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Abstract

Numerical Modelling of Extreme Waves:
The Role of Nonlinear Wave-Wave Interactions

Thomas Vyzikas

The real monsters of the ocean, extreme waves, haunted mariners since the early
days of human activities in the sea. Despite having caused numerous accidents and
casualties, their systematic study began only in 2000s. Many mechanisms have been
proposed to simulate these rare but catastrophic events, with the most prominent being
wave focusing. This is connected to the NewWave theory, which has been used exten-
sively in experimental and numerical modelling. However, the majority of the studies
fail to capture the distinguishing characteristics of extreme waves, due to the inherent
high nonlinearity of the problem and shortcomings of the modelling practice, but also
due to inadequate knowledge of the underlying physics. Overcoming these issues is
unquestionably necessary for understanding extreme waves and including them in the
engineering design practice.

The nonlinearity of the problem lies upon the nonlinear wave-wave interactions, which
violate the fundamental linear assumptions of NewWave and pose challenges to nu-
merical models. The present work aims at contributing in both understanding the na-
ture of nonlinear wave-wave interactions during the formation of extreme wave events,
and examining the applicability and performance of numerical solvers via their system-
atic validation with state-of-the-art techniques that give new insights into the problem. A
range of phase-resolving and phase-averaged models are employed to cover different
scales and examine the undergoing physical processes.

Through the study of limiting breaking unidirectional dispersive wave groups in finite
water depth, it is demonstrated that the free-wave spectrum undergoes considerable
transformation and a large portion of energy is transferred to higher and lower harmon-
ics. These effects can be attributed to the action of near-resonant and bound nonlin-
earities, which have however robust mathematical description. As such, a large part of
the thesis is devoted to analytical methods towards establishing an efficient integrated
framework for estimating extreme wave profiles, going beyond the classic NewWave.

Overall, the present work is a balance of physics and numerics to tackle parts of the
challenging problem of extreme waves and improve safety at sea.
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Chapter 1

Introduction

THIS work examines the nonlinear wave-wave interactions occurring during the

dispersive focusing of NewWave-type wave groups. Using a newly developed

focusing methodology, a range of numerical models are validated against experimental

results and they are later employed to identify the role of wave-wave interactions during

the formation of extreme waves. Analytical models are then used to try to reproduce

these interactions in a stochastic approach towards suggesting an improved represen-

tation for NewWave profiles. The Introduction explains the rationale of the work, the

research route followed and the structure of the Thesis.

The work context

The development of human civilization is strongly bonded with settlements at coast and

activities at sea. Nowadays, apart from the large ocean trade routes, other exploitation

activities, such as offshore drilling, keep expanding and new, more sustainable solu-

tions, such as offshore wind, wave and tidal energy, have emerged. The increased

need for energy and shorter navigation routes is pushing the offshore and shipping

industry into harsher environments, e.g., the Arctic (Bitner-Gregersen et al., 2014).

At the same time, Marine Renewable Energy (MRE) devices require energetic envi-
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ronments for high energy yield (Boudière et al., 2013). The issue in both cases is

that marine structures and vessels must withstand greater operational environmental

loads, with the dominant being that of waves. Supposing that the wave height can be

predicted based on the environmental forcings and factors, e.g., wind and bathymetry,

the problem simply reduces to calculating the corresponding structural parameters to

ensure the safety of the crew and integrity of the structure. However, many accidents

have been reported due to abnormally high and unexpected waves. Mariners had

built legends around these monster waves, but solid evidence for the existence of ex-

treme waves came with analysis of field data. Systematic research activity in the topic

only started two decades ago and there is still no consensus in the scientific commu-

nity even about the basic aspects of extreme waves (Bitner-Gregersen and Gramstad,

2015). The findings so far suggest that extremes are rare, local events in space and

time, of high steepness and nonlinearity. As such, the inclusion of extremes in the en-

gineering design process remains an untackled and challenging task. Moreover, since

the risk of extremes is higher in energetic sea states (Christou and Ewans, 2014), in-

vestments in the MRE sector are delayed due to uncertainties. As a consequence,

the sector develops slowly and wave energy is not considered viable at present unless

it is subsidized (Astariz and Iglesias, 2015). Nevertheless, there are emerging syner-

getic ideas combining energy generation and coastal protection (Abanades et al., 2014;

Vyzikas et al., 2017a) or collocation with wind farms (Pérez-Collazo et al., 2015).

Wave-wave interactions

One of the major physical processes taking place during the formation of extreme

waves is nonlinear wave-wave interactions, which redistribute the energy in the wave

spectrum. Despite their complexity and sometimes ambiguous effects, wave-wave in-

teractions have a robust mathematical description, referring to a six-fold Boltzmann

integral (Hasselmann, 1962). Among the different suggested generation mechanisms

of extreme waves, phase focusing of the energetic components of the spectrum is
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the best validated with field data (Christou and Ewans, 2014). During the focusing

process, considerable changes were shown to occur at the underlying free-wave spec-

trum, which can be associated with nonlinear resonant wave-wave interactions, and,

at the same time, bound wave interactions become strong, increasing the steepness

of the group. The combination of explicit mathematical description of wave-wave inter-

actions and focusing as generation mechanism opens a window for studying extreme

waves purely analytically.

On the downside, the computational effort required to solve explicitly for all the possi-

ble wave-wave interactions makes can be considerable, hindering their application in

operational models and engineering practice. Moreover, on one hand, the exact role

of wave-wave interactions during the focusing process is not fully understood, and on

the other hand, wave focusing may not be the only mechanism that contributes to ex-

treme wave generation, with other environmental factors being potentially important,

e.g., currents and bathymetry. A way to mitigate these uncertainties is by blending as

much physics as possible in the solution and accounting for wave-wave interactions

implicitly. This can be achieved through the numerical modelling of the hydrodynamical

equation.

The state of the art in modelling of extreme waves

The development and use of numerical models for solving the hydrodynamical equa-

tions have expanded dramatically during the last two decades. Models vary from fully

nonlinear computational fluid dynamics (CFD) codes that are accurate and computa-

tionally expensive, to more approximate1, but efficient models, such as nonlinear shal-

low water equations (NLSWE) and potential flow solvers (PFS). On determining the

most appropriate shape of extreme waves, the best established and validated method

is the NewWave theory (Tromans et al., 1991). According to it, the most likely shape of

an extreme wave in the ocean can be given by the autocorrelation function of the cor-

1Approximate in a sense that they can simulate only weakly nonlinear problems, without accounting
for phenomena of high turbulence, such as wave breaking and green water effects.
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responding energy spectrum, or simply speaking, by a focused wave group. NewWave

offers a very convenient approach to simulate deterministic extreme waves without the

need for random simulations, making it ideal for expensive models and physically lim-

ited experimental facilities (Stagonas et al., 2018).

Nevertheless, considerable discrepancies may occur during the focusing of waves due

to nonlinearities, causing unexpected transformations of the wave group and partial

loss of control over the simulated signal. To mitigate this, focusing methodologies that

correct the signal for the nonlinearities have been developed, but commonly, discrep-

ancies persist for wave groups of high steepness. Important consequences refer to

missing the maximum impact of an extreme wave on the examined structure and to

suboptimal validation of models against experimental results. However, the recently

developed focusing methodology of Stagonas et al. (2014), used in the present study,

provides accurate focusing of up to breaking wave groups and excellent comparisons

between models and experiments, which is essential for additional studies with numer-

ical models. The new methodology is based on the separation of harmonics of the

wave group, which also gives a good insight of the undergoing wave-wave interactions

(Vyzikas et al., 2018b).

The first objective: validation of models

Aiming at creating confidence in the use of skilled solvers for interaction of extreme

waves and marine structures, the first step was to ensure accurate simulation of the

NewWave-type groups in a skilled CFD solver, namely OpenFOAM, which corresponds

to solution path "1" in Figure 1.1. Initial attempts with empirical methods for the cor-

rection of the signal revealed discrepancies between OpenFOAM and experiments

(Vyzikas et al., 2013), which were not expected since the solver could theoretically

account for the physics of the problem. After identifying that the issue was on the

boundary conditions, it was decided to test the new focusing methodology of Stago-

nas et al. (2014) in order to correct the input signal. Indeed, the first numerical results
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showed excellent comparison with the experiments -far beyond the state of the art

(Chen et al., 2014)- and demonstrated clearly the harmonics’ structure of the spectrum

(Vyzikas et al., 2014b).

However, the issue with the focusing methodology is that it is based on iterative cor-

rections of four phase shifts of the wave group, inducing considerable computational

burden for a high resolution numerical wave tank (NWT) in CFD. Thus, it was decided

to check the applicability of the focusing method on other more efficient solvers, namely

NLSWE (SWASH) and PFS (HOS-NWT), which could be potentially used for the iter-

ations before the CFD model, as demonstrated in the solution path "2-2a" in Figure

1.1. The initial results with SWASH showed that although the model could accurately

simulate extreme waves, there were noticeable differences between the boundary con-

ditions of SWASH and OpenFOAM, hindering their potential integration (Vyzikas et al.,

2015). Nevertheless, it was demonstrated for the first time that approximate, computa-

tionally efficient solvers can have such impressive performance. Thus, their thorough

and systematic validation for the challenging problem of extreme waves became the

first objective of the present work, which corresponds to solution path "2-2b" in Fig-

ure 1.1. It is noted that coupling of the models with domain decomposition techniques

(Paulsen et al., 2014a) was not attempted, since the objective was to correct the signal

for the nonlinearities in order to achieve accurate focusing and not to design an overall

computationally efficient NWT.

Along with the accurate focusing of the waves, the focusing methodology can offer

unique insights in the spectral transformation due to the underlying wave-wave inter-

actions, provided that the locations of the correction of the signal are selected strategi-

cally in order to observe the natural evolution of the spectrum. This allowed for the first

time to obtain the accurate evolution of the free-wave spectrum and the emergence of

bound harmonics up to fourth order (Vyzikas et al., 2018b).

The fortunate outcome of this part of the work, presented in Chapter 3, is a range of

well-validated open-source NWTs designed in the fully nonlinear CFD model Open-
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FOAM, the operational NLSWE model SWASH and the very efficient PFS-based high

order spectral model HOS-NWT. Moreover, thanks to the four-wave harmonic decom-

position method, the nonlinear wave-wave interaction processes could be identified,

isolated and examined as they evolve towards the formation of an extreme wave.

Phase-averaged Vs Phase-resolving approach

Being able to track the evolution of the constituents of the energy spectrum in phase-

resolving NWTs until the moment of the formation of the extreme wave (zero phases),

a natural question raises whether the observed spectral transformation can be repro-

duced stochastically, i.e., without assigning phases to the wave components of the

spectrum. This is common approach for examining spectral evolution at large scales

with phase-averaged, aka spectral, models. Thanks to their computational efficiency,

spectral models are routinely used for wave forecasting at ocean and regional scales.

Spectral modelling is based on the energy balance equations with source terms to ac-

count for the nonlinear physical processes, including nonlinear wave-wave interactions.

To examine if the source terms can reproduce similar evolution of the spectrum, a

custom set-up of WAVEWATCH-III (WW3) was prepared at similar timescales as the

experiment. The available four-wave resonant interaction source terms, which are ap-

proximations of the Boltzmann integral, were tested in order to capture the evolution

of the free-wave spectrum. An insuperable barrier was that these approximations ac-

count only for the interaction of directional waves, which are the most important in the

ocean, but yield no spectral evolution for unidirectional waves, such as the NewWave

groups simulated in phase-resolving models. At the moment of exploring the poten-

tial alternatives, Gramstad and Babanin (2016) published their first results using an

improved version of source terms that include near-resonant interactions for unidirec-

tional waves. To present, still this source term has not been implemented in the public

distribution of WW3. A challenging path was thus taken, trying to program indepen-

dently the near-resonant interactions stochastically with the General Kinetic Equation
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(GKE). The literature on the topic is very recent and very limited, forcing the author to

go through many potential pitfalls before reaching an operational code.

Using the custom-made GKE code, many ways were explored to obtain the expected

free-wave spectral evolution. An alternative way to obtain the evolved free wave spec-

trum refers to envelope equations, but their limitations in spectral bandwidth and steep-

ness of the waves pose considerable constraints, as discussed in Section 2.1.7. De-

spite not reaching exactly the one of the experiment, good agreement was observed

through a suggested methodology that practically "marries", to an extent, phase-averaged

and phase-resolving models. The road is of course long before making any general-

izations and concrete statements.

The research hypothesis

Where can phase-resolving NWTs, NewWave theory, focusing methodology and ana-

lytical solutions of source terms lead?

At this stage, well-validated NWTs became available to simulate extreme waves and

a phase-averaged equation (GKE) that can predict the free-wave spectrum. Accord-

ing to the theory, the bound wave nonlinearities are uniquely defined by the free-wave

spectrum (Holthuijsen, 2007). This implies that if a method to calculate the bound in-

teractions based on the evolved free-wave spectrum of GKE exists, the extreme wave

profile for a given spectrum can be potentially estimated with purely analytical meth-

ods. This is explored in the solution path "3" in Figure 1.1. The final result should be

comparable with that of phase-resolving NWTs, provided that the expansion to high

orders is accurate.

The expected gain from this process is that there is no need for running numerical

models and correcting the signal with iterations, since the extreme wave profile can

be calculated by time marching the solution of the GKE and adding high order bound

nonlinearities of the evolved free-wave harmonics. This process is demonstrated in
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Figure 1.1: Different ways of calculating an extreme wave profile based on a given
spectrum. Curved boxes, oval arrows and rectangulars represent the starting/ending
point, iterations with focusing methodology and final run in the NWTs, respectively.

Chapter 5, where linear theory is compared with four high order methods to reconstruct

the extreme wave profile.

Scientific Hypothesis: NewWave theory can provide a realistic profile of extreme

waves, if the evolved free-wave spectrum is used with nonlinear bound harmonics.

As discussed, there are several ways to model an extreme wave profile, i.e., using

phase-resolving or phase-averaged methods combined with analytical methods. The

routes to reproduce an extreme wave profile are shown in the schematic of Figure 1.1.

The tools used to approach the different elements of the problem are:

(i) OpenFOAM with waves2Foam (Jacobsen et al., 2012) and IHFOAM (Higuera

et al., 2013a) wave generation and absorption boundary conditions for high-fidelity

CFD simulations of focused waves.

(ii) SWASH and HOS-NWT for computationally efficient phase-resolving simulations

of focused waves.
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(iii) HOS-ocean for computationally efficient Monte Carlo-type simulations the for ver-

ification of the GKE.

(iv) WW3 for exploring the source terms for four-wave interactions in phase-averaged

models.

(v) The GKE for solving the four-wave near-resonant interactions.

(vi) Analytical methods for reconstructing the extreme wave profile: linear theory, sec-

ond order theory, fifth order expansion, Creamer transform and static Krasitskii.

The methods to correct and analyse the signal into harmonics were the focusing method-

ology of Stagonas et al. (2014) and the four-wave decomposition method, respectively.

Challenges and risks

The present work is formulated around a fundamental pre-assumption that during the

dispersive focusing of NewWave-type groups the evolution of the free-wave spectrum

is governed by resonant / near-resonant four-wave nonlinear interactions. Although

this is the only mechanism that is known to change the dispersive properties of free

waves and there has been evidence for that since the work of Baldock et al. (1996)

for this type of problem, there is no solid proof that this is a valid or the only possible

mechanism (Johannessen and Swan, 2003). It was also stated that there had been no

existent theories to describe the changes in the free-wave regime (Johannessen and

Swan, 2001). In fact, the present work attempts to give an answer by explicitly solving

for the four-wave interactions via the GKE. Similarly, the role, or more specifically the

strength, of bound nonlinearities during the formation of NewWave-type extreme waves

is not clear. Overall, the impact of bound and resonant nonlinearities is an open debate.

This is discussed in Chapter 2.
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Assumption: The free-wave spectrum changes due to near-resonant wave-wave

interactions occurring during the dispersive focusing of the wave group.

The major challenge that this work faces is that it tries to connect phase-averaged and

phase-resolving methods for nonlinear wave-wave interactions during the formation

of extreme waves. From a modelling point of view, these methods are seen almost

always independently and used at different scales and for different purposes. Finding

equivalent spectral parameters between the two methods is one of the main objectives

of the present study. From a theoretical point of view, there are two main "schools"

in the modelling of extreme waves: modulation instabilities and dispersive focusing.

These two physical processes are based on different principles and employ different

modelling and analysis techniques. The issue is that the literature coming from these

two research communities is often contradictory and it might be an one-way road to

select one of the two approaches. Here, dispersive focusing is used thanks to its

practical advantages and recent evidence that it occurs in nature (Christou and Ewans,

2014; Fedele et al., 2016).

Another challenge, from a practical perspective, is that since newly developed meth-

ods are implemented in the present work, the literature is often limited. For phase

resolving models, the use of the focusing methodology provided for the first time highly

accurate focusing and clear view of the harmonic structure of the wave. This was not

possible with other methods used in the literature until recently. The consequence

is that inaccuracies in focusing and discrepancies between models and experiments

were commonly interpreted as different physics or limitations of the models, see e.g.,

Katsardi and Swan (2011) and Higuera et al. (2015), respectively. Thus, direct com-

parisons with previous studies can be often misleading. Additionally, the fact that only

open-source models were used for the present work should not be underestimated,

since all the adaptations were made manually and with limited provided support.

Other practical issues refer to the GKE. Since it was suggested very recently (Gramstad
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and Stiassnie, 2013; Gramstad and Babanin, 2016), the literature is limited or practi-

cally non-existent when examining the short-term evolution of the spectrum. Moreover,

the programming of the method and its coefficients are far from trivial, which in com-

bination with the limited literature makes it hard to find potential errors. Similar is the

case for some of the techniques of reconstructing the wave profile, where literature is

little and often within a different context.

Mitigation strategy: integrated approach

The aforementioned challenges are mitigated with a modelling practice that employs

the most appropriate tools for each problem. This is in-line with the composite mod-

elling approach suggested in order to minimize uncertainties and increase efficiency

(Sutherland and Barfuss, 2011)2. As such, numerical models, experiments and theo-

ries should act complementary, and in competition, for offering opportunities on holistic

further developments. This can be part of an optimized balanced approach within the

context of composite modelling, in order to obtain a more complete view of the problem.

Under this principle, physical modelling is routinely employed to validate the phase-

resolving NWTs of the present work, before any further use. Moreover, experiments

are used to find the onset of wave breaking. This is because numerical models may

induce discrepancies due to the modelling of turbulence, for example the selection of

different turbulence models for wave breaking in OpenFOAM (Brown et al., 2016), the

heavy bore-like parameterization in SWASH and the complete neglection of turbulence

in HOS-NWT.

Numerical models are used to gain better insight in the evolution of the wave groups

thanks to the possibility of obtaining measurements of the flow variables at any time

and location. Phase-resolving models are also used to verify analytical methods, for

example Monte Carlo simulations are employed to verify the GKE in order to miti-

2A strengths-weaknesses-opportunities-threats (SWOT) analysis for MRE modelling problems is found
in (Vyzikas et al., 2014a).
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gate the issue of limited literature. Also, the validity and performance of the analytical

methods to reconstruct the extreme wave profile are benchmarked against numerical

simulations.

Analytical methods are used to obtain an insight in the underlying physical processes,

thanks to the fact that these get a mathematical description and can be studied sepa-

rately (Babanin et al., 2012). The benefit of understanding the physics of the problem

is that the verified analytical methods can be then used to put the problem in a general

physical context or to be part of approximate models in order to improve the solution.

The wide range of models, methods and techniques of the present work create an "ar-

tillery" of tools that can approach the problem of extreme waves from different angles,

scales and physics. Validation of phase-resolving models is performed against exper-

imental simulations that replicate real oceanic extreme waves under controlled condi-

tions. Verification of the stochastic approach of the GKE is performed using Monte

Carlo simulations after calibrating its parameters. The analytical methods of comput-

ing the free surface are verified against fully nonlinear simulations. The combination of

models’ validation, verification and calibration (Roache, 1998) aims at confirming the

initial hypothesis of the thesis that a fully nonlinear wave profile can be approached by

analytical methods.

Limitations

Part of the composite modelling method is the good understanding of the associated

limitations in order to avoid any pitfalls. Thus, it should be noted that in the present

study only unidirectional waves up to their breaking limit were tested. As explained in

Chapter 2, directional wave groups entail different dynamics and level of nonlinearity.

Also, the focusing methodology cannot be applied beyond the breaking point and it has

not been tested for directional waves and varying bathymetry.

Beyond these limitations, there is confidence that the results of the present work have
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general applicability because i) Very steep wave groups are tested to their breaking

limit, which is the most challenging case in terms of nonlinearity. ii) Wave groups of

different steepness are used, demonstrating excellent performance at different degrees

of nonlinearity. iii) There are practically no bandwidth limitations, since broadbanded

spectra are used. iv) The wave groups are tested in finite intermediate water depth,

without the limitations of no influence of the bottom (deep water assumption), nor the

weakened dispersion (shallow water assumption). v) The resonant wave interactions

are even more relevant in directional spectral evolution, which prepares the ground for

application of the present approach in realistic directional seas.

Novelties - Contribution

The present work aimed at advancing the modelling practice of focused waves and

contributing to the better understanding of the physical processes during the formation

of extreme waves. This was facilitated with the broad tool-set that was prepared during

the research course. The main novel achievements are:

1. Identification of the role of nonlinear wave-wave interactions during dispersive

focusing of NewWave-type groups.

2. Implementation of the focusing methodology for the first time in numerical mod-

els.

3. Validation of phase-resolving NWTs in OpenFOAM, SWASH and HOS-NWT for

NewWave-type extreme waves.

4. Intercomparison of different types of NWTs and boundary conditions under ex-

actly the same conditions.

5. Demonstration of a solution strategy for phase-averaged modelling of extreme

waves with the GKE.

13



Introduction

6. Consistent demonstration of the concept of using original and evolved free-wave

spectra in analytical models for computing the wave profile.

7. Implementation and development of new methods for reconstructing extreme

wave profiles.

8. Demonstration of an integrated approach for reproducing extreme wave profiles

with known error margins.

Thesis outline

To help gaining an overview and an overall perspective of the present work, the scope,

tools-methods and objectives are summarized in Figure 1.2. "What": The main ob-

jective is to provide a framework to study extreme waves numerically and analytically,

potentially using an integrated approach among well-validated solvers and methods.

"How": To achieve the objective, the nonlinear wave-wave interactions during the for-

mation of extreme waves are examined using NewWave-type groups in physical and

numerical wave tanks, and analytical theories are explored to reproduce the observed

spectral changes. "Why": The vision is to improve the understanding of the formation

of extreme waves and to suggest tools and methodologies with known error margins to-

wards a more accurate estimation of extreme waves. This can contribute to preventing

accidents at sea, de-risking the MRE sector and designing improved coastal defence

structures. With the climate change increasing the storminess at sea and causing

sea level rise, more extremes with potentially greater impacts should be anticipated

(Bitner-Gregersen and Gramstad, 2015), which makes the present work very timely.

The presentation of the work is structured in four main chapters and complementary

material is given in the Appendices. The necessary background knowledge for follow-

ing the present work is included in Chapter 2, which is accompanied with Appendix A.

These chapters are an amalgamation of an extensive literature review of almost 400

papers that concern numerical modelling of water waves, nonlinear wave-wave interac-
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Figure 1.2: Research principles, concept and tools.

tions, extreme waves and focusing methodologies. Appendix A explains the rationale

behind selecting the numerical tools in the present study and provides general infor-

mation about the numerical solvers, their application, as well as the design of NWTs for

focused waves. The numerical modelling part of the work starts in Chapter 3, where

the validation of the models is performed against experimental or published results.

Details on the design of the NWTs are presented there. The results of Chapter 3 are

used to examine the spectral evolution of the wave group, as presented in Chapter 4.

The core of the scientific hypothesis is explored in that chapter, through the equiva-

lence between the phase-averaged and phase-resolving approach. The outcome of

this method is the evolved free-wave spectrum from the GKE, which is used along with

the original and extracted free-wave spectrum from the phase-resolving modelling for

reconstructing the extreme wave profile in Chapter 5. Five different methods are ex-

amined in that chapter, which take the frequency domain result and transform it to the

time domain wave profile by also including high order harmonics. The performance of

the methods is examined and the error against the fully nonlinear simulation is found.
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As such, the objective of the present work to suggest an integrated method with known

error for estimating an extreme wave profile is fulfilled.
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Chapter 2

Background

THIS Chapter of the Thesis is dedicated to providing the necessary background

knowledge for the topics addressed in the subsequent chapters. It includes

basic physical and mathematical concepts, as well as the state of the art in the current

understanding and methodologies for examining extreme wave phenomena. This field

covers from well-established theories, e.g., numerical modelling, to active research

topics, where consensus has not been reached yet. As such, techniques and methods

that were not finally used in the present work are also discussed in order to give a

broader frame of the problem.

2.1 Numerical modelling of water waves

2.1.1 Introduction to wave modelling

The modelling of water waves is a very broad field, which includes various analyti-

cal models and numerous mathematical techniques. Wave modelling begun with the

classical works of Airy and Stokes in the middle of the 19th century, when analytical

solutions for regular waves were given, e.g., Linear, Second order waves etc, covering
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a wide range of water depths and wave steepness, as seen in Figure 2.11. Linear

theory provides a linearized solution for gravity water waves propagating at a constant

water depth and in a inviscid, irrotational and incompressible fluid. It is valid of long

waves of small amplitude and the surface elevation is assumed to follow a sinusoidal

form (η(x, t) = α cos(kx−ωt +φ), where k: wavenumber, ω: angular frequency, t: time

and phi: phase), as seen in Figure 2.2, where the basic characteristics of a wave (H, α

and L) are shown. Second order theory is derived from linear theory and it is quadratic

in the wave amplitude (Holthuijsen, 2007).

Figure 2.1: Regular wave theories and their applicability according to the water depth
(h) and the steepness determined by the wave height (H) and the wave period (τ) (Le
Méhauté, 1976). The red dots denote the linear (L), weakly-nonlinear (W) and strongly
nonlinear (S) wave groups used later in this study. Courtesy: Kraaiennest (2009). This
figure is free to distribute under Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0).

Developments in wave modelling took place in the first half of the 20th century, but

1NB: The extreme waves examined in this study via NewWave groups are not regular waves to be
placed in the diagram of Le Méhauté (1976).
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Figure 2.2: Basic characteristics of wave a wave form.

the most important progress was made during the Second World War for naval oper-

ations, where attention was given to wind-wave and wave-wave interactions at various

time and spatial scales, as well as to wave breaking. Still, at that stage research was

mostly based on visual observations. Systematic experimental research begun in the

60s with the works of Hasselmann, Benjamin & Feir, Zakharov and Longuet-Higgins

which was supported by more sophisticated instrumentation and analysis techniques

(Adcock and Taylor, 2014; Babanin et al., 2012). At present, effort is put in better

understanding specific physical processes, e.g., atmosphere-wave interactions, and

providing solid mathematical descriptions for building numerical models, or tackling

unresolved issues, such as the formation and forecasting of extreme waves. Numeri-

cal modelling is nowadays a pillar of research in oceanography, where models operate

on larger scales based on parameterizations of physical phenomena, and on short

scales examining specific physical or engineering problems, with the so-called Numer-

ical Wave Tanks (NWTs), which level of accuracy, simply speaking, is proportional to

their computational cost (Schmittner et al., 2009). Large scale spectral models can be

employed for hindcasting, nowcasting or forecasting, if they aim at modelling a past,

real-time or future event, respectively. In general, they show very good agreement with

the field measurements for the bulk properties of the wave field, such as the significant

wave height (Hs) and the peak period (Tp), but simulating rapidly changing conditions,

for instance, cyclones, is more challenging (Adcock and Taylor, 2014). NWTs are com-

putational phase-resolving domains for the simulation of specific wave characteristics,
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wave transformation and fluid-structure interaction problems, such as overtopping and

impact of breaking waves, that, numerically, can only be assessed via the solution of

the hydrodynamical equations (Fernández et al., 2014). To a large extent, the results

provided by even the most accurate and sophisticated NWTs are subject to the applied

boundary conditions, which are specified by the fundamental regular wave theories,

such as linear, second order, Cnoidal, Stokes V, or irregular wave theories commonly

considered as a superposition of regular waves (Zhao et al., 2009). Despite the tremen-

dous progress in numerical modelling, which led the research from empiricism to ro-

bust wave analysis, large errors can be induced through the selection of the governing

equations and the numerical techniques for their integration. Good review papers on

wave models for different applications are Liu and Losada (2002) and Cavaleri et al.

(2007), while lists of state-of-the-art commonly used solvers are included in the works

of Vyzikas et al. (2014a), Higuera et al. (2015) and Vyzikas and Greaves (2018).

The selection of the most appropriate method depends on the physics, scale, re-

sources and engineering interest in the problem. The models can be grouped in differ-

ent ways, with the most common being phase-averaged and phase-resolving (Benoit

et al., 2015), depending on whether they deal with the wave dynamics globally, in a

statistical sense, or on a wave-to-wave basis, capturing the exact time history of the

water surface elevation. The problem of wave modelling belongs to the general topic of

fluid dynamics, as waves are in practice oscillatory flows. Another way to classify the

models, used in more engineering-oriented applications, is in exact and approximate

models depending on the integration used to solve the equations (Bitner-Gregersen

and Gramstad, 2015). The former category includes Navier-Stokes Equations (NSE),

Potential Flow theory Solvers (PFS) and Nonlinear Shallow Water Equations (NLSWE),

while the latter includes for example Nonlinear Schrödinger Equation (NLSE) and Za-

kharov Equation (ZE), which are derived under the assumption of weak nonlinearity.

The literature is very extended in the topic, including the recent books of Lin (2008) and

Holthuijsen (2007), as well as the author’s contributions in the report of the MERiFIC

project (Vyzikas et al., 2014a) and the chapter of a book (Vyzikas and Greaves, 2018),
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where the main focus is on MRE applications, including also lists of commonly used

solvers. In the present section, only a short description is provided for some of the

basic equations for solving water wave problems. For the NSE, PFS, NLSWE, ZE

and phase-averaged models, the latter commonly referred to as spectral models, spe-

cific details and solving techniques are discussed in the sections for the corresponding

solvers used in the present work, namely OpenFOAM, HOS, SWASH, GKE and WW3,

in Sections A.1, A.3, A.2, 4.3 and A.4, respectively.

A graphical representation of the applicability of the wave models is shown in Figure

2.3. Of course, such presentation is simplistic and may ignore variations of the models

that extend the validity of each approach. What is clear from the graph is that the NSE

(CFD) can handle the full flow complexity of the examined problem, while analytical

Stokes models and approximate models are valid only for narrow-banded spectra. NL-

SWE and Bousinesq models have been added to the graph by the author, correctly

placed between ZE and second order theory in terms of steepness, noting that the

bandwidth limitation is less relevant for these type of models. This figure should be

considered in combination with the more detailed Table A.1.

The largest part of the present work is dedicated to the modelling of extreme waves,

which has two inherent challenges: i) high nonlinearity, sometimes beyond the ca-

pabilities of approximate solvers, and ii) the randomness of the problem, since as it

will be discussed later, extreme waves can appear locally in space and time from a

chaotic background. As such, their modelling varies from random simulations with

low-accuracy but efficient solvers, e.g., ZE, linear and second order solvers, where

extremes "naturally" emerge, to precise and computational expensive modelling, e.g.,

PFS and NSE, for deterministic analysis of a single wave event using wave focusing

techniques (Vyzikas et al., 2013).

For the description of the mathematical approaches for wave modelling that follows, it

is out of the scope of the present thesis to re-introduce the derivation of the equations,

since they can be found in numerous works, e.g., in Lin (2008); Holthuijsen (2007);
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Figure 2.3: Validity range of the wave theories and models according to the nonlin-
earity, namely the steepness (ratio of the wave amplitude to wave length) and spectral
bandwidth (modified figure from (Bitner-Gregersen and Gramstad, 2015)).

Versteeg and Malaskekera (2007); Ferziger and Peric (2002); Lin (2008) and Holthui-

jsen (2007), including those of the author Vyzikas et al. (2014a); Vyzikas and Greaves

(2018). This short description aims at providing an overview of the methods, the ra-

tionale for the selection of some of them and relevant applications in previous works,

mainly concerning extreme waves.

2.1.2 Navier-Stokes Equations

The NSE are the fundamental equations of fluid mechanics, referring to the momentum

equations in the three dimensions. The compressible form of the NSE is given in the

tensor form in Equation 2.1 for the x− direction (Versteeg and Malaskekera, 2007).

Similar expressions can be derived for the y− and z− direction.

22



2.1. NUMERICAL MODELLING OF WATER WAVES

∂ρu
∂ t

+∇(ρuu−∇(µ∇u) =−∂ p
∂x

+

[
∇(µ∇ ·u)+ ∂

∂
λ∇u

]
(2.1)

where ∇ is the divergence, u is the velocity in the x− direction, u the vector of the veloc-

ity, p is the pressure, µ is the dynamic viscosity and λ is the viscosity that relates the

stresses to the volumetric deformation. The terms in brackets have small contributions.

Nowadays, NSE solvers are commonly referred to as Computational Fluid Dynamics

(CFD) solvers, and they can also incorporate heat transfer and chemical reactions.

Theoretically, CFD solvers are powerful tools that can simulate very complex phenom-

ena with minimum approximation. The price for this is the computational cost, which

can become unbearable, even for modern High Performance Computer (HPC) facili-

ties. NSE are the only solvers that can implicitly account for viscous and highly nonlin-

ear turbulent effects through Direct Numerical Simulations (DNS), and they are often

used as the ground truth for the validation of other more simplified models or for un-

derstudying the underlying physics (Greaves, 2010). The best-established approach

to integrate the NSE in the computational domain is the Eulerian (on a mesh), but

also Lagrangian approaches, such as the Smoothed Particle Hydrodynamics (SPH)

method, have emerged (Vyzikas and Greaves, 2018) and demonstrated good perfor-

mance for practical engineering applications, e.g., for overtopping (St-Germain et al.,

2014). Nevertheless, SPH methods are at an earlier stage of development than tradi-

tional Eulerian approaches (Higuera et al., 2013b). Due to the computational burden,

the modelling of turbulence is approximated for practical applications by relating the

Reynolds stresses to the mean flow characteristics or by spatial filtering of the vor-

tices, as discussed below. Despite these approximations, CFD solvers are the most

expensive models and, still, they do not constitute common practice in operational en-

gineering applications (Liu and Losada, 2002). Nonetheless, since CFD is considered

as a cutting-edge method in many sectors, from aerospace to naval engineering and

beyond, rapid developments are expected through the contributions from the various

communities that will expand its use (CFD-Online, 2018).
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Regarding the modelling of water waves, CFD is employed for simulations with high

nonlinearity, including very steep and over-turning waves, as well as the interaction

of waves with complex structures or when violent effects, such as green water and

splashing, are expected (Lin, 2008). Nonetheless, even theoretically simpler cases,

such as the flow around cylinders, can result in complex flow fields (Chaplin et al.,

1997) that may not be well resolved by simpler models than CFD. Similar conclusions

were reached by the recent experimental study of Swan and Sheikh (2015), where the

complexity of the local flow characteristics around a cylinder interacting with incident

waves was highlighted as a result of the nonlinear interactions of scattered and inci-

dent waves, as well as due to the runup and wash-down on the faces of the cylinder.

CFD models are also used for the calculation of the structural loads or the response of

the structure, either by being coupled with structural solvers or by calculating the fluid

forces through the integration of the kinematics on the surface of the body. Advanced

models can include the full aeroelastic response of the structure and capture dynamic

effects, such as ringing (see Section 2.3.5). The high computational cost of CFD mod-

els hinders their use in large spatial scales where the transformation of the waves, e.g.

shoaling, refraction, diffraction, takes place. For this reason, coupling techniques have

been proposed, where the propagation of the waves from the far field to the vicinity of

the region of high nonlinearity is performed by cheaper models (Paulsen et al., 2014a;

Bredmose et al., 2016; Yan et al., 2015). Such highly nonlinear effects include for ex-

ample wave breaking, which can be realistically simulated only by CFD models (Liu

and Losada, 2002). Nevertheless, attention should be given to select the most appro-

priate turbulence model (Brown et al., 2016). Moreover, regarding extreme waves, the

simulation of random sea states with NSE for capturing extreme waves is practically

impossible, due to the high computational cost, and deterministic approaches, such

as the NewWave theory (presented in Section 2.4) are often employed (Bunnik et al.,

2008).
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The modelling of turbulence

O. Reynolds in 1883 Reynolds (1883) observed that the particles of the fluid can move

in an orderly or in a chaotic manner depending on the characteristics of the flow. These

two types of flow regimes are called laminar and turbulent and they can be determined

by the âĂIJReynolds numberâĂİ (Re = ρ
uLa
µ

, where rho is the density, u the velocity, La

the characteristic length scale and µ the dynamic viscosity of the fluid.), which is the

ratio of the inertial forces that cause disturbance to the fluid particles, over the viscous

forces that restrain them to move along certain paths (Douglas et al., 2005). Lami-

nar flows are characterized by relatively low fluid velocities, with fluid particles moving

along the flow streamlines and retaining their relative positions. Turbulent flows are

characterized by continuous and random fluctuations of the velocity and the pressure,

exhibiting a chaotic and unsteady behaviour. Turbulence is associated with vortices

that have three dimensional structures of different scales. An important consequence

of turbulence is the energy dissipation, since the mechanical energy of the fluid is

transformed to internal energy or heat (Ferziger and Peric, 2002). The transition from

laminar to turbulent flows occurs when the velocity of the fluid is increased, causing

the Re to exceed a certain threshold, called the critical Re. The numerical modelling

of turbulence is performed with NSE solvers by considering appropriate mathematical

models to calculate the Reynolds stresses and close the set of equations for the flow

variables. It is noted that, so far, there is not a generally valid and efficient universal

mathematical model for turbulence, due to the complexity of the problem (MARNET

CFD, 2002). Nevertheless, the most commonly applied methods in CFD for engi-

neering applications are the Reynolds-Averaged Navier-Stokes (RANS) equations with

appropriate turbulence closure models and the Large-Eddy simulation (LES) (Versteeg

and Malaskekera, 2007). RANS modelling is based on the time-averaging of the gov-

erning equations by splitting the flow variables into mean and instantaneous fluctuating

components. The time averaging eliminates the latter unsteady components and ex-

presses them via their mean values and the Reynolds stresses that are calculated by
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appropriate turbulent models, such as for example the well-known two-equation mod-

els κ−ε and κ−ω. LES modelling is based on the principle that turbulent flows include

eddies of different scales that have different behaviour: the small eddies are isotropic,

while the large eddies are anisotropic and depend on the local geometry of the domain.

LES employs a spatial filter to separate the large from small eddies. Only the large ed-

dies are resolved, while the small eddies are filtered out and their effects are taken into

account by a sub-grid-scale (SGS) stresses model (Versteeg and Malaskekera, 2007).

When the viscosity of the fluid can be neglected, the flow is characterized as inviscid

and the effects of turbulence vanish. Under these considerations, the NSE are sim-

plified to the Euler equation by eliminating the terms that contain µ and λ in Equation

2.1 (Versteeg and Malaskekera, 2007). The Euler equation is used in potential flow

models by considering also irrotationality. A classic example of an inviscid flow is the

flow around a wing.

The treatment of the free surface: the VoF method

The modelling of water waves is a subcategory of free surface flows. Numerically,

the challenge is to compute accurately the position of the free surface, a task which

requires additional robust algorithms. Two possible methods to achieve this are inter-

face tracking methods, such as moving meshes, front tracking schemes and particle

tracking methods (e.g., SPH), and interface capturing methods, such as the Volume of

Fluid (VoF) and the Level Set (Greaves, 2010). An up-to date description is given in

(Ransley, 2015). The most well-known CFD codes, namely OpenFOAM, Star CCM+

and Ansys CFX, use VoF. Nevertheless, very good results for ocean waves have been

also achieved recently with the Level Set method used in REEF3D (Bihs et al., 2017).

According to the VoF method, which is used in this study, each cell of the computational

mesh at a given time is assigned with a value of the fluid fraction (γi) between 0 and

1. This additional scalar (γi) expresses the proportion of water in the computational

cell. If the cell is "wet" containing only water, the value of the fluid fraction is 1, while
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it becomes 0 when the cell does not contain any water. Any values between 0 and 1

indicate the interface of air and water, i.e. the free surface. To compute the interface,

the VoF method consists of two basic elements: an algorithm for finding the new lo-

cation of the volume fraction in time and an algorithm for reconstructing the interface

(Greaves, 2010). The governing Equations of the flow are solved simultaneously for

the two fluids, and thus, the algorithm for the volume fraction results in an additional

advection equation (see Section A.1.2).

In the present study, a RANS two-phase flow CFD solver, as described in Section A.1,

is used for replicating experimental results for very steep nearly breaking NewWave-

type waves. The high nonlinearity of the examined problem can be captured by using

a CFD model, while the cost is kept to the minimum with the use of focused waves.

2.1.3 Potential flow theory

PFS can be derived from the NSE by assuming irrotational and inviscid flow (Bred-

mose et al., 2006), and thus, they are used for applications with negligible turbulence.

Under these assumptions, the continuity equation for an incompressible fluid can be ex-

pressed as the Laplace equation (Equation 2.2) for the velocity potential, as explained

in (Lin, 2008).

∇
2
φ +

∂ 2φ

∂ z2 = 0 (2.2)

For the simulation of free surface problems additional dynamic and kinematic bound-

ary conditions are included for calculating the location of the free surface and the fluid

particle velocity at that location. Since the Laplace equation is linear, the difficulty -but

also the interesting physical behaviours of the PFS- in the solution process arises from

the nonlinear boundary conditions of the free surface (Onorato et al., 2013). Bound-

ary Element Methods (BEM) are commonly used in PFS (Yan et al., 2015) and clas-

sic examples of applications refer to flows around airfoils. PFS is the second most
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"skilled" category of solvers for handling nonlinear fluid flows, and despite having a

significantly reduced computational cost compared to CFD solvers, it requires con-

siderable resources (Vyzikas and Greaves, 2018). PFS are widely used in industry,

since they can handle highly nonlinear problems, with the main limitations referring to

flow separation and boundary layers, due to the irrotationality assumption. Within the

framework of water waves, PFS can be employed for studies of wave propagation and

transformation over complex bathymetries, nonlinear wave-wave interactions and weak

interaction of waves with large structures. On the other hand, PFS cannot be used to

simulate realistic wave breaking, green water effects and wave interaction with small

bodies (Lin, 2008).

PFS are routinely used in wave research (Westphalen et al., 2008), in particular as

part of coupled modelling systems with CFD solvers and for the simulation of extreme

waves. An example for the former is the code OceanWave3D, which has been coupled

with OpenFOAM (Paulsen et al., 2014a) after it was validated against experimental

results for nearly breaking waves (Paulsen et al., 2013b). Similarly, high order BEM

NWTs were used by Ning et al. (2008) and Ning et al. (2009b) to simulate regular and

focused wave groups in finite and infinite water depth. For the latter, the Quasi Arbi-

trary Lagrangian-Eulerian Finite Element Method (QALE-FEM) was used to simulate

the extreme Draupner wave (Adcock et al., 2011) and was also compared with Open-

FOAM and experimental results for the interaction of focused waves with cylinders,

showing very good performance (Yan et al., 2015)2. Thanks to the nature of water

waves that can be considered as a summation of sinusoidal Fourier components, at-

tractive pseudo-spectral models have been suggested to increase the computational

efficiency of PFS using FFT algorithms (Taylor and Swan, 2000; Cavaleri et al., 2007).

Another way to increase efficiency is by configuring the solvers for GPU architecture,

as done for OceanWave3D that is used producing statistics of extreme waves in the

DeRisk project (De-risked extreme wave loads for offshore wind energy) (Bredmose

2In the study of Yan et al. (2015) the PFS seems to have a much better performance than that of the
CFD model, but, according to the author, there seems to be a crude mistake in the numerical parameters
selected in OpenFOAM, leading to this unorthodox conclusion.
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et al., 2016).

In the present study, since very steep but not breaking waves are considered, PFS

can be employed. Exploiting further their advantage of computational efficiency, a

pseudo-spectral model HOS-NWT is used to study deterministic focused waves and

the HOS-ocean model for random wave simulations to determine the spectral evolution,

as discussed in Section A.3.

2.1.4 Nonlinear Shallow Water Equations

The shallow water approximation of waves can be used when the horizontal length

scales of the wave propagation are much greater than the vertical. Such examples

include the propagation of the waves in shallow water, the modelling of tsunamis, tides,

storm surges as well as river flows Shallow water equations (SWE) are used, apart

from stand-alone solvers, as a model to approximate piston-type wavemakers in NWTs

(Zhang et al., 2007; Higuera et al., 2013a). In such cases, the movement of the water

particles takes place mainly in the horizontal dimension and the vertical accelerations

are negligible. Under this consideration, the NSE can be integrated along the water

depth assuming uniform velocity distribution in the horizontal, as well as small velocity

in the vertical, and hydrostatic vertical pressure gradients (Holthuijsen, 2007). The

set of the SWE consists of the mass conservation equation (Equation 2.3a) and the

momentum conservation equations (Equations 2.3b and 2.3c), which are derived for

negligible Coriolis, frictional and viscous forces (Moler, 2011):

∂η

∂ t
+

∂ (ηu)
∂x

+
∂ (ηv)

∂y
= 0 (2.3a)

∂ (ηu)
∂ t

+
∂

∂x
(ηu2 +

1
2

gη
2)+

∂ (ηuv)
∂y

= 0 (2.3b)

∂ (ηv)
∂ t

+
∂ (ηuv)

∂x
+

∂

∂y
(ηv2 +

1
2

gη
2) = 0 (2.3c)

where η is the total fluid column height, u and v is the fluidâĂŹs horizontal velocity in
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the x and y direction, respectively, averaged across the vertical column and g is the

acceleration due to gravity.

SWE are very computationally efficient, thanks to their depth-averaged approximation.

However, as it becomes apparent, this induces a considerable limitation for practical

applications, restricting the use of these models from intermediate and deep water

regimes. Moreover, in their original form, SWE ignore wave dispersion effects and for

some applications, other models, such as the Boussinesq equations, are preferred.

To overcome the aforementioned constraints, nonlinear versions of the SWE were de-

veloped leading to NLSWE models. These approaches are based on non-hydrostatic

pressure assumption and divide the computational domain in layers of uniform hori-

zontal velocities (Stelling and Duinmeijer, 2003). NSWE solvers have demonstrated

very good performance for simulating dispersive regular waves, wave propagation over

immersed obstacles and focused waves (Vyzikas et al., 2015), as discussed in Section

A.2. Nevertheless, NLSWE cannot handle overturning waves, for which CFD models

are required (Jacobsen et al., 2012), and they can only approximate breaking as a

moving bore (The SWASH Team, 2017).

In the present work, since no overturning waves are considered, the NLSWE model

SWASH is tested for steep focused wave groups -to the best of the author’s knowl-

edge, for the first time- using a high resolution flexible layers’ grid and a non-hydrostatic

pressure assumption, as discussed in Section A.2.

2.1.5 Boussinesq

The original Boussinesq equations (Boussinesq, 1872) were developed in order to

model the propagation of nonlinear waves in intermediate water depth, where the ratio

of water depth to wavelength is d/L ≈ 0.5 and wave dispersion still holds, while non-

linear effects, such as shoaling cannot be neglected. Similarly to SWE, Boussinesq

equations are depth-averaged with a constant horizontal velocity component along the

vertical dimension. However, in contrast to SWE, the vertical velocities vary along the
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water column, being calculated by the nonlinear balance equations, and as such, there

is a vertical acceleration of the fluid flow (Holthuijsen, 2007). The original Boussinesq

equations were derived for horizontal sea bed and expressions for non-horizontal bot-

tom were later given by Peregrine (1967):

∂η

∂ t
+

∂

∂x
[(d +η)ux] = 0 (2.4a)

∂ux

∂ t
+ux

∂ux

∂x
+g

∂η

∂x
=

1
2

d
∂ 3(dux)

∂ t∂x2 −
1
6

d2 ∂ 3(dux)

∂ t∂x2 (2.4b)

where ux is the vertically averaged horizontal velocity.

The original Boussinesq equations are valid when both frequency dispersion and non-

linearities in the wave propagation are considered weak and in fact have the same

order of magnitude. This limits their applicability in intermediate water depth, since in

deep water, waves are fully dispersive and at very shallow water, dispersion weakens

and nonlinearity becomes more important (Liu and Losada, 2002).

In their original form, Boussinesq equations were used to simulate propagation in inter-

mediate water and long waves, for example, seiches that should be taken into account

in port designing (Kofoed-Hansen et al., 2005, 2001; Giese et al., 1998). Many versions

of Boussinesq models have been proposed, the so-called modified Boussinesq equa-

tions, which aim at expanding the applicability of these models, by including energy

dissipation effects for wave breaking, and with appropriate modifications to become

able to simulate surf-zone effects. To present, Boussinesq equations are still widely

used for operational engineering applications in coastal areas and sometimes as part

of an integrated modelling system (Liu and Losada, 2002), e.g., switching from Boussi-

nesq to NLSWE at the onset of wave breaking (Whittaker et al., 2017). A review of the

developments of Boussinesq models was written recently by Brocchini (2013).

In the present work, Boussinesq models were not used, although well tested open-

source numerical models, such as FUNWAVE (Shi et al., 2012) and COULWAVE

(Lynett et al., 2008), are available. Instead, SWASH was preferred as a weakly nonlin-
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ear model, thanks to its better performance, wider applicability and greater operational

capacity, as explained in Section A.2. Nevertheless, it appears that Boussinesq mod-

els have similar behaviour to NLSWE for focused waves, as seen by comparing Figure

6 in Stagonas et al. (2014) with Figure 3.10 of the present work.

2.1.6 Zakharov equation

The Zakharov equation (ZE) was derived considering the Hamiltonian representation

of surface waves, according to the assumption of weak nonlinearity (Zakharov, 1968),

which is valid for deep water waves taking the form of Equation 2.5:

∂η

∂ t
=

δE
δφs

,
∂φs

∂ t
=−δE

δη
(2.5)

where η is the free surface elevation, E is the energy of the fluid and φs is the velocity

potential at the free surface.

The flow is considered inviscid and irrotational, and thus, the velocity potential can be

expressed by the Laplace equation. After an appropriate canonical transformation, the

flow variables can be found by the so-called integro-differential equations.

As explained later in Section 5.5.1, the Hamiltonian expression of water surface, puts

ocean waves in the general physical problem of the propagation of waves in nonlinear

dispersive media. The ZE used in most of the numerical models nowadays is based

on the derivation of up to five-wave interactions (or truncation to lower order), as sug-

gested by Krasitskii (1994), who managed to obtain a conservative form of the Hamilto-

nian through the symmetrical coefficients that he proposed for various combinations of

wavenumbers. ZE-based numerical models can simulate high order wave-wave inter-

actions without the spectral bandwidth constraints of the NLSE (Kharif and Pelinovsky,

2003; Dysthe et al., 2003).

ZE is used mainly in research to study the spatial and temporal transformation of the

wave field due to nonlinear wave-wave interactions. ZE models are time resolving
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(Gramstad and Stiassnie, 2013), but they also serve as the basis to derive the phase-

averaged Kinetic Equation for the long-term evolution of random wave fields (Krasitskii,

1994). In its phase resolving version, the ZE is used to study the effects of modulation

instabilities (MI) that may lead to the emergence of rogue waves and to deduce general

statistical properties of random wave fields by direct numerical simulations, since it is

the most accurate weakly nonlinear model for such purposes (Kharif and Pelinovsky,

2003). In practice, ZE is used in computational efficient high order spectral (HOS)

methods, by selecting the nonlinear HOS order at 3 or 43, with order 1 referring to linear

simulation (Alam, 2014; Slunyaev et al., 2013) and 6 to a fully nonlinear simulation

Slunyaev et al. (2011). A considerable advantage of the integro-differential approach is

that the physical processes of the wave-wave interactions can be isolated by including

and excluding the corresponding integrals in the ZE, as noted by Gibson and Swan

(2007), who used ZE to examine the spectral evolution of directionally spread focused

wave groups. It was shown that ZE had excellent agreement with the fully nonlinear

BST model.

In the present study, ZE is used in phase-resolving Monte Carlo simulations with the

HOS-ocean model of order 3 for estimating the spectral evolution of random realisa-

tions of a wave field as well as in a phase-averaged approach for the GKE, as shown

in Sections 3.4 and 4.3. Moreover, ZE was used in a less conventional approach with

Krasitskii’s coefficients to estimate a nonlinear wave profile (see Section 5.5).

2.1.7 Nonlinear Schrödinger Equation

NLSE describes the evolution of wave fields as modulations of the waves, in the form of

envelope equations, which is possible when the surface elevation and the velocity are

associated in a convenient way that allows the governing equations to take that simple

form (Slunyaev et al., 2011). The evolution complex wave envelope in space and time

is given by Equation 2.6 (Onorato et al., 2013):
3Most of the literature suggests that nonlinear order M=3 corresponds to the ZE, with some exceptions

such as Alam (2014) and Kharif and Pelinovsky (2003).

33



2.1. NUMERICAL MODELLING OF WATER WAVES

i
(

∂A
∂ t

+ cg
∂A
∂x

)
− ω0

8k2
0

∂ 2A
∂x2 −

1
2

ω0k2
0|A|2A = 0 (2.6)

where A is the complex wave envelope, k0 is the wave number of the carrier wave, g

the gravity acceleration and cg =
∂ω

∂k is the group velocity.

The envelope approach, despite being approximate, was shown to be very power-

ful for simulating waves of considerable steepness (Slunyaev et al., 2013), but at the

same time these models may miss the steepest waves in a wave nonlinear field (Ono-

rato et al., 2013). NLSE can be derived by the NSE, with the hypothesis of inviscid

irrotational flow and weak nonlinearity (Bitner-Gregersen and Gramstad, 2015), simi-

larly to ZE integrals (Trulsen et al., 2000), but with additional assumptions of narrow

spectral bandwidth and infinite water depth (Trulsen et al., 2001). NLSE are derived

through power series expansion of the slowly varying fields of the free surface eleva-

tion and velocity potential (Onorato et al., 2013). The additional assumptions refer to

narrowbandness and deep water depth . The original NLSE are of third order of wave

steepness and spectral bandwidth (Shemer and Dorfman, 2008), and are thus called

cubic NLSE. The expansion to fourth order was suggested by Dysthe (1979), in the

so-called "Dysthe" equation. Other variations of modified NLSE (MNLSE) have been

also proposed attempting to increase the applicability of this approach (Dysthe et al.,

2003). A necessary requirement to model nonlinearly a wave field with NLSE is the

accurate knowledge of the free-wave spectrum Trulsen et al. (2001), since the method

is based on the exact linear dispersion.

The main advantage of the NLSE (or MNLSE) is their simplicity and computational effi-

ciency, which expanded their use among the research community (Trulsen et al., 2000).

Provided that the spectrum is narrowbanded and the waves are weakly nonlinear, the

NLSE has demonstrated very good ability in capturing the dynamics of the wave field,

namely the four-wave interactions, as well as complex phenomena, such as the mod-

ulation, aka side-band, instability for the generation of rogue waves (Onorato et al.,

2013). MNLSE have been recently applied to simulate directionally spread extreme
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waves spotted in random simulations (Adcock et al., 2016) and measured timeseries

of extreme wave profiles from a platform, showing good performance but inability to

capture the large crests (Slunyaev et al., 2013). On the downside, NLSE are limited

by their inherent assumptions of weak nonlinearity, narrowbandness and infinite water

depth (Shemer and Dorfman, 2008). Additionally, the method may also suffer from

energy leakage to high wavenumbers and subsequent violation of the initial bandwidth

assumption (Trulsen et al., 2000; Taylor and Swan, 2000). This leakage can cause

spurious wiggles in front of the examined wave group due to high nonlinearity, indicat-

ing an important limitation of the MNLSE for simulating large steep waves (Adcock and

Taylor, 2016b,a).

In the present study, where very steep broadbanded wave groups are simulated, it

was decided not to employ a NLSE-based model. Nevertheless, the MNLSE approach

merits future investigation especially for problems of MI, for which preliminary work of

the author indicated that CFD models cannot handle efficiently.

2.1.8 Phase-averaged models

The numerical modelling approaches for water waves presented in the previous sec-

tions were based on the description of a wave field through individual waves compo-

nents obeying rigorous equations of wave theories and fluid motion, and are charac-

terized as phase-resolving models (Yang et al., 2017). However, when the properties

of individual waves are not concerned or large scales should be simulated, a random

wave field can be described in a statistical sense through a phase-averaged approach

(Lin, 2008). As such, instead of solving hydrodynamic equations, the waves are re-

garded as energy distributed over a spectrum analysed in frequencies and directions,

which changes due to forcing terms that represent the various physical processes.

This consideration is sufficient to determine the most important characteristics of a

wave field (Monbaliu and Lefèvre, 2005) and leads to the mathematical description of

the energy balance equation for phase-averaged models or to the wave action equa-

35



2.1. NUMERICAL MODELLING OF WATER WAVES

tion, which can account for the presence of ambient currents (Holthuijsen, 2007). The

energy balance equation is a conservation relation, which balances the effects of the

forcing terms with a corresponding transformation of the energy spectrum. The basic

formulation of the wave action equation used in spectral models is given by Equation

2.7:

∂N
∂ t

+
∂cg,xN

∂x
+

∂cg,yN
∂y

+
∂cθ N

∂θ
+

∂cσ N
∂σ

=
S
σ

(2.7)

where A ≡ E/σ is the wave action, N and S are functions of (σ ,θ ;x,y, t), represent-

ing the action density spectrum and the source terms in the action balance equation

respectively. cg,x and cg,y refer to the propagation velocities in x− and y− space respec-

tively, which account for the shoaling effect. cθ is the propagation velocity in θ− space,

accounting for depth induced and current induced refraction. cσ is the propagation

velocity in σ− space, accounting for shift in the relative frequency due to the effect of

depth and current variations.

In phase-averaged modelling, it is considered that wave energy propagates according

to the linear dispersion relation. The basic assumption is that the wave field changes

in scales much larger than the individual wavelengths and wave periods, which dic-

tates a slow evolution of the wave field. The effects of the physical processes and the

nonlinearities are introduced via the forcing, aka source, terms. There are processes

that have a robust mathematical description through the source terms, such as the

four-wave interactions, but there are also other processes that refer to phase-related

phenomena, e.g., reflection and diffraction, or to highly nonlinear phenomena that are

vaguely understood or poorly mathematically described, such as wind-wave interac-

tions and wave breaking (Cavaleri et al., 2007). For such processes, the source terms

rely on heavy parameterizations (Rijnsdorp et al., 2017). Therefore, phase-averaged

models are expected to perform less well for rapidly changing conditions and at the

nearshore areas, where nonlinear effects and local characteristics become important

(Rijnsdorp et al., 2014). The unrivalled advantage of phase-averaged models is their
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computational efficiency, which makes it possible to simulate the random nature of the

waves at large spatial and temporal scales. Phase-averaged models find application

at hindcasting and forecasting, as well as at wave resource characterization studies

(Yang et al., 2017). They are also used as part of integrated modelling systems for

propagating the wave spectrum from the far oceanic field to the region of interest,

where they provide the boundary conditions for phase-resolving or highly-skilled mod-

els (Guimarães et al., 2015). Regarding extreme waves, since these phenomena are

phase related, phase-averaged models cannot directly account for them. However,

thanks to the fact that the probabilities of extreme wave emergence have shown to

be associated to spectral characteristics, e.g., kurtosis, spectral models can indicate

potential high probabilities for extreme waves at certain regions or weather conditions

(Janssen, 2005; Mori, 2012; Bitner-Gregersen and Gramstad, 2015), acting as a warn-

ing system, or be used to analyse the sea state when accidents related to extreme

waves have been encountered (Prevosto and Bouffandeau, 2002; Adcock et al., 2011).

In the present work, where the spectral changes during the focusing of wave groups

have been thoroughly explored, direct associations with phase-averaged models were

identified. The relevant source terms for four-wave interactions and triads have been

tested in WW3 (see Section A.4), but, since at their present form the source terms can-

not account for near-resonant wave-wave interactions in 1D, the GKE was programmed

separately. Nevertheless, future work, which can expand the present methodology in

2D, could include WW3 or a similar model as a part of modelling system for analysing

extreme waves.

2.2 Wave-wave interactions

In this section, the generation mechanisms of free and bound waves are discussed,

along with the effects of instabilities, directionality and generation of spurious waves in

physical and numerical wave tanks. The understanding of these effects is crucial not

37



2.2. WAVE-WAVE INTERACTIONS

only for the interpretation of the wave dynamics, but also for the accurate estimation

of the impact of the waves on structures needed for engineering purposes (Zang and

Taylor, 2010; Swan and Sheikh, 2015).

2.2.1 Bound and resonant nonlinearities

In a linear consideration of a wave field, the wave components do not exchange energy

through their interactions, but propagate independently according to the linear disper-

sion relation. As such, the spectrum of the waves remains constant, but the spatial

and temporal shape of the wave group can change due to the fact that longer waves

propagate faster than shorter waves (Arena and Fedele, 2005). In reality, water is a

nonlinear medium and wave interactions that transfer energy among the waves take

place as a natural physical process, which can be enhanced by environmental fac-

tors, such as the wind, current and water depth. These interactions redistribute the

energy in the wave spectrum by generating harmonics, which are dependent on the

initial-fundamental frequencies of the wave spectrum, or new wave components that

propagate independently, called bound and free waves, respectively (Lin, 2008). This

nonlinearity of the wave field adds considerable complication, but opens a window to

study very interesting aspects on the behaviour of water waves. In particular, nonlin-

earity is an inherent characteristic of the large waves, however there is not a consensus

yet to what extent and how it is related with the emergence of extreme waves in the

ocean (Adcock and Taylor, 2014). Compared with other nonlinear processes though,

wave-wave interactions have a robust mathematical description within the resonance

theory (Cavaleri et al., 2007) and are also discussed in the context of the Hamiltonian

expression of the waves in the work of West and Brueckner (1987). Before continuing

the discussion about the nonlinear wave-wave interactions, some basic definitions are

given:

• Free waves: obey the linear dispersion relation, propagating independently.
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• Bound waves: phase-locked to the free waves, propagating with the celerity of

the wave group.

• Resonant interactions: nonlinear wave-wave interactions between three or four

free wave components that create new free wave components. Exact conditions

for the frequencies and wavenumbers, which take the mathematical form of a

linear resonator, must apply (Phillips, 1960).

• Bound interactions: nonlinear wave-wave interactions among pairs of free waves

that generate bound harmonics.

• Near-resonant interactions: similar to resonant interactions, but the exact condi-

tions are not satisfied. Important for the generation of free wave in long-crested

seas as well as numerical and physical flumes.

• Non-resonant interactions: depending on the context, they may refer to bound,

near-resonant interactions or BF instabilities.

Bound interactions

Bound nonlinearities refer to the generation of new harmonics at higher and lower fre-

quency bands than the original free waves of the spectrum. These bound harmonics

propagate with the same celerity as the free waves and their phases are related to the

free (linear) waves. The understanding of the formation and the mathematical descrip-

tion of the super- and sub-harmonics started with the pioneering works of Longuet-

Higgins and Stewart (1960), Longuet-Higgins (1978a) and Longuet-Higgins (1978b),

who used PFS as a starting point for the analysis that was based on the eigen-functions

and steepness of the waves. High order bound waves are generated at multiple inte-

gers of the frequencies of free waves, referring to second, third, fourth etc harmonics.

At half of the free wave frequencies, bound long waves are generated, aka as low fre-

quency or infragravity (IG) waves. The manifestations of the bound waves are local for

the high order (super-)harmonics, which cause narrower and higher crests and flatter

39



2.2. WAVE-WAVE INTERACTIONS

Figure 2.4: Harmonic analysis of a focused wave group used in the present study,
demonstrating the bound wave structure. The amplitude of bound waves is doubled.

and shallower troughs when added to the a linear wave signal, and more global for the

long bound waves (sub-harmonics), which cause a decrease of the mean water level

(MWL) especially beneath wave trains (Fedele and Tayfun, 2009)4. An example of the

effects bound waves on the wave group in seen in Figure 2.4, where the amplitude

of bound waves was doubled for better visibility. The long wave structure of the 2nd

difference harmonic under the wave group is evident. Since bound waves are phase-

locked to the free wave and thus, they do not propagate with their linearly predicted

celerity, it becomes clear that they are uniquely defined by the free-wave spectrum and

they do not influence the dynamics of the wave evolution (Onorato et al., 2013; Bitner-

Gregersen and Gramstad, 2015). It is noted however that it is not straight-forward to

distinguish which waves are free and bound from a single measurement (Walker et al.,

2004; Holthuijsen, 2007), and harmonic separation techniques (see Section 2.4.5) and

multiple recordings at subsequent measurements are needed (Vyzikas et al., 2018b).

At second order, the calculation of the bound waves for a regular wave was given by

Stokes second order theory (Stokes, 1847) as perturbation expansion, and for realistic

broadbanded spectra was given by Sharma and Dean (1981) as a summation of any

possible combination of free interacting components. The inclusion of bound waves

causes a vertical asymmetry of the wave profile (Walker et al., 2004; Taylor et al., 2006),

which strength depends on the local wave steepness (Taylor and Swan, 2000; Baldock

4Although a set-down is observed in laboratory experiments beneath wave groups, a set-up is also
plausible in crossing seas, i.e., wave systems coming from different directions, and has been associated
with the emergence of extreme waves (Adcock et al., 2011).
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et al., 1996) and the initial amplitude sum of the wave group (Johannessen and Swan,

2001; Vyzikas et al., 2018b) as well as the relative frequencies and the directions of the

interacting components (Adcock et al., 2011). Second order theory provides a more

realistic representation of a wave field than linear theory and it is often used for direct

numerical simulations to deduce statistics of the exceedance probabilities (Forristall,

2000). However, the second order contributions may not be sufficient to account for the

largest transient waves (Gibson and Swan, 2007). Instead, the perturbation expansion

can be considered at higher orders, which have progressively lower contribution to

the wave profile (Hann et al., 2014). Their effect is mostly important for unidirectional

waves (Adcock, 2017). As such, for regular waves, the initially single-peak spectrum at

the wavemaker becomes multi-peak as the waves propagate in the nonlinear medium

(Zhao et al., 2009).

The bound interactions are also known as "triad-wave" interactions, because two waves

of frequencies f1 and f2 interact to transfer energy to waves at higher or lower fre-

quency f3 = | f1 ± f2| (Holthuijsen, 2007). Triad-wave interactions, generally speak-

ing, are only important in shallow water, where the corresponding resonance of the

wavenumbers is permitted, due to the weakening of the dispersion of the waves that

results in the transition from four-wave to triad-wave interactions, as predicted by Has-

selmann’s theory (Cavaleri et al., 2007). This was also observed in the experimental

and numerical study of Shemer et al. (2007), who suggested that for a given steepness

of a unidirectional wave group the strength of triads decreases with increasing depth.

Triads can develop in short timescales, pumping energy from the free-wave spectrum

to higher and lower harmonics (Ris, 1997), which shows similarities to the spectral evo-

lution of the focused wave in the present study. In general, the propagation of waves

in shallow water induces additional complexity in physical terms, such as shoaling,

self-self interactions, energy transfers from free waves to bound and vice versa (Liang

et al., 2015; Holthuijsen, 2007). A particularly interesting phenomenon with consider-

able consequences in the wave dynamics in the coastal regions is the release of IG

waves, which occurs when the wave groups break on the beach and the coupling of
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the long waves that are locked to the group is destroyed (Cavaleri et al., 2007).

Resonant interactions

The resonant interactions occur between free waves that satisfy the exact resonant

conditions among wave numbers, which for three interacting components that generate

a fourth component take the form of the so called four-wave or quadruplet interaction:

k1 +k2 = k3 +k4 and ω1 +ω2 = ω3 +ω4, where ki and ωi refer to the wavenumber vector

and angular frequency of a wave component i (Janssen, 2003). These conditions sat-

isfy the famous "8 pattern" of Phillips (1960), seen in Figure 2.5, without any limitations

for the bandwidth (Trulsen et al., 2000). This generation of new wave components re-

distributes the energy along the frequencies and directions of the spectrum, altering

also the dispersive properties, namely the amplitudes and phases, of the original free

waves (Gibson and Swan, 2007). The visualisation of the resonant interactions in a

wave tank can be realised with a diamond wave pattern, which can be created by two

wave groups coming from different directions, that interacts with another free wave in

order to generate a fourth wave, as described by Holthuijsen (2007) and seen in Fig-

ure 2.6. The problem of resonant interactions was initially studied by Phillips (1960)

and shortly later two fundamental processes of the wave evolution where this theory

applies were identified: i) The instability of wave trains, aka BF instability5 (Benjamin

and Feir, 1967), and ii) the long-term evolution of a wave field towards an equilibrium

condition for the spectrum (Holthuijsen, 2007), taking the form of a Boltzmann inte-

gral (Hasselmann, 1962). The timescales of these two processes differ significantly,

with BF instabilities taking place within 5-10 wave periods and the long-term evolution

occurring over 100-1000 wave periods, referring to as BF and Hasselmann scales,

respectively. In the framework of ocean modelling, four-wave interactions are one of

the dominant processes that dictate the wave evolution in deep water (Gramstad and

Stiassnie, 2013). It is worth noting that four-wave interactions are energy conservative

5Strictly speaking, BF instability is caused by non-resonant interactions (Janssen, 2003).
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Figure 2.5: Eight pattern interaction that satisfies the resonance conditions for the four
wave numbers and angular frequencies (Phillips, 1960). Permission to reproduce this
figure has been granted by Cambridge University Press.

and their action only redistributes the energy within the wave spectrum (Holthuijsen,

2007). The wave groups studied in the present work do not satisfy the criteria for BF

instabilities, nor for the long-term evolution at the Hasselmann scale. Nevertheless,

the patterns are similar to those of resonant and bound interactions and effort is put to

explore the sources of these changes. This problem has puzzled other researchers in

similar studies (Johannessen and Swan, 2003).

The modelling of the wave dynamics at long timescales requires the inclusion of res-

onant nonlinear interactions for the accurate description of the wave field. However,

although resonant interactions are important for the evolution of the wave group, they

seem to play little role on the wave crest statistics (Socquet-Juglard et al., 2005), which

appear to be influenced mainly by the contributions of the bound nonlinearities (Dysthe

et al., 2008). Nonetheless, other local properties of the waves can be affected by res-

onant interactions (Latheef and Swan, 2013). This is supported by the present work,

which shows that the inclusion of the evolved free-wave spectrum does not increase

the crest elevation, but affects the shape of the wave group and its height (see Chapter

5).
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Figure 2.6: (a) The pattern created on the free surface due to the interaction of four
waves travelling at different directions and (b) the resonance condition among the
four wavenumbers (Holthuijsen, 2007). Permission to reproduce this figure has been
granted by Cambridge University Press.

In the context of extreme waves, there is still an ongoing debate to which extent reso-

nant interactions are relevant to extreme wave dynamics at short scales and in realistic

ocean conditions (without BF instabilities) (Adcock et al., 2015). For the case of lab-

oratory focused wave groups, rapid widening of the free-wave spectrum is observed6,

which causes important changes to the amplitudes of the free waves (Baldock et al.,

1996; Ning et al., 2009b), and its effects seem to be more pronounced for unidirec-

tional wave groups. This conclusion suggests that extreme waves in the field may be

more likely to occur in swell-dominated sea states (Gibson and Swan, 2007). There-

fore, there exist similarities for the nonlinear wave-wave interactions between focused

waves and oceanic waves (Christou and Ewans, 2011a). In real ocean, the strength of

these interactions can be high enough to generate extreme waves that can even break

in the deep water (Lara et al., 2011). Another manifestation of the resonant nonlineari-

ties in focused wave groups is the nonlinear downshifts of the focal location, which can

be tackled with appropriate correction methodologies, as described in Section 2.4.4.

The study of the exact effects of the resonant / near-resonant interactions is an ac-

6It is important to distinguish between the rapid broadening of the free-wave spectrum at the BF
timescale and the broadening of the total spectrum due to bound high order nonlinearities that occur
very close to the focal point. This is well demonstrated in Section 4.1.1.
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tive field of research with new literature often contradicting the existing conceptions

(Aubourg and Mordant, 2015; Haudin et al., 2016; Bonnefoy et al., 2016; Aubourg

et al., 2017).

2.2.2 Spurious waves

In this section, spurious waves are briefly discussed because they often cause discrep-

ancies in the comparisons between physical and numerical models, as well as potential

miscalculations in engineering design parameters, e.g., overtopping. Spurious waves

are erroneous artificial waves commonly caused by deficiencies of the wave generation

conditions in physical and numerical wave tanks. The main types of spurious waves

are: i) Free sub- and super-harmonics, which are the most relevant for the case of

focused waves and are discussed in detail below; ii) Free local disturbance waves, aka

evanescent standing modes, which are created in the vicinity of the wavemaker, due to

the mismatch between the shape of the face of the wavemaker and the real profile of

the horizontal velocities of progressing waves (Zhang et al., 2007). Evanescent modes

decay exponentially in short distance downstream of the wavemaker, disappearing at

distance shorter than a wavelength or 3-5 times the water depth (Shemer et al., 2007;

Orszaghova et al., 2014). The decay length from the wavemaker can be found using

φ =
∞

∑
n=0

cnZnzexp−mnx for n ≥ 1, which relates the velocity potential (φ ) with the verti-

cal distance from the free surface (z) for n wavenumbers, as discussed in the work of

Keaney (2015); iii) Free displacement long waves, referred to as seiching, generated

due to the abrupt initial movement of the wave paddle from its mean position (Baldock

et al., 1996). .

The generation of spurious free sub- and super-harmonics is caused due to the linear

transfer function of the wavemaker (Zang and Taylor, 2010), or the linear boundary

conditions at the inlet in a NWT, which attempt to introduce linear waves in a nonlinear

medium. However, even for moderate steepness, second order effects are not neg-

ligible, and linear theory is not adequate to describe the free surface elevation and
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kinematics of the waves. Unavoidably, to satisfy the nonlinearity of the medium, sec-

ond order bound waves are naturally created (Chaplin, 1996), but likewise, their free

counterparts are also produced to cancel them at the inlet, having equal amplitudes

but opposite phases (Jacobsen et al., 2012). Downstream of the wavemaker, the erro-

neous second order free waves become apparent, since their propagation has different

dynamics than the rest of the wave group. The spurious sub-harmonics travel faster

than the wave group and create an artificial preceding surge (Whittaker et al., 2017),

which may also affect the shape of the wave group at relatively short distance from the

wavemaker (Orszaghova et al., 2014; Vyzikas et al., 2018b). Another common issue

is the dissipation of these long waves, which are not always effectively absorbed or

destroyed at the outlet and they can be reflected, creating a sloshing effect in the wave

tank (Orszaghova et al., 2014). On the other hand, the free spurious super-harmonics,

travel with a lower celerity than the rest of the wave group, and they are eventually sep-

arated from it a few wavelengths downstream of the wavemaker. Therefore, they do

not usually cause any issues at the region of interest, especially in the case of focused

wave groups, provided that the focal point is sufficiently far from the wavemaker. An in-

tuitive comparison between the evolution of spurious free and bound waves in relation

to the group dynamics is given by Vyzikas et al. (2018b), where it is also discussed

that different wavemakers cause different spurious waves, which can explain some of

the discrepancies between numerical and experimental results found in many studies,

e.g., Bredmose et al. (2016); Ning et al. (2009b); Westphalen et al. (2012). From an

engineering design point of view, the spurious long waves have been reported to cause

considerable overestimation of the overtopping and the runup of NewWave-type wave

groups (Orszaghova et al., 2014).

To suppress the spurious effects of linear wave generation, high order theories have

been proposed that give a better estimation of the free surface dynamics and kine-

matics at the wavemaker. The most commonly used correction to the wavemaker’s

signal is the second order theory of Schäffer (1996), which was based on the analysis

of Barthel et al. (1983). Second order theory was shown to be relatively successful in
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eliminating the spurious long wave in experiments (Whittaker et al., 2017), but it had

less impressive performance for the high frequency spurious waves (Orszaghova et al.,

2014). In NWTs, second order wave generation (Higuera et al., 2013a) and third order

corrections to the wavemaker’s movement (Ducrozet et al., 2012a) have been applied

with success, as discussed in Section A.3.3.

2.2.3 Benjamin-Feir instability

Early experimental observations of unstable Stokes waves in the ’60s started puzzling

researchers about the nature of these instabilities that were not expected according

to conventional theories. This phenomenon was explained by the fathers of the MI,

Benjamin and Feir (Benjamin and Feir, 1967) in the West, and, at the same time,

independently by Zakharov (1968) in the USSR. An interesting historical review is given

by Zakharov and Ostrovsky (2009), where applications of the BF instabilities to other

fields, e.g., electromagnetic waves, are discussed (see also Onorato et al. (2013) for

more applications). Here, a brief presentation of the BF instabilities is given because

they are non-resonant nonlinear wave-wave interactions that have been associated

with extreme waves.

The BF instability refers to the disintegration of regular wave trains with an initial per-

turbation, which can exponentially grow drawing energy from the surrounding waves

(Adcock and Taylor, 2014). The simplest case to observe the effect of the BF instability

is the interaction of a high amplitude carrier wave at frequency ω with two low ampli-

tude side band waves at frequencies ω ±∆ω, where ∆ω

ω
<
√

2kα, with k and α being

the wavenumber and wave amplitude respectively, that exchange energy according to

weak modulations (Zakharov and Ostrovsky, 2009). These types of wave groups are

called breathers and they have been extensively used to study MI, attempting to under-

stand the mechanism of rogue waves’ formation (Fedele and Tayfun, 2009; Kharif and

Pelinovsky, 2003). BF instabilities can result in isolated waves of more than three times

the initial amplitude of the wave group, at a timescale of (kα)2 wave periods (Dysthe
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et al., 2008), which is commonly after 10-30 wavelengths of propagation. This can be a

considerable limitation for short physical flumes and computationally expensive NWTs

(Bitner-Gregersen and Gramstad, 2015). Moreover, it is noted that BF instability it can

appear only under certain conditions: i) The wave field should be sufficiently narrow-

banded, with a BF index BFI > 1. BFI is defined as the ratio: BFI = 2(kpσ)/(∆ω/ωp),

where kp and ωp are the wavenumber and angular frequency of the component of the

peak frequency and σ the spectral variance (Janssen, 2003); ii) The waves should be

dispersive. Consequently, they should propagate in deep water of kd > 1.363, where d

is the depth (Benjamin and Feir, 1967); iii) The wave field should be sufficiently long-

crested (Dysthe et al., 2008).

The aforementioned conditions pose important limitations to the emergence of BF in-

stabilities in real ocean, which is mostly characterized by broadbanded directionally

spread energy spectra, or in coastal areas of finite water depth (Fedele et al., 2016).

However, conditions for BF instabilities can be encountered at the initial stages of a

wind-generated wave field or when the wind conditions change suddenly (Janssen,

2003) and during typhoons (Mori, 2012). As such, spectral parameters, namely the

kurtosis and skewness, are often used to characterise sea states with high proba-

bilities for extreme waves (Bitner-Gregersen and Gramstad, 2015)7, which are more

common in transitional stages of wave fields (Socquet-Juglard et al., 2005).

To conclude, in a random realistic wave field BF instability effect ceases (Taylor and

Swan, 2000), but it is still an open debate which of the two competing mechanisms (en-

ergy focusing or non-resonant interactions) are mostly responsible for extreme waves

in nature (Fedele et al., 2016). This discussion continues in Section 2.3.

7According to the author, the popularity of this approach is partially related to the convenience in
associating easily estimated spectral parameters to the probability of extreme waves, compared to more
robust mechanisms, such as focusing, that occur however randomly.
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2.2.4 Directionality

Directionality is an important parameter that controls the evolution and the properties

of wave fields, being an inherent characteristic of real ocean waves that is often ne-

glected in 1D laboratory experiments (Taylor and Swan, 2000; Dysthe et al., 2008). The

inclusion of directional spread has considerable effects on resonant and bound wave

interactions, spectral evolution, steepness and crest statistics. This section serves also

as a "disclaimer" that the findings of the present study refer only to unidirectional wave

groups and generalisations should be made with caution, since directionality may affect

the wave interactions in focused waves significantly (Johannessen and Swan, 2001).

It is also noted that the spectral distribution of the free waves affects the wave-wave

interactions and subsequently the shape of the wave group and the onset of breaking

(Chaplin, 1996; Stagonas et al., 2018).

A first effect of directionality is the weakening of the bound nonlinearities. Numerical

simulations and experiments have shown that long-crested large waves have a bound

harmonic structure that exceeds second order (Vyzikas et al., 2018b; Christou and

Ewans, 2014), while directionally spread waves can be adequately described by sec-

ond order theory (Latheef and Swan, 2013; Johannessen and Swan, 2001). The con-

sequence of this is that realistic seas can be described by second order statistical distri-

butions (Forristall, 2000; Tayfun, 1980), but unidirectional seas may show considerable

departures for the largest waves with low probabilities of occurrence8. Regarding the

low-frequency bound wave, it is always expressed as a set-down in following seas,

but it can be considered negligible in directional seas (Forristall, 2000). The bound

nonlinearity of the directionally spread wave groups reduces their steepness and more

energy is required before they break. Thus, limiting breaking directional wave groups

can reach higher elevations than the equivalent uni-directional groups (Johannessen

and Swan, 2001).

8It is noted however that crossing seas can also give very large waves, if they are separated by specific
angles (Onorato et al., 2013), which can explain the positive long bound wave structure observed in the
famous Draupner wave (Taylor et al., 2006; Adcock et al., 2011).

49



2.2. WAVE-WAVE INTERACTIONS

Regarding resonant interactions, the wave evolution in 2D demonstrates fundamen-

tal changes, since the wave energy is not "trapped" in 1D and the exact resonance

conditions can be satisfied (Phillips, 1960). Therefore, pronounced spectral changes

can occur, with four-wave interactions spreading energy to large angles or creating

bimodal spectra (Gagnaire-Renou et al., 2010). In ocean models, the resonant interac-

tions control the long-term spectral evolution at the Hasselmann scale (Gramstad and

Stiassnie, 2013; Gramstad and Babanin, 2016; Benoit, 2006). In directional focused

waves, the nonlinear wave interactions can cause concentration of energy in the mean

direction, long-crested behaviour towards focusing and movement of the highest crest

at the front of the wave group (Adcock and Taylor, 2014). Such effects can result in a

"wall of water" shape (Adcock et al., 2016) that persists for longer time than predicted

by linear theory (frozen profile) (Adcock et al., 2015).

2.2.5 A note on the kinematics

A wave field is characterised both from the surface dynamics and the kinematics. The

latter is particularly important for engineering purposes because they determine the

loading of the structure, commonly through the use of the Morison’s equations (Chaplin

et al., 1997) or by integrating the measured pressure on the surface of the structure

(Ransley, 2015). Similarly to surface dynamics, kinematics are also influenced by the

nonlinear wave-wave interactions and subsequently by the steepness, dispersion and

directionality (Forristall, 2002). In brief, the linear Airy theory calculates the waves

at the MWL and it fails to calculate accurate kinematics above the MWL, especially

for realistic waves. Thus, empirical extrapolation techniques are used, such as the

Wheeler stretching, which however are not based on the hydrodynamics’ principles

(Trulsen et al., 2001).

Accurate calculation of the kinematics can be achieved by PFS and CFD solvers, but,

operational models for kinematics require both computational efficiency and expansion

to higher order. Such an example is the stochastic second order approach of Alberello
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et al. (2016). Moreover, there are challenges in obtaining accurate kinematics from

point measurements in the field, because the waves have to be considered unidirec-

tional (Slunyaev et al., 2011). In laboratory, kinematics can be studied thoroughly, but

it is also challenging to obtain the velocity profile along the water column with con-

ventional point measurements, e.g., using LDA (Johannessen, 2010), because they

require many repetitions. Alternatively, the Particle Image Velocimetry (PIV) technique

can be used that instantly maps the full velocity field (Santo et al., 2017). Other chal-

lenges that are relevant to the kinematics is the accurate prediction of the Stokes drift

and the return flow, which become particularly relevant for focused wave groups in

tanks (Taylor and Swan, 2000).

