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Abstract 

Microplastics are small pieces of plastic debris <5 mm in diameter. These particles 

have accumulated in the environment as a consequence of: the direct release of 

small particles; such as those used in cosmetics; or as a consequence of wear, for 

example fibres released from textiles. The main source of microplastic is considered 

to be the fragmentation of larger items of plastics in the environment. Microplastics 

are widely distributed in freshwater and marine environments including remote 

locations such as the arctic and deep sea. A wide range of organisms are known to 

ingest microplastics and laboratory studies indicate the potential for harmful effects. 

Plastic debris can also transport co–contaminants including chemical additives and 

pollutants sorbed from sea water.  These chemicals can be released to organisms 

upon ingestion, but there is little evidence that plastics provide an important pathway 

leading to toxicological effects in environmentally relevant scenarios. Removing 

microplastics form the environment is impractical and the most effective solutions are 

to minimise the release of plastics to the environment as litter. In this regard much 

could be achieved by actions to reduce the accumulation of larger items of litter such 

as packaging which will eventually fragment into microplastics.   
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5.1 Introduction 

 

In order to understand the sources, consequences and accumulation of microplastics 

in the environment it is important to first set microplastics into context within the 

wider topic of marine litter and in particular plastic litter.  Plastics are synthetic 

polymers that can be made into a vast range of inexpensive, lightweight and durable 

products that bring numerous societal benefits (Thompson et al. 2009b). There are 

many variants, with the most common plastics including polyethylene (PE), 

polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET) and 

polystyrene (PS). The versatility of plastics has resulted in an exponential increase in 

global demand, from around 5 million tonnes in the 1950s to over 300 million tonnes 

today (Plastics Europe 2015).  

 

Some applications of plastics have a long service life, such as PVC and PP 

components in vehicles or the construction industry. However, around 40% of all the 

plastic produced is used for packaging, which is predominantly single use (Plastics 

Europe 2015). These items are frequently made of highly durable polymers such as  

PE or PET (Barnes et al. 2009). As a consequence end of life plastic items are now 

a major component of waste in managed systems and substantial quantities are 

accumulating as litter in the environment (Jambeck et al. 2015). It is important to 

recognise that numerous types of material have been reported as litter but  the vast 

majority is plastic; accounting for around 70% of the litter collected in beach cleans 

the most abundant items being, single-use plastic packaging, together with rope and 

netting (Nelms et al. 2017). Plastic litter has been identified as a major global 



problem by the United Nations Environment Assembly and in the G7 Leader´s 

declaration 2015 (GESAMP 2016, Werner et al. 2016). 

 

Plastic debris has been reported across a wide range of sizes from discarded fishing 

nets that can be 1000s of meters in length to microscopic fragments just microns in 

diameter. This paper will focus on microplastic which is widely defined as being 

pieces less than 5 mm in diameter (Arthur et al. 2009, Galgani et al. 2010). 

Microplastics accumulate from primary and secondary sources. The distinction 

between the two is based on whether the particles were originally manufactured 

within the microplastic size range (primary) or whether they have resulted from the 

fragmentation of larger items (secondary). 

 

While the term microplastic was first used to describe microscopic fragments of 

plastic in 2004 (Thompson et al. 2004) piece s in the currently defied microplastic 

size range have been reported   since the 1970s and it is apparent  that microplastic 

are a ubiquitous component of anthropogenic debris in marine and freshwater 

environments  (Carpenter et al. 1972, Browne et al. 2011, Eriksen et al. 2013, 

Eerkes-Medrano et al. 2015, Lebreton et al. 2017). Microplastics greatly outnumber 

large plastic items in marine systems, but only account for a small proportion of the 

total mass of plastic in the ocean (Browne et al. 2010, Cozar et al. 2014). This 

means that even if we were able to stop the discharge of macroplastic litter into the 

sea today, on-going degradation of the larger litter items already at sea and on 

beaches would likely result in a sustained increase in microplastics for many years to 

come. Additionally, with an ever-increasing reliance on plastic products, their use 

and disposal will continue, which in the absence of improved waste management will 



further increase the accumulation of microplastic (Law and Thompson 2014, 

Thompson 2015). 

 

Once in the marine environment, microplastic cannot be cost-effectively detected, 

collected for recycling or successfully removed (Andrady 2017). It also presents a 

range of negative economic and environmental consequences (Werner et al. 2016).  

This review will consider the definition of microplastics, describe the sources, 

distribution patterns and subsequent impacts in the marine environment. We will also 

discuss potential solutions to reduce further accumulation of microplastics; focussing 

product design, waste management, recyclability, education, policy and behaviour 

change. 

 

 

5.2 Size Classifications of Plastic   

 

Plastic debris can be defined and described in a variety of ways including by origin 

(e.g. from the land, fishing-related or sewage-related debris) size, shape, colour, 

polymer type or original usage. One of the commonly used calcifications is according 

to size. Plastic can enter the aquatic environment in a wide range of sizes and has 

been reported from 1000s of meters in length to microns in diameter (Cole et al. 

