as: 5 

 ( ) ( ),S r r R = − , (1) 6 

where S=0 represents the cross section as well, and the unit normal vector pointing into the water 7 

at the side surface in Orθz system and in Oxyz system can be written as Eq.(2a) and Eq.(2b), 8 

respectively: 9 
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With the same assumption employed in our previous study (Zheng and Zhang, 2015; 2016), 12 

fluid motion due to small oscillation of the cylinder can be described by the velocity 13 

potential ( ) ( ) i, , , Re , , e tx y z t x y z   − =  
 

, where t is the time, ω is the angular frequency 14 

of the cylinder’s oscillation;   is a complex spatial velocity potential independent of time and 15 

satisfies the Laplace equation, i= 1− .   can be decomposed in to six components as follows: 16 

 ( )
6

R

1

i

i

i
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=

= . (3) 17 

where 
( )

R

i
  is the spatial velocity potential due to unit amplitude velocity oscillation of the 18 

truncated cylinder in i-th mode (i=1,2, …,6 denotes the motion mode of surge, sway, heave, roll, 19 

pitch and yaw, respectively), and ui represents the corresponding complex velocity amplitude of 20 

the oscillation motion in the same mode. 21 

The governing equation and the boundary conditions for the radiated spatial potential 
( )

R

i
  22 

can be written as follows: 23 

1) The Laplace equation 24 
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2) The linear free surface condition: 2 

 

( )
( )

2

R
R 0

i
i

z g

 



− =


,   0z =  and ( )r R   (5) 3 

3) The non-penetrating condition on seabed bottom: 4 
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where δi,j represents the Kronecker delta function, and 9 
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5) The radiation condition at infinity: 11 

 

( )
( )R

0 0 Ri 0
i

i
k r k

r




 
− =   

,   r → , (10) 12 

where k0 is the wave number. 13 

For the one vertical cylinder floating on the water surface, the whole fluid domain can be 14 

divided into two subdomains as indicated in Fig. 1: region 1, the interior domain beneath the 15 

cylinder, i.e. r≤R(θ), -h≤z≤-d; region 2, the exterior domain extending to infinity in the horizontal 16 

plane, i.e., r≥R(θ) and -h≤z≤0. The radiated spatial potential in these subdomains are denoted by 17 

( )
R,1

i
  and 

( )
R,2

i
 , respectively. 18 
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3 Solution to radiated potentials 1 

3.1 Radiated spatial potentials in subdomains 2 

Following our previous research work (Zheng and Zhang, 2016), the radiated spatial 3 

potentials in different subdomains can be expressed as follows: 4 

1) Region 1 5 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) i
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, , cos e
mi i i i m

m m l m l l
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  , (11) 6 

where 
( )

,

i

m lA  is the unknown coefficient to be solved in Section 3.2; Im is the modified Bessel 7 

function of first kind and order m; βl is the eigenvalue for interior region which is given by 8 

 
π
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l

h d
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， l=0, 1, 2, 3,…, (12) 9 

( )
R,p

i
  is a particular solution, the expression of which can be written in Orθz system as 10 
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2) Region 2 12 
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where 14 
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( )
,

i

m lB  is the unknown coefficient to be solved in Section 3.2; Hm is the Hankel function of first 17 

kind of order m; Km is the modified Bessel function of second kind of order m; kl is the eigenvalue 18 

for exterior region which is given by: 19 

 ( )hkgk ll tan2 −= ,     l=1,2, 3, … (17) 20 

3.2 Method of computation for coefficients 21 

The radiated spatial potentials as given in Eqs. (11) and (14) satisfy all the boundary 22 

conditions as shown in Eqs. (4-10), except those on the interface of the two subdomains at r=R(θ). 23 
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The conditions of continuity of pressure and normal velocity at r=R(θ) can be used to determine 1 

the unknown coefficients 
( )

,

i

m lA , 
( )

,

i

m lB  involved in Eqs. (11) and (14). 2 

The continuity conditions of pressure and normal velocity are given as follows: 3 