In the present work, comparisons for the kinematics are not included, however, prelim-

inary studies with experimental results measured with PIV showed good agreement.

Nonetheless, by comparing the propagation of the wave group at different locations

and obtaining similar results everywhere in the flume, confidence is gained that the

kinematics are correctly reproduced in the NWTs. Instead, when comparisons are

performed only at a single location, the measured elevation may be an outcome of

intercancellations of different processes, e.g., incident and reflected waves, which can

result in different kinematics.

2.3 Extreme Waves

In this section, a brief but multilateral review of extreme waves is given after consulting

a broad literature. This covers the period from early observations to the most recent

reviews and findings, and it comes from different research teams, which approach the

problem with different methods and for different objectives. Some main outcomes are:

• Extreme waves are not as rare as initially thought, and solid evidence brought

them from maritime folklore to engineering studies.

• Full consensus of the main aspects of extreme waves, such as definition, proba-
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bility of occurrence, generation mechanisms, most appropriate way of modelling,

has not been reached yet, making the study of extreme waves an exciting field of

research.

• There are two main "schools" for the generation of extremes: MI and dispersive

focusing, which use different modelling tools, referring to envelope and hydrody-

namic equations, respectively.

• Recent analyses of field data proved that dispersive focusing is a valid mecha-

nism for extreme wave generation in the real ocean.

2.3.1 Definition

A common definition of extreme waves has not been generally agreed yet by the scien-

tific community (Haver, 2000; Cavaleri et al., 2012; Onorato et al., 2013). Many terms

are also used indistinguishably in scientific publications, such as rogue, freak and ex-

treme, or in everyday language, e.g., giant and monster, to refer to extreme waves

(Bitner-Gregersen and Gramstad, 2015). In the present work, the term "extreme" is

used to refer to such very large waves. Nevertheless, there is a consensus that ex-

tremes refer to events that are not expected for the considered sea state and thus, they

should be characterized in relation to the surrounding wave field (Adcock and Taylor,

2014). However, what makes a large wave be characterized as extreme is something

ambiguous and for decades researchers try to see whether extremes are rare mem-

bers of the normal population of waves or they form another population governed by

different physics (Haver, 2004). A quantitative criterion that is commonly used is the

ratio of the crest height (ηc) and/or maximum wave height (Hmax) over the Hs, as seen

in Equation 2.8 (Haver, 2000). The threshold for these ratios is set based on the length

of the record where the extremes are observed, here considered 20 min. However,

these thresholds should not be considered as strict criteria, because they are mostly

empirical and there is no particular change in the physics beyond them (Christou and

Ewans, 2011b). Moreover, these criteria should not be necessarily used together, be-
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cause this may exclude extreme distortions of the free surface, e.g., deep troughs, that

do not comply with both of the conditions (Christou and Ewans, 2011b). Thus, other

criteria based on steepness and statistics may be also used. It is noted that based

on this definition, extreme waves can also be of very small amplitude if they appear

in a calm sea (Onorato et al., 2013; Bitner-Gregersen and Gramstad, 2015). For this

reason, when analysing field data, other criteria can be included that are related to the

design wave for the examined structure in order to focus on meaningful extreme waves

(Vyzikas et al., 2013).

ηc

Hs
> 1.25 and/or

Hmax

Hs
> 2 (2.8)

It becomes apparent that the definition of Equation 2.8 is not ideal. On a more generic

approach, extreme waves can be considered those waves that are not part of our un-

derstanding, statistical distributions and engineering design practice. In this framework,

extremes can refer to the outliers of the models presently used, namely the Rayleigh

distribution with second order corrections (Haver, 2000). Usually, they are observed as

single kick-outs at the tails of the statistical distributions (Christou and Ewans, 2011b).

It is noted, however, that extremes occur more frequently than the exceedance proba-

bilities from the statistical models would allow for (Taylor and Swan, 2000). A conse-

quence is that extremes are perceived as unexpected events of high steepness and

asymmetry, and thus, inherent nonlinearity, being much larger for the given sea state

than linear thoery would predict (Kharif and Pelinovsky, 2003; Christou and Ewans,

2014). Theoretically, using more advanced models could capture more of the nonlin-

ear characteristics of the extremes or the environmental factors that contribute to their

generation. Therefore, as our understanding and tools improve, more rogue events

may fall into the category of classic very large waves (Haver, 2004). Indeed, recent

analysis suggests that extreme waves are rare events of the normal statistical popula-

tion (Christou and Ewans, 2014). This process of "de-rogueing" will eventually make

extreme waves part of the engineering design process, decreasing the number of acci-
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dents that they cause. Towards this direction, efforts should be made to collect reliable

field and laboratory measurements (Onorato et al., 2013) and combine them with nu-

merical models in order to be able to predict the emergence of extremes (Alam, 2014).

2.3.2 From myth to reality

The existence of giant waves that appear out of nowhere and swallow ships has been

always part of mariners tails (Bitner-Gregersen and Gramstad, 2015), creating a leg-

end and mystery around extreme waves. In anecdotal evidence, extreme waves are

commonly referred to as "walls of water", "holes in the sea" and "three sisters" (Kharif

and Pelinovsky, 2003) as well as "mad dogs" in coastal waters (Tsai et al., 2004).

A common characteristic is that extreme events seemed to appear suddenly without

any warning and to be much larger than the surrounding waves, and to persist for

some wave periods having a "frozen profile" (Haver, 2000). Also, in many cases they

seemed to propagate in an oblique direction to the sea state, posing a greater threat to

navigation (Adcock and Taylor, 2014). Although these descriptions do not offer precise

characteristics for a systematic study of extreme waves, they do capture some gen-

eral features of extreme waves, such as the high vertical asymmetry and nonlinearity

(Fernández et al., 2014). The hard evidence for the existence of extremes comes from

measurements at fixed structures (Christou and Ewans, 2014), usually oil platforms,

and wave buoys (Liu and Pinho, 2004). These measurements show that extremes

may be less rare than initially thought (Dysthe et al., 2008) and certainly far from being

simply legends of mariners, who are in fact likely to encounter a few rogue waves in

their career (Adcock and Taylor, 2014). A photograph of a rogue wave taken from a

ship is shown in Figure 2.7 demonstrating how the rogue event stands out from the

surrounding sea.

The understudying of these monster waves is crucial for the safety at sea, because they

pose a real threat to shipping and offshore industry (Slunyaev et al., 2011; Fernández

et al., 2014). Compared to large waves that occur in storms, extremes can happen in
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Figure 2.7: Rogue wave off of Charleston, South Carolina. Photo courtesy: National
Weather Service USA.

a relative mild sea, which makes them in particularly dangerous, since they are not an-

ticipated. Public media became interested in the topic after many accidents associated

with extreme waves were reported: for example, at passenger ships, such as Queen

Elisabeth II (1995), Caledonia Star∗9 (2000), Bremen (2000), Explorer (2005), Voyager

(2005), Norwegian Dawn (2005), Louis Majesty∗ (2010) and MS Marco Polo (2014),

as well as at oil platforms, such as the 30 installation in the Gulf of Mexico during

the Hurricane Katrina (2005) (Bitner-Gregersen and Gramstad, 2015), and the Ekofisk

and Frigg fields in the North Sea. Accidents were also reported for semi-submersibles

(Veslefrikk B and Ocean Ranger), oil tankers (MV Derbyshire in 1980), liners (Queen

Elizabeth in 1943 (Haver, 2000), Queen Mary∗ (1942) and RMS Etruria∗ (Adcock and

Taylor, 2014)) and super-carriers (22 losses between 1969-1994, 12 of them near the

Agulhas Current at the South Coast of Africa) (Kharif and Pelinovsky, 2003)10. Dam-

ages were also reported at offshore wind turbines due to extreme runup and loading

9For the cases marked with ∗, the extreme waves were reported to be in an angle compared to the
mean sea direction, supporting the argument that extremes can be generated by crossing seas (Adcock
and Taylor, 2014), which makes it more easily to roll a vessel (Bitner-Gregersen and Gramstad, 2015).

10An unofficial database of extreme wave encounters can be found in the wiki page:
https://en.wikipedia.org/wiki/List_of_rogue_waves and in the chronicles of Liu (2007).
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(Bredmose and Jacobsen, 2011). The encounter of extreme waves with vessels and

structures usually results in catastrophic consequences and human losses. Thus, ex-

tremes should be taken into account in the design process, as discussed in Section

2.3.4, and not simply be considered as a part of the error in the Fatal Accident Rate

(FAR) (Haver, 2000).

The first extreme wave to be recorded and studied extensively was the famous Draup-

ner wave, aka New Year Wave, that was measured on 1/1/1995 in the North Sea at

the Draupner platform, with its wave height reaching 26 m in a sea state of Hs = 12 m.

The recorded free surface elevation is shown in Figure 2.8. Its crest elevation was also

abnormally high (18.5 m). The probability of observing such an event may be as low

as 1 : 105 waves (Haver, 2000; Walker et al., 2004). Thorough analysis of the recording

of the Draupner wave revealed that the low frequency bound harmonic was causing a

set-up instead of a set-down, as it would be expected for large unidirectional waves.

Initially, it was speculated that this abnormal feature might have been an intrinsic char-

acteristic of extreme waves (Taylor et al., 2006), but further analysis demonstrated that

the Draupner wave probably occurred in a crossing sea state, where the bound sub-

harmonics can be positive. Moreover, meteorological data support the existence of

two sea systems of different directions. The force measurement11 on the platform is

also consistent with this hypothesis. In addition, it is unlikely that the Draupner wave

was caused by BF instabilities, due to the directionality of the sea state and the finite

depth of the region (70 m) (Adcock et al., 2011). The Draupner wave has been topic

for numerous studies and the "holy grail" for experimentalists and numerical modellers

to replicate, commonly failing to capture the largest crest, probably due to the unidirec-

tional approach (Schmittner et al., 2009).

Apart from the Draupner wave, the analysis of field measurements revealed evidence

of extreme waves in many locations, such as the North Sea, the Sea of Japan and

the Gulf of Mexico (Mori, 2012). The most comprehensive study to present is that of

11On the contrary, the interpretation of Trulsen et al. (2001) is that the response of the structure suggests
unidirectional sea.
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Figure 2.8: Timeseries of the free surface elevation recorded at Draupner platform on
1/1/1995, containing the New Year Wave at time t = 0 s (Adcock, 2017). Permission to
reproduce this figure has been granted by Springer International Publishing.

Christou and Ewans (2014), where 121 million individual waves were analysed from 22

different offshore installations and, after following a strict data quality control method-

ology, more than 3,500 extremes were identified. The study aimed at determining

the characteristics of the extremes and potential generation mechanisms. Important

outcomes are that extremes are not uncommon compared to Foristall statistical distri-

butions and occur also in moderately steep sea states and in intermediate water. Their

only common characteristic is the constructive phasing (focusing) of the most energetic

wave components.

It is worth noting that despite the fact that extreme waves were first observed by

mariners and oceanographers, they comprise a natural phenomenon that can be found

in other media than water, which puts them in a general context of nonlinear physics.

Other fields in which active research is undertaken on extreme waves are hydrodynam-

ics, electrodynamics, nonlinear optics and convection theory. The applications refer

to many topics ranging from molecular dynamics to cosmology (Zakharov and Ostro-

vsky, 2009). Common applications refer to superfluid Helium, optical fibers, capillary

waves, plasma waves, Bose-Einsteins condensates and acoustic turbulence, but still

the question on how to connect them all and achieve a universal description remains

open (Onorato et al., 2013). Any analogies, however, should be made with caution,

considering the particularities of the medium. For example, infinitely high water waves

cannot be realised due to the dissipation mechanism of breaking (Babanin et al., 2012).
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2.3.3 Generation mechanisms

Probably the most crucial part in advancing the understanding of extreme waves is

explaining their generation mechanisms. Unfortunately, in many cases the literature

is contradictory (Cavaleri et al., 2012) and the two main streams, i.e., MI and disper-

sive focusing, find arguments to prove each other invalid. The present work mainly

focuses on the latter mechanism, which is supported by the latest literature (Christou

and Ewans, 2014; Fedele et al., 2016). In this section, both mechanisms are dis-

cussed along with other possible environmental factors, such as the bathymetry, wind

and presence of currents, and spectral parameters, namely, the directionality, steep-

ness, skewness-kurtosis and spectral width.

Environmental factors: Despite the fact that extremes are more frequent at certain

ocean areas, they have been observed worldwide (Bitner-Gregersen and Gramstad,

2015). Regarding the water depth, extremes have been encountered both in deep and

shallow water (Kharif and Pelinovsky, 2003), but for the latter, waves are less disper-

sive, which decreases the possibility of MI (Bitner-Gregersen and Gramstad, 2015).

Thus, in shallow water, instead of MI, linear-type focusing is expected (Kharif and Peli-

novsky, 2003). The water depth, however, can play an important role in concentrating

the wave energy at certain locations by refraction due to underwater topography12 (Ad-

cock and Taylor, 2014; Dysthe et al., 2008; Socquet-Juglard et al., 2005). The spatial

focusing caused by bathymetry is considered a separate generation mechanism, which

is well understood within the linear theory framework (Kharif and Pelinovsky, 2003). A

similar mechanism causing spatial focusing due to refraction is the presence of cur-

rents (Yan et al., 2015). Ambient currents can interact in a linear sense with the waves,

causing change of their direction and their celerity as a Doppler-type shifting. However,

in ocean, currents have sheared profiles, and nonlinear interactions with waves can be

strong, changing the properties of the wave field (Adcock and Taylor, 2014). Currents

increase the steepness of oppositely propagating waves causing extreme waves or

12Such "hot-spots" of energy have been suggested for wave energy converters (Dysthe et al., 2008).
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being even able completely block the waves (Kharif and Pelinovsky, 2003). Many ac-

cidents due to extreme waves have been reported in areas where the presence of

currents is strong. The most famous is the Agulhas current at the south-east coast

of Africa (Socquet-Juglard et al., 2005) and the Bermuda triangle (Adcock and Taylor,

2014). It should be noted that MI effects (Bitner-Gregersen and Gramstad, 2015) as

well as dispersive focusing (Buldakov et al., 2015) can occur and potentially be en-

hanced by the presence of currents. Regarding the effect of the wind, since the energy

for the waves to grow is provided by the wind, it would appear intuitively possible that

continuous feeding of energy from the wind could cause extreme waves. However, the

findings so far are inconclusive (Adcock and Taylor, 2014). Nevertheless, the presence

of strong winds can be an indirect generation mechanism for extremes. The wind field

affects the wave age and, accordingly, the steepness of the sea state (Christou and

Ewans, 2014). Thus, in cases when wind starts blowing or changes direction, it is pos-

sible that nonlinearity increases and the spectrum becomes temporarily narrowbanded

creating the right conditions for MI (Adcock and Taylor, 2014). On the other hand, it is

also possible that the wind effect neutralizes the MI (Alam, 2014).

Spectral parameters: As discussed in Section 2.2.3, some spectral parameters, namely

the bandwidth, directionality, skewness and kurtosis, can cause or hinder MI. The anal-

ysis of field data of Christou and Ewans (2014), however, showed that extreme waves

do not have any particular skewness. Moreover, kurtosis does not seem to have a cor-

relation with the likelihood of extreme waves, rather than simply indicating the presence

of high waves by definition. On the other hand, the same analysis showed that there

is a weak correlation between the presence of extremes and the spectral bandwidth,

with narrowbandness increasing the probabilities of extremes. Even clearer is the cor-

relation for the steepness, with extreme waves mainly being encountered in stormy

sea states of high mean steepness, defined as 2π

g
Hs
Tm

, where Tm the mean wave period.

To an extent, this could be expected, since high steepness can cause beyond second

order wave interactions. Furthermore, Christou and Ewans (2014) examined different

spectral shapes, finding no trends for extremes in unimodal or bimodal spectra. Last
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but not least, the directional spreading is a parameter that can be related to extremes:

with decreasing directionality, MI increases (Alam, 2014) and, at the same time, the

bound wave structure becomes more pronounced leading to departures from second

order theory, as discussed in Section 2.2.4.

MI has been suggested as one of the main mechanisms for extreme wave generation

(Kharif and Pelinovsky, 2003) that causes nonlinear self-focusing to the deep water

waves (Onorato et al., 2013), as observed in many numerical and experimental works.

However, as explained in Section 2.2.3, realistic sea conditions do not satisfy the crite-

ria for MI especially the narrow directional spreading (Haver, 2004; Bitner-Gregersen

and Gramstad, 2015). Moreover, the randomness of the wave field is broadly believed

to limit MI (Taylor and Swan, 2000; Deng et al., 2016; Adcock, 2017)13, but at the same

time, this argument is used to disprove the theory of spontaneous dispersive focusing

in real ocean (Socquet-Juglard et al., 2005). On the other hand, it was suggested that

MI effects are possible in crossing seas, where extreme waves can be created (Cavaleri

et al., 2012; Bitner-Gregersen and Gramstad, 2015). MI is certainly an active topic of

research and, since it can be predicted by spectral parameters and the BFI, it could be

useful in forecasting extremes using spectral models (Dysthe et al., 2008; Zhao et al.,

2009). However, the latest studies of oceanic extreme waves have demonstrated that

MI ceases in real ocean and dispersive focusing is the most likely generation mech-

anism (Christou and Ewans, 2014; Fedele et al., 2016; Benetazzo et al., 2017). This

gives a concrete basis to the present work.

Lastly, the most widely accepted generation mechanism is discussed: dispersive fo-

cusing, also referred to as temporal focusing (Bitner-Gregersen and Gramstad, 2015;

Deng et al., 2016). The principle is that, due to the dispersive nature of the waves,

fast/long waves may coincide with slow/short waves creating local high concentration

of energy. This constructive interference of free-wave components (Fedele et al., 2016)

is well described by linear theory. For more than two decades now, linear superposition

13There exist cases, however, that show that the amplification caused by BF instabilities is not destroyed
in random fields (Kharif and Pelinovsky, 2003).
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of waves, with appropriate tuning of the phases in order to create focused waves, is

widely used in experiments (Chaplin, 1996; Baldock et al., 1996), expanding the early

findings of Longuet-Higgins on chirps (Dysthe et al., 2008) and setting the basis for

the broad use of the NewWave theory in physical and numerical tanks (Section 2.4.1).

However, if in fact dispersive focusing was the only mechanism for extreme wave gen-

eration, the probability of extremes could be directly defined by the probability of certain

phasing among the waves (Bitner-Gregersen and Gramstad, 2015). In reality, extreme

waves are more frequent than predicted in Gaussian seas, i.e., sea states where the

amplitudes of the waves follow Rayleigh distributions, which can be partially explained

by the nonlinear effect of the strong bound wave structure (Onorato et al., 2013). In

contrast to MI, dispersive focusing can also occur in a random background (Hunt, 2003;

Dysthe et al., 2008). Moreover, appropriate controlling of the phases of the wave com-

ponents can produce extreme waves of various forms that resemble extremes recorded

in the field (Kharif and Pelinovsky, 2003). Nevertheless, it is noted that mechanisms

that cause dispersive focusing in the ocean have not been identified (Dysthe et al.,

2008) and the randomness of a real wave field may destroy the dispersive focusing

(Kharif and Pelinovsky, 2003). New evidence that leans the debate in favour of the oc-

currence of dispersive focusing came with the extensive study of (Christou and Ewans,

2014), where it was demonstrated that a common characteristic of extreme waves is

the phases coherence of the most energetic components of the spectrum14. These

findings were also supported by the analysis of Fedele et al. (2016).

To summarize, from all the generation mechanisms discussed, it becomes clear that

extreme waves are associated with high local energy concentration (Dysthe et al.,

2008). In nature it is likely that these mechanisms coexist and amplify each other.

14This aspect could be also observed in normal large waves, but the trend was considerably more
evident for extreme waves.
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2.3.4 Statistics and uncertainties

A crucial step for incorporating extreme waves in the engineering design process is

the estimation of their statistical distributions in order to select a design wave with the

appropriate return period. The most commonly used statistical distributions are: the

Rayleigh, Weibull, Forristall and Tayfun distributions (Bitner-Gregersen and Gramstad,

2015). The Rayleigh distribution is based on linear theory and assumes that the wave

field is sufficiently narrowbanded and unidirectional (Fedele and Tayfun, 2009). Due

to the inherent nonlinearity of realistic ocean waves, which makes their crests higher

and steeper, and the troughs shallower, deviations were observed for the Rayleigh dis-

tribution (Longuet-Higgins, 1980) resulting in positive skewness (Fedele and Tayfun,

2009). To account for these effects the generic two-parameter Weibull distribution was

proposed. Forristall (1978) suggested specific parameters for the Weibull distribution

after fitting it to field measurements from the Gulf of Mexico. Later, Forristall (2000) per-

formed random numerical simulations of directional waves using second order theory

and suggested new parameters to the Weibull distribution. At present, this is consid-

ered the state-of-the-art distribution in engineering practice that was shown to fit well

field observations (Bitner-Gregersen and Gramstad, 2015). Another statistical distri-

bution that was derived using second order theory was proposed by Tayfun (1980),

which is valid for long-crested narrowbanded wave fields (Fedele and Tayfun, 2009).

A more recent second order model was suggested by Arena and Fedele (2005) for

unidirectional seas and by Fedele and Tayfun (2009), as a generalization to the Tayfun

distribution. The exceedance probability of a crest elevation in relation to the Hs of the

sea state is shown in Figure 2.9 (Forristall, 2000; Tayfun, 1980). It can be seen that

for high exceedance probabilities (small crests) the distributions are almost identical,

but for low exceedance probabilities (< 10−3) (high crests) Rayleigh distributions pre-

dict smaller crests than the second order distributions. Moreover, adding directionality

to the wave field (Forristall 3D), decreases the wave crest elevation for the same sea

state (Forristall 2D).
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Figure 2.9: Commonly used statistical distribution of exceedance probabilities of crest
elevation (ηc) compared to Hs (Bitner-Gregersen and Gramstad, 2015).

As far as extreme waves are concerned, at the beginning, it was not clear if they had

to be treated as a different statistical population (Haver, 2000) or if they were instru-

ment errors or statistical flukes (Bitner-Gregersen and Gramstad, 2015; Dysthe et al.,

2008). However, recent field analysis shows that they are rare occurrences of the nor-

mal population (Christou and Ewans, 2014), emerging as kick-outs at the tails of the

statistical distributions. Being naturally nonlinear events, extremes deviate in general

from the linear and second order distributions. To capture them, theoretically, higher

than second order statistics, i.e., statistics of second order waves, can be produced by

running high order nonlinear numerical models, as for example in Adcock (2017) and

Socquet-Juglard et al. (2005). Similarly, physical experiments require a high number of

realizations to produce robust statistics (Latheef and Swan, 2013), which is a challeng-

ing task even if all the other uncertainties for long experimental runs, such as reflections

and repeatability issues, are minimized. These concerns become even more important

when considering that extreme waves are rare and a large number of simulations is

required to produce robust statistics (Adcock and Taylor, 2014). An option would be to

analyse vast amounts of field records, potentially from different locations. However, in

the field, conditions are not controlled and the measurements are intermittent or refer

to different sea states. The latter violates the very hypotheses of all theoretical models,

namely the stationariness and ergodicity of the wave field. Especially in transitional
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sea states, where extreme appear, the hypothesis of a stationary field even for short

periods of time, e.g, 20 min field records, is questionable (Adcock and Taylor, 2014).

Similarly, the assumptions of narrowbandness and small directionality of the Rayleigh

and Tayfun models deserve attention when referring to realistic ocean waves (Kharif

and Pelinovsky, 2003). Last but not least, an issue when extreme waves are present in

short wave records is that they may alter temporarily the spectral characteristics on the

one hand (Bitner-Gregersen and Gramstad, 2015), and on the other hand, create a co-

herence in the phases, which may not be anymore considered uncorrelated to satisfy

homogeneity (Adcock and Taylor, 2014).

Despite the previous concerns for analysing the statistical properties of extremes with

Rayleigh and second order distributions, this is a necessary starting step, since they

are widely used in the design practice. The analysis of field data of Christou and Ewans

(2014) concluded that in general extreme waves are underpredicted by the Rayleigh

distribution and overpredicted by Forristall distribution. This finding contradicts to an

extent the perception that extremes fit in higher than second order statistics (Taylor and

Swan, 2000), which can be the case mainly for unidirectional seas (Latheef and Swan,

2013). The introduction of directional spreading brings the statistics back to the second

order statistical model (Latheef and Swan, 2013) (apart from the case of shallow water

(Forristall, 2000)), because it both weakens the bound wave structure and any potential

MI effects. On the contrary, increasing steepness may cause departures from theoret-

ical distributions (Adcock, 2017), to the point where the limiting mechanism of wave

breaking is activated (Latheef and Swan, 2013)15. Another aspect to consider, which is

commonly neglected by the statistical distributions that mainly refer to crest statistics,

is the wave height. It was shown that linear models may severely underestimate the

crest distributions, but they can predict well the wave height distributions (Dysthe et al.,

2008).

15It is worth noting that when sea states have similar steepness, directional spreading has little influence
on the exceedance probabilities (Latheef and Swan, 2013), which justifies the rationale of the present
study to make comparisons with different works only among limiting breaking wave groups (see e.g.,
(Johannessen and Swan, 2003))
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From the previous discussion, it is clear that further work is needed to obtain bet-

ter insight into the properties of extreme waves and their probabilities of occurrence.

Undoubtedly, field data is considered the gold standard with the least bias, and natu-

rally the starting point to obtain reliable information should be their analysis. However,

before putting blind trust in field observations, some limitations of the measuring ap-

paratus are discussed that may induce considerable uncertainties in the recording of

extreme waves. To begin with, in the past, due to technological limitations, only av-

eraged spectral parameters were stored, which, of course, do not provide information

about individual waves and as such, extremes were not recorded (Bitner-Gregersen

and Gramstad, 2015). Modern measuring apparatus records the timeseries, but in

some cases, the measurements suffer from low sampling rate, which may miss the

steep shape of extreme waves and underestimate their crest (Forristall, 2000; Whit-

taker et al., 2016). Thus, for extreme events, which are rare and populate the tail of the

statistical distribution (Latheef and Swan, 2013), low sampling rate can induce consid-

erable uncertainties (Trulsen et al., 2001). There are also important physical limitations

on the measuring apparatus. For example, wave buoys follow a Lagrangian motion

on the free surface and, as a result, they are dragged by the waves passing more

time on the crest than on the troughs, measuring an artificial set-up (Whittaker et al.,

2016) and, also, they are known to move laterally off the highest crests, missing the

maximum elevation (Adcock and Taylor, 2014; Christou and Ewans, 2014; Benetazzo

et al., 2017) and the high order nonlinearities (Forristall, 2000). The most accurate way

to record extreme waves is with radar and laser altimeters, and wave staff mounted

on fixed structures. Important issues in these cases are the potential wave-structure

interaction effects (Adcock and Taylor, 2014) and the errors due to sea spray from

wave breaking, which is expected to overestimate the crests (Bitner-Gregersen and

Gramstad, 2015; Dysthe et al., 2008). To make the situation more complicated, there

is sometimes lack of information about the sensitivity of the sensors, and the main-

tenance and calibration of the apparatus is suboptimal (Christou and Ewans, 2011a).

For these reasons, quality control should be applied to the data, sometimes combined
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with visual checks, where the human experience and interpretation can be valuable

(Christou and Ewans, 2014). To give an indication of the errors and uncertainties in

recording extreme waves, only 16% of the measurements passed the quality control in

the study of Christou and Ewans (2014). Other observable physical effects, such as

damages on the structure (Dysthe et al., 2008), or measured loading on the structure

could be useful in confirming the presence of an extreme wave, as it was done for the

Draupner wave (Adcock et al., 2011). New promising measuring technologies refer to

satellites and radars that can provide spatio-temporal information (Dysthe et al., 2008)

and are expected to identify more extremes than classical point recording (Benetazzo

et al., 2017). Nevertheless, concerns have been expressed for the accuracy of these

methods tested (Onorato et al., 2013), since they are based on linear assumptions for

processing of the images and consider large length scales (≈ 100 m) (Bitner-Gregersen

and Gramstad, 2015).

To conclude, it is not trivial to produce reliable statistics for extreme waves (Christou

and Ewans, 2014). There is still not a consensus about the probability of occurrence

of rogue waves (Bitner-Gregersen and Gramstad, 2015) and whether a quasi-linear

or second order model is enough to include them (Adcock and Draper, 2015; Ardhuin

and Roland, 2013). At present, for a single location in the ocean, a large extreme wave

is expected in every ≈ 105 waves (Christou and Ewans, 2014), while when a region

is considered instead of a point this probability increases (Benetazzo et al., 2017).

Moreover, considering that the climate change is expected to increase the steepness

in the ocean, the probabilities of extremes may rise in the future (Bitner-Gregersen and

Gramstad, 2015).

2.3.5 Design practice

After presenting the basic properties of extreme waves, this section discusses how

extremes can be incorporated in the engineering practice and for what problems they

are expected to have an important contribution.
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According to the classic engineering approach, a structure is supposed to withstand the

environmental loading that it may experience during its lifetime, which is determined by

the return period of this loading, commonly amplified by a safety factor to account for

uncertainties. The issue with extreme waves is that neither their exceedance proba-

bilities are known with confidence, nor the additional nonlinearities, which pose chal-

lenges in defining their return period and safety factors, respectively (Haver, 2000).

Another important issue is that the loading due to waves of progressively increasing

crest heights may not be a "well-behaved" problem. In practice this means that if the

crest height increases beyond a certain threshold, the integrity of the structure can be

put at risk because some of its members, which were not designed for direct wave

impact, e.g., upper decks of vessels or platforms, may be directly exposed to it (Haver,

2004). Moreover, even in the cases that there may be high correlation between the

crest heigh and the load that the structure experiences, this, almost certainly, is not

an one-to-one relation (Haver, 2004), due to directionality effects or to shape variation

of the waves, which can cause different response to different structures (Adcock and

Draper, 2015). Therefore, to which extent a wave is considered dangerous for a struc-

ture is case specific. The same also applies for the exceedance probabilities of the

loads which depend on the environment that the structure is expected to operate at,

e.g., a ship should be designed for the magnitude and type (including wave-currents)

of extreme waves that it may face at any of its sailing routes16, while a platform is

designed for the potential extremes of its particular location (Bitner-Gregersen and

Gramstad, 2015). Thus, knowing the statistical properties of extreme events for the

survivability of marine structures is essential (Ewans and Buchner, 2008; Latheef and

Swan, 2013; Yan et al., 2015).

Supposing that the exceedance probabilities of extreme waves are known, what re-

mains to estimate the loads is the wave kinematics, which can be determined from a

wave theory or calculated numerically, as mentioned in Section 2.2.5. The kinematics

16Certification permits indicate the geographical areas and maximum distance in the ocean that ships
are allowed to sail, see e.g., DNV-GL certifications (Bitner-Gregersen and Gramstad, 2015).
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can then be used by sophisticated fluid-structure interactions solvers, or, as commonly

done in engineering practice, by empirical formulae (Morison’s equations). The pop-

ularity of the Morison’s equations for monopiles and members of jacket platforms lies

on its simplicity, because only the relative dimension of the structure to the wavelength

and the Keulegan-Carpenter number (K-C) are required to determine the flow regime

(viscous drag, unsteady inertia, linear diffraction). The K-C is found by the incident

wave-induced velocity in absence of the structure (Swan and Sheikh, 2015). However,

this approach does not account for nonlinear effects and it may fail for transient extreme

waves (Bredmose et al., 2016) and when the presence of the structure influences con-

siderably the velocity field (Bredmose et al., 2006; Bredmose and Jacobsen, 2011). To

calculate the incident velocity, regular waves are used (Chaplin et al., 1997; Forristall,

2000) under the assumption of weak nonlinearity and narrowbandness of the spectrum,

which are questionable for extreme waves (Bitner-Gregersen and Gramstad, 2015).

Due to the inherent nonlinearity of large waves, linear models for the wave kinematics

are avoided and nowadays, second order and Stokes V theories are often employed.

On considering regular waves, the advantage is that crest height is consistent with that

of the design wave. However, the directionality, crossing seas and irregularity of the

sea state, are neglected (Forristall, 2000; Bitner-Gregersen and Gramstad, 2015).

Lastly, some specific design aspects related to extreme waves are discussed. For the

design of offshore structures, the problem becomes "bad-behaved" when there is wave

slamming on the deck, which is not designed to withstand such horizontal pulse loads.

Slamming can be catastrophic, leading to the collapse of the structure. For this reason,

an "air-gap" should always be maintained between the highest expected crest and the

deck (Haver, 2000; Swan and Sheikh, 2015)17. At least partially, the required air-gap

can be estimated by including high order harmonics in the wave profile (Adcock, 2017).

Similarly, extreme wave crests should be accounted for the design of other structures,

so that their sensitive members, e.g., blades of offshore wind turbines and upper decks

17Increasing the air-gap results in considerable cost of the initial investment. Thus, accurate estimation
and modelling of the extreme waves is crucial for balancing risk Vs safety (Christou and Ewans, 2014).
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of ships, are not exposed to direct wave impact (Adcock and Taylor, 2014). As men-

tioned, the flow around cylinders is complex, resulting in runup, secondary load cycles

and scattered waves (Chaplin et al., 1997), which are relevant for monopile foundations

of offshore structures. The runup can reach higher elevations than the wave crest and

can impact the underdeck of an oil platform or the inspection platform of wind turbines

(Bredmose and Jacobsen, 2011). An issue with the runup can also be the high veloci-

ties, which result in additional loading (Swan and Sheikh, 2015). Something which was

examined only recently is the impact on the underdeck away from the monopile by an

extreme crest that can be created by the interaction of incident and scattered waves

from the structure (Swan and Sheikh, 2015). Similar issues arise when examining

complex, but more realistic, support structures consisting of more than one monopiles

whose interaction with waves causes wave trapping effects (Bai et al., 2014). Other

phenomena of important role for the survivability of structures are the "springing" and

"ringing" effects, referring to linear resonance response and to nonlinear burst-like dy-

namic response due to resonance, respectively (Chaplin et al., 1997). Conventional

monopiles have higher eigen-frequency than the main wave spectrum18. However, the

higher harmonic structure of extreme waves may increase the bandwidth of the spec-

trum and match the eigen-frequency of the structure (Fitzgerald et al., 2012). Ringing

can be catastrophic due to the potentially strong excitation of the structure, but also be-

cause of the fatigue that eventually induces (Paulsen et al., 2014a). It should be noted

that most computational tools at present consider rigid structures and thus, the struc-

tural deflection due to ringing is not properly accounted (Bredmose et al., 2013). Apart

from the offshore industry, extreme waves can cause excessive runup and overtopping

at coastal structures, which can cause a civil threat due to flooding (Orszaghova et al.,

2014; Whittaker et al., 2016, 2017).

At present, extreme waves are not included neither in the design process, nor in the

certifications (Bitner-Gregersen and Gramstad, 2015). Nevertheless, this should be

18Nevertheless, the tendency of increasing the size of offshore wind turbines can lead to structures with
lower natural frequencies (Bredmose et al., 2016), which can resonate to frequencies close to the fp.
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revised soon, because climate change is expected to increase the frequency and in-

tensity of extremes. Moreover, the predicted sea level rise will put the coastal structures

at higher risk (Whittaker et al., 2017) and effectively decrease the air-gap of offshore

platforms. From an operational point of view, the ultimate goal, especially for the ship-

ping industry, would be to create an efficient warning system for extreme waves as a

part of weather forecasting services (Bitner-Gregersen and Gramstad, 2015).

2.4 The NewWave theory and focusing methodologies

2.4.1 Introduction to the NewWave theory

As discussed in Section 2.3, extreme waves may appear randomly in a sea state, but

pose a threat to the survivability of marine structures. As such, they should be taken

into account in the design process. The obvious issue is to overcome the random-

ness of the ocean surface and to find a representative wave form that appropriately

describes the crest height and shape of extreme waves. Regular waves with appropri-

ately selected characteristics are commonly used in the design practice (see Section

2.3.5), but this approach induces discrepancies for surface dynamics and kinematics

when compared with realistic random simulations (Tromans et al., 1991). Nonlinear

Monte Carlo simulations may seem as an alternative, however the computational cost

is considerable. These considerations set the rationale that led Tromans et al. (1991)

to suggest a new deterministic model to describe the largest waves in the sea: the

NewWave theory. Thanks to its convenience, needing a single simulation for the ex-

pected largest wave, NewWave has been extensively used in physical and numerical

modelling as a method to examine the representative extreme wave (Stagonas et al.,

2014). At present, NewWave is the state of the art for deterministic simulations of ex-

treme waves and its applicability keeps expanding to regimes and problems that was

not initially formulated for, as discussed in this section.

The form of the NewWave theory used nowadays is based on the formulation of Tro-
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mans et al. (1991), but the mathematical principle had been given two decades earlier.

First, Lindgren (1970) used the Slepian model for representing stochastically a ran-

dom Gaussian surface and suggested that the average shape of a large wave can be

approximated by the scaled covariance function of the wave field. Later, Boccotti (Boc-

cotti, 1982, 1983) applied the asymptotic form of Lindgren (1970) to individual large

waves in a random sea state, demonstrating that the average shape of the largest

wind-generated waves in the ocean can be expressed by the scaled autocorrelation

function of the underlying random process. Probably the most important outcome of

Boccotti’s work is the connection between the local properties of large waves and the

global properties of the sea state (Gibbs and Taylor, 2005). Independently of Lindgren’s

work, Phillips et al. (1993) extended the work of Boccotti to include both temporal and

spatial wave profile (Tucker, 1999). Lindgren’s theory remained practically unused for

20 years (Tucker, 1999), but finally, Tromans et al. (1991) introduced this principle to

offshore engineering problems, which became known as the NewWave theory (Taylor

and Swan, 2000). Since then, the literature on the topic of the origins and applica-

tions of NewWave keeps growing (Johannessen and Swan, 2001; Adcock and Draper,

2015), including verification with field data (Taylor and Williams, 2004; Jonathan and

Taylor, 1997) and numerical simulations (Tucker, 1999), as also done in the present

work.

In mathematical terms, the average shape of the random ocean surface is η(τ) =

αρ(τ)+g(τ), where α is the crest elevation, ρ the autocorrelation function of the ocean

surface elevation, τ the time lapse of the crest occurrence at to and g(τ) a parameter

for a non-stationary Gaussian process ρ proportional to the Fourier transform of the

surface energy spectrum. Thus, by definition η(τ) is a linear process without bandwidth

approximations (Tromans et al., 1991). g(τ) has zero mean and standard deviation at

some distance away from the crest, being independent of α, but with increasing α, the

term αρ(τ) becomes dominant and η(τ) ≈ αρ(τ). Therefore, for the largest waves,

the process converges to a Gaussian one and the NewWave theory for a given energy

density spectrum S(ω) is expressed by Equation 2.9 for the wave components i of the
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spectrum.

η(x, t) = A

N
∑

i=1
S(ωi)cos(kx−ωit)

N
∑

i=1
S(ωi)

(2.9)

where A is the scaling factor, which equals the sum of the amplitudes of the wave

components of the spectrum.

The convenience of NewWave becomes now apparent, since the average shape of an

extreme wave in a considered sea state can be directly obtained by Equation 2.9. The

kinematics can be calculated in a similar way (Tromans et al., 1991; Tucker, 1999).

However, it is underlined that NewWave is a probabilistic theory, which is based on

linear, Gaussian assumptions (homogeneity), and it was initially tested for unidirec-

tional sea states in deep water (Tromans et al., 1991). Thus, for long-duration storms,

the stationary assumption of the Gaussian process may not be valid, nor the linear

assumption, if the steepness of the sea is high (Whittaker et al., 2016). Despite

these assumptions for its derivation, the recent examination of field wave measure-

ments from intermediate/shallow water by Whittaker et al. (2016) demonstrated the

applicability NewWave beyond deep water and even for non-Gaussian distributions of

waves in coastal areas. Similarly, the present study also contributes to the validation

of NewWave for intermediate water depth (Vyzikas et al., 2018b). However, it is worth

noting again that NewWave is valid for the largest crests (Tucker, 1999) and variabil-

ity of the wave profile with increasing distance from the peak of the timeseries can

be observed (Adcock and Taylor, 2014), which is also to an extent demonstrated in

the present work through the comparison between the theoretical (NewWave) and ex-

tracted evolved linear harmonics in Chapter 5.

In practice, the autocorrelation function of NewWave takes the form of a crest focused

wave (zero phases) (Christou and Ewans, 2014), which is extensively used for deter-

ministic physical and numerical modelling (Vyzikas et al., 2013; Whittaker et al., 2016),

resembling also well the transient character of large waves in the ocean that have local
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high energy concentration (Gibbs and Taylor, 2005). As already observed in the orig-

inal study (Tromans et al., 1991), NewWave provides more accurate kinematics than

Stokes V theory and it was recently shown to be valid until the point of wave breaking

(Adcock and Taylor, 2014; Buldakov et al., 2017). NewWave was also used to approx-

imate the famous Draupner wave (Walker et al., 2004; Taylor et al., 2006), and other

extreme waves measured in the field, achieving impressive agreements (Fedele et al.,

2016; Benetazzo et al., 2017). The expansion of NewWave in directional seas was

examined by Arena et al. (2008) and was applied later in other studies (Adcock and

Draper, 2015). An advantage of the envelope shape of NewWave is that its phasing

can be used to study variations of the shape of extreme waves and the corresponded

resulted loading (Adcock and Draper, 2015), which is elaborated in the appendix of

Vyzikas et al. (2018b) and applied to measure the maximum possible runup on a beach

(Whittaker et al., 2017) and overtopping (Orszaghova et al., 2014).

Overall, the NewWave theory is a valuable and practical tool for ocean and coastal

engineering applications. Differences between the average shape of extreme waves

and the NewWave profile do exist, but they are not considered important in terms of

the design process (Tucker, 1999).

2.4.2 Practical advantages of NewWave

The simplicity of the NewWave theory is certainly a good reason to use it for engineer-

ing applications, but there are also other important practical advantages that made

NewWave popular in the research community. As mentioned, probably the greatest

achievement of NewWave is that it connects the parameters of a random sea state

with the local deterministic characteristics of the largest expected waves (Taylor and

Swan, 2000).

From a modelling point of view, the localized character of a NewWave group in space

and time, creating a compact wave packet, has several advantages. In laboratories,

where the physical dimensions of the tanks are limited, the NewWave theory helps
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creating the desired wave event at the location of interest (Stagonas et al., 2018),

while minimizing spurious effects, such as reflections that can substantially change the

results (Forristall, 2002; Whittaker et al., 2016). In random sea simulations, spurious

effects are harder to spot, considerably more difficult to remove and they may build up

over time (e.g., sloshing) (Paulsen et al., 2013b; Orszaghova et al., 2014). This also

favours the use of focused wave groups to check the quality and repeatability of the

produced experimental results as well as for calibration purposes (Latheef and Swan,

2013). Moreover, especially in physical experiments, there are limitations at the number

of locations that measurements can be taken, which may result in missing extreme

events in random seas that appear spontaneously in space and time. To mitigate

this with random simulations, a large number of simulations should be performed for

sufficiently long duration (Walker et al., 2004; Ning et al., 2009b; Stagonas et al., 2014;

Whittaker et al., 2017). The latter raises again the problem of spurious effects, while the

former is subject to the availability and the cost of the facilities. In numerical modelling,

the major issue, especially for sophisticated solvers such as CFD, is the computational

cost (Taylor and Swan, 2000; Bredmose and Jacobsen, 2010). Even on modern HPCs,

random sea simulations may require weeks or months for a CFD solver, which makes

it prohibitive to perform a large number of simulations. On the other hand NewWave

has the advantage of requiring only a single simulation of relatively short duration.

In physical terms, compared to conventional engineering practice, NewWave over-

comes the suboptimal representation of the kinematics of regular wave theories, and

consequently the induced structural loads, offering a more realistic representation of

extreme wave loading (Bredmose and Jacobsen, 2010; Chen et al., 2014). This is

in particular relevant for the burst excitation due to ringing, where the continuously

propagating regular waves hinder the realistic response of the structure compared to

an isolated event (Chaplin et al., 1997). Furthermore, being a deterministic event,

NewWave allows for better control of the phases, which in practice means that extreme

waves of different phase shifts can be generated to study the response of the structure

towards the definition of its design wave (Whittaker et al., 2017; Vyzikas et al., 2018b)
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and to apply harmonics separations methods (Chen et al., 2014) to investigate the

influence of individual harmonics. Moreover, instead of representing extreme waves

in isolation, NewWave-type groups can be embedded in irregular sea states in order

to obtain more realistic conditions with other background processes (Whittaker et al.,

2016; Hunt, 2003).

Overall, the use of NewWave groups for the study of extreme waves offers a simple,

inexpensive, quick alternative compared to random simulations with better control of

the whole modelling process (Orszaghova et al., 2014; Chen et al., 2014). NewWave

is broadly used and good experience has been built (Orszaghova et al., 2014) and the

ground to overcome its shortcomings has been prepared.

2.4.3 Beyond the NewWave

As discussed in Section 2.4.1, the NewWave theory assumes linearity and homogene-

ity (Gaussianity) of the wave field. However, especially energetic sea states, where

extreme waves are more likely to occur, are better described by second order models

that include bound waves (see Section 2.3.4). This initial shortcoming, however, offers

the basis to improve NewWave by adding bound nonlinearities, because the linear dy-

namics of the NewWave still hold and bound waves can be calculated using the known

free-wave regime (Taylor and Swan, 2000). The extension of NewWave to second or-

der was suggested by Arena and Fedele (2005) with analytical expressions and Monte

Carlo simulations for confirming the statistics of the problem. Arena and Fedele (2005)

also included the kinematics and the directionality in their study of NewWave groups.

Vyzikas et al. (2018b) also examined NewWave groups, including the element of the

evolution of the free-wave spectrum, which, as observed earlier by Johannessen and

Swan (2003), can alter considerably the wave profile.

Higher than second order bound nonlinearities may be present in extreme waves, such

as the Draupner wave, where a bound wave structure of up to fifth order was identified

(Walker et al., 2004). Similar observations are made in the present work for the nearly
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breaking wave group (see Section 3.3.5). The high order bound wave structure was

confirmed in recent spatio-temporal analysis of field data, with the second order bound

waves being dominant (Benetazzo et al., 2017). That study demonstrated remarkable

agreement between the normalized profile of the measured extreme waves and the

NewWave profile, enhanced by bound nonlinearities, irrespectively of the specific char-

acteristics of the wave spectrum, even when that was bi-modal. As such, Benetazzo

et al. (2017) provided sound evidence that realistic extreme waves have the universal

characteristics of the NewWave theory and can be modelled as focused waves with

bound harmonics. To do this, it is vital to know the free-wave spectrum, which is not

trivial to extract from field records (Jonathan and Taylor, 1997; Walker et al., 2004;

Whittaker et al., 2016).

The present work aims to go beyond the linear NewWave theory by suggesting a

method to account for both the resonant and bound nonlinearities and provide a more

accurate representation of extreme waves. To achieve that, the free waves are calcu-

lated using an advanced method for the separation of harmonics and the GKE, while

the bound harmonics are computed using a range of analytical methods.

2.4.4 Focusing methodologies

In practice, the NewWave theory takes the form of a focused wave group. Focus-

ing occurs due to the dispersive nature of waves. Thus, if the phases of the wave

components are appropriately chosen at the wave inlet, with short waves being gener-

ated before the longer ones, constructive interference of the components of the group

can be achieved at the desired focal location (crest focused wave). However, when

waves propagate in nonlinear media, their dispersive properties may change. Focus-

ing methodologies are techniques developed to cancel the nonlinear effects that cause

downshifts to the focusing location with subsequent discrepancies in the modelling of

NewWave-type groups, see e.g., Westphalen et al. (2008); Ning et al. (2009b); Zhao

et al. (2009). Commonly, these methodologies refer to iterative corrections of the dis-
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persive characteristics of the wave group. A brief historical outline of the development

of these techniques is discussed here and interesting reviews of focusing methods can

be found in the works of Sun et al. (2008), Fernández et al. (2014), Alford and Maki

(2015) and Deng et al. (2016).

The backbone of most focusing methods is linear theory, which is used for the backward

propagation of the waves from the focal location to the wave inlet as part of the iteration

process or at least as an initial guess of the phases before the first correction. From

the early ’90s to present, many different techniques have been developed to correct the

phases or the phases and amplitudes of the wave components of the spectrum, or the

entire signal at once. In relevant reviews, focusing methods are commonly presented

chronologically, but here they are grouped in categories according to their operating

principle.

No correction: In some cases, the application of a focusing methodology is either

infeasible or not necessary. When examining directionally focused waves, the initial

phases at the wave inlet can be determined by backward propagation from the focal

point using linear or second order theory (Johannessen and Swan, 2001, 2003; Gibbs

and Taylor, 2005; Gibson and Swan, 2007; Adcock and Taylor, 2016a). However, it is

not trivial to determine the wavenumber vectors and correct the signal from point mea-

surements in the tank. In such cases, if the observed maximum crest is at a different

location and time, due to nonlinear interactions, a crude remedy is the re-definition of

the focal location or the time-shifting of the timeseries. Another reason not to correct

the signal is because this is taken from a record in the experiment, where it was al-

ready corrected using a focusing method (Vyzikas et al., 2013). Discrepancies may

be observed in this case, most likely due to the different specific characteristics of the

wavemaker. Correction may not be necessary also when the signal is initiated very far

from the focal location. In this case, the initial linear or second order boundary condi-

tions at the wavemaker are assumed to be valid, since the wave group is well dispersed

and no steep waves are included (Johannessen and Swan, 2003; Katsardi and Swan,
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2011). However, such an approach may not be feasible for experimental facilities with

limited physical dimensions or different dynamics can occur, e.g., BF instabilities or

resonant Hasselmann scale effects, that may corrupt the focusing mechanism (Kat-

sardi and Swan, 2011). It should be noted that a focusing methodology is not needed

if the steepness of the wave group is too small to trigger nonlinear effects, but in this

case one can hardly refer to the focused group as an extreme wave.

Trial and error: In many cases, instead of using an automated approach to correct the

dispersive characteristics of the wave group, empirical corrections are applied until the

produced timeseries approach the desired one. Such examples can be found in the

work of Ning et al. (2009b); Ransley et al. (2013); Vyzikas et al. (2013); Hann et al.

(2014) and Hu et al. (2014). Provided that the wave group is not very steep, these

methods can be effective, but they also may end up being time consuming (Vyzikas

et al., 2013). The use of second order wave generation in combination with a trial

and error correction method can improve the results (Ning et al., 2008). Nevertheless,

considerable discrepancies from the target focal location and time can occur, resulting

in shifting of the results. Since trial and error methods do not have a solid mathematical

description and are based on the experience of the modeller, they are considered less

sophisticated than the methods that follow.

Linear theory: Linear theory is the best-established method used for iterative correc-

tions. Its convenience lies on the simplicity and the consistency between the linear

transport functions of most wave paddles. What distinguishes the different method-

ologies in this category is the part of the signal that is corrected. First, Rapp and

Melville (1990) used linear theory to find the phases of the waves at the wave paddle.

This method was also used by Baldock et al. (1996), who reported shortcomings due to

nonlinearities and underlined the importance of eliminating any reflections at the exam-

ined location. Chaplin (1996) formulated the approach of Rapp and Melville (1990) into

an iterative correction method for the wavemaker control signal. Chaplin’s approach is

the basis for most of the focusing methodologies used at present. Chaplin (1996) and
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Chaplin et al. (1997) corrected the wavemaker’s control signal by applying the exact

opposite phase shift to each wave component obtained by FFT of the measured sig-

nal. The method was shown to improve the results, but still some discrepancies due

to reflections and bound waves could not be removed. Despite that, the method could

converge and help predicting with better accuracy the timing of the focusing event. It

is noted, however, that the method was used on a narrowbanded spectrum, where the

bound waves can be easily isolated. The next development was suggested by Schmit-

tner et al. (2009), who extended the method of Chaplin by including iterative corrections

to the amplitudes in the frequency domain in order to match both the amplitudes (α)

and phases (φ ) of the components to the target values. For the amplitude correction a

scaling factor (s) was used to accelerate the convergence, as seen in Equation 2.10.

This method was tested in different laboratory facilities with computer-controlled wave

paddles to replicate the field measurements of the Draupner wave. Overall, the method

could improve the accuracy of the generated wave record, but considerable discrepan-

cies were observed at the highest crest. Schmittner et al. (2009) also showed that the

correction methodology did not have to deal with the complex transport functions of the

paddles and it did not depend on the selection of the initial phases. It was also noted

that the amplitudes were found harder to correct.

φnew = φold−2(φtrg−φrec) and αnew = αold · s ·
(

αtrg

αrec

)
(2.10)

where the subscripts new, old, rec, trg refer to the corrected, previous, recorded, target

values, respectively.

A similar method for combined phase-amplitude corrections of the entire measured

signal was used by Deng et al. (2016), who also observed discrepancies at the higher

harmonics for steep wave groups.

In the present study, the focusing methodology of Stagonas et al. (2014) is used, which

relies on a similar principle for correcting both the phases and amplitudes. However,

as explained in Section 2.4.5, the novelty of the method is that it is applied only on the
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free-wave spectrum extracted from the four-phase harmonic decomposition and thus,

handles the generated nonlinearities in a more effective way. This idea was also ap-

plied by Ducrozet et al. (2016a), who, however, used only the two-phase decomposition

method and could not effectively correct the high frequency wave components.

Nonlinear solvers: Nonlinear models can be used as a preliminary step in order to

correct the input signal for physical experiments or other more expensive NWTs. For

the first case, the so called self-correcting method (SCM), as revisited by Fernández

et al. (2014), was suggested for adjusting both the amplitudes and phases of the wave

components (see Equation 2.11) of the spectrum in a PFS model, before using the

corrected signal in the physical tank. The method can be combined with second order

generation if the steepness of the wave group is high. An advantage is that the complex

transform function of the paddles are not accounted in the SCM, but the most important

aspect is that the method can be applied in cases of uneven seabed topography, at

the vicinity of the structures and at fully reflective walls as well as to model tsunamis.

The phases were seen to play the most important role in the focusing process, while

amplitudes were proven harder to be corrected effectively. As with every other method,

the issue is the emerging nonlinearities that increase with the steepness of the wave

group, which result in some observable discrepancies referring to the loss of symmetry

at focus and to nonlinear shifts. Despite these deficiencies, this method interesting for

testing focused waves in realistic bathymetries and near structures.

φnew = φold±|φtrg−φrec| and αnew = αold

(
αtrg

αrec

)
(2.11)

For the second case, a promising method that uses a high order correction theory

for the phases of the wave components was proposed by Alford and Maki (2015).

Instead of using only linear theory to find the phases at the focal location, a pseudo-

third-order phase shift is applied, essentially to account for the effects of resonant

interactions. The method is called "pseudo", because it does not calculate the third

order interactions, but instead it uses a third order dispersion relation. It should be
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noted that this method does not require iterations, since the phase shift is calculated

only once. The overall performance of this technique is satisfactory, but discrepancies

can be observed when compared with fully nonlinear simulations as the steepness of

the wave group increases.

As discussed, the objective of the focusing methodologies is the correction of the dis-

persive variables (amplitudes and phases) of the wave components. Theoretically,

these can only be altered by resonant/near-resonant wave-wave interactions, and, in

principle, bound waves are irrelevant in the process. However, most of the focusing

methods do not make the distinction between the free and bound parts of the spec-

trum and correct it all together. Correcting bound waves based on the linear dispersion

relation and including them in the wave generation (most of the times as free waves)

inevitably leads to discrepancies. Thus, according to the author, correcting the full

spectrum is the main deficiency of previous works, which is tackled here with the fo-

cusing methodology of Stagonas et al. (2014).

2.4.5 The new methodology for focusing waves

Application of the methodology

The methodology for focusing wave groups used in the present study was proposed by

Stagonas et al. (2014) and applied in a number of studies by the developers and the

author, such as in Vyzikas et al. (2014b) (first time in a numerical model), Vyzikas et al.

(2015) (comparison between CFD and NLSWE), Buldakov et al. (2015) (Lagrangian

solver including sheared currents), Buldakov et al. (2017) (breaking waves), Vyzikas

et al. (2018b) (evolution of harmonics) and Stagonas et al. (2018) (breaking waves

in CFD). Recently, it was compared with other focusing methods by independent re-

searchers (Wang et al., 2017), showing the best performance.

The new methodology is an iterative correction process of the amplitudes and phases

of the wave components of the spectrum until they match the desired target values. The
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corrections of the amplitudes and phases can be performed at different locations de-

pending on the scope of the study, allowing for examination of specific properties of the

wave group, e.g., dispersion (Vyzikas et al., 2018b). The distinguishing characteristic

of the new method is that the corrections of phases and amplitudes are performed only

for the components of the extracted free-wave spectrum. To the best of the author’s

knowledge this is the first method to correct only the linearised harmonics. To achieve

high accuracy in extracting the linearised harmonics, the focusing method is combined

with a four-wave decomposition technique, which is elaborated later in Section 2.4.5.

The steps for applying the focusing method are:

(i) The target amplitude spectrum is defined and the desired locations for the am-

plitude and phase corrections, namely AM and PF, respectively, are determined.

Moreover, the focal time is selected, usually as half of the repeat time of the peri-

odic signal. The latter is determined by the frequency increment (d f ) between two

consecutive wave components and should be selected small enough so that the

produced periodic wave groups do not overlap.

(ii) Wave groups of different phase shifts are generated at the wave paddle. For a

four-wave decomposition, four wave groups with phase shifts of 0, π/2, π and

3π/2 are used to generate crest focused (CF), positive slope, trough focused (TF)

and negative slope focused waves at the PF location, respectively. For the first

run, the linear dispersion relation can be used to backwards propagate the signal

from PF to the wavemaker, as a best guess. An example is given in Figure 2.10,

where the contraction of the wave group towards focusing is also evident.

(iii) The linearised harmonic is extracted using a suitable linear combination of the

four wave groups measured at PF, according to the four-wave decomposition (see

Equation 2.13) in the frequency domain after performing FFT of the measured

signals.

(iv) The phases and amplitudes of the wave components of the linearised harmonic
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Figure 2.10: Timeseries of the normalized free surface elevation of four wave groups
of different phases at the wavemaker (a) and at the PF location (b).

are corrected using Equation 2.12. It is noted that the correction of α and φ can

be performed at different locations.

α
i+1
in = α

i
in×αtrg/α

i
out and φ

i+1
in = φ

i
in− (φtrg−φ

i
out) (2.12)

where αin,αout ,αtgt are the input, measured and target amplitudes of the compo-

nents of the spectrum respectively and φin,φout ,φtgt are input, measured and target

phases of the components respectively.

(v) The corrected signal for the wavemaker is calculated: the phases of wave compo-

nents of the corrected linearised spectrum are found by propagating backwards

the signal from PF to the wavemaker using the linear dispersion relation. The cor-

rected amplitudes of the components are not altered according to linear theory,

being the same at AM and the wavemaker.

(vi) The process is repeated iteratively from step ii to v until the target values for α and

φ match the target values within the desired accuracy.
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Advantages and shortcomings

The combination of correcting only the free-wave spectrum and the four-wave decom-

position method for extracting accurately the free-wave harmonics give many com-

parative advantages to this focusing methodology. The use of the linear harmonic is

considered a natural choice, since: a) the linear dispersion relation is used to prop-

agate backwards the signal from PF to the wavemaker; b) in most cases the transfer

functions of the wavemaker are linear and when second order generation is used (Stag-

onas et al., 2018), it is based on the free-wave spectrum; c) the nonlinear harmonics

are uniquely defined by the free-wave spectrum. As mentioned, it is not consistent to

use the full nonlinear spectrum to perform linearised corrections, which seems to be

the main issue with other focusing methodologies. The correction of only the free-wave

spectrum makes this methodology very accurate for focusing very steep waves up to

their breaking limit, without showing decrease of the quality of focusing with increasing

wave steepness, as almost all the other methods do. Moreover, the focusing event

takes place at exactly the desired location and time and there is no need for manual

time-shifting of the results or redefinition of the focusing location, as commonly done

for other methods. Thanks to the accuracy of extracting the free-wave spectrum from

the recording, this methodology can correct any type of spectra and it is not limited

to narrowbanded spectra with unrealistic theoretical distributions, such as tophat or

constant steepness (Fernández et al., 2014).

From a practical point of view, the focusing methodology is simple to apply, because

it requires only one recording location, provided that the α and φ corrections are per-

formed at the same location. Working experience with the methodology showed that

it is always convergent, assuming that the linear harmonic remains the leading order.

In most cases, only 2-5 corrections are needed to correct the signal. The methodol-

ogy is applied independently in NWTs and physical flumes, preventing any deficien-

cies of one being inherited to the other. It can be seen as a self-calibration method

for the wavemaker, which cancels any particularities of the wave generation, allowing
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for obtaining very good agreement between different facilities and numerical models.

Moreover, previous studies reported inability of reproducing the desired focused wave

in long facilities, due to nonlinearities (Shemer et al., 2007). This is not an issue for

the present methodology, which was also tested in the long flume of HR Wallingford

and by the author for longer propagation distances in NWTs (unpublished work). Fur-

thermore, issues related to the accuracy of focusing for decreasing mesh resolution

were reported in other works (Bredmose and Jacobsen, 2011), however, the present

method demonstrates good accuracy almost irrespectively of the grid resolution (see

Figure 3.16). Overall, the methodology can correct efficiently and effectively almost

any type of wave group. Additionally, because the signal is corrected to match a de-

sired phase distribution and amplitude spectrum and not until symmetry or the highest

crest is observed, the entire correction process can be fairly automated. Nevertheless,

human experience can help avoid any pitfalls. For example a tricky part is to determine

the most appropriate filtering between the first and fifth, as well as the second differ-

ence and fourth harmonics. Also, the sign of the correction of the phases should be in

accordance with the sign used in the transport functions of the wavemaker.

From an engineering point of view, since the signal can be corrected to match any

phase coherence between the waves components, wave packets of different shapes

can be produced in order to determine the design wave for a particular application or

structure. Moreover, the methodology was shown to produce the third order harmonics

between the physical and numerical results with great accuracy, significantly superior

to other techniques, see e.g., (Chen et al., 2014). This is crucial for studying the

ringing phenomenon, which is of great concern for the survivability and life expectancy

of offshore structures. The new methodology can also be effective for realistic ocean

conditions that combine inline or opposing, sheared or ambient currents and waves

(Stagonas et al., 2014; Buldakov et al., 2015).

On the downside, there are some limitations for the application of the new methodology.

Similar to many other methods, it cannot be applied after the breaking of the wave
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group, because the spectrum starts disintegrating. However, it can be used to the

onset of breaking without any issues (Buldakov et al., 2017). Furthermore, the method

cannot be used if reflections contaminate the wave signal at the focusing location.

This is because reflections are freely propagating waves at the frequency range of the

original free waves and thus included in the correction, but since they have opposite

phases from the incident wave group, they can make the correction diverge19. Last but

not least, to achieve accurate extraction of the free-wave spectrum, four simulations

of groups of different phases are required per correction step. This can make the

computational cost of the method a prohibitive factor for its application in large CFD

domains. It should be noted, however, that for unidirectional waves the iterations can

be performed in a two-dimensional domain and only the final solution should be applied

in the three-dimensional domain. Moreover, once the wave group is focused, there is

no need for additional iterations to generate groups of different phasing, since they can

be readily produced by applying the desired phase shift (Vyzikas et al., 2018b).

Despite presenting various methodologies for focusing waves, an aspect that was not

discussed until now is the essence of focusing. In the literature, the focusing criteria

are not always the same between different studies. In many cases, the wave group

is considered focused when it reaches its maximum crest elevation (Baldock et al.,

1996; Ning et al., 2009b; Zhao et al., 2010; Adcock and Taylor, 2016a). In other cases,

the focusing is evaluated based on the symmetry of the timeseries of the wave group

around the main crest, i.e., the lateral troughs (Orszaghova et al., 2014). Another way

to evaluate the focusing is by comparing the result visually (Schmittner et al., 2009)

or with correlation coefficients (Fernández et al., 2014) with the target surface eleva-

tion. Another criterion, mostly associated with the energy concentration, refers to the

contraction of the timeseries (Whittaker et al., 2017; Ning et al., 2009b), because the

more compact the wave group is, the higher the energy concentration. The present fo-

cusing methodology, however, uses a more objective criterion to assess the focusing:

19Theoretically, one could apply a reflection analysis method to find only the incident signal, but due to
the high nonlinearity of the problem near the focal point, such methods which rely on linear theory are not
expected to be effective.
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the group is considered focused when the desired phase coherence between the free

wave components is achieved. This way not only the bias in assessing the focusing is

reduced, but it also relates focusing to the physical mechanism of generating extreme

waves, namely the zero phases between the components (for CF groups). Moreover,

it can easily be expanded to study different phase shifts of the wave group. It should

be noted that some of the aforementioned criteria to assess the focusing may coincide

or depend on one another. For example, when a CF group is considered focused ac-

cording to the present methodology, the phases of its underlying free-wave spectrum

are zero. This leads to symmetry of the timeseries of the linear harmonics and subse-

quently symmetry of the nonlinear bound harmonics, and eventually, symmetry of the

entire wave group.

Phase decomposition

A crucial part for the success of the focusing methodology is the accurate extraction

of the linear harmonics. This is achieved by means of the four-wave decomposition

method, which is here discussed in greater detail and compared with possible alterna-

tives.

The phase or harmonic decomposition/separation methods used in ocean and coastal

engineering are based on the principle that the free surface elevation can be expressed

by a Stokes expansion (see Equation 5.9). This is a power series expansion and it as-

sumes that each high order harmonic can be found from the envelope of the linear

harmonics, by raising the latter to the corresponding order (Chen et al., 2014). A num-

ber of wave groups is simulated and their appropriate algebraic combination returns the

harmonics of the signal20. Generally speaking, a larger number of wave groups with

different phases shifts guarantees greater accuracy in the extraction of harmonics, with

smaller need for frequency filtering.

20There exist other methods for separating the harmonic structure of wave groups, using for example
cameras and the Morlet transform (Li and Ting, 2012).
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The most widely used harmonic separation method is the two-phase decomposition,

which requires a CF and a TF wave group to separate the signal in odd and even

harmonics. The TF can be simply created by adding a phase shift of π at the CF group,

or equivalently, by changing the sign of the wave equation. Odd harmonics contain the

linear, third order and fifth order harmonics, while even harmonics contain the second

sum, fourth and sixth order harmonics. The issue is that the linear harmonics can

only be isolated by frequency filtering. This is only accurate for narrowbanded spectra,

where the linear and third order harmonics do not overlap. However, this is rarely

the case for realistic broadbanded spectra or for steep wave groups, whose free-wave

spectrum may broaden considerably during focusing. As such, discrepancies due to

this limitation are common. The two-wave decomposition has been used among others

by Johannessen and Swan (2001); Ning et al. (2009a); Johannessen (2010); Chen

et al. (2014).

By adding another two shifts of π/2 to the two-wave decomposition method, the set

of the four wave groups for the four-wave decomposition method is obtained. The

advantage of this method is that it separates mathematically the first and the third order

harmonics. The former is only perturbed by fifth order terms, but in this case the filtering

is more straight-forward. Moreover, the contribution of the fifth order harmonics is order

of magnitudes smaller than that of the linear and the third order harmonics. In practice,

this allows for accurate extraction of the free-wave spectrum even for broadbanded

spectra. The third order harmonics are also perturbed by fifth order harmonics, but this

is irrelevant for the application of the focusing methodology. The second order super-

harmonics can be readily extracted, while the second order sub-harmonics require

filtering, as seen later. The four-wave decomposition method was first suggested by

Fitzgerald et al. (2012) and further elaborated in Fitzgerald et al. (2014) for forces on

cylinders, in order to observe potential ringing effects. The method was extended to

wave records by Stagonas et al. (2014), following the same principle. A similar method

was used earlier by Siddorn (2012) to study wave-structure interaction problems and

later by Zhao et al. (2017) and Mai et al. (2016). However, in these works it was
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not combined with a focusing methodology and discrepancies were observed. It is

noted that the usefulness of harmonic decomposition methods is not limited to focusing

methodologies, but it can be proven valuable in understanding physical properties and

structural responses related to specific harmonics.

The formulae for the four-wave decomposition are given in Equations 2.13 (Fitzgerald

et al., 2014)21:

Linear: A f11 cosφ +A3 f31 cosφ +O(A5) =
1
4

(
S0−SH

π/2−Sπ +SH
3π/2

)
(2.13a)

2nd sum: A2 f22 cos2φ +A4 f42 cos2φ +O(A6) =
1
4
(
S0−Sπ/2 +Sπ −S3π/2

)
(2.13b)

Third: A f33 cos3φ +O(A5) =
1
4

(
S0 +SH

π/2−Sπ −SH
3π/2

)
(2.13c)

2nd diff + 4th: A2 f20 +A4 f44 cos4φ +O(A6) =
1
4
(
S0 +Sπ/2 +Sπ +S3π/2

)
(2.13d)

where fi j are the coefficients in Fourier series, A the amplitude of the envelope and

Snπ/2, n = 0,1,2,3 the timeseries of the surface elevation at the location of interest. The

superscript H refers to the imaginary part of the conjugate of the Hilbert transform of

the corresponding timeseries of the surface elevation.

As seen, the first, second and forth harmonics are perturbed by additional terms. The

relative importance of the term f31 is small compared to the term f11, because, despite

of having the same frequency dependence, its amplitude dependence is at high or-

der and thus much smaller. Similar is the case for the terms f42 and f22. In general,

this holds for all the difference terms fi j, i 6= j, instead of the 2nd difference terms f20,

which are important and they should be separated by frequency filtering from the 4th

order terms ( f44) (Fitzgerald et al., 2012). This is usually trivial to perform, because

21One should be alerted for potential misprints, in e.g., Mai et al. (2016), that can have significant effects
on the results and lead to misinterpretations.
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Figure 2.11: (a) Frequency bands for the selection of the harmonics after the four-wave
decomposition and (b) timeseries of the harmonics using IFFT of the corresponding
spectra.

they occupy distinctively different frequency bands. An example of the frequency fil-

tering applied in the present study is shown in Figure 2.11a, where it is demonstrated

how the 5th and 4th order harmonics are separated from the linear and 2nd difference,

respectively. The resulted timeseries at the focal location are also included in Figure

2.11b.

A more accurate separation of harmonics can be achieved by the twelve-wave decom-

position of Hann et al. (2014), who considered phase shifts of an increment of π/6. This

method practically eliminates the need for filtering for the separation of harmonics: the

fourth order harmonics are readily separated from the second difference harmonics

and the fifth order harmonics are calculated separately. The linear harmonics can be

found by two different expressions, which serves as a verification of consistency. Nev-

ertheless, for the wave group examined by Hann et al. (2014), the performance of the

twelve-wave decomposition was similar to the four-wave decomposition for the surface

elevation. Therefore, the twelve-wave decomposition seems that it will not increase

the accuracy of the focusing methodology. However, the simulation of 8 additional
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groups at every iteration step requires considerably more resources. Thus, respecting

the "principle of proportionality" the four-wave decomposition is more appropriate for

the present scope, offering improved accuracy for broadbanded spectra compared to

two-wave decomposition at a minimum additional expense of resources.

Before closing the Chapter, it should be noted that the new focusing methodology as

well as any analysis of focused waves in the frequency domain is performed by means

of FFT. However, there are other available methods, such as the wavelet transform or

the Stockwell transform (Gibson and Swan, 2007), which can be used to express the

temporal spectral characteristics. In brief, the wavelet transform can offer interesting

insights to the evolution of the energy spectrum over time, being able to describe the

rapid wave-wave interactions and indicate ringing effects (Paulsen et al., 2013b). The

wavelet transform is based on a "mother" function, which for the case of ocean waves

takes the form of the Morlet function as the most appropriate (Zhao et al., 2009). Many

features of the wavelet transform can be controlled by the selections of various pa-

rameters. The advantages of the wavelet transform are that it offers information about

the dispersive properties of the group and it can be applied in non-periodic and non-

stationary wave fields (Lin and Liu, 2004). All these are not possible with the FFT, but

they come at the cost of the low resolution at the frequency domain and potential dis-

crepancies. Overall, wavelet is a promising analysis method, but it appears to be heav-

ily parameterized and to result in low frequency resolution, which makes it prohibitive

for the present focusing methodology. Nevertheless, it could be used to examine the

dispersion of wave groups during extreme wave formation. This was done by Ewans

and Buchner (2008); Lin and Liu (2004), who showed that extreme waves appear to

have a spectral signature, but later, the analysis of field records of Christou and Ewans

(2011b) did not confirm any unique pattern.
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Chapter 3

Validation of the models

THIS Chapter constitutes one of the two core elements of the present work. Here,

the numerical models that are used to examine the physical processes of spec-

tral changes due to wave-wave interactions are validated against experimental results

and their strengths and weaknesses are highlighted. Through the validation of the

models, the improvements achieved in the present study by using an accurate focus-

ing methodology are also demonstrated. A qualitative comparison for HOS-ocean for

the spectral evolution via Monte Carlo-type simulations is also performed.

3.1 The phase-resolving models

3.1.1 Characteristics of the models

On selecting the numerical models for simulating a physical phenomenon, the under-

lying physical process should be analysed and the modeller should examine whether

the available numerical tools can reproduce them.

The present study concerns the spectral evolution during the propagation of very steep

non-breaking unidirectional wave groups. Since, waves is a sub-category of free sur-

face flows, the models should be able to treat the free surface with an appropriate algo-
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Table 3.1: Physical processes simulated for focused waves per numerical model.

Required OpenFOAM SWASH HOS-NWT
Free surface modelling X VoF Grid stretching as boundary cond.
Wave generation B.C. X Linear superposition Linear superposition Linear; 2nd ; 3rd order superp.
Wave absorption B.C. X Active & passive Passive Passive
Finite depth X Yes Yes Yes
Wave dispersion X Yes Yes Yes
Resonant interactions X Yes Yes Yes
Bound interactions X Yes Yes Yes
Breaking waves × Yes Bore-like No
Directionality × Inefficient Appropriate Appropriate
Air modelling × Yes Momentum transfer No
FSI modelling × Yes Weak No
Turbulence × RANS, LES, DNS Parameterized No
Time scales (Tp) 10 1-10 1-100 1-1000
Spatial scales (Lp) 5 1-10 1-100 1-500
Computational cost Low Very high Low Very low

rithm. To produce and absorb waves, the models should include appropriate conditions

for introducing an oscillatory flow in the domain and being able to control reflections,

respectively. To replicate the nonlinear evolution of the wave field, the models should

compute implicitly, via the governing equations of the flow, or explicitly, via analytical

methods, the nonlinear resonant and bound wave-wave interactions. The wave groups

examined here include wave components at any water depth regime, mainly interme-

diate water, and propagate for approximately 5 wavelengths. Thus, appropriate scales

should be considered.

The essential characteristics that models should have for the present problem are listed

in Table 3.1 and are marked with X. As seen, all the three models of the present

study, namely OpenFOAM, SWASH and HOS-NWT, are appropriate for simulating the

examined focused waves. If the scope of the present work was narrowed down to only

non-breaking waves that do not interact with structures, then HOS-NWT would appear

as the best option, thanks to its computational efficiency. Nevertheless, the present

work aims to validate also operational coastal and ocean engineering models, e.g.,

SWASH, and CFD models, such as OpenFOAM, that can simulate accurately violent

fluid-structure interaction (FSI) and wave breaking for realistic engineering applications.

By achieving this, the ground for future research is prepared.

94



3.1. THE PHASE-RESOLVING MODELS

Table 3.2: Experimental conditions used for the validation of the phase-resolving NWTs
(Vyzikas et al., 2013, 2014b, 2015, 2018b).

Preliminary work Initial validation Dispersion study
Amplitude spectrum JONSWAP-like Pierson-Moskowitz Gaussian
Peak frequency ( fp) 0.34 Hz 0.60 Hz 0.64 Hz
Depth (d) 2.5 m 0.5 m 1.0 m
Focal location 9.3 m 7.8 m 14.1 m
Measured crest elev. (ηc) 0.205 m 0.115 m 0.218 m
Facilities COAST Lab UCL UCL
Focusing method trial & error Stagonas et al. (2014) Stagonas et al. (2014)
Models tested OpenFOAM OpenFOAM; SWASH OpenFOAM; SWASH; HOS-NWT

The three numerical models are presented in detail in the Appendix A and a more

general table for their suitability is included (Table A.1). It is noted that the capabilities

and computational efficiency of the models continuously improve and the reader should

always consult the latest advances.

3.1.2 Experimental conditions for validation

The existing literature for the validation of OpenFOAM, SWASH and HOS-NWT with

steep focused waves is either very limited, or it does not include an accurate focus-

ing methodology and advanced techniques for analysing the results. Therefore, it was

decided to use new experimental results and achieve accurate and consistent compar-

isons, aiming at performing a benchmark study.

The three main experimental campaigns used in the present work are summarized

in Table 3.2. The most relevant characteristics of the wave groups are listed, includ-

ing also the methods used for the analysis of the results. The studies of "Preliminary

work", "Initial validation" and "Dispersion study" are presented in separate sections in

this Chapter. The largest and most detailed part of the validation is devoted to the "Dis-

persion study", which was the most appropriate for examining the spectral evolution.

It can be seen from Table 3.2 that a wide range of conditions was tested at different

facilities. Future work can further expand these conditions, for instance to deeper water

and longer propagation.
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3.2 Preliminary work for validation

3.2.1 Initial validation of OpenFOAM for extreme waves

The validation of the numerical models for the propagation of extreme waves started

with the simulation of an extreme wave recorded at the Wave Hub site, replicated in

the Ocean Basin of COAST Laboratory of the University of Plymouth and simulated

in OpenFOAM using waves2foam (Jacobsen et al., 2012), the details of which are

described in (Vyzikas et al., 2013). This part of the work led to the identification of

the issues regarding the spectral evolution in the numerical models, which is the main

subject of this Thesis, the employed approaches are similar to what has been used later

and set the basis for the more sophisticated validation described in Section 3.3. For all

studies in the present work, for consistency reasons, the version of the software was

OpenFOAM 2.1.x, which was the newest at the time (2013) and any future versions that

followed had improvements that were not relevant to the examination of the propagation

of waves by the means that are used in this work.

Using the wave record from an Oceanor Seawatch II Buoy deployed in the area of

the Wave Hub site (50.205380N,-5.363430E), an extreme event of H = 9.57 m oc-

curred on 15/8/2012 was identified and replicated experimentally at 1 : 20 scale in the

Ocean Basin, where the wave depth was set at 2.5 m. After demonstrating that a long

random-phase simulation could not capture the extreme wave in the experiment, the

deterministic approach of the NewWave theory (Tromans et al., 1991) was used in or-

der to generate a focused wave. As discussed in Section 2.4.4, due to the effect of

the nonlinearities, the focal location was shifted and an empirical method for adjusting

the phases of the wave components was used, similar to that of Ransley et al. (2013)

that was first coined by Chaplin (1996). The success of the focusing was assessed by

observing the highest crest between two symmetrical troughs.

The free surface displacement was recorded by five resistive wave gauges (WGs): one

located close to the wave paddles, giving the input signal for the numerical inlet (N.I.),
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Figure 3.1: Experimental and numerical domain used for the replication of extreme
wave at the Wave Hub site (Vyzikas et al., 2013).

and four close to the focal point, as seen in Figure 3.1. The focal location was WG3,

located at 9.3 m downstream of N.I., and the focal time was 90.4 s. This way, the NWT

was designed to be shorter than the physical model, in order to save computational

resources, since the first part of the physical domain is not simulated in the model.

Additionally, the technique of the truncated domain eliminates the complexity of the

transport functions of the wave paddles and it uses a signal recorded far enough from

them, which contains the undisturbed propagating waves without potential evanes-

cence modes caused by the moving paddles. The input signal to the numerical model

was a set of wave components with amplitudes, frequencies and phases obtained from

FFT of the experimental signal at the N.I. locations. At that study, the signal was re-

produced as a linear superposition of 243 wave components between 0.0039 Hz and

1 Hz, calculating the boundary conditions for the surface elevation and the velocity

according to waves2Foam. This method guarantees that the surface elevation at the

N.I. is identical between the physical and the numerical model. Provided that linear

theory still holds, assuming low-amplitude wave components, the velocity profile under

the free surface should be also the same, and thus, if the governing equations and

the design of the NWT are accurate, the measurement at the focal location should be

similar too.
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Figure 3.2: Comparison of the experimental and numerical results at the focal location
of an extreme wave using empirical phase correction (Vyzikas et al., 2013).

The comparison at the focal location between the numerical and the physical model is

given in Figure 3.2a. The main crest of the extreme wave is well reproduced, but there

are clearly some phase anomalies following the main event. It should be noted that

the timeseries of the numerical result were shifted in time in order for the main crest to

coincide with the experimental one. This is common practice, since due to the nonlin-

earities, the focusing event is down-shifted in space or time and manual correction of

the output of the model is required, as seen in many works, e.g., (Zhao et al., 2010;

Gibson and Swan, 2007; Johannessen and Swan, 2003; Ning et al., 2009b; West-

phalen et al., 2012; Johannessen and Swan, 2001). Nevertheless, this reveals a major

drawback of the trial and error method. What is more alarming from the comparison

between the physical and numerical is the shape of the spectrum shown in Figure 3.2b.

The reason for these differences can be attributed to many factors, such as sufficient

grid refinement, reflections from the outlet boundary, small preliminary wave breaking

in the physical model etc., nevertheless, the fact that the spectral shape is different

restricts this method from being used for in-depth validation of the spectral evolution.

The main conclusions from this preliminary study are:
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1. A more sophisticated, less empirical, method should be used for the wave focus-

ing.

2. Despite the relatively good reproduction of the main crest, the spectral evolution

can deviate significantly.

3. OpenFOAM and waves2Foam have good potential for being used for extreme

wave propagation, but fine-tuning is required.

4. Regarding the design of the NWT, some elements were considered successful

implementations that were kept in the next studies: i) the wave generation, as

linear superposition of wave components of a given amplitude spectrum; ii) the

computational mesh as a 2D representation of the physical tank, and iii) the re-

finement of the mesh around the surface and the use of coarser towards the top

and bottom of the NWT.

3.2.2 Initial validation of OpenFOAM using the focusing methodology

The first study where the methodology for the accurate focusing of wave groups of

Stagonas et al. (2014) was used in a NWT was that of Vyzikas et al. (2014b). In

that work, three wave groups of increasing steepness were examined, comprising a

Pierson-Moskowitz (PM) spectrum. After a thorough convergence analysis of the NWT

designed in OpenFOAM with waves2foam (see Figure 4 in (Vyzikas et al., 2014b)), the

numerical results for the steepest wave group, which was the limiting breaking case in

the experiment, were compared with the experimental results (see comment in footnote

in Section 2.3.4).