2011, Hidalgo-Ruz et al. 2012). Three categories that are widely used to describe 

the size of plastic contamination; macroplastic (>20 mm diameter), mesoplastic (5–

20 mm)  and microplastic  (<5 mm) (Thompson et al. 2009a, MSFD GES Technical 

Subgroup on Marine Litter 2011). However, it is important to note that there are no 



universal conventions on nomenclature and this challenges inter-comparability of 

data.  

 

The accumulation of macroplastic has been reported in a wide range of habitats 

(Ryan et al. 2009, Browne et al. 2015a, Eerkes-Medrano et al. 2015). Due to its high 

visibility, contamination of the environment by macroplastic may be perceived as one 

of the most concerning forms of plastic pollution. Clean-up campaigns typically focus 

on these larger items and there is wide geographical variability in abundance, which 

increases the difficulty of analyzing potential trends. Items of macroplastic debris are 

often sufficiently recognisable to be categorised according to their original usage; for 

example, packaging, fishing or sewage related debris. Attributing sources of 

microplastics is more challenging. 

 

 While the upper bound of microplastics is reasonably consistently taken to be 

particles less than 5 mm the lower bound is often set by operational constraints. For 

example, in field studies it is the mesh size of nets used to sample surface water 

(Law et al. 2010) or the sieves used in sampling beach sand (Hidalgo-Ruz et al. 

2012) that primarily determine the lower-size limit of sampled microplastics. Particles 

as small as a few microns in diameter have been separated form an environmental 

matrix and identified as plastic using spectroscopy; it seems likely that even smaller 

nanoplastic particles also occur in the environment, but it is not currently feasible to 

separate and identify plastic particles of this size from complex environmental 

mixtures (GESAMP 2016, Koelmans et al. 2016). 

 

[ Figure 1 near here] 



 

 

5.3 Sources of Microplastics 

Microplastics can result from the direct release of small particles (<5mm in diameter). 

Such particles are described as primary microplastics, for example microbeads which 

are  used in some cosmetics (Napper et al. 2015,  Figure 1a), They can also be formed 

form the fragmentation of the larger plastic items once they have entered the 

environment  and these are described as secondary microplastics (Figure 1b).  

 

There are a wide range of potential sources and pathways that result in the 

accumulation of plastic in the marine environment. Much of the litter in aquatic 

environments enters as macroplastic from land-based actions such as general 

littering, dumping of waste and loss during waste collection as well as that from 

inappropriately managed landfill sites (Duis and Coors 2016). Plastic waste is 

collected, and then contained in a waste management framework which is designed 

to help minimize loss to the environment. From these land-based sources, plastic litter 

then has the potential to end up in municipal wastewater and freshwater systems (e.g. 

from windblown litter escaping) which can then potentially emit to the oceans from 

coastlines or rivers (Cole et al. 2011, Jambeck et al. 2015, Schmidt et al. 2017). In 

industrialized countries, waste that is deposited in landfills is usually covered regularly 

with soil or a synthetic material, and the landfill is cordoned by a fence to prevent any 

debris accidentally leaving. However, in developing regions this is often not the case 

(Barnes et al. 2009, Jambeck et al. 2015).  

 



It has been estimated that on a global scale, the input of plastic into the oceans from 

land based sources is in the region of 6.4 million tons per annum. Furthermore, 

assuming there are no improvements in waste management infrastructure, the 

cumulative quantity of plastic waste available to enter the marine environment from 

land could increase by approximately three times over the next decade (Jambeck et 

al. 2015) (Figure 2). 

 

[Figure 2 near here] 

 

 

In addition, quantities of plastic are released from marine based sources such as 

shipping, aquaculture and commercial fishing (Andrady 2017, GoScience 2017). 

Studies have indicated a significant relationship between the number of ocean-based 

plastic items found on beaches and the level of commercial fishing activity (Ribic et 

al. 2010) Unintentional loss of in-service macroplastic products can also occur when 

catastrophic events, such as tsunamis(Lebreton and Borrero 2013, Kamachi et al. 

2016), hurricanes, or floods, carry large amounts of material of all kinds into the 

marine environment (Thompson et al. 2005, Law et al. 2010, GESAMP 2016).   

 

The main source of microplastics in the environment is typically regarded as the  

fragmentation of these larger items of plastic debris; resulting in secondary 

microplastics (Cole et al. 2011, Law and Thompson 2014, GESAMP 2015). This 

degradation occurs as a consequence of ultra-violet (UV) radiation and oxidation, 

which overtime can reduce the structural integrity of the plastic, resulting in 

fragmentation. This can be facilitated by physical forces from abrasion, wave-action 



and turbulence (Barnes et al. 2009, Andrady 2017). Depending on the chemistry of 

the polymer, bulk morphology and where it is exposed at, microplastics degrade at 

different rates in the marine environment (Gregory and Andrady 2003, Andrady 2011). 

However, fragmentation rates of plastic are largely unknown, and as a result little 

quantitative information is available on the relative contribution of secondary 

microplastics overall (Koelmans et al. 2014, Law and Thompson 2014). Given the 

large amount of macroplastics entering the environment, it is generally assumed that 

most microplastics have arisen from the fragmentation of larger items, continuously 

becoming smaller and smaller (GESAMP 2015).  

