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ABSTRACT 

There is increasing interest across the range of composites manufacturing processes for cost 

reduction with a current focus on out-of-autoclave (OOA) processes.  However, for the highest 

performance composites, the maximum fibre volume fraction is limited by the compressibility 

characteristics of the reinforcement.  For any specific reinforcement, vacuum-only processes cannot 

achieve fibre contents as high when additional external pressure is applied. Compression moulding in 

a hydraulic press creates limited compaction perpendicular to the line of action of the press.  The 

autoclave is good for complex three-dimensional components.  Autoclave processes normally use pre-

impregnated reinforcements with a premium price for the impregnation process and the associated 

quality issues.  The use of dry reinforcements infused with liquid resins should lead to significant cost 

reductions.  This paper considers the optimisation of autoclave cure for resin-infused composites and 

extends an earlier feasibility study for composite plates referenced to equivalent systems manufactured 

by hand-lamination, or by resin infusion without autoclave cure.  Consolidation at 5.9 bar lead to an 

additional 8.4% (thickness method) or 8.6% (burnoff) fibre volume fraction. In turn, the flexural 

modulus was increased by 39% and the flexural strength was increased by 20% relative to vacuum-

only cured composites. 

 

 

1 INTRODUCTION 

The composites industry is especially relevant to transport industries where reduced vehicle mass 

can improve the energy efficiency and contribute to either reduced fuel consumption or enhanced 

performance.  For cost and process time reasons there is increasing interest in out-of-autoclave 

processes, e.g. vacuum-bag only (VBO) prepreg, or resin infusion under flexible tooling (RIFT) [1-3].  

However, it is inherent in the compressibility characteristics of any specific reinforcement fabric [4-6] 

that limiting the pressure during manufacture (to one atmosphere) will compromise the maximum 

achievable fibre volume fraction (FVF).  Reduced FVF implies parasitic resin mass due to the 

increased matrix volume fraction.  The consequent resin-rich volumes (RRV), where larger voids can 

occur, act as stress concentrations with negative effects on material strengths.  Textile reinforcements 

with clustered fibres generally have low strength but high in-plane permeability, whereas the opposite 

is true for uniformly distributed fibres [7]. 

This paper considers the optimisation of autoclave cure for resin-infused composites and extends 

an earlier feasibility study [8] for composite plates referenced to equivalent systems manufactured by 

hand-lamination, or by resin infusion without autoclave cure. 

 

2 MATERIALS AND METHODS 

All experiments were conducted using a single roll of 270 gm-2 plain-woven biaxial glass fibre 

fabric with the warp fibres parallel in all plies.  The matrix was EasyComposites IP2 unsaturated 

polyester resin with Butanox M50 MEKP catalyst.  All laminates were manufactured with 10 plies of 

reinforcement using resin infusion under flexible tooling with a flow medium (RIFT II).  Laminate 

preparation prior to loading the autoclave was conducted under ambient conditions.  

To investigate the effect of resin dwell times, viscosity tests were conducted using a Brookfield R/S 

CPS-P rheometer with a C50-1 cone and a 20C plate.  The thin film test was assumed to provide 

similar viscosities during cure to those for resin confined by the reinforcements.  Variable rate shear 
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tests were used to determine that the resin was a Newtonian fluid.  At 2% catalyst, the time from an 

initial mix viscosity of 250 mPa.s to specific viscosities was established to be 39.5 min to 500 mPa.s, 

45 min to 1000 mPa.s and 48.3 min to 2000 mPa.s. 

Initial experiments were conducted with a (dry) fabric reservoir inside the vacuum bag downstream 

of the wetted infused laminate.  When the autoclave pressure was applied with both inlet and outlet 

pipes clamped, there was no significant change in FVF relative to that for the plate cured at ambient 

pressure. 

Subsequent tests used no reservoir material, and the resin inlet was clamped while the resin outlet 

was vented to atmosphere during autoclave consolidation.  The outlet pipe used 6 m of 6 mm ID pipe 

coiled around a cylinder to capture the resin expelled from the laminate.  After infusion, plates were 

subjected to (a) vacuum-bag only pressure, (b) 3.1 bar pressure in the autoclave or (c) 5.9 bar pressure 

in the autoclave.  Further laminates were prepared and pressurised after a dwell period to study the 

effect of viscosity at the time pressure was applied for the four times identified by the viscosity tests. 