The NWT comprised a "numerical mirror" of the physical wave flume of University Col-

lege London (UCL) allowing for direct comparison at the exact same locations. The

physical flume was 20x1.2x1 m and equipped with two piston-type wavemakers that

were located at each end of the flume, capable of generating unidirectional waves

and absorbing reflected waves with force feedback active absorption. The NWT is a
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Figure 3.3: NWT in OpenFOAM showing the inlet boundary, focal location and outlet
boundary as well as the free surface (white line) and the relaxation zone weighting
(blue: nonlinear solution; red: target solution) (Vyzikas et al., 2014b).

shorter 2D cross section of the physical flume, designed as a 16x0.7m quasi-3D, one

cell thick, domain. The focal location and the water depth were set at 7.8 m and 0.5

m respectively, identical in the numerical and physical model. The focal time is 64 s

and the signal has a return period of 128 s. The signal is introduced at the inlet as

a superposition of linear wave components that form the selected spectrum and it is

absorbed by a relaxation zone at the outlet, similar to the first preliminary work (Section

3.2.1). The computational domain is shown in Figure 3.3, emphasizing to the exponen-

tially increasing weighting of the relaxation zone expanding from 10 m to 16 m. The

computational mesh is also designed with the same technique as before, using "cell

grading", having the finest square cells surrounding the free surface and elongating cell

height towards the top and bottom of the NWT, as seen in Figure 3.4. The minimum

cell size selected for this mesh was 2.5 mm, being uniform in the x−direction, and the

Courant number (Co) was 0.1. Square cells are recommended for a highly distorted

free surface (Jacobsen et al., 2012), while the grading of the cells results in significant

savings of computational resources. The refinement around the interface of the two

fluids is a common practice in CFD and in OpenFOAM is usually performed with the

utility "snappyHexMesh" (Morgan and Zang, 2010), which however does not guarantee

always as a smooth transition to the coarser part of the domain as the cell grading does

(OpenCFD, 2012).

The main differences from the previous study (Vyzikas et al., 2013) are:

• The signal for the numerical input is taken from a theoretical spectrum and not
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Figure 3.4: Computational mesh showing the cell shape. Square finer cells around
the free surface (0.0 m) and coarser elongating cells at top and bottom (Vyzikas et al.,
2014b).

from the recorded experimental signal.

• The signal is corrected independently in the numerical and physical flume us-

ing the methodology for focusing waves (Stagonas et al., 2014), as described in

Section 2.4.5.

• The phases and the amplitudes of the wave components are corrected at the

focal point.

• The validation is performed for each harmonic separately and not only for the

total measured surface elevation.

The comparison with the experimental results presented here concerns only the strongly

nonlinear group formed based on a PM spectrum with peak frequency fp = 0.6 Hz, seen

in Figure 3.5a. In Figure 3.5a, it is shown that the extracted linearised spectrum from

the numerical model and the experiment are almost identical with the target spectra

at the focal location, thanks to the application of the focusing methodology. Some dis-

crepancies are observed in the amplitude spectrum only at the high-frequency wave

components above 2 fp. The same applies for the phases1 of the linear components

1To be precise, the phase difference of the wave components are shown after subtracting the slope of
the wrapped phases between [0,2π]. Another way to present these results would be to plot the unwrapped
phases from FFT of the linear harmonic, however that presentation makes it less straight-forward to see
whether the wave components are in phase.
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Figure 3.5: Spectral analysis of the numerical and physical results at the focal point: (a)
Extracted linearised amplitude spectrum; (b) Phases of the linear wave components.

Figure 3.6: Measured surface elevation at the focal point in the numerical and physical
flume.

plotted in Figure 3.5b. The analysis shows that the methodology has corrected and

brought in phase the most energetic components of the spectrum, but it has been

less effective for the high-frequency components. These components however have

little energy content and contribute negligibly to the surface profile. The latter can be

confirmed from Figure 3.6, where the surface profile of the numerical model and ex-

periment are plotted. The main crest, two lateral troughs and two adjacent crests are

in almost perfect agreement. Small discrepancies are only seen before and after the

wave group. For all the results that follow, the timeseries have been shifted by 64 s, in

order for the reference time to be the focusing event occurring at 0 s.
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2-5 iterations of the focusing methodology are sufficient for the effective correction of

the signal and any further iterations do not suppress the discrepancies observed. The

nature of this discrepancies may be associated with the fact that the high frequency

components of the linear harmonic may not follow exactly the linear dispersion, as

shown with the spatio-temporal analysis of the wave field of Johannessen and Swan

(2003); Gibson and Swan (2007); Taklo et al. (2015). This can reveal a limitation of

the present correction method which uses the exact linear dispersion relation to prop-

agate backwards the full extracted linearised harmonic. Another potential reason for

the discrepancies might be reflections of long waves, that are linear and contaminate

the signal causing modulations of the high-frequency components, or spurious waves

caused by the wave generation and have not been separated from the main wave group

at the focal location.

Next, the individual extracted harmonics are compared in Figure 3.7a, b, c and d for the

linear, 2nd sum, 3rd order harmonics, which include also part of the 5th order harmonics,

and 2nd difference harmonics (including the 4th harmonics), respectively. The linearised

harmonics are practically identical between the numerical model and the experiment,

since they were corrected to match the target values with the methodology. This result

simply confirms the effectiveness of the methodology in both physical and numerical

flumes. All the simulated nonlinear harmonics are in good agreement between the

numerical and physical wave tank having same phasing and similar amplitudes. The

best agreement is achieved for the 2nd sum harmonic, while the 3rd order harmonics

have approximately 20% higher crest in the experimental results. The most noticeable

difference concerns the 2nd difference harmonics, which exhibit a crest preceding the

set-down. This is more than twice higher in the numerical model. The source of this

crest is not predicted by 2nd order theory and it is not expected by any underlying

physical mechanism. More details about this set-up are given in Section 3.3.

To help understand the significance of the present findings, a comparison with the

study of Chen et al. (2014) can be made, where a similar NWT in OpenFOAM was
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Figure 3.7: Comparison of the extracted nonlinear harmonics in the experiment and
numerical model: (a) Linearised harmonics; (b) 2nd sum; (c) 3rd order; (d) 2nd difference.

examined and the surface elevation was analysed in harmonics. It can be seen that

in the absence of an effective correction methodology, important discrepancies are ob-

served in the recorded signal of the focused wave. As seen in Figure 16 of (Chen

et al., 2014), the higher order harmonics, which are of particular importance for the

phenomenon of "ringing" (Fitzgerald et al., 2014), are hardly comparable with the ex-

periment. Therefore, the present results show that appropriate correction of the sign is

crucial for engineering purposes.

Attempting to improve the results and save computational resources, the same study

was also performed using the boundary conditions of IHFOAM (Higuera et al., 2013a).

As discussed in (Vyzikas et al., 2018b), IHFOAM seems to have a reduced computa-

tional time compared to waves2Foam (Jacobsen et al., 2012), thanks to the fact that

relaxation zones are not required. On the downside, it introduces some discrepan-

cies on the free surface near the inlet boundary (see Figure 3.8a) that fade quickly as

the waves propagate, and downstream in the wave flume the results between the two

boundary conditions are almost identical, as seen in Figure 3.8b. As shown in Figure

3.7d, a major difference between the numerical and the experimental results is the
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Figure 3.8: Comparison between the simulated surface elevation in waves2foam and
IHFOAM: (a) At the inlet; (b) At first WG downstream (0.78 m).

evolution of the 2nd difference harmonics. Based on the present findings, waves2foam

and IHFOAM seem to both introduce a set-up preceding the wave group, which is

slightly smaller when the boundary conditions of the former are used, as demonstrated

in Figure 3.9.

The outcomes of this study can be mainly summarised to:

1. A NWT designed in OpenFOAM and waves2Foam or IHFOAM can replicate with

very good accuracy an extreme wave event at a certain position and time.

2. The NWT is validated with experimental results for the total surface elevation and

the extracted individual harmonics.

3. An appropriate correction methodology and a thorough convergence study is re-

quired to achieve the desired accuracy (Vyzikas et al., 2014b).

4. The employment of the focusing methodology increases significantly the compu-

tational burden, since 4 phases of the wave group must be simulated and at least

2-5 iterations are required to achieve high accuracy.
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Figure 3.9: Comparison between waves2foam (—) and IHFOAM (- - -) for the evolution
of the extracted 2nd order difference harmonics at four locations from WG1 (0.76 m) to
Focal point (7.80 m), where the experimental result is plotted as well (· · · ).

3.2.3 Initial validation of SWASH using the focusing methodology

Despite the successful initial validation of OpenFOAM with experimental results, us-

ing the correction methodology of Stagonas et al. (2014), the idea of employing other

numerical solvers and validating them with the same consistent way was considered,

since the computational cost of the two-phase CFD solver was very high. The scope

is to identify a suitable faster solver that could be used to generate a corrected input

signal with the focusing methodology and use CFD only for the final iteration. This

can be possible only if the phases and amplitudes of the wave components at the in-

let boundary are sufficiently similar after the application of the methodology in both

models.

A promising numerical tool for such use is the nonlinear non-hydrostatic shallow water

equation model SWASH, which is described in detail in Section A.2. The numerical

approaches used in SWASH (Stelling and Zijlema, 2003) have shown good potential

in simulating wave-wave interactions and wave transformation in coastal regions, nev-

ertheless, to the best of the author’s knowledge, SWASH has never been used for

simulating extreme waves by other researchers.

The first study where a NWT in SWASH was examined for simulating extreme waves

is that of Vyzikas et al. (2015). The results were compared with OpenFOAM and IH-
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FOAM using the methodology of Stagonas et al. (2014). The same PM spectrum as

in (Vyzikas et al., 2014b) was examined, seen in Figure 3.5a. For the sake of compar-

ing the computational cost, a low resolution, not-fully-converged NWT in OpenFOAM

(R2) was also examined, where the cell size was double than the converged (R1).

In (Vyzikas et al., 2015) only results for the weakly nonlinear group were presented,

while here, the analysis is focused on the strongly nonlinear group, which induces the

strongest wave-wave interactions.

The NWT in SWASH was designed as an one-dimensional (1D) numerical mirror of

the physical flume of the UCL laboratory having 0.5 m water depth. For practical engi-

neering applications, SWASH is used commonly with one or two layers for the vertical

discretization, which might be adequate for a crude estimation of the wave transforma-

tion in large coastal areas and for operational purposes, but it was shown not to be suf-

ficiently accurate for the present study. Through an exhaustive convergence analysis,

which included space and time discretization schemes, numerical schemes and levels

of accuracy / iterations, SWASH was gradually optimised until its output was in good

agreement with the CFD results. Over 40 combinations of the parameters available in

SWASH were examined. These parameters are detailed in the manual of SWASH (The

Swash Team, 2014) and since to the best of the author’s knowledge no recommenda-

tions existed in the literature, the schemes were tested almost one by one. The final

selection of the parameters is given in (Vyzikas et al., 2015), Briefly, the grid consisted

of 6 layers of variable thickness of 5%, 10%, 15%, 20%, 25% and 25% of the water

depth, calculated from the free surface to the sea bed, with finer layers towards the free

water surface. The horizontal grid was uniform with a cell size of 40 mm. Considering

the physics of the problem, SWASH was used in non-hydrostatic mode and the Keller-

box scheme was employed for the calculation of the vertical pressure gradient using an

implicit Euler scheme. A second order backward difference (BDF) numerical scheme

was used for the discretization of the momentum and transport equations, as well as

for the water depth at the points where the velocity is calculated. A semi-implicit Crank-

Nicolson scheme was used for the time integration of the continuity equation and the
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water level gradient, allowing the Courant number to take values greater than 1 and

the stability not to depend only on the long wave celerity, which would slow down the

computation. A high relative accuracy of the solvers was chosen (0.001) and a high

number of maximum iterations (1000), which provide more accurate results compared

to the default values of 0.01 and 100 respectively. The ILU preconditioner was used for

the calculation of the non-hydrostatic pressure (Vyzikas et al., 2015).

The wave generation in SWASH is performed with a stationary boundary that calcu-

lates the surface elevation and the velocity for every layer. For the simulation of irregular

waves, a "FOURIER" type inlet boundary was used, where the 263 wave components

that synthesized the spectrum were linearly superimposed. The number of wave com-

ponents is determined by the return time of the periodic signal, which was selected at

128 s, following the experiment. The frequency increment is thus found as d f = 1/128

s and after windowing the spectrum between 0.37-2.41 Hz to keep only non-zero am-

plitudes, the 263 are selected. The surface displacement was recorded with virtual

WGs at the exact same locations as in the CFD model and the experiment, having a

sampling frequency of 100 Hz. A weakly reflective boundary condition was also used

at the inlet to minimize any returning reflections. At the outlet of the numerical domain,

the waves were absorbed by a 10 m sponge layer. It should be noted here that as

observed with all the models that were used for simulating focused wave, the outlet

boundary cannot absorb 100% of the incoming energy, resulting in reflections. This is

partially due to the limitations of the techniques used as well as the complex velocity

field incorporated in an focused wave group, which makes the employed absorption

methods less effective than they are for regular waves. Thus, it is advised to keep the

focal point sufficiently away from the outlet boundary in order to avoid contamination of

the measured signal with reflections, which in this way will require more time to return

from the outlet and be present at the time window of interest at the focal location.

The simulations were ran on a single core with an average computational time of 15-20’

for the strongly nonlinear group. Different Linux desktops were used having processing
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Figure 3.10: Measured surface elevation at the focal point in the numerical wave tanks
and in the physical flume.

power of 1.8-2.2 GHz. Special scripts were written in MATLAB for the pre-processing,

i.e. preparation of the input files, and the post-processing of the results, guaranteeing

efficiency and consistency.

For the analysis of the strongly nonlinear wave group that follows, apart from the results

of SWASH and experiment, also the results from the high (R1) and low (R2) resolution

NWT designed in OpenFOAM and IHFOAM are included. Their computational meshes

have a similar design as that in Figure 3.4. The minimum cell size of 2.5 mm and

5.0 mm for the R1 and R2 NWT, respectively, and the Courant number is the same

(Co = 0.1). The results of SWASH stand out with red colour in the figures. The same

number of corrections (seven) was performed independently for each NWT, with the

focusing of the wave group not showing any noticeable improvement after that point.

As seen in Figure 3.10, at the focal point, the general shape of the wave group is in very

good agreement between the models with the most noticeable differences observed at

the lateral crests. It is also observed that only the high resolution NWT in OpenFOAM

(IHFOAM R1) resembles the main wave crest in the experiment, while IHFOAM R2 and

SWASH have a similar and shorter crest (0.112 m) than that measured in the experi-

ment (0.118 m). As a general shape of the total timeseries, SWASH seems to be closer

to the experiment and have a smoother -fewer high frequency disturbances before and

after the main troughs- time history of the free surface compared to OpenFOAM NWTs.

Next, the extracted harmonics at the focal point are examined in Figure 3.11. The

linearised harmonics are practically identical in SWASH, IHFOAM R1 and experiment.
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Figure 3.11: Comparison of the extracted nonlinear harmonics in the experiment and
numerical models: (a) Linear harmonics; (b) 2nd sum; (c) 3rd order; (d) 2nd difference.

Some discrepancies are observed in IHFOAM R2, where the adjacent troughs are

deeper and the time history of the surface elevation before and after the lateral crests

exhibits some anomalies. The 2nd sum harmonics are practically identical in all the

NWTs. As for the 3rd order harmonics in Figure 3.11c, SWASH has the shortest main

crest and left trough. The IHFOAM R2 NWT appears to handle less effectively these

short waves. Nevertheless, the phasing is similar in all the models. The most important

difference is shown for the 2nd difference harmonics in Figure 3.11d. The preceding

spurious crest, which is the same in IHFOAM R1 and R2, is noticeably shorter in

SWASH, while the set-down is the same for all the models and experiment. Thus,

for the 2nd difference harmonics, SWASH is much closer to the experiment than CFD.

The spectral analysis in Figure 3.12a at the focal point shows that the main part of

the extracted linearised spectrum matches the target amplitude spectrum for all the

models. SWASH shows the best agreement with target spectrum at the high frequen-

cies, while IHFOAM R2 demonstrates some bumps above 2 fp. The peak of the ampli-

tude spectrum is marginally lower in SWASH compared to IHFOAM R1 and R2 and it

matches better the target spectrum. The reason for this is not yet clear. The phases
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Figure 3.12: Spectral analysis of the numerical and physical results at the focal point:
(a) Extracted linearised amplitude spectrum; (b) Phases of the linear wave compo-
nents.

of the wave components in Figure 3.12b are zero for the main part of the spectrum,

showing that the methodology has effectively focused the wave group, but above 2 fp,

the high frequency components are not well focused and have considerable differences

between the models.

As mentioned, the main scope of the study of Vyzikas et al. (2015) was to examine

potential use of SWASH or IHFOAM R2 for the iterations of the focusing methodology.

For that, the input signals among the models are examined in Figure 3.13a, where it

is seen that the input amplitude spectrum in IHFOAM R1 and IHFOAM R2 are very

similar, apart from a discrepancy at 1.5 Hz, while the input spectrum in SWASH has

considerably different shape in the main part of the spectrum and close to the spectral

peak. This shows that the spectrum has been transformed differently in the NWTs de-

spite the fact that at the focal point the results show almost excellent agreement. The

phase differences, calculated as corrected input phases minus the linear theory predic-

tion based on dispersion relation (kx−ωt, where k is the wavenumber, x the distance

between inlet and focal, ω the angular frequency and t the focal time), are shown in

Figure 3.13b. For the main part of the spectrum, the NWTs have similar phases at the
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Figure 3.13: Spectral analysis of the numerical and physical results at the inlet: (a)
Input linear amplitude spectrum; (b) Phases of the linear wave components between
input phases and linear theory (dispersion relation).

inlet, but for higher frequencies above 1.5 fp, the phases of the components exhibit im-

portant differences. In conclusion, it seems that, for both the amplitude spectrum and

phases of the components, the low resolution NWT in OpenFOAM resembles better

the behaviour of the high resolution NWT in OpenFOAM than SWASH does.

The outcomes of this study can be mainly summarised to:

1. A NWT designed in SWASH can replicate with very good accuracy steep wave

groups, capturing the high-order nonlinear wave-wave interactions.

2. SWASH showed better agreement with the experiment than the CFD model for

the reproduction of the 2nd difference harmonics.

3. The input signal between SWASH and OpenFOAM is not sufficiently similar to

allow for using SWASH for the preliminary iterations of the methodology. Instead,

a low resolution NWT in OpenFOAM was proven effective for this scope, avoiding

the complication of using two different models.

4. The comparisons among the models revealed noticeable deviations in the spec-
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tral evolution, which requires further investigations into the dispersive properties

of the NWTs.

3.3 Dispersion study

3.3.1 Description of the experiment

The observation of the transformation of the extracted linearised amplitude spectrum

from the inlet to the focal location discussed in Section 3.2.3 led to the another set

of experiments and consequently, to a more accurate and thorough validation of the

numerical tools. The comparison with the experimental results is not performed only at

the location of interest, namely the focusing location, but also along the flume, which

gives a better insight for the evolution of the wave group and consequently the kine-

matics of the fluid, which are of practical engineering interest, since they are used for

the calculation of the loading on marine structures. During the time of the present

research, the methodology of focusing waves was fine-tuned and optimization of the

NWTs was gradually performed as well.

The distinguishing characteristic of the validation presented in this section is that the

amplitude spectrum is corrected at a different location (Amplitude Matching - AM) than

the phases of the wave components (Phase Focal - PF). The AM location, where the

amplitudes of the components are corrected to match the target spectrum, is selected

to be close to the wave paddle, while the PF point, where the wave components are

brought into phase, is located at a downstream location. In other words, the correc-

tion methodology is performed in two steps, independently for the phases and the

linearised amplitude spectrum. The advantages of this approach are both practical

and theoretical. By correcting the spectrum not at the inlet but downstream in the wave

tank, the discrepancies from the wave paddle, such as linear transport functions and

inconsistencies between different wave generation methods, are eliminated and the

target spectrum is reproduced exactly in the nonlinear domain or physical wave tank.
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At the same time, this method also enables the examination of the natural evolution of

the amplitude spectrum from the AM location, where the wave group is dispersed, until

the PF, where the strongest wave-wave interactions occur as the wave group takes its

steepest form. Therefore, instead of forcing the wave group to take the target spec-

tral shape at the focal point, as done in the initial validation of the models in Sections

3.2.2 and 3.2.3, the wave group is allowed to evolve freely from the AM to PF loca-

tion according to the "dispersive" properties of the NWTs, which in physical terms are

controlled by the third-order wave-wave interactions, as discussed in Section 2.2.

The experimental set-up and the comprehensive comparison between the NWT in

OpenFOAM with IHFOAM and physical flume are described in (Vyzikas et al., 2018b).

In that work, the focus was on the evolution of the harmonics up to the 4th order and

their contribution to the overall free surface profile. The measured results of the CFD

model were compared with linear and the 2nd order analytic solution of Sharma and

Dean (1981), as formulated by Dalzell (1999). Here, the focus is on the validation of

the models at specific locations in the NWTs, and for the sake of consistency with the

analysis in the previous sections, only the evolution of up to 3rd order harmonics is

examined. As demonstrated in (Vyzikas et al., 2018b), the 4th order harmonics exhibit

similar properties and evolution to the 3rd order harmonics.

The physical flume for the dispersion study is the wide wave flume of the UCL labo-

ratory, which is 20 m long, 1.3 m deep and 2.5 m wide. For the experiments of this

study, the working depth was set at 1 m. A schematic of the physical flume is shown in

Figure 3.14. The wave generation is performed by seven flap-type computer-controlled

absorbing wave paddles, which can produce a target surface elevation or spectrum

based on linear transport functions. The wave paddles in this study have the same

movement in order to act as one and produce a unidirectional wave group. The wave

dissipation is achieved at the opposite end of the flume by a parabolic beach. The free

surface displacement is recorded by seven resistive WGs along the tank, the locations

of which are shown in Table 3.3. Their sampling frequency is 100 Hz and their accuracy
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Figure 3.14: Schematic of the physical flume with the locations of the Amplitude Match-
ing (AM) and Phase Focal (PF) points.

Table 3.3: Location of the wave gauges (AM: amplitude matching; PF: phase focal).

WG1 (AM) WG2 WG3 WG4 WG5 WG6 WG7 (PF)
Location (m) 1.63 5.17 9.40 11.50 13.80 13.90 14.10

is ±1 mm. The AM point is at 1.63 m downstream of the wave paddles in order to be

sufficiently close to the wave generation location and have minimum energy transfer to

bound waves, but sufficiently far from the moving boundary in order to avoid contami-

nation of the signal with spurious displacement waves (evanescent modes) caused by

the moving paddles. It should be noted that for the steepest wave group, the experi-

ments presented in (Vyzikas et al., 2018b) were performed again here with only WG7

in the physical flume, since the presence of the intrusive WGs marginally influences

the wave profile. Thus, the comparison is further improved.

The examined wave group comprises a broadbanded Gaussian spectrum of 320 equidis-

tant wave components in the range of frequencies 0.0078 Hz to 2.50 Hz, but practically

any components with frequency higher than 1.5 Hz have zero energy. The selected

target spectrum has several practical advantages compared with more realistic wave

spectra such as JONSWAP. For experiments, the full range of frequencies included in

the spectrum can be efficiently generated by the physical wavemaker, while for spec-

tra with a high frequency tail, truncating the high frequency part at 2 or 3 fp is common

practice and entails a rather sharp drop in the energy content of wave components with
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unknown consequences in the spectral evolution. In contrast, the selected Gaussian

spectrum is the broadest possible, spanning smoothly in frequencies from 0 to 2 fp,

and, as the wave group propagates in the flume, a high frequency tail is developed,

as demonstrated by Vyzikas et al. (2018b). Additionally, a Gaussian spectrum has a

compact shape of the timeseries of the free surface, consisting of 1 main crest and 2

deep troughs at focus, similar to PM spectra. On the other hand, the time history of

the free surface for JONSWAP wave groups consists of many crests and troughs and

it is wider, requiring a longer NWT for the simulation. The amplitude spectral shape

is given by Equation 3.1, with standard deviation σSD = 0.13. The peak frequency of

the amplitude spectrum is fp = 0.64 Hz, which for the water depth of d = 1 m, corre-

sponds to a wave group propagating in intermediate water depth; kpd = 1.75, where kp

is the wavenumber of the peak frequency wave component. Wave groups of increasing

steepness were tested in order to examine the effects of increasing nonlinearity. The

steepness is controlled by multiplying all the amplitudes of the wave components of the

linearised spectrum by the same factor and keeping all the other parameters identical.

Here, only the strongly nonlinear limiting breaking wave group is examined, which has

a linearly predicted amplitude of AT h = 0.154 m, since it constitutes the most challeng-

ing case for the numerical models to replicate. The effects of steepness on the spectral

evolution are discussed in Chapter 4.

Ea( f ) =
1

σ
√

2π
e

[
−( f− fp)2

2σ2

]
(3.1)

3.3.2 OpenFOAM

Design of the NWT

The NWT was designed as a two-dimensional (2D) numerical mirror of the physical

wave flume at UCL, described in the previous Section 3.3.1, as seen in Figure 3.15.

The computational mesh had a similar design to that presented in Section 3.2.2, con-

116



3.3. DISPERSION STUDY

Figure 3.15: Schematic of the numerical flume in OpenFOAM.

sisting of three layers: a middle layer of square cells (aspect ratio, AR=1), which has

the highest resolution and encapsulates the maximum and minimum free surface ex-

tending ± 0.2 m from the still water level (SWL); a top layer 0.2 m wide of maximum

cell AR=2 extending to the atmospheric boundary; a lower layer 0.8 m wide of max-

imum cell AR=4 extending to the bottom of the NWT. This design was selected after

trials ensuring highest accuracy and computational efficiency. WGs located at identical

positions as in physical flume (see Table 3.3) recorded the free surface displacement

at 100 Hz.

As discussed in Section 3.2.2, the most integrated and complete wave generation/ab-

sorption libraries in OpenFOAM, waves2Foam (Jacobsen et al., 2012) and IHFOAM

(Higuera et al., 2013a), can practically produce similar results after the application of

the focusing methodology (Stagonas et al., 2014). For the validation presented here,

the selection between the two libraries is based on the absorption of the long spuri-

ous waves at the outlet boundary and the computational efficiency. As mentioned in

Section A.1, the active wave absorption in IHFOAM is designed according to a SWE

assumption and thus, it is expected to perform well with long waves that have a rela-

tively uniform horizontal velocity profile. The effectiveness of the relaxation zones in

waves2Foam increases with increasing their length. Here, two relaxation zones of 6 m

and 8 m were tested. It was found that perfect absorption of the waves is neither achiev-

able in waves2Foam, nor in IHFOAM, and therefore, the outlet boundary had to be suf-
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ficiently far from the PF location in order for the reflected waves not to have enough time

to return and contaminate the recorded signal. After tests of placing the outlet at differ-

ent locations (note that for waves2Foam reflection can occur even from the beginning

of the relaxation zones), it was observed that IHFOAM absorbed better the long waves

and it was at least 30% more computationally efficient than waves2Foam, where the

computational domain had to be elongated to accommodate the relaxation zone and

additional computations take place in each cell of the relaxation zone. Accordingly,

IHFOAM (Higuera et al., 2013a) was used for all simulations presented hereafter.

The computational domain is a 20 m long and 1.4 m high closed rectangular consisting

of six wall with assigned appropriate boundary conditions for every variable as listed

in Table 3.4 (Vyzikas et al., 2018b). Each wall is assigned with appropriate bound-

ary conditions for every variable, namely γi, which refers to the dimensionless scalar

field of the fluid phase fraction varying from 0 < γi < 1, Velocity, which refers to the

vector field of the velocity components (m/s) and Pressure, which corresponds to the

scalar field of the total pressure minus the hydrostatic pressure (Pa = kg/m/s2). In Ta-

ble 3.4, "IH_waves_InletAlpha" and "IH_Waves_InletVelocity" are the wave generation

boundary conditions defined by IHFOAM. "IH_3D_2DAbsorbtion_Inlet Velocity" refers

to the active absorption at the outlet boundary with a target value of zero. "zeroGradi-

ent" boundary condition defines the normal gradient of a quantity to the wall as zero.

"buoyantPressure" specifies the normal gradient of pressure at the wall based as the

atmospheric pressure gradient. "totalPressure" (po) is fixed on the boundary, but when

velocity changes (U), pressure (p) is adjusted according to the relation po = p+ 1
2 ρ|U |2,

where ρ is the density. The top boundary has "atmospheric" boundary conditions that

allow air to come in and get out of the domain, but water can only leave the domain.

This is achieved with "inletOutlet" and "pressureInletOutletVelocity" boundary condi-

tions that switch U and p between fixed value and "zeroGradient" depending on the

direction of U and evaluate U from the flux normal to the boundary when p is known.

Care is taken so that the top boundary is sufficiently higher than the highest expected

water elevation in order to avoid sinks of water from the top boundary of the NWT. The
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Table 3.4: Boundary condition for the NWT in IHFOAM (OpenCFD, 2012).

γi Pressure Velocity
Inlet IH_Waves_InletAlpha buoyantPressure IH_Waves_InletVelocity
Outlet zeroGradient buoyantPressure IH_3D_2DAbsorbtion_InletVelocity
Top inletOutlet totalPressure presureInletOutletVelocity
Bottom zeroGradient buoyantPressure fixedValue
Lateral walls empty empty empty

velocity at the bottom of the NWT is specified by the a fixed value equal to zero; in

other words as a no-slip condition. The lateral walls require boundary conditions that

adjust the behaviour of the 3D mesh that OpenFOAM generates by default to a 2D

mesh. This is achieved with "empty" boundary conditions that produce no solution for

the variables normal to the third dimension (OpenCFD, 2012).

For the surface and the velocity profile reconstruction at the inlet, IHFOAM employs

linear superposition (Dean and Dalrymple, 1991), as seen in Equation 3.2 and Equa-

tion 3.3, respectively. Although second order wave generation is available, it was not

used due to its high computational cost; (3202 wave interactions should be calculated

at every time step at the inlet boundary). To further reduce the computational effort

only a short part of the timeseries was simulated, when the wave group was present in

the tank. Consequently, the experiments with a repeat period of 128 s were simulated

between times 40 s and 70 s -including the focusing event at 64 s-, without inducing

any errors in the dispersion of the wave group. This was achieved not by reducing the

number of the wave components and thus the return period of the signal causing po-

tential overlapping of consecutive wave groups, but simply by altering the starting and

ending time of the numerical simulation. A large number of components guarantees

adequate discretization of the spectrum, which can be crucial for the accurate recon-

struction of the free water surface and the velocity profile at the inlet, because it affects

later the dispersion of the wave group (Ning et al., 2009b). For periodic focusing wave

groups, the number of components should be such that zero surface elevation before

and after the wave group is achieved and thus, no wave-wave interactions occur (She-

mer et al., 2001), especially when broadbanded spectra are simulated (Katsardi and
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Swan, 2011). The initial discretization of the spectrum seems to be more crucial for

spectral-based phase-resolving wave models, where the bound and resonant wave in-

teractions become more pronounced with increasing spectral resolution (Shemer et al.,

2001). Despite the fact that this is not strictly the case in CFD, some relevance may

exist and high resolution of the input spectrum is in principle more accurate.

η =
N

∑
i=1

αicos(κix−ωit +ψi) (3.2)

u =
N

∑
i=1

αiωi
cosh(κiz)
sinh(κid)

cos(κix−ωt +ψi), w =
N

∑
i=1

αiωi
sinh(κiz)
sinh(κid)

sin(κix−ωit +ψi) (3.3)

where η is the free surface elevation; u and w the horizontal and vertical velocity com-

ponents, (the normal to the NWT component v = 0); ψ the phase of each wave com-

ponent i; z the distance from the bottom of the NWT; x = 0 m, horizontal distance from

inlet boundary and t the time.

The numerical schemes for the spatial and temporal discretization of the partial dif-

ferential equations (PDEs), which were selected after preliminary investigations being

identical in the study of Vyzikas et al. (2018b) and are elaborated in (Ransley, 2015).

"backward" second order, bounded, implicit time scheme is used for the time inte-

gration; "Gauss linear corrected" for the discretization of the Laplacian terms, which

is a central differencing (linear interpolation) unbounded, second order, conserva-

tive scheme; second order Gaussian integration with linear interpolation for the gra-

dient terms; Gauss second order unbounded with MUSCL (Monotonic Uwind-centered

Scheme for Conservation Laws) and vanLeer limiters for the divergence terms. The

GAMG (generalised geometric-algebraic multi-grid) solver with DIC smoother is used

for the pressure equations and DILUPBICG (preconditioned bi-conjugate solver for

asymmetric matrices with DILU (Diagonal Incomplete L unit lower triangular and U

upper triangular) preconditioner) is used for the velocity equations. The MULES (multi-
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dimensional limiter for explicit solution) is used to guarantee boundedness of scalar

fields especially in phase or mass fractions (OpenCFD, 2012).

Convergence tests

The quality of a numerical simulation depends both on the equations and numerical

schemes used, but also on the grid resolution. Convergence studies are essential

when designing a NWT for simulating a specific problem and especially when advanced

methods, such as the VoF, are employed, as highlighted by Kleefsman et al. (2005).

Commonly, a convergence study is performed on the basis of increasing the resolution

of the domain and comparing the consecutive outputs of the model. Here, conver-

gence was performed both in spatial and temporal terms by evaluating combinations of

cell size and Courant number (Co), which controls dynamically the time step. Addition-

ally, instead of comparing the recorded surface elevation only, the signal was analysed

in harmonics and the discrepancies observed could be traced more effectively. For

each combination of cell size and Co, the methodology for focusing waves was ap-

plied separately in order to achieve consistent comparisons of the wave "dispersion"

characteristics among the NWTs.

After preliminary investigations, some representative results are selected for the strongly

nonlinear wave group and shown in Figure 3.16 as combinations of R and C, where

R is the minimum cell size in mm and C is the value of Co, which was selected to be

the same as al phaCo, referring to the Co at the free surface (Vyzikas et al., 2017b). In

general, it can be seen that coarser resolutions and higher Co result in higher crest of

the focused wave and slightly worse focusing (Figure 3.16A), which is mainly due to

the overestimation of the 3rd order harmonics (Figure 3.16c). This is the opposite case

from that observed in Figure 3.11c, but in that case the AM and PF coincided. Nor-

mally, coarser resolution causes numerical dissipation and thus, decrease of the wave

height along the tank. However, this is not the case here as the amplitude spectrum

is corrected at AM, partially compensating for some energy losses. Similar issues with
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Figure 3.16: Convergence study for different grid resolutions (R in mm) and Courant
numbers (C): (A) Total measured elevation at PF; (a) Extracted linear harmonic, (b) 2nd

sum, (c) 3rd order harmonics, (d) 2nd difference harmonic at PF.

overestimation of high order harmonics in focused waves simulated with OpenFOAM

and waves2Foam were reported in (Yan et al., 2015). On the other hand, negligible dif-

ferences are observed for the linearised harmonics (Figure 3.16a), which are corrected

by the methodology for focusing waves and the 2nd sum harmonics (Figure 3.16b).

Considerable overestimation of the set-down, caused by the 2nd difference harmonics,

is observed for the more "relaxed" conditions (R10-C0.2) in Figure 3.16d.

Regarding the computational cost of the simulations, the time varied from approxi-

mately 1, 5, 35 and 50 hours for the R10-C0.2, R5.0-C0.2, R2.5-C0.2 and R2.5-C0.1

cases respectively for the steepest crest focused wave group. All simulations were

conducted in parallel on a 16-core Intel Xeon E5-2650 @ 2.6GHz, using the simple

decomposition method, since the cells were uniformly distributed in the x−direction.

For the same grid resolution (R2.5), increasing the Co from 0.1 to 0.2 results in approx-

imately 35% faster simulations, but discrepancies are already noticeable for the 3rd or-

der harmonics and 2nd difference harmonics. For the results that follow, the R2.5-C0.1

set-up was used, which discretizes the 20 m long domain with 2.48 M cells correspond-
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ing to Lp/dx = 1435, where Lp is the wave length of the peak-frequency component and

dx = dy = 0.0025 m, and HPF/dy = 120 cells for the wave height at PF. It should be noted

that this is an exceptionally high resolution and low Co compared to that commonly

used. e.g., Co=0.5 and L/dx = 240 (Chen et al., 2014), but it was deemed necessary

for performing a bench-mark study.

Validation

Before proceeding to the validation it is necessary to highlight the differences between

the physical and the numerical flumes, which cause some inevitable discrepancies and

explain better the obtained results, namely, the propagation of the individual harmonics.

The main differences between the two flumes were:

(i) The wave generation was performed by a flap-type moving wave paddle in the

laboratory and a stationary boundary in the numerical model, but both had linear

transport functions.

(ii) The absorption of the waves was achieved by a parabolic beach in the physical

flume and an outlet stationary boundary with active absorption in the NWT.

(iii) The recording of the free surface displacement in the physical flume had a mea-

suring accuracy of ± 1 mm, while in the numerical model it was measured exactly

at the location of the interface (γi = 0.5) by interpolation.

The comparison between the experimental and the numerical results is presented first

as the total measured free surface elevation at the AM and PF locations and then

separately for each harmonic at all the WGs listed in Table 3.3 apart from WG5, which is

very close to WG6 and the conclusions from their results are similar. When validating a

numerical model for the evolution of wave groups, it is crucial to perform the comparison

with the experimental results at various locations in order to verify that the evolution of

the group is consistent. It is possible to match the surface elevation at one location, but
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this does not guarantee that the kinematics are similar, since this matching may be a

result of cancellations of waves travelling to different directions.

The overall free surface elevation is shown in Figure 3.17a and 3.17b at the AM and PF

location, respectively. The agreement between the numerical and the physical model

is almost excellent for both locations, but more discrepancies are observed at the AM,

where the first large waves in the group between -13 s and -11 s seem to be slightly

ahead in the experiment and the two highest crests to be greater in the numerical

model. Also, the free surface in the NWT seems to have some short waves (wiggles),

which are probably an artefact of the boundary conditions of IHFOAM, initially seen

in Figure 3.8a. These short waves eventually separate from the group, as explained

in (Vyzikas et al., 2018b), and because of their smaller celerity they do not appear at

PF, where the agreement is almost perfect. At PF the crest height and troughs are

practically identical occurring at the same time without any adjustment of the recorded

signal during the post-processing, as commonly done in most of the existing stud-

ies to achieve good comparison (see Section 2.2.1). The only observable differences

are lateral of the adjacent crests and in the main crest which seems to be marginally

steeper in the numerical model immediately after the focal time. These observations

are supported with the error plot (dotted line in Figure 3.17b), which is calculated as

the subtraction of the numerical from the experimental timeseries, and it demonstrates

that the main discrepancy appears after the main crest.

The dispersion of the extracted linearised part2 of the spectrum is the most important

aspect in the propagation of the wave group as a whole, mainly because it constitutes

the harmonics with the highest energy, but also because it determines the evolution

of the associated bound waves. The extracted linearised harmonics in this study are

considered to represent the free-wave regime, which propagate "freely" according to

the linear dispersion relation. As explained in Section 2.2, during the focusing of the

wave group there is a considerable transformation of the free-wave spectrum due to

2It is noted that the four-wave decomposition is performed using exactly the same parameters for the
windowing of the signal and the necessary filtering for all the results that follow, done automatically for
consistency.
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Figure 3.17: Comparison of the total measured surface elevation between the experi-
ment and numerical model (OpenFOAM) at (a) at AM and (b) at PF location.

nonlinear wave-wave interactions, which for some cases may have a major role to the

evolution of the wave group (see e.g., (Johannessen and Swan, 2003)). The min-

imum requirement for a numerical model in order to be reliable for the propagation

of wave groups is its validation for the propagation of the linear waves, including the

resonant / non-resonant interactions. The emergence of nonlinear bound harmonics

then depends on the order of nonlinearity of the NWT. Figure 3.18 shows that excellent

agreement between the numerical and the physical results regarding the evolution of

the extracted linearised harmonics after the input signal is corrected with the methodol-

ogy for focusing waves is achieved. Some negligible discrepancies are only observed

before and after the main wave group. It is shown that the signal starts from a well-

dispersed form in Figure 3.18a and gradually becomes compact towards focusing in

Figure 3.18f. The scale of the y−axis is the same for all subplots in order to allow

better observation of the increasing steepness.

Next, the extracted 2nd order summation terms are presented in Figure 3.19. The first

thing to observe is that the magnitude of the 2nd sum harmonics is almost 5 times

higher at PF than at AM, because the wave group becomes steeper at focus and there
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Figure 3.18: Comparison between the experiment and numerical model (OpenFOAM)
of the timeseries of the extracted linearised harmonics at six locations from AM to PF.

is more energy transfer to bound waves. These energy transfers are also discussed in

greater detail in Section 4.1. Comparing the corresponding subplots of Figures 3.18

and 3.19, it can be seen from the time scale that the 2nd sum harmonics are bounded

to the wave group and have double the frequency of the linearised harmonics (double

number of crests in the same time range). Regarding the comparison of numerical and

experimental results, it is seen that the agreement is almost perfect from WG3 until

PF, but it is less impressive closer to the boundary at AM and WG2. This is due to a

second group of waves existing at the tail of the signal. This group causes discrep-

ancies close to the boundary (AM), but it appears to start separating from the main

group at WG2 and eventually, it is left behind travelling at a lower celerity, despite the

fact that its components have similar frequencies as the main 2nd sum group. As dis-

cussed in (Vyzikas et al., 2018b), the reason for this is that this second group consists

of spurious free waves that are not bounded to the linear group and thus travel slower

than the 2nd order bound waves. The creation of these waves is due to the linear wave

generation, as explained in Section 2.2.2. Due to different wave generation between

the physical and numerical tank, e.g., moving paddle and stationary boundary, the free
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Figure 3.19: Comparison between the experiment and numerical model (OpenFOAM)
of the timeseries of the extracted 2nd order sum harmonics at six locations from AM to
PF.

spurious waves are not identical, but the physical mechanism remains the same. Once

the spurious waves are separated at 2Lp downstream of the inlet boundary, the agree-

ment becomes excellent. The present results indicate that caution should be taken

when simulating focused waves, in order to allow enough propagation for free spurious

waves to separate from the group and not contaminate the result at the examined focal

location.

The evolution of the 3rd order harmonics in Figure 3.20 has similar characteristics to

that of the 2nd order sum harmonics. There are considerable discrepancies close to

the inlet boundary at AM, but already at WG2 the spurious free waves separate from

the main group and the agreement is nearly excellent at all the other locations until PF.

These differences, close to the wave paddle, might be caused by the discrepancies in-

duced by the wave generation mechanism of IHFOAM (see Figure 3.8a). Nonetheless,

such impressive agreement at PF has not been observed in previous studies (Chen

et al., 2014; Fitzgerald et al., 2014). By comparing the corresponding subplots of Fig-

ure 3.18 and 3.20, it can be seen that the 3rd order harmonics are bounded to the linear
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Figure 3.20: Comparison between the experiment and numerical model (OpenFOAM)
of the timeseries of the extracted 3rd order harmonics at six locations from AM to PF.

harmonic and they have approximately three times higher frequency (see for example

the length of the timeseries that includes the corresponding harmonics at PF). It is also

observed that the 3rd order harmonics increase in amplitude only close to PF (WG6

and PF) where the group is sufficiently steep, while at AM and WG2 their energy is

negligible.

Last, the evolution of the extracted 2nd order difference harmonics is examined in Figure

3.21. The 2nd order difference harmonics appear as a long bound wave causing a set-

down under the wave group and having its maximum amplitude when the wave group

is focused, as suggested by 2nd order theory (Sharma and Dean, 1981). These gen-

eral characteristics are observed here as the wave group approaches the PF location,

where the numerical result reaches its best agreement with the experiment. However,

as noted earlier in Figure 3.7d, there is a preceding long wave causing a surge in the

NWT. Here, it can be seen that this surge is already created close to the boundary, at

AM, and continues to travel ahead of the wave group. This suggests that the surge

in the NWT may be an artefact of the boundary conditions of IHFOAM. As shown in

Figure 3.9, the surge is slightly smaller when the boundary conditions of waves2Foam
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are employed. At WG2 a small surge is also observed in the physical flume, but it

does not seem to be present at downstream positions. This surge cannot be read-

ily justified in the experiment, unless it is a free displacement wave from the moving

paddle. The set-down becomes more noticeable from WG3 onwards and it becomes

maximum at PF, where the difference between the numerical and the physical model

is 3.8 mm, approximately 15 % of the maximum local surface displacement. At the last

two WGs, a second wave is observed in the experiment at times 2-4 s that appears to

have opposite direction of propagation of the main wave group, which is likely to be a

sign of reflection. In the numerical model, the reflections arrive later, because in the

experiment the mechanical beach extends upstream in the flume and thus, reflection

is expected to begin earlier. The appropriate windowing of the signal in the analysis in

the present study eliminated the influence of the reflection on the numerical results.

Previous studies also showed that the comparison of the long waves is very challeng-

ing, due to the different wave generation and absorption mechanisms in the physical

and numerical tanks. The movement of the wave paddle can cause long spurious free

waves in the physical model that are not present in the numerical model. At the same

time, absorption of long waves in the numerical model is not a trivial issue. The analysis

of the performance of the absorption of IHFOAM, either performed by pseudo-active

absorption method (Higuera et al., 2013c) or by a moving wave paddle (Higuera et al.,

2015), shows that reflections are present in the NWT and the long waves may not be

accurately handled. Even when a damping layer, like a relaxation zone, is used for

the wave energy dissipation at the end of the tank, an effective absorption of the long

wave is nearly impossible (see Figure 2 in (Chen et al., 2014)). As discussed earlier,

in the present study, the only remedy found for limiting the reflected waves was the

placement of the outlet boundary far from the focal point, so that any reflected waves

would require more time to reach the PF location.
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Figure 3.21: Comparison between the experiment and numerical model (OpenFOAM)
of the timeseries of the extracted 2nd order difference harmonics at six locations from
AM to PF.

3.3.3 SWASH

The validation section of the NWT in SWASH, follows the same structure as that pre-

sented for OpenFOAM in the previous Section 3.3.2. At first a convergence analysis

is presented, which is briefer than that of OpenFOAM and then, the comparison with

experiments is shown for the measured surface elevation and for the individual har-

monics.

Although the set-up for the SWASH NWT used in Section 3.2.3 (see the work of

Vyzikas et al. (2015)) has much higher resolution and accuracy than those commonly

used for engineering applications (1-2 layers), here, a further refinement is used to

verify the accuracy of the NWT. In the convergence analysis for SWASH, the vertical

resolution used in the initial validation (6 layers of 5, 10, 15, 20, 25, 25% thickness

of the water depth) was compared to another higher resolution, where the number of

layers was increased to 8 layers of 2, 4, 9, 15, 15, 20, 20% thickness of the water

depth, because the water depth was increased from 0.5 m to 1 m (see Table 3.2).

Additionally, a hyperbolic distribution for the horizontal velocity per layer was employed
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instead of the default uniform distribution (The Swash Team, 2014) that was used in the

initial validation (Section 3.2.3). The hyperbolic distribution induces higher accuracy,

especially for the high frequency components in deep water. It should be noted that,

similarly to the convergence of OpenFOAM (Section 3.3.2), for the new set-up of the

SWASH NWT, all the corrections of the methodology were performed until the group

was focused. The high resolution NWT is 30 m long following the design of the initial

validation. The wave absorption is achieved by a 10 m long sponge layer starting at 20

m, which is sufficiently far from the PF, so that any reflections arrive with delay and do

not contaminate the signal in the examined time window. The input signal comprised

a discrete spectrum of 320 wave components between 0.0078 - 2.5 Hz, reproduced at

the inlet as a summation of linear waves.

The convergence check for SWASH is presented in Figure 3.22. The difference at the

measured surface elevation in Figure 3.22A is only 1 mm with the higher resolution

giving a higher crest elevation, but, as the time history of the surface elevation shows,

the shape of the wave group is practically identical. The linear harmonic in Figure

3.22a has the same amplitude and phase between the two resolutions. The case

is similar for the 2nd sum harmonics in Figure 3.22b. The 3rd order harmonics are

about 0.6 mm higher for the high resolution NWT (Figure 3.22c), but still the agreement

is almost excellent. The greatest discrepancies are observed for the 2nd difference

harmonics, which are 1.7 mm lower (in absolute terms) for the low resolution NWT

(Figure 3.22d), and also slightly wider. It is interesting to observe that the measured

surface elevation is not identical to the sum of its harmonics, due to the filtering of very

high and low frequencies during the separation of the harmonics. Nevertheless, this

does not constitute an issue in the analysis, since there is consistency on the way the

individual harmonics are extracted and compared for all the numerical models. For

the validation of SWASH presented hereafter, high resolution NWT was used, which

induces about 30% higher computational cost.

The total measured surface elevation of SWASH is compared with the experiment in

131



3.3. DISPERSION STUDY

Figure 3.22: Convergence test for the SWASH NWT, where L refers the number of ver-
tical layers and Hyp and Unif to hyperbolic and uniform horizontal velocity distribution
per layer respectively.

Figure 3.23a and 3.23b at the AM and PF locations. In general, the agreement is very

good, but more discrepancies are observed at the AM, especially at the highest crest

and last trough, where SWASH overestimates the crest by 16.4 mm and underesti-

mate the trough by 7.8 mm, corresponding to a 21.5% and 13% difference compared

to the experiment, respectively. At PF, the shape of the simulated group is in good

agreement with the experiment, however the latter is slightly steeper and higher by

10.5 mm, corresponding to 4.8% of the measured crest elevation. This result supports

the conclusion for the initial validation of SWASH, showing that it cannot simulate a

wave group as steep as in the experiment or OpenFOAM (see Figure 3.10). The error

plot (dotted line in Figure 3.23b) also shows that the sole discrepancy is at the crest,

where the experimental result is higher. The lateral crests are very well predicted with

practically zero error.

Regarding the evolution of the individual extracted harmonics, very similar observation

to that done for OpenFOAM can be made. Briefly, after the correction with the focus-

ing methodology, the linearised harmonic is practically in perfect agreement with the
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Figure 3.23: Comparison of the total measured surface elevation between the experi-
ment and numerical model (SWASH) at (a) at AM and (b) at PF location.

experiment, as shown in Figure 3.24. For the 2nd sum harmonics in Figure 3.25, the

agreement improves as approaching the PF point, where it is almost excellent, since

the spurious free waves that cause the discrepancies start separating from the group

after WG2. The 3rd order harmonics presented in Figure 3.26 are also in very good

agreement, especially towards the PF point, where in this case the numerical model

underestimates the crest by only 1.6 mm (7.3% of its crest height), confirming in a

clearer manner the earlier observations (see Figure 3.11c). It is also interesting to note

that, after careful examination of the results, close to the boundary at AM and WG2, 3rd

order harmonics have somewhat smoother timeseries compared to those reproduced

in OpenFOAM, shown in Figure 3.20a and 3.20b, indicating that the inlet boundary of

SWASH does not induce the high frequency spurious waves as that of IHFOAM. The

2nd difference harmonic, presented in Figure 3.27, shows a very good agreement with

the experiment, with the exception of WG2, where the experiment exhibits the unex-

pected crest. This comparison is better than that of OpenFOAM, since the spurious

preceding crest is not present, confirming the earlier observation in Figure 3.11d. At

PF, the trough of the 2nd difference harmonic is practically the same as that extracted

from the experiment.
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Figure 3.24: Comparison between the experiment and numerical model (SWASH) of
the timeseries of the extracted linearised harmonics at six locations from AM to PF.

3.3.4 HOS-NWT

HOS is a high-order pseudo-spectral model, which is described in Section A.3. The

main reason for deciding to employ the HOS-NWT for the simulation of focused waves

is its computational efficiency, resulting in approximately 30-60 times lower compu-

tational cost compared to SWASH, which is already orders of magnitude faster than

OpenFOAM. The validation of the HOS-NWT is also important in the present study for

another aspect: to validate in detail the HOS method in order to employ the HOS-ocean

version of the model for random phase simulations used for the Monte Carlo analysis

with greater confidence. In this way, the Monte Carlo simulations can be used to com-

pare the results for the spectral evolution produced from the phase-averaged models

later in Chapter 4. Despite their efficiency, the HOS-NWT and HOS-ocean have an

intrinsic limitation: only constant depth can be considered and as consequence, no

submerged (or surface piercing) structures can be modelled. This is not an issue for

the present study, but it can be a constraint for engineering applications.

HOS-NWT has been employed in previous studies for simulating extreme waves, but,
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Figure 3.25: Comparison between the experiment and numerical model (SWASH) of
the timeseries of the extracted 2nd order sum harmonics at six locations from AM to PF.

to the best of the author’s knowledge, it has never been validated against experimental

results for steep focused wave groups, nor the individual harmonics have been exam-

ined prior to the present study. The available comparison with experimental results

refers to a 3D focused wave group of low steepness and a unidirectional group of mod-

erate steepness (Ducrozet et al., 2012b), showing relatively good agreement for the

total surface elevation, but the wave groups are not well focused. Therefore, the vali-

dation of HOS-NWT is deemed necessary. In this section, the NWT is compared with

the experimental results in the same fashion as before for OpenFOAM and SWASH,

after performing a convergence analysis.

The version used here is the 2016 and until the moment of writing the present study,

no major modifications were made to the code, apart from some bug fixes (see Section

4.7.1). It is important to note that apart from the predefined spectra included in the re-

lease of the code, namely JONSWAP and Bretschneider, there was no option of adding

arbitrary spectra. A pre-processing tool was developed by the author in MATLAB that

circumvents this constraint and allows for the definition of an arbitrary amplitude spec-

trum, providing more flexibility and enabling the use of the focusing methodology.
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Figure 3.26: Comparison between the experiment and numerical model (SWASH) of
the timeseries of the extracted 3rd order sum harmonics at six locations from AM to PF.

The main parameters in the HOS-NWT are the number of nodes/modes in x−direction

(N1), in y−direction (N2), at the wavemaker (N3), the dealiasing in x− and y−direction

(p1 and p2 respectively) and the HOS nonlinearity order (mHOS). These parameters

are defined in the common_vars.f90 and for every modification, the model has to

be recompiled. For a 2D simulation of unidirectional wave groups, N2 = p2 = 1. As

common practice suggests, full dealiasing was used by defining p1 = mHOS. HOS-

NWT offers the possibility to simulate different types of wavemakers (hinge and piston

of linear or higher order motion). Here, a linear piston wavemaker starting at the bottom

of the flume was used. It is noted that for intermediate or deep water waves the use of

a flap-type wavemaker is more appropriate, but the focusing methodology corrects any

discrepancies. To allow for smooth starting of the simulation, a linear-type ramp-up time

of 5 s is selected. The length of the NWT is 50 m and the depth is 1 m. An absorption

zone (numerical beach) is set at the end of the NWT, starting at 40 m and occupying

20% of the numerical domain. Different lengths of the NWT were initially tested, in

order to examine any potential reflections at the PF location, but the aforementioned

set-up was deemed sufficient. The maximum sampling frequency of the WGs allowed

in the model is selected (50 Hz) for the sampling of the free surface displacement,
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Figure 3.27: Comparison between the experiment and numerical model (SWASH) of
the timeseries of the extracted 2nd order difference harmonics at six locations from AM
to PF.

with the WGs being at identical locations as in the physical flume3. The full length

of the timeseries was simulated from 0 to 128 s. A Runge-Kutta 4th order scheme is

available for the integration in time, which tolerance is selected at 10−4 after tests. All

the previous parameters are included in the input_HOS-NWT.dat file, where also the

"type" of the examined case (icase) has to be defined. For the present NWT, icase = 3

was used as the basis, referring to a wavemaker with an amplitude-frequency spectrum

as input, which, was prepared with MATLAB.

The convergence of the HOS-NWT is performed by examining the three main param-

eters of the model, i.e. N1, N3 and mHOS, using as input wave spectrum the final cor-

rected spectrum from IHFOAM. Independent convergence with the focusing method-

ology was decided not to be performed because of the high number of combinations

among the examined parameters. The values initially selected for the convergence test

are taken from the tutorial cases: N1 is power of 2 plus one extra mode and N3 = 33,

as suggested in the tutorial. The convergence analysis was planned according to the

3The results were interpolated to 100 Hz sampling frequency in the post-processing for consistency in
the comparisons.

137



3.3. DISPERSION STUDY

Figure 3.28: Convergence HOS-NWT: (a) Selection of N1; (b) Selection of N3 and (c)
Selection of mHOS.

following strategy: for a high order of HOS, i.e., mHOS = 8, and the same N3 = 33,

the value of N1 is examined (Figure 3.28a). Then, for mHOS = 8 and the selected N1

(N1 = 1025), the influence of N3 is examined. At the end, after selecting N1 and N2,

the order of HOS is examined (Figure 3.28c). As it can be seen in Figure 3.28a, small

discrepancies are observed for the lowest value of N1, but the agreement between

N1 = 513 and N1 = 1025 is excellent. Thus, a value of N1 close to 513 can be selected.

In Figure 3.28b, it can be seen that the increase of N3 does not improve the results of

the simulation. Thus, any value of N3 higher than 30 is sufficient. Figure 3.28c, shows

that the increase of the order of HOS does not cause any noticeable improvement on

the results. mHOS however is the parameter that increases the most the computational

cost. For the results presented for the validation, the selected values of the HOS-NWT

are mHOS = 5, N1 = 500 and N3 = 40 and with this selection, and the simulation is

considered converged.

First, the comparison between HOS-NWT and the experiment is presented for the

measured surface elevation in Figure 3.29. Similar to the observations for SWASH, at

the AM point (Figure 3.29a), the last highest crest is overestimated by the numerical
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Figure 3.29: Comparison of the total measured surface elevation between the experi-
ment and numerical model (HOS-NWT) at (a) at AM and (b) at PF location.

model, while the last trough is understimated. At PF (Figure 3.29b) the experimental

crest is steeper and higher by 12.5 mm or 5.7% compared to the simulated wave group.

The error plot in Figure 3.29b confirms that the main discrepancy is at the central crest

and only minor differences are observed at its sides.

Similar to the other models, the extracted linearised harmonic of HOS-NWT is in excel-

lent agreement with the experimental result, thanks to the application of the focusing

methodology, as shown in Figure 3.30. The 2nd sum harmonics in Figure 3.31 are also

in very good agreement with those extracted from the experiment, especially after the

spurious free waves are separated from the group beyond WG2. Similar is the case

for the 3rd order harmonics in Figure 3.32. These harmonics gain energy only when

the wave group is close to focusing and, at PF, the numerical model underestimates

the crest of the extracted harmonic by only 1.8 mm, corresponding to difference of

8.1% compared with the experiment. This is a remarkable agreement considering the

computational efficiency of the model and the high steepness of the wave group. The

greatest discrepancies between the numerical and physical results are observed for

the 2nd difference harmonic (Figure 3.33), as also noted for OpenFOAM and SWASH.
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Figure 3.30: Comparison between the experiment and numerical model (HOS-NWT)
of the timeseries of the extracted linearised harmonics at six locations from AM to PF.

Similar to SWASH and in contrast with OpenFOAM, HOS-NWT does not induce a spu-

rious surge preceding the main trough. The results are similar, but slightly worse than

those of SWASH. At PF, HOS-NWT overestimates the trough by 2.5 mm or 9.7%, with

the shape of the trough being in very good agreement.

Even though not being part of the validation, another aspect referring to the order

of the wavemaker is presented here. As it was observed in the previous sections,

spurious waves were created from the linear motion of the wavemaker. HOS-NWT

offers the possibility to examine, with low computational effort, the influence of the

wavemaker at suppression of the spurious waves. It is expected that the use of a

high order wavemaker will suppress the generation of the free spurious waves at the

inlet; the 2nd order wavemaker should decrease the spurious free long wave and the

high frequency free waves of 2nd order and the 3rd order wavemaker should in addition

not produce 3rd order spurious waves. As seen in Figure 3.34a at WG3, where the

high frequency free waves have separated from the main group, the magnitude of the

2nd order free waves shown between 3-6 s is considerably smaller for the high order

wavemakers. Also, the 3rd order free waves following the wave group at 10-14 s seem
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Figure 3.31: Comparison between the experiment and numerical model (HOS-NWT)
of the timeseries of the extracted 2nd order sum harmonics at six locations from AM to
PF.

to be smaller for the 3rd order wavemaker. At the PF location in Figure 3.34b, three

things can be observed: a) the spurious long wave surge, shown between -8 s and

-2 s, seems to be caused by the linear wavemaker, since it is decreased significantly

for the high order wavemakers; b) the crest height seems to be 2 mm higher for the

high order wavemakers and c) the spurious free waves of 2nd order following the main

group are smaller than that produced by the linear wavemaker. Note that at PF the

3rd order spurious waves arrive after 15 s coinciding with the reflections from the outlet

and for this reason are not presented here. Thus, the use of a high order wavemaker

can be advantageous, but this does not imply that it will give better comparison with

the experiment, especially if in the latter linear wave generation is used.

3.3.5 Intercomparison of phase-resolving models

Here a comparison among the numerical models that were validated in the previous

sections is presented and the results are again compared with the experiments. This

facilitates better interpretation of the numerical results and gives indications regarding
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Figure 3.32: Comparison between the experiment and numerical model (HOS-NWT)
of the timeseries of the extracted 3rd order sum harmonics at six locations from AM to
PF.

the possible use of an integrated approach of using a combination of high and low

computational cost models.

The comparison is performed for the recorded free surface elevation at the PF loca-

tion in Figure 3.35a and for the extracted individual harmonics at the same location,

as shown in Figure 3.36. The quantitative comparison with the experiment is included

in Table 3.5, as an absolute difference in mm and as a percentage (%) relative to the

experiment. As seen in Figure 3.35a, all the numerical models have almost identical

surface elevation and the only noticeable difference is at the crest height, where Open-

FOAM produces a steeper crest, resembling better the experimental result. SWASH

and HOS-NWT have practically the same crest height, being approximately 5% lower

than the experimental result. Immediately after the focal time, the experimental crest

is less steep, possibly because it is very close to breaking. This is not observed in

SWASH and HOS-NWT, because wave breaking is not simulated properly, while for

OpenFOAM, preliminary unpublished investigation showed that breaking occurs for

slightly higher crests than in the physical model. Some differences between the nu-

merical and experimental measurements are also observed before and after the lateral
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Figure 3.33: Comparison between the experiment and numerical model (HOS-NWT)
of the timeseries of the extracted 2nd order difference harmonics at six locations from
AM to PF.

crests. To facilitate the comparisons, the error plots are included in Figure 3.35b, where

it is seen that at the focal time (t = 0 s) only OpenFOAM has minimum practically zero

difference, while SWASH and HOS-NWT have the same error. The greatest discrep-

ancy is observed for HOS-NWT after the focal time.

Regarding the extracted harmonics, additionally to the linear, 2nd sum, 2nd difference

and 3rd order harmonics presented until now, the 4th and 5th order harmonics are also

analysed here. The 4th order harmonics are separated trivially by frequency filter-

ing from the 2nd difference, and 5th order harmonics are taken out from the linearised

harmonics in a similar manner4. The corresponding comparisons in Figure 3.36 and

3.37 confirm that OpenFOAM overestimates all the nonlinear harmonics. SWASH and

HOS-NWT underestimate the high order harmonics up to 3rd , but the 4th and 5th or-

der harmonics are in almost excellent agreement with the experiment. A very good

4The 5th order harmonics can be separated from the 3rd and the linear harmonics and added together.
However, this task requires very careful windowing in the spectral space and sometimes it may add bias,
because there is overlapping of the harmonics. For the present case, the magnitude of the 5th order
harmonics within the extracted linearised harmonic is considerably greater than that included in the 3rd

harmonics. The former are always separated and the linearised harmonic is only considered up to 2.5
Hz, as seen in Figure 2.11.
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Figure 3.34: Comparison of the measured surface elevation at WG3 (a) and at PF (b)
for the different orders of piston wavemakers (WM) at HOS-NWT with focus on the
effects of high and low frequency waves.

agreement is achieved for the linear harmonics (Figure 3.36a), which amplitude spec-

trum was corrected by the methodology at the AM location, and the comparison at PF

shows that all the NWTs can propagate the linear/free wave spectrum with sufficient

accuracy. Nevertheless, the physical results have a higher crest than all the models,

which seems to be one of the main reasons for the overall difference in the measured

timeseries. As already demonstrated, the greatest discrepancies are observed for the

2nd difference harmonics in Figure 3.36d, with OpenFOAM having a spurious crest be-

fore the main group and displaying similar trough as HOS-NWT. The best agreement

in this case is observed for SWASH.

As seen in Table 3.5, most of the differences between the models are at the order of 1

mm. Apart from the fact that this is very close to the accuracy of the WGs in the exper-

iment, it was observed that even the presence of WGs upstream of the PM marginally

influences the wave profile for the steepest group, which can however alter consider-

ably the (%) presented here. For this limiting case of the steepness of the wave group,

and after taking into account the very good agreement between the models, one can

even consider whether for these sub-millimetre differences the models’ results should
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Figure 3.35: Comparison of the timeseries of the measured surface elevation at the PF
location between the experiment and the phase-resolving numerical models (a) and
error plots as difference between experiment and models (b).

be trusted more than the experiment. Moreover, it can be seen that the summation

of the harmonics up to 5th order is not exactly the same as the measured surface ele-

vation, which implies that small amount of energy is also transferred at 6th and higher

harmonics that are filtered out in the present analysis. To the author’s best knowledge

this is the first time that 5th order harmonics are analysed for three different NWTs and

they show such a remarkable agreement.

Overall, the results show that OpenFOAM has the best agreement with the experiment

Table 3.5: Intercomparison of phase-resolving models at the PF location at the crest
and through (2nd diff). The experiment is used as the benchmark and the differences
are expressed as absolute (mm) and percentage (%).

Experiment OpenFOAM SWASH HOS-NWT
Total (measured) 217.5 0.2 0.1% -10.5 -4.8% -12.5 -5.7%
Linear 158.5 -3.3 -2.1% -4.1 -2.6% -5.3 -3.3%
2nd sum 45.4 2.1 4.5% -1.6 -3.4% -0.7 -1.5%
2nd difference -25.9 -3.8 14.8% -0.5 1.8% -2.5 9.7%
3rd order 21.7 1.5 6.7% -1.6 -7.3% -1.8 -8.1%
4th order 8.8 1.8 20.2% 0.2 2.1% 0.1 1.6%
5th order 5.3 1.4 26.1% -0.2 -3.8% -0.3 -4.8%
Sum of harmonics 213.9 -0.4 0.2% -7.7 -3.6% -10.3 -4.8%
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Figure 3.36: Comparison of the timeseries of the extracted surface elevation of each
harmonics at the PF location between the experiment and the phase-resolving numer-
ical models.

with only 0.1% difference at the crest. However, the advantage of this analysis is that

it demonstrates that this may be a consequence of overestimation of all the nonlinear

harmonics, whose effect on the dynamics of the wave group (kinematics) is yet to

be examined. The other two models have considerably smaller differences for the

individual harmonics, but an overall under-prediction of the wave crest.

The next part of the analysis concerns the comparison of the models in the frequency

domain and it serves as a transitional step for the spectral evolution of the wave group,

Figure 3.37: Comparison of the timeseries of the extracted surface elevation of the
4th (a) and 5th (b) order harmonics at the PF location between the experiment and the
phase-resolving numerical models.
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which will be discussed in the next chapter. In Figure 3.38, the spectral decomposition

into individual harmonics is shown for the three numerical models and the experiment

at the AM and PF locations, in the left and right column, respectively. Here, it is not

deemed necessary to include the results of the 4th and 5th order harmonics. At AM,

where the amplitude spectrum is corrected, there are not any noticeable differences

among the models for the linearised spectrum (Figure 3.38a). The agreement for the

2nd sum harmonics (Figure 3.38b) is good between SWASH and HOS-NWT, but Open-

FOAM seems to be closer to the experiment, which does not have a smooth spectrum.

It should be noted here that at AM the spurious free waves cannot be separated from

the signal and they deteriorate the comparisons. The case is similar for the 3rd or-

der harmonics (Figure 3.38c), where SWASH and HOS-NWT are in good agreement

and OpenFOAM is closer to the experiment with energy however spread in higher fre-

quencies, possibly due to the artefacts of the IHFOAM wave generation (see Section

3.3.2). The 2nd difference harmonics (Figure 3.38d) seems to be overestimated sig-

nificantly by OpenFOAM, most likely as an effect of the spurious crest produced by

the boundary. At the PF, the evolution of the extracted linearised spectrum is similar

for all the numerical models, but slightly different from the experimental measurement,

which exhibits the spectral peak at a higher frequency. Nevertheless, the energy trans-

fer at higher frequencies is well reproduced (Figure 3.38e), resulting in a broadening

of the spectrum. The energy content of the nonlinear harmonics at PF is very well

reproduced by all the models, with OpenFOAM showing higher energy content at 3rd

order harmonics. Again, the greatest discrepancies appear for the 2nd difference har-

monics in Figure 3.38h. Overall, it can be concluded that the spectral evolution is well

reproduced from AM to PF along the flume and the models are capable of reproducing

the highly nonlinear wave-wave interactions occurring rapidly towards the focusing of

a steep wave group, as discussed initially by Baldock et al. (1996) and demonstrated

recently in OpenFOAM by Vyzikas et al. (2018b).

As discussed at the beginning of this chapter, the main motivation for studying SWASH

and HOS-NWT was to explore the potential of efficient solvers to be used for the it-
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Figure 3.38: Comparison of the amplitude spectra extracted harmonics at the AM (left
column) and PF (right column) location among the numerical models and the experi-
ment.

erations of the focusing methodology in order to save computational resources from

the expensive CFD model OpenFOAM. So far, it was shown that all the NWTs were

capable of reproducing the nonlinear wave interactions and the spectral transformation

towards focusing. Nevertheless, to answer the previous question, the input signal of

the models, i.e. amplitudes and phases of the wave components, should be compared.

This is shown in Figure 3.39.

As seen in Figure 3.39a, the input amplitude spectra of all the models has higher

energy at its peak compared to the target spectrum. SWASH requires the highest

input amplitude spectrum, while OpenFOAM and HOS-NWT have very similar input

amplitude spectrum. There is also a small discrepancy observed for OpenFOAM at

low frequencies, but the energy of these components is insignificant. The reason for

this discrepancy at low frequencies cannot readily justified, but it can be related to the

spurious long crest shown in 2nd difference harmonics.

The corrected phases of the linearised wave components after the application of the

methodology at PF are presented in Figure 3.39b, demonstrating the significant differ-
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Figure 3.39: Comparison of the corrected linearised input amplitude spectrum (a), the
phases of the wave components at the PF location (b) and the phases of the wave
components at the inlet (c) for the numerical models used.

ence from the linear theory estimation of zero phases (- - -), especially for frequencies

above 0.5 Hz and confirming emphatically that the dispersive properties of the wave

group wave changed due to nonlinearities. Apart from the low frequency part of the

spectrum, the three nonlinear models have similar input, with SWASH deviating the

most, especially at high frequencies. It should be noted that when the nonlinear mod-

els run with this input, the output phases of the components of the linearised part of

the spectrum at the PF are zero. To better observe the impact of the phase differences

on the input signal at the inlet boundary, the phases at the inlet wrapped between

[−π,π] are presented in Figure 3.39c. These phases are calculated using the linear

dispersion relation propagating the signal backwards for the distance between the PF

location and the inlet boundary. The results are also compared with the theoretical

phases of linear theory. Very good agreement is observed for all the models between

frequencies 0.2 Hz to 0.5 Hz. Above 0.5 Hz, SWASH appears to deviate from the other

two models, which results are even closer to linear theory. Above 1.25 Hz (approxi-

mately 2 fp) the differences among the models are significant, however the energy of
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these wave components is practically zero. This may be related to the fact that the

high frequency components of the linearised harmonic may not propagate exactly as

predicted by linear dispersion, as discussed in Section 3.2.2, and thus they are not

corrected effectively by the focusing methodology.

The most interesting outcome of the comparison in Figure 3.39c is that the input signal

of OpenFOAM and HOS-NWT seem to be quite similar, indicating the potential of HOS-

NWT to be used for the iterations of the focusing methodology, saving computational

resources (up to 2000 times). Therefore, the objective of using SWASH discussed in

Section 3.2.3 can be at least partially achieved with HOS-NWT model. However, one

should consider that SWASH has considerably more flexibility for engineering studies

than HOS-NWT, being able to incorporate complex bathymetries and structures.

3.4 HOS-Ocean

Even though HOS-ocean (Ducrozet et al., 2016b) is a phase-resolving model, in the

present section, it is validated qualitatively for the spectral evolution using simulations

of random phases and not a focused wave group. The validation is performed for the

spectral evolution against the published results of Benoit et al. (2015), who employed

a Monte Carlo analysis with another HOS numerical model (COSMHOS code) and

the Phase Averaged Equation (PAE) of Gramstad and Stiassnie (2013). Similar type

of analysis, i.e., verifying PAE against random phase simulations with a fast phase-

resolving numerical model, is common practice (Janssen, 2003).

The parameters of HOS-ocean are similar to that of HOS-NWT, with the latter have

already been used for the initial validation of the HOS method (see Section 3.3.4). The

difference between the two HOS models lies on the boundary conditions, as explained

in Section A.3.3. HOS-ocean has periodic boundary conditions, simulating an infinite

sea, thus the parameter N3 for the wavemaker of HOS-NWT does not exist here. In

HOS-ocean, at the first time step, the simulation is initiated by a linear superposition
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of waves, calculating the free surface elevation η and velocity potential at the free sur-

face φ̃ . The calculated quantities are normalized by the wave length and the period of

the peak frequency of the examined spectrum, Lp and Tp respectively. For the analy-

sis that follows, the HOS nonlinearity order is mHOS = 3, corresponding to Zakharov

equation (Onorato et al., 2007). This selection is consistent with the analysis of Benoit

et al. (2015) and Gramstad and Stiassnie (2013) to allow for direct comparisons. Total

dealiasing was achieved by selecting p1=mHOS= 3. For the unidirectional simulations

here, N2 = p2 = 1. The NWT was designed using icase = 3 for irregular wave simula-

tion according to a predefined spectrum. The parameters N1, p1,mHOS are selected in

the variables_3D.f90 file and for any modification the model has to be recompiled.

The spectrum is defined in the initial_condition.f90 file. A JONSWAP spec-

trum distribution was already included in the source code, but for the studies in the

next chapter, the source code was altered to accommodate the Gaussian spectrum

that was tested for the phase-resolving numerical models.

The convergence for HOS-ocean is performed in terms of N1. Different values were

tested: N1 =32; 64; 128; 256; 512 for the same length of the domain (100Lp long). The

free surface displacement was plotted along the NWT at a certain time instance for

the simulations with different N1 and same initial conditions. It was observed that the

results were identical for values of N1 > 128. As it was observed and confirmed with

personal communication with G. Ducrozet (May, 2016), the accuracy of the NWT de-

pends on the ratio of xlen/N1, where xlen is the length of computational domain in the

x−direction, which practically determines how many points/modes each wavelength

is discretised with. When this ratio increases, the high frequency waves are not well

resolved. To minimise any bias, it was decided to use N1 = 512 for the Monte Carlo

simulations, since even high values of N1 do not induce considerable computational ef-

fort. The same selection was made by Benoit et al. (2015) and Gramstad and Stiassnie

(2013). Directionality is controlled by the β parameter, which has a similar definition to

that used in (Socquet-Juglard et al., 2005). For unidirectional seas β → 0. For the time

integration, a 4th order Runge-Kutta Cash-Karp scheme is used with adaptive time step
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(Cash and Karp, 1990) which is calculated automatically using a low tolerance of 10−7

to achieve good convergence (Ducrozet et al., 2016b). An additional control to avoid

the simulation of unrealistic waves is included in HOS-ocean, referring to the maximum

allowed slope of the free surface, defined as H/Hs. In practice, when this condition is

violated, the simulation is terminated. After tests, the default value of H/Hs > 10 was

finally used here.

For the analysis of the results, post-processing tools were developed performing FFT

in space from the output of 2dpt.dat file, which includes the 2D free surface elevation

for each output time along the flume. The transformation from the κ− spectrum to the

f− spectrum can be done with Equation 4.26. The wavenumber spectrum is smoothed

using the Welch method and after trials it was decided to use it with division of the signal

into 10 non-overlapping segments and thus, no use of Hamming window. To confirm

the good initialization and convergence of the numerical schemes, as well as accurate

post-processing of the results, a target spectrum was reproduced in a linear simulation

(mHOS = 1) and it was confirmed that the spectral shape remains unchanged.

As mentioned, to confirm the applicability HOS-ocean for the spectral evolution, the re-

sults of Benoit et al. (2015) and Gramstad and Stiassnie (2013) were used. The former

refer to 700 random runs of 1000 Tp of propagation and the latter to the PAE after being

validated with 100 random runs using the Zakharov equation in deep water. In the work

of Benoit et al. (2015), for the Monte Carlo simulations, 512 points/modes were used

and a fixed time step of ∆t = Tp/200. Here, the results that follow concern 800 random

simulations for 1000 Tp duration of evolution of the corresponding spectra and an ad-

justable time step calculated by the Runge-Kutta 4th order scheme of 10−7 tolerance. A

larger number of random simulations was performed in order to increase confidence.

N1 = 512 points/modes were used to discretise the domain, which had a length of

64 Lp. A code was written in Shell, combining MATLAB for the post-processing, that

changes the iseed number for the random phase generator in HOS-ocean and recom-

piles the code before every run. The output files of each run are assembled before the
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post-processing.

Regarding the physical parameters, the gravitational acceleration is defined as g =9.81

m/s2 and for deep water waves depth is set at a high value (5000 m). It is noted that the

only available results in the literature consider infinite water depth and they are used

here as a benchmark for validation. The initial conditions are defined by JONSWAP

spectrum according to Equation A.40. The peak period is selected as Tp=2.006 s,

resulting to a wave length of Lp = 2π m in deep water. As such, the length of the

simulated domain corresponds to 402 m (64Lp). For the parameters above kp = 1 m−1.

The steepness of the generated sea is controlled by the significant wave height HS,

which here is Hs =0.3323 m and accordingly, a j in Equation A.40 is calculated to scale

the spectrum, as shown in (Benoit et al., 2015). The output (sampling) frequency is 0.1

Tp, corresponding to 0.05 s.

Based on the parameters described above, three unidirectional JONSWAP spectra

are examined with different peak enhancement factors γ = 1; 3.3; 20, as shown in

Figures 3.40, 3.41 and 3.42 respectively. The spectra are plotted in κ−space to allow

for comparison with the published results for κ ∈ [0,4κp]. The confidence intervals are

also plotted for the present results. As expected, stronger spectral changes occur for

spectra with higher γ, which are farther from the equilibrium state, as discussed by

Gramstad and Stiassnie (2013). In general, very good agreement is observed against

the HOS code of Benoit et al. (2015) and the present results of HOS-ocean. The PAE

is also shown to give very satisfactory prediction of the evolved wave field. It can also

be seen that after the long propagation of the spectra, the equilibrium state approaches

a PM-type distribution.

The results presented here for HOS-ocean demonstrate that the model has good ac-

curacy in order to be used for Monte Carlo-type simulations. The only available results

to compare the model was the three JONSWAP spectra in deep water and not the

Gaussian spectrum in intermediate water depth that was used for the validation of

OpenFOAM, SWASH and HOS-NWT. Having HOS-ocean validated is important, be-
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Figure 3.40: Comparison among PAE, HOS random simulations and Monte Carlo sim-
ulations against HOS-ocean (1000 Tp evolution of 800 runs) for JONSWAP spectrum
γ = 1.

cause the model will be used in the next chapter for the propagation of the examined

Gaussian spectrum and it will serve as a verification case for the phase-averaged Gen-

eral Kinetic Equation (GKE) model, which can provide the evolved free wave spectrum

with a single run.
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Figure 3.41: Comparison among PAE, HOS random simulations and Monte Carlo sim-
ulations against HOS-ocean (1000 Tp evolution of 800 runs) for JONSWAP spectrum
γ = 3.3.

Figure 3.42: Comparison among PAE, HOS random simulations and Monte Carlo sim-
ulations against HOS-ocean (1000 Tp evolution of 800 runs) for JONSWAP spectrum
γ = 20.

155





Chapter 4

Phase-averaged Vs

Phase-resolving spectral evolution

THIS Chapter demonstrates the similarities of the spectral evolution in focused

waves and in a phase-averaged approach. After analysing the spectral evo-

lution of the phase-resolving numerical results, the most appropriate phase-averaged

equation (PAE) is selected, which is able to replicate up to four-wave non-resonant in-

teractions. The mathematical formulation and numerical implementation of the PAE are

presented, as well as its application to focused waves. The latter includes investiga-

tions for the selection of the equivalent sea state characteristics. Various properties of

the PAE are examined and, at the end of the chapter, the spectral evolution of the free-

wave spectrum is computed for the wave groups of different steepness. The computed

spectra are used in the following chapter for estimating the wave profile in a purely

theoretical way.
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4.1 Spectral changes in focused wave groups

4.1.1 Spectral evolution of the harmonics

In the present section, the spectral evolution of the harmonics of the Gaussian focused

wave group examined in the previous Chapter 3 is presented by further analysing the

results of the phase-resolving models. In that chapter, it was demonstrated that the

three phase-resolving models tested in the present work (OpenFOAM, SWASH and

HOS-NWT) have similar performance regarding the propagation of very steep non-

breaking focused wave groups. As observed in Figure 3.38, the spectral analysis

shows that all the models produce nearly identical results, especially regarding the evo-

lution of the extracted linearised harmonic. This is very important because the linear

harmonics determine the magnitude of the nonlinear bound harmonics (see Section

2.2.1). Consequently, any of the validated models can be used further for examining

the spectral evolution.

The results presented in this section are produced using HOS-NWT, because, thanks

to its low computational cost, a longer NWT of 50 m could be simulated. This allows for

a wider window of timeseries of the surface elevation to be unaffected by the reflections

coming from the outlet boundary. Additionally, the low computational cost of HOS-NWT

makes simulation of the full range of the timeseries 0-128 s computationally efficient.

The separation of spectral harmonics presented herein is based on the four-wave de-

composition method, discussed in Section 2.4.5. The results of the linear harmonic

are presented after the exclusion of the 5th order perturbations and also, the 4th order

harmonics are presented separately from the 2nd difference harmonics. This analysis

is consistent with that of Section 3.3.5. It is noted that no smoothing, nor frequency-

shifting was applied to the spectral harmonics. Similarly, the time history of the har-

monics was not time-shifted. However, a detail that should be discussed regarding the

spectral analysis of evolution of the wave group along the NWT is the treatment of the

spurious free waves created due to the imperfections of the wavemaker. These refer to
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the 2nd and higher order waves that, as shown in Section 3.3, separate from the main

wave group only after WG2 (5.17 m) and thus, they are unavoidably included in the

time window of the analysis at locations upstream of WG2. Since they are high order

waves, their inclusion in the time window of the analysis affects only the nonlinear har-

monics. This is manifested as fluctuations on the corresponding energy spectra of the

harmonics. On the other hand, the linear harmonics obtained by the harmonic decom-

position are independent of the length of the time window, provided that no reflections

are included in the timeseries. After the spurious free waves start separating from the

main wave group, they can be excluded from the analysis by selecting a narrow time

window that includes only the main group, which after that stage consists of the free

and bound waves. This can be achieved by visually selecting the appropriate range of

the timeseries and replacing the surface elevation before and after the selected time

window with zero elements, in order to keep always the same frequency resolution

when when performing FFT. Care should be taken not to exclude accidentally part of

the original free waves. It should be noted that using a high order wavemaker can

minimize the spurious free waves, but as shown in Figure 3.34 it does not suppress

completely the spurious waves, which is essential for this type of study. Also, for con-

sistency with the experiment and the other numerical models, it was decided to use the

linear wavemaker in HOS-NWT.

In the next paragraphs, the harmonics’ evolution of the steepest wave group is dis-

cussed, since it exhibits the greatest spectral changes.