 

Secondary microplastic can also be generated as a consequence of items such as 

tyres and textiles becoming abraded during life in service. Subsequently, it is clear that 

substantial quantities of fibres have accumulated in the environment (Lusher et al. 

2013, Woodall et al. 2014, Dris et al. 2015). For example; the washing of clothes made 

from synthetic materials is a direct secondary microplastic source. These microplastic 

fibers are released from a garment during a washing cycle and then can enter the 

environment via wastewater. Some fabrics release fibers more readily than others; 

research by Napper and Thompson (2016) reported that a wash load of 6 kg of acrylic 

clothing could release over 700,000 fibers.  

 

Primary microplastics enter the marine environment in a variety of different ways as 

particles that are already within the microplastic size range. These particles are 

produced through extrusion or grinding, either as a feed stock for manufacture of 

larger products or for direct use (Barnes et al. 2009); for example in cleaning 

products (Cole et al. 2011), cosmetics (Fig.1a) (Zitko and Hanlon 1991, Napper et al. 



2015)   and as air-blasting media (Barnes et al. 2009). Compared to secondary 

microplastics, production volumes can be used to provide estimates of potential 

inputs to the environment. Some uses such as in cosmetic products is now 

beginning to be regulated (Napper et al. 2015, Anderson et al. 2016). 

 

Plastic microbeads from facial scrubs are an example of primary microplastics used in 

cosmetics. After their intended use, these microbeads are likely to enter household 

wastewater and some will escape the waste water treatment system into the 

environment (Browne et al. 2011, van Wezel et al. 2016). It has been estimated that 

94,500 microbeads could be released from an defoliant in a single use, and this was 

estimated to translate to the UK alone emitting 16–86 tonnes yr−1 (Napper and 

Thompson 2016). Other potentially important sources are from microplastic used in 

medicines, drilling fluids for oil /gas exploration and in industrial abrasives (i.e. for air-

blasting to remove paint from metal surfaces) (Derraik 2002, Barnes et al. 2009, Duis 

and Coors 2016).  

 

While there has been much focus on the marine environment, a wide range of 

freshwater habitats are also contaminated with plastic, and rivers provide major 

pathways for plastics to the ocean (Dris et al. 2015, Eerkes-Medrano et al. 2015, 

GESAMP 2016). Microplastics have been detected at very high levels globally in rivers 

and lakes (Auta et al. 2017). Rivers can transport considerable quantities of plastic 

(micro - macro size) to the oceans and some of this debris can travel from locations 

far inland. The concentrations in various parts of a river reflect different sources such 

as waste water treatment plants, tributaries and weirs (Claessens et al. 2011, Klein et 

al. 2015, Mani et al. 2015). Substantial quantities of plastic including microbeads from 



cosmetics, sanitary related items and other particles can be carried to rivers or directly 

to the oceans with waste water. 

 

For any plastic that enters waste water treatment, the efficiency of capture (i.e., before 

the effluent is discharged into the environment) depends on the particular treatment 

process. There is limited information on the efficiency of waste water treatment plants 

to capture plastic; particularly microplastic. However, some studies indicate extremely 

high capture rates (>95%) of plastic particles (Murphy et al. 2016). Given the large 

volume of influent daily, even low loss rates could result in detectable concentrations 

of these plastic particles in the environment (Browne et al. 2011, Eriksen et al. 2013). 

Murphy et al. (2016) predicted that waste water treatment plants could release 65 

million microplastic particles every day (Murphy et al. 2016) . In the event of sewage 

overflow, wastewater and any plastic debris therein can also bypass treatment as a 

consequence. Even if microplastic is intercepted during wastewater treatment the 

resultant sewage sludge is often returned to the land as a fertilizer, hence plastic is 

still released to the environment. Most sources of microplastic are extremely difficult 

to trace back to their original source. For plastic pieces larger than around 20µm, it is 

possible to identify what type of plastic polymer a particular piece of debris is made 

out of. For larger items of plastic debris it is often easier to identify the origin for; such 

as fishing gear and sewage-related debris (Nelms et al. 2017).  

 

Trends of production, consumer-use and demographics all point to a further increase 

of in the use of plastic in the future (Auta et al. 2017, Geyer et al. 2017). Hence, 

there are considerable concerns that the problems of plastic pollution will escalate 

unless disposal practices change. Despite difficulties in identifying specific sources 



of microplastic sized fragments, ooverall the sources of marine plastic litter are 

mostly well known; however there is a lack of knowledge concerning the relative 

importance of the different sources. Furthermore, due to the wide variety of sources 

and pathways, estimations for the amount of plastic in the environment are difficult to 

obtain and will require direct measurement of the input rates of plastic waste by 

wind, tidal and ocean wave transport. They will also require a consistent protocols for 

replicable measurement of  measurement of waste generation, collection rates, 

classification and waste disposal methods for rural areas and urban centers in 

countries around the world (Geyer et al. 2017, Law and Annual 2017).  