1) Continuity of pressure at the boundary S=0: 4 
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2) Continuity of normal velocity at the boundary S=0: 6 
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Inserting the expression of the radiated spatial potential into the boundary conditions above gives: 8 
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where ( )
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, and its expression in terms of the radius function of cross 11 

section can be written as: 12 
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To solve the wave radiation problem, the functions relating to the radius function of the 14 

cylinder cross section i.e., S=0, are expanded into a Fourier series as follows: 15 
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All these Fourier coefficients, such as ,0,
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Eqs.(23-30) , can be easily obtained by using: 7 
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in which q  and ( )   represent the Fourier coefficients and functions to be expanded, 9 

respectively. 10 

With the utilization of these Fourier expansions as given in Eqs. (23-30), Eqs. (20-21) can be 11 

rewritten as: 12 
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Using the orthogonality characteristics of Zl(z), cos[βl(z+h)] and eimθ, the unknown 4 

coefficients ( )
,

i

m lA  and 
( )

,

i

m lB  can be calculated by solving a complex linear matrix equation. 5 

Deduction process of the formulas and calculation of ( )
,

i

m lA  and 
( )

,

i

m lB   are given in Appendix A. 6 

4 Hydrodynamic coefficients 7 

The complex amplitudes of the radiation force exerted on the truncated cylinder in j-th mode 8 

due to a unit amplitude velocity oscillation of itself in i-th mode can be written in terms of 9 

hydrodynamic coefficients, i.e. added-mass aj,i and radiation damping cj,i, as: 10 
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w
R, R , ,i d i

j i

i j j i j i
S

F n s a c  = − = − , (37) 11 

where Sw represents the wet surface of the truncated cylinder, nj is the generalized normal with 12 

n1=nx, n2=ny, n3=nz, n4=-(z-z0)ny+ynz, n5=(z-z0)nx-xnz, n6=-ynx+xny, knjninn zyx


++=  is the unit 13 

normal vector directed into the fluid domain at the considered cylinder surface as given in Eq. (2b). 14 
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aj,i and cj,i can be written as 
( )( ), R,Im

j

j i ia F = , 
( )( ), R,Re

j

j i ic F= − . 1 

Having obtained the radiated special potentials of the whole water domain, the radiation force 2 
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iF , together with the hydrodynamic coefficients aj,i and cj,i can be calculated from Eq. (37) 3 

directly. Expressions of 
( )

R,

j

iF  in terms of 
( )

,

i

m lA  and 
( )

,

i

m lB  are given as follows: 4 

1) Radiation force in x direction (surge mode)  5 
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where 
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2) Radiation force in y direction (sway mode)  9 
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3) Radiation force in z direction (heave mode)  11 
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where 13 

 

( )

( )
( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

2π

R,p
0 0

2

2,0,0 4,0,0

2

3,0, 1 3,0,1 5,0, 1 5,0,1

2

5,0, 1 5,0,1 3,0, 1 3,0,1

i d d

0, 1, 2,6

1 1
, 3

2 4

πi 1 4 1
, 4

8i 3 5

1 1 4
, 5

8 5 3

R i

z d

R R

R R R R

R R R R

r r

i

h d f f i
h d

h d f f f f i
h d

f f h d f f i
h d

  



=−

− −

− −

=


  − − =  −  


=  
− − − − =  −  


  

+ − − + =  −  

 

. (42) 14 

4) Radiation moment about x axis at the rotation center of the cylinder (roll mode)  15 
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where 2 
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and the part contributed by the special radiated spatial potential can be expressed as 4 
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5) Radiation force moment about y axis at the rotation center of the cylinder (pitch mode)  6 
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and the part contributed by the special radiated spatial potential can be expressed as 8 
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6) Radiation force moment about z axis at the rotation center of the cylinder (yaw mode)  2 
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5 Results and discussion 4 

5.1 Model validation 5 

The vertical truncated cylinder with cosine-type radius function used by Liu et al. (2017) is 6 

adopted here as a case study of the wave radiation problem. A numerical simulation of the same 7 

case is also conducted using commercial software (ANSYS AQWA) based on the Boundary 8 

Element Method as a comparison to validate the present semi-analytical model. Figure 2 shows 9 

the vertical truncated cylinder with cosine-type radius function and the surface mesh used in 10 

numerical model. The rotation center of the cylinder is chosen as (r=0, z0=0) for this truncated 11 

cylinder with cosine-type radius function and any other cases to be studied below as well. 12 

The dimensionless quantities of the added-mass and radiation damping coefficients are 13 

defined by: 14 

 
,

,

0

j i

j i p

a
a

S d
= ; 