The evolution of the extracted linearised harmonic from the AM location at 1.63 m un-

til the 14.10 m (PF) is presented in Figure 4.1, with the red arrow demonstrating its

direction in space. This figure is similar to Figure 7a of Vyzikas et al. (2018b), which

refers to results produced by OpenFOAM. It can be clearly seen that at 1.63 m the

extracted linearised spectrum matches the Gaussian target spectrum, thanks to the

application of the correction methodology. Then, the spectrum gradually evolves to

a more broadbanded spectrum with more energy in higher frequencies and a down-
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Figure 4.1: Spectral evolution of the extracted linearised harmonic at different locations
from 1.63 m (AM), where the target initial Gaussian spectrum is reproduced, to 14.1 m
(PF) in HOS-NWT (d = 1 m).

shifted spectral peak. Qualitatively, this behaviour was also observed in (Baldock et al.,

1996; Shemer and Dorfman, 2008) for long-crested wave groups, as an effect of the

nonlinearity. Here, however, thanks to the accurate separation of the harmonics, the

linear part is clearly separated from the 3rd order harmonics, which allows for more pre-

cise conclusions to be drawn for the involved wave-wave interactions. In fact, in many

previous studies where the two-wave decomposition method was used (Johannessen,

2010; Gibson and Swan, 2007), it was indicated that important limitations arise when

the linear and 3rd order harmonics overlap, which is the case for broadbanded spectra

or when high order interactions become strong, e.g, in shallow water (Katsardi and

Swan, 2011).

The evolution of the nonlinear bound harmonics is shown in Figure 4.2. The results

refer only to the wave group evolution from 6.10 m to 14.10 m, because, as discussed

above, the WGs upstream of 6.10 m include also the high order spurious free waves.

WGs were added in the NWT every 1 m in order to obtain measurements at equidis-

tant locations and illustrate the rate of increase of the nonlinear bound harmonics. As

seen in Figure 4.2a and 4.2c, the 2nd order bound waves have already a considerable

energy content at 6.10 m. Towards focusing, more energy is transferred to these har-

monics at an increasing pace, which is demonstrated by the increasing distance of the

curves near the peak for the 2nd sum harmonics and the spreading of energy to higher

frequencies for the 2nd difference harmonics. Careful examination of these harmonics
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also shows that their increase rate ceases at the last WG, which indicates some sort of

energy saturation for the present case of limiting breaking wave group or a local static

behaviour for the focused event (possible correlation with the "frozen" profile discussed

in Section 2.3.2).

Similar behaviour with more intense characteristics is observed for the 3rd and 4th1

order harmonics in Figures 4.2b and 4.2d, respectively. In contrast to the 2nd order

harmonics, at 6.10 m the energy content of the 3rd and 4th harmonics is negligible

and they only gain considerable energy close to focusing. The latter indicates in a

clear way the local and rapid spectral changes occurring when wave groups focus,

described in past studies (Baldock et al., 1996; Gibson and Swan, 2007; Johannessen

and Swan, 2003). Quantitatively, the energy of the 3rd and 4th almost doubles within the

last 2-3 m of propagation, corresponding only to 0.5− 0.8Lp, with Lp = 3.59 m, which

corresponds to a very short time scale. The present findings also show that steep

focused wave groups may have high frequency harmonics with considerable energy to

potentially excite offshore structures according to the ringing phenomenon (Fitzgerald

et al., 2014).

4.1.2 The effect of the steepness

As mentioned in Section 3.3.1, three wave groups of increasing steepness were tested

experimentally and numerically in the present work. The steepness was increased by

multiplying the amplitude spectrum with the same factor. The linearly predicted am-

plitude at PF is calculated by adding the amplitudes of all the components, thus it is

also called amplitude sum, denoted as Σαi. A similar approach is used in the studies

of Katsardi and Swan (2011) to estimate the evolution of the energy of wave groups

and of Gibson and Swan (2007) and Adcock et al. (2015) to examine the effect of the

steepness. The characteristics of the wave groups are listed in Table 4.1. To facili-

1The reason of the less smooth spectrum of the 4th order harmonics is not clear, but it is assumed to
be due to the less effective resolution of such high frequency waves in the NWT. The same behaviour was
observed in OpenFOAM’s results.
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Figure 4.2: The evolution of nonlinear bound waves from in HOS-NWT from 6.10 m to
14.1 m (PF) every 1 m: (a) 2nd order sum; (b) 3rd order; (c) 2nd difference; (d) 4th order.

Table 4.1: Characteristics of wave groups of different steepness.

Quasi-lineara Weakly nonlinear Strongly nonlinear
Σαi (m) 0.050 0.100 0.154
Factorb 1.00 2.00 3.08
Norm. factor 3.08 1.54 1.00

aThe nonlinearity of the group is for naming only, not corresponding to turbulence characterization.
bMultiplication factor to increase steepness based on quasi-linear group.

tate comparisons, in the results that follow, the spectra and the harmonics have been

normalized based on the strongly nonlinear wave group, which means that the results

of the quasi-linear and weakly nonlinear groups have been multiplied by the normal-

ization factor in Table 4.1, calculated as Σα
strongly nonlinear
i /Σα

wave group
i . The results of

the wave groups of different steepness are only compared at the PF location in this

section. Similar normalization is performed in the work of Adcock et al. (2015).

The spectral analysis of the extracted linearised harmonics at PF is presented in Figure

4.3. It can be clearly seen that the spectrum of the linear harmonics of quasi-linear

group does not change almost at all, retaining the original shape of the target spectrum

at AM. Very small change is observed for the weakly nonlinear group, which shows an
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Figure 4.3: Extracted amplitude spectra of linear harmonics at 14.1 m (PF) for groups
of different steepness.

incremental downshift and energy transfer to higher frequencies. As discussed for

Figure 4.1 as well, the strongly nonlinear group exhibits a considerable downshift of

the spectral peak and energy transfer to higher harmonics, losing its original Gaussian

shape. The previous observations confirm quantitatively that the evolution of the free-

wave spectrum is greater for steeper wave groups.

Similar analysis is performed for the nonlinear harmonics in Figure 4.4. Here however,

it can be seen that the increase of the energy of the nonlinear harmonics is not equal

to the increase of the amplitude sum, which was the case for the spectrum of the linear

harmonics in Figure 4.3. Should that be the case, the spectra of the wave groups of

different steepness would collapse to a single line or at least, they would have the same

magnitude. The increase of the energy of the nonlinear harmonics is disproportionally

large compared to the increase of Σαi and it is augmented with increasing order of the

nonlinear harmonics. As a consequence, the energy of the 3rd and 4th harmonics is

negligible for the quasi-linear wave group, but considerable for the strongly nonlinear

group.

For the better quantification and illustration of the previously presented spectral anal-

ysis, the time history of the harmonics is presented in Figures 4.5 and 4.6 for the

extracted linear and nonlinear harmonics, respectively. It can be seen that the time-

sereies of the linear harmonics have practically identical crest. Only the harmonic of

the strongly nonlinear group deviates at the adjacent troughs, which are shallower, and
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Figure 4.4: Extracted amplitude spectra of nonlinear harmonics at 14.1 m (PF) for
groups of different steepness: (a) 2nd order sum; (b) 3rd order; (c) 2nd difference; (d) 4th

order harmonics.

the lateral crests, which are shorter and wider. Similar results for OpenFOAM are pre-

sented in Figure 7b in (Vyzikas et al., 2018b). The shallowing of the troughs of steep

groups has been reported in the past from experimental (Baldock et al., 1996) and

numerical studies (Shemer et al., 2007). However, this was attributed mainly to the

effect of the bound waves after being added to the free waves. Here, it is demonstrated

that the spectral changes occurred at the strongly nonlinear group have an immediate

effect on the timeseries of the free waves. These changes for the present case can

only be attributed to the changes of the amplitudes of the wave components, since the

phases were effectively corrected. In previous studies, the effects of amplitude and

phase dispersion could not be accurately separated, due to the lack of an appropriate

correction methodology, e.g., see (Katsardi and Swan, 2011; Gibson and Swan, 2007;

Johannessen and Swan, 2003).

The timeseries of the extracted nonlinear harmonics (Figure 4.6) follow the observa-

tions made for Figure 4.4. Again, it is noted that if nonlinearity was increased propor-

tionally to the increase of Σαi, the timeseries would collapse into one, as shown for the
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Figure 4.5: Timeseries of extracted linear harmonics at 14.1 m (PF) for groups of
different steepness.

linear harmonic in Figure 4.5. The 2nd order sum and difference harmonics seem to

have already non-negligible contribution in the quasi-linear group and they have impor-

tant contribution to the strongly nonlinear group. 3rd order harmonics are negligible for

the quasi-linear group, they have a small contribution for the weakly nonlinear group

and certainly a contribution that cannot be ignored for the strongly nonlinear group.

The 4th order harmonics are practically zero for both quasi-linear and weakly nonlin-

ear groups, but they seem not to be negligible for the strongly nonlinear group, being

approximately 5.5% of the crest of the linear harmonic. It is reminded that the con-

tribution of the high frequency nonlinear harmonics is expected to be even greater in

OpenFOAM, as shown in Figure 3.36. These findings indicate that for nearly break-

ing unidirectional wave groups, the high order harmonics have an important role in

determining the crest height and shaping the profile of the wave, as also noted by

Johannessen and Swan (2003) for a JONSWAP-spectrum wave group.

The previous results are summarized in Figure 4.7, where the relative increase of the

crest height of each harmonic, based on its value for the quasi-linear group, is pre-

sented. The markers "×" represent the linear theory increase of Σαi, indicated in Table

4.1 as "Factor". It is observed that the linear harmonic follows almost exactly the linear

theory expectation. The crest of 2nd sum and the trough of the 2nd difference harmonics

is approximately 4.5 times larger in the weakly nonlinear group and 13 times higher in

the strongly nonlinear group. The weakly nonlinear group has 10 times higher 3rd order

harmonics and 60 times higher 4th order harmonics than the quasi-linear group. What
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Figure 4.6: Timeseries of extracted nonlinear harmonics at 14.1 m (PF) for groups of
different steepness: (a) 2nd order sum; (b) 3rd order; (c) 2nd difference; (d) 4th order.

is striking is the increase of the 3rd and 4th order harmonics for the strongly nonlinear

group, where they seem to be approximately 73 and 850 times higher than their values

for the quasi-linear group.

To summarise, the results of the phase-resolving models presented in this section show

clearly that there are considerable spectral changes when the waves groups approach

focusing, which increase with the steepness of the group. There is significant augmen-

tation of bound nonlinear harmonics. Also, it was shown that the spectral evolution

of the extracted linear harmonic is considerable, especially for the strongly nonlinear

wave group. The latter is an effect of the nonlinearities that change the dispersive

properties of the wave group and they cannot be predicted by linear theory. Assuming

that the extracted linearised harmonic refers to the free waves, the nonlinear phase-

resolving models used in the present study are shown to be capable of describing the

spectral change of the free waves implicitly through the governing equations of the

fluid flow. Another potential way to describe this spectral change is explicitly through

the four-wave interaction theory, which is discussed in the next section.
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Figure 4.7: Relative increase of the crest or through of each harmonic at 14.1 m (PF)
based on the corresponding recording of the quasi-linear wave group (Σαi = 0.050 m)
and comparison with linearly predicted increase. y−axis in log scale. Time window:
[-4,4].

4.2 Stochastic approach of wave-wave interactions

4.2.1 Statistical description of an evolving wave field

For several applications, the exact characteristics of the individual waves are not rele-

vant and instead the statistical characteristics of a sea state are more appropriate. This

is because an ocean wave field is considered as a a superposition of infinite number of

waves with different amplitudes and frequencies, travelling to different directions. This

results in a system with infinite degrees of freedom that exhibits chaotic behaviour and

can be better described by its statistical properties (Tanaka, 2007). Since gravity wa-

ter waves interact with each other, changing their dispersive properties and producing

new waves, the effects of nonlinearity further complicate the description of an evolving

wave field. This problem is solved in the framework of wave turbulence, which is a

robust mathematical theory to describe the evolution of nonlinear random wave fields

and has applications to other fields of physics (Gramstad and Babanin, 2016). This

theory refers to the chaotic behaviour developed in an initially Gaussian field, which
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evolves according to the ZE, and is gradually weakly modulated leading to a turbulent

signal (Fedele, 2008). To derive the equations for water waves, the assumption of weak

turbulence is used and no breaking waves are considered.

The basic mathematical formulation is Hasselmann’s kinetic equation (KE) (Hassel-

mann, 1962), which provides a statistical (phase-averaged) description of a wave field.

The KE is widely used to present, especially in spectral models (Gramstad and Ba-

banin, 2014). To verify its applicability, the results of the phase-averaged evolution of

wave fields are commonly compared against a large number of realizations of phase-

resolving models in Monte Carlo-type analyses that provide a more realistic represen-

tation of a wave field. For this scope, computationally efficient numerical models are

used that can account for both resonant and bound high order wave-wave interactions.

These models are based on the integro-differential form of the Zakharov equation (ZE)

(Zakharov, 1968) using HOS methods, as in the present study, on the BST model

(Bateman et al., 2001) and on the NLSE. Some of the main studies used HOS-type

models to verify versions of the KE (Tanaka, 2001; Gramstad and Stiassnie, 2013;

Benoit et al., 2015; Shemer et al., 2001; Tanaka, 2007; Janssen, 2005), and others

to simulate focused waves (Gibson and Swan, 2007; Taklo et al., 2015; Adcock and

Taylor, 2016a; Gibbs and Taylor, 2005; Katsardi and Swan, 2011). Studies with the

NLSE (Dysthe et al., 2003; Socquet-Juglard et al., 2005; Trulsen et al., 2000) are also

attractive thanks to their computational efficiency, but due to their inherent limitations

regarding the spectral width (see Section 2.1), the NLSE is mainly used for narrow-

banded wave groups, although the modified versions of these equations show better

performance for broadbanded steep waves (Adcock and Taylor, 2016b).

As discussed, the nonlinearity of a wave field is associated with resonant and bound

nonlinearities, which result in deviations from linear theory. The resonant nonlinearities

can change the amplitudes and phases of the free wave spectrum, while the bound

nonlinearities are "static" and refer to high order phase-locked harmonics (Taklo et al.,

2015). The aforementioned phase-resolving equations constitute a good framework
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to describe both types of nonlinearities. However, when referring to phase-averaged

models, the essence of phasing and thus, phase-locked nonlinearities is lost (Tanaka,

2001). Therefore, for the KE is sufficient to describe the resonant wave-wave interac-

tions, which can be achieved using a canonical transformation (Krasitskii, 1994). The

problem then reduces to the assumptions in the derivation of the KE, the order of non-

linearity and the selection of the interacting wave components.

4.2.2 Selecting a phase-averaged model

As explained in Section A.4.4, the 3G spectral models use approximations of the stan-

dard KE with the main efforts being to reduce the computational cost for operational

purposes. This is because, despite the concerns about the limits of the KE, e.g., rapid

wind changes, it constitutes the most mathematically accurately described source term

in ocean models (Cavaleri et al., 2007). Nevertheless, improved versions of the KE

have been suggested (Annenkov and Shrira, 2006) to overcome these limitations. In

this Section, the focus is more on the underlying assumptions in the KE, which deter-

mine its applicability and not on the reduction of the interacting quadruplets in order to

increase the computational efficiency, which is the main concern for operational mod-

els.

The KE as suggested by Hasselmann (1962) assumes (as noted by Gramstad and

Babanin (2016); Benoit et al. (2015) and Tanaka (2001)):

i) Spatial homogeneity of the wave field in scales shorter than O(ε4), where ε is the

wave steepness.

ii) Constant water depth, unless examined on different grid points of a numerical

model.

iii) A nearly Gaussian wave field, which implies weak nonlinearity and that the wave

spectrum evolves on slow time scales O(ε4), aka the Hasselmann time scale and

not in the fast scale, of BF nonlinearities.
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iv) The wave field is random in the far past, meaning that the phases of the waves

were uncorrelated long time ago, to enable time scale separation.

v) Broadbanded spectra with all the wave components having energy of the same

order of magnitude, which is not the case for typical wind fields at their spectral tail.

A direct consequence of these assumptions is that the spectral evolution can be pre-

dicted by the KE only for long time scales of > 1000Tp and that near-resonant (or non-

resonant) are ignored, restricting the evolution due to exact resonant interactions. Nev-

ertheless, the KE was shown to perform well for conditions that were violating these

assumptions, giving good prediction of the wave field in short time scales O(ε2), see

e.g., (Tanaka, 2001; Annenkov and Shrira, 2006) for the case of a rapid wind change.

For the scope of the present work of trying to replicate with a phase-averaged manner

the spectral evolution observed in focused wave groups, the KE has two2 unsurpassed

shortcomings: a) It is not applicable (at least) in very short time scales of ≈ 5− 10Tp,

which is typically the time horizon of the propagation of focused wave groups in ex-

periments and numerical models. b) It cannot predict four-wave interactions in 1D,

because exact resonant interactions are not possible in one direction3. However, this

is a non-physical result, since many studies, including the present, demonstrate that

there is spectral evolution in 1D.

Therefore, a different -less strict in its assumptions- model for the KE should be consid-

ered for the present study. The PAE of Gramstad and Stiassnie (2013), which is based

on the derivation of Annenkov and Shrira (2006), is a good candidate for this scope.

At present, the most advanced version of the PAE is the one suggested by Gramstad

and Stiassnie (2013), which includes the effects of Stokes drift and has been tested in

WW3 (Gramstad and Babanin, 2016). As described later in detail in Section 4.3, the

PAE considers near-resonant interactions by relaxing the resonance conditions and is

2Additional restrictions may be the steepness of the wave group to cases where the bound nonlineari-
ties are not significant and the correlation of the phases between the wave components.

3This was confirmed by trying DIA and WRT in a quasi-1D configuration in WW3, as described in
Section A.4.4.
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applicable for shorter time scales of O(ε2) for fast spectral evolution. As a result, the

PAE can in principle have better performance than the KE in cases of rapid changes

in the forcings of the wave field, such as changing wind conditions, and of unidirec-

tional wave fields. Examples can be found in the literature in the works of Annenkov

and Shrira (2015); Benoit et al. (2015); Gramstad and Stiassnie (2013); Gramstad and

Babanin (2016) that demonstrate the better performance of the PAE compared to the

KE or to operational algorithms based on the KE, such as DIA and WRT.

The literature also includes other versions of the KE that attempt to overcome the

limitations especially regarding the consideration of the exact resonant interactions.

Janssen (2003) suggested a version of the KE that includes non-resonant wave inter-

actions, but it is still derived for slow time evolution of the spectrum. Tanaka (2007)

shows that despite the slow time evolution assumption of the original KE and the ar-

guments of Janssen (2003), the KE equation is capable, at least to some extent, to

predict evolution of the spectrum in short time scale. Nonetheless, by not including

non-resonant interactions, the applicability of the KE remains strictly in 2D evolution.

Taking into account the aforementioned considerations, in the present study it was

decided to use the PAE of Gramstad and Stiassnie (2013), because it provides the

framework to study spectral evolution in 1D and for short time scales. Additionally, it

can be time marched with a straight-forward algorithm and it is expected to constitute

an operational source term in future versions of spectral models (Gramstad and Ba-

banin, 2016). However, there are other limitations2 regarding the application of the

PAE in focused wave groups, which make the present study particularly challenging.

The literature with applications of the PAE is very limited and mainly produced by the

authors that they developed it. As such, the present work endeavours to explore the

limits of the PAE not only in the case of focused waves, but in finite water depth and

very short time evolution of steep sea states.
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4.2.3 The expected impact of resonant interactions

As mentioned, the literature regarding the PAE is very limited, but some general charac-

teristics of the spectral evolution predicted by the PAE have been discussed in previous

studies. On the other hand, the spectral evolution of unidirectional (1D) and direction-

ally spread (2D) focused waves is better explored in the literature and there is more

consensus about the behaviour of such wave groups. The issue in this case is more

on the side of the techniques used to analyse the results and isolate the underlying

physical processes. The main aspects of the spectral evolution in phase-averaged

models and in focused wave groups are briefly discussed in the present section.

Focused wave groups

For focused wave groups, the result of nonlinear physics in 1D and 2D have consid-

erable effects in the spectral evolution of the wave groups (Gibbs and Taylor, 2005).

In ocean, a more realistic application of wave groups includes of course directional

effects, but it was shown that extreme waves may be more likely to appear in swell-

dominated seas (Gibson and Swan, 2007), and thus, the present 1D study is highly

relevant to engineering applications. Arguably, wave groups of same steepness seem

to undergo more significant spectral changes in 2D than in 1D. As a wave group fo-

cuses in 2D, there is a significant contraction of the along the mean direction and a

long-crested behaviour in the transverse direction (Gibbs and Taylor, 2005; Adcock

and Taylor, 2016b). Also a downshift of the peak frequency is observed together with

energy transfer to high wavenumbers. The result is a focused wave group that can be

usually well approximated by linear and second order theory for bound waves (Johan-

nessen and Swan, 2003). On the other hand, unidirectional waves seem to undergo

more modest changes of the underlying free-wave spectrum, but strong nonlinearity re-

garding the bound waves arises, resulting in steeper and taller waves at focus (Adcock

and Taylor, 2016b). The free-wave spectrum becomes broader in 1D and there is a

downshift of the peak frequency together with energy transfer to high frequencies (Bal-
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dock et al., 1996; Johannessen and Swan, 2003). In both cases, the spectral changes

take place relatively fast, which can be attributed to the local high energy concentration

(Gibbs and Taylor, 2005). Despite the weaker spectral change of free waves in 1D, it

was shown that the prediction of the NewWave model can be improved by considering

the evolved and not the original free-wave spectrum (Johannessen and Swan, 2003;

Vyzikas et al., 2018b). This is also supported by Gibson and Swan (2007), who argued

that in 1D bound nonlinearities are not enough to predict accurately the focused wave

group using a stationary spectrum.

The main issue with focused waves, experimentally or numerically, is the correct sepa-

ration of the physical processes, since the result -although accurate and deterministic-

includes both free and bound waves. Most of the studies to present used the two-

wave decomposition method with frequency filtering to separate linear from third order

harmonics, e.g., (Katsardi and Swan, 2011; Gibson and Swan, 2007; Johannessen,

2010; Gibbs and Taylor, 2005). This may include important discrepancies and it is re-

stricted to applications with narrowbanded spectra, where the overlapping of linear and

third order harmonics is minimum. However, decreasing the bandwidth can introduce

BF-type nonlinearities that result in different spectral evolutions (Adcock and Taylor,

2016b). Moreover, in most of these studies, the limiting breaking case wave groups

were used, but accurate focusing was not achieved due to the lack of an appropriate

focusing methodology. The present study uses a four-wave decomposition and an ef-

fective method to focus the wave group making it superior overall compared to previous

investigations. Still, it remains a potential issue to associate the extracted harmonics

with the free and bound waves, as discussed in Section 4.7.3.

Attention should be also given to the effect of the water depth in the dispersion of the

wave group. According to Katsardi and Swan (2011), for intermediate and shallow wa-

ter depths, the dispersion is weakened and dispersive focusing ceases over more BF-

type instabilities4. Recent studies have disproved this (Whittaker et al., 2016; Vyzikas

4To the author’s view, the reason for the behaviour of the focused wave as a quasi-regular group with
a high crest may be related to the initialization of the simulation very long time before the focusing event.
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et al., 2018b), demonstrating that NewWave holds for finite water depth. This is of par-

ticular importance, because the spectral evolution is examined here in the context of

finite water depth.

The spectral changes observed in 1D and 2D focused wave groups have been at-

tributed to (only) non-resonant and resonant third-order (four-wave) interactions, re-

spectively. This is discussed in the works of Gibbs and Taylor (2005) for 2D wave

groups, Gibson and Swan (2007) for a spectrum with a small directional spreading,

Janssen (2003) for 1D narrowbanded group attributing the changes to BF instabili-

ties, Johannessen and Swan (2003) for 1D and 2D wave groups in deep water and

Katsardi and Swan (2011) for 1D intermediate and shallow water. The most effective

way to prove that four-wave interactions are the only possible mechanism that changes

the free-wave spectrum is by isolating the physical processes in ZE-based models, as

done by Gibson and Swan (2007) and Katsardi and Swan (2011)5. Assuming that only

four-wave interactions change the free waves’ dispersive properties, a phase-averaged

model that accounts for the tri-spectrum (Cavaleri et al., 2007) should be adequate to

predict the spectral change.

Random seas

The spectral change predicted by phase-averaged models refers to the case of wave

fields with random phases and it is usually expressed in terms of integrated spectral

parameters, such as skewness and kurtosis, which also give indications of probabilities

of extremes (Gramstad and Trulsen, 2007). As discussed, the only model that can ac-

count for spectral evolution in 1D is the PAE with non-resonant wave-wave interactions.

The first work that included non-resonant interactions is that of Janssen (2003), who

observed in 1D a downshifting of the spectral peak accompanied with steepening of the

This creates a very dispersed wave field which evolution over long time may include different dynamics
than that of a focused wave group with a time evolution of a few Tps. Evidence for this can be found also
in Figure 1b of Adcock and Taylor (2016a) which refers to deep water waves.

5This method needs attention before drawing robust conclusions, because it is based on the assump-
tion that the free waves in the transformed and real world are the same. Recent findings (Aubourg et al.,
2017), discussed at the end of the chapter, suggest other possible mechanisms as well.
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low frequency part and broadening by energy transfer to higher wavenumbers. It was

also highlighted that the spectrum undergoes a transitioning period of a few ≈ 5Tps,

which is also confirmed by the direct computations of Tanaka (2001)6. The most re-

cent studies in 1D were conducted with the PAE of Gramstad and Stiassnie (2013) and

repeated by Benoit et al. (2015). JONSWAP spectra of different bandwidths were ex-

amined and it was shown that the narrowbanded spectra change significantly with the

spectral peak being decreased and downshifted and the spectrum becoming broader

with energy transfers to higher and lower wavenumbers. The spectrum is seen to un-

dergo significant changes within the first few 10Tps, but after 200−300Tp it stabilises to

a new form. This new state that the spectrum reaches is more stable.

It is argued that the role of four-wave interactions is to bring a spectrum which is far from

equilibrium due to external forcing, such as wind, or due to an unstable initial shape, to

a steadier state (Gramstad and Stiassnie, 2013; Gramstad and Babanin, 2016). There-

fore, the impact of four-wave interactions becomes more apparent in cases where the

spectrum is far from its equilibrium state7, e.g., very narrowbanded spectrum (Tanaka,

2001). Theoretically, if the sea state chosen is close to the nonlinear equilibrium case,

the action of four-wave interactions would be negligible (Janssen, 2003). This equilib-

rium condition is also referred to as "self-similarity" (Gagnaire-Renou et al., 2010) and

it is also observed for 2D seas. It also seems to be an underlying physical process for

the spectra of focused waves that are far from equilibrium, for which similar spectral

changes to random wave fields were identified (Gibson and Swan, 2007).

In 2D, the spectral evolution includes directional spreading parameters and it can be

more easily observed by integrating the energy of the wavenumbers over the direc-

tions. Having the possibility to expand to different directions, energy is transferred to

directions far from the mean direction, which is somewhat opposite to what has been

discussed for focused wave groups. The integrated energy spectra show similar qual-
6This transition period in the case of (Janssen, 2003) may be due to BF instabilities because the spec-

trum is sufficiently narrow in order to trigger them. Nevertheless, if a transition period to full nonlinearity
exists, it may be an issue in the present study that focuses on the first few Tps of evolution.

7This is well demonstrated by Gagnaire-Renou et al. (2010) where the initial unrealistic top-hat spec-
trum obtains a JONSWAP-type form after the action of four-wave interactions.
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itative characteristics like in 1D, such as peak downshifting, energy transfer to high

wavenumbers, steepening of the low-frequency and broadening (Dysthe et al., 2003).

Simulations in 2D allow for comparisons between the PAE and other operational source

terms, such as DIA and WRT. As a rule, PAE is closer to the more accurate WRT than

to DIA that often overpredicts the directional spreading. The inclusion of non-resonant

interactions in 2D seems not to have considerable impact, unless there is a strong

change to the external forcing, such as the wind (Gramstad and Babanin, 2016). Such

example is the case of a squall, for which it was shown that the non-resonant inter-

actions cause a period of stronger transitions and narrower spectrum (Annenkov and

Shrira, 2015)8.

Direct or phase-averaged simulations predict considerable energy transfer to high wave-

numbers. In real ocean, this energy would be dissipated due to effects of wave break-

ing, which is not modelled by the KE or potential flow models (Gramstad and Stiassnie,

2013). Thus, in some cases the KE may yield unrealistic spectral tails. Another as-

pect that is not often discussed is the effect of water depth. Although, in principle the

KE can be derived for finite depth, it is mentioned by Tanaka (2007) that in shallower

water, other effects, such as triads may arise, which can challenge the applicability of

weak turbulence theory. In this sense, the present study contributes to expanding the

bibliography by examining the spectral changes in finite water depth.

In the context of discussing the inclusion of non-resonant interactions in the KE, these

also include the BF instabilities that where shown to arise under the condition of kpd >

1.36 (Janssen and Onorato, 2007), where kp is the wavenumber of the component of

the fp and d is the depth. The time scale of these interactions is very short, namely

O(ε1) (Dysthe et al., 2003). However, for the present Gaussian spectrum which is

broadbanded and kpd = 1.75, no signs of side-band instabilities are observed indicating

BF effects. It is interesting to note that there have been also efforts to build a global

forecasting system for extreme waves by calculating the BF index (Janssen, 2005)

8In that study only the interactions that are not too far from resonance, i.e., ∆ω/ωmin ≤ 0.25, while in
the present study all the interactions are considered.
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from spectral models, but recent field studies do not support the argument that the

mechanism for extreme wave generation is BF instabilities (Christou and Ewans, 2014;

Fedele et al., 2016).

4.3 The mathematical formulation of the GKE

4.3.1 The derivation of the GKE

The derivation of the GKE follows the formulation of Gramstad and Stiassnie (2013),

which is similar to that of Janssen and Onorato (2007). In the work of Gramstad and

Stiassnie (2013), the GKE is mentioned as PAE, and the term GKE was first used in

(Gramstad and Babanin, 2016). In the present study it was decided to use the term

GKE in order to make distinction with the PAE of Benoit et al. (2015). In this section, the

mathematical derivation of the GKE is presented, with the focus being on the numerical

implementation of the GKE to a form that it can be time marched, as presented in

Section 4.3.2. The simplifications and assumptions adopted in the derivation of the

GKE are highlighted.

The derivation of the GKE begins from the Hamiltonian form of the ZE for the four-wave

interaction of purely gravity waves, referring to Equation 2.23 in (Krasitskii, 1994). After

the canonical transformation, discussed in Section 5.5.1, the generalized complex am-

plitude spectrum b(k, t) of the free waves in the transformed space is given in Equation

4.1 for four interacting wave components vectors k1,k2,k3,k4.

i
∂b(k1)

∂ t
= ω(k1)b(k1) +

∫
T (k1,k2,k3,k4)b∗(k2)b(k3)b(k4)×

δ (k1 +k2−k3−k4) dk2 dk3 dk4

(4.1)

where t is time, T (k1,k2,k3,k4) is the coupling coefficient for the KE (see Equation

A.53), which corresponds to the coefficient Ṽ (2)
0,1,2,3 in (Krasitskii, 1994) or to T1,2,3,4 in
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(Janssen and Onorato, 2007). In the present study, it was decided to use the for-

mulation of Janssen and Onorato (2007), which, thanks to its more compact formula-

tion, is simpler to program. The calculation of the coupling coefficients is presented

in the Appendix B. ω(ki) is the angular frequency of a wave component given from

the linear dispersion relation as ω(ki) =
√

g|ki| tanh(|ki|d), with g being the acceleration

due to gravity and d the water depth. The asterisk denotes the complex conjugation.

Both ω(ki) and T1,2,3,4 are calculated for finite water depth in the present study. Com-

monly, the deep water condition is used, because four-wave interactions are relevant to

deeper water, since in very shallow water, the spectral evolution is dominated by triads

(Holthuijsen, 2007).

The first step to solve the previous equation numerically is to assume a discrete spec-

trum (Equation 4.2) and replace Equation 4.1 by its discrete equivalent, which results

in Equation 4.3.

b(k, t) = ∑
n

bn(t)δ (k−kn) (4.2)

After that, the ZE can be replaced by the following expression:

db1

dt
=−iω1b1− i ∑

2,3,4
T1234 b∗2 b3 b4 δ

34
12 (4.3)

where a compact notation for the variables is adopted: T1234 = T (k1,k2,k3,k4) and

ω1 = ω(k1) (see also Appendix B). δ 34
12 is the Kronecker delta, which determines the

interacting components:

δ
34
12 =


1 when k1 +k2 = k3 +k4

0 otherwise
(4.4)

Until this point, the phase information of the wave components is still retained, through

the ZE. However, since the scope is to derive a phase-averaged equation, a stochastic
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approach for bi is considered, which is denoted as 〈·〉, expressing the statistical aver-

age. To obtain the expression of the wave action C1 = 〈|b1|2〉, which is the property that

will be time marched, Equation 4.3 is multiplied by b∗1 and then the complex conjugate

is added and the result is averaged. This process returns Equation 4.5. It should be

noted that k1 refers to each discrete wavenumber of the spectrum that interacts with

any possible combination of all the other wavenumbers k2,k3,k4.

dC1

dt
=−i ∑

2,3,4
T1234 (〈b∗1b∗2b3b4〉−〈b∗4b∗3b2b1〉) δ

34
12 = 2Im ∑

2,3,4
T1234 〈b∗1b∗2b3b4〉 δ

34
12 (4.5)

The next step for forming the time evolution of GKE includes the derivation with respect

to time of the product b∗1b∗2b3b4, which is substituted in Equation 4.3. This returns an

equation d
dt 〈b

∗
1b∗2b3b4〉 = i ∆34

12〈b∗1b∗2b3b4〉 + high order cumulants, as shown in Equation

2.6 of Gramstad and Stiassnie (2013). ∆34
12 is given by the angular frequencies of the

interacting wave components as:

∆
34
12 = ω1 +ω2−ω3−ω4 (4.6)

It can be seen already from Equation 4.6 that the non-resonant components are al-

lowed to interact through the expression of ∆34
12, which is not forced to zero. This

practically means that a less strict condition is adopted compared to the KE, where

interactions are permitted only for the components that ω1 +ω2−ω3−ω4 = 0.

The expression of the statistical average of the low order cumulants includes contribu-

tions from high order cumulants (see Equation 2.8 in (Gramstad and Stiassnie, 2013)).

This expression is derived under the assumption of statistical homogeneity and weak

non-Gaussianity. The previous assumption also implies that the fourth and sixth order

cumulants are smaller than the corresponding terms of Ci, as expressed in Equation

4.7. The variable k1234 was introduced after some substitutions and algebra and it is

related to Ci, T1234 and bi (see Equation 2.11 in (Gramstad and Stiassnie, 2013)).
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C1 = O(ε2), k1234 = O(ε4), k123456 = O(ε6) (4.7)

where ε � 1 the wave steepness.

The consequence of the connection between the low and high order cumulants is that

the system of equations keeps expanding to higher orders and appropriate assump-

tions should be considered to close the set of equations to the desired order. Since

the scope of the present work is to include third order nonlinearities, referring to the

four-wave interactions, the Hamiltonian of order 4 is considered. For this, the sixth

order terms O(ε6) can be considered zero, while the fourth order terms O(ε4) should

be included. It can be shown that if one further sets O(ε4) terms to zero, the wave

action remains constant
(

dCi
dt = 0

)
and the only thing that changes in the wave field is

the phases of the components.

The previous consideration for the cumulants is mathematically consistent only if the

sixth order cumulants are smaller than the products of Ci and the fourth order cumu-

lants (Gramstad and Stiassnie, 2013). The derivation of GKE can account for up to

five-wave interactions by including the corresponding coefficients presented in (Kra-

sitskii, 1994). The inclusion of quintet interactions increases the computational cost

significantly and for the present study only the quadruplet interactions are considered,

as done also in (Gramstad and Stiassnie, 2013). Nevertheless, under certain condi-

tions five-wave interactions may be important. However, taking into account that the

literature is very recent and limited on the topic and the properties of this version of

GKE are far from being explored sufficiently (Benoit et al., 2015; Gramstad and Ba-

banin, 2016), considering five-wave interactions in the GKE is a very "risky" path to

take at this stage.

In order to handle the stochastic approach 〈·〉 in Equation 4.5, some new variables are

introduced (e.g., k1234), which are not discussed here for the sake of brevity. The reader

is referred to (Gramstad and Stiassnie, 2013) for further details. Under the assumption
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of a Gaussian initial condition, which means that the phases of the wave components

were not correlated at t = 0, the GKE can be obtained in the form of Equation 4.8. In the

expression suggested by Gramstad and Stiassnie (2013), the high order contributions

of the orbits of the fluid particles, i.e., Stokes drift, were also included. However, for

simplicity and since Gramstad and Stiassnie (2013) noted that the inclusion of Stokes

drift did not make a noticeable difference in the results especially in 1D, it was decided

not to include it in the present study; thus, β1234 = 0. The GKE of Equation 4.8 can

be considered as an expansion of the KE of Hasselmann (1962), which can describe

fast evolution at O(ε2) time scale and wave interactions at 1D. Since, the Stokes drift is

ignored in the present work, the GKE is practically equivalent to the PAE suggested by

Annenkov and Shrira (2006).

dC1

dt
= 4Re ∑

2,3,4
T 2

1234δ
34
12 eiθ1234(t)

∫ t

0
f1234(τ)e−iθ1234(τ) dτ (4.8)

where f1234 =C3C4(C1 +C2)−C1C2(C3 +C4) and θ1234(t) = ∆34
12t

It can be demonstrated that the latter form of the GKE is conservative for the statisti-

cally averaged expressions of the invariants of the ZE (Gramstad and Stiassnie, 2013),

namely:

Total wave action: Ñ = ∑
n

Cn;

Total momentum: P̃ = ∑
n

knCn;

Total energy (Hamiltonian): H̃ =∑
n

ΩnCn − ∑
1,2,3,4

T 2
1234δ 34

12 Im
(
eiθ1234(t)

∫ t
0 f1234(τ)e−iθ1234(τ) dτ

)

4.3.2 The time evolution of the GKE

In this section, the numerical scheme for the time marching of the GKE is presented.

Some additional calculations for the derivatives, which were not presented in the origi-

nal publications (Gramstad and Stiassnie, 2013), are included here for clarity.

The GKE as expressed by Equation 4.8 can be marched in time using a Taylor expan-

sion at time t. Such schemes are commonly employed for wave propagation problems.
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Apart from its straight forward implementation, this numerical scheme is by definition

conservative for the total wave action and momentum (Gramstad and Stiassnie, 2013).

The Taylor expansion to third order, with a local truncation error of O(∆t4), is shown in

Equation 4.9.

C1(t +∆t) =C1(t)+∆tC′1(t)+
∆t2

2
C′′1 (t)+

∆t3

6
C′′′1 (t)+O(∆t4) (4.9)

What is left then is to calculate the derivatives of C1(t). The first C′1(t) derivative can be

calculated from Equation 4.8 and it is given in (Gramstad and Stiassnie, 2013) as:

C′1(t) = 4Re ∑
2,3,4

T 2
1234δ

34
12 eiθ1234(t)I(t) (4.10)

where I(t) is the integral:

I(t) =
∫ t

0
f1234(τ)e−iθ1234(τ) dτ (4.11)

The second and third derivatives are not given in the original publication, but they can

be calculated from the C′1(t). Considering T1234 and δ 34
12 as constants, the derivation is

reduced, as shown in Equation 4.12, which yields the C′′1 (t) in Equation 4.13.

(
eiθ1234(t)I(t)

)′
=
(

eiθ1234(t)
)′

I(t)+ eiθ1234(t)+ I′(t) =

iθ ′1234(t)e
iθ1234(t)I(t)+ eiθ1234(t)I′(t) = iθ ′1234(t)e

iθ1234(t)I(t)+ f1234(t)
(4.12)

C′′1 (t) = 4Re ∑
2,3,4

T 2
1234δ

34
12

[
f1234(t)+ iθ ′1234(t)e

iθ1234(t)I(t)
]

(4.13)

To obtain the third derivative of C1(t), the derivation of C′′1 (t) has to be considered, which

basically refers to the terms in brackets of Equation 4.13, as shown in Equation 4.14.
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[
f1234(t)+ iθ ′1234(t)e

iθ1234(t)I(t)
]′
=

f ′1234(t)+
(
iθ ′1234(t)

)′ eiθ1234(t)I(t)+ iθ ′1234(t)
(

eiθ1234(t)I(t)
)′

=

f ′1234(t)+ iθ ′′1234eiθ1234(t)I(t)+ iθ ′1234(t)
(

iθ ′1234(t)e
iθ1234(t)I(t)+ f1234(t)

)
=

f ′1234(t)+ iθ ′′1234eiθ1234(t)I(t)−θ
′
1234(t)

2eiθ1234(t)I(t)+ iθ ′1234(t) f1234(t) =

f ′1234(t)+
(
iθ ′′1234−θ

′
1234(t)

2)eiθ1234(t)I(t)+ iθ ′1234(t) f1234(t)

∴ Re
[

f ′1234(t)+
(
iθ ′′1234−θ

′
1234(t)

2)eiθ1234(t)I(t)+ iθ ′1234(t) f1234(t)
]
=

Re
[

f ′1234(t)+
(
iθ ′′1234−θ

′
1234(t)

2)eiθ1234(t)I(t)
]

(4.14)

By considering only the real part of the derivative of Equation 4.14, C′′′1 (t) can be ob-

tained from Equation 4.15:

C′′′1 (t) = 4Re ∑
2,3,4

T 2
1234δ

34
12

[
f ′1234(t)+

(
θ
′′
1234(t)−θ

′
1234(t)

2)eiθ1234(t)I(t)
]

(4.15)

By substitution of the derivatives of C1 from Equations 4.10, 4.13 and 4.15 to Equation

4.9, the time-marching explicit scheme of Equation 4.16 is obtained, which constitutes

the numerical implementation of the GKE in the present work.

Cn(t +∆t) =Cn(t)+4∆tRe ∑
2,3,4

T 2
1234δ

34
12

[
∆t
2

f1234(t)+
∆t2

6
f ′1234(t)+(

1+
i∆t
2

θ
′
1234(t)+

∆t2

6
(
θ
′′
1234(t)−θ

′
1234(t)

2)) I(t)eiθ1234(t)

]
+O(∆t4)

(4.16)

The integral I(t), shown in Equation 4.11 can be calculated iteratively, as seen in Equa-

tion 4.17.
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I(t) = I(t−∆t)+
∫ t

t−∆t
f1234(τ)e−iθ1234(τ) dτ

= I(t−∆t)+
∆t
2
[

f1234t−∆te−iθ1234(t−∆t)+ f1234(t)e−iθ1234(t)
]
+O(∆t3)

(4.17)

Similarly, since β1234 = 0, θ1234(t) is calculated from Equation 4.18.

θ1234(t) = θ1234(t−∆t)+∆
34
12∆t +O(∆t3) (4.18)

The derivatives of the variables can be calculated as:

θ
′
1234(t) = ∆1234t (4.19a)

θ
′′
1234(t) = β

′
1234(t) = 0 (4.19b)

f ′1234(t) =
f1234(t)− f1234(t−∆t)

∆t
+O(∆t) (4.20)

The derivative of I(t) can be calculated with with differentiation of Equation 4.11 as:

I′(t) = f1234(t)e−iθ1234(t) (4.21)

To begin the time evolution of Equation 4.16 some initial values for the variables should

be considered. Assuming that the initial condition is taken for t = 0, the values of the

variables are given from Equation 4.22.
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I(0) = 0 (4.22a)

θ1234(0) = 0, θ
′
1234(0) = 0 (4.22b)

f ′1234(0) = 0 (4.22c)

Similarly, an initial condition for the wave action spectrum C1(t = 0) is required. This can

be taken from measurements or from a theoretical spectrum. An appropriate transfor-

mation to obtain the wave action spectrum (Cn) from a given energy density spectrum

in κ−space (S(k)) is shown in Equation 4.23. Dk1 is the area of a bin in the wavenum-

ber vector place that contains the energy of an arbitrary wave component with wave-

nenumber k1. This area is expressed by Dkn = DkxDky. The 1D case for the spectrum

is straight-forward to consider, by using Dkn = Dkx. After the time evolution of the GKE

is finished, the opposite transformation of Equation 4.23 can be used to retrieve the

spectrum S(k).

C1 = S(k1)
Dk1

ω1
g (4.23)

It is important to highlight that in (Gramstad and Stiassnie, 2013) a regularly spaced

κ−grid is selected for the discretization. For the simple version of the numerical imple-

mentation of the GKE considered in the present study, this selection is crucial, because

it allows interacting quadruplets to be defined. This aspect will be discussed later.

4.4 Verification of the GKE

The formulation of the GKE includes a large number of complex coefficients. Its pro-

gramming for the formation of the 4th order tensor T1234, as well as the time marching,

may induce potential errors and pitfalls. For this reason, verifying the code was con-
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sidered essential before applying it to the present case. The verification of the GKE

can be done based on the published results for the propagation of the 1D JONSWAP

spectra published in (Gramstad and Stiassnie, 2013) and (Benoit et al., 2015). An-

other way to check the implementation and validity range of the GKE is comparison

with Monte Carlo simulations with multiple realisations of random phases. This is com-

monly performed with HOS codes, as done in both of the aforementioned publications

and in (Janssen, 2003), considering nonlinear order 3, which corresponds to the ZE.

In the present study, HOS-ocean was used for Monte Carlo simulations, as discussed

in Section 3.4.

For the verification of the GKE, the same JONSWAP spectra that were used in Section

3.4 will be employed. The expression of the JONSWAP spectrum in κ−space can be

given by Equation 4.24.

S(k) =
α

2k3 exp

[
−5

4

(
k
kp

)−2
]

γ
exp
[
−(
√

k/kp−1)
2
/(2σ2)

]
D(θ) (4.24)

with σ =


0.07 for κ ≤ κp

0.09 for κ > κp

where D(θ) defines the directional distribution and for unidirectional propagation it is

taken as D(θ) = 1, α is a coefficient to determine the energy of the spectrum and γ is

the peak enhancement factor.

For the verification of the present study, α and γ are taken from Table 4.2. The values

are selected in such a way that the steepness, defined as ε = kp
√

2∑
n

Sn (Gramstad and

Stiassnie, 2013) or ε =
kpHm0

2
√

2
(Benoit et al., 2015), of the three examined spectra is the

same, but the spectral width is different. kp is the wavenumber of the component of fp

and Hm0 = 4
√

m0, where m0 is the zeroth moment of the spectrum. Hm0 is an estimate

of the Hs calculated by the mean period (Holthuijsen, 2007). It becomes apparent that

the three spectra have the same energy, but different spectral shape.
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Table 4.2: Parameters for JONSWAP spectra for the verification of GKE.

α 0.0364 0.0238 0.0083
γ 1.0 3.3 20.0

∆k 0.066 0.050 0.040
Number of waves 60 80 100

For convenience, kp = 1, which yields Lp = 2π m in deep water and Tp = 2.006 s. Deep

water is achieved by defining a large value for the water depth, e.g., 5000 m. An

equidistant κ−grid with increment Dk is used ranging [Dk, 4kp]. It is noted that consid-

ering k(1) = 0 instead of k(1) = Dk may yield issues due to inclusion of infinitely long

wavelengths.

For the results that follow, the resolution of the κ−grid is not constant for the three

examined spectra, but it was chosen to be the optimum after convergence analysis,

as seen in Table 4.2. This was done in order to save computational resources. As

an approximate indication, for 1000Tp of propagation using a time step of ∆t = Tp/2 as

done in (Benoit et al., 2015), 60 waves require 0.5 h, 80 waves 3 h and 100 waves 7 h,

on a single core of Intel i7 @ 3.0 GHz. Higher resolution was selected for the narrower

spectra in order to allow for sufficient discretization of the main part of the spectrum

and the spectral peak.

The results of the present implementation of the GKE are compared against the re-

sults of the PAE of Benoit et al. (2015), which seems to give similar qualitative results

to that of Gramstad and Stiassnie (2013), as well as against Monte Carlo simulations of

HOS-ocean using 800 random phase simulation and the COSMHOS Monte Carlo sim-

ulations of Benoit et al. (2015) using 700 simulations. As observed already in Section

3.4, the greatest spectral change occurs for the spectra with the highest γ, because

they are far from equilibrium (see Section 4.2.3). These cases also, despite the overall

good agreement, yielded the largest discrepancies between the predictions of HOS-

ocean and PAE.

First, the long term evolution of the spectra is examined after 1000Tp in Figures 4.8,

4.9 and 4.10. As seen in Figure 4.8, the present results agree well for both the HOS
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Figure 4.8: Comparison among the results of GKE, HOS-ocean and the published
results of Benoit et al. (2015) for a JONSWAP spectrum of γ = 1.0 after evolution of
1000Tp.

and PAE predictions for the broadbanded spectrum of γ = 1. In Figure 4.9, the overall

agreement is very good for the spectrum of γ = 3.3, but noticeable discrepancies are

observed near the spectral peak. Both GKE and PAE overpredict the evolved spectral

peak compared with the HOS-ocean and COSMHOS results that are in good agree-

ment between them. GKE seems also to predict a higher peak than PAE. The largest

discrepancies appear for the spectrum of γ = 20.09, as shown in Figure 4.10. Clearly

the two HOS codes that are in good agreement, yield a lower spectral peak than the

GKE and PAE. Also, HOS simulations predict higher energy at around 0.5-0.7 κ/κp.

Some small deviations from the HOS results can also be seen in higher wavenumbers,

but the energy content is very low. What is important to observe is that the GKE have

some local instabilities that were not present for at the beginning of the simulation. Also

the predicted spectral peak is slightly wider than that of PAE and has a local deep. It

is presumed that further increasing the resolution of the κ−grid would resolve these

issues that appear only for very long evolution.

9A JONSWAP spectrum with γ = 20.0 can be rarely encountered in nature, however it is commonly
used to examine spectral changes because it is far from equilibrium compared to more broadbanded
spectra.
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Figure 4.9: Comparison among the results of GKE, HOS-ocean and the published
results of Benoit et al. (2015) for a JONSWAP spectrum of γ = 3.3 after evolution of
1000Tp.

Trying to further analyse the discrepancy for the narrow JONSWAP spectrum after

long evolution, additional tests were performed. As discussed, the role of the four-

wave interactions is to stabilize the spectrum, bringing it to its equilibrium state, which

means that after long evolution the spectral change should be minimal. This was also

shown by Gramstad and Stiassnie (2013), Benoit et al. (2015) and (Tanaka, 2001), by

examining the rate of spectral change, which was large for the first Tps of evolution and

decayed rapidly. In order to confirm this behaviour of the GKE, the spectra every 20Tps

are presented in Figure 4.11a and 4.11b from the initial state at t = 0 to t = 1000Tp

and from t = 800Tp to t = 1000Tp, respectively. The x−axis is truncated to facilitate

observations. The initial and final spectra are indicated with black thick lines. It can

be seen that the spectral peak is downshifted quickly and the energy is spread in

lower and higher frequencies, only within 20− 40Tp. Afterwards, the energy of the

wave components fluctuates within certain limits. The range of this fluctuation should

decay with time, but here it is shown that even after long evolution > 800Tp the values

around the spectral peak continue to fluctuate considerably. As such, a stable situation

has not been achieved for the very narrow spectrum of γ = 20.0. Therefore, the exact
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Figure 4.10: Comparison among the results of GKE, HOS-ocean and the published
results of Benoit et al. (2015) for a JONSWAP spectrum of γ = 20.0 after evolution of
1000Tp.

spectral shape obtained by the GKE for spectra very far from equilibrium cannot be

predicted with confidence. Nevertheless, the general trend is very well estimated. It is

also important to mention here the observation of Benoit et al. (2015) for the spectrum

of γ = 20.0 that the error between PAE and Monte Carlo HOS simulations increases

linearly with time, having a minimum at 300Tp. Thus, these fluctuations should not be

attributed to a potential wrong implementation of the GKE in the present study.

Apart from the long evolution, the short evolution of the wave spectrum should be

considered, which is actually the main interest of the present study. To examine the

behaviour of GKE for shorter time evolution, comparison with the only available results,

to the author’s best knowledge, found in (Benoit et al., 2015) is performed for the case

of the spectrum with γ = 20.0. These results refer to evolutions of 30Tp, 60Tp, 200Tp

and 300Tp, as seen in Figures 4.12, 4.13, 4.14 and 4.15, respectively10. It can be

seen that for the short evolution of 30Tp the GKE is in excellent agreement with the

PAE and the small differences can be readily attributed to the lower resolution used

10To better illustrate the differences around the spectral peak, the x−axis is truncated to 2κ/κp, even
though the simulations were performed up to 4κ/κp.
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Figure 4.11: Spectral evolution every 20TP for the spectrum of γ = 20.0 predicted by the
GKE for time range of 0− 1000Tp (a) and 800− 1000TP (b). Dots: intermediate times;
Dotted black lines: initial time; Thick black lines: final time; Grey thick lines: mean of
dots.

in the present study. However, both PAE and GKE exhibit important deviations from

the result of the Monte Carlo predictions. The HOS-ocean result however is much

closer to the PAE and GKE than the COSMHOS result of Benoit et al. (2015). Since

the two HOS predictions are in good agreement for 60Tp, 200Tp and 300Tp, the present

discrepancy may be attributed to the initialization of the HOS simulations. As discussed

in Section A.3.3, the initial condition is selected according to linear theory and a ramp-

up time is used in order to smoothly transit to the nonlinear simulation. In the present

study with HOS-ocean, the smoothing time was selected as 1Tp in order to quickly

obtain nonlinear evolution. The smoothing time may had been selected differently by

Benoit et al. (2015). After evolution of 60Tp (Figure 4.13), it is seen that the two HOS

predictions are in very good agreement. However, the results of GKE and PAE predict

a bimodal behaviour of the spectrum, which cannot be easily explained. Since all the

simulations were performed with the same time step as that of (Benoit et al., 2015),

namely TP/2, it was decided to examine the possibility that the discrepancies of the

GKE are due to the selection of the time step, which is expected to have a greater
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Figure 4.12: Comparison among the results of GKE, HOS-ocean and the published
results of Benoit et al. (2015) for a JONSWAP spectrum of γ = 20.0 after evolution of
30Tp.

impact for short term than for long term evolution. For that, a time step of TP/4 was

also used. As seen in Figures 4.12 and 4.13, the two results of different time steps

exactly collapse to each other and it is concluded that the behaviour of the GKE cannot

be attributed to a numerical error.

The bimodal behaviour of the GKE and PAE observed for short evolution seems to

vanish after long propagation of 200Tp, as seen in Figure 4.14, where the agreement is

significantly improved. The spectral peak is well predicted, but PAE and GKE exhibit a

wider and flatter peak. Finally, after 300Tp, the best agreement is observed, as shown

in Figure 4.15. The results of HOS models are close to PAE and GKE. There is still

a difference near the peak though, which is predicted slightly downshifted and with

higher energy by the phase-averaged equations.

Some important remarks can drawn for the behaviour of the GKE by examining details

of the spectral evolution that require attention:

i) The selection of the interacting quadruplets is probably the most important aspect

that influences the results. Even though a geometric frequency grid is used in

192



4.4. VERIFICATION OF THE GKE

Figure 4.13: Comparison among the results of GKE, HOS-ocean and the published
results of Benoit et al. (2015) for a JONSWAP spectrum of γ = 20.0 after evolution of
60Tp.

practice (Gramstad and Babanin, 2016), in the present, study it revealed no spec-

tral change even when the conditions of resonance were relaxed (δk 6= 0). Similarly,

changing locally the κ−grid resolution reveals instabilities. Certainly, the selection

of the interacting quadruplets requires further analyses and attention, especially

for the 1D case where only non-resonant interactions are present.

ii) The present findings reveal potential non-convergence of the GKE for very narrow

spectra in 1D after long time evolution. This may be a result of the selection of the

interacting quadruplets and of insufficient κ−grid resolution. One can expect that

if an infinitely high number of wavenumbers is used, the results will be smoother.

On the other hand, the convergence of the GKE to a stabilized spectrum should

not be taken for granted, because the existing results in the literature present the

integrated properties of the spectrum instead of the exact spectral shape.

iii) The validity for the GKE for short term evolution, at least for the JONSWAP spec-

trum of γ = 20.0, should also be seen critically, since the results showed important

deviations from HOS Monte Carlo simulations.
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Figure 4.14: Comparison among the results of GKE, HOS-ocean and the published
results of Benoit et al. (2015) for a JONSWAP spectrum of γ = 20.0 after evolution of
200Tp.

To conclude however, the tests performed for the verification of the GKE in this section

show that the behaviour of the GKE is qualitatively and quantitatively similar to that

of PAE. Thus, the coupling coefficients and the numerical implementation of the GKE

appear to be correct. Additionally, the GKE gives very good agreement with Monte

Carlo HOS simulations, especially for long evolution and relatively broadbanded spec-

tra. Differences were mainly observed for the very narrowbanded JONSWAP spectrum

of γ = 20.0 and mainly for very short evolution. Since the present study aims at evaluat-

ing the spectral changes of the broadbanded Gaussian spectrum used for the focused

waves, similar issues are not expected to appear. Nevertheless, it is still challenging to

examine the spectral changes for short time evolution of a few Tps using a stochastic

approach, as discussed in the next section.

4.5 The use of the GKE for focused wave groups

Before applying the GKE in the case of focused waves, it is crucial to discuss some

considerations about the potential equivalence of the sea state properties between
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Figure 4.15: Comparison among the results of GKE, HOS-ocean and the published
results of Benoit et al. (2015) for a JONSWAP spectrum of γ = 20.0 after evolution of
300Tp.

phase-averaged and phase-resolving models. This can allow for better connecting the

two approaches.

4.5.1 Selection of the κ−grid

In this section, the spectral evolution of the extracted linearised part of the spectrum,

shown in Figure 4.5, that was found with the phase-resolving models for focused waves,

will be examined in a stochastic manner using the GKE. For this, the Gaussian ampli-

tude spectrum Sα( f ) (Equation 3.1) of the dispersion study is employed, after it is firstly

transformed to a variance (energy) density spectrum in the frequency domain S( f ), us-

ing Equation 4.25 (Holthuijsen, 2007).

S( fi) =
1
2

α( fi)
2

d f
(4.25)

where α( fi) is the amplitude of each wave component i in the f−domain and d f is the

frequency increment.
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Then, the obtained spectrum S( f ) has to be transformed from the f−domain to the

κ−domain, since the GKE is derived for the wavenumber space. This can be achieved

with the transformation described in (Holthuijsen, 2007) p. 49, using Equation 4.26.

S(ki) =
Cgi

2π
S( fi) (4.26)

where Cgi refers to the group celerity, which can be calculated using the phase celerity

Ci of each wave component, as seen in Equation 4.27 (Holthuijsen, 2007).

Cgi =Ci
1
2

(
1+

2kd
sinh(2kd)

)
(4.27)

where Ci is calculated using the wavenumber k from linear theory as Ci =
√

g
k tanh(kd).

The same transformation can be achieved using a discretised method and redistribut-

ing the energy from the frequency-bins to the wavenumber-bins, as show in Equation

4.28, which is possible since the employed spectra are density spectra.

Si(k) = Si( f )
fi+1− fi−1

ki+1− ki−1
(4.28)

It is important to note here that since the GKE requires an equidistant κ−grid, first the

wavenumbers are chosen and then the frequencies are calculated using the linear dis-

persion relation. The energy is distributed on the non-equidistant f−grid, following the

definition of the desired spectrum, and then from Equation 4.26, S(ki) is calculated for

the predefined equidistant κ−grid. This procedure was not needed for the verification

of the GKE (Section 4.4), since the spectra were given directly in κ−space.

As described in Section 4.3.2, the obtained S(k) spectrum should be transformed to a

wave action spectrum C(k) according to Equation 4.23 in order to be used in the GKE.

To illustrate the transformations described above, the employed Gaussian spectrum

of fp = 0.636 Hz is shown in Figure 4.16. As seen, the κ−spectra are more spread
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Figure 4.16: Comparison of the spectra in the κ− and f−space using 100 wave com-
ponents.

in high wavenumbers and, for their accurate calculation, the κ−grid should extend to

wavenumbers of 5-6 m−1, where there are still components with meaningful energy. It

can also be observed that a regular κ−grid results in f−grid with relatively low res-

olution at low frequencies and very high resolution at high frequencies. As such, to

capture the expected energy transfer up to 1.4-1.6 Hz seen in Figure 4.3, the κ−grid

should extend up to 10 m −1. Keeping in mind that sufficient resolution should be used

in low frequencies, the total number of examined wave components should be relatively

high. The challenge with the examined Gaussian spectrum is that it has a relatively low

fp and it is broadbanded, which results in energy at particularly low wavenumbers. This

aspect will be discussed in Section 4.7.2 in more detail.

To ensure accurate implementation of the aforementioned transformations and cor-

respondence with the phase-resolving models, the total energy of the spectrum was

checked at almost all stages of the process. The total energy of the spectrum can be

found by the integral of the curves S( f ) and S(k). It can also be approximated from the

significant wave height as Etot =
H2

s
16 , where Hs can be calculated from the timeseries

of the surface displacement as Hs = 4× SD(η(t)), where SD is the standard deviation
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(Holthuijsen, 2007). These definitions are employed throughout the present study.

4.5.2 Selection of the equivalent steepness

As observed in the spectral analysis in Section 4.1.2, the strongly nonlinear group

(Σαi = 0.154 m) is practically the only one that exhibits important spectral evolution of

the extracted linearised harmonics. Thus, this group will be used for the analysis that

follows. It is also reminded that the focused wave produced for the strongly nonlinear

group referred to the limiting breaking case in the experiment. The significant wave

height calculated for the strongly nonlinear group is Hs = 0.0477m. Preliminary inves-

tigation with the GKE for this Hs did not result in any spectral change even after very

long evolution of 1000TP. This can be justified if one observes the timeseries of the

surface elevation of the strongly nonlinear group and a random phase wave group that

has the same Etot , as presented in Figure 4.17a. Since the focused wave group has

a return period of 128 s, the energy is concentrated only in the short time window of

the focused group and the remaining long timeseries have zero energy. Thus, as seen

from the timeseries, the steepness of a random phase group is much lower than the

local steepness of the focused group. Consequently, the GKE does not predict any

spectral change, since the overall steepness of the sea is relatively small.

At this stage, the first challenge in finding the equivalence between phase-resolving

and phase-averaged models arises. The phase-averaged approach of random phases

results in a sea state of much lower steepness than the local steepness of a focused

wave group, since in the latter the energy is forced to be concentrated in a confined

space. This low steepness sea state is in equilibrium and the interactions between

the waves are weak. It becomes apparent that it is not "fair" to spread the energy

of the focused wave over the entire timeseries of 0-128 s, but instead it would be

more appropriate to find an equivalent energetic sea state that represents better the

steepness of the focused wave. The only remote example discussed in the literature

can be found in (Janssen, 2003), Figure 1, which refers to a focused group with a short
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Figure 4.17: (a) Comparison of the timeseries of the of a focused wave group and
random phase wave group generated by the same Gaussian spectrum used for the
strongly nonlinear group (Σαi = 0.154 m), based on linear theory. (b) Repetitive focused
wave group.

return period that is repetitive in time. The result of a similar approach considered

here is demonstrated in Figure 4.17b as an example, where the focused wave group is

repeated with fixed time intervals. Of course, especially for the wave group examined

here, this would imply a sea state of very high steepness, where wave breaking could

potentially occur.

For focused wave groups, the return period can be determined by the frequency in-

crement of the spectrum d f . To achieve a return period of 128 s, d f ' 0.0078 Hz

(1/128=0.0078). Defining a larger d f shortens the return period of the spectrum, mak-

ing the event more repetitive in time. However, this approach was not preferred here,

because it results in lower frequency resolution, which does not facilitates compar-

isons, and the return period is not the same for the different locations from AM (long

dispersed group) to PF (compact focused group) in the tank. Instead of changing d f ,

it was decided to truncate the timeseries and include only the time window that has

waves inside. The energy of the wave group can be found by the Hs of the truncated

timeseries of the surface elevation. Using linear theory to generate the timeseries, this
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process returns an HPF
s ' 0.35 m at the PF location and an H inlet

s ' 0.16m near the inlet.

Neither of these values is representative for all the locations in the tank, since they refer

to two extreme cases of the wave group (dispersed and compact). One could instead

select to use the average value Hmean
s calculated as the arithmetic or the geometric

mean, ' 0.25 m and ' 0.23 m, respectively.

The previous approach of using a constant Hs is convenient, since the Hs can be easily

approximated using the timeseries at the desired location. However, observation of the

timeseries indicates that using H inlet
s or HPF

s is not representative, while using Hmean
s is

still a crude approximation, since the Hs of the truncated timeseries does not increase

linearly from the inlet to the PF location.

A solution to the above problem can be given by calculating a time dependent Hs(t).

To achieve that, the timeseries of the surface elevation were examined at locations

x = −1,−2,−3...n Lp m upstream of the PF location, where Lp is the wave length cor-

responding to the wave component at fp. The generated timeseries were truncated

automatically using a criterion based on their absolute maximum value divided by a

desired tolerance. For example, at PF, where the linearly predicted maximum is 0.154

m, using a tolerance of 10, the timeseries before and after the group are truncated

when the first value lower than 0.0154 m is encountered. Selecting a larger tolerance

implies that longer timeseries are used, resulting to a lower value of Hs. In order to find

the value of Hs at any location, the value of the HS at the discrete locations x is firstly

computed and a polynomial fitting is then used. An example of this process is given in

Figure 4.18, where the truncated timeseries of the focused wave group are presented

in the large plot at PF (top line) and at locations downstream. In the small subplot, the

Hs calculated per location is presented with the fitted 2nd order polynomial function.

To be precise, the previous approach for the Hs return a location related Hs(x). However,

since the Hs is calculated at locations relative to Lp, the same expression can be used

in the GKE where the time integration is an increment of Tp. For this reason, Hs(x) at x

relative to Lp, is equivalent to Hs(t) at t relative to Tp in the GKE.
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Figure 4.18: Example of truncated timeseries of the surface elevation used for the
estimation of the Hs(Lp) using tolerance=5.

Trying to explain the equivalence of the previous process between phase-resolving and

phase-averaged models, one can consider the following: the GKE expresses the time

evolution of a fixed sea area that does not propagate in space. On the other hand,

focused waves with a moving time window represent a transient event in space, which

steepness increases as a result of focusing. To do exactly the same for a random sea

state, one would have to decrease the area of the sea keeping the same energy spec-

trum, which would increase its steepness. However, the strategy used here practically

increases the energy of the sea state by simply increasing its Hs. This Hs is calculated

from timeseries of the surface elevation of decreasing length. Thus, an equivalence be-

tween altering sea area in phase-averaged models and time in phase-resolving models

is perceived.

An advantage of the method of defining Hs(t) discussed above is that it allows for

tracking the increasing steepness of the wave group at any time. In the algorithm of

the GKE this can be implemented as such: at the end of each time step, when all

the wave interactions are calculated and the new spectrum is computed, the energy of

the latter is rescaled based on the Hs of the examined timestep. This is equivalent of
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running the GKE for only one time step and then changing the spectrum and rerunning

it. The flexibility of defining Hs(t) using a polynomial function, is that it is independent

of the magnitude of the time step. Care should be taken not to run the GKE for values

of the Hs higher than HPF
s . This can be easily implemented in the algorithm using a

stopping condition. At the end of the calculation, the final spectrum is rescaled in order

to have the Hs of the full timeseries, which corresponds to the original spectrum. This

allows for direct comparison of the spectral evolution between phase-averaged and

phase-resolving models for focused waves.

Results regarding the influence of the steepness in the present case are presented in

Section 4.6.2.

4.5.3 Selection of the equivalent time evolution

As it became apparent from the verification of GKE in Section 4.4, the shape of the

computed spectrum depends on the total time evolution. Thus, there is a second chal-

lenge for the transition from phase-resolving to phase-averaged models, which refers

to the selection of the time.

There are two possible considerations for selecting the total evolution time in the GKE:

i) To use the exact time in the phase-averaged model as in the focused wave group.

This can be done by finding how many Tps the wave group has propagated from the

wave paddle or AM location to the PF location. A way to calculate that is by finding

how many Lps the wave group has covered in this distance, in a similar manner as

done in Figure 4.18. Instead of Lp, one could use Lmean, which corresponds to the

mean frequency wave component, as a more representative value. fmean can be

calculated by the spectral moments as: fmean =
√

m1/m0, where mn =
∫

∞

0 f nE( f )d f

(see (Holthuijsen, 2007) p. 61) 11.

ii) To assume that the free-wave spectrum has reached an equilibrium state and thus

11In the present work both the approaches were tried, but a only negligible difference was found.
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use a very large evolution time of 100−1000Tp.

The challenge with the former consideration is that since the waves are not randomly

mixed within this time frame, the long waves that are just introduced at the inlet at t = 0,

do not interact with the shorter waves that are already close to PF at that time. This is

mentioned as a potential issue for calculating the wave-wave interactions by Shemer

and Dorfman (2008) as well. Also, the GKE has shown some discrepancies for short

propagation time, as discussed in Section 4.4. However, those results concerned the

very narrowbanded JONSWAP spectrum of γ = 20.0 and it is not yet known if similar

issues will appear for the broadbanded Gaussian spectrum used in focused waves.

This is discussed later when the results of the GKE are compared with Monte Carlo

simulations (see Section 4.7.1).

The issue with the latter approach is that it completely ignores the time evolution of the

focused wave group and thus, it is totally decoupled from the phase-resolving aspect

of the problem. Additionally, only a constant Hs can be used in the GKE and not the

Hs(t) consideration described previously. Last but not least, the equilibrium state of the

spectrum is something to be proven, rather than something to be pre-assumed in order

to start the analysis. For this reason, mainly the short time evolution will be considered,

which is equivalent to the one derived the phase-resolving model or for convenience

by linear theory, because the scope is not to run an expensive phase-resolving model

before running the GKE.

The results of testing different time evolutions in the GKE for the present case are

presented in Section 4.6.3.

4.5.4 Selection of the equivalent water depth

In the context of comparing focused waves and random waves, the effect of water

depth should also be discussed. As explained in the derivation of the GKE (Section

4.3.1), the GKE was derived for finite water depth, which allows for its application at the
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Figure 4.19: Effect of the focusing of the wave group on the kinematics. (a) (c) Surface
displacement along the flume; (b) (d) Velocity magnitude beneath the SWL calculated
by linear theory.

present study. Concerns for the use of the action of four-wave interactions and weak

turbulence were also discussed in Section 4.2.3.

Considering a simple approach, the water depth can be taken as the actual water depth

used in the phase-resolving models. However, one should be concerned whether,

when the wave group focuses, the depth has an effect on the kinematics of the wa-

ter particles near the bottom. To illustrate this, the velocity magnitude -calculated

as umag = ∑
N
i=1

√
u2

x +u2
z , for the N wave components, with horizontal velocity ux =

ωα
cosh[k(d+z)]

sinh(kd) sin(ωt− kx) and vertical velocity uz = ωα
sinh[k(d+z)]

sinh(kd) cos(ωt− kx), with z = 0

at the SWL and pointing upwards (see Equation 3.3)- is presented for the focused wave

group and a random wave group of the same energy spectrum is plotted in Figure 4.19.

It can be clearly seen that the velocity field of a focused group is concentrated and it

extends farther in the vertical. As a result, the wave group may be influenced by the

finite water depth, since the waves start "feeling" the bottom of the flume when they

become focused. Thus, it could be more relevant, instead of using the actual water

depth, to define an equivalent water depth.

A way to perform the calculation of the equivalent water depth can be based on the
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Ursell number, which gives an indication of the nonlinearities of the waves, combining

the wave steepness and the water depth. For an irregular wave group, the Ursell

number can be calculated by Equation 4.29 ((Holthuijsen, 2007) p. 273). To find the

equivalence, a Ur can be calculated for the random wave group and one for the focused

group using the truncated time history of the surface elevation. Then, the equivalent

depth can be calculated in order to obtain the same Ur as for the random timeseries.

This process results to a smaller water depth, which according to theory causes greater

wave-wave interactions, see e.g. Section A.4.4.

Ur =
gHsT 2

m

9
√

2π2d2
(4.29)

where Tm =
√

m0/m1
12, calculated using the spectral moments mn =

∫
∞

0 f nE( f )d f (see

(Holthuijsen, 2007) p. 61) .

Theoretically, an equivalent water depth can be calculated for different locations in the

tank and define d(t), in a similar way as for Hs(t). However, contrary to Hs, the water

depth cannot be updated in every timestep in the algorithm of the GKE, because the

interaction coefficients are calculated using a specific water depth. For this reason,

mainly, this approach was not examined in more detail, however, results considering

different water depths are discussed in Section 4.6.4.

4.5.5 Phase mixing in the GKE

As described in (Gramstad and Stiassnie, 2013), the way the GKE is derived gives

the option of mixing the phases, i.e. assuming uncorrelated phases at certain time

intervals. In physical terms, phase mixing can be caused by a process, such as wave

breaking. For this reason, in (Gramstad and Babanin, 2016) the phases are mixed at

a time interval based on the wave breaking. In practical terms, mixing the phases is

performed by setting θ(t) and I(t) to zero (refer to Equations 4.18 and 4.17).
12It may be preferred to use the mean period Tm, instead of Tp, as a more representative parameter of

the spectrum.
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The impact of phase mixing for 1D and 2D spectra is discussed in section 8 of (Gram-

stad and Stiassnie, 2013). It is shown there that phase mixing has greater effect on

1D spectra than on 2D spectra, at least when comparing the integrated result over the

directions. For the former, when phase mixing is performed, it causes a new period

of fast evolution for the spectrum. The result in long term evolution is that the final

spectrum deviates more from its original shape compared to the spectrum estimated

by the GKE without phase mixing.

It becomes apparent that the inclusion of phase mixing in the GKE, as well as the

selection of the mixing intervals, may influence the final shape of the spectrum. In

the present study, since the wave group is very steep (limiting breaking), the effect

of phase mixing was tested in intervals of every timestep. Of course, phase mixing

at every timestep is a rather extreme case, but the overall scope here is to examine

whether phase mixing has an impact on the spectral shape for short evolution times.

The corresponding results are presented in Section 4.6.5.

4.6 Results of the GKE for focused waves

After discussing the potential ways to find the equivalent sea state characteristics

between the phase-resolving and phase-averaged modelling in the previous section,

here, the GKE is applied for the Gaussian spectrum of the steepest focused wave

group. The characteristics of the original spectrum are: fp = 0.636 Hz and Horig
s = 0.0477

m. The wavelength of the component of the peak frequency is Lp = 3.63 m and the cor-

responding kp = 1.73 m−1.

Regarding the propagation distance of the focused wave, the focused wave travels

∆x = 14.1− 1.63 m from the AM to the PF location, which corresponds to 3.5Lp. The

distance between the inlet and the PF is 3.88Lp. Consequently, the spectral evolution

lasts for approximately 4Tp in the phase-resolving model.

The results are evaluated by comparing the evolved amplitude spectra, after the ap-
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propriate transformations discussed in Section 4.5.1. Commonly, the S(k) spectrum is

compared, but since the analysis in the phase-resolving model in Section 4.1 was per-

formed for the amplitude spectrum, for consistency reasons it was preferred to present

the comparisons for the amplitude spectra. It is also noted, that a decreased frequency

resolution is used for the spectrum in the GKE compared to the resolution of the original

spectrum. To allow for direct comparison of the final amplitude spectra, the spectrum

of GKE is interpolated using the same frequency increment d f as the original spec-

trum. This is possible because all the spectra are expressed as density spectra, which

means that their values are related to the d f used. Therefore, the interpolation returns

a spectrum with the same energy redistributed in different frequency bins.

4.6.1 Convergence analysis of the GKE

The parameters that control the accuracy of the numerical model of the GKE are the

resolution of the κ−grid, the time step Dt and the maximum wavenumber kmax con-

sidered. Tests for the first two were also performed in the study of Gramstad and

Stiassnie (2013) for a fixed range of the κ−grid. Here, it was also considered useful to

check potential influence of the latter (kmax), since extending the κ−grid may add more

interacting quadruplets, which can result in additional energy transfers.

The results of the convergence analysis of the GKE that follow refer to the evolved

amplitude spectrum computed by the GKE after 25Tp of time evolution. This value was

chosen in order to allow for noticeable spectral evolution to take place, but at the same

time to prevent any smearing of the spectral shape as an effect of very long evolution.

The energy of the sea state is determined by the value of the HPF
s = 0.35 m in order to

have sufficient steepness to cause noticeable spectral change.
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Table 4.3: κ−grid resolution and number of waves (nodes) for convergence of GKE.

Dk (m−1) Nodes
0.100 69
0.150 46
0.175 39
0.200 34
0.225 30
0.250 27

Convergence for Dk

The value of the Dk determines the resolution of the κ−grid. In the study of Gram-

stad and Stiassnie (2013) it was shown that the GKE exhibits very good convergence

in respect to κ−grid resolution and, practically, already 16 nodes (or Dk = 0.25) are

adequate to describe the evolution of a JONSWAP spectrum of γ = 3.3 after 1000Tp in

1D. On the other hand, Benoit et al. (2015) used a very high κ−grid resolution in order

to be consistent with the wave nodes used in HOS model for the Monte Carlo simula-

tions. For the 2D case, the results seem to be more sensitive to the κ−grid resolution,

possibly due to the stronger spectral evolution.

The convergence analysis for Dk is done by keeping Dt and kmax constant. The latter

is chosen as Dt = Tp/2, which is used in both the studies of Gramstad and Stiassnie

(2013) and Benoit et al. (2015). The former was selected as kmax = 5kp after some pre-

liminary investigations. As commented for Figure 4.16, a higher value for kmax should

be used in order to cover all the possible interactions among wave components with

meaningful energy, however the scope here is to identify whether the solution is con-

verged after trying many values of Dk. These are listed in Table 4.3, together with the

resulting number of wave components.

The evolved amplitude spectra for the different values of Dk are presented in Figure

4.20, where it can be observed that the spectral evolution is almost identical for all

the tested κ−grid resolutions. The only noticeable -but still negligible- differences are

observed bellow 0.4 Hz and at the spectral peak, but they should be rather attributed
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Figure 4.20: GKE predictions of the evolved amplitude spectrum after 25Tp for different
k−grid resolutions Dk and constant kmax = 5kp; Hs = 0.35 m; Dt = Tp/2.

to interpolation differences, because the k(i) values are not at the same locations13,

rather than to convergence errors.

Since almost a perfect agreement is observed between Dk = 0.200 m−1 and Dk = 0.100

m−1, it was decided to use the former resolution for the tests that follow in order to save

computational resources.

An important observation that can be already made is that the evolved amplitude spec-

trum from the GKE is in general good qualitative agreement with the evolved spectrum

from the phase-resolving model. The discrepancies and more in-detail analysis is done

in the following sections.

Convergence for Dt

The integration in time for the GKE is controlled by the timestep Dt. In the study of

Gramstad and Stiassnie (2013), different values of Dt were tested ranging from Tp/200

to 1Tp, but the convergence was examined only in terms of total energy and not for

the spectral shape. As also explained in (Gramstad and Stiassnie, 2013), the wave

action and momentum are conserved independently of the timestep, thanks to the

construction of the algorithm.

In the present tests, three values of the timestep (Dt = Tp/8; Tp/4; Tp/2) are compared

13This is because the κ−grid is regular and k(1) = Dk.
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Figure 4.21: GKE predictions of the evolved amplitude spectrum after 25Tp for different
timestep sizes Dt and constant k−grid resolution Dk = 0.20 m−1; kmax = 5kp; Hs = 0.35
m.

for the evolved amplitude spectral shape after 25Tp, as shown in Figure 4.21. It can

be observed that the results collapse to a single line, confirming that convergence is

achieved irrespectively of the timestep. Some negligible differences can be seen in

high frequencies around 1.4 Hz, but in practice they can be ignored.

For the results that follow, a timestep of Dt = Tp/2 was used to reduce the computational

cost.

Convergence for kmax

As discussed at the beginning of this section, it was decided to perform convergence

tests on the range of the κ−grid in order to check whether the additional interacting

quadruplets have an influence on the main part of the spectrum. Using the Dt and

Dk found from the previous sections, kmax was gradually increased from kmax = 4kp to

kmax = 10kp in increments of 1kp. The results are shown in Figure 4.22.

Apart from the obvious difference that the lines of smaller kmax stop at lower frequen-

cies, Figure 4.22 shows that below 1 Hz, where the main part of the energy is, the

amplitude spectra are identical for all values of kmax. However, between 1-1.5 Hz there

are some noticeable differences among the lines. In particular, at 1.2 Hz, there is a

potential local discrepancy for kmax = 6kp and a smaller one for kmax = 7kp.

For the remainder, kmax = 10kp, corresponding to f = 2.07 Hz, is used in order to cover
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Figure 4.22: GKE predictions of the evolved amplitude spectrum after 25Tp for different
maximum wavenumber kmax and constant k−grid resolution Dk = 0.20 m−1; Hs = 0.35
m; Dt = Tp/2.

the spectral evolution at high frequencies, which extends up to 1.6 Hz in the phase-

resolving model.

4.6.2 The impact of the steepness

In this section, the influence of the steepness of the sea state is examined, by con-

trolling the energy of the spectrum through the Hs. The resulted energy spectra are

rescaled based on a factor calculated by the ratio of the Horig
s /Hs in order to match the

energy of the original spectrum.

As discussed in Section 4.5.2, using the original Horig
s = 0.0477 m of the full timeseries

of the focused wave results in no difference. Instead, the timeseries were truncated

and increased values of the Hs were determined. These values are calculated at the

inlet (H inlet
s = 0.16 m), the PF location HPF

s = 0.35 m and their average Hmean
s = 0.25 m.

It was also shown that the algorithm of the GKE can be modified to include a time

dependent Hs(t), which can be determined by a polynomial function found by the values

of the Hs calculated by the truncated timeseries of the focused wave (see Figure 4.18).

Since the Hs(t) is valid for only up to 4Tp, referring to the time needed for the wave

group to travel from the inlet to the PF location, the comparisons in the present section
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Figure 4.23: GKE predictions of the evolved amplitude spectrum after 4Tp for different
values and expressions of Hs and constant k−grid resolution Dk= 0.20 m−1; kmax = 10kp;
Dt = Tp/2.

are performed for a time evolution of 4Tp.

The evolved spectra calculated by the GKE for the different values of Hs are shown

in Figure 4.23. The parameters Dk, Dt and kmax are selected according to the conver-

gence analysis in Section 4.6.1. Also, the expression used Hs(t) is found for a tolerance

tol = 2 of the timeseries based on the local maximum value, which polynomial fitting is

Hs(t) = (0.0089t)2 +0.022t +0.17). Since, there was no considerable spectral evolution

observed, additional expressions of Hs(t) were tested, which are found by calculating

Hs(t) with an amplification factor >1.

Figure 4.23 shows that the part of the amplitude spectrum below 0.5 Hz remains prac-

tically unaffected by the increase of Hs. Increasing values of Hs mainly cause down-

shift and increase of the spectral peak and energy transfer to frequencies higher than

0.9 Hz. Using H inlet
s = 0.16 m makes practically no change in the amplitude spec-

trum and after 4Tp the evolved spectrum is almost identical to the original spectrum.

Using Hmean
s = 0.25 m, results to energy transfer between 0.9-1.5 Hz, while the am-

plitude spectrum at lower frequencies is practically unchanged. Similar behaviour is

observed for Hs(t) without an amplification factor. However, when the Hs is increased

to HPF
s = 0.35 m, considerable energy transfer is observed to frequencies higher than
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0.9 Hz as well as a non-negligible spectral change between 0.5-0.9 Hz. Especially at

the high frequency range of the spectrum, the results approach the evolved spectrum

of HOS. Similar are the obtained results for 1.25×Hs(t), having a lower peak than those

for HPF
s = 0.35 m, a better agreement with the evolved spectrum of HOS at f > 0.9 Hz

and an underprediction of the spectral change between 0.7-0.9 Hz. Increasing the

amplification factor of Hs(t) to values ≥ 1.5 causes more intense spectral changes, but

always following the same trend: increasing and downshifting the spectral peak, en-

ergy transfer to f > 0.9 Hz and decrease of the energy between 0.7-0.9 Hz. Especially

for the amplification factors of 1.75 and 2.00, the energy increase to higher frequencies

is far from the evolved spectrum of HOS. Using an amplification factor of 1.5, results to

a spectrum that is practically identical to that with HPF
s = 0.35 m, except for f > 1 Hz,

where the latter is closer to the evolved spectrum of HOS.