 

 

5.4 Distribution and Abundance  

 

Plastic debris is found in many different sizes and can accumulate in the oceans 

(Thompson et al. 2004), estuaries (Browne et al. 2010, Browne et al. 2011)and even 

in remote locations such as in arctic ice (Obbard et al. 2014) Within these 

environments, microplastic has been reported at the sea surface (Cozar et al. 2014) 

suspended in the water column (Lattin et al. 2004) and in sediments, including those 

in the deep sea (Van Cauwenberghe et al. 2013, Woodall et al. 2014). Plastic has also 

been reported in freshwater environments although there are fewer studies than in the 

marine environment (Eriksen et al. 2013, Eerkes-Medrano et al. 2015, Mani et al. 

2015). 

 

The concentration of microplastics recorded is directly influenced by the sampling 

method used, which can vary significantly between studies. A study modelling 



mismanaged plastic waste discharged from the land estimated annual inputs to the 

ocean of 4.8–12.7 million tonnes of macroplastic items globally (10,000–27,000 

tonnes in the UK) (Jambeck et al. 2015). An alternative approach used empirical 

counts of litter at sea to describe the abundance of specific types of litter in particular 

environmental compartments. For example, based on data collected from net tows, 

Cozar et al. estimated there were 7,000–35,000 tonnes of small (approximately 

25mm or less) debris at the sea surface (Cozar et al. 2014), while van Sebille et al. 

estimate 93,000–236,000 tonnes, equivalent to 15–51 trillion small particles (van 

Sebille et al. 2015) and Eriksen et al. (2014) estimated there was 270,000 MT of 

floating plastic in the oceans. However, these estimates exclude microplastics that 

can pass through the plankton nets used to gather the data (Eriksen et al., 2014). 

Hence discrepancies between figures can arise from differences in the method of 

estimation. Different sampling matrices such as sediment or water column use 

different techniques and express the results in various units making inter-comparison  

difficult (Hidalgo-Ruz et al. 2012). A further approach is to estimate inputs of specific 

categories of litter. For example, based on daily UK usage, it was estimated that a 

specific type of product, facial scrubs, could lead to release of 86 tonnes of 

microbeads (Figure 2a) to the environment per annum (Napper et al. 2015).  

 

There are considerable challenges in extrapolating from the very limited empirical 

data available to make predictions even about current patterns of spatial and 

temporal distribution of plastic litter and likely trends. Some of the best estimates 

available have uncertainty levels of over 100 fold (van Sebille et al. 2015). There is 

also a lack of temporal data on which to base future projections. Hence making 

reliable long-term future predictions is not feasible. However, assuming business as 



usual, Jambeck et al. (2015) predict a three-fold increase in the amount of plastics in 

the ocean between 2015 and 2025 (Fig.2).  

 

Given the practical limitations in sampling such a diverse form of contamination, it 

may therefore be beneficial to link monitoring either to categories of litter where there 

is clear evidence of harm, or to assessing the efficacy of specific interventions. This 

could include monitoring the abundance of plastic items that have been to focus of 

specific policies reductions for example the quantity of plastic bags found in the 

environment as a consequence of the single-use bag tax or reductions in the 

abundance of plastic microbeads in sewage as a consequence of legislative 

measure to reduce the quantity of microbeads used in cosmetics. Whereas 

widespread quantification of all microplastics, while important to our understanding of 

encounter rate and possible hare is likely to provide a relatively blunt tool for 

monitoring change. Whatever approach is used it is essential to be explicit about the 

limitations of the given sampling strategy and the associated limitations of any 

extrapolations made in subsequent modelling studies.  

 

Despite current uncertainties in estimating levels of contamination, it is clear is that 

plastics have only been mass produced since the 1950s and therefore current levels 

of contamination reflect fairly rapid accumulation rates over just a few decades. The 

scale of the problem ahead is illustrated when one considers that on a global scale a 

similar quantity of plastics are likely to be produced in the next eight years as were 

produced in the whole of the 20th century (estimates updated to present day, after 

Thompson et al. 2009a). At the same time, it is important to recognise that the 

accumulation of plastics in the ocean is largely avoidable. By comparison with many 



other current environmental challenges, the benefits resulting from the use of 

plastics are not directly linked to the emission of plastic debris to the environment or 

to degradation of the environment. Hence, in theory at least, it is possible for society 

to retain the benefits of plastic products and at the same time reduce the quantity of 

plastic litter entering the environment (Thompson 2015). Identification of the sources 

is important to gain an accurate assessment of the quantities of plastics and 

microplastics entering the ocean, to provide an indication of regional or local ‘hot 

spots’ of occurrence, and to determine the feasibility of introducing management 

measures to reduce these inputs (GESAMP 2015). 

 

Estimating the distribution of microplastic based on secondary inputs is particularly 

difficult since it relies on accurate assessment of the distribution of macroplastics 

and the degradation process (which is also not well known). There is a lack of data 

comparing the abundance of macroplastics and microplastics at local scales. 

However, it is unlikely that the abundance of microplastic and macroplastics will be 

closely correlated as large and small objects will be influenced by environmental 

processes to differing degrees. For example, larger floating objects will be more 

prone to transport by winds than microplastics (Browne et al. 2010, Kukulka et al. 