,

,

0

j i

j i p

c
c

S d
= , (49) 15 

where S0 is the area of the cylinder cross section, p=1 for i, j=1, 2, 3; p=2 for i, j=4, 5, 6; p=1.5 for 16 

i=1, 2, 3 and j=4, 5, 6, and for i=4, 5, 6 and j=1, 2, 3 as well. 17 
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 1 

Fig. 2. Top view of the truncated cylinder with h=2.0m, R(θ)=0.5h[1+0.1cos(3θ)], d=0.5h and the 2 

surface mesh used in numerical model. 3 

 4 

Note in this case, y=0 is a plane of symmetry, then n2, n4 and n6 in Eq. (37) are odd functions 5 

of y, whereas 
( )1

R , 
( )3

R  and 
( )5

R  are even functions. Hence 6 

( )2

R,1F =
( )4

R,1F =
( )6

R,1F =
( )2

R,3F =
( )4

R,3F =
( )6

R,3F =
( )2

R,5F =
( )4

R,5F =
( )6

R,5F =0. Moreover, due to the symmetriy 7 

property of the radius function in this case relative to the vertical centre line, i.e., r=0, we have 8 

( )1

R,3F =
( )2

R,3F =
( )4

R,3F =
( )5

R,3F =0. The reciprocity relation 
( ) ( )

R, R,

j i

i jF F=  is satisfied for the wave 9 

radiation problem from any marine structure (Falnes,2002). Therefore, the only nonvanishing 10 

off-diagonal elements of the radiation hydrodynamic matrix are 
( ) ( )1 5

R,5 R,1F F=  and 
( ) ( )2 4

R,4 R,2F F= . 11 

The normalised added-mass and radiation damping corresponding to the nonvanishing 
( )

R,

j

iF in the 12 

frequency domain as a function of kh are plotted in Figs. 3 and 4, respectively. 13 

   14 
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 1 
Fig. 3. Comparison of present semi-analytical results with numerical results in terms of 2 

normalised added-mass as a function of kh for R(θ)=0.5h[1+0.1cos(3θ)], d=0.5h: (a) 1,1a , 2,2a  3 

and 3,3a ; (b) 4,4a , 5,5a  and 6,6a ; (c) 1,5a  and 2,4a . Lines ( , , and ) 4 

represent the present semi-analytical results, and symbols (*, ○, and □) denote the numerical 5 

results.  6 

 7 

   8 

 9 
Fig. 4. Comparison of present semi-analytical results with numerical results in terms of 10 

normalised radiation damping as a function of kh, for R(θ)=0.5h[1+0.1cos(3θ)], d=0.5h: (a) 1,1c , 11 
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2,2c  and 3,3c ; (b) 4,4c , 5,5c  and 6,6c ; (c) 1,5c  and 2,4c . Lines ( , , and ) 1 

represent the present semi-analytical results, and symbols (*, ○, and □) denote the numerical 2 

results. 3 

 4 

It can be seen from Figs. 3 and 4 that the present semi-analytical results of both added-mass 5 

and radiation damping coefficients are in excellent agreement with the numerical modelling 6 

results, which implies that the semi-analytical model proposed in this paper is correct.  7 

It is also found that for the truncated cylinder with the cross section of a cosine radius 8 

function, R(θ)=0.5h[1+0.1cos(3θ)], 
( ) ( )1 2

R,1 R,2F F= , 
( ) ( )4 5

R,4 R,5F F= , 
( ) ( )1 2

R,5 R,4F F= −  are satisfied for 9 

the entire range of wave frequencies. Actually, these expressions are satisfied because of symmetry, 10 

as explained in Appendix B. 11 

In addition to the cylinder with the cross section of a cosine radius function, a truncated 12 

circular cylinder studied analytically by Yeung (1981) is selected to validate the present 13 

semi-analytical model. As shown in Fig. 5, the present results of added-mass and radiation 14 

damping are in excellent agreement with those in Yeung (1981). 15 
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 1 

Fig. 5.  Comparison of present semi-analytical results in terms of normalised added-mass and 2 

radiation damping with those in Yeung (1981) for a vertical circular cylinder, R(θ)=h, d=0.25h: (a) 3 

1,1a ; (b) 
1,1c ; (c) 

3,3a ; (d) 
3,3c ; (e) 

5,5a ; (f) 
5,5c . 4 

5.2 Additional case studies with different cross sections 5 

In this subsection, truncated cylinders with “circular”, “cosine”, “elliptical” and 6 