To sum up the previous findings, it is clear that Hs has an important role in the spec-

tral evolution of the spectrum computed by the GKE. The general pattern of spectral

evolution is consistent for the increasing steepness and it is similar to that found for the

focused wave with HOS, apart from the spectral peak, which has always more energy

than the original spectrum. The results that are closer to the evolved spectrum of HOS

after time evolution of 4Tp are achieved for HPF
s = 0.35 m and for 1.25− 1.50×Hs(t).

The general pattern of the evolved spectral shape is further investigated in the next

sections.

4.6.3 The impact of the time evolution

As discussed in Section 4.5.3, the selection of an equivalent time evolution for the GKE

may have important effects on the evolution of the spectrum. It is expected, based on

the results of Section 4.4 for the JONSWAP spectrum of γ = 20.0, that for longer time

evolutions, the spectral changes will be greater, since the quadruplets will interact for

more time. It was also shown that after long time evolution, the spectrum may reach a

quasi-steady state.
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Figure 4.24: GKE predictions of the evolved amplitude spectrum at different times
N×Tp and (a) constant value of Hs = 0.35 m and (b) expressions of Hs(t) and constant
k−grid resolution Dk = 0.20 m−1; kmax = 10kp; Dt = Tp/2.

The scope of this section is to examine whether a time evolution exists, which results

in a spectral change similar to that of the HOS phase-resolving model for the focused

wave. Based on the findings of Section 4.6.2, value of HPF
s = 0.35 m is tested. Also, the

behaviour of Hs(t) is tested for time evolution higher than 4Tp, by keeping the value of

Hs(t) constant after Tp > 4: Hs(t > 4Tp) = Hs(4Tp). The consideration of Hs(t) for longer

time evolution is somewhat invalid, but the analysis was performed in order to examine

if the spectrum of GKE will approach the evolved spectrum of the focused wave by

having a small spectral change for the first periods and an increased change later.

The results of the amplitude spectrum for the cases of Hs discussed in the previous

paragraph are presented in Figure 4.24 after time evolution of 4− 8Tp. The values of

Dk, Dt and kmax are selected from the convergence analysis (Section 4.6.1).

For the case of a constant value of HPF
s = 0.35 m in Figure 4.24a, it seems that for

increasing time evolution from 4Tp to 8Tp, the spectrum exhibits minimal differences

with small energy increase at the spectral peak and at f > 1.2 Hz. Even after 25Tp of

evolution, there is small spectral change resulting in a downshifting of the spectral peak
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and increase of energy at f > 1.2 Hz. When the time dependent expression of Hs(t) is

used, the spectral changes after time evolution of > 4Tp are more intense, as seen in

Figure 4.24b. A higher energy transfer is predicted at f > 0.9 Hz and a lowering of the

part of the spectrum between 0.7-0.9 Hz as well as an increase of the spectral peak.

The more intense changes are assumed to be a result of the low tolerance of 2 that it

is used, which results a Hs(4Tp)' 0.44 m. However, it is out of the scope of the present

work to further investigate this with other values of tolerance, because the spectral

evolution pattern is persistent without approaching any better the evolved spectrum of

HOS.

In conclusion, there was no obvious reason found until now to prefer the more compli-

cated expression of Hs(t) compared to a constant value of Hs. Using the latter, reveals

a spectral evolution which is almost constant for the first 8Tp and follows the same

pattern for longer time evolution of 25Tp.

4.6.4 The effect of water depth in GKE

It was previously discussed (Section 4.5.4) that the effect of the depth on a focused

wave may differ compared to a random phase wave group of the same steepness, be-

cause the energy is concentrated at a confined area and the kinematics are extended

deeper in the vertical.

In this section, different values of water depth are examined in order to identify if the

potentially shallower water depth that the focused wave experiences in phase-resolving

model, should be accounted for as a smaller equivalent water depth in the GKE. This

can be achieved, by simply changing the initial conditions in the GKE, which affects

the interacting coefficients. It is expected that, since in shallower water the waves are

weakly dispersive, and thus, they have similar wavelengths and wavenumbers, more

interacting quadruplets can be identified. Also, since the depth dependent interacting

coefficients have higher values, stronger spectral changes should occur for decreasing

water depth.

215



4.6. RESULTS OF THE GKE FOR FOCUSED WAVES

Figure 4.25: GKE predictions of the evolved amplitude spectrum after 4Tp for different
values of water depth d and constant k−grid resolution Dk = 0.20 m−1; kmax = 10kp;
Hs = 0.35 m; Dt = Tp/2.

The tests are performed here for the values of Dk, Dt and kmax found from the conver-

gence analysis (Section 4.6.1). The results are presented in Figure 4.25 for decreas-

ing water depth and also for the case of infinite water depth in order to observe the

behaviour of GKE in almost all depth conditions.

The results in Figure 4.25 confirm that decreasing water depth results in stronger spec-

tral changes. A water depth of d = 0.8 m results to negligible differences to the evolved

spectrum after 4Tp compared to the original water depth of d = 1 m. Further decreasing

the water depth to d = 0.6 m causes a significant spectral change: the spectral peak is

forward-shifted and there is energy transfer to lower frequencies instead of higher fre-

quencies. The evolved spectrum in fact moves to the opposite direction of the evolved

spectrum from HOS. On the other hand, considering an infinite water depth results in a

spectral shape which is similar around the spectral peak to the one for d = 1 m, has bet-

ter agreement with the evolved HOS spectrum between 0.7-0.8 Hz, but it overestimates

the energy for f > 0.9 Hz. It is also observed that the first frequency is approximately

at 0.25 Hz, which corresponds to k(1) = 0.20 m−1 for infinite water depth.

The conclusion of the investigation for the equivalent water depth showed a spectral

evolution almost opposite to what was initially suspected; instead of approaching the

evolved spectrum from HOS for decreasing water depth, the evolved spectrum of GKE

exhibited greater deviations. The infinite depth case showed only partial improvements
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and greater disagreements for high frequencies. Consequently, there is no obvious

reason to employ a different water depth, instead of the actual depth of the phase-

resolving model d = 1 m.

4.6.5 The effect of phase mixing in the GKE

According to the discussion in Section 4.5.5, in the present study phase mixing is per-

formed at every time step in order to identify its potential impact for short time evolution

of the spectrum. Based on the observations of Gramstad and Stiassnie (2013), phase

mixing is expected to result in stronger spectral evolution. It is also expected that the

effects of phase mixing become more obvious for longer time evolution, simply because

the phases have been mixed more times.

In this section, the effect of phase mixing is examined for a gradually increasing time

evolution of 4Tp, 6Tp and 8Tp examining both a constant Hs =HPF
s and a time dependent

Hs(t), since in the previous tests it was shown that Hs is one of the major factors that

determine the spectral evolution. The results are included in Figure 4.26 and they are

produced for the parameters Dk, Dt and kmax found through the convergence analysis

(Section 4.6.1).

At first glance, it can be observed that phase mixing does not cause any dramatic

changes to the evolved spectral shape. It is also confirmed that the differences at the

resulted spectral shape are more noticeable for the longer time of 8Tp (Figure 4.26c).

When the constant HS is examined, all the examined times show that phase mixing

results in a marginally lower spectral peak, which is closer to the evolved spectrum of

the focused waves, but on the other hand there is smaller spectral change between

0.7-0.9 Hz, compared to the case without phase mixing. At frequencies higher than

1 Hz, noticeable change is observed only at 8Tp, with phase mixing causing more

energy transfer to these frequencies. For the expression of Hs(t), it can be seen that

at 4Tp (Figure 4.26a), there is practically no difference caused by phase mixing. Some

deviations start to be observed in Figure 4.26b, showing that phase mixing slightly
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Figure 4.26: GKE predictions of the evolved amplitude spectrum after (a) 4Tp, (b) 6Tp,
(c) 8Tp without (grey) and with phase mixing (red) every Dt for Hs = 0.35 m and Hs(t)
and constant k−grid resolution Dk = 0.20 m−1; kmax = 10kp; Dt = Tp/2.

unerestimates the spectral changes at frequencies higher than fp. Similar is the trend

for 8Tp in Figure 4.26c, where it is seen that phase mixing predicts a spectrum closer to

the original, rather than the evolved spectrum. Further tests for t = 25Tp (not presented

here), show that indeed phase mixing causes important spectral changes, but mainly

at f > 0.9 Hz, overpredicting considerable the energy there compared to the evolved

HOS spectrum.

Summing up, phase mixing at every Dt has greater impact for longer time evolution,

compared to the case without phase mixing. Nevertheless, the predicted spectral evo-

lution, at least up to 8Tp, shows more deviations compared to the evolved spectrum of

focused waves in HOS for f > fp, with an obvious improvement only around fp. Con-

sequently, phase mixing was not found to give an improved solution and since it adds

bias in the study, due to the uncertainty of the selection of the phase mixing intervals,

it was decided not to use it in the remaining tests.
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4.7 Further investigations on GKE

The GKE seems to provide a reasonable spectral evolution compared that occurring

during the focusing of wave groups. Nevertheless, despite the different trials performed

in the previous section, the discrepancies seem to be persistent. Here, some more

general issues are discussed and the validity of the methods employed is critically

judged to a fundamental level.

4.7.1 Comparison of GKE with Monte Carlo simulations

In the previous sections, the spectral evolution for the Gaussian spectrum of the present

study was examined purely with the GKE, after the latter has been verified for JON-

SWAP spectra (see Section 4.4). Although the resulted amplitude spectrum of GKE is

in relatively good agreement with that predicted for focused waves by HOS -especially

considering the assumptions taken into account in this process for finding the equiva-

lent Hs- there are some noticeable discrepancies mainly at the spectral peak. Moreover,

it should be noted that the GKE has never been examined for the Gaussian spectrum

of the present study and additionally, it exhibited discrepancies with Monte Carlo HOS

simulations for short time evolution, which is of the interest of the present work, for the

JONSWAP spectrum of γ = 20.0. As such, it was deemed necessary to verify the GKE

for the conditions used in the present study.

In this section, the behaviour of the GKE for the Gaussian spectrum is compared

against HOS Monte Carlo simulations for short, mid-term and long-term time evolu-

tion, in order to investigate its validity. Different values of the Hs are also examined in

HOS-ocean, which of course are constant. A challenge is that, since Hs determines

the steepness in HOS-ocean and the code has stopping criteria to prevent simulation

of unrealistic waves (see Section 3.4), not any values of Hs can be tested.

To be able to simulate the Gaussian spectrum of the present study, the source code

of HOS-ocean had to be modified, in particular the initial_condition.f90 file, in
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order to include the expression of the desired spectral distribution (see Equation 3.1).

Additionally, the HOS-ocean was not tested before the present work for Monte Carlo

simulations in finite depth. After preliminary investigations, it was observed that the

initial condition of the spectrum did not match exactly the desired one. Following the

discussion with G. Ducrozet (personal communication, June 2016), the initialization of

code was amended14. After the correction of the source code, the initial Gaussian

spectrum at 1 m water depth matched exactly the theoretical spectrum.

The same setup of the HOS-ocean as in Section 3.4 was used for the simulations

with the Gaussian spectrum. 800 random phase simulations were performed for a

time evolution of up to 1000Tp. The results are presented here for up to 509Tp, which is

already enough to identify the trend of the spectral change for long-term time evolution.

Three values of the Hs were tested for finite depth of 1 m: Hs = 0.35 m, Hs = 0.30 m

and Hs = 0.20 m, which results are shown in Figures 4.27, 4.28 and 4.29, respectively.

The parameters for the GKE were chosen as Dt = Tp/2, Dk = 0.15 m−1 in order to have

good resolution at the spectral peak, and kmax = 4kp, in order to have approximately the

same wavenumber range as that simulated in HOS-ocean. The results that follow refer

to the normalized by the steepness ε energy spectra in κ−space, as done before in

Section 3.4. The simulations in HOS-ocean require 12-18 hours on a single core intel

i7 @ 3.0 GHz, depending on the value of Hs, while the GKE evaluates the spectrum in

less than 20’.

The value of Hs = HPF
s = 0.35 m that was initially tested seems to be exceptionally high

and in some cases the stopping criterion of the code was activated. This can be also at-

tributed to the numerical overflow of energy to high wavenumbers, since no dissipation

mechanism is employed. In reality, wave breaking would take place (Tanaka, 2007).

As such, the averaged spectra of the HOS-ocean in Figure 4.27 refer to an assembly

of 138 simulations only. The first thing to observe is that before 16Tp the Monte Carlo

simulations do not show noticeable spectral evolution apart from the spectral peak. On

14The calculation of the group celerity was corrected from
"Cg = group_velocity(omega_n2(i1,1)/TWOPI ∗T,depth,grav)/(L/T )" to
"Cg = group_velocity(omega_n2(i1,1)/TWOPI/T,depth,grav)/(L/T )"
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the other hand, the GKE started deviating from the original spectrum already at 4Tp.

Between 16Tp and 64Tp, significant deviation is observed for both the GKE and Monte

Carlo simulations. However, the evolution trend at the peak is almost the opposite: the

GKE predicts more energy at the peak than the original spectrum, while Monte Carlo

simulations show less energy. Additionally, it is observed that there is energy transfer

at very low and very high wavenumbers in HOS-ocean. From 128Tp and beyond, the

spectral shape of GKE seems not to change considerably, while the energy of main

part of the spectrum is HOS is further reduced with a significant energy transfer in

higher wavenumbers. After long time, the spectrum in HOS eventually disintegrates.

This is presumed to be due to energy transfer to high wavenumbers, which are cut-off

in the FFT in HOS-ocean. As a result there is a leakage of energy to wavenumbers that

are not resolved and the Monte Carlo spectrum loses appreciable amount of its original

energy. Similar issue is discussed by Tanaka (2001), where energy leakage to higher

wavenumbers was observed for a HOS-type model. On the other hand, the GKE is by

definition conservative, since energy transfers occur only within the predefined κ−grid.

To mitigate this issue in HOS-ocean, it was attempted to simulate 1024 nodes, but the

simulation time was very high for a Monte Carlo approach. Since the case of Hs = 0.35

m appears to give unrealistic spectral evolution, no further discussion for the present

results is done.

Lowering the value of Hs to Hs = 0.30 m does not activate the stopping criterion in

HOS-ocean and the results of Figure 4.28 refer to an assembly of 800 simulations.

Nevertheless, it can still be observed that energy cascade to high frequencies occurs

after long-term evolution. As expected, the spectral changes here are less pronounced

than for Hs = 0.35 m. Until 4Tp neither GKE nor Monte Carlo show any considerable

spectral changes. At 8Tp however, the GKE starts deviating from the original spectrum

by exhibiting an increase of the energy of the spectral peal and lowering of the energy

between k = 2− 3. Still the spectrum from Monte Carlo simulations is practically the

same as the original and it starts only changing at 16Tp. At mid-term evolution times

between 32− 128Tp, it seems that both GKE and HOS retain a stabilized form of the
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Figure 4.27: Comparison of the spectral evolution at different times between the GKE
and Monte Carlo simulations for the Gaussian spectrum of Hs = 0.35 m at water depth
of d = 1 m.

spectrum, which has increased energy in wavenumbers k > 3 m−1. However, as ob-

served for Figure 4.28, the energy of the spectral peak of HOS is lower that that of the

GKE. Also, HOS shows a noticeable energy increase in low wavenumbers, which is not

predicted by the GKE; a possible explanation for that is given in Section 4.7.4. For long-

term time evolution of 255−509Tp, it is seen that the spectrum of the GKE has minimal

changes, while the spectrum of HOS starts losing energy to higher wavenumbers and

its peak is further lowered, as also discussed for Hs = 0.35 m.

Further reducing the steepness with Hs = 0.20 m gives a almost stable spectrum, as

seen in Figure 4.29. The GKE shows negligible deviation from the original spectrum

even after long propagation of 509Tp. The average spectrum of HOS is almost identical

to the original spectrum until 16Tp, when it starts exhibiting some differences mainly

at the peak and a small gradual energy transfer to wavenumbers k = 4− 5 m−1. The

spectrum is almost constant until 509Tp having only some local fluctuations.

Overall, the previous results show that meaningful comparisons between Monte Carlo

simulations in HOS-ocean and the GKE can be performed only for 0.20 m < Hs ≤ 0.30
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Figure 4.28: Comparison of the spectral evolution at different times between the GKE
and Monte Carlo simulations for the Gaussian spectrum of Hs = 0.30 m at water depth
of d = 1 m.

m, because Hs = 0.20 m results in clearly low steepness of the sea state to cause

spectral evolution, while Hs = 0.35 m causes energy leakage in high wavenumbers in

HOS that eventually disintegrate the spectrum. For the case of Hs = 0.30 m, relatively

good agreement is observed between the evolved spectra of HOS and GKE at k = 2−3

m−1, but consistently the spectral peak at HOS has lower energy than the original

spectrum, which seems to be closer to the observation for the focused wave, while

GKE predicts always higher energy at the peak compared to the initial state. Moreover,

it is worth noting that for all the Hs examined, the Monte Carlo simulations exhibit almost

no spectral change for time evolution shorter than 8Tp. This cannot be readily justified,

since the smoothing time in HOS-ocean was set only to 1Tp (see Section 4.4) and it

implies that a "warm-up" time period in HOS-ocean may exist. Tanaka (2007) mentions

that it takes approximately 10Tps for an initially linear wave field to evolve to a nonlinear

field, but this is more related to the emergence of bound waves and not evolution of the

free-wave spectrum.

To investigate if the previous conclusions are influenced by the water depth, infinite
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Figure 4.29: Comparison of the spectral evolution at different times between the GKE
and Monte Carlo simulations for the Gaussian spectrum of Hs = 0.20 m at water depth
of d = 1 m.

water depth was also tested for the case of Hs = 0.30 m, which gives appreciable energy

transfer, but does not suffer from energy leakage. The results are presented for both

GKE and Monte Carlo HOS simulations in Figure 4.30. The wavenumber spectrum for

d = 1 m is also plotted in light grey to illustrate the difference in the initial conditions,

since the values of wavenumbers are depth dependent.

As observed for the case of finite water depth, Figure 4.30 confirms that the GKE reacts

faster and shows spectral evolution already for times shorter than 16Tp. It is interesting

however to observe that after long evolution the two evolved spectra converge pre-

dicting a downshifted and increased spectral peak, lower energy at k = 2−3 m−1 and

energy increase at k > 3 m−1.

Summing up the results of the present section, it seems that at short evolution times

the HOS Monte Carlo simulations do not show spectral change, which does not agree

with the GKE prediction. This may imply that there may be additional smoothing con-

ditions in HOS-ocean for the initialization or that the wave interactions develop slower

in deterministic models. For the cases of finite depth, the GKE and HOS predict a dif-
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Figure 4.30: Comparison of the spectral evolution at different times between the GKE
and Monte Carlo simulations for the Gaussian spectrum of Hs = 0.30 m at infinite water
depth.

ferent spectral shape, mainly at the peak of the spectrum, for mid- and long-term time

evolutions. For infinite water depth, it seems that the results of GKE and HOS start

converging after long evolution. The latter observations about the water depth cannot

be easily justified, since the GKE was derived for finite depth, but may have to do with

additional bound interactions that are more pronounced in finite depth (see Section

4.2.3).

To the author’s best knowledge, these are the first results in the literature that compare

Monte Carlo simulations and the GKE at short evolution times and at finite depth. The

conclusion of Benoit et al. (2015) is confirmed that more in-depth investigations are

required to obtain a more complete view of the properties of the GKE.

4.7.2 Application of the GKE on another spectrum

As demonstrated in Section 4.7.1, there were some discrepancies observed in the

spectral evolution of HOS and GKE even for short-term time evolution and finite wa-

ter depth. The predicted spectral shape by the GKE seems to have higher energy

225



4.7. FURTHER INVESTIGATIONS ON GKE

at the spectral peak compared to the evolved spectrum of the focused wave. Before

concluding that this may a potential limitation of the GKE for the aforementioned condi-

tions, different spectra should be tested. In the literature, the GKE was only tested for

JONSWAP spectra and showed good agreement at least after long evolution.

In the present section, the PM spectrum used in the initial validation of the phase-

resolving models in Section 3.2.2 and 3.2.3 is used in GKE. The rational for testing

a spectrum with a more JONSWAP-type energy distribution is because the Gaussian

spectrum has some characteristics that may pose limitations to its application in the

GKE. The Gaussian spectrum is broadbanded and extends almost down to k = 0.3

m−1, which is very close to k(1). This may result in more interacting quadruplets in

high wavenumbers and fewer at low wavenumbers with potential consequences for

the spectral evolution. This can be well observed in Figure 4.16, where there seem

to be more wave components in the high frequency part of the spectrum rather than

in the main part. Moreover, the JONSWAP spectra already tested in the literature

have a kp = 1 m−1 and they are more "centred" on the κ−grid, which hypothetically

could cause a more balanced interaction for low and high wavenumbers. A way to

circumvent this potential issue, would be to test a Gaussian spectrum of higher fp or

smaller σ . However, there are no available experimental results for these cases and

HOS or SWASH can simulate unrealistic focused waves that would break in reality.

Similar issues, to a lesser extent also exist in OpenFOAM. Instead, it was preferred to

adapt the PM spectrum already tested, as explained below.

The initial experiment for the PM spectrum in the phase-resolving models was per-

formed again following the strategy of the dispersion study (see Section 3.3), according

to which the amplitude spectrum was matched with the target spectrum close to the

inlet (AM location) and it was let to evolve until the PF location, where the wave group

was phase focused. The AM location is selected at 0.78 m and the PF at 7.80 m from

the inlet. The water depth is d = 0.50 m. The peak of the spectrum is at fp = 0.60

Hz, resulting to Lp = 3.25 m. Following the similar process as for the Gaussian spec-
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Figure 4.31: Comparison between the original and evolved PM amplitude spectrum
computed with the GKE and the extracted linearised spectrum at PF in SWASH. For
GKE: Time=5Tp Hs = 0.213 m; ∆k = 0.20 m−1; kmax = 5kp; ∆t = Tp/2.

trum, described in Section 4.5.2, the original and the equivalent Hs are defined as

Horig
s = 0.0277 m and HPF

s = 0.210 m, respectively. After some preliminary tests, the

parameters chosen for the GKE are Dk = 0.20 m−1 and Dt = Tp/2. The wavenumber

range is k ∈ [Dk,5kp] and the spectrum is evolved for t = 5Tp, in order to observe better

the spectral changes.

The focused wave tests of in this section are performed in SWASH, because the NWT

was already setup and converged for the PM spectrum. A hyperbolic velocity distri-

bution is used, with 8 vertical layers and ∆x = 0.04 m, after the additional findings of

Section 3.3.3. The wave was focused after two corrections using the focusing method-

ology.

The evolved spectra predicted by the GKE after 5Tp and by SWASH at the PF location

are compared with the initial spectrum in Figure 4.31. Results of the GKE for infinite

depth and long time evolution of 250Tp are also included.

The comparison of the evolved spectra shows that that the evolved spectrum of GKE

for d = 0.5 m and 5Tp has a forward-shifted peak and increased energy at lower fre-

quencies, which deviate significantly from the spectral evolution of the focused wave

in SWASH. It does not predict neither the decrease of the energy at 0.7-1.2 Hz. The

spectrum estimated after long evolution and infinite water depth by the GKE seems to
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be rather closer to the initial spectrum than the evolved spectrum in SWASH.

On one hand, the results of this section demonstrate that the discrepancies found for

the Gaussian spectrum are not related necessarily to the spectral distribution, but on

the other hand indicate that the GKE may have limitations for applications in short time

scales and/or on finite water depth.

Nonetheless, comparing the result of the GKE with the extracted linearised spectrum

may include an inherent assumption itself. This concern is further investigated in the

next sections.

4.7.3 The definition of the free-wave spectrum

In all the previous sections and in fact from the beginning of analysis of results with the

focusing methodology, there is an underlying assumption in the present work that the

extracted linearised harmonic corresponds to the free-wave spectrum. The only way

that this was justified was by observing the timeseries of the harmonics and identifying

visually which harmonics are bound and which are free (Vyzikas et al., 2018b). This

however may be a crude approach since the dispersive properties of the underlying

free-wave spectrum change due to the nonlinear wave-wave interactions. Thus, in

order to be able to compare the evolved spectrum from the focused wave and the

evolved spectrum of the GKE, which was derived for free waves only, a more robust

way should be found to confirm that the extracted linearised spectrum through the four-

wave decomposition is indeed the free-wave spectrum.

The previous concern is not discussed often in the literature or it is taken for granted.

There is however a comment in the work of Tanaka (2001) (see conclusions), which

may shed light to this problem. According to Tanaka (2001), the non-resonant wave-

wave interactions, which at this case refer to bound waves, can be eliminated in a

phase-resolving model by averaging many different random phase simulations. This

is possible because bound waves emerge as phase related interactions of the free
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waves. Therefore, the averaging over a sufficient number of random phase simulations

can cancelled them out. As a result, this averaging can yield the free-wave spectrum.

As mentioned in the paper of Tanaka (2001), this process does not constitute a proof

that the spectrum estimated by the averaging is equivalent to that defined by ensemble

averaging, which is the one computed by the GKE. An alternative way to identify the

free-wave spectrum is to check whether it follows the linear dispersion relation by com-

paring the energy concentration at the wavenumbers in f −k plots, as done by Shemer

and Dorfman (2008), Taklo et al. (2015) and Johannessen and Swan (2003). However,

potential issues may appear, since the dispersive properties of the wave group change

in the nonlinear domain and the components of the free-wave "ridge" seem not to follow

exactly the linear dispersion relation, as shown by Taklo et al. (2015).

The elimination of the bound interactions through averaging of random simulations

explains exactly the concept behind the use of Monte Carlo simulations, which is not

often discussed. The HOS-ocean of mHOS = 3 can resolve high order interactions and

the simulations include bound waves. However, the averaging over a large number of

random simultaions eliminates the bound waves and the free-wave spectrum can be

retrieved. This legitimizes the comparison of the average spectrum of HOS-ocean with

the GKE’s free-wave spectrum.

The consideration of Tanaka (2001) triggered the idea to apply this method to the

present study of focused waves in order to identify the free-wave spectrum. Of course

here the phases cannot be random, because the interest is to observe the spectral

change as the wave focuses. To achieve the cancelling out of the bound waves, groups

of different phases shifts were simulated, similarly to those used for the four-wave har-

monic decomposition method. Instead of simulating only four groups of phase shifting

of π/2, 20 groups were simulated by changing the phases in increments of 0.1π be-

tween [0, 2π]. Tanaka (2001) found that 16 random simulations of high accuracy can

be adequate to obtain the free-wave spectrum. The free-wave spectrum found through

the averaging is compared with the extracted linearised harmonic at four locations in
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Figure 4.32: Comparison of the extracted linearised spectrum from the measured sur-
face elevation using the four-wave harmonic decomposition and the free-wave spec-
trum from the averaging of different wave groups.

the NWT in HOS for the Gaussian spectrum, as seen in Figure 4.32.

The comparison of Figure 4.32 reveals a remarkably good agreement for the part of

the spectrum between f = 0.2− 1.0 Hz for all the examined locations. This suggests

that the free-wave spectrum and extracted linearised spectrum are the same, which

explains the rational for all the comparisons that preceded.

Deviations between the two free-wave spectra in Figure 4.32 are only manifested at low

( f < 0.2 Hz) and high ( f > 1.0 Hz) frequencies. A possible explanation for these differ-

ences can be the spurious low and high frequency waves created by the wave paddle,

which are free. These waves can be eliminated by the four-wave decomposition, as

they belong to 2nd difference and 2nd sum harmonics, but they are not eliminated by the

averaging, since they are free components. Another explanation can be that due to the

finite water depth and the increased local steepness of the focused wave some of the

bound waves are not cancelled through the averaging.

Careful observation of the results of HOS-ocean in Figure 4.28 shows that some energy

exists in low and high frequencies, which can be attributed to 2nd order bound waves
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that have not been effectively cancelled or to spurious free waves created by the linear

initialiazation of the model, which continue to propagate in the periodic NWT.

In Figure 4.32d the result of the averaging of 4 phase-shifted wave groups is also

plotted showing that excellent agreement with the result of 20 wave groups is achieved

even using a small number of wave groups for focused waves.

In conclusion, the tests of the present section show that at least the main part of the

extracted linearised spectrum from the four-wave decomposition is the free-wave spec-

trum, which gives confidence for the correct application of the methods of the present

work.

4.7.4 The essence of wave-wave interactions in focused waves

Having verified in the previous section that the extracted linearised harmonics refer to

the free-wave spectrum, the second fundamental assumption of the present work is ex-

amined. This refers to the consideration that the governing physical process that alters

the spectrum of the free waves in 1D short propagation is the four-wave non-resonant15

nonlinear wave-wave interactions, as described by the GKE. This assumption was con-

sidered since according to the available literature the non-resonant four-wave interac-

tions is the only known mechanism that predicts spectral evolution of the free waves

in 1D. This literature was discussed earlier in Section 4.2.3, together with the physical

effects of the four-wave interactions.

To investigate the aforementioned assumption, the physical mechanism of the wave

focusing is examined in greater detail. In the vast majority of publications, the focused

wave group is examined until the focusing location and little is known to what happens

beyond that point. In experiments, this is hard to examine, since very long flumes are

required and in some cases friction of the walls may cause damping of the wave for

15In many publications non-resonant interactions may refer to bound wave interactions and the term
near-resonant interactions is used to describe four-wave interactions for which ∆ω34

12 is not necessarily
zero (see Equation 4.6).
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long propagation (Shemer et al., 2007). Even less is known about the evolution of the

free wave spectrum because the four-wave decomposition method has been applied

in a limited number of publications: in (Vyzikas et al., 2018b) for wave evolution and

in (Chen et al., 2014) and (Fitzgerald et al., 2014) for analysis of forces. None of

these works has examined the wave properties after focusing. The latter problem was

investigated only experimentally (Baldock et al., 1996) for the measured timeseries

and by (Adcock and Taylor, 2016b) using the two-wave decomposition. To do this in

practice, the reversibility of the wave group is examined, which means that it is checked

if the wave group returns to its original state after focusing. Two weaknesses of the

studies refer to the fact that not the exact free-wave spectrum was examined, so that

no robust conclusion can be made for the spectral evolution of the free waves, and

that the focusing is not as accurate as in the present study, which does not allow for

accurate comparisons at symmetric upstream and downstream locations of the focal

point. In other studies, the term "reversibility" is used to examine the case of backward

propagation of the group from the focal location to its initial state, but this mainly shows

if the numerical model is robust and not what happens during the defocusing (Gibbs

and Taylor, 2005; Adcock and Taylor, 2016a; Adcock et al., 2015). It is noted that there

is not a consensus in the literature if the non-resonant interactions are reversible: in

(Ducrozet et al., 2016c) reversibility of the envelope is not achieved, Katsardi and Swan

(2011) mentions that the changes to the wave spectrum are permanent and in (Adcock

and Taylor, 2016a) permanent changes of the spectral shape are observed; on the

other hand, the works of Adcock and Taylor (2016b) and Baldock et al. (1996) show

promising evidence of reversibility, despite the noticeable discrepancies.

Here, the problem of reversibility of the strongly nonlinear wave group is examined in

HOS-NWT. For this scope the length of the numerical domain is extended to 65 m and

WGs are added in symmetrical locations after the PF point. The results refer to the

final iteration of the focusing methodology where the wave group is nearly perfectly

focused. To compare the results at symmetrical locations the timeseries downstream

of PF are flipped in time and they are overlaid on the timeseries upstream of the PF.
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Figure 4.33: Timeseries of the measured surface elevation before and after focusing
(flipped in time) in HOS.

The results for the measured timeseries are presented in Figure 4.33. It is noted that

the results are not shifted in time to achieve better matching.

The results of Figure 4.33 indicate that the property of reversibility of wave-wave in-

teractions seems to hold as the timeseries before and after focusing are in very good

agreement. Small discrepancies are observed at the WGs at 1.63 m and 5.17 m in

Figures 4.33a and 4.33b, respectively, possibly because the wave group near the inlet

included the spurious free waves of the linear wave generation.

Next, the timeseries of the linear harmonics are isolated with the four-wave decompo-

sition and filtering out of the 5th order harmonics. The results are shown in Figure 4.34.

It can be clearly seen that the matching of the timeseries in almost perfect. Only neg-

ligible differences can be observed for the high frequency free waves at the beginning

of the timeseries in Figures 4.34a and 4.34b. The spectral analysis for the reversibility

is shown in Figure 4.35. As show in Figure 4.35, the extracted linearised amplitude

spectra before and after focusing are nearly identical at all the examined locations.

A negligible discrepancy is only observed in Figure 4.35c at f = 1.0− 1.30 Hz, which

does not seem to be an artefact of the analysis, since different time windows were
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Figure 4.34: Timeseries of the extracted linearised harmonics from the measured sur-
face elevation before and after focusing (flipped in time) in HOS.

tested and the extracted spectra remained the same. These results indicate that the

free-wave spectrum are also reversible.

The present findings are of significant importance because they demonstrate that after

25 m of propagation and considerable spectral evolution on the way, the initial spectrum

is exactly retrieved, as seen in Figure 4.35a. This proves that the wave interactions that

change the free-wave spectrum are fully reversible.

The question is now what the full reversibility of the free waves imply for the nature of

the occurring wave-wave interactions that change the free-wave spectrum during the

focusing of the wave group.

On one hand, as discussed, according to the literature the only known mechanism

that changes the free-wave spectrum in 1D is the non-resonant third order (or else

referred as four-wave interactions) and the most appropriate model to describe them

stochastically is the GKE. On the other hand, the nature of the four-wave interactions is

to bring equilibrium to a spectrum, which obtains a stable form that should not change

considerable ever after, unless disturbed by a physical mechanism such as wind input.

The fact that the free-wave spectrum after focusing returns to its initial state contradicts
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Figure 4.35: Extracted linearised spectrum from the measured surface elevation before
and after focusing (flipped in time) in HOS.

the very nature of the four-wave interactions. However, if four-wave interactions is not

the mechanism that changes the free-wave spectrum, then what this could be?

The spectral analysis of the bound nonlinear harmonics in Figure 4.2 shows that these

harmonics obtain energy as the waves approach focusing. It is also expected that as

the wave defocuses the energy of the bound waves will decrease. Based on the prin-

ciple of energy conservation, since the energy of all the bound harmonics increases

towards focusing, the only place that this energy can be taken from is the free-wave

spectrum. This consideration may imply however, that the wave-wave interactions dur-

ing focusing may be just bound interactions. According to the existing theories, bound

wave harmonics are calculated based on a known free-wave spectrum and the do not

alter the underlying spectrum. The energy of the free-wave spectrum was also tested

and it was found that Hs decreases only by 5.5% from HAM
s = 0.0477 m to HPF

s = 0.0450

m, which does not justify the energy increase in all the nonlinear harmonics, This dif-

ference in HS can be also justified to a small energy transfer in frequencies higher than

2.5 Hz in the extracted linearised harmonics that are filtered out as negligible. It is

noted however that the 2nd diff harmonics counteract pert of the effects of the high
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order harmonics (see (Vyzikas et al., 2018b)).

The conclusion of the previous analysis is that the fact that four-wave interactions are

the only mechanism that changes the underlying free-wave spectrum during the focus-

ing of unidirectional wave groups should at least not been taken for granted. Further

investigations are required on the nature of the occurring wave-wave interactions during

focusing, since the present findings suggest that there might be bound wave interac-

tions involved. If so, the GKE as derived should not be the appropriate way to model

them. Instead, if only bound interactions are the driving mechanism of the spectral evo-

lution, a model for the calculation of the estimation of the bound waves should be used

that alters the underlying spectrum. This is done in a crude way with the LTA source

term for triads, as discussed in Section A.4.4. Nevertheless, triads start dominate the

spectral evolution only at very shallow water and some preliminary trials for focused

waves in deep water, which are not presented here, showed similar spectral evolution

to finite water depth. Also, according to the experiments of Beji and Battjes (1993), the

bound waves developed by triads when the water depth decreases, become free when

the water depth increases again. Similar behaviour for the wave-wave interactions was

observed in the work of Li and Ting (2012) that examined the evolution of waves over

a submerged step using spatio-temporal techniques. Thus, triads does not seem to be

neither an appropriate mechanism to describe the spectral evolution in focused waves.

Future work should focus on determining the true nature of the wave-wave interactions

in focused wave groups.

A recent study (Aubourg et al., 2017) that was published after the present work was

completed, used an advanced stereo imaging technique to map the free surface of

random directional wave fields in a physical model, concluded that bound wave in-

teractions may drive spectral change and the results do not agree with the theory for

four-wave interactions. They suggest that in the short scale three-wave interactions are

more important and four-wave interactions are more effective in the long term. These

findings demonstrate that there may be gaps in the existing knowledge and methods
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for predicting the spectral evolution and that the wave turbulence theory is still an active

and unexplored field of research.

Before closing this section, it should be noted that despite the previous concerns, at

present, four-wave interactions as modelled with GKE is the most appropriate way to

replicate the spectral change. In this sense and based on the fact that in some cases

an equilibrium state is not achieved for the examined spectrum, one could assume

that there might be also other roles of four-wave interactions from just stabilizing the

spectrum.

4.8 Final results for groups of different steepness

The discussion in the previous sections revealed potential errors and invalidity of the

use of the GKE to describe the wave-wave interactions that take place during the focus-

ing of a wave group or the role of the four-wave interactions in spectral changes. Nev-

ertheless, the analysis of the results for the strongly nonlinear wave group (Σαi = 0.154)

in Section 4.6 demonstrated that the GKE can predict a shape of the free wave spec-

trum at short term time evolution that has to a good extent similar characteristics to the

extracted linearised spectrum of the focused wave. Based on that and on the fact that

at present the GKE is the most appropriate model yet existed to describe the evolution

of 1D spectra for short time that includes non-resonant interactions, it is used in this

section to calculate the spectral evolution for the wave groups of different steepness

(see Table 4.1).

The parameters used in the GKE equation are selected based on the analysis of Sec-

tion 4.6. As such, Dk = 0.20 m−1 is deemed adequate for the discretization of the

spectrum in κ−space and the range of the κ−grid is [Dk,10kp], since it was shown

that interactions may occur at high wavenumbers. The timestep is set to Dt = Tp/2. To

simplify the analysis and decrease the bias of selecting an equivalent time evolution

for the spectrum, the actual evolution time of the focused wave group is used from the
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inlet to the PF location, which is t = 4Tp. For this time evolution, phase mixing was

shown to cause practically no difference to the evolved spectrum. Moreover, there is

not necessarily any physical process in this theoretical case that may cause phase

mixing and the selection of the mixing intervals may add bias to the analysis. For these

reasons, phase mixing is not performed. Another parameter that was shown to have

an important impact on the spectral evolution with the GKE was the equivalent water

depth. Using an infinite water depth overpredicts the energy transfer to higher frequen-

cies, while decreasing the water depth may cause a deviation of the results from the

evolved spectrum of the focused wave. In addition, since the calculation of a reduced

equivalent water depth through Ur can be rather complicated and may add bias in the

analysis, it was decided to use the actual water depth d = 1 m.

After fixing all the other parameters in the GKE, probably the most important property

of the sea state that controls the spectral evolution is its steepness, which is deter-

mined by the Hs. The analysis in Section 4.6.2 showed that for the present case there

is no obvious advantage in using a timed dependent Hs(t). Moreover, only values of

Hs > 0.25 m caused appreciable energy transfer at 4Tp. To avoid making the selection

of Hs a trial and error exercise for achieving best comparison with the evolved spectrum

of the focused wave, it was decided to apply the same objective method for estimat-

ing the HPF
s for all the wave groups of different steepness. This is by truncating the

linearly predicted timeseries of the surface elevation at PF using a tolerance of 4 for

the amplitude sum (Σαi). At the end of the calculation with the GKE, the results are

rescaled based on the original value of Horig
s from the full timeseries. The values of

Horig
s and HPF

s are listed in Table 4.4 for the groups of different steepness. It is noted

that the steepness ε of the strongly nonlinear is well bellow 1, as it is assumed for the

derivation of the GKE.

The evolved amplitude spectra predicted by the GKE at 4Tp are compared with the

extracted linearised spectrum of the focused wave at PF for the groups of different

steepness in Figure 4.36. Here, it is again confirmed that the greatest spectral change
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Table 4.4: Significant wave height (Hs) used in GKE and resulted steepness (ε) for the
wave groups of the Gaussian spectrum.

Quasi-linear Weakly nonlinear Strongly nonlinear
Σαi (m) 0.050 0.100 0.154
Horig

s (m) 0.0155 0.0309 0.0477
HPF

s (m) 0.1189 0.2378 0.3622
ε 0.073 0.146 0.222

Figure 4.36: Comparison between the extracted linearised amplitude spectra at the PF
in HOS and the evolved amplitude spectra after 4Tp in GKE for the three wave groups
of different steepness.

occurs for the steepest wave group. More specifically, it can be seen that for the quasi-

linear wave group (Figure 4.36a) there is practically no spectral change. The bumps of

GKE at lower frequencies are artefacts of the interpolation. For the weakly nonlinear

and strongly nonlinear groups, shown in Figure 4.36b and 4.36c, respectively, the GKE

shows to predict very well the energy transfer to f > 0.9 Hz, the lowering of the energy

at f = 0.7−0.8 Hz and the main discrepancy is at the spectral peak. There, the down-

shift is captured to a good extent, but the GKE overestimates the energy compared to

the evolved spectrum of the focused wave.

The amplitude spectra of Figure 4.36 are used in the next chapter to calculate the

surface elevation.
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Figure 4.37: Comparison between the scaled source term Snl calculated by GKE for
the three wave groups of different steepness.

In the context of spectral modelling, it is interesting to present the corresponding source

term Snl for the four-wave interactions resulted from the GKE. This can be found by

subtracting the initial energy density spectrum from the evolved spectrum. The Snl are

compared in Figure 4.37 for the groups of different steepness. To allow for a more

appropriate comparison, the results have been scaled based on the strongly nonlinear

group, in a similar way as in Section 4.1.2. For the Snl however, the scaling factor

was calculated by the ratio of the energy of the spectrum, being 2.383 for the weakly

nonlinear group and 9.471 for the quasi-linear group. If the interactions were simply

proportional to the steepness, all the lines would collapse to that for Σαi = 0.154 m.

However, it can be seen that the strongly nonlinear group results in a disproportionally

greater Snl and subsequently energy transfer compared to the other groups. The Snl for

the quasi-linear group is practically zero.

The pattern of the Snl predicted by the GKE for the Gaussian spectrum agrees with

the general three lobe pattern of the Snl identified for JONSWAP spectra (Benoit et al.,

2015). The first positive lobe implies downshifting of spectral peak, while the second

positive lobe represents the energy transfer to high frequencies. The energy that is

transferred to the positive lobes is pumped from the middle of the spectrum, which

causes the lowering of the energy at f = 0.7−0.9 Hz.
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4.9 Conclusions

The present section included an in-depth analysis of the spectral changes that take

place during the focusing of a wave group. The results were analysed up to the 4th

order harmonics and emphasis was put to the evolution of the extracted linearised har-

monics. The analysis of focused groups of different steepness showed that the spectral

changes are disproportionally pronounced in the strongly nonlinear wave groups.

The evolution of the free-wave spectrum was then examined with a stochastic approach

using the GKE, after confirming the applicability of the model and adapting it for the

present case. Exhaustive tests were performed to detect the effects of the equivalent

sea state parameters used in the GKE, as well as to identify the properties of the GKE

for the different conditions tested. The results were also compared with Monte Carlo

simulations. Since the literature on the topic is very recent and limited, the present

findings can contribute to the better understanding of the properties of the GKE and

the features of the four-wave nonlinear interactions.

Overall, good agreement was observed between the evolved spectrum of the GKE and

the focused waves. The detected differences however should not be ignored since

they may reveal flaws in the underlying theory, assumptions and derivation of the GKE.

Further studies were performed to identify the potential sources of the discrepancies.

The outcomes of these studies are very important because they prove for first time in a

robust way that the wave-wave interactions in a focused wave group are fully reversible

and that the main part of extracted linearised harmonics correspond to the free waves.

These findings explain the rationality behind many works on focused waves that are

rarely discussed.

On the other hand, the present studies provided indications that four-wave interactions

may not be the physical mechanism -or at least not the only one- that controls the

evolution of the free-wave spectrum during the dispersive focusing of unidirectional

wave groups. This may be in contradiction to previous works, e.g., (Gibson and Swan,
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2007; Katsardi and Swan, 2011), where these considerations were taken for granted.

Definitely, there are open issues and future work can go to different directions. First,

experimental tests for the spectral evolution using the present method of Section 3.3

should be performed at different water depths, since the present findings show that the

behaviour of the GKE is strongly dependent on the water depth and may converge to

the spectral evolution of the focused waves if the depth is tuned appropriately. Sec-

ondly, tests with other JONSWAP-type spectra may be useful, since the distribution of

the energy over the wavenumber grid can affect the spectral evolution. Also, although,

logarithmic frequency grid is commonly applied in the literature to evaluate the source

term for the four-wave interactions, here, for the 1D case, this type of grid revealed no

spectral change. It is highlighted that the fashion that the interacting quadruplets are

selected is one of the most crucial steps in the implementation of the GKE.

Additionally, despite the confirmation that the extracted linearised harmonics corre-

spond to the free-wave spectrum, shown in this work, it would be very interesting to

compare the results of the four-wave decomposition with that of spatio-temporal anal-

ysis. This analysis is performed by comparing the spectra in the κ−space with those

in the f−space, as well as with the linear dispersion relation, and essentially iden-

tifying which part of the spectrum corresponds to the free wave components. The

κ−spectrum is particularly hard to obtain in experiments, but easy in numerical mod-

els. Such experimental studies refer to those of Shemer and Dorfman (2008) using

a CCD camera, Taklo et al. (2015) using a moving array of ultrasonic probes, Li and

Ting (2012) using PIV and Aubourg et al. (2017) using stereo-PIV for a 2D wave field.

In numerical models, Johannessen and Swan (2003); Gibson and Swan (2007) and

Johannessen (2008) employed κ − f plots to identify how the energy is distributed

amongst waves following the linear dispersion and higher harmonics.

Last but not least, in terms of the physics described by the GKE, the present results

support that the derivation of the GKE should be carefully revised in order to include

quintet interactions or to further relax the underlying assumptions, as suggested by
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Tanaka (2007) and Benoit et al. (2015). In addition, the author believes that the funda-

mental assumption that the free waves in the physical and transformed space are the

same, should be investigated very critically. This is expected to influence the bound

interactions, which in case of steep and focused waves are certainly not negligible.

This consideration may also have effects on phase-resolving models that are based on

the ZE. Also, an issue that needs further attention is the assumption that the phases

of the waves are assumed uncorrelated, which poses a limitation to the application of

the GKE for focused waves. Other assumptions that should be carefully re-examined

in the derivation of the KE is the homogeneity of the wave field, since deviations from

the Gaussian property were observed (Dysthe et al., 2003). To sum up, already from

the work of Annenkov and Shrira (2006) open questions for the properties of the KE

were identified that remain unanswered more than 10 years later, when deviations from

the classic theory for wave-wave interactions were observed (Aubourg et al., 2017),

supporting the author’s belief that more complex physics are involved in the spectral

evolution.

Despite the concerns and detected discrepancies in the applied methodology, the role

of an engineer is to provide solutions making best use of the most appropriate tools

available. Therefore, the results of the GKE for the evolved free-wave spectrum are

used in the next chapter in order to compute the surface profile of the extreme waves

studied, which, together with the kinematics, constitute the main interest from an engi-

neering point of view.
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Chapter 5

Reconstruction of the wave profile

THIS Chapter discusses the estimation of the free surface profile from the original

and evolved free-wave spectra using analytical methods. The original spectra

refer to the theoretical target spectra, while the evolved spectra are extracted from

the fully nonlinear simulation using the four-wave decomposition or calculated by the

GKE1. The scope is to examine whether the evolved free-wave spectra result in a better

estimation of the wave profile when bound waves calculated by analytical methods are

added to the linear harmonics. Such an analytical approach aims to reduce the com-

putational cost of estimating a high order nonlinear NewWave profile by fully nonlinear

numerical models. A previous study (Johannessen and Swan, 2003) demonstrated

that knowing the evolved free-wave regime can improve significantly the linear and

second order theory prediction2. Having achieved accurate focusing and using more

advanced techniques to obtain the free-wave spectrum, this idea is examined here us-

ing linear theory, second order theory, fifth order approximation, the Creamer transform

and Krasitskii’s method. Part of this work was presented in (Vyzikas et al., 2018a).

1 As discussed in Chapter 4, the final result of GKE was not identical to the extracted evolved spectrum.
Future improvement in the GKE and better understanding of the physics will make the present methods
even more relevant.

2It should be noted that the literature is not very rich in examples comparing individual harmonics
because the four-wave decomposition has only been used in limited studies and in most cases the poor
quality of the focusing can yield misleading results.
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5.1 Linear theory

In this section, the results of linear theory in space and time are presented, but also

its connection with the NewWave theory is discussed. Moreover, the validity of some

"linear" methods used in the other sections is demonstrated.

Linear theory is the simplest way to calculate a wave profile. Hereafter, this refers to a

time history of the surface elevation (timeseries) or a "snapshot" of the surface elevation

in space at a specific time (spaceseries). Most importantly, linear theory is the basis

of the NewWave theory, which, as explained in Section 2.4.1, gives the average shape

of the largest waves in a Gaussian sea as the scaled autocorrelation function of the

underlying free-wave spectrum. In practice, this refers to a superposition of the linear

wave components that constitute the spectrum, with zero phase differences, to build

an extreme wave crest. The NewWave is thus associated with focused waves (Walker

et al., 2004).

Consequently, linear theory serves as a benchmark, and almost every study that uses

focused waves compares the obtained nonlinear results with the linear theory esti-

mation. Here, the focused wave profiles based on linear theory will be compared

against the nonlinear numerical solutions of HOS-NWT using the original and evolved

free-wave spectra for the wave groups of different steepness. Similar presentation is

followed in the rest of the chapter for the other methods for reconstructing the wave

profile.

5.1.1 Mathematical formulation

The linear theory estimation of the free surface elevation at a given time t and location

x is given as the summation of N sinusoidal waves at the MWL, as shown in Equation

5.1. This expression is identical to Equation 3.2 that was given for wave generation at

the inlet boundary.
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η(x, t) =
N

∑
i=1

αi cos(kix−ωit +ψi) (5.1)

where η(x, t) is the free surface elevation expressed as timeseries at a fixed location or

as spaceseries at a given time. ki is the wavenumber of a component i calculated for

arbitrary water depth using the dispersion relation and its angular frequency ωi. The

phase of each wave component (ψi) is selected to be zero at the focal location and

time.

Since the interest here is only in the wave profile, the kinematics are not discussed.

For engineering purposes though, the interest is in the loading, which is directly linked

to the kinematics. However, using potential flow theory, the kinematics underneath a

given wave profile can be calculated (Slunyaev et al., 2013). Thus, obtaining an accu-

rate description of the free surface is essential for calculating the loading analytically.

Linear theory works sufficiently well for low amplitude waves, but it deviates from the

experimental or numerical measurements as the nonlinearity increases. Linear theory

also assumes a constant free wave regime and cannot account for spectral changes

and modulation of short waves and long waves, as shown by Longuet-Higgins (1978b)

and Longuet-Higgins (1978a). This is also the case for all the methods for calculating

bound waves hereafter, with the exception of the Creamer transform (Creamer et al.,

1989), which is discussed in Section 5.4. The problem then reduces to finding an

accurate description of the free-wave field. As noted by Johannessen and Swan (2001)

and Johannessen and Swan (2003), there is evidence that the free-wave spectrum of

focused waves changes by becoming broader in shorter timescales of a few wave

periods, compared to Hasselmann’s slow evolution (Hasselmann, 1962). They showed

that the underlying linear spectrum has similar behaviour for both unidirectional and

directionally spread focused waves when limiting breaking groups are examined, but

for a given amplitude sum the spectral changes are more pronounced for long-crested

groups, which makes the present work challenging. They also discuss that the change

of the free-wave spectrum may explain the emergence of extremes in random ocean
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background, which is of high relevance in the context of the present work.

The results in this thesis confirm the changing of the free-wave regime in short time

scales, thanks to the four-wave harmonic decomposition, which allows for accurately

isolating the free waves from the broadbanded spectrum. It can be therefore examined

to what extent the solution can be improved when the evolved free-wave spectrum is

used.

5.1.2 Results

In this section, a comparison between the wave profiles produced by the original and

evolved free-wave spectra is presented. In Section 5.6, these results will also be com-

pared against the fully nonlinear solution as well.

Figures 5.1, 5.2 and 5.3 compare the timeseries of the surface elevation at the PF

location for the groups of different steepness. The presentation starts with the steepest

group where the changes are more pronounced. The corresponding amplitude spectra

were already presented in Figure 4.36.

It can be seen from Figure 5.1 that the timeseries of the evolved free waves give

practically the same maximum crest elevation, but considerably shallower troughs and

shorter and wider adjacent crests, than the original free waves. Similar behaviour has

been noted by many authors, for example in the experimental studies of Baldock et al.

(1996) and Johannessen and Swan (2001). In those studies, relatively narrowbanded

spectra were examined, which allowed for the use of a two-wave harmonic decom-

position. For broader spectra, as in the present work, the more accurate four-wave

decomposition is required.

The differences at the timeseries are direct consequences of the spectral change of

the free-waves, i.e. downshift of the peak and energy transfer to higher frequencies.

Similar observations were also made in the numerical works of Zhao et al. (2010) and

Ning et al. (2009a) that discuss the nonlinearities in focused waves.
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Figure 5.1: Comparison of the timeseries produced by linear theory using the original,
evolved (HOS) and evolved GKE spectra with the extracted harmonic for the strongly
nonlinear group (Σαi = 0.154 m).

Careful observation shows that the extracted harmonics are in almost perfect agree-

ment with the reconstructed harmonics using the evolved spectrum from HOS-NWT

(gray line), but they are not identical, as one would expect, since the former is based

on the spectrum of the latter. However, there are some small discrepancies at the

crest. This cannot be justified by the definition of the spectra, since all the spectra

used herein have been truncated to [0, 2.5 Hz], which was the definition of the origi-

nal spectrum, and they have exactly the same d f . The only explanations that can be

given at this stage are that the difference between linear theory and extracted harmonic

may be due to the fact that some high frequency waves of the linear harmonics may

not travel according to linear dispersion, as discussed in Section 4.7.3, and that the

phases of these high frequency components are not effectively corrected by the focus-

ing methodology (see Figure 3.12) and thus, they may not be exactly zero as assumed

for the reconstruction of the signal. It may also be the case that these two effects are

in reality connected and consequences of one another.

Another noticeable aspect in Figure 5.1 is that the timeseries of the GKE spectrum has

considerably higher crest and somewhat sharper adjacent crests. This is because the

differences between the extracted spectra and those of GKE were not negligible as

discussed before (see comment 1).

Regarding the wave groups of more moderate steepness, as seen in Figure 5.2, the
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Figure 5.2: Comparison of the timeseries produced by linear theory using the original,
evolved (HOS) and evolved GKE spectra with the extracted harmonic for the weakly
nonlinear group (Σαi = 0.100 m).

Figure 5.3: Comparison of the timeseries produced by linear theory using the original,
evolved (HOS) and evolved GKE spectra with the extracted harmonic for the quasi-
linear group (Σαi = 0.050 m).

timeseries of the evolved weakly nonlinear group have noticeable differences only at

the crest and troughs, where a marginal elevation is seen for the evolved spectra. The

lateral crests are also lower. On the other hand, the evolved quasi-linear group seems

to have practically identical timeseries to the original linear harmonics, as shown in Fig-

ure 5.3. This is expected since the free-wave spectrum remained almost unchanged.

The spaceseries of the surface displacement can be produced by linear theory for a

given time t instance by Equation 5.1. Although, in general, from an engineering point

of view, the spatial information is less interesting than the timeseries at the location

of the structure, the spatial information can offer insights in the physics of the wave

group. Also, if the structure is not slender compared to the wavelength (e.g. Pelamis
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or long ships), the fluid-structure interaction problem should include spatial information

of the wave dynamics. Figure 5.4 shows the snapshot of the free surface for the focal

time t = 0 s for the groups of different steepness. The extracted harmonic is absent be-

cause the four-wave decomposition was applied in time and not in space. It is expected

though to be very close to the result of the HOS spectrum. It can be seen that for the

lowest (quasi-nonlinear group) the three underlying spectra produce practically identi-

cal spaceseries. However, as the steepness of the group increases and the underlying

spectra begin to differ, the evolved spectra give a narrower and higher crest than that of

the original spectrum. Also, the troughs become shallower and flatter. For the limiting

breaking wave group, it can be seen that the linearly predicted surface profile based on

the original spectrum is altered considerably when the evolved spectrum is used. The

outlier, however, especially for the maximum crest elevation, is the linear wave group

produced by the GKE spectrum, which seems to have a significantly higher crest.

It is interesting to notice that the ordinate (y = 0) intersects the crest of the groups

almost at the same locations ±0.88 m. Applying the dispersion relation, it is found

that 2× 0.88 corresponds to approximately Lp/2 of the original spectrum. On the

other hand, the distance between the local minima of the troughs is not the same

between the wave groups. For the steepest group, the minima of the troughs are at

±1.82 m for the evolved spectrum of HOS. Applying the dispersion relation, this dis-

tance corresponds to Lp/2 of the original spectrum. This geometric characteristic of

the focused group is quite interesting and shows that despite the downshifting of the

spectral peak at the evolved spectrum, the linear harmonics of the limiting breaking

group have a wavelength which is that of the original Lp, and also, the zero upcrossing-

downcrossing wavelength at the crest is half of the trough-to-trough wavelength. To

the author’s best knowledge, there is not a universal definition of the wavelength of a

focused wave, but here it is shown that the three possible definitions, based on fp, crest

zero-crossings and trough-to-trough, can actually converge for the linear harmonic of

the limiting breaking wave group and for the examined Gaussian amplitude spectrum.
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Figure 5.4: Comparison of the spaceseries produced by linear theory using the target,
evolved (HOS) and evolved GKE spectra for the wave groups of different steepness.

The transition from timeseries to spaceseries, or else defined from κ−spectrum to

f−spectrum, requires the assumption of linear wave theory, at least the way it is used

in the present study (see Equation 4.26). Here, it would be useful to demonstrate

the validity of transition from space to time, since it is used also later for the Creamer

transform in Section 5.4. The first step towards that is to check the validity and accu-

racy of performing FFT in space and reconstructing the surface elevation. Figure 5.5

compares the result of reconstructed surface elevation with amplitude κ−spectra ob-

tained from FFT of spaceseries of different spatial resolution Dx and same total length,

which results in a same Dk. The latter is also calculated directly from the FFT, as a

distance between two successive wavenumbers in the resulted regular κ−grid. The

reconstructed spaceseries are also compared with the results of Inverse Fast Fourier

Transform (IFFT) of given synthetic κ−spectra of similar characteristics. The obtained

spaceseries are identical at the points of calculation and the only visual difference is

because of the linear interpolation. This also shows that the selection of the initial Dx

(or Dt) only influences the resolution and not the spaceseries (or timeseries), provided

that the space-time operations are done correctly.
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Figure 5.5: Comparison of the spaceseries obtained with different methods using the
original amplitude spectrum.

Figure 5.6: Comparison of the timeseries obtained by sampling the linear spaceseries
at different t and the timeseries produced by the original amplitude spectrum.

In the case that timeseries are not available, but only the spatial information is known at

different time instances, it is straightforward to show that the timeseries at the location

of interest can be obtained by sampling on the spaceseries at that specific location

at given times. Figure 5.6 shows the sampled timeseries from the spaceseries at a

specific location, here x =PF. These correspond to the exact values of the original

timeseries. This technique is used in Section 5.4.

5.1.3 Conclusions

The reconstruction of the timeseries of the surface elevation according to linear theory

showed that the extracted linear harmonics can be rebuilt with very high accuracy.

The use of the evolved free-wave spectrum results in a NewWave group that has very

similar crest height, but considerably shallower and flatter troughs compared to the

NewWave group based on the original free-wave spectrum. The differences are more
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pronounced for the steepest wave group, following the larger differences between the

original and evolved underlying spectra. The present results are in at least qualitative

agreement with previous studies.

The consistency of the space-time transition based on linear theory was also confirmed

and can be used in the following sections with confidence. The spaceseries of the wave

profile revealed that increasing steepness of the group results in a NewWave spatial

profile with shallower and flatter troughs and marginally higher crest.

5.2 Second order theory

Second order theory calculates the exact solution of the 2nd order bound waves as the

summation of any possible interactions between any two wave components of the free-

wave spectrum. The interaction coefficients were given by Dalzell (1999) for finite depth

by extending the existed solution of infinite depth. The formulation does not consider

any pre-assumptions for the underlying spectrum, nor for the number of interacting

components, but relies on a constant free-wave spectrum. The main issue with second

order theory is the relatively high computational cost compared to linear theory.

For a given linear spectrum, second order theory adds 2nd order sum and difference

bound waves. The exact solution of Dalzell (1999) has been applied already in many

studies, ranging from random simulations to derive statistics (Fedele and Tayfun, 2009)

to steep focused wave groups (Shemer and Dorfman, 2008), or calculation of the 2nd

order boundary conditions in CFD NWTs (Hu et al., 2011; Westphalen et al., 2012; Hu

et al., 2014)(see 1 in Appendix A). In the analysis of field data, the main challenge is

to determine the underlying linear field (Slunyaev et al., 2011; Jonathan and Taylor,

1997), especially due to the potential directionality of the waves (Adcock et al., 2011).

This process usually starts with a linear initial assumption of the wave field with added

second order bound waves. Iterations are then performed until the calculated wave

field matches the measured wave profile. In the present case, this is not required
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because the original linear spectrum is defined theoretically and the evolved spectrum

is extracted with accuracy.

5.2.1 Mathematical formulation

The second order summation was given for two waves by Dalzell (1999), who also

applied it for an irregular wave signal. Here, the expressions presented refer to an

arbitrary number of linear wave components (N), propagating in a single direction on

finite water depth.

Before giving the final formulae, the assumptions and the derivation steps of Dalzell

(1999) are presented. The problem of the wave-wave interactions was solved following

a similar approach to that of Longuet-Higgins (1962), but Dalzell employed symbolic

computations in Maple V for the coefficients. The derivation was based on potential

flow theory, assuming irrotational, incompressible and inviscid flow, and applying the

kinematic and dynamic boundary conditions at the free surface. The solution at the

free surface was approximated by means of Taylor’s expansion, truncated at the de-

sired order. The first and second order terms were then grouped and coefficients were

calculated. The linear and 2nd order dispersion relation were satisfied for finding coef-

ficients of the linear and second order interactions. The derivation was performed for

finite water depth, but the deep water solution can be easily retrieved. Dalzell (1999)

also showed that for only one wave interacting with itself, the solution reduces to a

Stokes 2nd order regular wave, while if two waves with opposite phases interact, the

solution of a standing wave is obtained.

According to second order theory, the surface elevation η is given from the first har-

monic and the matrix of the 2nd order interactions with each free wave with all the rest,

including the self-interaction, as shown in Equation 5.2. Commonly, the 2nd order terms

are grouped in 2nd sum and 2nd difference terms, at double and half the frequency of

the wave group, respectively. The 2nd order harmonics are calculated by Equations

5.3 and 5.4 and the coefficients are given in Equations 5.5 and 5.8 for any possible
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combination of any wave component i with a component j.

η =
N

∑
i=1

αi cosψi + 2nd sum + 2nd difference (5.2)

where the phase function of a wave i, ψi = kix−ωit + εi, with εi the arbitrary phase of a

wave, αi is the wave amplitude of first order.

2nd sum =
N

∑
i, j=1

α2
i |ki|

4tanh(|ki|h)

[
2+

3
sinh2(|ki|h)

]
cos(2ψi)

+ αiα jBp(ki,k j)cos(ψi +ψ j)

(5.3)

2nd difference = αiα jBm(ki,k j)cos(φi−ψ j)−
n

∑
i, j=1

a2
i |ki|

2sinh(2|ki|h)
(5.4)

The solution above is given for non-zero MWL, which corresponds to the last term

in Equation 5.4. In the present case, provided that the window of the timeseries is

sufficiently wide to include the entire wave group, the MWL is negligible. Nevertheless,

the wave-wave interaction coefficients are independent from the MWL and for their

calculation only Bp(ki,k j) and Bm(ki,k j) are needed. As mentioned, unidirectional wave

propagation is assumed for the present case, meaning that the angle between the

components is zero and the cos(φi−φ j) = 1.

Bp(ki,k j) =
ω2

i +ω2
j

2g
−

ωiω j

2g

[
1− 1

tanh(|ki|h) tanh(|k j|h)

]
×
[
(ωi +ω j)

2 +g|ki + k j| tanh(|ki + k j|h)
Dp(ki,k j)

]
+

ωi +ω j

2gDp(ki,k j)

[
ω3

i

sinh2(|ki|h)
+

ω3
j

sinh2(|k j|h)

] (5.5)
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Bm(ki,k j) =
ω2

i +ω2
j

2g
+

ωiω j

2g

[
1+

1
tanh(|ki|h) tanh(|k j|h)

]
×
[
(ωi−ω j)

2 +g|ki− k j| tanh(|ki− k j|h)
Dm(ki,k j)

]
+

ωi−ω j

2gDm(ki,k j)

[
ω3

i

sinh2(|ki|h)
−

ω3
j

sinh2(|k j|h)

] (5.6)

where the functions Dp(ki,k j) and Dm(ki,k j) are defined as:

Dp(ki,k j) = (ωi +ω j)
2−g|ki + k j| tanh(|ki + k j|h) (5.7)

Dm(ki,k j) = (ωi−ω j)
2−g|ki− k j| tanh(|ki− k j|h) (5.8)

As mentioned, the calculated 2nd order solution is a summation of sum and difference

harmonics. The former are high frequency terms that result in a steeper local wave

profile, while the latter are low frequency terms causing a wider set-down under the

wave group, virtually decreasing the MWL (Baldock et al., 1996). Consequently, the

sum terms cause an asymmetry of the wave profile around the MWL, making shallower

troughs and higher and narrower crests. These effects increase for higher values of

steepness (Hs) (Dalzell, 1999).

In practice, second order theory was proven successful in representing the largest

waves in real ocean, where directionality is an important factor (Gibbs and Taylor,

2005; Johannessen and Swan, 2003), and it is useful for producing statistical distribu-

tions for the wave crests. Nevertheless, if the underlying free-wave spectrum changes

due to resonant third order interactions, deviations from second order theory are re-

ported (Fedele and Tayfun, 2009). For unidirectional seas, on the other hand, 2nd order

harmonics are not adequate to capture the crest height if the steepness is high, as

discussed later.
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In the next section, the results of second order theory prediction are examined using

the original and the evolved spectrum for unidirectional wave propagation.

5.2.2 Results

The second order theory prediction for the groups of different steepness is analysed

in the spectral domain and in the time domain for the 2nd order sum and difference

harmonics produced based on the original and evolved linear harmonics. Also, the

timeseries of the total surface elevation is presented for each group and compared

with the result of the fully-nonlinear model HOS-NWT.

The presentation starts with the steepest wave group that results in greater spectral

evolution and larger 2nd order harmonics (Figures 5.7 - 5.9). The spectral analysis in

Figure 5.7 shows that the 2nd order sum and difference harmonics in Figures 5.7b and

5.7c3, calculated based on the original free-wave spectrum, shown in Figure 5.7a, dif-

fer considerably from those calculated by the extracted evolved linear harmonics (gray

line). As the free-wave spectrum broadens to higher frequencies, the calculated 2nd

order harmonics also become wider towards high frequencies and their peak value is

lowered. The second order prediction based on the evolved spectrum from the NWT

is closer to the extracted 2nd order harmonics from the NWT than those calculated ac-

cording to the original spectrum. However, there are some noticeable deviations: i) the

peaks of the extracted harmonics are higher, ii) the extracted 2nd difference harmon-

ics seem to be more energetic at least in the part of the frequencies that were not

filtered out and iii) the analytically calculated 2nd difference harmonics seem to expand

to higher frequencies. These differences cannot be justified at this stage and can be

possibly associated with potential deficiencies of the harmonic decomposition. Some-

what surprisingly, the error of the free-wave spectrum of GKE seems to result in more

realistic representation of the 2nd order harmonics.

3The values of the 2nd order harmonics have a local discrepancy at f = 0 Hz because the value of the
amplitude spectrum below Dk was forced to zero, as it was not calculated by the GKE (see Figure 4.36).
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Figure 5.7: Comparison of the target, estimated evolved and extracted spectra at the
PF location using 2nd order theory: (a) Linear spectrum; (b) 2nd order sum; (c) 2nd order
difference. Strongly nonlinear group.

The timeseries of the harmonics to second order are shown in Figure 5.8. It can be

seen that the evolved linear harmonics with the shallower troughs and wider adjacent

crests (Figure 5.8a) result in considerably different 2nd order sum and difference har-

monics in Figures 5.8b and 5.8c, respectively. Using the evolved linear harmonics from

the NWT to calculate the 2nd order harmonics gives a more realistic representation

of the extracted 2nd order harmonics from the four-wave decomposition. The analyt-

ically calculated crest of the 2nd sum harmonic increases from 0.0341 m to 0.0403

m, approaching the crest of the extracted harmonic (0.0447 m). The adjacent crests

are accurately calculated when the evolved spectrum is used, but the troughs, instead

of becoming deeper, actually become shallower. It is interesting to note that using the

evolved spectrum of the GKE, the 2nd sum harmonics is very accurately computed. Re-

garding the 2nd difference harmonics, using the extracted evolved spectrum results in

a better represented set-down compared to the extracted harmonics, which is deeper

and narrower. The solution is considerably improved with the trough getting deeper

from -0.01796 m to -0.02288 m, with the value for the extracted harmonic being -

0.02843 m. Again, the spectrum of the GKE offers a better solution for the 2nd dif-
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Figure 5.8: Comparison of the target, estimated evolved and extracted timeseries at
the PF location using 2nd order theory: (a) Linear harmonics; (b) 2nd order sum; (c) 2nd

order difference. Strongly nonlinear group.

ference harmonics, but still without being able to match the extracted one. It is also

interesting to note that before and after the main trough (t ∈ [−1,1] in Figure 5.8c) the

analytical solution predicts almost zero surface displacement, while the extracted har-

monic has a surge before the trough and set-down after. This is an indication of the

issues of the NWT in reproducing well this low frequency harmonics.

The overall effect on the surface elevation of using the evolved free-wave spectra is

presented in Figure 5.9, where it is compared with the fully nonlinear timeseries of

HOS. It can be seen that the evolved spectra result in a more realistic shape of the wave

group, which compares very well with the measurement at the adjacent crests and

troughs, in contrast to the analytical solution based on the original spectrum. The main

differences appear at the central crest where the second order solution underpredicts

the crest height irrespectively of the underlying linear spectrum used. The extracted

evolved spectrum combined with second order theory predicts a crest height of 0.1739

m, which is a marginal improvement towards the measured elevation of 0.2045 m. The

use of the evolved spectrum of the GKE gives a value of 0.1877 m, which mainly comes
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Figure 5.9: Comparison of measured timeseries and the timeseries up to 2nd order
based on the target, estimated evolved and extracted spectra at the PF location.
Strongly nonlinear group.

from the overestimation of the timeseries of the linear harmonics, but it also induces

some discrepancies at the lateral crests.

The same analysis is performed for the groups of moderate steepness. The results

that follow show that as the steepness of the group decreases, the extracted 2nd order

harmonics are more similar to those analytically calculated.

For the weakly nonlinear group, Figures 5.10 and 5.11 show that the agreement be-

tween the extracted 2nd order sum harmonics and the analytically calculated from sec-

ond order theory is considerably improved when the evolved spectrum is employed.

The timeseries show that crest height calculated by the extracted evolved and the

spectrum of GKE are almost identical and marginally below the extracted 2nd order

sum harmonics. Some small differences at the lateral troughs of this harmonic are

reported, with the GKE giving more realistic deeper troughs. The 2nd difference har-

monics of the evolved spectra are in better agreement with the extracted harmonics

compared to the original spectra, but they still underestimate the depth of the trough.

The overall result of the surface timeseries in Figure 5.12 shows that the prediction of

the crest height is improved from 0.1068 m to 0.1085 m when the extracted evolved

free-wave spectrum is used and approaches better the fully nonlinear crest of 0.1123

m. The GKE spectrum predicts a crest of 0.1097 m, with this difference coming mainly

from the overestimation of the linear harmonics.
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Figure 5.10: Comparison of the target, estimated evolved and extracted spectra at the
PF location using 2nd order theory: (a) Linear spectrum; (b) 2nd order sum; (c) 2nd order
difference. Weakly nonlinear group.

The analysis of the quasi-linear group, which has practically no difference between

the original and evolved free-wave spectra, shows that the spectra of the 2nd order

harmonics calculated from the second order theory are in very good agreement with

the extracted harmonics (see Figure 5.13). This is also confirmed by the timeseries

of the harmonics in Figure 5.14, with the only discrepancies seen in the 2nd difference

harmonics, where the extracted harmonics is deeper than the analytically calculated.

The timeseries of the overall surface displacement in Figure 5.15 demonstrate that

second order theory is adequate to describe the fully nonlinear solution of this group

of low steepness. The crest height increases from 0.05168 m to 0.05194 m and to

0.05218 m when the evolved extracted and GKE spectra are used, respectively. The

measured maximum elevation at the crest of the HOS-NWT simulation is 0.05219 m.

Similar qualitative conclusions were drawn from previous studies. Baldock et al. (1996)

reported that increasing steepness of the group causes deviations from the second

order theory of Longuet-Higgins and Stewart (1960). The deviations from analytical

solutions of linear and second order theory were attributed to the local broadening of
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Figure 5.11: Comparison of the target, estimated evolved and extracted timeseries at
the PF location using 2nd order theory: (a) Linear harmonics; (b) 2nd order sum; (c) 2nd

order difference. Weakly nonlinear group.

the free-wave spectrum that take place in short timescales of the propagation of the

wave group towards focusing in the study (Johannessen and Swan, 2003). That work

was later extended to examine kinematics, showing that knowing the evolved free wave

regime improves the solution for the horizontal velocity profile even for nearly breaking

unidirectional wave groups (Johannessen, 2010), which highlights the importance of

the spectral evolution for engineering applications. Ning et al. (2008) and Ning et al.

(2009b) also compared the results of fully nonlinear focused waves with the second

order theory of Dalzell (1999). The results confirm that the asymmetries of the wave

Figure 5.12: Comparison of measured timeseries and the timeseries up to 2nd or-
der based on the target, estimated evolved and extracted spectra at the PF location.
Weakly nonlinear group.
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Figure 5.13: Comparison of the target, estimated evolved and extracted spectra at the
PF location using 2nd order theory: (a) Linear spectrum; (b) 2nd order sum; (c) 2nd order
difference. Quasi-linear group.

profile increase with increasing steepness of the wave group, with the crests becoming

higher and the troughs shallower. Compared to the fully nonlinear solution, the predic-

tion of linear and second order theory produce a broader and lower crest and deeper

and sharper troughs, indicating that energy is transferred to higher than 2nd order har-

monics. For the steeper groups, it was also seen that the dispersive properties of the

wave profile were altered. The potential of second order theory to describe accurately

steep wave groups when combined with the evolved free-wave spectrum was demon-

strated by Gibbs and Taylor (2005) for directional waves, where the effects of higher

than 2nd order bound harmonics could be neglected. Therefore, the present methods

for calculating the free-wave spectrum and combining it with 2nd order bound waves

may be even more relevant for realistic directionally spread focused waves.

When comparing with previous studies an issue is that the waves groups are not ac-

curately focused and the results are commonly timeshifted, e.g., (Ning et al., 2009b).

Despite the fact that the timeshifting manages to align the crests, the phases of the

waves are not accurately corrected, which can result in considerable differences in the

crest height and overall shape. Another equally important issue refers to the extrac-
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Figure 5.14: Comparison of the target, estimated evolved and extracted timeseries at
the PF location using 2nd order theory: (a) Linear harmonics; (b) 2nd order sum; (c) 2nd

order difference. Quasi-linear group.

tion of the free-wave spectrum. The aforementioned studies (Johannessen and Swan,

2003; Ning et al., 2008, 2009b), among many others, employ a two-wave decompo-

sition method, which is only accurate for narrowbanded spectra, because the 1st and

the 3rd harmonics are only separated with frequency filtering. However, the analysis

of this section demonstrated that both linear and 2nd order analytical solutions are rel-

atively sensitive to the definition of the free-wave spectrum, which here was obtained

accurately by the four-wave decomposition.

Figure 5.15: Comparison of measured timeseries and the timeseries up to 2nd order
based on the target, estimated evolved and extracted spectra at the PF location. Quasi-
linear group.
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Last but not least, to make realistic comparisons with fully nonlinear results, the wave

group should propagate adequately long in the nonlinear numerical domain, in order to

allow for both bound and resonant nonlinearities to develop. For example, the propa-

gation from the inlet until the focal point is only 1.5Lp in the study of Ning et al. (2009b),

which means that on one hand, the wave group is not well dispersed at the inlet in

order for second order solution to be valid (at least for steep groups), and on the other

hand, the resonant interactions may not have enough time to develop. Despite sav-

ing computational resources with shorter NWTs, these aspects should be examined

carefully.

5.2.3 Conclusions

The present results show that second order theory can provide a good representation

of focused waves, especially when the locally broadened free-wave spectrum is used.

In particular, the overall shape of the group is better predicted compared to the results

obtained by using the original spectrum. However, the maximum crest elevation shows

a more gentle increase, which is not adequate to match that of the strongly nonlinear

group from the fully nonlinear computation.

An important finding is the validity of second order theory by comparing the results

with the extracted 2nd order harmonics. The extracted 2nd order harmonics of the fully

nonlinear simulation are in good agreement with the analytically produced harmon-

ics based on the evolved spectra. This agreement becomes excellent for waves of

moderate steepness. The discrepancies between theoretical and extracted harmonics

cannot be readily justified, but they may be related to limitations of analytical solution

for very steep waves close to their breaking limit or to some deficiencies of the four-

wave decomposition. It is noted that the focused wave crest obtains its maximum only

locally and does not propagate at this extreme steepness. Thus, future work should

examine whether such high steepness violates the underlying assumptions of second

order theory. It is also reported that the discrepancies between the extracted and com-
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puted harmonics are more pronounced for the 2nd difference harmonic, which was also

challenging to replicate in the numerical models, as shown in Chapter 3.

Another interesting result is that the 2nd order harmonics produced based on the evolved

spectrum of the GKE are in very good agreement with the extracted harmonics, which

paradoxically is better than that when the extracted free-wave spectrum from HOS is

used. This agreement is in particular remarkable for the 2nd sum harmonics, but it may

simply be a case specific finding.

5.3 Fifth order expansion

In this section, the result of the fifth order expansion of Walker et al. (2004) is examined

for estimating the bound waves up to 5th order. The formulation is based on the Stokes

expansion of Fenton (1985) developed for a slowly modulated wave train. This is an

approximate solution for the high order bound harmonics that, to the best of the author’s

knowledge, has been applied only for the case of the Draupner wave by Walker et al.

(2004). The main issue of that study was that the characteristics of the underlying free-

wave spectrum were not known and thus, any discrepancies can be associated with

that limitation. Here, since the original and evolved free-wave spectra are known, the

accuracy of the fifth order expansion for estimating the shape of focusing wave groups

of varying steepness can be tested with accuracy.

The experimental work of Taklo et al. (2015) and the results presented in Chapter

3, identified bound wave harmonics up to 5th order as the wave group approaches

focusing, which makes the fifth order expansion an interesting approach for improving

the linear NewWave solution.
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5.3.1 Mathematical formulation

The derivation of the fifth order expansion is given in (Walker et al., 2004) and it uses

the general formulation and coefficients of Fenton (1985). As mentioned, in the study

of Walker et al. (2004) the linear part is not known and it has to be estimated from the

fully nonlinear signal making some assumptions. Another consequence of that is that

the value of kd needed for the expansion was not known and a large part of the study

was devoted in estimating it. Here, the mathematical description of the expansion is

given and the aforementioned limitations of the work of Walker et al. (2004) will be

discussed in comparison to the present work.

To begin with, the underlying assumptions are discussed. The fifth order Stokes theory

of Fenton (1985) assumes that waves propagate according to linear dispersion rela-

tion relative to any existent mean flow (current) in constant water depth. According to

Stokes theory the wave is periodic and steady, and consequently, it can be expressed in

Fourier series. These can be written as perturbation expansions that have parameters

which satisfy the boundary conditions on the free surface, namely, the Bernoulli’s equa-

tion for an incompressible and irrotational fluid that also satisfies the Laplace equation.

The parameters used are the dimensionless wave height k H
2 , which corresponds to the

wave steepness, with H being the wave height, and the dimensionless water depth kd.

Therefore, to expand the solution to fifth order, the wavenumber (k) and the water depth

(d) should be known. For a regular wave k is related to d by the linear dispersion. The

theory of Fenton (1985) can be used to expand the regular wave to high orders and

it was found to be accurate for wavelengths that are sorter than ten times the water

depth. There are however limits for the shallow and deep water that are discussed in

the original paper.

The solution of the free surface profile (η(x)) can be given as a number of power

series, truncated at fifth order, with the wave steepness as the expansion parameter.

The free surface profile is calculated by Equation 5.9, which corresponds to Equation

14 in (Fenton, 1985).
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kη(x) = kd + εB11 cos(kx)+ ε
2B22 cos(2kx)+ ε

3B31[cos(kx)− cos(3kx)]

+ ε
4[B42 cos(2kx)+B44 cos(4kx)]

+ ε
5[−(B53 +B55)cos(kx)+B53 cos(3kx)+B55 cos(5kx)]+O(ε)

(5.9)

where ε = k H
2 , which is taken here as ε = kα, since the individual waves that form the

wave group are of low amplitude and thus, are considered linear waves.

The Bi j coefficients are given as hyperbolic functions of kd. These coefficients are

also found in (Fenton, 1985)4. The values of Bi j coefficients are given for the specific

value of kd = 0.753981 in the original paper, which served as a validation of the correct

calculation of the coefficients for the present work.

B11 = 1 (5.10a)

B22 =
coth(kd)(1+2C)

2(1−C)
(5.10b)

B31 =−
3(1+3C+3C2 +2C3

8(1−C)3 (5.10c)

B33 =−B31 (5.10d)

B42 =
coth(kd)(6−26C−182C2−204C3−25C4 +26C5)

6(3+2C)(1−C)4 (5.10e)

B44 =
coth(kd)(24+92C+122C2 +66C3 +67C4 +34C5)

24(3+2C)(1−C)4 (5.10f)

B51 =−(B53 +B55) (5.10g)

B53 =
9(132+17C−2216C2−5897C3−6292C4−2687C5 +194C6 +467C7 +82C8

128(3+2C)(4+C)(1−C)6

(5.10h)

B55 =
5(300+1579C+3176C2 +2949C3 +1188C4 +675C5 +1326C6 +827C7 +130C8

384(3+2C)(4+C)(1−C)6

(5.10i)

4NB: In (Walker et al., 2004) there is a misprint for B31, which has the opposite sign.
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where C = sech(2kd).

The fifth order solution of Fenton (1985) provides a relatively simple way to calculate

the high order bound waves of periodic waves. Based on this solution, Walker et al.

(2004) provided an approximate solution for a periodic wave train, which corresponds

to the NewWave profile and it is valid locally in space and time. The limitations of their

work are discussed at the end of this section.

Equation 5.9 can be simplified by changing the original coordinate system from the

bottom to the still water level (SWL) and by assuming that the SWL is defined at the

MWL, the water depth d can be removed from the right hand side. Further, after dividing

with the wavenumber and replacing the wave steepness with ε = kα, Equation 5.11 is

obtained.