2012) and this is reflected in circulation models used to simulate the transport of 

micro- and macro-debris (Eriksen et al. 2014, van Sebille et al. 2015). 

 

Attention is currently being directed within the EU (MSFD GES Technical Subgroup 

on Marine Litter 2011) to compare and harmonise monitoring protocols, including 

those used for microplastics, to allow greater inter-comparability among data, and 

this topic has recently been the focus of a workshop hosted by the Ministry of the 



Environment in Japan as part of G7. Harmonisation of monitoring will be a key step 

towards increasing the accuracy and inter-comparability of spatial and temporal 

estimates of plastic debris. However, it is important to acknowledge the 

heterogeneity of plastic litter and recognise there is no current method to assess the 

total microplastic burden within a sample, and hence the data obtained provide an 

index of the quantity of microplastic rather than an absolute value. There have been 

some recent advances that aid plastic separation via oxidation of natural organic 

material, visualisation by staining and automation of polymer identification (Frere et 

al. 2016, Erni-Cassola et al. 2017, Maes et al. 2017, Tagg et al. 2017).  

 

Plastic debris has the potential to become widely dispersed and this will be 

influenced by the nature and location of the point of entry, as well as the subsequent 

complex interactions of physical, chemical and biological processes (e.g. wind and 

currents) (Ryan et al. 2009, Kukulka et al. 2012, Faure et al. 2015, Ryan 2015, 

Fazey and Ryan 2016b). At the water surface, smaller pieces of plastic present lower 

rise velocities, they are less susceptible to transport by windage and are more 

susceptible to vertical transport (Kukulka et al. 2012). Some polymers such as 

polyvinyl chloride (PVC), and polyethylene terephthalate (PET), are denser than 

water and are more likely to sink, while polyethylene (PE), polypropylene (PP) and 

polystyrene (PS) are more likely to float. However, like any other surface immersed 

in water plastic debris rapidly accumulates fouling from micro-organisms as well as 

sediment particles. Over time this increases their apparent density causing even 

some of the less dense polymers to sink (Zettler et al. 2013, Fazey and Ryan 

2016a). Hence, the sea bed could be the most likely long-term place for the 

accumulation of plastic debris. Some of the limited data available on accumulation in 



the deep sea supports this hypothesis but more work is needed to roach firm 

conclusions (Galgani et al. 1995, Galgani et al. 2000, Woodall et al. 2014). In 

addition, to transport via water bodies there is growing evidence of the importance of 

aeolian transport which may be particularly relevant for very small particles such as 

microplastics escaping from uncovered landfills (Rillig 2012, Dris et al. 2015, Duis 

and Coors 2016), or the dispersal of particles formed by wear in service such as 

textile and tyre wear (Napper and Thompson 2016). 

 

 

5.5 Impacts 

 

There is a reasonably extensive evidence base relating to the harm caused by marine 

litter. This can have a range of negative impacts on maritime industries, commercial 

fisheries, and infrastructure. It has also been found to affect a wide range of marine 

organisms as a consequence of entanglement and ingestion (Derraik 2002, Gall and 

Thompson 2015, Kuhn et al. 2015); for example, it has been reported that over 700 

species of marine organisms have been reported to encounter marine debris, the 

majority of these encounters are with plastic debris and around 10% of reports are for 

encounters with microplastics (Gall and Thompson 2015). Impacts within the 

environment caused by plastic vary according to the type and size of the debris, and 

can occur at different levels of biological organization in a wide range of habitats 

(Browne et al. 2015b). The impacts of meso- or macroplastics have been reviewed for 

numerous marine species; particularly mammals, birds or turtles (Laist 1997, Derraik 

2002, Gall and Thompson 2015, Kuhn et al. 2015). Encounters between organisms 

and  macroplastic litter can negatively affect individuals, and a substantial proportion 



of some populations; for example, over 40% of sperm whales beached on North Sea 

coasts had marine litter including, ropes, foils and packaging material found in their 

gastro-intestinal tract (Unger et al. 2016), while over 95% of the population of norther 

fulmars (Fulmar glacialis) may contain plastic litter in some European waters (Van 

Franeker et al. 2016). Even though the data on impacts form macroitems of plastic 

debris is relatively extensive scaling up evidence from impacts on individuals to 

population-level consequences is challenging, since it is almost impossible to isolate 

the effects of plastic debris. For example, most species of marine turtles are red-listed 

by the International Union for Conservation of Nature as being (critically) endangered 

and frequent ingestion of macroplastics undoubtedly contributes to population decline; 

however, its level of contribution, as well as those of the other factors, cannot be 

isolated (Werner et al. 2016).  

 

The impact of meso- or macroplastic is more prominent by eye, therefore it is often 

subject to extensive scientific research and media coverage. The effects of 

microplastics has received less attention but is increasingly being reported and have 

a variety of implications within the marine environment (Fig.3) (Andrady 2011, Cole 

et al. 2011, Wright et al. 2013b, Law and Thompson 2014).  