All laminates were post-cured at 80C for 5 h.  FVF was determined from both panel thickness 

(CRAG method 1000) and by weighing in both air and water.  Elastic moduli for the laminates were 

estimated using the rule-of-mixtures (RoM) and simulated in Autodesk Helius Composite 2016 

laminate analysis (LA) software. 

Samples from the laminates were tested to determine the flexural modulus and strength (σ’f : BS 

EN ISO 14125:1998+A1:2011) and interlaminar shear strength (ILSS: BS EN ISO 14130:1998) using 

an Instron 5582 test frame with a 100 kN load cell.  Flexure tests were conducted at 1 mm/min, while 

ILSS tests were conducted at 2 mm/min. 

Specimens for optical microscopy were cut to expose either the warp, or weft, direction fibres.  

They were potted in polyester resin then polished on a Buehler Automet 250.  Optical microscopy 

used an Olympus SC50 optical microscope with Olympus Stream software.  No gross voids were 

detected and potential small voids may have been polishing artefacts.  Further examination of 

microstructures and fracture surfaces was undertaken with a JSM-6610LV scanning electron 

microscope and SkyScan 1174 micro-computed tomography x-ray scanner. 

 

3 RESULTS 

All manufacturing experiments are based on single runs, while mechanical testing used at least five 

specimens with valid failure modes.  Table 1 summarises data acquired from the panels manufactured 

with the outlet pipe vented to air. 

 

Experiment  Infusion 3.1/0.0 5.9/0.0 5.9/39.5 5.9/45 5.9/48.3 

External pressure [bar] 0.0 3.1 5.9 5.9 5.9 5.9 

Dwell time [min] 0.0 0.0 0.0 39.5 45.0 48.3 

Thickness [m] 2040±51 1890±3 1780±16 1880±1 1930±11 1980±1 

FVF (thickness) [%] 51.9±1 56.1±0.1 59.3±0.5 56.3±0.0 54.7±0.3 53.6±0.0 

FVF (burn-off) [%] 52.3 56.4 60.9 56.7 54.3 52.4 

Modulus (expt) [GPa] 20.5±0.4 25.6±0.9 28.4±0.9 26.4±0.7 25.4±0.5 24.0±1.0 

Modulus (RoM) [GPa] 21.9 23.4 24.9 23.5 22.6 22.0 

Modulus (LA) [GPa] 22.4 24.2 26.5 24.4 23.3 22.4 

Initial σ’f [MPa] 321±15 338±23 375±17 324±17 284±24 325±21 

Ultimate σ’f [MPa] 347±14 384±16 415±20 391±14 383±10 364±12 

Initial ILSS [MPa] 35.6±1.6 39.6±1.8 37.1±2.8 36.6±4 40.0±1.6 35.9±1.8 

Ultimate ILSS [MPa] 41.0±1.9 44.5±2.5 41.5±2.5 42.5±3.4 43.2±1.8 42.4±1.7 

 

Table 1: Summary data for panels manufactured with the outlet pipe vented to air. 

Fig. 1 presents laminate fibre volume fractions against applied external pressure/dwell time.  

Increasing consolidation pressure with pressure applied immediately after infusion resulted in 

increased FVF.  Under similar conditions (albeit reservoir material previously and pipe here), Lewin et 

al [8] reported only 0.26% increase in FVF when the panel was not vented to atmosphere, whereas the 
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equivalent panel in this study had an 8.6% increase in FVF.  At constant consolidation pressure, 

delaying the consolidation resulted in reduced FVF. 

Fig. 2 shows flexural moduli versus FVF from burn-off.  The y-axis intercept has been forced to 

the modulus of the resin.  RoM and LA predictions validate the trend with R2 values of 1 and 0.945 

respectively. 

Figure 1: Laminate fibre volume fractions versus against applied external pressure/dwell time.  