“quasi-elliptical” cross sections (Fig.6) are studied and compared with one another using the 7 

present validated semi-analytical model. 8 
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 1 

Fig. 6. Schematic of the truncated cylinder with 4 different cross sections 2 

 3 

The exact radius function and the corresponding ∂S/∂θ for these four cross sections are listed 4 

in Table 1. All these cross sections have the same value of area, i.e., 0.25πh2. The axial ratio (i.e., 5 

the length in the y-axis direction relative to the length in the x-axis direction) for the cases of both 6 

“elliptical” and “quasi-elliptical” is 2.0. 7 

Table 1 Radius function and 
S






 of the cross section for the four case studies 8 

shape  
( )2R

h


  

2 S
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 9 

Figures 7 and 8 show the semi-analytical results of added-mass and radiation damping 10 

coefficients, respectively. 11 
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   1 

   2 

 3 
Fig. 7. Normalised added-mass vs. kh for the truncated cylinder with four different cross sections, 4 

d/h=0.5: (a) 1,1a  and 2,2a ; (b) 3,3a ; (c) 4,4a  and 5,5a ; (d) 6,6a ; (e) 1,5a  and 2,4a . 5 

 6 
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   1 

   2 

 3 
Fig. 8. Normalised radiation damping vs. kh for the truncated cylinder with 4 different cross 4 

sections, d/h=0.5: (a) 1,1c  and 2,2c ; (b) 3,3c ; (c) 4,4c  and 5,5c ; (d) 6,6c ; (e) 1,5c  and 2,4c . 5 

It may be inferred from Figs. 7 and 8 that all of the normalised added-mass values for the 6 

different cross sections corresponding to the same mode have similar variation trends against kh, 7 

as well as normalised radiation damping. Since the “circular” and “cosine” cross sections as 8 

shown in Fig. 6 are close to each other, the corresponding values of these two truncated cylinders 9 

are not very different from each other. And the same may be said of the truncated cylinders with 10 

“elliptical” and “quasi-elliptical” cross sections. As illustrated in Fig. 7a, for kh<3.0, the longer 11 

the truncated cylinder in the y-direction, the larger the value of the dimensionless added-mass in 12 

surge mode due to the surge oscillation ( 1,1a ). This applies also to the dimensionless radiation 13 
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damping in surge mode due to the surge oscillation ( 1,1c ), even for the entire range of kh studied 1 

(Fig. 8a). Even though the length in the x-direction of the cylinder with “cosine” cross section is 2 

slightly smaller than that with “circular” shape, slightly larger values of its corresponding 2,2a  3 

and 2,2c  are obtained compared with those of “circular” shape for kh<3.0 and the whole range of 4 

kh studied, respectively. The values of 3,3a  and 3,3c  of different cylinders with the same cross 5 

section area, especially the latter, are found very close to each other regardless of the cylinder 6 

section shape (Figs.7b and 8b). Following the analysis of Yeung (1981), for all the four cylinders 7 

with different shapes of cross section, it might be learnt from Figs.7b and 8b that 3,3c  decays 8 

monotonically from a finite value as kh increases, whereas 3,3a  starts from a logarithmic 9 

behaviour and attains a minimum before approaching its asymptotic infinite-frequency limit. In 10 

the case of the “elliptical” and “quasi-elliptical” cross sections, the values of 4,4a  are less 11 

affected by the relative water depth (kh) than they are in the case of the other cross sections (Fig. 12 

7c). Variations of 4,4c  and 5,5c  with kh for different cylinders as given in Fig. 8c are found to 13 

be very similar to those of 1,1c  and 2,2c  (Fig. 8a). For the “circular” cross section, we have 14 

∂S/∂θ=0, thus there are no radiation forces due to its yaw motion with the inviscid water 15 

assumption inherent in potential flow theory, resulting in 6,6a = 6,6c =0, as may be seen in Figs. 7d 16 

and 8d. The largest values of 6,6a  for the “elliptical” and “quasi-elliptical” cross sections are 17 

0.101 and 0.076, respectively, both occurring at kh=2.45. As a comparison, the peak value of 6,6a  18 

for the “cosine” cross section is a mere 0.011, at kh=4.11. The corresponding largest values of 19 