 

 

[Figure 3 about here] 

 

Although the weight fraction of microplastics in plastic litter is relatively small, they 

are able to interact with a very wide variety of marine organisms, ranging from 

zooplankton to marine mammals (Cole et al. 2013, Cole et al. 2015, Gall and 



Thompson 2015) . There are also concerns about the potential for microplastics to 

transport of non-native species or to act as vectors for potentially harmful chemicals 

in the environment (Rochman and Browne 2013, Rochman et al. 2013, Zettler et al. 

2013). 

 

The potential for the ingestion of plastic debris is greater with pieces in the 

microplastic size range. Microplastics occupy the same size fraction as sediments 

and some planktonic organisms, they are therefore bioavailable to a wide range of 

organisms; including whales, fish, mussels, oysters, shrimps, copepods and 

lugworms (Cole et al. 2013, Lusher et al. 2013, Cole et al. 2015, Gall and Thompson 

2015, Kuhn et al. 2015)  . For example, a study in South West England showed that 

of 504 fish, from 10 species, and over one-third had microplastics in their digestive 

tract (Lusher et al. 2013). Ingestion can also depend on properties other than size 

including shape, density and colour. For instance, low-density (i.e. buoyant) 

microplastics are potentially more likely to be ingested by pelagic feeders and high-

density microplastics by benthic feeders. As size, colour, density and shape is likely 

influence whether microplastic gets ingested (Moser and Lee 1992, Cousin et al. 

2015, Lavers and Bond 2016, Santos et al. 2016), it is difficult to make generic 

predictions about the subsequent risks of marine biota ingesting microplastics. 

 

Organisms at lower trophic levels have been reported to ingest and accumulate 

microplastic particles (Thompson et al. 2004, Browne et al. 2008, Wright et al. 

2013b), which can then transfer between trophic levels in the food-web (Watts et al. 

2015). Additionally, with very small particles, including those in the nano-size range, 



there is the potential for uptake across cell membrane, but little is known about any 

associated impacts (GESAMP 2016, Koelmans et al. 2016). 

 

Floating plastics can also transfer organisms between locations. For macroplastic 

debris this includes the transport of species of invertebrates (Gregory 2009), while 

microplastics have been implicated in the transfer of microorganisms (Kirstein et al. 

2016). For example, microplastics collected in the surface waters of the North 

Atlantic were colonized by a variety of organisms including bacteria, cyanobacteria, 

diatoms, ciliates and radiolaria (Zettler et al. 2013). Since plastics have been 

reported to travel over long distances, they may contribute to the dispersal of non-

native species (Barnes 2002). However, the relative importance of plastics compared 

to other vectors, including natural floating debris such as logs, and transport via 

shipping, has yet to be established. 

 

From a human health perspective, there is concern that plastic debris can support 

diverse microbial communities that are distinct from those found in seawater or on 

other floating objects. Hence the colonization, survival and transport of pathogens on 

polymers presents a potential risk to human health, but further investigation is 

needed to establish the importance of this (Keswani et al. 2016, Kirstein et al. 2016).  

 

Microplastic ingestion can induce subtle effects on behavior and ecological 

interactions such as the ability to escape from predators or migrate. Fish and 

invertebrates are known to ingest microplastic, leading to physical effects that include 

physiological stress responses (Browne et al. 2013, Rochman et al. 2013, Wright et 

al. 2013a) Other experiments have also shown that ingestion can compromise the 



ability of planktonic organisms to feed (Cole et al. 2015) and the ability of marine 

worms (Wright et al. 2013a) and fish (Cedervall et al. 2012) to gain energy from their 

food. 

 

Manipulative experiments have been used to isolate the effects of microplastics from 

other environmental stressors and there is evidence of impacts, including effects on 

reproductive output, which could have associated population-level consequences 

(Sussarellu et al. 2016). However, many of the laboratory studies demonstrating 

effects from microplastics have used concentrations higher than those currently 

found in the environment (Lenz et al. 2016). While these experiments inform our 

understanding of thresholds in relation to future levels of contamination, they do not 

provide clear evidence of current environmental consequences.  

 

Microplastics could also cause consequences at higher levels of biological 

organisation, including assemblages of organisms and the ecosystem services they 

provide. Teasing out such effects is challenging, but localised field experiments using 

macroplastics indicate even a single plastic carrier bag causes smothering which can 

alter the relative abundance of sediment-dwelling organisms as well as the 

ecosystem services they provide (Green et al. 2015). Recent experiments in 

microcosms also point to the potential for assemblage-level effects of contamination 

with microplastics (Green 2016, Green et al. 2017).  

 

There are also concern about the potential for plastics and in particular microplastics 

to facilitate the transfer of potentially harmful chemicals to organisms. Microplastics 

have a larger surface area to volume ratio than macroplastics and are therefore 



more susceptible to contamination by a co-contaminants  such as persistent organic 

pollutants (POPs) and to some extent, metals (Holmes et al. 2012). Hydrophobic 

organic pollutants readily sorb onto plastics, and can accumulate at concentrations 

several orders of magnitude higher than in seawater (Mato et al. 2001, Teuten et al. 