η(x) = αB11 cos(kx)

+ kα
2B22 cos(2kx)

+ k2
α

3B31[cos(kx)− cos(3kx)]

+ k3
α

4[B42 cos(2kx)+B44 cos(4kx)]

+ k4
α

5[−(B53 +B55)cos(kx)+B53 cos(3kx)+B55 cos(5kx)]

(5.11)

An expression of Equation 5.11 can be presented based on the modified Stokes coef-

ficients Si j (see Equation A11 in the Appendix A of (Walker et al., 2004)). This results

to Equation 5.12, which introduces the new variables Di j.

η =S11D11 +
S22

d
D22 +

S31

d2 D31 +
S33

d2 D33 +
S42

d3 D42

+
S44

d3 D44 +
S51

d4 D51 +
S53

d4 D53 +
S55

d4 D55

(5.12)

The variables Di j, given in Equation 5.13, contain the phase and amplitude of the wave
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form, being defined by the linear wave profile (ηL) and its Hilbert transform (ηLH), which

practically changes the cos to sin function in the wave equation.

D11 = ηL = α cos(θ) (5.13a)

D22 = η
2
L−η

2
LH = α

2 cos(2θ) (5.13b)

D31 = (η2
L +η

2
LH)ηL = α

3 cos(θ) (5.13c)

D33 = (η2
L−3η

2
LH)ηL = α

3 cos(3θ) (5.13d)

D42 = (η2
L +η

2
LH)(η

2
L−n2

LH) = α
4 cos(2θ) (5.13e)

D44 = (η2
L−η

2
LH)

2− (2ηLηLH)
2 = α

4 cos(4θ) (5.13f)

D51 = (η2
L +η

2
LH)

2
ηL = α

5 cos(θ) (5.13g)

D53 = (η2
L +η

2
LH)[ηL(η

2
L−3η

2
LH)] = α

5 cos(3θ) (5.13h)

D55 = [(η2
L−η

2
LH)

2− (2ηLηLH)
2]ηL−4η

2
LHηL(η

2
L−η

2
LH) = α

5 cos(5θ) (5.13i)

(5.13j)

What is left to obtain the surface profile is to calculate the Si j coefficients. This can

be done by comparing Equation 5.11 with 5.12, after replacing in the latter the Di j

coefficients from Equations 5.13 with their form that contains the cosθ function, where

θ = kx. The arguments of the cos functions indicate which products should be equated.

The calculations of Si j are shown in Equations 5.14 and they are not given in the paper

of Walker et al. (2004).
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αB11 = S11α ⇒ S11 = B11 = 1 (5.14a)

kα
2B22 =

S22

d
α

2⇒ S22 = kB22d (5.14b)

k2
α

3B31 =
S31

d2 α
3⇒ S31 = k2B31d2 (5.14c)

−k2
α

3B31 =
S33

d2 α
3⇒ S33 =−k2B31d2 = k2B33d2 (5.14d)

k3
α

4B42 =
S42

d3 α
4⇒ S42 = k3B42d3 (5.14e)

k3
α

4B44 =
S44

d3 α
4⇒ S44 = k3B44d3 (5.14f)

k4
α

5[−(B53 +B55)] =
S51

d4 α
5⇒ S51 = k4[−(B53 +B55)]d4

with − (B53 +B55) = B51

(5.14g)

k4
α

5B53 =
S53

d4 α
5⇒ S53 = k4B53d4 (5.14h)

k4
α

5B55 =
S55

d4 α
5⇒ S55 = k4B55d4 (5.14i)

(5.14j)

Equation 5.12 can be now solved. For better interpretation, the terms have be re-

grouped in Equation 5.15, showing the different orders in separate lines in ascending

order from first to fifth. For clarification, the first and second indices of the coefficients

correspond to Stokes amplitude order and the harmonic of the frequency, respectively5.

η = S11D11 +
S31

d2 D31 +
S51

d4 D51

+
S22

d
D22 +

S42

d3 D42

+
S33

d2 D33 +
S53

d4 D53

+
S44

d3 D44

+
S55

d4 D55

(5.15)

5Personal communication with P.H. Taylor, June 2016.
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As mentioned, the fifth order expansion calculates only the high frequency harmonics.

The calculation of the low frequency bound harmonics is more complex and in (Walker

et al., 2004) a simple but crude approximation was suggested considering only the

second order self interactions based on (Dean and Dalrymple, 1991)5. Since, for the

present case the MWL is the same as the SWL, the Equation 14 in (Walker et al.,

2004) reduces to Equation 5.16, considering α2 = 0. However, it is noted that in the

end Walker et al. (2004) did not use this formula and calculated the 2nd difference con-

tribution by low-pass filtering and compared it with the exact second order solution of

Dalzell (1999). Considerable differences were reported by Walker et al. (2004) for the

case of Draupner wave, which exhibited a set-up instead of a set-down. This was ex-

plained later by Adcock et al. (2011) as an effect of directionality with two crossing sea

states and thus, it was impossible to be explained under the unidirectional propagation

considered by Walker et al. (2004).

η2− =− α2k
2sinh(2kd)

(5.16)

Before presenting the application of the fifth order expansion on the present results, its

application in the study of Walker et al. (2004) and their findings are briefly discussed.

The scope of the work of Walker et al. (2004) was to provide an improved NewWave

definition that includes bound harmonics to fifth order and to approximate the shape

of the Draupner wave. The first step in doing that was to find a technique to estimate

the underlying linear harmonics from the fully-nonlinear signal measured in the sea.

This is a major challenge and it was done by assuming unidirectional waves and that

the random signal consists of only linear and 2nd order bound waves. The validity of

this approach is tested by calculating the skewness of the estimated linear harmonic,

which for a random linear Gaussian sea should be equal to 0. Despite finding a value

which is close to that by excluding the Draupner wave from the record, the issue is that

this criterion is not a priori valid, since the phases of the waves in the record are not

necessarily Gaussianly distributed. A similar technique was used by Whittaker et al.
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(2016) for recordings in shallower water. Another issue is that the fifth order expansion

makes the assumption of a narrowbanded spectrum, which actually restricts it from

application at the present case. However, the analysis of Whittaker et al. (2016) showed

that it also works well for broadbanded spectra and kd ≥ 1 and has almost identical

results to the exact solution of Dalzell (1999). This gives confidence for applying the

expansion at the present broadbadned spectrum of kpd ≈ 1.7.

A crucial step in this methodology is the selection of the kd, or practically k, since the

depth d is known. In an irregular wave record, the selection of k is ambiguous be-

cause a representative wavenumber should be selected, which can be based on, e.g.,

the mean or peak frequency. Walker et al. (2004) found this wavenumber graphically

by minimizing the difference between the calculated Stokes coefficient S22 with that

estimated from the linearised wave record for zero skewness. However, a different ap-

proach is used in the present work that is believed to be more accurate, as explained in

Section 5.3.2. Instead of trying to match the calculated value of S22 with an estimated

one, the result of the exact second order solution is employed.

There are two other aspects that impose limitations to the fifth order expansion of

Walker et al. (2004). As mentioned already, the 2nd difference term is calculated sepa-

rately and the suggested approximation of only the self interactions is crude. The exact

second order solution can be used, but it is computationally expensive compared to

the rest of the expansion. Moreover, it is somewhat paradoxical to use an approximate

expansion of the 2nd sum terms and the exact solution for the 2nd difference. In the

case of the Draupner wave record, the spectrum is relatively narrowbanded and the

low frequency harmonics of the 2nd difference can be extracted with filtering. However,

this is not the case in the present study, and the overall scope is to produce a nonlin-

ear profile, which is initially unknown. The second point of discussion is that the fifth

order expansion was tested only for the Draupner wave and the amplitude of the lin-

ear NewWave was selected in order to match exactly the crest of the Draupner wave

(see page 78 of (Walker et al., 2004)). Thus, it is no surprise that the crest elevations
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matches the record, since the expansion was tuned to do so. Discrepancies are shown

in the lateral crests and troughs (Figure 8 in (Walker et al., 2004)), indicating potential

deficiencies of the method. For the results of the present work, the estimated crest

elevation of the fifth order expansion was not tuned to match the fully nonlinear solu-

tion, and the result is based only on the original and evolved free-wave spectra and the

selection of the representative wavenumber.

5.3.2 Results

Since in the present study the free-wave spectra are known, the only thing missing to

apply the fifth order expansion is the definition of a representative wavenumber. The

method suggested by Walker et al. (2004) using the skewness is irrelevant here, be-

cause on one hand the linear harmonic is known and on the other hand, the distribution

of the phases is not Gaussian. Instead, it was decided, to use the original free-wave

spectrum for finding the 2nd sum harmonics of the Stokes expansion, as defined by the

second line of Equation 5.15 for a wide range values of kd ∈ [0.1,4] and compare it with

the exact solution of Dalzell (1999)6.

This sensitivity-type analysis for the selection of k is shown in Figure 5.16a. Alongside,

in Figure 5.16b, the results of the 2nd difference harmonics are plotted for the same

values of kd. It can be seen that the 2nd sum harmonics of Stokes expansion has

exactly the same crest height as the exact solution for the value of kd = 2.5 (marked with

red). However, despite the almost excellent matching of the main crest and adjacent

troughs, the lateral crests are overpredicted by the approximate solution. Instead, they

are better described for the value of the wavenumber of the peak frequency component

kpd marked with blue. For values kd > 2.5 and kd < 2.5, the 2nd sum harmonic is

overpredicted and underpredicted, respectively. It is worth mentioning that for values

lower than kd ≤ 0.4, the 2nd sum harmonics change sign and become very large, as

seen by the light gray line in Figure 5.16a. In general, the 2nd sum harmonics are

6A similar concept was attempted in the study of Whittaker et al. (2016) for field data.
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Figure 5.16: Sensitivity analysis for the selection of kd (a) 2nd sum; (b) 2nd difference.
Red: kd = 2.5; Blue: kd = kpd; Dark gray: kd > 2.5; Light gray: kd < 2.5; Black circles:
exact solution (Dalzell, 1999).

relatively accurately predicted for kd ∈ [0.5,2.5]. On the other hand, the 2nd difference

harmonics calculated by Equation 5.16 seems to be far from the exact solution. In

particular, it is severely underpredicted by all values of kd and becomes negligible for

kd ≤ 2.5. In an attempt to improve the agreement for both the harmonics, different

values of d were tested and the solution was seen to be very sensitive on the selection

of the depth. To avoid adding extra bias in the analysis, the original water depth was

used (d = 1m).

After the analysis of Figure 5.16, four representative values of kd were chosen for

further tests on the behaviour of higher harmonics, as shown in Figure 5.17. The

values of kd are: i) 2.5, because it matches exactly the crest of the 2nd sum harmonic,

ii) kpd ≈ 1.7, which showed good predictions and has the advantage that it can be

directly selected from the spectrum, iii) 1.6, to see the sensitivity in comparison to kpd

and because it is closer to the downshifted peak of the evolved spectrum. Moreover,

this value of kd results in skewness closer to 0. iv) 0.9, as a compromise value for a

sensible prediction of both the 2nd sum and difference harmonics.

The results of Figure 5.17a show that the original linear harmonic is merely influenced
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Figure 5.17: Comparison of the harmonics for the selected values of kd.

by the selection of kd, because the modified Stokes coefficient S11 is constant. The

minor discrepancies at the crest are caused by the calculation of S31 and S51 that have

however very small negative contributions. For almost all the harmonics, selecting a

value close to kpd, i.e., 1.6, has negligible effects. For the high frequency harmonics in

Figure 5.17d,e,f, the high value of kd = 2.5 results in considerable overstimation of the

surface elevation compared to the other values of kd, but to severe underprediction of

the 2nd difference harmonics in Figure 5.17c. The differences are the smallest for the

2nd sum harmonics in Figure 5.17b, with kd = 0.9 and kd = 2.5 producing exactly the

same result.

As a final check for the selection of the value of kd, the overall surface profile to fifth

order is compared in Figure 5.18 for the selected values of kd. The variation amongst

the profiles is in general little. As expected from the examination of the individual

harmonics, kd = 2.5 produces the narrowest and highest crest, and the shallowest

lateral troughs. The crest of the kpd is lower and marginally broader, being almost

identical to the result for kd = 0.6. The lateral crests are identical for all the values of

kd.

The sensitivity analysis for the selection of kd demonstrated that despite the differences
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Figure 5.18: Comparison of the total surface elevation to 5th order for the selected
values of kd.

in the individual harmonics, the surface profile is similar for any of the four values tested,

however none of these values could capture well the set-down of the 2nd difference

harmonics. For selecting the representative value of kd, it is noted that only the value

kpd can be selected without a sensitivity analysis and it is purely based on the spectral

characteristics. Since there is no obvious advantage for selecting the values of kd =

0.9 and kd = 2.5 based on the previous findings, the more "natural" choice of kpd is

done. Due to the fact that the approximation of the 2nd difference harmonics was not

satisfying, at the end of this section the surface profile is also produced using the exact

second order solution as well.

The surface profiles produced by the fifth order expansion based on the original and

evolved free-wave spectra are presented for the wave groups of different steepnesses

in Figures 5.19 - 5.21, starting with the strongly nonlinear group. The fully nonlinear

solution of HOS-NWT is also plotted, as well as the linear solution based on the original

spectra. For the fifth order expansion, the value of kpd is calculated for each spectrum

separately for the component that corresponds to the maximum of the amplitude spec-

trum. Comparisons were also performed using the kpd value of the original spectrum

(1.7186 m−1) for the evolved spectra, with the results being very similar.

The results for the strongly nonlinear group in Figure 5.19 show that the fifth order

solution provides an acceptable shape of the focused wave. Compared to the linear

solution of the original spectrum, the fifth order expansion of the both the original and
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Figure 5.19: Calculated timeseries of the surface displacement for the strongly non-
linear group (Σαi = 0.154 m) for kd = kpd, using the original and the evolved linear
harmonics.

evolved spectra produce a higher and steeper crest and shallower troughs. Improve-

ment in approaching the fully nonlinear profile is observed when the evolved spectrum

of HOS is used, with the lateral troughs becoming shallower and the lateral crests

becoming lower and wider. A marginal increase of the crest height is observed from

0.1812 m to 0.1838 m. Using the evolved spectrum of GKE with the fifth order expan-

sion produces a considerably higher crest of 0.1993 m ,which is very close to 0.2045

m of the fully nonlinear crest. The troughs are also in excellent agreement. However,

the crest is broader than the measured, being close to that produced by the original

spectrum and evolved spectrum of HOS.

The estimated surface profiles of the weakly nonlinear and quasi-linear wave groups

are presented in Figures 5.20 and 5.21, respectively. As expected, the differences

among the solutions for evolved and original underlying spectra are smaller. It can be

seen that the approximated shape of the wave group is in very good agreement with the

fully nonlinear solutions at any point of the timeseries. The maximum crest elevation of

the weakly nonlinear group (0.1123 m) is marginally underestimated by the expansion

using the original spectrum (0.1109 m) and overestimated by that of the GKE spectrum

(0.1142 m), but it is the same as the expansion using the extracted linear harmonics

of the HOS simulation. The results for the quasi-linear group are practically the same

for all the spectra. The overall shape of the wave and the crest elevation are very well
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Figure 5.20: Calculated timeseries of the surface displacement for the weakly nonlinear
group (Σαi = 0.100 m) for kd = kpd, using the original and the evolved linear harmonics.

Figure 5.21: Calculated timeseries of the surface displacement for the quasi-linear
group (Σαi = 0.050 m) for kd = kpd, using the original and the evolved linear harmonic.

predicted. The latter however is marginally overpredicted by all the expansions from

0.0522 m to 0.0526 m, 0.0529 m, 0.0532 m for the original, HOS and GKE spectra,

respectively.

For the wave profiles presented so far, the 2nd difference harmonics was approximated

by the self interactions only. Here, since the underlying linear spectrum is available, the

exact 2nd order solution of Dalzell (1999) can be employed to examine the effect on the

wave profile. This comparison is performed in Figure 5.227 for the spectrum of GKE,

where "ex" indicates that the exact second order theory is used. The exact 2nd order

sum and difference harmonics are also plotted and compared with the corresponding

approximated ones. It can be seen that the approximated 2nd difference harmonics

7NB: The linear theory GKE solution in Figure 5.22 is based on the evolved spectrum of GKE, in
contrast to the linear solutions in Figures 5.19 - 5.21, which are based on the original spectra.
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Figure 5.22: Comparison of the timeseries of the surface displacement for the strongly
nonlinear group (Σαi = 0.154 m) for kd = kpd using the self-interaction and the exact
solution for the 2nd diff harmonics for the evolved linear harmonic calculated by GKE.

is practically zero, while the exact 2nd sum harmonics is considerably higher than the

approximated. When the exact 2nd difference harmonic (dotted blue line) is subtracted

from the fifth order expansion, the maximum crest elevation decreases considerably to

0.177 m, but the shape of the crest becomes narrower, being in excellent agreement

with the result of the HOS simulation. If instead of the approximated 2nd sum, the exact

harmonics was used, the crest elevation would rise to 0.1894 m. However, this was

not done here, because it would start cancelling the entire principle of the fifth order

approximation of using the modified Stokes coefficients.

It is also worth mentioning that the grouping of the terms of the fifth order expansion

into frequency harmonics allows for comparisons with the individual harmonics ex-

tracted from the nonlinear simulation. This is not performed here for two main reasons:

i) the results of Figure 5.17a suggest that the grouping may not be consistent with the

harmonic decomposition, because the linear harmonics were not exactly retrieved and

ii) the high order harmonics in Figure 5.17d,e,f are more sensitive to the selection of

kd. A simple comparison with Figure 3.37, indicates that the extracted 4th and 5th order

harmonics are almost an order of magnitude larger than that estimated by fifth order

approximation. Thus, this method should be used only to approximate the total surface

profile and not necessarily the individual harmonics.
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5.3.3 Conclusions

The present results demonstrate that the fifth order expansion of Walker et al. (2004)

can approximate with good accuracy the surface profile of nearly breaking NewWave-

type wave group. Compared to the work of Walker et al. (2004), the present study has

the advantage that the free-wave profile is known and the findings support the use of

the method for improving the NewWave surface profile. To the author’s best knowledge,

this is the first study after the original paper that this method is employed.

Sensitivity analysis also showed that the final selection of the only unknown parame-

ter, namely the representative wavenumber of the irregular group, can be done based

on the kp. Despite the good performance of the method, comparisons with the exact

solution for the 2nd order harmonics revealed underestimation of the individual har-

monics, but with these differences almost cancelling the additional positive and neg-

ative contributions. Nevertheless, the discrepancies in the 2nd difference harmonics

were expected, since the fifth order approximation is based on the expansion of Fen-

ton (1985), which accounts only for the high frequency bound waves and not for the

long bound wave.

5.4 Creamer transform

The Creamer transform was suggested by Creamer et al. (1989) and it is based on the

Hamiltonian expression for the water waves problem of weak nonlinearity. By employ-

ing a canonical transformation of the flow variables, the lowest order of nonlinearity is

cancelled and this allows for the calculation of bound waves to infinite order through an

integral representation of the amplitude spectrum. Essentially, the Creamer transform

adds nonlinearity to a linear signal by incorporating bound waves. The original formu-

lation of the transform was presented for spaceseries, but a simple technique using

linear theory can be employed to obtain the timeseries of the surface elevation.
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The Creamer transform is an efficient way to estimate a nonlinear wave profile by re-

producing the expected nonlinear effects of steeper crests and shallower troughs. It

has been used in a limited number of studies, showing good performance for up to 5th

order waves. As with all the previous methods for reconstructing the surface profile,

the free-wave spectrum should be known, which imposes a considerable difficulty for

applying the method to field data. Here, knowing the original and evolved spectrum,

as well as the fully nonlinear results, gives the opportunity to assess the performance

of the Creamer transform under controlled conditions for up to nearly breaking wave

groups.

5.4.1 Mathematical formulation

The Creamer transform is based on the Hamiltonian representation of weakly nonlin-

ear water waves. The basic assumptions dictate that the flow motion is irrotational

and the effects of surface tension are excluded. The interior of the fluid follows the

Laplace equation and appropriate conditions are applied on the boundaries. The wa-

ter surface and velocity potential can be described by the ZE (Zakharov, 1968). The

Hamiltonian, i.e., the energy of the fluid, can be expressed in power series that include

integrals of the velocity potential at the free surface and the free surface elevation,

which both can be expressed in the Fourier space for convenience. According to the

theory, if the Hamiltonian can be expressed in power series and the leading order of

nonlinearity does not include resonant interactions, it is possible to make a transfor-

mation and exclude the leading order of nonlinearity. Since for ocean gravity waves

three-wave interactions are not resonant, a canonical transformation can be applied

to the flow variables in order to eliminate the 3rd order Hamiltonian (H(3)). Through

this transformation, the leading nonlinear terms of quadratic order can be removed, or

more accurately be incorporated in the transformed variables, and the dynamics of the

wave motion can be expressed by 1st and 3rd order terms. This is a very useful aspect,

since the ocean waves can still be well approximated by ignoring 3rd and higher order
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nonlinearities (Creamer et al., 1989).

There are different ways to perform these transformations, which result in the same

resonant wave interactions at 4th order, but different non-resonant interactions at this

order. At higher orders, both resonant and non-resonant interactions are different for

the different transformations. This effectively controls the high order nonlinearities and

it is upon the comparison of the various transformations to indicate which describes the

fully nonlinear problem most appropriately. The general principle of using any transform

is to derive a simpler form of the Hamiltonian and to obtain the dynamics of the motion

that resemble better the fully nonlinear solution compared to the linearised solution of

the original flow variables. In (Creamer et al., 1989), two transformations were exam-

ined and the Lie transform was preferred. This is because the Lie transform is practical

to apply, gives a good approximation of Stokes waves, describes well the modulation

of short waves on long waves and the Stokes drift is combined properly with the return

flow (more details and examples in (Creamer et al., 1989)). Moreover, the Lie trans-

form conserves the property of wave action, which guaranties minimal modification of

the wave spectrum. A similar approach for describing the dynamics of the free surface

by eliminating H(3) was followed also by Krasitskii (1994), with the canonical transform

already discussed in Section 4.3.1 and been elaborated in Section 5.5.

A comparison between the Creamer and Krasitskii’s canonical transforms is shown in

Table 5.1. Both cancel the leading nonlinear terms by setting H(3) = 0. Practically, this

cancels the low order interactions and allows for obtaining the full solution to the higher

order (4th). The two canonical transformations are different only at H(4) and higher, due

to their different formulation, which calculates differently the modified resonant and

non-resonant interactions, indicated by ′ and ′′ for Krasitskii and Creamer, respectively,

as seen in Table 5.1. Thus, up to H(3) the result should be theoretically similar for the

two methods. For the Creamer transform, the integral calculates the interactions to

infinite order including both resonant and non-resonant interaction. The formulation of

Krasitskii (1994) includes up to quintet interactions, corresponding to H(5), however, in
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Table 5.1: Orders of Hamiltonian H(n) in Krasitskii and Creamer canonical transforms
(R:Resonant; NR:Non-resonant; NA:Not applicable).

H(1)a H(2) H(3) H(4) H(5)

Real world NA Linear NR R + NR NR
Krasitskii NA Linear ∅ R′ R′

Creamer NA Linear ∅ R′′ + NR′′ R′′ + NR′′

aThe Hamiltonian of 1st order (H(1)) is not defined because it represents the energy, which is of 2nd

order expression of the surface displacement and velocity.

the present study, only up to four-wave interactions were considered. For comparison,

the wave interactions before the transformations are also shown in Table 5.1 for the

different orders of the Hamiltonian, referring to as the "Real world" case.

The Creamer transform for surface elevation refers to Equation 4.14a in the original

paper of Creamer et al. (1989) and here it is given in Equation 5.178. This equa-

tion calculates the amplitude spectrum of surface displacement in κ−space using the

Hilbert transform of the spaceseries of the surface displacement (ηH(x)). The calcu-

lated nonlinear amplitude spectrum (ηNL(k)) includes the linear plus high order bound

contributions. It is noted that the Creamer transform does not take into account wave

dispersion (Slunyaev et al., 2013), which practically means that it is used for a harmonic

signal which is static in space.

ηNL(k) =
1
|k|

∫
e−ikx

(
eikηH(x)−1

)
dx (5.17)

The solution process followed in the present study is described next. Based on the

known linear amplitude f−spectrum, the spaceseries of the surface elevation are con-

structed according to linear theory (Equation 5.1) for the focal time t = 0 s at a distance

before and after the PF, so that the entire group is within the selected space range.

The distance increment Dx is selected to be sufficiently small in order to provide good

resolution of the signal. Decreasing the distance range around PF, i.e., the length of

8This simple form of the Creamer transform, strictly speaking, is valid for deep water waves. However,
without this assumption the equation takes a more complex form. (Personal communication with M.
Prevosto, January 2018).
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the signal, increases Dk, while increasing Dx reduces kmax. By performing an FFT of

the spaceseries, the amplitude κ−spectrum is obtained for the regular κ−grid resulted

by the FFT. This process returns the positive and negative κ−spectrum and it is con-

venient because the phases of the components are incorporated in the imaginary part

of the complex amplitudes and IFFT can be applied directly on the nonlinear spec-

trum after the transform. Alternatively, the κ−grid can be computed using the formula

Dk = 2π

(N−1)Dx , where N is the number of x−locations (Socquet-Juglard et al., 2005).

These manipulations were discussed and verified in Section 5.1.2. The results of this

process are the κ−grid and the linear spaceseries.

Next, the calculation of the Hilbert transform of the spaceseries is performed either

using MATLAB’ function or by changing the cos function to sin in Equation 5.1. Then,

the integral of Equation 5.17 can be calculated by computing its argument for a specific

wavenumber over the entire distance and taking the trapezoid of argument over the

distance. This is done for all the wavenumbers and their summation returns the integral

of Equation 5.17. To obtain the spaceseries, IFFT is applied to the result of the previous

process, namely to ηNL(k). The spaceseries can be plotted on the initially selected

x−space.

A few remarks until this stage should be made: i) Care should be taken to exclude the

contribution of k = 0, because it refers to an infinitely long wavelength and it creates

singularity. This can be done by setting ηNL(0) = 0. ii) The nonlinear wave profile is not

very sensitive to the selection of the limits of the spaceseries, provided that the entire

linear group is included in the considered initial signal. iii) As a rule, the MWL should

be extracted from the linear spaceseries. Here, since the linear spaceseries are wide

enough that the surface displacement is zero before and after the group, the exclusion

of the MWL results in negligible differences of approximately 0.03% at the crest of the

steepest wave group.

To allow for comparisons with the other approaches for reconstructing the wave profile,

the spaceseries should be converted to timeseries. An approach to do that was pro-
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posed by Creamer et al. (1989), mentioning that the integration in time can be done

by "just letting the linear variables evolve according to their quadratic Hamiltonian", or

else stated by assuming linear dispersion. A formula to do that was suggested by Slun-

yaev et al. (2013) (Equation 20) for a deep water wave. The underlying principle is to

apply the Creamer transform on linear profiles at different instances close to the time

of interest. The linear profiles are found by propagating the wave group before and

after the time of interest using the linear dispersion relation. The timeseries can then

be obtained by sampling on the location of interest over the produced nonlinear snap-

shots of the wave profile for the various times. This approach was graphically verified

in Figure 5.6. It is important to underline that this approach is only valid if the free-wave

spectrum does not change significantly in the examined time range due to resonant

interactions. Here, a short time window of ±2 s of the focal time is examined, where it

is assumed that the spectrum is not altered significantly.

The success of the Creamer transform, or any other transform for that matter, lies

upon each efficiency to solve the wave motion problem in space and time compared

to the classic approach of solving the PDEs of the fluid motion. Especially for short

time scales and not very frequent time intervals, the Creamer transform can be very

efficient, since it uses linear equations and thus, it is simpler than solving the PDEs

(Creamer et al., 1989).

Hereafter, applications of the Creamer transformed are discussed. In the original pa-

per, the Creamer transform demonstrated that it can replicate the effects of nonlinearity

by making the wave profile steeper and approaching the exact stokes solution for the

velocities of the water particles at the free surface. Also the problem of short waves

riding on long waves was shown to be captured correctly. It is mentioned though, that

the transformation is correct in unidirectional propagation and only approximate for di-

rectional waves. Other potential applications were also suggested for future studies,

such as improved statistics of the free surface and the assessment of stochastic wave

models that are based on the KE and include only four-wave interactions. It is worth
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mentioning that Creamer et al. (1989) envisaged the potential of using their expan-

sion to high orders in combination with the four-wave interactions in order to produce

more realistic results. In other words, this suggestion seems similar to the approach

of the present study of using the evolved spectra as input to the analytical models for

calculating the bound waves.

Since its publication, the Creamer transform has been employed in a relatively small

number of studies. Recognizing its efficiency over the classic Stokes expansion, Jonathan

and Taylor (1997) used the Creamer transform to introduce nonlinearity to the lin-

earised timeseries from the Tern platform and compared the results with the actual

measurements finding satisfactory agreement for the statistics. The timeseries of a

large wave produced by the Creamer transform was found to have a steeper and higher

crest, and shallower troughs compared to its linear correspondant. Forristall (2002)

also applied the Creamer transform to calculate bound waves and compared it with

second order theory solution, finding that the former offers superior results and it has

good potential for engineering applications. However, the limitations of the method are

that the linear spectrum should be known and the timescales should be short, so that,

during the transition from space to time, the underlying spectrum is not altered due to

resonant interactions, as discussed above. The Creamer transform was also applied in

the study of Prevosto and Bouffandeau (2002), who used linear Monte Carlo-type sim-

ulations based on a hindcast spectrum to reproduce the sea state in Draupner platform

when the "New Year Wave" was measured. The idea was to induce nonlinearity locally

by means of second order theory and Creamer transform at single large linear events

and to examine if their crest height can reach that of the "New Year Wave" and ulti-

mately find its exceedance probability. The Creamer transform gave a ten-time higher

exceedance probability than second order theory, demonstrating that it induces higher

than second order nonlinearity and in some cases it could also capture well the overall

shape of the "New Year Wave". The results of Prevosto and Bouffandeau (2002) sup-

port that the Creamer transform is a good candidate for realistic ocean applications,

which involve the effects of finite depth and directionality. That study reported that the
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performance of the Creamer transform is similar to Stokes 5th order waves.

Apart from deriving statistics, the Creamer transform was also used by Slunyaev et al.

(2013)9 to reproduce the single extreme wave events measured in the field. Under the

assumption of unidirectional propagation and that the recorded waves were linearised

using an iterative approach. Exact second order theory, NLSE to 2nd and 3rd order

(considering a narrowbanded spectrum10) and Creamer transform were applied on the

linearised spectrum. The results demonstrated that the Creamer transform resembles

better the recorded spectrum by predicting a longer spectral tail than the other mod-

els. On the other hand, the results concerning the reconstructed kinematics indicate

that the highest horizontal velocities are predicted by the 3rd order NLSE. Fully non-

linear models (HOS and Dysthe (Dysthe, 1979)) were also applied without being able

to capture the crest height of the recorded extreme wave, possibly due to the under-

lying assumptions. Nevertheless, it was claimed that Creamer transform can describe

Stokes waves up to 4th order11. In the paper of Slunyaev et al. (2013), the space-

time transformation required to obtain the timeseries for the Creamer function is also

described, by transforming the f−spectrum to κ−spectrum and assuming deep wa-

ter conditions. Here, the transformation is expanded to finite depth by using the full

linear dispersion relation and the transformation is not necessary because the linear

spaceseries are known.

5.4.2 Results

In this section, the application of the Creamer transform is performed for the groups of

different steepness and the original and evolved free-wave spectra.

First, an example of the application of the Creamer transform is presented in Figure

9The work of Slunyaev et al. (2013) is practically an extension of that of Slunyaev et al. (2011) and in
the main text only the former reference is used.

10Although commonly applied in the literature, NLSE was not used in the present study because it
assumes a narrowbanded spectrum. Also, as mentioned by Slunyaev et al. (2013), realistic extreme
waves are strongly nonlinear and have a broad spectrum.

11There seems not to be a consensus regarding the order of Stokes waves that Creamer transform can
capture among the cited studies.
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Figure 5.23: Comparison of the spatial profiles (a) and the amplitude κ−spectra (b)
for the strongly nonlinear group (Σαi = 0.154 m) between linear theory and Creamer
transform using the original spectrum.

5.23 for the strongly nonlinear group, which exhibits the highest nonlinearity, allow-

ing for better visualisation of the effects of the transformation. Figure 5.23a shows

that the spatial profile of the wave becomes narrower and the maximum crest eleva-

tion is increased from 0.1540 m to 0.1737 m, corresponding to an increase of 12.8%.

The troughs become shallower as well. Moreover, the original amplitude spectrum

is seen to have a lower peak after the transform and significant energy transfer to

higher wavenumbers, as seen in Figure 5.23b. These results constitute clear indi-

cations of good qualitative description of the effects of nonlinearity achieved by the

Creamer transform. The spatial profiles of the water surface for the other wave groups

are presented in Section 5.5 against the results of the Krasitskii transform.

For the remaining of the section, the results of the timeseries are presented, using the

sampling technique at different time instances at the focal location x =PF. The results

in Figure 5.2412 for the strongly nonlinear group show that the selection of the under-

lying free-wave spectrum has considerable impacts on the wave profile produced by

12Notice in the subplot the lower time resolution for the Creamer transform result, which is sampled
from the spaceseries every Dt =0.05 s.
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Figure 5.24: Comparison of the timeseries of surface displacement for the strongly
nonlinear group (Σαi = 0.154 m) produced by the Creamer transform using the original
and evolved spectra.

the Creamer transform mainly at the lateral troughs and crests. The former become

shallower and the latter wider and lower when the evolved spectra are used and they

show very good agreement with the profile of the nonlinear simulation of HOS-NWT.

Nonetheless, none of the different free-wave spectra produces a sufficiently narrow

crest to match that of the fully nonlinear solution. Regarding the crest elevation, the

Creamer transform, combined either with the original or the evolved spectra, underes-

timates the measured elevation. The use of the original spectrum results in the lowest

crest elevation of 0.1737 m; the use of the evolved spectrum from HOS (gray line)

marginally increases the elevation to 0.1777 m; and the spectrum of GKE predicts it

at 0.1931 m. This behaviour is consistent with the findings of the other approaches,

namely the second order and the fifth order expansion, indicating qualitatively good

performance of the Creamer transform for a nearly breaking wave group.

Comparing Figure 5.24 with Figure 5.23a, it is interesting to notice some difference

between the spatial and the temporal profile of the wave group. The spatial profile at

t = 0 s has considerably shallower troughs than the time history of the surface elevation

at x =PF. Also, the spatial profile does not have lateral crests. Similar observations

were made by Tromans in the original paper of the NewWave theory (see Figure 4 in

(Tromans et al., 1991)), who mentions that the spatial profiles of the wave decay faster

from the main crest than the temporal profiles as a result of the dispersive nature of

water waves.
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Figure 5.25: Comparison of the timeseries of surface displacement for the weakly non-
linear group (Σαi = 0.100 m) produced by the Creamer transform using the original and
evolved spectra.

The results for the weakly nonlinear and quasi-linear group are presented in Figures

5.25 and 5.26, respectively. With decreasing steepness of the group, the evolved spec-

tra are more similar to the original and the differences among them vanish. For both the

wave groups, the original and evolved HOS spectra underestimate the crest elevation.

The exception is the spectrum of GKE for the quasi-linear group which marginally over-

predicts the crest elevation. Consistently, the original spectrum gives a result farther

from the fully nonlinear solution compared to the evolved spectra.

In quantitative terms, for the weakly nonlinear group, a crest elevation of 0.1077 m,

0.1094 m and 0.1108 m is predicted by the Creamer transform, for the original, HOS

evolved and GKE evolved spectra, respectively. This shows a considerable improve-

ment over linear theory prediction (0.100 m), but a noticeable deviation from the fully

nonlinear results (0.1123 m). On the other hand, the different spectra of the quasi-

linear group have only submillimetre deviations, with the original, HOS evolved and

GKE evolved spectra predicting a maximum crest elevation of 0.05179 m, 0.05201

m, and 0.05233 m, respectively. Nevertheless, these still constitute a non-negligible

improvement from the linear solution of 0.050 m to the fully nonlinear of 0.05219 m.

The comparisons between the results of the Creamer transform and the HOS-NWT

fully nonlinear solution presented in this section demonstrate that the Creamer trans-

form can predict the nonlinearities to a good extent, especially when the evolved free-

wave spectrum is used, despite the aforementioned depth-related limitation of the for-

292



5.4. CREAMER TRANSFORM

Figure 5.26: Comparison of the timeseries of surface displacement for the quasi-
linear group (Σαi = 0.050 m) produced by the Creamer transform using the original
and evolved spectra.

mula used. Its performance compared to the other methods for calculating the bound

waves is presented in Section 5.6.

5.4.3 Conclusions

The Creamer transform was examined in this section and its results were compared

with fully nonlinear simulation for wave groups up to breaking limit. The results showed

that this "surprising equation", as characterised by Forristall (2002), has appreciable

performance for the focused wave groups of the present study. At the same time, it

shows very good potential for practical applications thanks to its computational effi-

ciency.

The main limitation of the Creamer transform is that it is formulated for calculating the

spatial characteristics of the wave field and its application in time is hindered by linear

theory. Nevertheless, if combined with a method that can predict evolution of the free-

wave spectrum, the Creamer transform can become a very useful tool. The present

study makes a step towards this direction.

At its present form, the Creamer transform, if applied strictly spatially, can still offer

very important information of engineering interest, such as spatial kinematics and wave

profiles that are relevant for large marine structure of the order of the wavelength. At

the same time, it can be a useful method to linearize field measurements for further
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applications with other modelling tools, as done in (Slunyaev et al., 2013), and to derive

improved statistics for more accurate design of the marine structures (Prevosto and

Bouffandeau, 2002). Future work should also examine the finite depth version of the

Creamer transform formula.

5.5 Static Krasitskii

In this section, a method for calculating the bound waves of a known free-wave spec-

trum in κ−space based on the Hamiltonian description of surface waves is discussed.

This method is similar to the Creamer transform, presented in the previous section,

but the canonical transformation of the flow variables is different and thus, it results

to different expressions of the Hamiltonian13. The derivation of the Hamiltonian was

presented by Krasitskii (1994) and its coefficients were already employed in the GKE

in Section 4.3. It is noted again that, the GKE was based on the "naive" assumption

that the free waves in the real and transformed space are the same.

Building on that assumption, the idea of calculating the bound waves of the real space

by the integral combinations of the free waves in the transformed space was coined.

For the GKE, the coefficients of four-wave interactions were used in order to find the

evolution of the spectrum in time, considering the resonant interactions between the

waves in the transformed space. However, here, it is assumed that the spectra of

the free waves before or after the time evolution are known and the bound waves are

calculated using the coefficients of Krasitskii (1994). For this reason and to distinguish

it from the time evolving KE, hereafter this method is referred to as "static Krasitskii".

13Acknowledgement: The author would like to thank M. Prevosto for suggesting the connection between
the two methods and contributed to the derivation.
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5.5.1 Mathematical formulation

Introduction

Before the mathematical derivation of the static Krasitskii method is presented, gen-

eral information regarding the Hamiltonian representation of water gravity waves is

discussed. For more details, the reader is directed to (Krasitskii, 1994) and references

therein. Also, since the Creamer transform is also based on the Hamiltonian rep-

resentation of free surface waves, relevant aspects and considerations were already

discussed in Section 5.4.

The first description of the free surface waves in a Hamiltonian form was given by

Zakharov (1968), which puts water waves in context with the general physical prob-

lem of nonlinear dispersive waves in continuous conservative media. In the case of

ocean waves, the medium is water and the dispersion properties are defined by the

linear dispersion relation. The previous generalization induces several advantages in

the consideration of the problem, because the specific features of the medium are ir-

relevant and simple expressions of the perturbation expansions can be applied. In the

core of the Hamiltonian expression is an integro-differential evolution equation of the

complex wave amplitude, which is the Fourier transformation of the flow variables. For

convenience in the derivation, the complex wave amplitude is transformed to an auxil-

iary variable. This process results to the reduced Hamiltonian equations, which are the

well known ZE, and are the basis for the KE of wave evolution.

However, despite the fact that the flow equations for water waves are conservative, the

reduced Hamiltonian equations are not, which results in a non-energy-conservative

non-Hamiltonian system of equations. This issue has troubled researchers, who sug-

gested that this may be due to the errors induced by considering only up to certain

orders in the perturbation expansion. In reality, this inconsistency was proven to be a

shortcoming of the derivation techniques used in ZE that do not guarantee symmetry

conditions of the coefficients. This motivated Krasitskii to propose a new derivation of
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the Hamiltonian that uses canonical transformations between the complex wave am-

plitude and the auxiliary variable, which results in a conservative system of equations

(Krasitskii, 1994). The complex wave amplitude can then be expressed as integral

power series of the auxiliary variable through a process that eliminates the unimpor-

tant non-resonant second, third and fourth order nonlinear terms from the Hamiltonian

in the transformed space, where only free waves exist, and calculates only the modi-

fied resonant interactions (see Table 5.1). Provided that the kernels of the coefficients

are symmetric, which is facilitated by the Hamiltonian expression of the problem, this

process should lead to the same results as the original equations of hydrodynamics.

In (Krasitskii, 1994), the Hamiltonian expression was presented up to fifth order (H(5)),

which corresponds to five-wave interactions. In the present study though, only up to

four-wave interactions are included.

The canonical transformations

The description of the mathematical derivation of the Krasistkii formulation will start

from the basic expressions of the flow variables, i.e., the vertical displacement of the

free surface ζ (x, t) and the velocity potential ψ(x, t) at the free surface, which are es-

sential later on, because new canonical transformations will be considered for the spe-

cific problem of focused waves. Hereafter, in order to be consistent with the nomencla-

ture in the rest of the thesis, ζ (x, t) is denoted as η(x, t) and ψ(x, t) as φs(x, t).

The classic assumptions for the fluid are considered: the flow is inviscid and irrota-

tional; the velocity potential satisfies the Laplace equation (∇2φ + ∂ 2φ/∂ z2 = 0) every-

where in the domain, following potential theory; appropriate boundary conditions are

applied for an impermeable bottom; the kinematic and dynamic boundary conditions

at the free surface are automatically satisfied by the construction of the Hamiltonian.

As mentioned in Section 5.4.1, the Hamiltonian comprises the total energy (kinetic and

potential) energy of the fluid, which is normalized here by the fluid density. The effects

of surface tension are considered negligible, thus γ in the formulae of Krasitskii (1994)
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is zero, and the waves propagate under the gravitational acceleration g. The Hamilto-

nian expression of the wave motion in space x and time t can be expressed by a pair

of PDEs (Equations 5.18), which refer to the ZE (Zakharov, 1968). The procedure that

follows is described in section 2 of (Krasitskii, 1994). Similar derivation of the canonical

transformation can be also found in (Tanaka, 2001) and (Katsardi and Swan, 2011).

∂η(x, t)
∂ t

=
δH

δφs(x, t)
,

∂φs(x, t)
∂ t

=− δH
δη(x, t)

(5.18)

For finding the evolved spectrum or the bounded waves, the canonically conjugate

variable η(x, t) and φs(x, t) should be expressed in the Fourier space, according to

Equations 5.19.

η̂(x) =
1

2π

∫
η(k)eik·xdk, η(k) = η

∗(−k) (5.19a)

φ̂s(x) =
1

2π

∫
φs(k)eik·xdk, ψ(k) = ψ

∗(−k) (5.19b)

where k= (kx,ky) is the horizontal wavenumber vector, which is defined for both positive

and the symmetric negative wavenumbers and x the location vector. t has been ex-

cluded for simplicity of the notation and the asterisks denote complex conjugates. The

Fourier representation of the variables, which refers to amplitude spectra in κ−space,

should not be confused with the variables in the physical space. The previous Fourier

transformations can be simplified by considering unidirectional propagation with k =

kx = k. The fraction 1/(2π) depends on the definition of the Fourier transform and for

the unidirectional propagation, it can be 1/
√

2π. For the remainder of the section, the

variables are simply notated as η(x) and φs(x), according to the unidirectional consid-

eration.

Since the Fourier transformation is canonical, Equations 5.18 can be rewritten for the

Fourier variables into the form of the canonical transformation of Equations 5.20, which
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allow for the Hamiltonian to be a function of the variables in κ−space.

∂η(k)
∂ t

=
δH

δφ ∗s (k)
,

∂φs(k)
∂ t

=− δH
δη∗(k)

(5.20)

The pair of the canonical Equations 5.20 can be merged into one by considering a

new pair of canonically conjugate variables α(k) and iα∗(k) which satisfy the following

relations in Equation 5.21.

η(k) = M(k)[α(k)+α
∗(−k)], φs(k) =−iN(k)[α(k)−α

∗(−k)] (5.21)

with

M(k) =

√
q(k)

2ω(k)
, N(k) =

√
ω(k)
2q(k)

(5.22)

According to the linear dispersion relation, ω =
√

q(k) and q(k) = |k|tanh(|k|d), after

considering zero surface tension (γ = 0).

The canonical transformation above allows for the transition of the initial variables η(k)

and φs(k) to the variable α(k) and merging of the two corresponding equations into

one, as shown in Equation 5.23. As such, the Hamiltonian H = H(α,α∗) becomes a

function of α(k). This process facilitates the expression of the Hamiltonian into integral

power series of variables, which for brevity are not given here. This is possible under

the assumption of weakly nonlinear waves, i.e., waves of small amplitudes, and small

steepness. The expansion can be truncated to the desired order, which in the original

work of Krasitskii (1994) is regarded to fifth order, while in the present study only the

terms up to and including fourth order are retained.

i
∂α(k)

∂ t
=

δH
δα∗(k)

(5.23)

To proceed further and simplify the integral power series of the Hamiltonian (Equations
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2.11 and 2.13 in (Krasitskii, 1994)), an auxiliary new variable b(k) is considered, which

is connected with the Hamiltonian in a similar way as the variable α(k) in Equation

5.23, as seen in Equation 5.24. The gaining in introducing this new variable is that it

allows for suppressing the non-resonant terms in the expression of the Hamiltonian and

connecting α(k)→ b(k). This transformation must be canonical, implying that some

canonicity conditions should be valid, which in (Krasitskii, 1994) refer to the Poisson

brackets (Equation 2.15 - 2.16)14.

i
∂b(k)

∂ t
=

δ H̃
δb∗(k)

(5.24)

where H̃ = H̃(b,b∗) is the Hamiltonian H =H(α,α∗) after considering the transformation

α = α(b,b∗).

To summarize, until now, the solution process of Krasitskii was followed almost step

by step. This process aimed to transform the physical variables η(x),φs(x) to Fourier

variables η̂(k), φ̂s(k), which were expressed in Hamiltonian form, and after the canonical

transformations, the Hamiltonian equations were reduced to expressions of the simple

variables α(k) and b(k).

To continue further and solve the present problem, a canonical transformation for α(k)

to b(k) should be considered that will allow for solving the final Equation 5.39 (Not pre-

sented in (Krasitskii, 1994)). It is repeated that η(k) is the original amplitude spectrum

in real space and α(k) is its transform. Since the real spectrum contains both free and

bound waves, α(k) also does so. For this reason it is useful to associate it with the b(k)

spectrum that consists only of free waves in the transformed space. As mentioned,

the assumption that the free waves in the real and transformed space are the same is

considered (α f (k)≡ b(k)), where α f (k) corresponds only to the free waves of the α(k)

spectrum, with the bound waves given by Equation 5.39. Thus, the only issue is now

to define a canonical transformation for α(k).

14See also (Creamer et al., 1989) Equation 3.6.
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Since only the free waves of the real space are considered (α f (k)), they should satisfy

the expressions of the velocity potential and surface elevation of linear theory (Dean

and Dalrymple, 1991). For simplicity, in the derivation that follows, the phase difference

between the waves is considered zero (ωt +θ = 0), corresponding to a focused wave

group, as shown in Equations 5.25 and 5.26 for the free surface elevation and velocity

potential at the free surface respectively.

η(x) = α f (k)cos(kx) (5.25)

φs(x) =
ωα f (k)

k
cosh(k(η +d))

sinh(kd)
sin(kx) (5.26)

where d is the water depth. Note that the focused wave is produced as a summation

of every wave components of the Equations 5.25 and 5.26, and for convenience in the

derivation, these formulae for a single wave component will be used without loss of

generality. This consideration is also very convenient because it allows for simplifying

the initial complex amplitude spectrum (η(k)), which consists of a real (ηR) and an

imaginary (ηI) part, to a more compact form in the Fourier space, since θ(k) = 0, as

seen in Equation 5.27.

η(k) = ηR(k)+ iηI(k) = |η(k)|eiθ(k)

∴ for θ(k) = 0⇒ η(k) = |η(k)|
(5.27)

In order to apply the canonical transformation for the variable α f (k), Equations 5.25

and 5.26 should be expressed in Fourier space. For this, some basic formulae of the

Fourier transforms (F̂) of the trigonometric functions are employed (Bracewell, 1999).

The Fourier transform of the cos(kx) for the calculation of the surface elevation (Equa-

tion 5.25) is:
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F̂ [1 · cos(k0x)](k) =
∫

e−ikx
(

eik0x + e−ik0x

2

)
dx

=
1
2

∫ [
e−i(k−k0)x + e−i(k+k0)x

]
dx

=
1
2
[δ (k− k0)+δ (k+ k0)]

(5.28)

For discrete wavenumbers, the δ function can be only 1 when k = k0 and 0 otherwise.

Thus, the Fourier transform of η(x) is simplified to the Equation 5.28:

F̂ [η(x)](k) = η(k) =
α f (k)

2
(5.29)

The Fourier transform of the sin(kx) for the calculation of the velocity potential at the

free surface (Equation 5.26) is:

F̂ [1 · sin(kx)](k) =
∫

e−ikx
(

eik0x− e−ik0x

2i

)
dx

=
1
2

∫ [
−e−i(k−k0)x + e−i(k+k0)x

]
dx

=
1
2

i [δ (k+ k0)−δ (k− k0)]

(5.30)

Note that the arguments of the cosh and sinh functions in Equation 5.26 can be sim-

plified by considering that η << d⇒ η + d ' d, which is valid for low amplitude linear

waves in not very shallow water. Also, since the fraction Ri =
cosh(kd)
sinh(kd) is independent of

x, it can be taken out of the integral of the Fourier transform as constant. Indeed, for a

given water depth and wavenumber, Ri is constant and for the special case of infinite

water depth, where d/L > 1/2→ kd > π, Ri = 1. In the present study, Ri is used in the

general form, but the canonical transformation is also given for the infinite water depth

case.

Based on the previous considerations and the possible results of the δ functions in
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Equation 5.30, the Fourier transform of φs(x) can be expressed by Equation 5.3115.

F̂ [φs(x)](k) = φs(k) =−
1
2

i
α f (k)ω(k)

k
Ri(k) (5.31)

Next, the auxiliary variable b(k) and its complex conjugate b∗(k) are used in the canon-

ical transformation of Equation 5.21 to substitute α(k) and α∗(k) (which more precisely

refer to α f (k) and α∗f (k)), respectively, resulting to Equations 5.32 and 5.33.

η(k)
M(k)

= b(k)+b∗(−k) (5.32)

i
φs(k)
N(k)

= b(k)−b∗(−k) (5.33)

Adding and subtracting the system Equations 5.32 and 5.33 by terms returns Equation

5.34 and 5.35, respectively.

η(k)
M(k)

+ i
φs(k)
N(k)

= 2b(k) (5.34)

η(k)
M(k)

− i
φs(k)
N(k)

= 2b∗(−k) (5.35)

To find the relationship between α f (k) and b(k), η(k) and φs(k) should be replaced in

Equations 5.34 and 5.35 by their expressions in Equations 5.29 and 5.31, while M(k)

and N(k) can be replaced by their expressions in Equation 5.22.

As such, using Equation 5.34 the relation of b(k) and α(k) is obtained (Equation 5.36),

which for infinite water depth, where Ri(k) = 1 and q(k) = |k|, reduces to the simplified

Equation 5.37.

15The sign of the equation above is "-" for k = k0 and "+" for k =−k0. However, the equation is simplified
by considering k with nonzero amplitude in the positive κ−plane only.
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b(k) =
α f (k)

4

[√
2ω(k)
q(k)

+
Ri(k)

k

√
2|ω(k)|q(k)

]
(5.36)

b(k) =
α f (k)

2

√
2|ω(k)|
|k|

(5.37)

Moreover, doing the same substitutions in Equation 5.35 gives the expression of b∗(k),

as presented in Equation 5.38.

b∗(−k) =
α f (k)

4

[√
2ω(k)
q(k)

− Ri(k)
k

√
2|ω(k)|q(k)

]

expressed for k

b∗(k) =
α f (k)

4

[√
2ω(k)
q(k)

+
Ri(k)

k

√
2|ω(k)|q(k)

] (5.38)

Comparing Equations 5.36 and 5.38, shows that the complex number b(k) is equal to

its complex conjugate b∗(k), and thus its imaginary part is zero. This means that the

phase of the waves is zero and this serves as a proof for the derivation of the special

case of focused waves considered in this section (see Equation 5.27).

To conclude, this process of the canonical transformations relates the auxiliary variable

b(k) to the transformed spectrum of the free waves α f (k) through Equation 5.36. α f (k)

is associated with the spectrum of the free waves of the real space (η(k)) via Equation

5.29. Therefore, when knowing the spectrum of the free waves in the real space, the

aforementioned relations can be used to transform the variables in the space where

the bound waves can be calculated. Then using the inverse process, the spectrum of

the free + bound waves in the real space can be retrieved.

In the remainder of the section, the calculation of the bound waves from the trans-

formed world is presented.
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Calculation of the bound waves

The canonical transformations of the previous paragraphs resulted in the transition from

the real space, where the free waves α f (k) and their bound waves comprise the full

spectrum α(k), to a transformed space, where there are only the free waves b(k), under

the assumption that α f (k) ≡ b(k). Combinations of the free waves in the transformed

space give raise to bound waves in real space through the canonical relations. Similarly

to the Hamiltonian, the canonical transformations α(k)→ b(k) can be expressed in

integral power series, which in (Krasitskii, 1994) is given up to fifth order in Equation

2.17. Here, the fifth order terms are discarder from Krasitskii’s formula for simplicity, as

seen in Equation 5.39. Note that the notation of the wavenumbers has been altered to

correspond to the GKE of Chapter 4. Including the fifth order terms adds another five

integrals with new coefficients in Equation 5.39 and induces considerable complication

and computational cost.

α1 = b1 +
∫

A(1)
1,2,3b2b3δ1−2−3 dk23 +

∫
A(2)

1,2,3b∗2b3δ1+2−3 dk23

+
∫

A(3)
1,2,3b∗2b∗3δ1+2+3 dk23 +

∫
B(1)

1,2,3,4b2b3b4δ1−2−3−4 dk234

+
∫

B(2)
1,2,3,4b∗2b3b4δ1+2−3−4 dk234 +

∫
B(3)

1,2,3,4b∗2b∗3b4δ1+2+3−4 dk234

+
∫

B(4)
1,2,3,4b∗2b∗3b∗4δ1+2+3+4 dk234

(5.39)

where δ is the Kronecker delta, with the notation

δ1−2−3 =


1 when k1− k2− k3 = 0

0 otherwise
and δ1−2−3−4 =


1 when k1− k2− k3− k4 = 0

0 otherwise

As already discussed (see Table 5.1), the Krasitskii transformation to fourth order, as

considered here, excludes all the non-resonant wave-wave interactions in the trans-

formed space, which are "hidden" in the transformation. When expanding to integral

power series, these interactions are expressed through the integrals and result in non-
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resonant interactions (bound waves) in the real world. As such, the first three integrals

in Equation 5.39 that include the A coefficients correspond to the second order bound

waves, while the remaining four integrals that include the B coefficients refer to the third

order bound waves.

The calculation of the coefficients in Equation 5.39 is done for the every possible

quadruplet of the waves and their values are stored. To save computational time (up to

50-100 times), the values of the coefficients are calculated only for the corresponding

non-negative δ functions. Similarly, the integrals in Equation 5.39 are calculated also

for every possible combination of wavenumbers in four nested programming loops. The

final values of integrals are the summations of the integrals for every set of wavenum-

bers.

Special care is taken for the singularities when the denominator of b(k) or the co-

efficients becomes zero. For the former, this is taken into account by excluding the

zero value from the κ−space, as discussed in Section 5.5.2. For the latter, the co-

efficient A or B are set to zero when the corresponding δ function is zero, e.g., if

ω1−ω2−ω3 = 0⇒ A(1)
1,2,3 = 0.

The expressions of the A and B coefficients are shown in Equations 5.40 and 5.41, re-

spectively, which are taken from the paper of Krasitskii (1994) with appropriate chang-

ing of the notation.

A(1)
1,2,3 =−

U (1)
1,2,3

∆1−2−3
=−

U (1)
1,2,3

ω1−ω2−ω3
(5.40a)

A(2)
1,2,3 =−2

U (1)
3,2,1

∆1+2−3
=−2

U (1)
3,2,1

ω1 +ω2−ω3
(5.40b)

A(3)
1,2,3 =−

U (3)
1,2,3

∆1+2+3
=−

U (3)
1,2,3

ω1 +ω2 +ω3
(5.40c)
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B(1)
1,2,3,4 =−

Z(1)
1,2,3,4 +V (1)

1,2,3,4

∆1−2−3−4
=−

Z(1)
1,2,3,4 +V (1)

1,2,3,4

ω1−ω2−ω3−ω4
(5.41a)

B(2)
1,2,3,4 =−

1
4

3Z(2)
1,2,3,4−Z(2)

2,1,3,4Z(2)
3,4,1,2−Z(2)

4,3,1,2

∆1+2−3−4
=−1

4

3Z(2)
1,2,3,4−Z(2)

2,1,3,4Z(2)
3,4,1,2−Z(2)

4,3,1,2

ω1 +ω2−ω3−ω4

(5.41b)

B(3)
1,2,3,4 =−

Z(3)
1,2,3,4 +3V (1)

4,3,2,1

∆1+2+3−4
=−

Z(3)
1,2,3,4 +3V (1)

4,3,2,1

ω1 +ω2 +ω3−ω4
(5.41c)

B(4)
1,2,3,4 =−

Z(4)
1,2,3,4 +V (4)

1,2,3,4

∆1+2+3+4
=−

Z(4)
1,2,3,4 +V (4)

1,2,3,4

ω1 +ω2 +ω3 +ω4
(5.41d)

The coefficients A and B are functions of the coefficients U , Z and V , respectively, which

can be calculated from the following relations (found in Section 4 of (Krasitskii, 1994)).

U (1)
1,2,3 =−U−1,2,3−U−1,3,2 +U2,3,−1 (5.42a)

U (3)
1,2,3 =U1,2,3 +U1,3,2 +U2,3,1 (5.42b)

where U1,2,3 =−N1N2M2E(3)
1,2,3, with N and M being calculated from the canonical trans-

formation 5.22.

V (1)
1,2,3,4 =

1
3
(−V−1,2,3,4−V−1,3,2,4−V−1,4,2,3 +V2,3,−1,4 +V2,4,−1,3 +V3,4,−1,2) (5.43a)

V (4)
1,2,3,4 =

1
3
(V1,2,3,4 +V1,3,2,4 +V1,4,2,3 +V2,3,1,4 +V2,4,1,3 +V3,4,1,2) (5.43b)

where V1,2,3,4 =−2N1N2M3M4E(4)
1,2,3,4.

Note that in the original equations of Krasitskii (1994) for V (1)
1,2,3,4 and V (4)

1,2,3,4 include an

additional a term Γ1,2,3,4, which is omitted in Equations 5.43, because it is a product

of the surface tension γ, which is zero (γ = 0) in the present study (see comment for
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Equations 5.22).

It is worth mentioning that in (Krasitskii, 1994) the aspect of symmetry of the matrices

of the coefficients is emphasized. This is because the coefficients should be symmetri-

cal by their nature, but their calculation does not necessarily guarantee the symmetry.

As such, Krasitskii (1994) suggests to impose the symmetry explicitly by equalizing the

corresponding elements of the matrices. However, he refers to that for only one con-

dition for the Hamiltonian, namely the V (2) coefficient (for more details see (Krasitskii,

1994) p. 5), which is not used in the calculation up to fourth order presented here.

Thus, in the present work, the symmetry condition is not imposed to the other coeffi-

cients (U and V ), assuming that they satisfy their natural symmetry conditions. Future

work should examine in greater depth potential effects of imposed symmetries.

The coefficients of the energy (kinetic and potential) E(3)
1,2,3 and E(4)

1,2,3,4 can be calculated

from Equations 5.44.

E(3)
1,2,3 =−

1
2
√

2π
[(k1 · k2)+q1q2] (5.44a)

E(4)
1,2,3,4 =−

1
8(2π)

[2|k1|2q2 +2|k2|2q1−q1q2(q1+3 +q2+3 +q1+4 +q2+4)] (5.44b)

where q(k) = |ki + k j| tanh(|ki + k j|d).

It should be noted that the original equation of E(3) in (Krasitskii, 1994) is derived for

directional waves, and consequently its Fourier expression results in a denominator of

2π, because E comes from the integral is calculated for dkx dky, which according to the

Fourier definition gives 1√
2π

1√
2π

= 1
2π

. For the unidirectional case considered here, the

integral is defined only for dkx and thus the denominator is 1√
2π

. Similarly for E(4), the

original equation has 1
(2π)2 , while here this is 1

2π
.

The expressions for Z, needed for the computations of B coefficients, can be found

in the Appendix of (Krasitskii, 1994) as functions of the U and A coefficients. After
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the appropriate changes in the notation, the Z terms used in the present study are

presented here in Equations 5.45.

Z(1)
1,2,3,4 =

2
3

[
U (1)

1,2,1−2A(1)
3+4,3,4 +U (1)

1,3,1−3A(1)
2+4,2,4 +U (1)

1,4,1−4A(1)
2+3,2,3

+U (1)
2,1,2−1A(3)

3,4,−3−4 +U (1)
3,1,3−1A(3)

2,4,−2−4 +U (1)
4,1,4−1A(3)

2,3,−2−3

] (5.45a)

Z(2)
1,2,3,4 =−2

[
U (1)

1,3,1−3A(1)
4,2,4−2 +U (1)

3,1,3−1A(1)
2,4,2−4 +U (1)

1,4,1−4A(1)
3,2,3−2

+U (1)
4,1,4−1A(1)

2,3,2−3−U (1)
1+2,1,2A(1)

3+4,3,4−U (3)
1,2,−1−2A(3)

3,4,−3−4

] (5.45b)

Z(3)
1,2,3,4 = 2

[
U (1)

4,1,4−1A(1)
2+3,2,3−U (1)

1+2,1,2A(1)
4,3,4−3−U (1)

1+3,1,3A(1)
4,2,4−2

−U (3)
1,2,−1−2A(1)

3,4,3−4−U (3)
1,3,−1−3A(1)

2,4,2−4 +U (1)
1,4,1−4A(3)

2,3,−2−3

] (5.45c)

Z(4)
1,2,3,4 =

2
3

[
U (3)

1,2,−1−2A(1)
3+4,3,4 +U (3)

1,3,−1−3A(1)
2+4,2,4 +U (3)

1,4,−1−4A(1)
2+3,2,3

+U (1)
1+2,1,2A(3)

3,4,−3−4 +U (1)
1+3,1,3A(3)

2,4,−2−4 +U (1)
1+4,1,4A(3)

2,3,−2−3

] (5.45d)

Finally, all the elements for the calculations for the integrals in Equation 5.39 are known

and the transformed spectrum α(k), which includes both free and bound waves, can be

calculated. This can be then transformed to the nonlinear spectrum in the real space

using the canonical transformation of Equation 5.20. The process of the solution is

summarized below, with the arrows referring to the transformations:

The original free-wave spectrum η(k)→ α f (k), which contains free-waves in the trans-

formed world. α f (k) → b(k), under the consideration that the transformed free wave

b(k) ≡ α f (k). The nonlinear spectrum α(k) is then calculated by the integrals of b(k).

Finally, α(k)→ ηNL(x), which is the spectrum in the real space, containing both free

and bound waves, and corresponds to the desired solution.

5.5.2 Results

In this section, the results of the static Krasitskii method are presented after a brief

description of the application of the solution process. Comparisons with the Creamer
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transform are also shown for the strongly nonlinear wave group.

An important thing to note is that the surface profile is calculated only in space and

not in time. The reason for this is that the calculations for the static Krasitskii method,

similarly to the Creamer transform, are performed in the κ−space and thus, refer to

spaceseries. However, in contrast to the Creamer transform, the timeseries for the

static Krasitskii are not produced here. There are two main reasons for that: i) The

nonlinear amplitude κ−spectrum cannot be transformed to a f−spectrum using Equa-

tion 4.26, because this equation assumes linear dispersion. Although for the free-wave

part of the spectrum linear theory applies, for the bound waves added by the static Kra-

sitskii method, application of Equation 4.26 would be inconsistent; ii) A method similar

to that for producing the timeseries of the Creamer transform by applying the nonlinear

transformation at spatial wave profiles some time instances before and after the focal

time cannot be applied here because the canonical transformation for the derivation

of the static Krasitkii method was performed assuming zero phases of the waves (see

Equation 5.27). Thus, using such an approach would result in violation of the method

and invalidity of the formulae for b(k). A potential option for producing timeseries with

static Krasitskii would be to extend the formula of Equation 4.26 using 2nd and 3rd or-

der dispersion relation and treat the bound harmonics independently for producing a

nonlinear f−spectrum. However, to the author’s best knowledge, such method is not

available at present and it can be subject of future work.

Next, the solution process for the static Krasitkii method as applied in the present study

is briefly discussed with some considerations regarding the spatial and spectral reso-

lution of the free-wave spectra used.

To begin with, from a known free-wave amplitude spectrum in the f−space, such as

the original, the extracted evolved from the HOS simulation and the calculated by the

GKE, the amplitude spectrum in κ−space is calculated. This can be done using the

transformation of Equation 4.26, which is based on linear theory, or by performing FFT

of the spaceseries produced by the application of linear theory (Equation 5.1) on the
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amplitude spectrum in f−space. This process is described in Section 5.1.2. Here, the

latter method is preferred, because the κ−grid is readily calculated by the FFT, both

for positive and negative wavenumbers, and the complex amplitude spectrum is also

directly calculated. Moreover, the obtained amplitude spectrum allows for application

of the IFFT for reconstructing the wave profile. This method was also described in

Section 5.4.1 for the application of the Creamer transform.

An issue when applying the static Krasitskii is the high computational cost for the cal-

culation of the coefficients A and B. For this reason, a relatively coarse resolution is

selected, namely Dx = 0.25 m and total distance of 20 m, which corresponds to 41

wavenumbers in the positive κ−space or 82 wavenumbers in the entire κ−grid that

results from the FFT. The low resolution spaceseries that is afterwards produced, can

be interpolated with a spline. To confirm the applicability of this method, the present

resolution (Dx = 0.25 m) is compared with a high resolution signal (Dx = 0.01 m), as

seen in Figure 5.27. In this figure, the original spaceseries based on linear theory pro-

duced by the Gaussian f−spectrum is given for high and low spatial resolution (black

dashed line and dots, respectively). The signal for the low resolution is then recon-

structed using an FFT - IFFT process (red line). Using the amplitude spectrum defined

only on the positive κ−space and linear theory, the signal can also be reconstructed

on an x−grid with Dx defined by Dk as Dx = 2π

(N−1)Dk , where N is the number of points

of κ−space from the FFT and Dk is the difference between two subsequent wavenum-

bers in the regular κ−space resulted from the FFT (green line). It is confirmed that the

two latter lines are identical. A spline interpolation method can then be used in order to

produce a higher resolution wave profile (gray line), which matches practically perfectly

the high resolution signal of linear theory (dashed black line). Thus, the low resolution

κ−spectrum can be used for static Krasitskii without loss of accuracy.

Also, this process demonstrates that the κ−grid can be constructed based on Dx and

the results match those of the IFFT. This is useful, because the free-wave amplitude

spectra η(k), as used here, are real numbers defined in the positive κ−space. Thus,
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Figure 5.27: Initial spaceseries for the strongly nonlinear group (Σαi = 0.154 m) pro-
duced by linear theory and IFFT. Depth=1 m.

also α f (k) and subsequently b(k) are initially defined for k ≥ 0. However, since the

solution takes place in the entire κ−plane, b(k) should be extended with zero values in

the negative wavenumbers, as seen in Figure 5.28a. As mentioned, for k = 0 there is

singularity and thus, the new κ−grid is defined as: k′ = [−kmax : ∆k :−∆k,∆k : ∆k : kmax].

Following the calculation of the integrals of Equation 5.39, which takes place in the

entire κ−plane, the resulted nonlinear amplitude spectrum with both free and bound

waves, expands in [−kmax,kmax], as seen in Figure 5.28b. In the same plot, the effect of

including nonlinear waves to the spectrum is observed to cause lowering of the peak,

energy increase in high wavenumbers and small energy decrease at low wavenumbers.

As expected, the inclusion of 3rd order bound waves causes a small, but observable,

enhancement of the aforementioned effects. These effects are shown later in greater

detail.

As mentioned, an issue for the static Krasitskii method is the computational cost. For

the results that follow, the values of Dx = 0.25 m and xmax = 20 m were chosen after

preliminary tests, resulting in Dk = 0.3142 m−1 and k ∈ [−12.566,12.566], for either d = 1

m or d = ∞. Higher resolution than this has a considerable impact on the computational

cost. The results for the strongly nonlinear group and the original spectrum are first

compared with those of the Creamer transform. To the author’s best knowledge such

comparison was not performed in the past for the two methods that have common

grounds in their derivation, but different expansion in high orders. As noted, the simple

integral formula of the Creamer transform used here (Equation 5.17) assumes infinite
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Figure 5.28: Amplitude spectrum and its canonical transformation (a) and comparison
of the linear and nonlinear amplitude spectra (b) for the strongly nonlinear group (Σαi =
0.154 m). Depth=1 m.

water depth. For this reason, the comparisons in Figures 5.29 and 5.30 are performed

for both d = 1 m and d = ∞.

Figure 5.29 compares the original and the nonlinear amplitude density spectra pro-

duced by the static Krasitskii and Creamer methods. Note that only up to k = 8 m−1

are plotted for better comparisons. The same spectral resolution of Dk = 0.3142 m−1

is used for both methods for consistency. Also, the initial spectra are plotted and it

is confirmed that they are identical for the two methods, which serves as a check for

consistency of the comparisons that follow. First, it can be seen that the nonlinear

spectra calculated by both methods are in very good agreement for d = 1 m (Figure

5.29a) and in almost excellent agreement for d = ∞ (Figure 5.29b). For d = 1 m, there

are some discrepancies at low wavenumbers k < 1 and near k = 0, where the static

Krasitkii predicts negative amplitudes. However, for the calculation of the spaceseries

that follow, these values are set to zero. Moreover, at k ∈ (2,4) the Creamer transform

predicts lower amplitudes. Also note that the upwards line in Figure 5.29b is because

the negative κ−space is considered, but only the positive is plotted. Another important

aspect is that the addition of 3rd order bound waves to the 2nd order nonlinear spectra
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Figure 5.29: Amplitude density spectra of the strongly nonlinear group (Σαi = 0.154 m)
considering depth=1 m (a) and infinite depth (b). Comparison between original linear
spectrum and nonlinear spectra using the static Krasitskii and Creamer methods.

of static Krasiskii reduces the energy in middle wavenumbers and increases the energy

at high wavenumbers, confirming the previous observation of Figure 5.28b.

Figure 5.29 also examines the effect of the MWL. As mentioned, before application of

the methods, the MWL should be subtracted (see remarks in Section 5.4.1), but for

the present case, where sufficiently long spaceseries are selected and the depth is

d = 1 m, the impact is negligible. This is confirmed here by Figure 5.29a, where the

amplitude density spectrum produced after subtracting the MWL (gray circles) is the

same as the linear spectra for static Krasitskii (gray line) and Creamer (black dashed

line). Nevertheless, for the case of infinite depth (Figure 5.29b), where the spectrum is

shifted to lower wavenumbers, subtracting the MWL results in setting the first value of

the spectrum to zero with subsequent consequences in the results. For the spaceseries

that follow, which most of the refer to d = 1 m, the MWL is not subtracted.

Based on the spectra of Figure 5.29, the corresponding spaceseries are plotted in Fig-

ure 5.29. The spline interpolation method is used due to the low space resolution of

Dx = 0.25 m. In general, both static Krasitkii and Creamer reproduce the expected
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effects of nonlinearity when bound waves are added to a linear profile, which refer to

steepening of the main crest and increasing its height. For d = 1 m (Figure 5.29a), the

Creamer transform has a wider main crest than the static Krasitskii method, while for

d = ∞ (Figure 5.29b), the agreement is almost excellent. The results of the Creamer

transform are plotted also for the high resolution used in Section 5.4.2 (black dotted

line) and compared with the low resolution interpolated result (thin yellow line). It is

seen that the main difference arises at the crest, where the low resolution result un-

derestimates the crest height in comparison with the high resolution result. The crest

height produced for the low resolution is very close to that of static Krasitkii of 3rd or-

der. Based on these observations, it is presumed that increasing the resolution for

static Krasitkii should result in a higher crest elevation. The difference between 2nd and

3rd order static Krasitkii is more pronounced for d = 1 m, as expected, since bound

interactions are stronger for finite water depth, and mainly concern the crest elevation.

It is also observed that for infinite depth there is merely visible discrepancy at the crest

of the linear harmonics. Since the script for producing this harmonic is identical for both

Creamer and Krasitskii methods, the most likely explanation is that the discrepancy is

attributed to the discretization of the spectrum and the fact that the first element of the

spectrum is disregarded. This is more visible for the spectrum in deep water, because

it is shifted to lower wavenumbers and the omission of the first wavenumber, which has

non-zero amplitude, has a greater effect compared to the spectrum at d = 1 m (see

Figure 5.29).

For the wave groups of lower steepness, i.e., Σαi = 0.100 m and Σαi = 0.050 m, similar

trends are identified, but the differences between the Creamer and static Krasitskii

methods decrease as a consequence of the reduced nonlinearity. For the quasi-linear

group, the nonlinear spaceseries are almost the same as the linear spatial harmonics.

For brevity, these comparisons are not presented here.

Before presenting the results of the static Krasitskii for the groups of different steepness

and the examined free-wave spectra, the linear spaceseries of the strongly nonlinear
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Figure 5.30: Spaceseries of the strongly nonlinear group (Σαi = 0.154 m) considering
depth=1 m (a) and infinite depth (b). Comparison between original linear signal and
nonlinear signal using the static Krasitskii and Creamer methods.

Figure 5.31: Spaceseries of the linear harmonics of the strongly nonlinear group (Σαi =
0.154 m) for depth=1 m for the original and evolved underlying free-wave spectra.

group for the underlying free-wave spectra are presented in Figure 5.31. The same

graphs were presented in Figure 5.4 for all the groups of different steepness, but at

different scale. Plotting them at the same scale though, facilitates comparisons with

the nonlinear solutions in Figure 5.32 of the present section.

The nonlinear spaceseries of the strongly nonlinear wave group calculated by static

Krasitskii are presented in Figure 5.32. The linear spaceseries of the original free-wave

spectrum are also included in the plot in order to examine the overall improvement of

using an evolved spectrum and inducing up to 3rd order bound wave nonlinearities. At
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Figure 5.32: Spaceseries of the static Krasitskii solution for the strongly nonlinear group
(Σαi = 0.154 m) for d=1 m for the original and evolved underlying free-wave spectra.

this stage the spatial profile of the surface elevation from the nonlinear model is not

available, but future studies will include it as a benchmark for the analytical methods.

It can be seen that the evolved free-wave spectra result in a narrower crest above

the MWL and flatter, shallower and wider troughs below the MWL compared to the

original free-wave spectrum. The crest is also considerably narrower, steeper and

higher (at least by 12%) than the linear solution, demonstrating the expected effects

of the nonlinearity. The evolved free-wave spectrum of HOS marginally increases the

nonlinear estimation of static Krasitskii compared to the original spectrum. The largest

increase of the crest elevation is observed for the free-wave spectrum of the GKE,

which is a direct consequence of the overestimation of the crest height of the linear

harmonics of the GKE (see gray line Figure 5.31).

The results of the static Krasitskii for the weakly nonlinear and quasi-linear wave groups

are presented in Figures 5.33 and 5.34, respectively. The inclusion of the bound waves

for the weakly nonlinear group causes a noticeable narrowing of the main crest and an

increase of the crest elevation by at least 7%. The effect of the narrowing in hardly

visible for the quasi-nonlinear group, while the maximum crest elevation increases only

by at least 3%. This confirms that for the quasi-linear group, the bound wave structure

is very weak and practically the spectrum does not evolve.

Similar conclusions for the groups of different steepness were made by the previous

methods for calculating the bound waves (second order theory, fifth order expansion
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Figure 5.33: Spaceseries of the static Krasitskii solution for the strongly nonlinear group
(Σαi = 0.100 m) for d=1 m for the original and evolved underlying free-wave spectra.

Figure 5.34: Spaceseries of the static Krasitskii solution for the quasi-linear group
(Σαi = 0.050 m) for d=1 m for the original and evolved underlying free-wave spectra.

and Creamer transform), but here the effects of using the evolved free-wave spectra

are examined for the spatial profile of the focused wave and not the timeseries.

5.5.3 Conclusions

In this section, an original way to employ the canonical transformation of Krasitskii

(1994) was presented to produce the bound nonlinear harmonics of second and third

order based on a known free-wave spectrum. A similar assumption to that of the deriva-

tion of the GKE was made, which considers that the free waves in the real and trans-

formed space are the same. This seems to be a natural choice since there is no way to

know a priori the spectrum in the transformed space, as the only available information

refers to the real space energy spectrum. As such, the aforementioned assumption

is commonly used for the different versions of the KE (see Section 4.2.1), but it is not
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necessarily the assumption that Krasitskii (1994) presented in the original paper. On

the contrary, Krasitskii suggested that this is a "naive" consideration and recommended

alternative derivations based on the Laplace equation (see p. 16 in (Krasitskii, 1994)),

which however, to the author’s best knowledge, they were not explored further since

the original publication.

Regardless of the previous shortcoming on the derivation, the results for the space-

series of a nonlinear wave profile exhibit the expected characteristics of nonlinearity:

increase of the crest elevation, narrowing of the central crest and shallowing of the

lateral troughs. The comparison with the results of the Creamer transform shows very

good agreement, especially for the deep water case, where the Creamer transform is

valid. It should be noted that the static Krasitskii method showed very good perfor-

mance for up to the limiting breaking wave group, which is remarkable considering the

underlying assumptions.

The main advantage of the static Krasitskii is that it is valid for both finite and infinite

water depth, which brings it to a better position than the Creamer transform when ex-

amining broadbanded spectra that contain deep to shallow water wave components.

However, a considerable handicap of the static Krasitskii method, as derived here, is

that the canonical transformation is valid only for zero phases differences among the

components. Consequence of that is that it cannot be applied to produce timeseries.

Nevertheless, it is valid in the context of NewWave-type wave groups and thus, large

waves in the ocean. Another disadvantage is the tedious derivation and the high com-

putational cost of the method, which restricts it to a small number of wave components.

Future work can expand the present derivation to examine arbitrary phase differences

among the wave components towards a more general version of the canonical trans-

formation. Moreover, a mathematically and physically consistent way to produce time-

series should be explored, which will expand the applicability of the method for engi-

neering purposes, where the local characteristics of the time evolving wave profile are

the primary interest. Other aspects of the application of the method that should be
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examined in greater depth are: i) the permitted interactions through the δ−functions,

which here are restricted to resonant interactions only when the differences between

the wavenumbers are exactly zero. Relaxing this even to machine precision may have

impact on the considered wave interactions and the calculated bound waves. ii) The

effect of symmetries in the matrices of Krasitskii’s coefficients. Krasitskii insisted to

impose the symmetry for pairs of wavenumbers in the calculated coefficients, since

the natural symmetry of the matrices should not be taken for granted. Which symme-

tries should be imposed and why can be subject of future work. iii) Revision on the

calculation of Krasitskii’s coefficients by employing the Laplace equation (see p. 16 in

(Krasitskii, 1994)), which could save considerable computational cost.

Concluding, the examination of both the Creamer transform and the static Krasitskii

method showed great potential for the calculation of nonlinear wave profiles by these

two methods that might have been overlooked by the ocean engineering community,

compared to more applied methods, such as the second order theory. It should be

noted that for more consistent comparisons and benchmarking of the methods, deep

water wave spectra should be examined, where both methods are valid. This can also

set the course for new experimental campaigns in order to find the breaking limit and

the spectral changes in deep water broadbanded wave spectra.

5.6 Intercomparison

In this section, comparisons among the different methods for reconstructing the time-

series of the wave profile of Chapter 5 are performed16. Similar comparisons were

made throughout this chapter, but here, the methods are compared using the same

underlying free-wave spectra at each case. Graphs in this section are presented only

for the strongly nonlinear group which exhibits the highest nonlinearity and the differ-

ences are more noticeable. Moreover, tables with the measured crest elevation and

16The spaceseries are not compared here, since the corresponding comparisons between the Creamer
transform and static Krasitskii were performed in Section 5.5.2.
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wave height as well as their comparison with the fully nonlinear solution are included.

When relevant, comparisons with previous studies are discussed.

Some important remarks are made before presenting the results: i) The static Kra-

sitskii’s method results are not presented graphically, since, to present, there is no

consistent method for producing the timeseries; ii) The Creamer transform results refer

to the finite depth case, which is not strictly the case for the formulation used; iii) The

results of the fifth order expansion in the graphs are produced using the exact 2nd dif-

ference harmonics and the actual kp of the corresponding spectra. This is because,

as discussed in Section 5.3, using the self-interactions to calculate the 2nd difference

harmonics results in an artificial elevation of the entire central wave profile. Never-

theless, in the tables, both the exact and the approximate 2nd difference harmonics

are presented separately, using the kp of the evolved and the original spectra, respec-

tively; iv) The maximum crest elevation can be calculated from the spaceseries, since

it refers to t = 0 s and thus, the static Krasitskii’s method results are included in the

tables. However, the surface profile at times t 6= 0 is not known and consequently the

troughs cannot be estimated. As a result, the wave height by the static Krasitkii is not

included in the tables.

The timeseries of the wave profile of the strongly nonlinear group at the PF location

are presented in Figures 5.35, 5.36 and 5.37 for the original, extracted evolved and

calculated evolved GKE amplitude spectra, respectively, using the surface profile re-

construction methods. To begin with, comparing the three figures shows that there is

consistency in the behaviour of the profile reconstruction methods for all the underlying

free-wave spectra and that the evolved spectra predict a more similar wave profile to

the fully nonlinear simulation of HOS-NWT than when the original spectrum is used.

Additionally, there is a considerable improvement from the linear theory prediction (blue

line) when bound waves are added. The narrowing and increasing of the main crest

are evident.