6,6c  for “cosine”, “elliptical” and “quasi-elliptical” cross sections are 0.007, 0.070 and 0.050, 20 

occurring at kh=5.64, 3.51 and 3.75, respectively (Fig. 8d).  21 

Figures 7e and 8e present the variation of 1,5a , 2,4a  and 1,5c , 2,4c , separately. It can be 22 

seen that the values of these hydrodynamic coefficients for the “quasi-elliptical” cross section are 23 

closer to those of “elliptical” cross section than they are to those of “circular” and “cosine” 24 

sections. 25 

5.3 Effect of cylinder draft 26 

As mentioned by Chakrabarti et al. (2006), there are several challenges in the design, 27 

construction and installation of a floating caisson to be used as a bridge pier, not least the fact that 28 

the wave induced hydrodynamic forces vary significantly during installation. In this section, the 29 
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effect of the cylinder draft on hydrodynamic coefficients of the cylinder of “quasi-elliptical” cross 1 

section is investigated. The radius function and the corresponding ∂S/∂θ for the “quasi-elliptical” 2 

case as listed in Table 1 in Section 5.2 are adopted. Semi-analytical values for the dimensionless 3 

added-mass and radiation damping coefficients for five different cases with the cylinder draft 4 

ranging from d/h=0.1 to d/h=0.9 are presented in Figs. 9 and 10, respectively. 5 

 6 

   7 

   8 

   9 
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   1 
Fig. 9. Normalised added-mass vs kh for the truncated cylinder of “quasi-elliptical” cross section 2 

with different draft: (a) 1,1a ; (b) 2,2a ; (c) 3,3a ; (d) 4,4a ; (e) 5,5a ; (f) 6,6a ; (g) 1,5a ; (h) 2,4a . 3 

 4 

   5 

   6 
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   1 

   2 
Fig. 10. Normalised radiation damping vs kh for the truncated cylinder of “quasi-elliptical” cross 3 

section with different draft: (a) 1,1c ; (b) 2,2c ; (c) 3,3c ; (d) 4,4c ; (e) 5,5c ; (f) 6,6c ; (g) 1,5c ; (h) 4 

2,4c . 5 

For the cylinder of “quasi-elliptical” cross section oscillating in long waves, kh<1.0, as 6 

shown in Figs. 9a and 9b, the larger the draft is, the larger the values of both 1,1a  and 2,2a  of 7 

the cylinder are. For kh ranging from 0.5 to 3.0, there are peaks for both 1,1a -kh and 2,2a -kh 8 

curves. The cylinder with a larger draft has larger peak values of 1,1a  and 2,2a , whereas has 9 

smaller corresponding kh where the peak occurs. Similar effect of the draft can also be found in 10 

Figs. 10a and 10b on 1,1c  and 2,2c , except for the case of d/h=0.1, as shown in Fig. 10b, that 11 

2,2c  increases all the time with the increases of kh and there is no peak of the 2,2c -kh curve for 12 

all the wave number considered. It can be learnt from Fig. 9c that as d/h increases from 0.1 to 0.7, 13 

3,3a  turns smaller and smaller independently with kh. While if d/h keeps increasing, i.e. from 0.7 14 

to 0.9, 3,3a  will otherwise increase. When kh→∞, 3,3a  tends to be a finite constant. As a 15 
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comparison, as given in Fig. 10c, 3,3c  decreases all the time with d/h increasing from 0.1 to 0.9. 1 

For kh→0, there is an inversely-proportional relationship between 3,3c  and d/h. Actually, for kh2 

→0, 3,3c →πh/(16d) is satisfied, which can be proved with the assumption of small-body 3 

approximation and the reciprocity relation between heave radiation damping and heave excitation 4 

force (Falnes, 2002). As presented in Fig. 9d, for arbitrary kh, 4,4a  decreases with increasing d/h 5 

ranging from 0.1 to 0.5, while it increases as d/h increases from 0.5 to 0.9. As a comparison, 4,4c , 6 

5,5a  and 5,5c  also first decrease with increasing draft, then increase, whereas the corresponding 7 

d/h where the minimum 4,4c , 5,5a  and 5,5c  occur are smaller than those of 4,4a , as illustrated 8 

in Figs. 10d, 9e and 10e. The influence law of cylinder draft on the wave radiation moments 
( )

R,

i

iF  9 

(i=4, 5) in terms of 4,4a , 4,4c , 5,5a  and 5,5c  can be explained from the view of the 10 

constitution of 
( )