2009). Additive chemicals are also incorporated into plastic products at the time of 

manufacture. These chemicals are intentionally added during the manufacture or 

processing; for example, to enhance the plastics durability and corrosion resistance 

or act as stabilizers, plasticizers or flame retardants. Some additives such as 

plasticizers are used at high concentrations (10–50%) to ensure the functionality of 

the product (Andrady and Neal 2009).  

 

Therefore, there are concerns about the potential for microplastics to facilitate the 

transfer of chemicals to marine life directly as a consequence of ingestion or 

indirectly via release to waterbodies (Teuten et al. 2009, Bakir et al. 2014).  For 

chemicals that have sorbed to plastics form water the rate of release from the plastic 

is considerably enhanced in the presence of gut surfactant chemicals and increases 

further with temperature; such that the rate of release would be greater in a warm 

rather than a cold blooded organism(Bakir et al. 2014) (figure 4).  Chemical uptake  

into tissues is determined by equilibria and modelling estimates indicate that the 

sorbtion of chemicals to plastic is unlikely to offer a substantial additional pathway in 

the transfer of chemicals from water to biota (Koelmans et al. 2013, Bakir et al. 

2016). One recent study modelled the potential for transfer of harmful chemicals 

from seawater to marine organisms by several types of microplastics and then 

considered the consequences if these organisms were subsequently eaten by 



humans. The simulations predicted that microplastics were not likely to be an 

important factor in the transport of chemicals from seawater (Bakir et al. 2016) 

 

 

[Figure 4 a near here] 

 

 

Ingestion of plastic containing additives may also result in the chemicals leaching 

from the plastic and being transferred to organism. Additive chemicals can be 

present in high concentrations (Bakir et al. 2016) and it is considered their release 

could provide an important pathway for chemical transfer to biota  (Oehlmann et al. 

2009, Tanaka et al. 2013).  However, more work will be needed to establish the 

potential for transfer of chemical additives, incorporated in plastic items at the time of 

manufacture. For example a recent study in Korea demonstrated that potentially 

harmful flame retardants could be released from buoys used in an aquaculture 

facility, leading to elevated concentrations of flame retardants in the surrounding 

environment (Al-Odaini et al. 2015).  

 

It has been suggested in some media reports that consumption of fin-fish and 

shellfish that are contaminated with microplastics, and potentially chemicals, might 

present a threat to human health. However, the quantities of microplastics in seafood 

are typically low. In addition, studies of contaminated fish describe microplastics in 

the gut and this is typically removed before consumption. Similarly, with shellfish 

there is typically a depuration period prior to consumption. For organisms eaten 

whole, including the gut, estimates for high annual consumption of mussels indicated 



potential for transfer of 11,000 microplastic particles to an individual consumer (Van 

Cauwenberghe and Janssen 2014). Even in this fairly atypical scenario there is no 

evidence to indicate that microplastic would be harmful. More work is needed to 

establish the potential health risks from microplastics. This would require an 

assessment of dietary exposure to microplastics via a range of foods (GESAMP 

2016) as well as work to establish the potential consequences of such ingestion. 

Subsequently, within the seafood industry there is concern that contamination by 

microplastic may have negative effects on consumer perceptions affecting 

marketability even if there is no particular evidence of a risk to human health 

(GESAMP 2015, 2016). Notably potential effects have already been reported in the 

media and used in NGO campaigns (e.g., surfrider foundation, Canada). Similar 

perceptual effects on marketability have been reported when stocks are identified as 

being contaminated with low-level radioactivity or microorganisms (Parsons et al. 

2006).  Hence the actual risk of adverse effects on humans can be considerably 

different from the perceived risk that will affect marketability.   

 

It is likely that there are also a range of sub-lethal effects that have not yet been 

recognized. While further research is needed to fully understand the environmental 

risks presented by microplastics, it is considered that because these small particles 

are readily available to organisms via ingestion and can be mistaken for prey, that they 

are likely to present different types of hazards to larger items. Summarising across all 

of the evidence, the EU Marine Strategy Framework Directive (MSFD) expert group 

on marine litter recently concluded that plastics [including microplastics] present a 

“large scale and serious threat to the welfare of marine animals” (Werner et al. 2016).  

 



From a risk assessment perspective, more work is needed to model the probability 

as well as the severity of encounters. With macroplastic debris this has recently been 

done for encounters between turtles and abandoned fishing nets in waters to the 

north of Australia (Wilcox et al. 2013). However, the wider ability to construct models 

of this type is limited, not only by a lack of understanding about some of the specific 

types of harm caused by different types of plastic debris, but also a lack of detailed 

empirical data on the current distribution of plastic; this is especially true for 

microplastic distributions which are particularly troublesome to quantify. 

 

 

5.7 Solutions 

 

 

It is clear that substantial quantities of litter are entering aquatic habitats daily 

(Jambeck et al. 2015, Mani et al. 2015, Schmidt et al. 2017). A combination of 

ineffective waste capture and ineffective sewage treatment, together with product 

designs, that do not reflect end-of-life scenarios all contribute to the release of 

plastics to the environment. In this context, waste can be defined as something of 

little or no value and hence the problem may be exacerbated by the inexpensive 

nature of most plastics, which facilitates short-lived applications and can also present 

an obstacle to the viability of recycling. Therefore, it must be recognized that the 

accumulation of plastic in the oceans is actually a symptom of a wider more systemic 

problem of linear use of materials and the rapid accumulation of waste. Hence, the 

overarching solutions to the problem of marine litter lie on land(Thompson 2015). 