In more detail, Figure 5.35 demonstrates that despite the increase of the crest ele-
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Figure 5.35: Free surface elevation timeseries of the strongly nonlinear group (Σαi =
0.154 m) produced by the reconstruction methods of the wave profile, considering the
original free-wave spectrum, and comparison with linear and fully nonlinear solution.

vation and shallowing of the neighbouring troughs resulted by the inclusion of bound

waves, the central crest calculated using the original free-wave spectrum is still con-

siderably wider than the simulated crest. The greatest discrepancy in these terms is

observed for the Creamer transform. The prediction of the fifth order expansion for the

troughs and width of the main crest is closer to the fully nonlinear simulation, but it

underestimates the crest elevation compared to both Creamer transform and second

order theory. Similar observations can be made for Figure 5.36. In this case however,

the shape of the wave profile is better estimated thanks to the use of the evolved spec-

trum. All nonlinear analytical solutions provide a narrower crest compared with linear

theory. Nevertheless, the Creamer transform estimation predicts a considerably wider

crest compared to the fifth order expansion and second order theory, which both pre-

dict very similar lateral troughs. However, the fifth order expansion ceases reaching the

crest elevation of the Creamer transform and second order theory. Last, Figure 5.37

shows that the crest elevation is increased for all the methods when the spectrum of

the GKE is used. Again, the agreement at the troughs is better for the second order

theory and fifth order expansion, but at the crest, the latter predicts a lower elevation

compared to second order theory and the Creamer transform. Overall, with the ex-

emption of the crest elevation, the fifth order expansion for the GKE spectrum shows

a very good agreement of the central wave profile, which can be associated with the

fine-tuning of the selection of the kp used in the calculation.
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Figure 5.36: Free surface elevation timeseries of the strongly nonlinear group (Σαi =
0.154 m) produced by the reconstruction methods of the wave profile, considering the
extracted free-wave spectrum from HOS, and comparison with linear and fully nonlinear
solution.

Figure 5.37: Free surface elevation timeseries of the strongly nonlinear group (Σαi =
0.154 m) produced by the reconstruction methods of the wave profile, considering the
calculated free-wave spectrum by the GKE, and comparison with linear and fully non-
linear solution.

Next, a quantitative comparison is performed for the analytically estimated maximum

crest elevation for the wave groups of different steepness in Tables 5.2 - 5.3. For all

cases, the measured maximum crest elevation in the fully nonlinear simulation is men-

tioned in the caption of the tables and the linear theory prediction with the original

free-wave spectrum refers to the amplitude sum (Σαi). It would be also useful if the

tables are looked in two ways: as a whole ("full table" case) and by excluding the GKE

spectrum and the "Fifth" order expansion ("excluded table" case). The GKE spectrum

causes increased linear harmonics and thus, overall overestimation of the crest ele-

vation, while the fifth order expansion uses the self-interactions for the 2nd difference
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Table 5.2: Crest elevation (m) calculated by the different methods for reconstructing
the free surface profile of the strongly nonlinear group (Σαi = 0.154 m). Measured in
HOS-NWT: 0.2045 m.

Linear theory 2nd order Fiftha Fifth-Ex.b Creamer Krasitskii
Original spectrum 0.1540 0.1700 0.1812 0.1645 0.1737 0.1717
Evol. spectrum HOS 0.1565 0.1739 0.1838 0.1626 0.1777 0.1742
Evol. spectrum GKE 0.1673 0.1877 0.1993 0.1770 0.1931 0.1884

aThe calculation is based on the kp of the original spectrum and self-interactions for the 2nd difference
harmonics.

bThe calculation is based on the actual kp and the exact solution of the 2nd difference harmonics.

Table 5.3: Crest elevation (m) calculated by the different methods for reconstructing
the free surface profile of the weakly nonlinear group (Σαi = 0.100 m). Measured in
HOS-NWT: 0.1123 m.

Linear theory 2nd order Fiftha Fifth-Ex.b Creamer Krasitskii
Original spectrum 0.1000 0.1068 0.1109 0.1039 0.1077 0.1067
Evol. spectrum HOS 0.1013 0.1085 0.1124 0.1049 0.1094 0.1083
Evol. spectrum GKE 0.1025 0.1097 0.1142 0.1066 0.1108 0.1098

harmonics, which results in artificial elevation.

For the strongly nonlinear wave group (Table 5.2), the "full table" shows that the highest

crest elevation is predicted by fifth order expansion and the GKE spectrum, while the

lowest is predicted by fifth order expansion with the exact 2nd difference harmonics and

the original spectrum. A more realistic view is obtained when focusing on the "excluded

table", showing that the second order theory, Creamer transform and static Krasitskii

have similar predictions. Small improvement for the maximum crest elevation is noted

when the evolved spectrum is used, with the highest proportional improvement shown

for the second order theory.

For the weakly nonlinear wave group (Table 5.3), similar observations are made: high-

est crest elevations are observed when the GKE free-wave spectrum is used with the

fifth order expansion, which overestimate the nonlinear simulation. It is worth noting

that the predictions of the second order theory are higher here than the static Krasit-

skii. Further, examining only the "excluded table" and considering that the Creamer

transform is not properly formulated for the finite water depth case, it seems that the

best candidate to describe the crest elevation is the second order theory.
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Table 5.4: Crest elevation (m) calculated by the different methods for reconstructing the
free surface profile of the quasi-linear group (Σαi = 0.050 m). Measured in HOS-NWT:
0.0522 m.

Linear theory 2nd order Fiftha Fifth-Ex.b Creamer Krasitskii
Original spectrum 0.0500 0.0517 0.0526 0.0509 0.0518 0.0515
Evol. spectrum HOS 0.0502 0.0519 0.0529 0.0511 0.0521 0.0518
Evol. spectrum GKE 0.0505 0.0522 0.0532 0.0514 0.0523 0.0521

For the quasi-linear wave group (Table 5.4), the differences in the crest elevation are

marginal, especially when focusing on the "excluded table". In this case, the Creamer

transform predicts the highest crest elevation. Looking at the "full table", similar to

the weakly nonlinear group, the fifth order expansion overpredicts the maximum crest

elevation, but here this applies even when the original free-wave spectrum is used,

which indicates that the set-down of the wave group is ill-defined.

To facilitate comparisons with the fully nonlinear solutions, the results of Tables 5.2 -

5.3 are presented as (%) difference of the measured crest elevation of the nonlinear

simulation of HOS-NWT, calculated as
(

1− measured-analytical
measured

)
, in Tables 5.5 - 5.7.

For the strongly nonlinear wave group (Table 5.5), it is seen that the combination of

the fifth order expansion with the GKE free-wave spectrum captures almost exactly the

crest elevation of the nonlinear simulation. From the "excluded table", it is seen that

the nonlinear solutions for the bound waves improve the linear theory estimation by

almost 10%. Best estimation is achieved for the Creamer transform and the evolved

spectrum of HOS. It is also observed that linear theory underestimates considerably

the maximum crest elevation and the result improves marginally when the evolved free-

wave spectrum is used.

Similar results were obtained in the experimental study of Baldock et al. (1996) for a

strongly nonlinear narrowbanded wave group and the original free-wave spectrum (see

Figure 6c in (Baldock et al., 1996)), where linear and second order theory deviated

30% and 20% from the measurements of the maximum crest elevation, respectively.

Here, these differences are 25% and 17%. They also highlighted the fact that analyt-

ical solutions are much more successful in estimating the maximum crest elevation of
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regular waves than of steep focused waves groups, which adds difficulty to the present

challenges.

On the other hand, it should be also noted that the present findings are in contradic-

tion with the study of Johannessen and Swan (2003)17 who reported that for a uni-

directional limiting breaking wave group in deep water the linear theory solution can

account for only 65% of the crest elevation when the original spectrum is used and

81% when the locally broadened (evolved) free-wave spectrum is used (see Figure 13

in (Johannessen and Swan, 2003)). Similarly, for second order theory, it was reported

that prediction of the maximum crest elevation was improved from 75% to 92%, while

here the improvement is very moderate, only 2%, from 83% to 85%. Note that only the

limiting breaking case is considered for the comparison here for consistency reasons,

because it is impractical to try to match the same nonlinearity for wave groups of mod-

erate steepness. There may be several reasons for these important deviations between

the two studies: i) Physically, the amplitude spectra are different. In (Johannessen and

Swan, 2003), αi ∝ f−2
i is used, while in the present study a more natural broadbanded

Gaussian distribution is used. ii) The focusing of the wave group in (Johannessen

and Swan, 2003) is not performed using an advanced focusing methodology, as in the

present study, and, as a consequence, the wave group is not accurately focused, as

seen from the lateral asymmetries of the wave profile in Figure 13a of (Johannessen

and Swan, 2003). iii) The two-wave decomposition is used in (Johannessen and Swan,

2003), compared to the more accurate four-wave decomposition method here, which

may result in inaccuracies in the extraction of the linear harmonics with considerable

consequences in using these harmonics for the analytical calculations with linear and

second order theory. Therefore, at least for the latter two reasons, the analysis of the

present study should be considered superior to that of Johannessen and Swan (2003).

Another study that examined limiting breaking unidirectional wave groups and com-

pared with analytical predictions is that of Johannessen and Swan (2001). After dig-

17The reader should also consult the experimental campaign of Johannessen and Swan (2001) for a
more complete view of the methods and testing conditions.
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Table 5.5: Analytically calculated crest elevation as a percentage of the measured
elevation in HOS-NWT (0.2045 m) for the strongly nonlinear wave group (Σαi = 0.154
m).

Linear theory 2nd order Fiftha Fifth-Ex.b Creamer Krasitskii
Original spectrum 75% 83% 89% 80% 85% 84%
Evol. spectrum HOS 77% 85% 90% 80% 87% 85%
Evol. spectrum GKE 82% 92% 97% 87% 94% 92%

itizing Figure 7a of (Johannessen and Swan, 2001), it is found that linear and sec-

ond order theory can account for only 65% and 75% of the maximum crest elevation,

respectively, which is approximately 10% lower to the corresponding findings of the

present study. Their explanation is that this may be a consequence of a changing free-

wave regime. However, as suggested from the present findings, this should not be

the reason, because the improvement is only marginal. The author believes that most

likely the findings of Johannessen and Swan (2001) suffer from poor focusing of the

wave group, which is supported from the lack of symmetry in the timeseries before and

after the focal time and the considerable mismatch of the second order harmonics in

Figure 17 of (Johannessen and Swan, 2001).

Last but not least, the findings of Katsardi and Swan (2011) are discussed. For interme-

diate and shallow water wave groups, they suggest that the nonlinear simulation results

in lower prediction of the maximum crest elevation than linear theory. The present re-

sults contradict that and show that there is no weakening of the dispersive focusing

in shallower water depth. The effects observed in that study are probably due to BF

instabilities that may appear in a very dispersed wave train (see comment 4).

For the weakly nonlinear wave group (Table 5.6), it can be seen that, similarly to the

strongly nonlinear group, the use of the evolved spectra has a negligible improvement

on analytically calculated maximum crest elevation. In case of wave groups of moder-

ate steepness however, linear theory accounts for 90% of the maximum crest elevation

of the fully nonlinear simulation, while the best estimation of 97% is achieved by sec-

ond order theory and Creamer transform, considering the "excluded table". Very good

performance is also reported for the static Krasitskii method.
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Table 5.6: Analytically calculated crest elevation as a percentage of the measured
elevation in HOS-NWT (0.1123 m) for the weakly nonlinear wave group (Σαi = 0.100
m).

Linear theory 2nd order Fiftha Fifth-Ex.b Creamer Krasitskii
Original spectrum 89% 95% 99% 93% 96% 95%
Evol. spectrum HOS 90% 97% 100% 93% 97% 96%
Evol. spectrum GKE 91% 98% 102% 95% 99% 98%

Table 5.7: Analytically calculated crest elevation as a percentage of the measured
elevation in HOS-NWT (0.0522 m) for the quasi-linear wave group (Σαi = 0.050 m).

Linear theory 2nd order Fiftha Fifth-Ex.b Creamer Krasitskii
Original spectrum 96% 99% 101% 98% 99% 99%
Evol. spectrum HOS 96% 100% 101% 98% 100% 99%
Evol. spectrum GKE 97% 100% 102% 98% 100% 100%

For the quasi-linear wave group (Table 5.7), it can be seen that linear theory already

offers a very good estimation of the maximum crest elevation of 96% of the fully non-

linear solution, demonstrating that the bound waves have little energy content. When

the analytical methods for calculating the bound waves are used, a perfect estimation

of the maximum wave crest elevation is predicted. The use of fifth order expansion

results in overestimations for any of the underlying free-wave spectra.

To conclude, the previous findings show that the maximum crest elevation is only

marginally improved when using the evolved free-wave spectrum, nevertheless as

found before, the overall shape of the wave profile is much more realistic. Moreover,

linear theory is adequate for estimating the maximum crest elevation only for the quasi-

linear group. For the wave groups of moderate and high steepness, Σαi = 0.100 m

and Σαi = 0.154 m, a bound wave structure should be considered, which for the former

results in very good estimation of the maximum crest elevation of 97%, while for the

latter, the fully nonlinear result is still underestimated by approximately 15%. There-

fore, for strongly nonlinear wave groups close to breaking, fully nonlinear solvers are

definitely recommended.

Last but not least, another important aspect to consider, which is sometimes over-

looked in similar studies, is the maximum wave height, measured as the vertical dis-

tance from the lowest elevation at the troughs to the highest elevation at the main crest.
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The wave height is important for engineering purposes, because it refers to the total

free surface displacement that a structure experiences and it is associated with the

translation of a floating body caused by the waves. The results for the wave height are

presented in Tables 5.8 and 5.9, only for the strongly nonlinear group for brevity pur-

poses, as absolute values and as (%) estimation of the fully nonlinear solution (0.2913

m)18, respectively. As discussed, results for the static Krasitskii are not included.

For convenience, the results of Table 5.8 and 5.9 are examined together and are di-

rectly compared with corresponding results for the crest elevation in Tables 5.2 and 5.5.

It can be seen that the results for the wave height exhibit several differences compared

those for the crest elevation. To begin with, for all the analytical calculations, the wave

height is better predicted compared to the maximum crest elevation. This is possibly

related to the fact that the effects of the bound nonlinearities are more prominent at

the crest compared to the troughs and thus, the inclusion of the troughs proportionally

improves the estimation. Additionally, focusing only on the "excluded table", it is seen

that actually, the use of the evolved free-wave spectrum of HOS causes greater un-

derestimation of the wave height compared to the free-wave spectrum. This is exactly

the opposite case when maximum crest elevation is concerned. The reason for this is

that the evolved linear harmonics have shallower troughs than the original and thus,

the overall estimation of the wave height is lower. As a consequence, and in combi-

nation with the fact that the bound nonlinearities result in shallower troughs, the linear

theory estimation of the wave height with the original spectrum is comparable and in

some cases better than the evolved free-wave spectra with the bound nonlinearities.

Of course, this is an artefact and the wave profile is considerably different, but it may

be a useful observation when examining wave height statistics with random linear sim-

ulations. Moreover, it is noted that the fifth order expansion using the self-interactions

for the set-down gives only an additional 2% increase of the wave heigh compared

to the other methods, instead of 5-10% for the maximum crest elevation, because the

18It is remarkable to notice that the wave height of the focused wave group is approximately 1/3 of the
water depth without the occurrence of wave breaking.
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Table 5.8: Crest height (m) calculated by the different methods for reconstructing the
free surface profile of the strongly nonlinear group (Σαi = 0.154 m). Measured in HOS-
NWT: 0.2913 m.

Linear theory 2nd order Fiftha Fifth-Ex.b Creamer Krasitskii
Original spectrum 0.2591 0.2687 0.2746 0.2622 0.2693 -
Evol. spectrum HOS 0.2497 0.2623 0.2684 0.2502 0.2627 -
Evol. spectrum GKE 0.2638 0.2780 0.2865 0.2664 0.2805 -

Table 5.9: Analytically calculated maximum wave height as a percentage of the mea-
sured wave height in HOS-NWT (0.2913 m) for the strongly nonlinear wave group
(Σαi = 0.154 m).

Linear theory 2nd order Fiftha Fifth-Ex.b Creamer Krasitskii
Original spectrum 89% 92% 94% 90% 92% -
Evol. spectrum HOS 86% 90% 92% 86% 90% -
Evol. spectrum GKE 91% 95% 98% 91% 96% -

troughs are elevated and the entire wave profile is translated vertically, which increases

considerably the crest elevation, but not necessarily the wave height.

Summing up, the previous results demonstrated that different conclusions may be

drawn for the performance of the analytical methods and the underlying free-wave

spectra depending on the examined parameters, e.g., maximum wave crest elevation

or wave height. Therefore, the effects of nonlinearity should be examined from different

angles in regard to the considered applications. Similarly, future work can expand the

present methods to examine the effects of bound and resonant nonlinearities on the

kinematics of focused wave groups, which determine the structural loads. Indeed, it is

not known at this stage whether the maximum loads or the time history of the loads

calculated based on the evolved free-wave spectra will be more appropriate than those

calculated from the original spectra. For instance, the timeseries of the free surface el-

evation for the evolved HOS spectrum (Figure 5.36) are "smoother" with smaller abrupt

changes between the crests and troughs compared to the timeseries based on the

original spectrum (Figure 5.35) and may result in milder loads. Also, depending on the

geometry of the structure and its degrees of freedom, different phasing of the extreme

wave group may be used for the design load (see appendix of (Vyzikas et al., 2018b)).

Finally, as commented throughout the section and Chapter 4 (see Section 4.8), the
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GKE overestimates the free-wave spectrum, especially near the peak, compared to

the evolved spectrum extracted from the HOS simulation. Nonetheless, the paradox is

that this overestimation, at least for the present Gaussian spectrum, results in a better

prediction of the nonlinear wave profile. Therefore, it may result in a more conservative,

at least safety-wise, estimation of wave profile and kinematics. To which extent this is

case specific or it applies to other than Gaussian spectra should be part of future work.

Thus, even if the reasons that the extracted and the GKE evolved spectra are different

remain unknown, it would be interesting to see whether in the end the overall solution

is more conservative for certain engineering applications.

On a final note, it is underlined that the present conclusions refer only to long-crested

wave groups. However, the surface dynamics of directionally spread waves may be

considerably different, and the additional bound wave elevation may be restrained only

up to second order, see e.g., (Johannessen and Swan, 2001; Gibbs and Taylor, 2005).

The broadening of the free-wave regime may also follow different patterns, as dis-

cussed by many authors, e.g., (Adcock and Taylor, 2016b), resulting in considerable

deviations of the wave profile from the linear theory estimation.
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Chapter 6

Conclusions

THIS last part of the Thesis summarizes the main achievements of the work con-

ducted, highlights the remaining questions and suggests potential routes for

future research. The present study is a balanced mixture of experimental, numerical

and analytical methods aiming at accurate simulation of extreme waves and better un-

derstanding of the underlying physical process of wave-wave interactions during the

formation of these waves. The conclusions are structured accordingly herein, but it is

noted that for more information, the reader should refer to the conclusion sections of

every chapter, where the corresponding considerations are discussed thoroughly.

Present challenges

A large part of the present work was devoted to an exhaustive multilateral literature

review of extreme waves and numerical modelling techniques for ocean waves. The

lack of consensus about the characteristics and the generation mechanisms of extreme

waves, as well as the role of the nonlinear wave-wave interactions, impose an consid-

erable challenge. At present, there are two competing "schools" in the field of extreme

waves, namely, the MI and the dispersive focusing, who use different numerical mod-

els and methods of analysis. Thus, the literature is often contradictory and one should
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consult carefully both approaches before drawing any conclusions for the examined

problem. An additional difficulty comes from the numerical models and analysis tech-

niques, which, due to the fact that they have different assumptions and limitations, may

return considerably different results that can lead to misinterpretation of the underlying

physical processes. To mitigate these challenges, the present work included a wide

range of multi-purpose numerical models and analytical methods in order to tackle the

problem of extreme waves from various perspectives. Based on the latest literature

(Christou and Ewans, 2014; Fedele et al., 2016), which provides convincing evidence

that dispersive focusing is a natural mechanism for the formation of extreme waves in

the ocean, NewWave-type waves were used in the physical and numerical modelling.

Moreover, the advanced focusing methodology of Stagonas et al. (2014) was employed

for first time in NWTs, achieving great accuracy and minimising discrepancies between

experimental and numerical results. The use of accurate techniques, i.e., four-wave

decomposition, for the analysis of the results provided new insights into the evolution

of the focusing wave groups. The analytical models, used or developed, contributed in

supporting the interpretation of the physics of the problem.

Outcomes
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Main achievements:

1. Insight in the nonlinear wave-wave interactions during the formation of

NewWave-type extreme waves.

2. Development of a method using the GKE for estimating the evolution of the

free-wave spectrum in focused wave groups.

3. Demonstration of the performance of analytical methods for reconstructing a

nonlinear wave profile.

4. Validation of numerical models: OpenFOAM, SWASH, HOS-NWT and HOS-

ocean.

Physics of focused waves

The evolution of waves in nonlinear media is associated with energy transfers among

the wave components of the spectrum. In the context of water waves, these take the

form of resonant and bound nonlinearities, which act at different scales and affect the

spectrum in different ways, as explained in Section 2.2.

According to the theory, solely resonant interactions are capable of altering the free-

wave spectrum and bound nonlinearities can only cause local changes to the wave

profile. Previous experiments with focused waves (Baldock et al., 1996; Johannessen

and Swan, 2003) provided some evidence that the free-wave regime changes in short

scales and attributed this to resonant interactions. However, for unidirectional waves

the conditions for resonant interactions cannot be satisfied (Janssen, 2003). To investi-

gate this, the present study combined experimental and fully nonlinear numerical anal-

ysis of wave groups, using realistic broadbanded spectra that are not dominated by BF

instabilities. With the help of the focusing methodology (Stagonas et al., 2014) and the

four-wave decomposition, it was clearly demonstrated for first time that the free-wave

spectrum gradually evolves towards focusing, with its spectral peak being downshifted
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and its high frequency tail being broadened. To identify the nature of these changes, a

code for the GKE based on the work of Gramstad and Stiassnie (2013) was employed.

It was shown that there are strong correlations between the effect of near-resonant

interactions and the observed changes on the free-wave spectrum.

The action of bound nonlinearities is better known: as the steepness of the group

increases, energy is transferred locally and rapidly to higher and lower harmonics. For

regular waves, harmonics can be easily identified by the multiple peaks at the spectrum

(Zhao et al., 2009). However, for irregular waves, the distinction is more complicated,

due to the overlapping of the harmonics. In such cases, the four-wave decomposition

method becomes very useful. Employing this method to the focused wave groups of

the present study revealed a strong harmonic structure with consistent characteristics,

at least up to fifth order. The energy content of the harmonics reduces with increasing

order. To study the effects of nonlinearities, wave groups of different steepness up to

the breaking limit were examined. For groups of moderate steepness, the second order

theory appeared adequate to describe the dynamics of the group, while, for very steep

groups, third, fourth and fifth order harmonics became considerable. The magnitude

of the nonlinear harmonics was shown to increase disproportionally to the increase of

steepness of the wave groups, making limiting breaking groups particularly challenging

to simulate. It is noted, however, that these observations may be different for directional

waves (Latheef and Swan, 2013; Johannessen and Swan, 2001).

To present, the literature is not conclusive on the action of bound and resonant non-

linearities, especially in focused waves. The effects of the bound nonlinearities influ-

ence the wave group locally and are proven to be fully reversible. On the other hand,

the reversibility of near-resonant nonlinearities depends on their nature; BF instabil-

ities at short scales are reversible, while the long-term evolution leads to the stabil-

ity of the spectrum at the Hasselmann’s scale, without being reversible. The present

study demonstrated with accuracy, using a long fully nonlinear numerical flume, that

the near-resonant interactions are fully reversible for broadbanded spectra at the short
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time scales of the focused wave events, sharing characteristics of both BF and Hassel-

mann’s evolution processes.

Another important aspect that was also demonstrated refers to the validity of dispersive

focusing in intermediate and shallow water depth. In contradiction to previous studies

(Katsardi and Swan, 2011), where the weakening of dispersion in finite water depth

hindered the focusing process, here it was shown, thanks to the effective focusing of

the waves, that dispersive focusing holds also in shallower water, supporting the use

of NewWave theory in coastal areas.

Numerical modelling

Probably the most quantifiable achievement of the present work is the accurate gen-

eration of focused wave groups in a range of NWTs and their validation against ex-

perimental results. Custom boundary conditions were prepared for each numerical

model in order to best accommodate the application of the focusing methodology. The

iterative corrections of the input signal with the methodology act as a self-calibration

procedure that suppresses any particularities of the wave generation. This minimizes

any discrepancies and gives the opportunity for consistent validation of the numerical

models, which took place after optimization and thorough convergence of the NWTs.

Initially, OpenFOAM, with waves2Foam (Jacobsen et al., 2012) and IHFOAM (Higuera

et al., 2013a) libraries, was employed in order to examine the capability of the solver

to propagate very steep waves and prepare a CFD NWT that can handle strong fluid-

structure interaction for future studies. Aiming at decreasing the computational cost,

the operational model SWASH was used, followed by the HOS-NWT. Both solvers,

despite their inherent assumptions and limitations, demonstrated very good agree-

ment with the experimental results. Careful comparisons revealed that OpenFOAM

and HOS-NWT have similar input boundary conditions, suggesting potential use of the

computationally efficient HOS-NWT for the iteration of the focusing methodology, be-

fore the final run in OpenFOAM. It should be noted that it is the first time that the three
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models of different governing equations, scales and purpose are compared under the

exact same conditions. An overview of the applicability of these models is given in

Table A.1, coming from a large literature review and working experience.

The comparison with experimental results demonstrated a remarkable performance of

the OpenFOAM NWT, with an error of 0.1% for the crest of the limiting breaking wave

group. SWASH and HOS-NWT also showed impressive performance, considering their

underlying assumptions, with an average error of 5%. It is noted that no time-shifting

or adjustment of the focal location were needed, thanks to the accurate focusing of

the wave groups. The models were also validated for the evolution of each harmonic

at consecutive locations in the NWTs. The evolution of the linear harmonic was repli-

cated by the models with great accuracy, giving confidence for the reliable numerical

dispersion of the wave groups. The greatest discrepancies were reported for the 2nd

difference harmonic, which shows a spurious elevation preceding the main wave group,

probably created due to the linear wave generation. An interesting outcome of the in-

tercomparison of the models (see Table 3.5) is that OpenFOAM seems to consistently

overestimate almost all the nonlinear harmonics, with the approximate solvers giving

actually closer results to the experiment. This implies that the impressive performance

of OpenFOAM may be due to intercancellations of the individual harmonics, with po-

tential unknown consequences to the kinematics. As such, the present study suggests

that an in depth analysis of the results may reveal hidden discrepancies and the CFD

models should not be treated with blind trust as the gold standard.

Good experience and best practice methods were reported for the numerical methods

of the present study, which can have important value for practical engineering appli-

cations. For example, to the best of the author’s knowledge, for CFD, it was the first

time that direct comparison between the most widely used libraries, waves2Foam and

IHFOAM, was performed, indicating higher computational efficiency, but with local dis-

crepancies for the latter. Similarly, it was shown that SWASH has the best performance

for the 2nd difference harmonic, which is important for practical coastal engineering ap-
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plications that include infragravity waves. Last but not least, it was shown that reflec-

tions could not be perfectly absorbed by any of the NWTs, with the only remedy found

to be a long distance between the focal point and the outlet boundary.

Analytical methods

Analytical models were used in the present work in order to replicate the effects of non-

linear wave-wave interactions, aiming at both confirming the theory behind the physics

of NewWave-type extreme wave formation, and suggesting an efficient way for estimat-

ing an extreme wave profile without the need for numerical simulations. The main issue

of this part of the work was the very limited literature and the almost absolute lack of

available codes.

The most challenging part was to estimate the near-resonant interactions for the change

of the free-wave spectrum in long-crested seas. After confirming that the source terms

of WW3 cannot account for spectral change in 1D, the GKE (Gramstad and Stiassnie,

2013) was programmed independently including the effects of near-resonant interac-

tions. The GKE was validated against Monte Carlo simulations with the HOS-ocean for

long timescales and its performance was tested for the first time in short timescales. A

new method was then proposed for finding the equivalent sea state parameters in order

to approach the spectral evolution of focused wave groups. After exhaustive investiga-

tions, it was demonstrated that the reproduced spectral change resembles to a good

extent that of focused waves. Although discrepancies exist and may suggest deeper

issues, this method constitutes one of the first efforts to "marry" the phase-averaged

and phase-resolving spectral evolution.

The bound nonlinearities are always based on the underlying free-wave spectrum. The

best established method is second order theory, which is routinely used in engineer-

ing practice. The present work went beyond the state of the art in two ways: i) By

examining methods that are rarely used in the literature, such as the fifth order expan-

sion (Walker et al., 2004) and the Creamer transform (Creamer et al., 1989), and by
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proposing new methods, namely the "static Krasitskii" (Krasitskii, 1994). ii) By thor-

oughly examining the effects of using the original and the evolved free wave spectra.

The results demonstrated that all the methods capture the nonlinear characteristics of

the wave profile, namely the steepening and increase of the main crest, as well as the

flattening of the troughs. The use of the evolved free-wave spectrum produces a more

realistic profile, but without further increasing the crest elevation. Extensive compar-

isons with fully nonlinear simulations in Section 5.6 demonstrate the improvement of

these analytical methods over the linear theory estimation and indicate the error mar-

gins. It is noted that for the steepest group, the crest height is underestimated by more

than 10% by all the theories, which indicates the need for fully nonlinear simulations

for such cases.

Overall, the use of an evolved free-wave spectrum accompanied by expansion to high

order harmonics with analytical methods can provide an improved, more realistic,

NewWave profile. Necessary elements for this approach, especially for very steep

waves, are the experiments for finding the onset of breaking and fully nonlinear solvers

for obtaining spatio-temporal information of the wave field. This constitutes a balanced

use of tools towards an integrated modelling approach for extreme wave simulations.

Future work

The present study revealed the great potential of several numerical models and ana-

lytical methods for estimating an extreme wave profile. Most importantly, it suggested

an integrated approach by preparing and employing an artillery of tools with known

strengths and weaknesses. To advance the present findings, additional work would be

welcomed in physical and numerical modelling, as well as in theoretical analysis.

On the general perspective, the target should be the better understanding of the physics

of the formation of extreme waves and identification of the nonlinear physics that should

be included in the design practice (Adcock and Taylor, 2016a). This process will con-
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tribute to the de-rogueing of extreme waves and, consequently, decrease uncertainties

and improve safety at sea. Key on achieving this is the clear understanding of the

nonlinear wave-wave interactions, which, based on the present findings and recent

research (Aubourg et al., 2017), seem to have a more complex role in the spectral evo-

lution than that suggested by the traditional approaches of BF and Hasselmann. The

spectral transformation under strongly nonlinear conditions is certainly an open field of

research and new findings should be expected from multi-disciplinary studies that will

have a greater impact in wave modelling, e.g., new source terms in spectral models.

The GKE was one of the first steps towards this goal. However, the properties of this

equation are far from being properly explored, with the present work contributing to its

validation at short and long timescales and finite water depth. An important aspect that

requires addressing is the derivation of the GKE from the Boltzmann integral. More

specifically, the naive consideration that the free waves in the real and transformed

space are the same is not necessarily valid and the canonical transformation behind

it should be carefully taken into account (Krasitskii, 1994). Moreover, on revisiting

the GKE, the effects of quintet interactions should be examined. The present findings

strongly support these concerns that have been already outlined by Tanaka (2007) and

Benoit et al. (2015).

One of the main targets of the present study was to suggest ways to improve the

estimation of extreme NewWave-type profiles. A way to achieve this is by using the

evolved free-wave spectrum. Despite the fact that this does not seem to increase the

crest height, it can affect considerably the wave profile, which can be of interest for

the design of different structures. On this note, the shape variation of the wave pro-

file with phase shifts of the NewWave profile can be of great engineering interest for

determining the design wave. For such purposes, the analytical methods for building

the nonlinear wave profile can be particularly useful. Extra work is required though to

improve the functionality of some methods. For example, the finite depth version of the

Creamer transform should be tested and effort should be made to derive static Krasit-
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skii with more flexibility on the section of the phases in the canonical transformation.

As explained, the dynamics of directional waves may differ considerably from long-

crested seas, which are less frequent in nature. To gain a holistic view of the problem,

the present methods should be extended in 2D or even crossing seas. The com-

plication of such an undertaking should not be underestimated. Before this venture,

however, it would be advisable to test the methods of this work on different spectral

distributions and water depths, as there are indications that these may alter the present

picture of the problem. The role of experiments will be vital for finding the breaking limit

of the wave groups and validating the numerical models for further studies. As sug-

gested from the present analysis, a sensible start would be deep water conditions, in

order to eliminate the bias of water depth.

Last but not least, from an engineering perspective, the inclusion of currents and the

study of the kinematics is very important in order to find the loads on the structure.

Some of the present tools have been already tested on wave-current regimes (Bul-

dakov et al., 2015). Others, such as some of the analytical methods, can be modified

to include the influence of uniform currents in a Doppler shift fashion. For sheared cur-

rents, however, numerical and experimental modelling seem to be the main trustworthy

options at this stage. Moreover, an engineering design parameter that requires further

attention is the ringing phenomenon. This high frequency excitation can be finally stud-

ied in a reliable way, using the present tools and methodologies that achieved accurate

replication of the third and higher order harmonics of the wave group.

Exciting discoveries are expected in the near future in ocean and coastal engineering,

thanks to the advanced tools and methods developed for field, experimental, numerical

and analytical studies. The present work endeavoured to highlight the importance and

contribute towards the integration of these approaches within the framework of extreme

wave modelling.
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Modelling tools

IN this chapter all the numerical models used in the Thesis are presented in a con-

sistent way: first an introduction to their development history and distribution of

the software is given, followed by the mathematical description of the model, including

the numerical schemes and the treatment of the forcing terms. The description of each

tool includes also information regarding its efficiency and accuracy for the examined

problem. The rationale for employing each specific model is discussed based on its

advantages and drawbacks compared to other similar models.

A.1 OpenFOAM

A.1.1 Introduction to OpenFOAM

OpenFOAM (Open source Field Operation and Manipulation) is an extensive software

package for solving continuous mechanics problems. It was initially developed in the

late 1980s at Imperial College, London and it was later rewritten in C++, incorporating

the advantages of object-oriented programming. To a large extent, OpenFOAM was

based on the works of Jasak (1996) and Weller et al. (1998). Since 2012, the main

distribution and maintenance of OpenFOAM is performed by the ESI group and "The
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OpenFOAM Foundation" is the copyright holder of the code. Its latest version is 5.0

released in mid 2017 (OpenCFD_Ltd, 2015). A community-driven release is also avail-

able through the "foam-extend" project (OpenFOAM-Extend, 2015). Both releases are

open-source and freely available under GNU General Public Licence. OpenFOAM can

be compiled mainly in Linux operating systems, but a Windows version was recently

developed as well as third party graphical user interfaces (GUI).

OpenFOAM is a generalized CFD platform organised as a set of C++ libraries that in-

clude solvers for complex fluid flows, chemical reactions, heat transfer, solid dynamics,

electromagnetics or even astrophysics and financial problems. Hereafter, only aspects

relevant to fluid flows are discussed. There are several reasons that OpenFOAM has

gained popularity and it is now widely used for industrial and academic applications

(Jasak et al., 2007):

1) The use of object-oriented programming in C++, which offers clarity and flexibility as

well as maximum the code re-use. In this framework, adding new features in the soft-

ware is straightforward and efficient, achieving both minimum impact on the existing

part of the code, e.g., introduction of bugs, and making the expansion of its function-

alities possible by taking advantage of the modularity of the programming language.

Different solvers can be combined allowing for simulation of complex physics, such as

fluid-structure interaction (FSI) simulations;

2) Mimicking the form of partial differential equations (PDEs) in the code, which makes

the programming of the physics very intuitive by resembling the mathematical form of

the equations, resulting in a user-friendly syntax;

3) Extended capabilities in simulating fluid dynamics through the large and growing

set of libraries for solving the Navier-Stokes equations (NSE) are available, such as

Reynolds Averaged Navier-Stokes (RANS), Large-Eddy Simulation (LES), Direct Nu-

merical Simulation (DNS) and Detached-Eddy Simulation (DES) with relevant turbu-

lence modes (OpenCFD_Ltd, 2015);

4) Pre- and post-processing tools are offered for mesh generation (blockMesh, snappy-
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HexMesh) and sampling data (isosurfaces, gauges). More sophisticated post-processing

can be performed with the third-party open-source software Kitware Paraview R©;

5) Free-of-license and open-source code, which does not make the software a black-

box toolbox and allows for user customization and optimization, unlike commercial soft-

ware (Higuera et al., 2013a);

6) Theoretically unlimited parallelization using the OpenMPI implementation of the

message passing interface (MPI) (OpenCFD, 2012), in contrast to commercial soft-

ware that the level of permitted parallelization is an add-on to the cost;

7) Support from the growing users’ community with a very active thematically split

forum. New users can benefit from the large number of tutorials (OpenCFD, 2012) and

the available basic documentation (Marić et al., 2014).

The dicretization of the governing equations is performed by the Finite Element Method

(FEM) for structural mechanics and the Finite Volume Method (FVM) for fluid mechan-

ics. OpenFOAM meshes consist of of points, faces, cells and boundary patches. The

cell is defined as a closed volume from its faces having a centroid. The boundary

faces of relevant cells are grouped to form patches, which simplifies the definition of

the boundary conditions (Jasak et al., 2007). OpenFOAM meshes can be uniform

or unstructured with convex polyhedral cells defined in such a way that form a con-

tinuous mesh without overlapping with one another. The variables are solved on the

centroids of the cells and they are interpolated on the faces using the available interpo-

lation schemes (Chen et al., 2014). OpenFOAM also offers a great variety of numerical

schemes and methods for integrating the PDEs in space and time.

Regarding fluid flows, OpenFOAM can solve the 3-Dimensional (3D) NSE for single or

multiphase flows including turbulence for complex 3D domains. This allows for employ-

ing the model for nonlinear problems with highly distorted free surface, such as wave

breaking and interaction of waves and structures. As such, the code has been applied

for coastal and ocean engineering studies (see Section A.1.2).
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A.1.2 Mathematical formulation

The governing equations

The simulation of free surface waves in CFD often implies the modelling of two fluid

phases for the water and the air, with an interface of the two fluid defining the free

surface. RANS equations can be solved simultaneously for the two Newtonian fluids

considering them as immiscible. Each fluid is characterized by a scalar variable, which

is referred as phase fraction γi taking values between 0 and 1. For most cases re-

garding coastal and ocean engineering applications, the incompressibility assumption

can be made. In this framework, the governing equations of the flow are the continuity

equation (A.1) and momentum equations (A.2) (Versteeg and Malaskekera, 2007).

∇U = 0, (A.1)

∂ρU
∂ t

+∇ · (ρUU)−∇ · (µe f f ∇U) =−∇p∗−g ·X∇ρ +∇U ·∇µe f f +στκc∇γi (A.2)

where U is the velocity vector, ρ is the density, p∗ the pseudo-dynamic pressure, X the

position vector, στ the surface tension coefficient, κc the curvature of the interface, γi

the fluid phase fraction and µe f f the efficient dynamic viscosity. µe f f = µ + µt , with µ

being the molecular dynamic viscosity (10−3m2/s and 1.4810−5m2/s for water and air,

respectively) and µt is the turbulent viscosity given by the turbulence model (Ferziger

and Peric, 2002). It should be noted that for most of the civil engineering applications

the surface tension is negligible (Jacobsen et al., 2012).

The governing equations can be discretized according to the FVM in order to allow

for the numerical solution. This is performed over a control volume, which is the cell

bounded by its faces, and the equations are integrated numerically on the faces (Rans-

ley, 2015). Subsequently the equations can be written in a discretized form for a refer-

ence cell and its neighbours connected by the faces (Greaves, 2010).
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To close the RANS equations a turbulence model should be used, as discussed in

Section 2.1.2. In the present study, since no breaking waves or FSI were simulated, a

"laminar" flow type was selected. The laminar model sets the eddy viscosity, turbulent

kinetic energy and the Reynolds Stress to zero. Therefore, the the effective viscosity

and the effective stress tensor is calculated by the fluid (laminar) viscosity and the

laminar stress respectively. The laminar model was used by many authors even when

wave-cylinder interaction was examined and it was proven to be stable compared with

two-equation models that may be dissipative Elhanafi et al. (2017).

OpenFOAM simulates multi-phase incompressible fluid flows with the "interFoam" solver,

which solves Equations A.1 and A.2 simultaneously for the two fluids using the FVM

discretization and the Volume of Fluid Method (VoF), as described in the next para-

graphs. A crucial issue in incompressible flows is that the pressure is not connected

to the density. Thus, an appropriate coupling between the velocity and the pressure

is required to ensure that the pressure field by the momentum equations results in a

velocity field that satisfies the continuity equation (Versteeg and Malaskekera, 2007;

Ferziger and Peric, 2002). OpenFOAM uses the PIMPLE algorithm, which is an it-

erative scheme based on a combination of the SIMPLE (Semi-Implicit Method for

Pressure-Linked Equations) (Patankar and Spalding, 1972) and the PISO (Pressure

Implicit with Splitting of Operators) (Issa, 1986) algorithms. The main structure of PIM-

PLE is inherited from PISO, but in order to achieve convergence of all the equations

at each time step, it uses an under-relaxation (Jasak, 1996). According to the so-

lution strategy in PIMPLE, the values of the velocity and pressure from the previous

time step are used as a "guess" to solve the velocity equations, which is referred as

momentum predictor. Then the velocity and pressure are corrected several times us-

ing pressure-velocity correctors until they satisfy the mass conservation equation to

the desired tolerance. In similar CFD models, namely STAR CCM+ and Ansys CFX,

the SIMPLE algorithm is used as a guess-and-correct method to compute pressure

and velocity (Westphalen et al., 2008) (Westphalen et al., 2012) or the conservation

equations are solved in a single linear system being fully coupled (Westphalen et al.,
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2007).

Last but not least, stability issues have to be addressed, since numerical simulations

of unsteady and rapidly changing numerical flows may suffer from instability, due to

space-time integration. Instabilities can be suppressed with appropriate treatment of

the time step, ensuring that a fluid particle does not move more than one cell at a time

step. To achieve this in OpenFOAM, the time step can be adjustable and controlled by

the Courant condition (Co) (Courant et al., 1967), which represents the portion of the

cell that the advective flow can cover in one time step (Chen et al., 2014), as seen in

Equation A.3. This is common practice in CFD and it guarantees that the volume of

fluid leaving a cell is exactly the amount that can be received by the neighbouring cells

and vice versa (Westphalen et al., 2012). Although the Courant criterion is vital for the

stability of explicit methods, it is also useful in transient nonlinear implicit methods to

guarantee convergence (Jasak, 2006). An additional time-controller (al phaCo) for the

interface of multiphase flows based on the Courant condition is used in OpenFOAM. It

is essentially a Courant number criterion, but only for the region of the interface of the

two fluids. The global time step is the minimum calculated from the two criteria. The

Co should not exceed the value of 1 for stability, but commonly much lower values are

used for wave propagation studies, typically 0.1-0.5.

Co =
δ t|U |

δx
(A.3)

where δ t is the maximum time step, δx is the cell size in the direction of the velocity |U |

at that location.

Another source of stability can arise from the coupling of pressure and velocity, espe-

cially when the two variables are solved at exactly the same locations on the compu-

tational grid. This is due to the fact that it is possible to obtain more than one possible

solutions at the same location for the pressure. To mitigate this, staggered grids are

used, meaning that the velocity and the pressure are not calculated at the same posi-

tions of the computational cell, e.g., one is calculated on the centre and the other on
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the faces (Greaves, 2010).

The Volume of Fluid Method (VoF)

OpenFOAM employs the VoF method for the treatment of the free surface, as intro-

duced in Section 2.1.2. Since Equations A.1 and A.2 are solved simultaneously for the

two fluids, the algorithm for the volume fraction results in an additional advection equa-

tion (Equation A.4) without the need for explicitly solving for the interface (Greaves,

2010).

∂γi

∂ t
+∇ · [Uγi]+∇ · [Urγi(1− γi)] = 0 (A.4)

where Urγi(1−γi) is an artificial compression term with Ur being a relative compression

velocity (Weller et al., 1998). This term lacks physical interpretation and it is added in

order to tackle one of the known problems of VoF, which is the numerical smearing of

the interface (Berberović et al., 2009).

With this consideration, the two-phase flow is simplified to a flow of a single mixed-fluid

flow with density (ρ) and dynamic viscosity (µ), calculated by Equation A.5 respectively,

using the properties of fluid 1 and 2 (Paulsen et al., 2014a). As such, very complex free

surface flows can be modelled in a simple way, without requiring mesh motion (Higuera

et al., 2013a).

ρ = γiρ1 +(1− γi)ρ2

µ = γiµ1 +(1− γi)µ2

(A.5)

In OpenFOAM, the implementation of the VoF method follows an advanced two-phase

flow technique (Berberović et al., 2009) based on the Volume of Fluid (VoF) method of

Hirt and Nichols (1981). To tackle the issue with the smearing of the interface, which
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can cause diffusivity and damping of the numerical solution, especially in the cases

of low mesh resolution where the finite thickness of the free surface becomes more

apparent (Rudman, 1997), OpenFOAM incorporated the advanced algorithm MULES

(multi-dimensional limiter for explicit solution). MULES guarantees boundedness of

scalar field γi in order to improve the accuracy of the representation of the free sur-

face(OpenCFD, 2012) and vastly reduce the smearing.

The VoF implementation with MULES in OpenFOAM was proven to be an effective

method for simulating highly distorted free surfaces, such as overturning breaking

waves, splashing (Bredmose and Jacobsen, 2010) and green water effects rising by

strong FSI (Ransley, 2015). Minor defects of the VoF have been reported in cases

when surface tension increases; however in most coastal and ocean engineering ap-

plications the surface tension forces can be considered negligible due to the examined

scale (Higuera et al., 2013a). Nevertheless, issues have been observed in Open-

FOAM for the simulation of steep focused waves related to wave damping and pre-

mature breaking due to unrealistic air velocities at the interface caused by the great

density difference between the two fluids (Higuera et al., 2015; Afshar, 2010; Jacobsen

et al., 2012). Another issue with VoF may be the high mesh resolution required at the

interface. On static meshes, this is done by refining the cell size around the free sur-

face. More advanced approaches include adaptive meshes that follow quadtree-grid

schemes for splitting the cells of the interface in four (Greaves, 2004). However, the

latter induce additional computational cost and potentially spurious short waves on the

interface. Thus, these methods were not preferred in the present work.

Wave generation and absorption

OpenFOAM has appropriate solvers for simulating free surface flows, and a special

set of boundary conditions is further required to simulate water waves for coastal

and ocean engineering problems (Jacobsen et al., 2012). These boundary conditions

should provide the appropriate time dependent velocity field and surface elevation at
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the inlet boundary for generating waves and a way to absorb the waves at the outlet

boundary of the NWT.

Wave generation

The wave generation in numerical models is performed with three basic approaches,

as outlined in (Higuera et al., 2015):

1) Internal sources: the wave generation is achieved by a mass and momentum source

in an internal region of the NWT, where water is pumped in and out, following an os-

cillatory pattern which creates waves according to a mathematical description that is

linked to a wave theory. The generated waves are radiated in all possible directions in

the NWT and care should be taken to effectively dissipate the waves at the boundaries

(Perez-Collazo, 2017). This method is associated with increased length of the domain

and additional computational cost.

2) Static boundaries: the Dirichlet-type boundary conditions are applied on a static

boundary wall by prescribing the free surface elevation and the velocity or the pressure

field according to a wave theory. This is possibly the most common way to generate

waves in Eulerian solvers, but care should be taken when comparing experimental

results from physical wavemakers, since the numerical boundary suppressing the the

displacement waves and the evanescent modes (Higuera et al., 2013a).

3) Moving walls: this method attempts to replicate the movement of a physical piston-

or flap-type wavemaker using either a transport function for the paddle derived from a

wave theory or the displacement time history of the actual paddle allowing for direct

comparison with the experiment. The advantage compared to the previous methods

is that the volume of the water in the NWT remains constant. On the downside, this

method requires a moving mesh technique and remeshing at every time step, inducing

additional computational cost. For this reason, it is not popular for Eulerian solvers.

Ideally however, it should give the best comparison with the experimental results with-
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out having the physical limitations of the paddles, such as mechanical inertia.

In the present study, wave generation was performed with a static boundary. Moving

walls could be an alternative for better comparison with experimental results, however

this method became available in OpenFOAM in the context of IHFOAM (Higuera et al.,

2015) long after the simulations had been completed. Additionally, for comparison with

other numerical models, the most convenient method to use is the static boundary with

appropriate wave theories.

Historically, the most general method to generate waves in OpenFOAM employs the

"GroovyBC" boundary condition, which was distributed independently from OpenFOAM

and allows the user to specify a set of non-uniform boundary conditions of the variables’

gradients. However, it is an elementary approach since it can be used only for simple

wave theories (Stokes linear and 2nd order theory) and can consider only wet and dry

cells on the boundary, resulting to initial disturbances due to castellated timeseries of

the surface elevation at the inlet (Higuera et al., 2013a). The first attempts to generate

ocean waves based on realistic sea JONSWAP spectra in OpenFOAM with the "ras-

InterFoam" solver were done by Morgan and Zang (2010), showing that OpenFOAM

was a promising tool for coastal engineering problems. In a similar study (Morgan et al.,

2010), Stokes waves were simulated with a static boundary, since it was found that the

simulation of a moving wall to replicate a piston-type paddle was significantly more

computationally expensive, due to remeshing and turbulent structures on the paddle. It

was also observed that instabilities occurred for highly nonlinear waves. Prior to these

works, Bredmose et al. (2006) used a Boussinesq-type boundary condition instead

of linear theory to better control the flux on the static boundary with the input signal

obtained from the experiment after filtering out the reflected waves.

A step change for the wave generation capabilities of OpenFOAM came with the almost

simultaneous release of the libraries are waves2Foam (Jacobsen et al., 2012) and IH-

FOAM (Higuera et al., 2013a). To present, they are the most advanced and widely used

libraries in OpenFOAM for wave generation and absorption. In both, a range of wave
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theories, such as Stokes waves up to 5th order, cnoidal and stream function theory, is

available. Irregular waves can be produced as the linear summation of the wave com-

ponents of the desired energy spectrum. Second order wave generation for irregular

waves is also possible (Higuera et al., 2013a). The wave generation is performed on

a static boundary by calculating the vertical position of the free surface and imposing

the velocity profile of the waves beneath it and setting the air velocities to zero. The

pressure is not imposed, because the problem would be overspecified; instead, it is

calculated by appropriate boundary conditions available in OpenFOAM, e.g., "buoyant-

Pressure". In addition to the fixed boundary, the options of a stationary replica of a

piston-type paddle (Higuera et al., 2013a) and a moving piston-type wavemaker are

available in IHFOAM (Higuera et al., 2015). The latter is able to mimic real wave tanks

with single-paddle or multi-paddle wave generation for directional waves. The move-

ment of the paddles can be computed theoretically or defined by measurements of the

motion of the physical paddles. Issues with meshing regarding differential movement

of adjacent paddles are treated with transition zones, making the simulations robust.

This formulation of the moving boundary was based on the previous work of IH2VOF

(Lara et al., 2011) and it does not require additional assumptions in defining the fluid

variables. On the other hand, waves2Foam gives greater flexibility to use customised

spectra (Vyzikas et al., 2014b) and include uniform currents to the wave field through

the "combinedWaves" method. A set of pre- and post-processing utilities customised

for wave studies is offered in both libraries and their features are frequently updated.

For the latest advances the reader should refer to the online wiki and manuals, e.g.,

(Jacobsen, 2017). The main difference between waves2Foam and IHFOAM lies on the

wave absorption technique that is applied both at the inlet and outlet boundaries, as

discussed in the next section.

For the static boundary generation examined in the present study, both waves2Foam

and IHFOAM use a sophisticated approach to define accurately the free surface on the

faces of boundary cells accounting for partially wet cells. As such, the volume fraction

of the cell its given by the ratio of the wet area of its faces over the total area of its
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faces, specified as Aw/A f , for a given location of the free surface elevation relative to

the centre of the cell (Jacobsen et al., 2012). This technique together with appropriate

interpolation schemes allow for smooth free surface on the boundary, minimising any

spurious oscillations. Nevertheless, the present tests show that IHFOAM reproduces

a "spiky" surface elevation at the inlet, which is not observed in waves2Foam, thanks

to the inlet relaxation zone (Vyzikas et al., 2015). A similar issue of "toothing" at the

inlet for the steep waves has been reported by Ning et al. (2009b) for a high order

boundary element method (HOBEM) numerical tank. Despite the discrepancies at the

boundary though, the propagation and the final results are almost identical between

waves2Foam and IHFOAM.

Another aspect to be discussed in the context of irregular wave generation with a fixed

boundary, which is relevant for focused waves, is the accuracy of the wave definition,

since any errors at the boundary condition propagate in the domain affecting the final

results (Higuera et al., 2013a). Linear wave generation (see Equations 3.2 and 3.3) are

applied for simplicity and for saving computational resources (Higuera et al., 2013a),

however, it results in an unrealistic wave field contaminated with spurious waves. To

mitigate this, the second order solution of Sharma and Dean (1981) can be used, but

it can induce high computational cost for a large number of wave components. As

one of the first attempts to include a second order wave generation in waves2Foam,

an external library was suggested by Hu et al. (2014)1, but it resulted in unrealistic

computational times. Before that, Vyzikas et al. (2013) used a linear superposition

of 2nd order waves, which accounts only for self-interactions, attempting to introduce

nonlinearity on the boundary at minimal extra computational cost. In IHFOAM, second

order wave generation was included in the initial release and thanks to the fact that no

inlet relaxation zone is included, the computational cost is significantly lower compared

to waves2Foam.

Other wave generation methods in OpenFOAM were developed by Chen et al. (2014),

1Some typos were also pointed out from the author on this paper and the code has been adjusted and
the loop of the code was optimised.
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who included custom boundary conditions similar to waves2Foam in order to advance

the NWT of Morgan and Zang (2010), and by Paulsen et al. (2012). The latter method is

of particular interest because it employs domain decomposition methods combining a

potential flow solver (PFS) (OceanWave3D) and a RANS NWT in OpenFOAM that run

concurrently, with the PFS feeding the boundary conditions of the CFD model (Paulsen

et al., 2013b). This method provides realistic wave conditions to the CFD solver, in-

cluding all the developed nonlinearity by the wave-wave interactions, due to the propa-

gation of the wave field. Thus, it is superior to second order generation (Paulsen et al.,

2014a). A similar approach was recently presented by Gatin et al. (2017) using a HOS

solver instead of PFS. In the present study, since focused waves propagate for short

distance, the domain decomposition method was not deemed necessary.

Wave absorption

The problem of wave absorption arises in confined numerical or physical wave tanks

where waves cannot be freely radiated as in open ocean (Higuera et al., 2013a). Wave

absorption aims at dissipating the incident wave energy at the outlet of the NWT in

order to prevent reflections that can propagate upstream. Wave absorption methods

are also applied at the wave generation boundary in order to counteract the incoming

returning reflections from the numerical domain and to continue producing the target

solution of the wavemaker. Two are the main techniques to absorb waves: active and

passive absorption. The former refers to a moving paddle which adapts its movement

to cancel the unwanted waves and the latter to a numerical or physical beach which is

designed to destroy the incoming energy.

Passive absorption can be achieved by different means, which are all based on the

principle of extending the domain to accommodate the area of energy dissipation.

For example, waves can be dissipated by increasing the fluid viscosity (Westphalen

et al., 2008), by increasing the cell size causing numerical dissipation (Zhao et al.,

2010), by modelling an inclined beach as a structure where waves break, by imple-
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menting a porous material or by simply extending the length of the domain for transient

wave groups (Morgan et al., 2010). Alternatively, a damping zone can be considered

where an artificial damping is added in the momentum equation (Chen et al., 2014). In

waves2Foam, relaxation zones are used as passive absorption, where a target solu-

tion is specified and the solution of the domain is gradually altered to match the target

values at the end of the relaxation zone (Jacobsen et al., 2012). Such a technique was

first used in OpenFOAM in the NWT of Afshar (2010), but required very high resolution.

It was further developed in the waves2Foam library, where the solution for each flow

variable Ψ in the relaxation zone is partially calculated by the governing equations for

the fluid (Ψcom) and by a target value (Ψtrg). Depending on the location in the relaxation

zone, there is different weighting wr, ensuring a smooth transition from the fully nonlin-

ear domain to the linearised boundary, as seen in Equation A.6. wr is calculated by a

chosen function, e.g., exponential weight.

Ψ = (1−wr)Ψtrg +wrΨcom (A.6)

Such approach allows for the employment of relaxation zones both at the inlet and

outlet boundary, with target values the wave components from each wave theory and

zero velocities, respectively. At the inlet, relaxation zones "extend" the solution of the

boundary in the nonlinear domain. On one hand, as observed in the present study,

this prevents local instabilities, protects the boundary from returning waves and allows

for generation of very steep (even non-physical waves). However, it becomes apparent

that the region of the relaxation zone should not be considered as a fully nonlinear

domain, but as a semi-linearised solution, which can have important consequences

when considering the evolution of nonlinear waves. The effectiveness of the relaxation

zones is proportional to their length (Wei and Kirby, 1995) and in general they are

considered a good solution for absorbing high frequency waves. They also have the

advantage that can take different shapes and be implemented anywhere in the domain

(Jacobsen et al., 2012) (Paulsen et al., 2014a).
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One of the drawbacks with some passive absorption methods is the artificial increase

of the volume of water in the NWT after long time (Méndez et al., 2001). This is due to

the fact that relaxation zones result in no conservation of mass at least at the beginning

of the simulation. More specifically, it was demonstrated that during the first 5-10 wave

periods the increase of the water volume is 1% and it reaches its maximum of 2% after

long simulation times (Jacobsen et al., 2012).

Relaxation zones in OpenFOAM have been used in many studies. Before the release of

waves2Foam, Bredmose and Jacobsen (2010) simulated steep and breaking focused

waves on monopiles using long inlet and outlet relaxation zones. Long inlet relaxation

zones were also used in the study of Hu et al. (2014) and Alford and Maki (2015).

Instead, Vyzikas et al. (2014b) used a very short relaxation zone (5 cm) in order not

to influence the nonlinear propagation of the waves, but to control the instabilities on

the inlet when steep waves are generated. Relaxation zones were also used in the

middle of the domain to absorb the diffracted waves from the cylinder in a domain

decomposition method showing that only 1% of the reflected energy remains (Paulsen

et al., 2014a). In REEF3D inlet and outlet relaxation zones were implemented for

studying focused wave group, but in agreement with the opinion of the author, it is

mentioned that since wave groups are compact events, the inlet relaxation zone can

be avoided (Bihs et al., 2017).

To overcome the deficiencies of passive wave absorption, such as the increases com-

putational cost due to the added length in the domain and the increment in the mean

water level due to the added volume, Higuera et al. (2013a) introduced an active ab-

sorption method based on the one suggested by Lara et al. (2011). Active absorption

was first developed for physical paddles to allow for modifying their motion based on a

measured signal in front of them, which acts as feedback (force or surface elevation),

allowing them to continue generating the target signal after cancelling the incoming

waves. When the target signal is the mean water level, the paddle acts as an absorb-

ing boundary. The same principle can be applied in a NWT, as detailed in (Higuera
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et al., 2013a) for a fixed wall or a moving paddle (Higuera et al., 2015). It was demon-

strated that latter method prevents an increase of the mean water level due to the

unbalanced inflow and outflow between wave crests and it is computationally efficient

since the remeshing occurs only locally.

The active absorption in IHFOAM is based on the Shallow Water Equation (SWE),

assuming uniform distribution of the velocity in depth (Uc). This approximation is con-

sistent with the motion of a piston wavemaker. The incoming waves are absorbed

by imposing an opposite velocity field on the boundary, which is calculated as Uc =

−
√

g/hηR, where g is the gravitational acceleration, h the depth and ηR the surface

elevation of the incoming wave, which is found by subtracting the measured surface el-

evation from the target solution. To perform this, the boundary is split into three zones,

defined from the measured and the theoretical level of the free water surface, that are

treated differently. The cells at the interface of the fluids are assigned to a specific

zone and, depending on their location, different operations are performed (Higuera

et al., 2013a) to allow for both generation and absorption of the waves2. The moving

paddle described in (Higuera et al., 2015) absorbs the waves with a similar logic, but,

since it is moving, Uc is integrated to provide the displacement of the paddle (∆X) per

time step (∆t) via a transport function considering that ∆X =Uc∆t.

The active absorption of IHFOAM can be readily expanded in 3D domains to absorb

waves with directionality. The principle is the same, but instead of the free surface,

the mean velocity in the vertical is calculated with its mean direction. Then, the mean

incident velocity vector is analysed to the normal and the tangential components and

the correction is done by imposing the opposite mean velocity to the normal component

according to SWE theory. In 3D, wavemaking boundary is decomposed to a number of

slices representing independent wave paddles, where the absorption is performed. An

issue with 3D active absorption is that the wave component parallel to the wavemaker

is not absorbed and it results in tangential propagating waves along the inlet boundary

2Assigning the boundary cells to a specific zone is speculated to cause the discrepancies observed on
the inlet in the present study (see Figure 3.8).

356



A.1. OPENFOAM

that can grow and create cross modes in the tank. Another issue is that the direction

in complex wave fields cannot be calculated with accuracy.

Both in 2D and 3D, active wave absorption demonstrated good performance result-

ing to reflection coefficients under or about 10% for some typical waves tested. Best

performance is observed for long waves than for intermediate and deep water condi-

tions (Higuera et al., 2013a), due to the inherent assumption of the SWE. Thus, for the

broadbanded irregular focused groups of the present work, it is not trivial to predict the

performance of this active absorption method.

Working experience with the waves2Foam and IHFOAM has shown that IHFOAM

can simulate very steep waves on the inlet boundary without instability issues, but

waves2Foam requires even a thin relaxation zone (Vyzikas et al., 2014b). It should be

underlined that none of the two methods can absorb 100% of the incident wave energy

and care should be taken not to include reflections in the region of interest in the NWT.

The general design of a NWT

In this section, some general aspects regarding the design of a NWT in CFD, and

specifically in OpenFOAM, are presented that were collected by relevant studies. The

scope is to highlight commonalities referring to boundary conditions and mesh design.

A very common approach that was been used by the author as well (Vyzikas et al.,

2013) when reproducing numerically physical results is to simulate a shorter version

of physical wave tank in CFD in order to save computational resources. Additionally,

when the problems is two-dimensional, the computational effort can be reduced sig-

nificantly by designing a quasi-3D mesh that behaves as a 2D mesh. Such examples

of truncated 2D domains can be found in the works of Zhao et al. (2010); Westphalen

et al. (2008, 2012) and Bihs et al. (2017), which all refer to the simulation of focused

waves.

Another commonly used technique in free surface flows, aiming at both reducing the
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computational cost and increasing the accuracy, refers to the refinement of the mesh

around the free surface. For example, Morgan et al. (2010), Ransley (2015) and

Vyzikas et al. (2017b) used the utility of OpenFOAM "snappyHexMesh" to refine the

mesh according to quadtree method. This refinement is also performed in the regions

of interest, such as the wavemaker (Westphalen et al., 2008, 2012) and the structure.

A mesh grading technique can be also used in order to achieve a smoother transition

from the fine to the coarse cells, e.g., (Bredmose and Jacobsen, 2010; Vyzikas et al.,

2013, 2014b; Chen et al., 2014). It is recommended not to exceed the size ratio of 1.1

between adjacent cells (OpenCFD, 2012).

When simulating highly distorted free surfaces, such as steep and breaking waves, it is

recommended to use square cells with aspect ratio (AR) of their faces close to 1. This

is because in elongated cells there is an artificial advection along the long side due

to the nature of the VoF methods, resulting in unrealistic results for free surface flows.

This was confirmed by Jacobsen et al. (2012) who tested breaking waves with meshes

of different AR cells, finding that square cells perform the best. Square cells were also

employed by Higuera et al. (2013b) at the breaking zone and by Bihs et al. (2017) who

simulated breaking waves and wave-cylinder interaction. The same practice was used

in all the works of the author for the cells around the free surface, as seen in Figure

3.4.

A commonality regarding the wave generation boundaries concerns the definition of

zero air velocities at the inlet. This is easily achieved in two-phase flows by multiplying

the velocities at the inlet with the phase fraction, which is zero for the air phase. This

practice is used in waves2Foam and IHFOAM. Similar method was applied by Chen

et al. (2014), Westphalen et al. (2008) and Morgan and Zang (2010). Other issues

with unrealistic air velocities in the domain causing slow-down of the simulation have

been reported (Jacobsen et al., 2012), which could be controlled by setting the air

velocities zero everywhere in the domain. Such an approach however can lead to

excessive momentum transfer from water to air and damping of the waves. In the
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study of (Vyzikas et al., 2017b), it was shown that similar issues can be partially solved

by setting different al phaCo and Co.

The boundary conditions for the side and the top and bottom walls of the NWT have

commonalities among different studies. For the top boundary, early works (Bredmose

et al., 2006) used a solid wall resulting in additional forces when the wave hit the ceiling

the NWT. OpenFOAM has appropriate conditions, e.g., "pressureInletOutletVelocity",

that allow a replication of an "atmospheric" boundary, where air can flow in and out, but

water permanently leaves the NWT when it reaches the top wall (Jacobsen et al., 2012;

Chen et al., 2014). Similar, in NWTs designed in other CFD software, (Westphalen

et al., 2012) the top boundary allows only air to leave and enter. For the other walls

of the NWT (side walls and bottom) and the surface of the included structures, usually

a no-slip condition is used, which means that all the components of the velocity on

the wall are set to zero (Chen et al., 2014; Vyzikas et al., 2013; Hu et al., 2014).

Alternatively, a free-slip -also referred as slip condition-, which means that the all the

velocity components apart from the tangential are set to zero, can be applied at the

bottom (Jacobsen et al., 2012) and the structure, resulting in omission of the shear

force component (Paulsen et al., 2013b). Free-slip is also applied on solid surfaces,

when the viscous boundary layer is to be neglected (Paulsen et al., 2014a).

The treatment of turbulence is also an important aspect in CFD. As mentioned, in the

present study, a laminar flow model was used, because the waves were not breaking

and there was no FSI. Nevertheless, even when wave-structure interaction is simu-

lated, the laminar flow model was shown to give good results (Morgan and Zang, 2010;

Chen et al., 2014), which justifies the present selection.

A.1.3 Application to nonlinear wave problems

In this section some representative works for the simulation of water waves in CFD and

particular in OpenFOAM are listed.
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Regarding the wave transformation in coastal areas, the ancestor of IHFOAM, IH2VOF,

employed two-phase flow RANS equations to study infragravity waves generated by

focused waves breaking on a slope and illustrated the advantage of using advanced

solvers for simulating nearshore processes and overcoming the limitations of SWE and

Boussineq models (Lara et al., 2011). In one of the first studies of waves in OpenFOAM

(Morgan et al., 2010), the "rasInterFoam" solver was used to simulate wave propaga-

tion over a submerged bar in the classic experiment of Beji and Battjes (1993), ex-

amining for first time wave-wave interactions in a qualitative way. Chenari et al. (2015)

used OpenFOAM and waves2Foam for performing a qualitative comparison of different

types of breaking waves with the theory. In a more detailed approach, Jacobsen et al.

(2012) demonstrated that OpenFOAM and waves2Foam are capable of reproducing

the free surface and kinematics of breaking waves on a slope. The most complete

work is that of Higuera et al. (2013b), which refers to the validation of OpenFOAM and

IHFOAM for coastal engineering problems including wave breaking, wave-structure in-

teraction, interaction of a long wave with a transient wave group on a slope, rip current

development in a 3D beach, wave induced run up in the surf zone and run-up on a

conical island, which is relevant for the simulation of tsunamis. This studies demon-

strated that CFD can offer unique insight in coastal engineering problems and apart

for comprehending the underlying physics, contribute to the better design of coastal

structures.

The majority of studies using CFD however refers to wave-structure interaction, where

there is high nonlinearity. Most of the studies refer to wave-cylinder problems, com-

monly representing monopile foundations for wind turbines. The early work of Bred-

mose et al. (2006) on loads on offshore wind turbines under extreme conditions of

combined irregular seas and currents was followed by the use of "interFoam" solver

to simulate steep and breaking focused waves on cylinders (Bredmose and Jacobsen,

2010), highlighting the deviations from the classic force estimation with the Morison’s

equations. More realistic cases of monopiles of wind turbines with inspection platforms

were simulated trying to interpret some reported accidents (Bredmose and Jacobsen,
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2011). Morgan and Zang (2010) also used OpenFOAM to simulate wave load on a

cylinder with some noticeable deviation in the nonlinear harmonics of the waves from

the experiment. OpenFOAM and waves2Foam was used to generate focused waves

on cylinders with good accuracy (Ransley et al., 2013; Paulsen et al., 2013a). Paulsen

et al. (2012, 2014a) applied an integrated modelling technique combining a PFS with

waves2Foam to simulate realistic seas and model accurately the FSI on a cylinder fo-

cusing on the third order harmonics of forces, which are associated with ringing. A sim-

ilar integrated modelling approach with a HOS model and OpenFOAM was suggested

by Lu et al. (2017). The physics of wave-cylinder interaction deducted from simulations

in OpenFOAM and waves2Foam were presented in (Paulsen et al., 2014b). Chen

et al. (2014) also used OpenFOAM to calculate the force harmonics up to 4th order for

wave-cylinder interaction and study the wave run-up on the structure.

Studies relevant to MRE applications in OpenFOAM include simulations of Oscillating

Water Columns (OWCs) (Iturrioz et al., 2015; Vyzikas et al., 2017b; Simonetti et al.,

2015), floating bodies (Ransley, 2015), tidal turbines (Gebreslassie et al., 2013; Santo

et al., 2017), offshore wind foundations (Paulsen et al., 2013b) and extreme waves at

MRE deployment sites (Ransley et al., 2013; Vyzikas et al., 2013).

A.1.4 Conclusion

OpenFOAM is a very useful open-source tool for the industry and research commu-

nity, thanks to its versatility and rapid expansion. The libraries for the generation and

absorption of waves can make OpenFOAM an established tool for coastal and ocean

engineering studies. Despite the already presented validation cases, more in-depth

validation and optimization of the NWT is necessary in order to make OpenFOAM a

trusted tool for practical civil engineering studies. The work in the present study is in

line with these objectives, demonstrating OpenFOAM’s capacity to accurately propa-

gate very steep wave groups.
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A.2 SWASH

A.2.1 Introduction to SWASH

SWASH (Simulating WAves till SHore) is a general-purpose numerical model for rapidly

changing flows and wave transformation at arbitrary water depth which solves the non-

linear shallow water equation (NLSWE) with a non-hydrostatic pressure assumption.

SWASH was developed in TU Delft and it is an open-source software freely distributed

under the GNU General Public License. The code is written in FORTRAN and its

structure resembles the well-established spectral model SWAN. It can be compiled in

Windows, Linux and Mac OS X operating systems for serial or parallel runs using the

message passing environment MPI and a grid partitioning stripwise method to assign

parts of the decomposed domain to different processors. Together with the solver, pre-

and post-processing tools are provided in order to insert and extract the relevant flow

variables. The first release of the model was in 2011, referring to version 1.02 and the

latest release is version 4.01. For the simulations in the present work, version 3.14 was

used, which had incorporated already all the physics and numerical techniques for the

propagation of steep non-breaking waves over constant depth.

Thanks to its non-hydrostatic NLSWE formulation, SWASH can be used to simulate

free-surface rapidly varying flows, without requiring special parameterizations. Such

flows include coastal flooding, hydraulic jumps and in the context of waves, wave prop-

agation over varying bathymetry, frequency dispersion, tsunamis, nonlinear wave-wave

interactions, wave transformation in coastal areas (shoaling, refraction, diffraction and

reflection), wave-current interactions, wave-induced currents, wave runup, surf and

swash zone hydrodynamics, wave overtopping, turbulence and wave breaking with a

bore similarity (The SWASH Team, 2017). SWASH was developed to be a flexible tool

that can be applied to different space and time scales ranging from field to laboratory

studies. As such, SWASH has been also validated against experimental results, as

described later in this section.
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The numerical implementation of the NLSWE is performed on a staggered grid for

the calculation of the flow variables based on the FVM. The domain is bounded by

the sea bed and the free surface. The computational efficiency of SWASH lies on the

σ−transformed vertical grid, which forms layers of varying thickness, and on the Keller-

box method, as elaborated below. A semi-implicit time integration is used to solve

the incompressible NSE, averaged per layer, aiming for both numerical robustness as

well as a good balance between computational efficiency and accuracy (Zijlema and

Stelling, 2005). The development line of SWASH started with the preliminary stud-

ies of Stelling and Zijlema (2003), who used the Keller-box scheme in non-hydrostatic

NLSWE; Zijlema and Stelling (2005), who developed the solver for the Poisson equa-

tion for the pressure; Stelling and Duinmeijer (2003) for conserving the momentum on

staggered grids and Zijlema and Stelling (2008) that presented an efficient wet-drying

algorithm for the prediction of the moving shoreline. SWASH was presented in (Zijlema

et al., 2011) and since then developments for depth-induced wave breaking have been

introduced (Smit et al., 2013). Especially, regarding the latter very challenging process

of wave breaking, SWASH considers a single-value free surface and a bore analogy,

modelling breaking as moving hydraulic jump with energy dissipation.

SWASH exhibits several advantages compared to other phase-resolving numerical

models. Over RANS or SPH solvers that can describe the details of overturning flows,

air-entrainment and wave-induced turbulence as well as realistic FSI, SWASH has the

advantage of computational efficiency, which allows for real-life applications, while it

can still replicate the bulk properties of breaking with reasonable accuracy. Compared

to Boussinesq-type models, SWASH improves the accuracy of the wave dispersion

by simply increasing the number of vertical layers, instead of increasing the order of

derivatives. The latter is not trivial to implement numerically because it may cause

potential instabilities due to short waves (The SWASH Team, 2017). The accuracy of

Boussinesq models and SWASH is comparable for intermediate water depth (Zijlema

et al., 2011) and, additionally, SWASH can be applied in deep water conditions by

increasing the number of layers. Using one vertical layer essentially results in a hy-
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drostatic (depth-averaged) model. All these advantages and flexibility make SWASH a

favourable choice.

A.2.2 Mathematical formulation

Non-hydrostatic modelling

The first developments in non-hydrostatic modelling of water waves took place in the

90s, because there was a lack of accurate and efficient modelling practice, especially

for the propagation of short waves or in cases where frequency dispersion and nonlin-

earities become considerable. The methods for the non-hydrostatic pressure compu-

tations are elaborated in (Zijlema and Stelling, 2005) and some necessary information

that distinguish SWASH from other models are described here.

Non-hydrostatic modelling is based on the solution of the NSE or Euler equations by

splitting the pressure into hydrostatic and non-hydrostatic. Commonly, the fractional

step method is applied, which consists of two steps: first, the velocity field is obtained

from the momentum equations and the free-surface conditions considering only hy-

drostatic pressure; at the second step, the velocity field is used to solve for the non-

hydrostatic pressure a Poisson-like equation. However, this method has the drawback

of introducing a splitting error, because the advection is not connected to the pressure

gradient, making this scheme only first order accurate in time. Immediate impacts on

the waves are inaccurate dispersion and significant damping. To mitigate this issue, a

number of approaches have been proposed, such as performing a correction for the

water level during the second fractional step by using a hydrostatic pressure assump-

tion for the cells below the free surface or by solving first the Poisson equation for the

non-hydrostatic pressure and then correcting the velocities, which are finally used to

find the free surface.

The solution strategy in SWASH is different: instead of the fractional time step method,

a projection method is used, which is referred as pressure correction technique, de-
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composing the pressure into a hydrostatic and a non-hydrostatic part. Thus, there is

no splitting error and the waves propagate without damping (The SWASH Team, 2017).

According to this approach, the pressure and advection are not split, but a prediction-

correction process is performed between the pressure and the velocity. This process

first solves the momentum equations using the non-hydrostatic pressure from the pre-

vious timestep and hydrostatic pressure to obtain an estimate of the velocity field at the

examined timestep. Next, the Poisson equation is solved using an efficient and stable

preconditioned Krylov subspace technique to find the difference between the new and

the old non-hydrostatic pressure by tanking the divergence of the momentum equa-

tions under the consideration of the incompressibility assumption. The advantage of

this method is that the correct surface elevation is calculated by the pressure and that

it is second order accurate in time. (Zijlema and Stelling, 2005).

The boundary conditions at the free surface consider automatically zero pressure,

achieved by the continuity of the normal stresses. Thus, there is no need to spec-

ify artificial boundary conditions, thanks also to the fact that in incompressible flows

there is no equation of state. An advantage is that the pressure is considered exactly

at the free surface. SWASH uses the previously described method to find the velocity

and pressure at the free surface, while other approaches enforce the non-hydrostatic

pressure to zero and compute the velocity from the continuity equation, which can yield

inaccuracies to the wave celerity (Zijlema and Stelling, 2005).

The governing equations of the flow are presented next, referring to he NLSWE, which

can be derived from the incompressible NSE (Zijlema and Stelling, 2008). The vertical

acceleration is induced as a result of the non-hydrostatic pressure gradient, calculated

from the NLSWE, assuming that both advection and diffusion terms are negligible com-

pared to it.

The governing equations of the one-dimensional (1D) depth-averaged non-hydrostatic

free surface flow described by the non-conservative form of the NLSWE are pre-

sented in Cartesian notation in Equations A.7 and A.8. They are derived from the
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two-dimensional form (Zijlema et al., 2011) after some substitutions by considering

zero bottom friction (c f = 0), no turbulent stresses (τi j = 0) and negligible eddy viscos-

ity (vt = 0 and thus τi j = 0), since non-breaking waves over a flat smooth bottom and

in absence of strong sheared currents (Rijnsdorp et al., 2014) are considered in the

present study.

∂ζ

∂ t
+

∂hu
∂x

= 0 (A.7)

∂u
∂ t

+u
∂u
∂x

+g
∂ζ

∂x
+

1
2

∂qb

∂x
+

1
2

qb

h
∂ (ζ −d)

∂x
= 0 (A.8)

where t is time, x and z located at the still water level (SWL) and the z−axis pointing up-

wards, ζ (x, t) is the surface elevation measured from the SWL, d(x) is the water depth

calculated from the SWL, u(x, t) is the depth averaged flow velocity in x−direction, g is

the gravitational acceleration, q(x,z, t) is the non-hydrostatic pressure (normalised by

the density), which is calculated here from the non-hydrostatic pressure at the bottom

qb. h = ζ +d is the instantaneous water depth or total depth.

The non-hydrostatic pressure qb can be computed by employing the Keller-box method

(Lam and Simpson, 1976) (discussed later), as seen in Equation A.9. Note that the

non-hydrostatic pressure at the free surface is zero, since the atmospheric pressure is

disregarded. As such, the pressure p can be decomposed into a hydrostatic part ph

and the non-hydrostatic part q: p = g(ζ − z)+q = ph +q (Stelling and Zijlema, 2003).

− qb

h
=

1
2

∂q
∂ z
|z=ζ +

1
2

∂q
∂ z
|z=−d (A.9)

Then, the velocity in z−direction at the free surface ws and at the bottom wb are cal-

culated from Equations A.10 and A.11, respectively. This practically shows that the

gradient of the pressure determines the vertical acceleration.
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∂ws

∂ t
=

2qb

h
− ∂wb

∂ t
(A.10)

wb =−u
∂d
∂x

(A.11)

The mass conservation at an infinitesimal water column can then be expressed from

the vertical velocity averaged over the depth and horizontal velocity gradient, as seen

in Equation A.12.

∂u
∂x

+
ws−wb

h
= 0 (A.12)

The expression for the free surface (Equation A.7) is also derived by considering a

mass balance for a slice in the vertical for the water column (Rijnsdorp et al., 2014). It

now becomes apparent that Equation A.8 refers to the momentum equation.

The governing equations are solved using the FVM and finite differences on a stag-

gered grid in order to avoid de-coupling of the velocity and the pressure, which can

cause non-physical oscillations and instabilities in colocated grids (Zijlema et al., 2011)

(see also Section A.1.2 for OpenFOAM). The velocities are found at the center of the

cell faces, while the pressure can be found at the cell centre (standard layout), or at

the centre of the horizontal cell face at the intersection between to neighbouring layers

(box layout, seen in Figure A.1) (The SWASH Team, 2017).

The Keller-box

The Keller-box method (Keller, 1971) gives accuracy and efficiency to SWASH for mod-

elling waves. This scheme is also referred as Preissmann scheme and Hermitian or

spline method (Lam and Simpson, 1976). It was implemented in SWASH for resolving

the vertical pressure gradient, as described in (Stelling and Zijlema, 2003). According
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to this scheme, the pressure is evaluated at the cell face -for this reason it is called

edge-based scheme- and as a result, it can directly assure zero pressure at the free

surface, which allows for accurate evaluation of the non-hydrostatic pressure using only

a small number of vertical points. Such consideration is effective for simulating short

waves with few or even one vertical point (depth averaged mode), which is almost

impossible for the standard layout that requires 10-20 points for the same accuracy.

This compact differences scheme works in two steps using the values of the vertical

pressure gradient (∂q/∂ z) from two subsequent cells. For reference, see Figure A.2. At

the first step, ∂q/∂ z is approximated by the w−momentum equation at zk−1/2 by means

of forward differences and at zk+1/2 by means of backward differences. At the second

step, the average of the two calculated values is found, yielding ∂q/∂ z at the cell centre

located at k, as explained in (Zijlema and Stelling, 2005).

The Keller-box technique in NLSWE can be regarded as a discrete equivalent of the

Boussinesq models by solving for the non-hydrostatic pressure simultaneously at a

finite number of grid points. As a result, the accuracy of frequency dispersion in shal-

low water is similar to Boussinesq models by using only 1-3 layers. This discretization

method, together with the σ−transformed grid allows SWASH to model the physics of

nonlinear wave transformations in shallow water with a relative coarse vertical resolu-

tion and also have a small phase velocity error of 1% in deeper water (Rijnsdorp et al.,

2014). For high vertical resolution of over 20 layers, however, the standard layout

should be chosen for greater stability (Smit et al., 2013).

σ−transformed grid

The second characteristic that makes SWASH efficient and flexible is its vertical mesh-

ing technique: the transformable σ grid. This refers to a curvilinear grid, which can be

stretched between the free surface and the bottom in order to represent the motion of

the fluid. Assuming that the fluid elements are connected in a unique way in the verti-

cal direction (no overturning waves), a σ -transformed grid can be advantageous from
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Figure A.1: Staggered grid for velocities and pressure used in SWASH on the
σ−transfomed vertical grid. Layers’ thickness and horizontal discretization are indica-
tive.

a numerical point of view, because the grid follows the vertical expansion and contrac-

tion due to the waves without the need for remeshing. The computational nodes stay

vertically aligned, which allows for implementation of high order numerical schemes for

the calculation of the flow variables without smoothing. Such a method was employed

initially for a finite element PFS (Turnbull et al., 2003), in a fashion similar to that used in

SWASH, where new techniques were applied to minimize the truncation errors (Stelling

and Zijlema, 2003). For operational applications, where there might be considerable

variations of the water depth, the σ−transformed grid employed in SWASH exhibits an

important advantage compared to fixed Cartesian grids. In the latter, the time step can

become prohibitively short to satisfy the Courant condition. However, the flexible grid

of SWASH can result in bigger cells and subsequently larger timesteps, offering com-

putational efficiency. Moreover, the conservative character of the FVM in combination
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with transformable layers guarantee accurate calculation of nonlinear waves when the

vertical flow structure is important (Zijlema and Stelling, 2005).

In more detail, the computational grid of SWASH is structured consisting of non-overlapping

cells that have the same number of neighbours (apart from the cells with faces at the

boundaries). The vertical discretization is realized with a fixed number of layers that

have absolute (constant) thickness or varying thickness relative to the water depth3.

Figure A.1 shows an example of the grid used in the present study near the focal lo-

cation. In the horizontal direction, a uniform distance between the grid points is used.