R,

i

iF  (i=4, 5). When d/h is very small, extremely when d/h→0, 
( )

R,

i

iF  (i=4, 5) will 11 

not be vanishing and it will be dominated by the pressure at the bottom of the cylinder, therefore 12 

the dimensionless quantities of the corresponding hydrodynamic coefficients could be very large 13 

from Eq. (49). As d/h increases from the small value, e.g. d/h=0.1, according to Eq. (49), 4,4a , 14 

4,4c , 5,5a  and 5,5c  will apparantly decrease first when the contribution of the pressure on side 15 

wall still makes up a small proportion of 
( )

R,

i

iF  (i=4, 5). While after d/h being increased to some 16 

extent that the pressure loading on the side wall of the cylinder dominates 
( )

R,

i

iF  (i=4, 5), 
( )

R,

i

iF  17 

will shows an approximate exponential growth with the further increase of d/h, leading to an 18 

increasing trend of 4,4a , 4,4c , 5,5a  and 5,5c . Variations of 6,6a  with kh for different draft as 19 

given in Fig. 9f are very similar to those of 1,1c  as illustrated in Fig. 10a. The peak value of 6,6a  20 

for d/h=0.9 is 0.079 occurring at kh=2.21, larger than the peak value for any other cylinder with 21 

smaller draft. It can be seen from Fig. 10f that 6,6c  first increases with increasing kh, then 22 

decreases, leading to peaks for 6,6c -kh curves, except for the case of d/h=0.1, which increases all 23 

the time with increasing kh. The largest peak value of the 6,6c -kh curves is 0.0521, occurring at 24 

kh=4.22 for the cylinder with d/h=0.3. As exhibited in Figs. 9g and 10g, 1,5a  and 1,5c  decrease 25 
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all the time with increasing d/h for the whole range of kh, except for 1,5c  when kh>3.5. As a 1 

comparison of the effects on 1,5a  and 1,5c , on the contrary, d/h shows an opposite effect on 2 

2,4a  and 2,4c  (Figs. 9h and 10h).  3 

6 Conclusions 4 

In this paper, a semi-analytical model based on linear potential flow theory is established to 5 

solve the radiation problem from a truncated cylinder of arbitrary cross section floating in finite 6 

water depth. The water domain is divided into an interior domain beneath the cylinder and an 7 

exterior domain outside the cylinder column. The method of separation of variables is used to 8 

express the radiated potential in both domains. The terms associated to the radius function at the 9 

interface of the two domains (continuity conditions) are dealt with Fourier series expansion 10 

method. On this basis the eigen-function matching method is applied to determine the unknown 11 

coefficients in the expressions of radiated potential. 12 

The semi-analytical model thus developed is validated by comparing its results of 13 

added-mass and radiation damping for a cylinder of cosine cross section with numerical modelling 14 

results. Excellent agreement is obtained between the semi-analytical and numerical modelling 15 

results. In addition, a truncated circular cylinder that has been studied by other researchers is taken 16 

as another case to validate the present semi-analytical model. Once validated, the semi-analytical 17 

model is applied to obtain the hydrodynamic coefficients for cylinders with four different cross 18 

sections, i.e. “circular”, “cosine”, “elliptical” and “quasi-elliptical”, with the same cross section 19 

area. Additionally, the influence of the draft on the wave radiation from the truncated cylinder of 20 

“quasi-elliptical” cross section– of particular interest for engineers installing a floating caisson to 21 

be used as a bridge pier – is investigated.  22 

The semi-analytical results of these cases reveal that: 23 

(a) For a given cross-section area, the dimensionless added-mass and radiation damping in 24 

heave mode due to the heave oscillation ( 3,3a  and 3,3c ), especially the latter, of cylinders with 25 

the same cross section area and draft are found to be very close to each other regardless of the 26 

cross section shape. 27 

(b) For a given cross-section area and draft, the largest values of the dimensionless 28 

added-mass and radiation damping in yaw mode due to the yaw oscillation of the cylinder ( 6,6a  29 

and 6,6c ) for the elliptical cross sections are 0.101 and 0.070, respectively, far greater than for 30 

“quasi-elliptical” (0.076 and 0.050) and “cosine” (0.011 and 0.007) cross sections. 31 