Even in the absence of complete information on distribution and impacts, it is clear 



that the key action must be to reduce the quantity of litter entering the oceans from 

the land. 

 

The potential threats to aquatic ecosystems presented by plastic debris, particularly 

microplastic, has been identified as a major global conservation issue and a key 

priority for research (Sutherland et al. 2010, GESAMP 2015, 2016). To fully 

understand the sources and scale of this contamination would require an 

internationally coordinated effort with comparable sampling and microplastic 

extraction techniques, as well as standardized recording methodologies to map and 

evaluate distribution (Hidalgo-Ruz et al. 2012, Fisner et al. 2017).  

 

There are some management strategies and policies in place to reduce plastic 

contamination (Thompson 2015, GESAMP 2016, Thomas et al. 2016). Banning 

microbeads in cosmetics is an example of such legislation (Xanthos and Walker 

2017). However, based on the levels of concern and the scale of problems outlined 

in this chapter it would appear that the measures currently in place are insufficient. In 

some cases, there are difficulties associated with enforcement; for example, the 

regulation of dumping at sea (MARPOL) is extremely difficult to enforce. Even in 

economically developed countries with robust waste management infrastructure, 

there are unnecessary obstacles to recycling, including the lack of availability of 

collection points, contamination of recycling feedstock, and the limited marketability 

of some recycled material (Hopewell et al. 2009, Thompson 2015). 

 

Benefits of citizen focused activities such as beach cleaning are well recognized for 

their educational value as well as in terms of the litter removed (Nelms et al. 2017). 



Annual clean-up operations are now organized in many countries (Barnes et al. 

2009) and are often run by voluntary organizations(Nelms et al. 2017). They can 

remove substantial quantities of litter from beaches and the coastline. Volunteer 

involvement in two of the largest clean up schemes in the UK (Marine Conservation 

Society Beach Watch and Keep Scotland Beautiful National Spring Clean) has been 

estimated to provide a value of approximately £119,500 in term of cleaning, which 

suggests that the total cost of actions to remove marine litter is considerable.  

 

Due to the size of microplastics and their abundance worldwide, their entire removal 

by clean-up is not feasible. Additionally, current rates of entry for litter into the marine 

environment far exceed the potential for removal by clean-up. Therefore, the main 

priority must be to focus on preventing litter entering the oceans in the first place and 

a better understanding of the behaviors that lead to littering, as well as those that 

lead to engagement in recycling (Pahl and Wyles 2017, Pahl et al. 2017). Most 

plastics are inherently recyclable, yet many single-use items are not compatible with 

recycling. A key challenge therefore is to ensure end-of-life disposal via recycling is 

appropriately considered at the design stage.  

 

There are also some potential distractions to the key solutions; such as altering the 

carbon source used to make plastics by utilizing plant base carbon rather than fossil 

carbon from oil and gas. While this utilizes a renewable and hence a more 

sustainable carbon source, it will not reduce the generation of waste nor the 

accumulation of litter. Biodegradable plastics are another potential distraction; while 

products that have been designed to degrade rapidly may reduce the amount of 

highly visible macroscopic plastic waste, many of these items merely fragment 



compromising the potential for product re-use and accelerating the production of 

microplastic fragments (Defra 2010, Roy et al. 2011, Thompson 2015). 

Biodegradable or compostable plastics only present a solution in very specific 

settings where the associated waste collection is specifically managed, provides 

conditions suitable for degradation and products are labelled accordingly to facilitate 

appropriate disposal (Thompson 2015). 

 

Education, outreach and awareness are effective ways to promote change in limiting 

indiscriminate disposal. However, in the past, approaches to address marine litter 

have mostly focused on end-of-pipe measures; in order to develop long term 

sustainable solutions there needs to be education and change in behavior right along 

the supply chain and this could be facilitated by greater dialogue between the various 

stakeholders from design, through production and use, to disposal (GoScience 2017). 

In short what is needed is a much better stewardship so that the benefits of plastic can 

be realized without the accumulation of unnecessary waste in managed systems and 

in the environment. 

 

5.8 Conclusions 

 

Microplastics are small particulate contaminants that are widely distributed in the 

environment.  These particles arise from a range of sources, they are persistent and 

accumulating. Microplastics have been reported form the sea surface to the deep 

sea and are ingested by a wide range of organisms. There is evidence that ingestion 

of microplastics can lead to harmful effects; these appear to be associated with the 

physical presence of microplastic rather than release of chemical co-contaminants. 



Measure to reduce microplastic contamination should focus on minimising direct 

inputs of small particles such as microbeads used in cosmetics, but more importantly 

reducing the quantity of larger items of litter entering the environment since these are 

already widely recognised to cause negative consequences for economies and 

wildlife; in addition they will ultimately fragment into microplastics.  
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