Figure 2: Flexural moduli versus FVF from burn-off 

Fig. 3 presents flexural strength versus applied positive pressure during consolidation.  Flexural 

strength increased with increasing consolidation pressure.  Initial strengths are based on the first load-

drop, whereas ultimate strengths are based on peak load.  Fig. 4: shows flexural strength versus 

viscosity at time of application of autoclave pressure.  Increased viscosity limited the quantity of resin 

expelled from the laminate, reduced the FVF, and resulted in lower mechanical properties. 
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Figure 3: Flexural strength versus applied positive pressure during consolidation. 

 

Figure 4: Flexural strength versus viscosity at time of application of autoclave pressure. 

Fig. 5 and Fig. 6 show Inter-Laminar Shear Strength (ILSS) against manufacturing conditions or 

against FVF from burn-off respectively.  The ILSS obtained indicate that the fibres are well-bonded to 

the matrix, with no significant difference between the comparable values between different process 

conditions. 
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Figure 5: Inter-Laminar Shear Strength (ILSS) versus manufacturing conditions. 

 

Figure 6: Inter-Laminar Shear Strength (ILSS) versus FVF from burn-off. 

Fig. 7 and Fig. 8 show the microstructures of the composites produced permitting qualitative 

comparisons of the extent of resin-rich volumes.  Resin-rich volumes (observed as resin-rich areas in 

polished microstructures images) decrease with increasing FVF.  A small number of microvoids were 

detected in low-pressure consolidated laminates. 
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Figure 7: SEM images showing (a) resin-rich volumes (RRV) in infusion only laminate, 

and (b) reduced levels if RRV in the 5.9 bar consolidated laminate. 

 

Figure 8: SEM images comparing resin-rich volumes (RRV) in (a) 5.9 bar 48 min dwell 

consolidated laminate, and (b) infusion only laminate. 

4 DISCUSSION 

The data acquired in this study suggests that the highest FVF laminates result when consolidation 

in the autoclave immediately follows infusion.  The low resin viscosity during consolidation permits 

better removal of excess resin from the laminate in the in-plane flow situation. 

For laminates cured with an extended dwell time, the increase in resin viscosity limited any 

increase in FVF.  The low volume fraction for composites consolidated at 2000 mPa.s is consistent 

with the expectation that the in-plane flow front is effectively stationary at this viscosity and the low 

pressures used in liquid composite moulding processes.  Becker [9] quotes an upper limit for viscosity 

in resin transfer moulding (RTM) of 800 mPa.s, while elsewhere the non-injection point (NIP) is 

defined as a viscosity of 1000 mPa.s [10]. 

It is interesting to note that Stringer [11] identified that, for the through-thickness flow in wet lay-

up/vacuum bag process for carbon fibre/epoxy resin composites, the viscosity at the start of the 

consolidation was the critical parameter in the achievement of high fibre volume fraction and low void 

content.  A dwell time window was identified which "exists between the same viscosity limits 

regardless of the resin system and temperature being used".  CFRP composites with FVF up to 58% 

and void volume fraction below 2% were obtained with a dwell time window of 7500-16500 mPas 

(75-165 poise). 
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Given that: 

a) prepreg is typically three-times the cost of dry fabric, 

b) that the breather and bleeder fabric used for prepreg are replaced by flow medium in infusion, 

and 

c) the cost of nylon pipe is similar to the cost of one square metre of dry fabric (and the required 

length could be reduced in an optimised process), 

the materials costs should be significantly lower for the infusion/autoclave process relative to the 

prepreg/autoclave process.  Further, the laminate can be loaded to the autoclave on completion of 

infusion without a dwell time, so autoclave cycles will be shorter allowing more components to be 

processed in any given period. 

 
5 CONCLUSIONS 

The limited set of experiments undertaken have demonstrated a novel method for autoclave 

consolidation of resin-infused composites.  Plates infused, then immediately loaded and pressurised in 

the autoclave, had higher fibre volume fractions and a noticeable (quantitative assessment) reduction 

in resin-rich volumes. This lead to increased mechanical properties relative to either unconsolidated 

laminates or laminates where consolidation took place at the same pressure after a short dwell time.  

The 5.9 bar consolidation pressure lead to an additional 8.4% (thickness method) or 8.6% (burn-

off) fibre volume fraction.  In turn, the flexural modulus was increased by 39% and the flexural 

strength was increased by 20% relative to vacuum-only cured composites.  The flexural strength 

decreased with increasing dwell time /increasing viscosity. 
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