(c) For the cylinder of “quasi-elliptical” cross section, when the relative water depth tends to 32 

zero (kh→0), there is an inversely proportional relationship between 3,3c  and the relative 33 

cylinder draft (d/h). 34 

(d) For the cylinder of “quasi-elliptical” cross section at any specified kh, as d/h increases 35 

from 0.1 to 0.9, the values of the dimensionless added-mass and radiation damping in roll/pitch 36 
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mode due to the roll/pitch oscillation of the cylinder ( 4,4a , 4,4c , 5,5a  and 5,5c ) first decrease 1 

and then increase, resulting in minimal values with suitable selections of d/h. 2 

The present work was concerned with the hydrodynamic problem of one vertical cylinder 3 

with arbitrary cross sections. If several cylinders are deployed in proximity, the hydrodynamic 4 

interactions between them may be relevant. Wave diffraction and radiation from multiple 5 

truncated cylinders of arbitrary cross section will be the object of future work. 6 
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Appendix. A  Derivation process of the formulas and calculation for 
( )

,

i

m lA  and 
( )

,

i

m lB  15 

After multiplying both sides of Eq. (32) by 
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z h

h d
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 and integrating for z∈[-h, 16 
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Similarly, by multiplying both sides of Eq. (33) with 
( ) ie

2π

Z z

h





−

 and integrating in z∈[-h, 4 

0] and θ∈[0, 2π], we get, for any pair of integer (τ, ζ): 5 
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To evaluate the unknown coefficients 
( )

,

i

m lA  and 
( )

,

i

m lB , we take (2M+1) terms 4 

(m=-M,…,0, …, M) and (L+1) terms (l=0,1, …, L) in Eqs. (11) and (14) and take (τ=-M,…,0, …, 5 

M) and (ζ=0,1, …, L) in Eqs. (A1) and (A6) as well, thus a 2(2M+1)(L+1) order complex linear 6 

equation matrix is obtained, which can be used to calculate the same number of unknown 7 

coefficients 
( )

,

i

m lA  and 
( )

,

i

m lB . In all the semi-analytical computations as given in this paper, M=12 8 

and L=8 are taken to lead to accurate results. 9 
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Appendix. B  Proof process of 
( ) ( )1 2

R,1 R,2F F= , 
( ) ( )4 5

R,4 R,5F F= , 
( ) ( )1 2

R,5 R,4F F= −  for the case studied 11 

in Section 5.1 12 

To make it easy understood, a sketch is given in Fig.B.1, in which RF   is the horizontal 13 

radiation force due to unit velocity amplitude of the structure oscillating in the direction θ=2π/3. 14 

Apparently, due to symmetry property of the vertical cylinder with radius function 15 

R(θ)=0.5h[1+0.1cos(3θ)], the horizontal radiation forces 
( )1

R,1F  and RF   are in the same 16 

directions of the corresponding oscillating velocities, separately, and are also proportional to them 17 

in complex amplitude with the same scale factor 
( )1

R,1F . 18 

For the structure oscillating in any direction with unit velocity amplitude, the velocity 19 

amplitude denoted as eiθ (as given in Fig.B.1), can be expressed by the sum of velocities 1 and 20 

e2iπ/3 as: 21 

 
i 2iπ/3

1 2e ea a = + , (B1) 22 

where a1 and a2 are two real parameters that can be easily determined. 23 

The radiation force RF   corresponding to the velocity e2iπ/3 can be written as:  24 



  29 
 

 
( )1 2iπ 3

R R,1eF F = . (B2) 1 

 2 

Fig. B.1 A sketch of radiation forces 3 

Then the radiation force corresponding to eiθ, denoted as RF  , can be written as the sum of 4 

those due to a1 and a2e2iπ/3 as follows: 5 

 
( ) ( )1 1 i

R 1 R,1 2 R R,1eF a F a F F  = + = . (B3) 6 

It means that the horizontal radiation force always equals to the product of 
( )1

R,1F  and the unit 7 

velocity amplitude, regardless of the oscillating direction. For θ=π/2, 
( ) ( )2 1iπ 2 iπ 2

R R,2 R,1e eF F F = = , 8 

i.e. 
( ) ( )1 2

R,1 R,2F F= . 9 

Similarly, 
( ) ( )4 5

R,4 R,5F F=  and 
( ) ( )1 2

R,5 R,4F F= −  can also be proved, in which the minus sign is 10 

induced by the oppsite relationship between (n4 vs. ny, ynz) and (n5 vs. nx, xnz). 11 
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