In the vertical, the fluid domain is discretized with K layers (k = 0...K), with the bottom

layer being k = 0 and the free surface k = K. The grid points (black dots) of the same

layer form a streamline that defines the centre of the layer. The thickness of a layer k

is defined as hk. The interface between two adjacent layers k and k+ 1 is located at

z = k+1/2hk. The staggered arrangement of velocities and the hydrodynamic pressure

(qk) it becomes now apparent: the horizontal velocity uk and vertical velocity wk are

defined at the middle of the the vertical and horizontal cell face, respectively, while qk

is defined at the same location as wk according to the Keller-box scheme. The vertical

velocity at the free surface and bottom is zero and the horizontal velocity can be found

at the interface of two layers as the weighted average of the velocities at the adjacent

cell centres: uk(zk+1/2) ≈ ukhk+1+uk+1hk
hk+hk+1

(Zijlema and Stelling, 2005). For regions of tidal

flats, special care is taken in SWASH so that the water depth does not become smaller

than the layer’s thickness by considering a drying and flooding procedure.

Time integration

The space-discretized governing equation yield a set of ordinary differential equations

that should be time-marched using appropriate time integration schemes. A projec-

tion method is followed for the calculation of the pressure which requires the solution

of the Poisson equation, which is done by employing BiCGSTAB (Biconjugate gradi-

3Note that at least one layer should be defined in a relative way in order to allow for changes of the
water elevation.
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ent stabilized method) with ILU preconditioner (Zijlema and Stelling, 2005). The time

integration of the continuity and momentum equations can be performed using an ex-

plicit second-order leapfrog scheme, which prevents damping and results in accurate

dispersion (The SWASH Team, 2017). As an alternative, which is favourable for large

scale applications, an explicit time integration can be used for horizontal advective and

viscosity terms and a semi-implicit for the pressure gradients and the free surface. The

latter approach is unconditionally stable, since it is not limited by the wave celerity.

The explicit time integration schemes require additional stability criteria in order to con-

trol the magnitude of the time step. In SWASH, the well-known Courant condition is

used, as expressed in Equation A.13 for 1D problems. Therefore, the timestep can be

dynamically adjusted assuring accuracy and computational efficiency, using the opti-

mum timestep size (The SWASH Team, 2017).

Co =
∆t(
√

gd|u|)
∆x

≤ 1 (A.13)

where
√

gd is the wave celerity in shallow water.

The semi-implicit method uses a θ -scheme, which for stability should be selected as

1
2 ≤ θ ≤ 1. Selecting θ = 1

2 yields the second-order accurate Crank-Nicolson scheme,

while θ = 1 results in the first-order backward Euler scheme.

In the present study an implicit time integration method was used for the continuity

equation, water level gradient and vertical terms using the Crank-Nicolson scheme.

The momentum equations were integrated using the second order backward difference

(BDF) upwind scheme in both horizontal and vertical advective terms. More alternative

can be found in the User’s manual (The SWASH Team, 2017).
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Wave-generation and absorption

SWASH requires an appropriate set of boundary conditions at the i) free surface, ii) bot-

tom iii) offshore (wave generation and absorption) and iv) shoreline, for the velocity

components and the stresses, which are calculated only by the pressure, since the

viscous stresses are ignored (Zijlema and Stelling, 2005).

The kinematic and dynamic boundary conditions at the free surface and bottom dictate

that no fluid particle can leave the free surface or penetrate the bottom (Rijnsdorp

et al., 2014). At the free surface, the vertical velocity component ws is found from the

conservation of local mass (Equation A.12). The horizontal component can only be

interpolated from the vertical cell face. The tangential and normal stresses are zero

because the effects of wind and surface tension are neglected. At the bottom, the

normal velocity wb is found by Equation A.11 and the tangential stresses are ignored,

while the normal stress are found using Equation A.9. The shoreline can be modelled

as moving with wet and dry cells, ensuring non-negative water depth (The SWASH

Team, 2017). At other closed boundaries in the domain, such as lateral walls, free-slip

condition is used by enforcing the normal velocity and tangential stress to zero.

Wave generation is realised at the inflow boundary, where the normal velocity compo-

nent from linear wave theory is imposed and the tangential velocity is set to zero. Since

the momentum equation for the normal velocity is not solved at the inflow boundary,

there is no need to define boundary conditions for both the water elevation and the

non-hydrostatic pressure. A ramp-up time can be also used to prevent instabilities at

an initially calm NWT (Stelling and Zijlema, 2003). The wave generation of SWASH

can also account for irregular wave generation based on a predefined spectrum. In

the present study, the free surface elevation is specified in terms of Fourier series. For

the corrections of the focusing methodology, external tools were developed in MATLAB

that prepare the input files and post process the output of SWASH to create files of

timeseries per WG, position of the layers and velocity fields. Internal wave generation

is not available in the main distribution of SWASH, however it has been implemented by
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Zhang et al. (2016). A "partial" second order wave generation is available in SWASH,

using the "ADDBoundwave" command, which can be used to add the bound long wave

sub-harmonic and thus, minimize the spurious free long wave, but it does not account

for the bound quadratic super-harmonics.

Wave absorption is performed at the outflow boundaries where the waves are dissi-

pated or freely-radiated. Dissipation can be achieved by the inclusion of a sponge

layer at the end of NWT and extending the computational domain by 1-3 times the typi-

cal wave length (The SWASH Team, 2017). At the end of the sponge layer the solution

is prescribed to the SWL, i.e., the water level, the non-hydrostatic pressure and the

horizontal velocity are set to zero (Stelling and Zijlema, 2003). Alternatively, the waves

can be freely radiated by using the Sommerfeld radiation condition, which allows the

waves to freely cross the boundary by prescribing a linear estimation for the wave kine-

matics on the outlet boundary. As such, the free surface elevation and the tangential

velocity components are imposed based on Equation A.14 using the shallow water ap-

proximation for the wave celerity and the hydrostatic pressure assumption (Zijlema and

Stelling, 2005). Consequently, this approach is more effective for long waves. Note

that sponge layers and Sommerfeld boundary conditions can be used in combination

to achieve better radiation of the outgoing waves. In this case, the damping coefficient

of the sponge layers vanishes towards both ends of the sponge layer in order to allow

for smooth transition between the waves in the NWT and defined kinematics at the

outlet (Stelling and Zijlema, 2003).

∂ψ

∂ t
+
√

gh
∂ψ

∂ t
= 0 (A.14)

where ψ refers to either the free surface elevation and the tangential velocity compo-

nent.

Apart from preventing reflections at the outlet boundary, the Sommerfeld condition can

be applied on the inlet boundary in order to protect the wave generation from returning
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waves from the NWT. For that, a weakly reflective boundary condition is used, which

specifies a horizontal velocity distribution normal to the boundary. This is known as the

Flather condition (Blayo and Debreu, 2005). As seen in Equation A.15, this condition

is based on the shallow water approximation and calculates a corrected velocity uin

based on the difference between the incident target free surface elevation (ζin) and the

measured one at the boundary. This technique resembles the active wave absorption

of IHFOAM. On the other hand, sponge layers are equivalent to the relaxation zones

used in waves2Foam, as discussed in Section A.1.2.

uin =±
√

g
h
(2ζin−ζ ) (A.15)

A.2.3 Applications

There is a wide range of applications in scientific publications that use SWASH. The

up-to-date list of publications can be found at (SWASHweb, 2017). Some standard

comparison cases with experimental results include standing waves, propagation of

regular and transient waves, wave runup on a plane beach and propagation over sub-

merged bars. Most of these tests were employed to test the gradual advances in

non-hydrostatic modelling during the development process of SWASH. There are also

studies of large scale applications.

Standing waves were used by Turnbull et al. (2003) to test the σ−transformed grid and

the Keller-box for preventing wave dumping even for deep water waves (Stelling and

Zijlema, 2003), showing its superiority to the standard layout for the non-hydrostatic

pressure (Zijlema and Stelling, 2005). SWASH was tested for a regular progressive

wave in a flume showing good accuracy in all water regimes, with a small phase veloc-

ity error in deeper water (Zijlema et al., 2011). The propagation of a bichromatic wave

group (consisting of two wave components) was examined in SWASH for the emer-

gence of second order bound waves, showing good agreement, but a small phase

difference, with the analytical solution (Rijnsdorp et al., 2012). A solitary wave was
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modelled using the Keller-box, but noticeable discrepancies in its shape were observed

(Stelling and Zijlema, 2003). Turnbull et al. (2003) tested focused wave groups against

the experiments of Baldock et al. (1996), showing some discrepancies due to high or-

der nonlinearities. To the author’s best knowledge, that was the only application of

σ−transformed grids on focused waves before the study of Vyzikas et al. (2015) and

the present Thesis.

Wave transformation over submerged obstacles, such as reefs or submerged break-

waters, is very relevant to coastal engineering studies. Stelling and Zijlema (2003)

tested the non-hydrostatic model with Keller-box against the experimental results of

Beji and Battjes (1993). Later, Zijlema and Stelling (2005) improved the solution with

the Poisson equation, but both studies reported errors behind the bar. Stelling and

Zijlema (2003) and Zijlema and Stelling (2005) also examined a similar case for the 2D

problem of waves passing over a submerged shoal, testing the ability of the model to

simulate refraction, diffraction and wave focusing behind the obstacle. A recent study

employed SWASH to examine the optimum layout of two submerged breakwaters for

the attenuation of regular and irregular waves in the presence of collinear and opposing

currents, after validation with a single breakwater (Liang et al., 2015). In another study,

SWASH was used with an internal wave generation in order to estimate the wave trans-

mission coefficients over submerged breakwaters and build new empirical formulae for

a JONSWAP spectrum, after validating a two-layer NWT with experimental results for

a low-crested breakwater (Zhang et al., 2016).

The simulation of runup on a beach is also very important for coastal defence pur-

poses. The wetting and drying algorithm of SWASH showed good performance in a

number of studies, such as regular wave runup on a slope (Zijlema and Stelling, 2008),

long wave (tsunami) runup on a plane beach and runup of solitary waves on a conical

island (Zijlema et al., 2011). SWASH was also tested for the propagation of a tsunami

over complex bathymetry against experimental and analytical solutions (Zijlema et al.,

2011). The propagation of irregular waves over a slopping beach that includes a bar
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demonstrated good agreement with experiments for the spectral evolution due to wave

transformation (Zijlema and Stelling, 2008) as well as similar qualitative results to the

phase-averaged model SWAN, which used the Lumped Triad Approximation (LTA) (see

Section A.4.4).

SWASH was also compared against experimental results for irregular waves breaking

on a slope of complex bathymetry (Zijlema et al., 2011), showing very good qualitative

comparison for the transformation of the energy spectra (Suzuki et al., 2017). More

detailed validation for breaking waves using the bore similarity was performed by Smit

et al. (2013) for regular and irregular waves. Other tests include circulating flow for

waves breaking over a submerged breakwater in a 2D basin (Smit et al., 2013) and

wave-induced circulation in the case of rip currents, which are created due to wave

breaking over a longshore varying bathymetry (Zijlema et al., 2011).

An important phenomenon in operational coastal engineering is the release of infra-

gravity (IG) waves, as a consequence of wave breaking on a beach. IG waves are

also known as surf-beats and have a period of 20-250 s. IG waves can cause har-

bour resonance, influence sediment dynamics and beach erosion (Rijnsdorp et al.,

2012). SWASH was compared against experimental results for a wide range of IG

waves propagating over plane and barred beach, showing good agreement with the

measurements for the bulk parameters of the wave evolution, such as the root mean

square (Hrms) wave height, mean wave period, wave dissipation, shoreline reflection

and nonlinear wave-wave interactions (Rijnsdorp et al., 2014). The challenge from a

numerical point of view is that while short waves are almost perfectly dissipated on a

beach, IG waves are partially reflected to the inlet (Rijnsdorp et al., 2012). For such

cases, the weakly reflective boundary and "ADDBoundwave" options of SWASH can

be very useful (Rijnsdorp et al., 2014).

Overtopping is another very important parameter for the design of coastal defence

structures, especially considering the sea level rise. Overtopping is challenging to

measure experimentally and model numerically, due to intense wave breaking, sepa-
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ration of the fluid from the bottom and spraying, which cannot be modelled by SWASH.

However, the model can be used to capture the bulk properties of overtopping. SWASH

was employed to study wave overtopping over a coastal dike and its performance was

compared with experimental results for the surface elevation, but also for the kine-

matics obtained by the SPH model DualSPHysics, showing reasonable performance

(St-Germain et al., 2014). In contrast with St-Germain et al. (2014) that used many

layers, Suzuki et al. (2017) used SWASH in the depth-averaged mode (single layer)

and demonstrated that it was still possible to capture bulk parameters of overtopping,

at least as accurately as the existing empirical formulae, missing only single violent

events that can however have a high impact on the discharge.

SWASH was employed for large scale applications, such as the storm events in Tra-

mandai Beach in Brazil (Guimarães et al., 2015) that resulted in runup and inundation.

SWASH was used in an integrated modelling approach combined with WAVEWATCH

III and SWAN, in order to model the detailed wave transformation and runup close to

the shore and at the urban region, offering important insights for coastal management

and civil protection.

Other applications of SWASH refer to the modelling of vegetation, sediment trans-

port, wind and porosity (The SWASH Team, 2017). The capabilities of SWASH keep

expanding making the model more applicable for realistic studies. For example, Rijns-

dorp et al. (2017) suggested an efficient subgrid approach to model the wave-induced

currents, which are commonly under-resolved in coastal scale applications, despite

their important role associated with sediment transport, dispersion of pollutants and

generation of hazardous rip currents. Regarding the modelling of FSI, a new method

was suggested by Rijnsdorp and Zijlema (2016) for simulating a fixed floating body in

SWASH, using a coupled approach of a free surface and a pressurized fluid under the

body. The advantage of implementing FSI in SWASH is that a single model can be

used to simulate the evolution of the waves from the far-field as well as their interaction

with the structure.
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A.2.4 Conclusions

The developments in non-hydrostatic modelling, such as the σ−transformed vertical

grids, the implementation of the Keller-box layout, the efficient calculation of the pres-

sure from the Poisson equation as well as the representation of the wave breaking,

resulted in the robust, accurate and computationally efficient numerical tool SWASH.

Thanks to its characteristics, SWASH can be applied at different temporal and spatial

scales and allow for modelling of both wave dispersion in deep water and surf zone.

SWASH comprises a valuable tool for operational coastal engineering applications as

well as scientific research, showing several advantages over the NSE and Boussinesq

solvers. In the present study, the merits of SWASH have been exploited to model

strongly nonlinear wave-wave interactions in focused wave groups and validating the

model and validate the model for this problem for first time.

A.3 High-order spectral method

A.3.1 Introduction to HOS

The HOS-ocean and HOS-NWT models have been developed at the LHEEA labora-

tory of Ecole Centrale de Nantes (ECN) and they are freely distributed under GNU

General Public License. They were released in 2016 (Ducrozet et al., 2016b) and

2012 (Ducrozet et al., 2012a), respectively. These are the latest versions of a long

line of development of similar codes for the propagation of waves, such as SWEET

(spectral wave evolution in the ECN tank) (Bonnefoy et al., 2006a), SWENSE (Spectral

Wave Explicit Navier-Stokes Equations) and HOST (High Order Spectral method Tank)

(Ducrozet et al., 2006).

HOS is a pseudo-spectral method, because it evaluates the spatial derivatives of the

flow variables in the Fourier space, but the products of the examined quantities are

performed in the physical space (Ducrozet et al., 2016b). HOS-ocean and HOS-NWT
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models share the same equations and solving techniques and essentially, they only

differ at the treatment of the boundary conditions; HOS-ocean has periodic boundaries

representing an infinite circulating ocean, while HOS-NWT has a bounded domain with

wave generation and absorption boundary conditions and reflective walls elsewhere.

At present, the models can simulate wave propagation on finite depth, but they can-

not treat variable water depth and breaking waves. Also, there are restrictions to the

wave steepness in order to prevent simulation of unrealistic waves. Together with the

distribution of the codes come specially developed post-processing tools and routines

to allow coupling with other models, such as SPH (Ducrozet et al., 2016a) or WAVE-

WATCH III.

A.3.2 Mathematical formulation

Traditionally, the modelling of nonlinear wave propagation without wave breaking is per-

formed with PFS, usually employed with Boundary Element Methods (BEM). However,

the computational cost of such approaches is restrictive for simulating large domains

and long-term evolution of sea states. An alternative to that is the use of the fully

nonliear ZE, as suggested by Dommermuth and Yue (1987) and West and Brueckner

(1987). The formulation of West and Brueckner (1987) uses the full nonlinearity of

the ZE and does not consider a truncation at 3rd order in the mode amplitudes. The

wave interactions are not restricted to those at or near resonance, as done originally

by Zakharov (Zakharov, 1968), because the field quantities (surface displacement and

velocity potential) and their gradients are evaluated without the need to distinguish

between resonant and non-resonant interactions. This evaluation is performed in the

spectral space using the FFT algorithm, making this approach fast to converge and

very computationally efficient.

The HOS scheme is based on an expansion about the free surface, which is used as

a reference, considering a continuous spectrum. Thus, this HOS approach is not valid

if the reference surface is shifted or when very different wave lengths and amplitudes
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are examined. Issues in HOS modelling can be caused if the waves are close to break-

ing and when large Courant numbers are encountered Dommermuth and Yue (1987).

Other challenges refer to aliasing and the initialization of the nonlinear simulation with

a linear condition, which have been carefully treated in HOS-ocean and HOS-NWT

following Dommermuth (2000)

Since the mathematical formulation of HOS-ocean and HOS-NWT is identical in the

domain and different only on the boundaries, an effort is done here to present the equa-

tions in a consistent manner from the relevant publications. As such, some variables

have been changed. The reference coordinate system of the rectangular fluid domain

is Cartesian and its beginning is located at one corner with x− and z− representing the

horizontal and vertical axis respectively. The vertical axis is positive upwards and z = 0

is located at the mean water level.

The fundamental assumption of potential flow theory is the consideration of an irrota-

tional, inviscid, incompressible fluid allowing for the continuity equation to be expressed

in the form of Laplace equation for the velocity potential φ , as seen in Equation A.16

(Ducrozet et al., 2016b).

∇
2
φ +

∂ 2φ

∂ z2 = 0 (A.16)

where ∇ is the horizontal gradient operator (∂x,∂y).

Next, the kinematic and dynamic boundary conditions at the free surface have to be

defined (Equations A.17 and A.18) in order to close the system of equations following

the formulation of Zakharov (1968). Since non-breaking waves are considered, the

free surface is a single-valued variable at any location in the domain.

∂η

∂ t
=
(
1+ |∇η |2

)
W −∇φ̃ ·∇η (A.17)
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∂ φ̃

∂ t
=−gη− 1

2
|∇φ̃ |2 + 1

2
(
1+ |∇η |2

)
W 2 (A.18)

where η is the free surface elevation, φ̃(x, t) = φ(x,z = η(x, t), t) is the velocity potential

at the free surface and W is the vertical velocity at the free surface W = ∂φ

∂ z (x,z = η , t)

as expressed by West and Brueckner (1987).

The sea bed is considered impermeable and the bottom boundary condition reads:

∂φ

∂ z
(x,z =−h, t) = 0 (A.19)

The use of FFTs is the core of the solution process for the HOS method. Thus, the

variables η and φ̃ have to be expressed in the spectral domain. To achieve that a

spectral basis ψm is defined, where the potential can be expanded on, as shown in

Equation A.20.

φ(x,z, t) = ∑
m

Am(t)ψm(x,z) = ∑
m

Am(t)
cosh[km(z+h)]

cosh(kmh)
exp(ikmx) (A.20)

where km = m∆kx = m 2π

Lx
the wavenumbers, demonstrating the expression of the of total

length of the domain (Lx) according to the wave length.

After the previous transformation the examined variables can be expressed on the

spectral basis as:

φ̃(x, t) = ∑
m

Bφ̃
m(t)exp(ikmx) (A.21)

η(x, t) = ∑
m

Bη
m(t)exp(ikmx) (A.22)

To solve Equations A.21 and A.22, the infinite expansion should be truncated to a finite

number of modes N, which corresponds to the number of points along Lx in the physical
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domain. For a given order of nonlinearity, the number of modes N is one of the main

parameters that determines the accuracy of the solver. N has to be sufficiently high to

account for the shortest wave lengths.

At this stage, the surface conditions η and φ̃ are known and the only remaining un-

known is the vertical velocity at the free surface, namely W = ∂ φ̃

∂ z , which is calculated

according to the approach of West and Brueckner (1987). Then, the Equations A.17

and A.18 can be time marched. First, the velocity potential φ is expanded to a power

series of components φ (m) in wave steepness ε up to M, which refers to the HOS non-

linearity order (mHOS), as shown in Equation A.23.

φ(x,z, t) =
M

∑
m=1

φ
(m)(x,z, t) (A.23)

Next, the velocity potential at the free surface (φ (m) at z= 0) is expanded in Taylor series

around the mean water level (z = 0) up to order m at wave steepness εm.

φ
(1)(x,0, t) = φ̃(x, t) (A.24)

φ
(m)(x,0, t) =−

m=1

∑
k=1

ηk

k!
∂ kφ (m−k)

∂ zk (x,0, t) for m > 1 (A.25)

These expansions of φ(x,z, t) and φ (m)(x,0, t) form a triangular system, which simplifies

the complicated Dirichlet problem of evaluating the potential on the free surface to

M simpler problems of φ (m)(x,0, t) calculated at mean water level. Similarly, another

triangular system is formed by expanding in series the vertical velocity W , as seen in

Equation A.26, which can be solved iteratively (Ducrozet et al., 2016b, 2012a).

W (x, t)(m) =
m−1

∑
k=0

ηk

k!
∂ k+1φ (m−k)

∂ zk+1 (x,0, t) (A.26)

Consequently, the vertical velocity on the free surface at order M is computed as:
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W (x, t) =
M

∑
m=1

W (m)(x,z, t) (A.27)

The HOS method yields a fully nonlinear solution and solves the kinematic and dynamic

boundary conditions exactly at the free surface. An interesting feature of the HOS mod-

els used here is that both solve the flow equations in a rectangular domain which has

dimensions Lx×Ly corresponding to the natural eigenmodes of the wave tank, as ex-

plained in Equation A.20. Thus, the spectral expansion is based on the natural modes

of the domain instead of the classic periodic expansions, resulting in normalising the

modal wave number by the length of the domain Lx and the beam length of the tank Ly

(Bonnefoy et al., 2006a). Moreover, to fully exploit this feature, all the quantities in the

solution process are dimensionless. Thus, the depth of the tank h is set at z = 1 and

the space and time scales are expressed as [L] = h and [T ] = 1/
√

g/h. At the end of

the simulation, the quantities are transformed back to the physical space.

The time integration of the Equations A.17 and A.18 is done numerically with Runge-

Kutta Cash-Karp scheme with adaptive step size (Cash and Karp, 1990). The time step

is controlled by setting a desired tolerance, which typical values are 10−5− 10−7, and

it determines the number of internal iterations in the code for achieving convergence

(Ducrozet et al., 2016b).

Another aspect that affects the accuracy in a pseudo-spectral formulation which uses

FFTs is the aliasing phenomenon. When a physical quantity is expressed in spectral

space, it is expanded to larger modes (Nd), which are equal to zero using a zero-

padding approach and the computed quantities are then transformed to the original

number of modes (N). For high accuracy, complete de-aliasing is recommended, which

is achieved by using the halves rule of M + 1 for the nonlinear order M, meaning that

Nd = M+1
2 N. Partial de-aliasing is also possible by using integers lower than M, which

is useful to retain a reasonable cost at large 3D computations (Ducrozet et al., 2012a).

The high computational efficiency is also achieved thanks to the solution strategy of
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solving the linear part of the equations analytically and the nonlinear numerically. In

such approach, the CPU time can estimated from the parameters of the problem, ac-

cording to the number of modes used (N) as Nlog2N, for a given order of nonlinearity M

(Ducrozet et al., 2012a). The simulation of a wavemaker in HOS-NWT induces some

additional computational cost, but for a certain wavemaker it grows according to the

aforementioned formula.

Another interesting aspect in the HOS method is the computation of the kinematics,

namely the dynamic pressure and velocity, in the fluid domain e.g. (Ducrozet et al.,

2016a,b). Since the HOS approach evaluates the quantities η and φ̃ at the free surface

only, the calculation of the kinematics in the fluid domain is performed during the post-

processing at the desired area, using an approximation similar to that of the Dirichlet to

Neumann Operator (DNO) models. Obtaining the kinematics allows also for coupling

with other solvers, such as CFD and SPH (Ducrozet et al., 2016b).

A potential issue for nonlinear simulations is their initialization with linear conditions,

which can create instabilities (Dommermuth, 2000). To mitigate this and avoid disconti-

nuities, a relaxation period can be defined at the beginning of the simulation to facilitate

the transition from the linear to the fully nonlinear solution by defining a smoothing time

in Equations A.17 and A.18. This ramp-up time is defined at the wavemaker movement

of HOS-NWT and at the first wave periods in HOS-ocean.

A.3.3 Boundary conditions and initial conditions

The definition of the boundary conditions is essentially the only difference between

HOS-NWT and HOS-ocean. Common for the two models are the boundary conditions

for the bottom and the free surface. As expressed in Equation A.19, the bottom bound-

ary conditions impose impermeability. At the free surface, impermeability and pressure

continuity are achieved through the kinematic and dynamic boundary conditions (Equa-

tions A.17 and A.18).
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Figure A.2: Numerical domain used HOS-NWT, especially depicting the additional do-
main, the wavemaker and absorption zone.

The simulation of an infinite ocean with HOS-ocean requires periodic boundary condi-

tions, which "recirculate" the computed quantities. For the simple case of an 2D domain

this can be expressed as shown in Equation A.28 and it can be easily expanded in 3D

domains for wave fields with directionality.

(
η , φ̃ ,W

)
(x = 0, t) =

(
η , φ̃ ,W

)
(x = Lx, t) (A.28)

More complicated is the case for HOS-NWT, where special boundary conditions have

to be set for the wave generation and absorption. A schematic of the domain is shown

in Figure A.2 for HOS-NWT. All the vertical walls of the NWT are perfectly reflective

and at the left wall (x = 0) a wavemaker is modelled, while at the right wall (x→ Lx)

a numerical beach is inserted for the dissipation of the wave energy (Ducrozet et al.,

2012a).

The numerical beach at the end of the domain takes the form of a absorption zone,

which imposes a local modification of the pressure in a similar way as the relaxation

zones in OpenFOAM (see Section A.1). The weighting function of the relaxation was

calibrated to match the physical absorption of the basin at ECN, using a third order
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polynomial function (Ducrozet et al., 2012a).

The modelling of the wavemaker on the other hand requires special treatment. HOS-

NWT follows the some principle as in SWEET (Bonnefoy et al., 2006a), but extended

the 1st and 2nd order motion of the wavemaker to 3rd order. Two types of wavemakers

are modelled, namely piston and flap-type, with the hinge being at the bottom of the

flume or detached. The wavemaker is assumed to have continuous geometry and a

no-flow condition, as seen in Equation A.29:

∂X
∂ t

=
∂φ

∂φ
− (∇vX) · (∇vφ) x = X(y,z, t) (A.29)

with ∇v is the vertical gradient.

To accurately model the movement of the wavemaker without increasing the energy

and volume of fluid in the domain, the concept of the additional potential was intro-

duced, coined by Bonnefoy et al. (2006a) following the work of Agnon and Bingham

(1999). As seen in Figure A.2 the domain consists of three horizontal slices: the bot-

tom black part, which corresponds to the actual physical domain; the top grey part,

which refers to the additional potential; and the light grey transitional zone between

the previous two. By employing the additional potential φadd , the total potential is split

into two parts φ = φspec +φadd , where φspec is the potential in the original computational

domain, while φadd is added to account for the nonhomogeneous conditions. As such,

Equations A.17 and A.18 on z = η(x, t) can be rewritten by including φadd as a forcing

term, with φ̃ and W veing now defined with respect to φspec:

∂η

∂ t
=
(
1+ |∇η |2

)
W −∇(φ̃ +φadd) ·∇η +

∂φadd

∂ z
(A.30)

∂ φ̃

∂ t
=−η− 1

2
|∇φ̃ |2 + 1

2
(
1+ |∇η |2

)
W 2−∇φ̃ ·∇φadd−

1
2
|∇̃φadd |2−

∂φadd

∂ t
−ν

∂η

∂ t
(A.31)
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A simple description of the approach is that the additional potential was added in order

to have an opposite moving symmetrical wavemaker to the actual one and keep the

quantities in the tank constant. The transitional region (light grey in Figure A.2) is

introduced to balance the movement of the two opposite moving walls on the boundary

in order to avoid discontinuities. This can be pictured as an elastic wall to balance the

different deformations of the two layers and create a smooth transition resulting in a

continuous wall on the boundary.

The governing Equations A.30 and A.31 have to be solved inside the domain and on the

wave generation boundary as an expansion of perturbation series of the corresponding

variable at each order (i) (Bonnefoy et al., 2006a), using the decomposition φ (i) = φ
(i)
add +

φ
(i)
spec. As such, one obtains the following equations:

∆φ
(i) =0 inside the domain (A.32)

∂φ (i)

∂n
=0 on x = Lx; y = 0, Ly; z =−1 (A.33)

∂φ (i)

∂x
− ∂X (i)

∂ t
=Ai on x = 0 (A.34)

∂η(i)

∂ t
=

∂φ (i)

∂ z
= Bi on z = 0 (A.35)

∂φ (i)

∂ t
+η

(i)+ν
∂φ (i)

∂ z
=Ci on z = 0. (A.36)

where n is the vector normal to the boundary.

For (i = 1), the first order terms read:

A1 = 0, B1 = 0, C1 = 0.

For (i = 2), the second order terms read:
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A2 =−X (1) ∂φ (1)
∂x2 +∇uX (1) ·∇uφ

(1) (A.37)

B2 =−η
(1) ∂φ (1)

∂ t∂ z
− 1

2
|∇̃φ

(1)|2−ν

(
η
(1) ∂φ (1)

∂ 2z
−∇η

(1) ·∇φ
(1)

)
(A.38)

C2 =η
(1) ∂φ (1)

∂ 2z
−∇η

(1) ·∇φ
(1) (A.39)

To model a linear wavemaker the additional forcing term in Equations A.30 and A.31

is calculated as φadd = φ
(1)
add , while for a second order wavemaker φadd = φ

(1)
add + φ

(2)
add

(Ducrozet et al., 2012a). This solution is similar to that used in the SWEET model

(Bonnefoy et al., 2006a). The HOS-NWT includes also the expansion of the wavemaker

to third order wave generation in order to minimize high order spurious free waves,

using a similar approach as that of the previous orders and defining the term A3. The

solution of the third order problem requires the calculation of the previous orders, i.e.

first and second order (Ducrozet et al., 2012b).

The HOS-NWT and HOS-ocean can simulate regular and irregular wave conditions.

The difference is that in the former numerical model the wave definition is translated to

a transport function to the wavemaker, while for the later it is imposed to the domain as

an initial condition based on linear theory. The initial condition in HOS-NWT considers

the fluid at rest. Nonlinear regular waves can be generated using the Stream Func-

tion Theory (Rienecker and Fenton, 1981). Irregular waves with directionality can be

generated as a superposition of linear components, which amplitudes are defined by

a predetermined spectrum for a given frequency discretization F(ω) and their direction

are defined by a directional spreading G(θ). To apply the HOS scheme, the spectrum

is translated to the Fourier domain Bmn by employing the modal discretization in κ−

space using ∆kx and ∆ky for the corresponding directions. The phases are uniformly

distributed in [0,2π] and a randomly generated phase is assigned to each component.

The free surface potential is computed in the Fourier space Bφ̃
mn =−i ωmn

g Bη
mn, where ωmn

can calculated by the dispersion relation and then an inverse Fourier transform is used
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to obtain the wave field.

The irregular wave spectrum available in both HOS-ocean and HOS-NWT is the JON-

SWAP directional spectrum form S(ω,θ)=F(ω)G(θ), where the energy spectrum F(ω)

is given in Equation A.40 for a given significant wave height Hs, the shape factor γ and

peak period Tp =
2π

ωp
. The directional spreading G(θ) is defined in Equation A.41. Ad-

ditional spectra were added in the code for the needs of the present study.

F(ω) = aJH2
s ω

4
pω
−5exp

[
−5

4

(
ω

ωp

)−4
]

γ
exp
[
− (ω−ωp)2

2σ2ω2p

]
(A.40)

with σ =


0.07 for ω < ωp

0.09 for ω > ωp

and aJ chosen to obtain the correct Hs.

G(θ) =
1
β

[
cos
(

πθ

4β

)]2

(A.41)

A.3.4 Applications

HOS-ocean and HOS-NWT were released relatively recently and there are not many

applications that employ them, with most of them coming from ECN as part of the de-

velopment of the models. For example, SWEET was compared against experiments

for regular, irregular and focused wave groups, showing promising results and encour-

aging further developments (Bonnefoy et al., 2006b). Ducrozet et al. (2007) employed

an unbounded version of the HOS model to examine freak waves "naturally" emerging

extreme waves in a random 2-dimensional (2D) sea as well as "forced" extreme wave

events with phase focusing. Thanks to its efficiency, HOS-NWT was also used to find

the statistical properties of the sea state with random (Monte Carlo-type) simulations

(Ducrozet et al., 2007). HOS-NWT was compared with experimental results for low

and moderate steepness unidirectional and directional focused wave packets show-

ing significant improvement over the SWEET (Ducrozet et al., 2012a). In the study

of Ducrozet et al. (2016b), the calculation of the velocity and pressure field under a
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freak wave, detected in a random sea, was examined and possible integration with

HOS-NWT was suggested, which was performed in (Ducrozet et al., 2016a) for the re-

production the Draupner wave as well as a "naturally" occurring freak wave in a random

simulation in HOS-ocean. HOS-NWT was also used to investigate the time-reversal of

solitons and breathers in the context of nonlinear wave-wave interactions in the process

of refocusing (Ducrozet et al., 2016c).

Similar HOS methods have been used by independent research groups to examine

properties of nonlinear wave propagation, such as nonlinear spectral energy shifts,

modulation instability, wave-wave interactions, the rate of change of sea spectra ac-

cording to Hasselmann’s theory, the evolution of bi-modal seas etc. Most of the studies

employed the Zakharov Equation (ZE) (Zakharov, 1968) or similar approaches, which

correspond to HOS nonlinearity order mHOS = 3 (Onorato et al., 2007). For example,

Shemer et al. (2001) studied energy transfer due to wave-wave interactions in modu-

lated wave trains. A focused wave group was simulated by Shemer et al. (2006), with

the wavemaker signal being adjusted to match the experiment near the inlet, and by

Shemer et al. (2007), who included bound waves, improving the agreement with the

experiment. Two other benchmark studies for the evolution of focused waves (Gib-

son and Swan, 2007; Katsardi and Swan, 2011) also employed ZE and HOS-based

methods. The BST model (Bateman et al., 2001), which is very similar to the HOS

models of the present study, was used by Gibson and Swan (2007) to demonstrate

that strong spectral changes take place close to the focal location mainly due to third-

order resonant effects. Katsardi and Swan (2011) extended that study to intermediate

and shallow water and, by exploiting the advantage of ZE to separate the bound and

resonant wave-interactions, showed that the spectral evolution is subject to resonant

four-wave interactions.
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A.3.5 Conclusion

The HOS models used in the present work are characterized by fast convergence and

computational efficiency, thanks to the fact that the HOS method takes into advantage

the very nature of the waves, i.e. sinusoidal waves with frequencies and amplitudes,

and expresses the problem in efficient Fourier series. On the other hand, the hydrody-

namic models (OpenFOAM and SWASH) solve a type of the Navier-Stokes equations

for any movement of fluid without necessarily examining waves. Moreover, the HOS

method does not have the restrictions of the spectral bandwidth and the water depth,

as the NLSE models.

In the present work, the HOS-NWT was chosen to examine focused wave groups and

the HOS-ocean model to find the statistical properties of a sea with Monte Carlo-type

simulations. For the present study, HOS serves as a bridge between phase-resolving

and phase-averaged models, because, despite being a phase-resolving model, it eval-

uates the waves in the frequency domain using the Hamiltonian and FFT allowing for

controlling the simulated wave-wave interactions through the selection of the nonlin-

earity order. It is important to note that it is the first time that the HOS models were not

used to simulate very steep wave groups and they have been validated for the propa-

gation of individual harmonics. For this, custom tools have been created in MATLAB

and Shell and new spectra have been inserted in the source code by the author.

One of the greatest limitation of the HOS models at present is the constant water depth

assumption. Recent attempts simulated variable depth (Gouin et al., 2015), and it is

expected that thanks to that future releases of HOS models will gain popularity for

practical engineering applications and allow for better coupling with other nonlinear

solvers, such as CFD.
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A.4 WAVEWATCH III

A.4.1 Ocean modelling

WAVEWATCH III (WW3) is based on the phase averaging approach for simulating the

propagation of waves, which is a fundamentally different method than that used by the

wave models described in the previous sections. As described in Section 2.1, there

are two groups of wave modelling: phase-averaged and phase-resolving models. The

latter simulate individual waves with known phases and result in a deterministic repre-

sentation of the free water surface, while the former represent the evolution of a wave

field in a statistical sense by dropping the phase information of the individual waves4

and adopting a random phase approximation by calculating at every time step and

at each geographical location the energy distribution in wave frequencies and direc-

tions. The underlying principle is that a random sea surface can be considered as

a Fourier-type process of superposition of an infinite number of individual sinusoidal

waves with their individual frequencies, amplitudes, phases and directions that form an

energy spectrum. For this reason, these models are also called spectral models. As

a consequence, phase-averaged models may miss the description of rapidly changing

waves at scales shorter than the wave length, but they are still capable of retaining

sufficient information for the evolution of a wave field as an evolving energy spectrum

with its mean parameters, such as HS, Tp, mean direction etc (Monbaliu and Lefèvre,

2005). The obtained spectrum is assumed to vary slowly in space and time and thus,

the simulated sea state is assumed stationary and homogeneous at the model’s mesh

scale (Monbaliu and Lefèvre, 2005).

The advantage of the spectral approach is the significant gaining in computational ef-

ficiency compared to phase-resolving models and the fact that through this stochastic

approach, the statistical parameters of interest are calculated directly without the need

of random Monte Carlo-type simulations. Nonetheless, large errors can be introduced if

4There exist spectral models that retain the phase information carried in the bi-spectra, however these
models are not commonly used for engineering purposes (Ardhuin and Roland, 2013).
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the commonly assumed quasi-Gaussian statistical closure hypothesis is violated (Cav-

aleri et al., 2007). A considerable drawback is that phase-related effects, such as

strong diffraction and generation of extreme waves (Babanin et al., 2012), cannot be

replicated effectively and where possible they need to be parameterized.

Thanks to their computational efficiency, spectral models are used at large coastal and

ocean scales and they are often coupled with atmospheric models to provide estima-

tions of the global sea parameters. The simulated scales vary between tens of kilome-

tres and time steps of one hour for ocean applications to tens of metres and seconds

for nearshore modelling (Monbaliu and Lefèvre, 2005), but spectral models have also

been applied at laboratory scale with spatial resolutions of 0.5 m (Ris, 1997). Spec-

tral models are employed for wave forecasting, climate monitoring and navigation as

well as long term assessment of the wave energy potential of a region (Sánchez et al.,

2017). They are also useful tools for engineering purposes, providing the characteris-

tics of the sea state that marine structures can be deployed (van Vledder, 2006). Pop-

ular spectral models, such as WW3, are continuously verified against in-situ records

of wave buoys, HF radar measurements and altimetry data from satellites, which helps

in tuning the models for more accurate predictions. This method of incorporating field

measurements in a model to improve the results is called assimilation (Sánchez et al.,

2017) and it is relatively new for wave models aiming to better understanding of the

physical processes (Waters et al., 2013). Spectral models can estimate the sea pa-

rameters at areas that are not monitored with instrumentation and also simulate past

events and provide long term statistics through hindcasting (Perez et al., 2017).

The development of spectral ocean models is a continuous effort that goes together

with developments in atmospheric models and measuring in-situ techniques. The ac-

curacy of the model is dependent on understudying and mathematically describing the

relevant physical processes, on efficient numerics and coupling with weather and lo-

cal models, which all constantly improve (Monbaliu and Lefèvre, 2005). These efforts

resulted in three generations of wave models that are mainly characterised by the de-
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scription of the nonlinear wave-wave interaction terms, which is the main subject of the

present work. First generation models included only wind input and dissipation source

terms (see next paragraphs A.4.4) that were tuned to match the available observed

measurements. Second generation models distinguish between the swell and the wind

generated sea. The energy transfer between wind sea and swell is performed in a para-

metric that represents the action of nonlinear wave-wave interactions. Third generation

(3G) models, as described below, solve the wave action equation without making any

assumption of the examined spectral shape and the nonlinear wave-wave interactions

are solved using analytical algorithms that transfer energy among selected resonant

combinations of waves (Monbaliu and Lefèvre, 2005). The flexibility and accuracy of

ocean modelling was significantly improved with the 3G models, since the nonlinear

transfers that alter the shape of the spectrum are no longer absent as in first genera-

tion models, nor heavily parameterized as in second generation models (Holthuijsen,

2007). Many 3G models were developed in the last two decades, with the best-known

being WAM, WW3, SWAN, TOWAMAC and MIKE-21 SM (Yang et al., 2017). A good

review touching all the aspects of spectral modelling is found in (Cavaleri et al., 2007)

including contributions from almost all the "gurus" in ocean modelling.

Regarding the present study, it is noted that most of the available spectral models

include similar source terms for the nonlinear wave-wave interactions and should theo-

retically produce similar results. In particular, WW3 is more applicable for ocean scale

applications, while SWAN and TOMAWAC are more relevant for nearshore applica-

tions. Nevertheless, the last versions of SWAN are applicable also to offshore mod-

elling (Gonçalves et al., 2014) and have also the advantage of the more efficient implicit

time stepping method (Yang et al., 2017). Certainly, any of these models could be used

in the present study, but WW3 was preferred thanks to the recent work of Gramstad

and Babanin (2016) for the four-wave nonlinear interactions with the General Kinetic

Equation (GKE).
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A.4.2 Introduction to WAVEWATCH III

WW3 is 3G spectral model that was first released in the middle 90s and it was based

on the principles of the first 3G spectral model, WAM (The WAMDI Group, 1988). The

latter was designed for deep ocean and shelf sea applications, but it was also able to

capture the transition to shallower water and refraction caused by currents (Monbaliu

and Lefèvre, 2005). The first version of the model, "WAVEWATCH" (Tolman, 1989) was

developed at TU Delft and the second version, "WAVEWATCH II", at NASA, Goddard

Space Flight Center and included specific developments for use in super computers. In

parallel, SWAN was being developed for coastal applications. The present version of

WAVEWATCH, WW3, differs considerably from its predecessors in the numerics and

the source terms that were previously tuned to replicate the nondimensional spectral

characteristics for given fetches (Tolman and Chalikov, 1996). WW3 is maintained

and distributed by NOAA/NCEP (National Oceanic and Atmospheric Administration /

National Centers for Environmental Prediction) (NOAA, 2017) under an open-source

password protected license. The users are allowed to modify the source code, but

they are obliged by the license to provide NCEP with their developments, who then

decides whether the developments will be included in the main distribution (Tolman,

2010). The code of WW3 is written in Fortran 90, in a modular format. The model

can be parallelised using the OpenMP or MPI protocols. The selection of the physical

processes and adopted parameterizations is performed at the compilation level, with

the so called "switches". The grid generation program gridgenv3.0 is also provided with

the source code of WW3.

The propagation of the wave field is linear and the nonlinear effects are included by

source terms. The spectral evolution is formulated using a Eulerian approach, which

for the spatial propagation on structured or unstructured grids is achieved by using

a numerical scheme, such as FEM, FVM or FDM (Ardhuin and Roland, 2013). The

wave spectrum is discretised uniformly in directions and logarithmically in frequencies.

The latter is common practice in spectral models (van Vledder, 2006; Benoit, 2006;
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Gagnaire-Renou et al., 2010; Gramstad and Babanin, 2016), because it allows for high

resolution in the wavenumber space at lower frequencies, where the main part of the

spectrum is, and sufficient resolution at high wave numbers that have little energy5,

resulting in more efficient computation. The time integration is achieved by implicit or

explicit schemes. First and third order schemes are available for the wave propagation

and a dynamic time stepping method can be used for the integration of the source

terms. Some more specific features of WW3, refer to alleviation of the inter Garden

Sprinkler Effect (GSE)6, sub-grid representation of unresolved islands and dynamic ice

coverage. In terms of numerical solution, one-way or more advanced two-way nesting

schemes are possible, which can create a mosaic of multiple grids. Alternatively, a

refined grid can move along a predefined path, following for example a cyclone.

Starting from the release WW3 v3.14, WW3 begun transitioning to a modelling frame-

work, including a wide variety of physics, aiming at comprising a numerical tool for both

operational and academic applications. v3.14 incorporated important developments re-

garding shallow water and surf zone phenomena, a dry grid method as well as spectral

partitioning in the post-processing 7. A landmark in the development of WW3 was ver-

sion 4, which has important additions of curvilinear and unstructured grids, two-way

nesting, developments in the source terms for wave generation, dissipation and bot-

tom friction as well as outputting in the very handy structured NetCDF format (Ardhuin

and Roland, 2013). WW3 v5.16 has some additional features relevant to possible ex-

tensions of the present work, such as the calculation of space-time extremes as well

as the Two-Scale Approximation (TSA) and the Full Boltzmann Integral (FBI) source

terms for nonlinear four-wave interactions (NOAA, 2017). It should be noted however

that the non-resonant interactions are still not included in these formulations. Thus, for

the examined problem of the present study, the v4.18 (Tolman, 2014) that was used

5 The difference between the frequency and the wavenumber grid is a direct result of the linear disper-
sion relation.

6 GSE is a numerical artefact referring to the geographical disintegration of the spectrum into distinct
frequency-direction bins due to coarse resolution (Cavaleri et al., 2007).

7Spectral partitioning is a technique to separate a spectrum to its wave train components and treat
them independently, without the need to average the statistics over the entire spectrum. It is useful for
handling spectra consisting of wind sea and swells (Monbaliu and Lefèvre, 2005; Waters et al., 2013).
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does not have any major differences from the latest version v5.16 (The WAVEWATCH

III Development Group (WW3DG), 2016), released in late 2016.

A.4.3 Mathematical formulation

As a spectral model, WW3 solves the random phase spectral action density balance

equation in the directional wavenumber space using FDM and an explicit time step

through the Courant condition. The underlying assumption of the governing equation

is that the local physical properties, such as the water depth, wave field and current,

vary slowly in time and space compared to the individual wavelengths.

The derivation of the governing equation of the spectral evolution shown herein follows

the description in the manual (Tolman, 2014). To begin with, an individual wave is con-

sidered, represented by a wavenumber vector k or the wavenumber k with direction θ .

The intrinsic frequency of this wave is given by the linear dispersion relation (Equation

A.42). In the case of ambient currents with a uniform velocity U, the absolute angular

frequency of the wave ω should include the effect of current, in a Doppler-like equa-

tion, assuming that the wave and the currents have the same direction. As such the

absolute observed frequency ω is the wave frequency σ altered by the current veloc-

ity, as seen in Equation A.43. The underlying assumption is that the diffraction of the

wave due to the current is ignored, which is the case for slowly varying currents and

bathymetry. Equation A.43 does not hold for strong nonlinearity and if the current has

not a uniform vertical structure (Cavaleri et al., 2007) .

σ
2 = gk tanh(kd) (A.42)

ω = σ +k ·U (A.43)

where d is the mean water depth and g the gravitational acceleration.
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When considering an arbitrary number of wave components to represent an irregular

sea, the wave amplitude is not appropriate to represent the energy distribution of the

sea, as in the case for a single wave, and instead the variance density spectrum is

used (Holthuijsen, 2007). Here, it is denoted as F , being a function of wave parame-

ters at each space location x and time t: F(k,σ ,ω;x, t). Under the assumption of linear

theory for the individual wave components of the spectrum, k, σ and ω are connected,

as seen in Equations A.42 and A.43, and thus, the variance density spectrum is ex-

pressed as F(k,θ). This expression in the κ−space is used in the solution process

in WW3, because it is conservative for the wave growth and decay (Tolman, 2014).

However, for practical applications, it is more useful to express the result in f−space .

Thus, the output of WW3 is given as F( f ,θ). This is performed with a simple Jacobian

transformation (similar to Equation 4.26), as shown in Equations A.44 and A.45, for

the relative ( fr) and absolute frequency ( fa), respectively. Integration over the f− and

θ−space returns the total energy E of the spectrum and from that the significant wave

heigh can be computed: Hs = 4
√

E (Cavaleri et al., 2007).

F( fr,θ) =
∂k
∂ fr

F(k,θ) =
2π

cg
F(k,θ) (A.44)

F( fa,θ) =
∂k
∂ fa

F(k,θ) =
2π

cg

(
1+

k ·U
kcg

)−1

F(k,θ) (A.45)

where cg is the so-called group velocity, given by Equation A.46.

cg =
∂σ

∂k
= n

σ

k
, n =

1
2
+

kd
sinh2kd

(A.46)

There is however an issue with using the variance density spectrum in ocean models:

in the presence of currents, the energy is not conserved, due to the work of the cur-

rent transferring momentum to the waves. Nonetheless, the wave action, defined as

A≡ E/σ , is conserved for an individual wave, and, correspondingly, the action density
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spectrum N(k,θ) ≡ F(k,θ)/σ is conserved for an irregular sea. For this reason, the

N(k,θ) is used in most of the present ocean models (Gonçalves et al., 2014).

The next step for determining the propagation of the wave spectrum is to find the evo-

lution of the wave action density spectrum in space and time, i.e., N(k,θ ;x, t), hereafter

N. This can be achieved by building an equation with the time and space derivatives of

N in a conservative form, which changes the total N according to the input of external

forcings, namely the source terms Stot . These source terms represent the parameter-

ization of various physical processes that affect the spectrum. Attempting to make a

rather far-fetched equivalence with phase-resolving models, the governing equations

reproduce the motion of the fluid or the movement of the spectrum on the grid. The

forcing terms refer to the wave generation and absorption in phase-resolving models

and to the source terms in phase-averaged models.

The evolution equation in ocean models is called wave action balance or often energy

balance equation, because it balances the affects of the source terms by modifying the

spectrum. Here, it is expressed for a Cartesian grid in Equation A.47, but for large scale

applications, a spherical grid is preferred (Tolman, 2014). It is noteworthy that ocean

models evaluate the spectrum up to a cut-off frequency and above that a parametric

tail is imposed.

∂N
∂ t

+∇x · ẋN +
∂

∂k
k̇N +

∂

∂θ
θ̇N =

Stot

σ
(A.47)

ẋ = cg +U (A.48)

k̇ =−∂σ

∂d
∂d
∂ s
−k · ∂U

∂ s
(A.49)

θ̇ =−1
k

[
∂σ

∂d
∂d
∂m

+k · ∂U
∂m

]
(A.50)
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where cg is given by cg and θ , s is a coordinate in the direction θ and m is a coordinate

perpendicular to s.

As discussed, the known linear dispersion is considered for the propagation of N and

thus, what is left to determine the spectral evolution is the action of the source terms.

The source terms in WW3 include a wide range of processes, as shown in Equation

A.51 and user defined sources (Sxx) can be added. In brief, wave generation by the

wind is induced by Sin, deep water wave breaking (whitecapping) causes dissipation

through Sds, Snl refers to nonlinear four-wave interactions, Sice to wave-ice interactions

and Sln is used for linear initialization of the model. When water depth becomes small

compared to the wavelength, the processes of wave-bottom interactions (Sbot), depth-

induced breaking (Sdb), triad wave-wave interactions (Str), wave scattering by the bot-

tom (Ssc) and wave reflection by shorelines (or floating objects, e.g., icebergs) (Sre f )

become important.

S≡ Stot

σ
= Sln +Sin +Snl +Sds +Sbot +Sdb +Str +Ssc +Sice +Sre f +Sxx (A.51)

At present, significant efforts in ocean modelling focus on improving the source terms.

Ideally, these terms would have a solid mathematical description, however this is not

the case for most of them, because the corresponding physics are not sufficiently un-

derstood, for example whitecapping. The source term with the most robust mathemat-

ical description is Snl, but it is very computationally expensive for operational purposes

(van Vledder, 2006; Gagnaire-Renou et al., 2010).

As the present work is interested only in the nonlinear four-wave interactions, further

simplifications on the equations presented so far can be made. At first, in order to

examine only the impact of Snl on the spectrum, a rather unconventional set-up of the

model is considered. This refers to a single-point computation without allowing the

spectrum to propagate on the grid. In this way, the spectrum evolves only in time

as a result of the action of the source term. The definition of the grid used for the
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Figure A.3: Single-point grid definition in WW3.

present tests is shown in Figure A.3. In physical terms, the single-point definition of

the spectrum corresponds to a spatially homogeneous infinite sea. This approach was

employed by other researchers for the evaluation of Snl (Benoit, 2006; Gagnaire-Renou

et al., 2010; Gramstad and Babanin, 2016). Additionally, there is no action of current

and all the other source terms are equal to zero.

Taking into account the aforementioned considerations, the balance equation used in

the present study reduces to Equation A.52. As becomes apparent, integration of the

spectrum is still performed over the wavenumbers and directions. The latter practically

implies that 1D (unidirectional) propagation cannot be restricted in WW3. To circumvent

this, it was found after trials that a spectrum can behave as one-dimensional if a very

narrow directional distribution is considered and a high resolution for the directions. In

this manner, the spectral energy is constrained in a single directional bin and if there

is no other source terms to alter this, it stays in this bin even after long evolution of

> 100Tp, behaving like a quasi-1D simulation.

∂N
∂ t

+
∂

∂k
k̇N +

∂

∂θ
θ̇N = Snl (A.52)

In the next paragraphs, the most commonly used models for the Snl are discussed.
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A.4.4 Wave-wave interactions source terms

The only mechanism known to alter the spectral shape in deep water, when input and

dissipation terms are zero, is the nonlinear four-wave interactions (Holthuijsen, 2007),

expressed by the Snl source terms in spectral models. As discussed in (Babanin et al.,

2012) and (Gramstad and Babanin, 2016), the existing expressions of Snl are based

on the Hasselmann’s Kinetic Equation (KE) (Hasselmann, 1962)8, which accounts only

for resonant interactions in long time scales (> 100Tp) and thus, cannot describe fast

evolution, nor spectral change in 1D. As a result, the existing source terms are not ap-

plicable for the unidirectional waves examined in the present work, which was proven

by the single-point computations in WW3. Nevertheless, the present study would be

incomplete if it did not include any description of the existing Snl in ocean models, be-

cause more complete expressions of Snl are expected to be added in the future (Gram-

stad and Babanin, 2016). Also, if one aims at examining short-crested (2D) extreme

waves, which is a likely extension of this work, the existing expressions become rele-

vant, since the resonant interactions are stronger than the non-resonant interactions

for 2D broadbadned spectra in deep water (Janssen, 2003).

In brief, the scope of Snl is to evaluate the KE, expressed by the Boltzmann integral

(Equation A.53), for every wavenumber as a combination of the other three interacting

wave numbers that make a resonant quadruplet (Hasselmann, 1962). The computa-

tion of the Boltzmann integral is not a simple task, because it includes a six-fold integral

(three-fold integral over three wavenumbers). This is a very computationally expensive

task, prohibitive for operational purposes (Monbaliu and Lefèvre, 2005; van Vledder,

2006). For this reason, the efforts in the last three decades are in finding approximate

solutions that retain to an acceptable extent the basic characteristics of Snl for prac-

tical applications (Holthuijsen, 2007). The inclusion of Snl is important, because it is

assumed that the four-wave interactions are vital for the spectral evolution of surface

gravity waves generated by the wind in ocean and coastal areas (Benoit, 2006), as

8 NB: all the expressions for the KE have the underlying assumption of weak nonlinearity and homo-
geneous conditions.
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demonstrated by the JONSWAP experiment (Hasselmann, 1962), where a downshift

of the spectral peak and a growth of the energy in high frequencies was observed (van

Vledder, 2012). Nevertheless, a balance should be found between the accuracy of

evaluating the Boltzmann integral and the computational efficiency depending on the

applications (van Vledder, 2012).

Snl(k1) =
∫ ∫ ∫

G(k1,k2,k3,k4) δ (k1 +k2−k3−k4) δ (σ1 +σ2−σ3−σ4)

× [N1N2(N3−N4)+N2N4(N3−N1)] dk2 dk3 dk4

(A.53)

where ki is the wavenumber vector, Ni the wave action density per wavenumber, G is a

coupling coefficient (see Section 4.3.1) and δ a Dirac function to ensure conservation of

wave energy, action and momentum by defining the resonant quadruplets (van Vledder,

2012). Thus, interactions are permitted only among the wave components that fulfil the

resonant conditions (Benoit, 2006). As a result, the δ functions reduce Equation A.53

to a three-fold integral (Cavaleri et al., 2007).

In the next paragraphs, a description of the most widely used Snl will be discussed, as

formulated in WW3 (Tolman, 2014).

Discrete Interaction Approximation (DIA)

DIA (Hasselmann and Hasselmann, 1985) was developed to tackle the issue of the

high computational load of the exact solution of the Bolzmann integral (Equation A.53)

and to preserve the dominant characteristics of the spectral evolution. The compu-

tational efficiency of DIA practically triggered the development of 3G spectral models

(van Vledder, 2006) and it is still the most popular implementation of Snl in operational

models, despite its crude approximation (Benoit et al., 2015).

The formulation of the DIA was suggested by Hasselmann and Hasselmann (1985)

for the F( fr,θ) spectrum (see Equation A.44). DIA lies on the selection of a particular
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interacting quadruplet and its symmetric set in the wavenumber vector space (Benoit,

2006; Holthuijsen, 2007). To select the resonant interactions, DIA considers that two

out of the four examined components have the same wavenumber vectors (k1 = k2,

corresponding to the self-interaction (Holthuijsen, 2007)) and the other two wave com-

ponents have intrinsic frequencies dependent on the first wavenumber. This selection

of wave components is shown in Equation A.54.

k1 +k2 = k3 +k4 (A.54a)

σ2 = σ1 (A.54b)

σ3 = (1+λnl)σ1 (A.54c)

σ4 = (1−λnl)σ1 (A.54d)

where λnl is a constant shape parameter, commonly taken as λnl = 0.25.

Under this considerations, the evolution of the Bolzmann integral (Equation A.53) re-

duces to Equation A.55 for the contribution of Snl for each discrete wave component k1

of the spectrum.


δSnl,1

δSnl,3

δSnl,4

= D


−2

1

1

C−4
g f 11

r,1 ×
[

F2
1

(
F3

(1+λnl)4 +
F4

(1−λnl)4

)
− 2F1F3F4

(1−λ 2
nl)

4

]
(A.55)

where the variables i refer to a discrete wave component with ( fr,i,θi) and C is a

proportionality constant given by tuning of the source term, e.g., for WAM-3 cycle

C = 2.78×107 (Tolman, 2014), in order to obtain similar spectral changes to the empir-

ical curves (van Vledder, 2012). D is a factor to account for the effect of water depth,

since DIA was developed for deep water. The expression of D is takes into account the
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mean water depth and the corresponding mean wavenumber (Hasselmann and Has-

selmann, 1985). The latter approach for DIA is very economical, because the interac-

tion coefficients do not need to be recalculated for shallower water, but instead, they

are simply scaled (van Vledder, 2012). It should be mentioned however, that in reality

the sets of resonance quadruplets change in shallower water, since the wavenumbers

are depth dependent, and stronger interactions take place (Holthuijsen, 2007). The

expression of D attempts to replicate only the latter effect.

Since DIA was tuned for specific set of spectra, it is able to estimate the "typical signa-

ture" of the four-wave energy transfer with Snl having a three-lobe shape of (+ - +). The

first positive lobe results in transfer of energy to frequencies lower than fp, the second

negative lobe pumps energy from the region around fp and gives it to lower and higher

frequencies (third lobe). These changes result in stabilization of the spectrum (Cavaleri

et al., 2007). However, if the conditions differ significantly from the tuned parameters or

unsteady situations occur, for example non-JONSWAP-like spectra (Gagnaire-Renou

et al., 2010) and turning winds (Benoit, 2006) respectively, DIA may fail to reproduce

the spectral evolution.

To give a perspective of the cost of the calculation of Snl, even the very crude approach

of DIA takes approximately 40% of the total computational cost of the spectral model,

including the propagation and all the other source terms (van Vledder, 2012).

Full Boltzmann Integral (WRT)

DIA constitutes the crudest approximation of Snl, which requires tuning of many other

source terms in order to yield overall realistic results. The latter is certainly a defi-

ciency of DIA, since it induces extended parameterizations (Cavaleri et al., 2007). On

the other hand, higher level of accuracy can be achieved by considering a greater

set of interacting quadruplets, of course at the price of high computational effort. In
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WW3 there is the possibility to evaluate the exact9 Boltzmann integral using the WRT

method, which is named after its developers (Webb, 1978) (Tracy and Resio, 1982).

WRT is based on the "EXACT-NL" source term derived by Hasselmann and Hassel-

mann (1985) assuming specific reference spectra (van Vledder, 2006).

According to WRT, the resonant quadruplets are defined by the more general -compared

to DIA, Equation A.54- expression of Equation A.56.

k1 +k2 = k3 +k4

σ1 +σ2 = σ3 +σ4

 (A.56)

The core of WRT is the selection of the integration space for each combination of

wavenumbers (k1,k3) and a number of transformations to treat the δ functions of Equa-

tion A.53. As such the Boltzmann integral can be expressed by Equation A.57 with the

function T (k1,k3) given by Equation A.58.

∂N1

∂ t
= 2

∫
T (k1,k3) dk3 (A.57)

T (k1,k3) =
∫ ∫

G(k1,k2,k3,k4) δ (k1 +k2−k3−k4)

× δ (σ1 +σ2−σ3−σ4) θ(k1,k3,k4)

× [N1N2(N4−N2)+N2N4(N3−N1)] dk2 dk4

(A.58)

The function T (k1,k3) includes an additional θ function, which is given by Equation

A.59 and it determines the evaluated section of the integral by assuming that k1 is

closer to k3 than to k4
10 and exploiting the symmetry properties.

9There are several approaches to solve the exact Boltzmann integral that have different internal as-
sumptions for the elimination of the δ functions and the treatment of singularities, for example when
k1 = k2 = k3 = k4 (van Vledder, 2006). These may affect the final "exact" solution (van Vledder, 2012).

10There is a misprint in Tolman (2014) mentioning k2 instead of k4, see (van Vledder, 2006).
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θ(k1,k3,k4) =


1 when |k1−k3|6 |k1−k4|

0 when |k1−k3|> k1−k4|
(A.59)

The solution of WRT is then built by defining a new coordinate system in κ−space,

where the resonance conditions are realised along a "locus". Since the resonant

wavenumbers form circles with crossing points in κ−space, it is convenient to replace

the (x,y) coordinate system with a new tangential and normal coordinate system (s,n)

at the locus. The expression of T (k1,k3) can then be written as a closed line integral

along the closed locus, which can be solved in a discrete way be dividing the locus to

a finite number of segments ns, each having a coordinate si. As such, Equation A.58

becomes:

T (k1,k3)'
ns

∑
i=1

G(si)W (si)P(si)∆si (A.60)

where P(si) is the product term at a point on the locus.

After the above considerations, the Boltzmann integral can be written in the form of

Equation A.61, which is convenient because it evaluates the source term in absolute

wavenumbers and directions, instead of wavenumber vectors.

∂N1

∂ t
'

nk

∑
ik3=1

nθ

∑
iθ3=1

k3 T (k1,k3) ∆kik3
∆θiθ3

(A.61)

The accuracy of WRT is of course superior to that of DIA, however, to give an indication

of the computational cost, WRT is three to four orders of magnitude more expensive

than DIA, which restricts its use to academic applications or to very limited spatial grids.

In addition, it is recommended to include wavenumbers at frequencies at least between

[0.5 fp,5 fp] in order to include a sufficient number of interacting quadruplets and retrieve

the three-lobe shape of the Snl. A useful feature of the computational strategy for WRT

in WW3 is to pre-compute the coefficients of WRT for each local water depth, only
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once at the beginning of the simulation and save it to a file that is accessible during the

simulation. Further savings in the computational cost can be achieved by finding the

coefficients of WRT for only rounded values of the water depth (van Vledder, 2006).

Other wave-wave interaction source terms Snl

Aiming at finding a balance between computational efficiency and accuracy, or a half-

way between DIA and WRT, various algorithms have been suggested to evaluate Snl.

There are two11 main strategies to achieve that: extending DIA by including additional

sets of quadruplets or find a way to reduce the computational cost of exact Snl (van

Vledder, 2012). Such methods have been developed and are available in operational

models with a manageable computational cost of up to 200 times compared to DIA

(Benoit, 2006).

The extension of DIA is not a simple task and requires a selection method to find the

interacting configurations. On top of that, the inherent limitations of DIA remain, which

refer to the validity only for particular spectra and the requirement for tuning (van Vled-

der, 2006). On the other hand, the computational cost of the exact methods can be

reduced by efficient algorithms for the definition of locus and additional approximations,

such as exclusion of quadruplets with small contributions. Exact methods do not re-

quire tuning, which seems to be a advantage (van Vledder, 2006), but it is not clear if

their overall performance is better that that of extended DIAs (Cavaleri et al., 2007).

Examples of such methods for the evaluation of Snl are, among others, the General-

ized Multiple DIA (GMD), the Two-Scale Approximation (TSA) and the Full Boltzmann

Integral (FBI) and the Gaussian quadrature method (GQM) (Gagnaire-Renou et al.,

2010). GMD (Tolman, 2013) considers more interacting quadruplets than DIA, handles

arbitrary spectra and interactions in very shallow water, but it has a much more compli-

cated formulation. Its cost increases linearly with the number of quadruplets being two

11A third one refers to artificial neural networks, but it is not available in operational models yet (Sánchez
et al., 2017).
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times more expensive than DIA for one quadruplet configuration. TSA and FBI were

implemented in the latest version of WW3 v5.16 (The WAVEWATCH III Development

Group (WW3DG), 2016). FBI is equivalent to WRT, while TSA divides the spectrum

into a broad-scale and residual spectrum, with the former being evaluated with exact

methods (WRT) and the latter being approximated (van Vledder, 2012).

New expressions of Snl were recently developed focusing on the physics of the four-

wave interactions by including also non-resonant quadruplets in the form of the GKE

(Gramstad and Babanin, 2016), as discussed in detail in Section 4.3.

Lumped Triad Approximation (LTA)

Another type of nonlinear wave-wave interactions is the triad wave interactions, which

are relevant for very shallow water. Here, triads are briefly discussed because they

are associated with bound wave nonlinearities. In phase-resolving models, as waves

approach the shore, their profile becomes steeper and asymmetric. Phase-averaged

approximations can be derived to replicate this effect from a phase-resolving model by

applying a suitable close hypothesis (Cavaleri et al., 2007).

The effect of triad interactions on the spectral shape is the generation of sub- and

super-harmonics at half and double frequencies of the original spectrum, resulting in a

spectral shape with additional peaks at 1
2 fp and 2 fp,3 fp... (Ris, 1997). In practical ap-

plications, sub-harmonics correspond to infra-gravity waves and the super-harmonics

create a steeper wave profile. This behaviour was observed for waves passing over a

submerged bar (Beji and Battjes, 1993).

In WW3, triads are included through a source term modelled by the LTA method, which,

similar to its predecessor the Discrete Triad Approximation (Eldeberky and Battjes,

1995), considers only the self interactions that are dominant. According to LTA, energy

is transferred from a component with frequency fi to a component with frequency 2 fi

only. Therefore, the sub-harmonics are not reproduced12 and gradually multiple peaks
12WW3 has another source term for adding infra-gravity waves on top of a known linear spectrum in a
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appear at the spectrum at high frequencies. LTA is conservative by definition, since the

energy is pumped from one component to another with double frequency. This crude

approximation can still describe the essential features of the spectral transformation in

shallow water (Holthuijsen, 2007).

A.4.5 Applications

Spectral models are mainly used for ocean and coastal modelling at large spatial and

temporal scales, but they can be also applied at laboratory scale to represent a wave

transformation in a stochastic sense (Ris, 1997).

For wave forecasting, ocean models are coupled with atmospheric models. Such an

example is the use of WW3 at global scale with nested regional domains (NOAA, 2017)

and the PREVIMER operational forecast model, maintained at Ifremer in the framework

of IOWAGA (Integrated Ocean Waves for Geophysical and other Applications) (Lecornu

et al., 2008).

For hindcasting, spectral models are used to reproduce past events and long-term

statistics. This is in particularly useful for complementing field observations, espe-

cially in places where the in-situ measurements are not available or continuous (Yang

et al., 2017). For example, WW3 with multiple nested grids was used for the gener-

ation of a 30-year long global hindcast database (Chawla et al., 2013), as well as for

HOMERE databased of Ifremer for the French coasts. Recently, the global wave hind-

cast database GOW2 was created with WW3 covering the world’s coastline with over

40,000 locations from 1979 onwards (Perez et al., 2017).

Hindcast and forecasting are commonly used to study extreme weather events. The

GOW2 database is used to identify extreme wave heights and tropical cyclones as well

as to estimate the 50-year return period wave at every location of the globe for engi-

neering applications (Perez et al., 2017). WW3 was also used, coupled with SWAN,

to simulate severe storms at the Brazilian coast and to identify hazards for nearshore

non-energy conservative fashion (Tolman, 2014)
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urban areas and extreme waves (Guimarães et al., 2014). The probability of extreme

waves generation was examined via spectral kurtosis and skewness in SWAN under

typhoon conditions (Mori, 2012). Similarly, (Cavaleri et al., 2012) employed WAM to

examine if a ship accident was associated with rogue waves. The modelling of mov-

ing hurricanes can become efficient by employing nested grids, such as for the case

of Lili hurricane (Tolman and Alves, 2005), or by using adaptive grids with automatic

refinement (Popinet et al., 2010).

Regarding MRE studies, WW3 is mainly used for resource assessment, commonly for

producing the far ocean boundary conditions for more detailed local models that are

applied at the area of deployment of the device (Cornett et al., 2014; METOCEAN-

SOLUTIONS-Ltd, 2008). For MRE resource characterization (IEC, 2015), at least 10

years of data is recommended, which highlights the importance of modelling in creating

reliable long-terms statistics. Specifically, WW3 was used for wave energy resource

assessment at the west coast of Vancouver Island, British Columbia, Canada (Kim

et al., 2012), Uruguay (Alonso et al., 2015), Canary islands (Gonçalves et al., 2014)

as well as for wind and wave resource characterization at East and South China sea

(Zheng et al., 2011) and at the Red Sea (Langodan et al., 2016). In a recent study, the

geometry of a wave point absorber was optimized in a potential flow model for the wave

conditions estimated by WW3 for the coast of Brazil (Shadman et al., 2018). A hindcast

database for MRE applications was created by Ifremer, covering the region from the

North Sea to the Bay of Biscay and including relevant information to wave energy,

currents, sediment dynamics etc for resource characterization as well as for examining

engineering parameters, such as device optimization and survivability (Boudière et al.,

2013).

A.4.6 Conclusions

Ocean modelling is an "art" of compromising among the existing human knowledge of

very complicated global and local physical phenomena, computational resources and
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the necessity to finally obtain an estimation of the atmospheric and wave climate. At

a larger perspective, ocean modelling helps us understand better our natural world.

Overall, great accomplishments have been achieved in the last decades thank to 3G

models, allowing for very accurate description of the average behaviour of the ocean,

yielding a bias of lower than 4% in predictions (Cavaleri et al., 2007). Taking into ac-

count climate change, trends show that wave height grows, as well as extreme events

(Young et al., 2011). For such situations especially, present ocean models face cer-

tain shortcomings, as discussed in the complete review of the challenges in ocean

modelling presented by Cavaleri et al. (2007).

The accuracy of ocean models depends mainly on three aspects: the forcing fields,

namely the wind, currents and tides; the parameterization of the source terms; and the

employed numerical schemes for discretization and integration of the physical param-

eters (Ardhuin and Roland, 2013).

To begin with, in the past, the atmospheric models had poorer representation of the

wind field compared to present, and as a result, the accuracy of the ocean models was

mainly affected by issues related to the wind input. The estimation of the wind fields

has improved over the years and the challenge has moved mostly to how the corre-

sponding source terms feed the waves with energy. The air-sea momentum transfer

is generally well described, but in cases of hurricanes and gusty winds, which can

cause effects like spray production, our understanding of the physical processes is still

limited (Babanin et al., 2012). This is expected to improve by also obtaining better

in-situ measurements of the wind. Probably the least understood physical process is

the wave dissipation in deep water (whitecapping) and it ends up being the tuning knob

for verifying ocean models with measurements. Dissipation in finite water is caused

by bottom friction, which heavily depends on the local bottom topography and material

that are not always known in sufficient detail. The propagation of waves in shallow

water involves a high degree of nonlinearity, which stochastic representation is chal-

lenging. Connected to the shallow water effects is wave reflection by steep shores,
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which has yield discrepancies in models. Also, modern spectral models treat wave-

current interactions linearly, assuming uniform depth-integrated current profile, varying

slowly in the horizontal dimension. This ideal case is far from reality especially in fi-

nite depth, where shear currents are present and highly nonlinear processes may take

place, and it raises the challenge of building new governing equations that account

for non-homogeneous media (Ardhuin and Roland, 2013). Regarding the spatial in-

tegration, the accuracy of the models’ output can be improved by simply increasing

the resolution globally or locally (with nested grids in coastal areas) or using subgrid

approximations to represent small islands. Then the problem becomes an issue of

higher computational cost, but moving grids and unstructured grids methods that have

advanced considerably can mitigate this. Similarly, the representation of the spectrum

can be improved by discretizing it in more frequencies and directions. However, this

does not guarantee convergence, since the integration of the source terms is to an

extent optimised to certain suggested values of frequency and direction increment13.

The latter opens the floor to discuss issues regarding the nonlinear wave-wave inter-

actions source terms. Arguably, four-wave interactions is the best-understood physical

process, having a solid mathematical description, but, as discussed, due to the high

computational cost of exact methods, at present only approximate methods are used

in ocean modelling, mostly the DIA. The expected increase in processing power will be

far from covering this shortcoming. As the description of the other source terms and

efficiency of numerical schemes improve, DIA is expected to hinder the development of

ocean models (Prabhakar and Uma, 2016), despite being the reason that 3G models

were at first created. Therefore, extended DIAs or decreased exact Snls will eventu-

ally prevail. There are however considerable issues in replacing DIA in existing ocean

models, since the other source terms, numerical schemes and discretization methods

have been optimized according to DIA (Benoit, 2006). Thus, the replacement of DIA

13See for example Fig. 2 in (Gramstad and Babanin, 2016) where the solution of Snl does not converge
by increasing the directional discretization. The latter was noticed by simulations in the present work and
it was confirmed in personal communication with O. Gramstad and it is implied in other publications as
well, e.g., (Benoit, 2006), (van Vledder, 2006) and (Chawla et al., 2013). Each Snl has its own optimum
discretization.
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should be performed in a holistic manner. At the same time, new source terms for the

wind input should be tested with different Snl methods, see for example the relevant

comparisons between DIA and WRT (Zieger et al., 2015). This process is expected to

yield better results in spectral evolution in extreme cases, such as hurricanes or turning

winds, and to describe fast evolution time scales by including non-resonant interactions

with the GKE (Gramstad and Babanin, 2016). As a result the comparison with in-situ

measurements is expected to improve. However, it should be noted that wave buoys

may underestimate extreme waves (Chawla et al., 2013), but other advances in field

measurements, e.g., HF radars and SAR, can improve models via assimilation (Mon-

baliu and Lefèvre, 2005). These improvements may open the path for 4G models,

where modelling will be done purely by physical principles (Babanin et al., 2012).

In the present work, WW3 is not examined in an operational setup, but the study is

focused only on Snl attempting to reproduce the observed spectral change during the

focusing of wave groups due to nonlinear wave-wave interaction. By designing a spe-

cial single-point configuration for the laboratory scale, all the available Snls were tested

and it was confirmed that spectral change in 1D cannot be reproduced at present.

However, the development of the GKE (Gramstad and Babanin, 2016) that is expected

to be included in future versions of the software or the study of 2D spectra where the

existing source terms should be sufficient, give value to the present tests.

A.5 Models’ suitability

The various phase-resolving and phase-averaged models described in this chapter are

based on different governing equations, which in practical terms result in differences

in the scale of application, the physical processes involved in wave evolution, the mod-

elling of turbulence and the interaction of waves with structures etc. Attempting to

make a direct comparison of the models discussed in this chapter, their basic charac-

teristics are listed in Table A.1. Their suitability can be readily deducted according to
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Table A.1: Applicability of the numerical tools: simulated physical properties and mod-
els’ characteristics.

OpenFOAM SWASH HOS-NWT HOS-ocean Wavewatch-III
Model’s Category Two-phase CFD NLSWE Spectral PFS Spectral PFS Spectral Energy
Discretization FVM FVM FFT FFT FDM
Hydrodynamics Per cell σ−layer DNO DNO No
Variable depth Yes Yes Noa Noa Yes
Turbulence Yes Approximated No No Dissipation
Wave breaking Yes Approximated No No Dissipation
Wave interactions Implicitb Implicitb Explicitc Explicitc Approximated
Wave-current Fully NL Weakly NL No No Linear
Wave-structure Strong Weak No No No
Wave B.C.d Yes Yes Yes No No
Mesh Hexahedral Grid-Layers Fourier nodes Fourier nodes Un-/structured
Cell size (Lp) 10−3−10−2 10−2−10−1 1 / (64-512) 1 / (64-512) 101−104

Comp. cost Very low Medium High Very high Very high
Simulated scale Device level Coast Flume Ocean Region-Globe
Time scale (Tp) 10−8−10−3 10−4−10−2 10−3-10−2 10−3-10−2 10−1−103

aThe formulation for variable depth was presented by Gouin et al. (2015), but at present it is not
included in the code’s distribution

bCalculated as a result of the hydrodynamic equations.
cExplicit: depending on the order of mHOS. Implicit for mHOS≥ 3.
dSpecific boundary conditions for wave generation and absorption in a NWT.

the involved physics, scale and computational resources. It should be underlined how-

ever, that this is a quite crude categorization and the capabilities of these open-source

models are continuously expanding.

For the present study of non-breaking waves over a flat horizontal bottom, the phase-

resolving models, OpenFOAM, SWASH and HOS-NWT, should produce similar results,

once optimized and converged. On the other hand, for examining the spectral evolution

stochastically, HOS-ocean can reproduce the underlying physics, while WW3 includes

extended parameterizations.
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Appendix B

Coupling coefficients for the GKE

The formulation of the GKE presented in chapter 4 is derived for finite water depth.

To achieve this, the calculation of the angular frequency of a the wave component i is

based on the linear dispersion relation: ωi =
√

gki tanh(kid), where d is the depth. The

same also applies for the variables qi that are used for the canonical transformation, as

seen in Equation 2.9 of Krasitskii (1994). In fact, qi are auxiliary variables used for the

calculation of ωi, as seen in Equation B.1, under the assumption that surface tension

is zero. For deep water, as used in Janssen and Onorato (2007), qi = ω2
i /g.

qi = |ki| tanh(|ki|d) (B.1)

where ki is the wavenumber vector, which is calculated iteratively for the wavelength Li

of a wave component with angular frequency ωi, as seen from Equation B.2, which is

based on the linear dispersion relation.

ki =
2π

Li
=

2πω2
i

g2π tanh(2πd/Li)
(B.2)

Similarly, the auxiliary variables qi± j for the combination of two wavenumbers ki and k j

can be defined from Equation B.3.
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qi± j = |ki±k j| tanh(|ki±k j|d) (B.3)

The coupling coefficient T1234 for the GKE is found from Janssen and Onorato (2007),

because it has a more compact form compared to that of the corresponding coefficient

Ṽ (2)
0,1,2,3 in (Krasitskii, 1994), which facilitates its programming. It can be easily proven

that the two expressions are equivalent. T1234 is given from Equation B.4 as a combi-

nation of ωi and the coefficients W , V+ and V− for the different combinations of the four

wavenumbers i = 1,2,3,4.

T1234 =W1,2,3,4−V−1,3,1V−4,2,4−2

(
1

ω3 +ω1−3−ω1
+

1
ω2 +ω4−2−ω4

)
−V−2,3,2−3V−4,1,4−1

(
1

ω3 +ω2−3−ω2
+

1
ω1 +ω4−1−ω4

)
−V−1,4,1−4V−3,2,3−2

(
1

ω4 +ω1−4−ω1
+

1
ω2 +ω3−2−ω3

)
−V−2,4,2−4V−3,1,3−1

(
1

ω4 +ω2−4−ω2
+

1
ω1 +ω3−1−ω3

)
−V−1+2,1,2V−3+4,3,4

(
1

ω1+2−ω1−ω2
+

1
ω3+4−ω3−ω4

)
−V+
−1−2,1,2V+

−3−4,3,4

(
1

ω1+2 +ω1 +ω2
+

1
ω3+4 +ω3 +ω4

)

(B.4)

The notations with two wavenumbers are calculated as follows:

ωi± j =
√gqi± j =

√
g|ki±k j|.

The calculation of V+ and V− follows a similar fashion, for example:

V−3,2,3−2 =V−(k3,k2,k3−k2).

The calculation of the coefficients V± is given from Equation B.5.

418



V±1,2,3 =
1

4
√

2

[
(k1 ·k2±q1q2)

√
gω3

ω1ω2
+

(k1 ·k3±q1q3)

√
gω2

ω1ω3
+(k2 ·k3 +q2q3)

√
gω1

ω2ω3

] (B.5)

The calculation of the coefficients W1,2,3,4 is given from Equation B.6.

W1,2,3,4 =U−1,−2,3,4 +U3,4,−1,−2−U3,−2,−1,4−U−1,3,−2,4−U−1,4,3,−2−U4,−2,3,−1 (B.6)

where U1,2,3,4 can be found from Equation B.7, using the appropriate signs.

U1,2,3,4 =
1
16

√
ω3ω4

ω1ω2

[
2
(
k2

1q2 + k2
2q1
)
−q1q2

(
q1+3 +q2+3 +q1+4 +q2+4

)]
(B.7)

Special care should be taken for the treatment of the obvious singularities. For these

cases, T1234 = 0, and the calculation moves to the next combination of wavenumbers.

Singularities arise in the cases that:

• k1 = k2 = k3 = k4

• k1 = k3 and k2 = k4

• k1 = k4 and k2 = k3

Another aspect that should be treated with care is the symmetry of T1234. The cou-

pling coefficient should to be "exactly" symmetric. This should arise as a result of the

implicit computation for all the wavenumbers, however, issues may appear due to the

truncation error of the machine, because the calculations include the π. For this rea-

son, as well as to save computational resources, the symmetry condition can be taken

explicitly, avoiding any potential rounding errors, with the use of Equation B.8.
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T2134 = T1234 (B.8)

A similar issue arises for the calculation of the Dirac δ functions, which allow interac-

tions only when k1 +k2−k3−k4 = 0. However, since π is involved in the computation,

the previous summation may be not be exactly zero. For this reason, instead of zero it

is equalled to the precision of the machine, here 10−15.

The programming of T1234 can be done in a relatively straight-forward way with four

loops including all the possible combinations of four wavenumbers. The result is a 4-

dimensional matrix consisting of four 2-dimensional layers of interacting wavenumbers

vectors. For the simple case of 1D propagation, the layers collapse to arrays.

The computational effort for solving the GKE is consumed mainly on the calculation of

the coefficients, at least for short spectral evolution time. For this reason, the calcula-

tion of T1234 can be performed before the time stepping and saved to a matrix. During

the time marching of the GKE, the values of the required coefficients can be called

from the 4-dimensional matrix. To further decrease the computational time, apart from

taking into account the symmetry condition, T1234 should be calculated only for δ 34
13 6= 0,

since, as seen in the time marching equation (Equation 4.4), T1234 is multiplied by δ 34
13 .

In the present work, the GKE is programmed in MATLAB. The required coefficients are

programmed as functions that are called during the calculation of T1234. The argument

of these functions are the wavenumbers and the water depth.
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