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Abstract

Agents make predictions based on similar past cases, while also learn-
ing the relative importance of various attributes in judging similarity. We
ask whether the resulting "empirically optimal similarity function (EOSF)
is unique, and how easy it is to find it. We show that with many obser-
vations and few relevant variables, uniqueness holds. By contrast, when
there are many variables relative to observations, non-uniqueness is the
rule, and finding the EOSF is computationally hard. The results are in-
terpreted as providing conditions under which rational agents who have
access to the same observations are likely to converge on the same pre-
dictions, and conditions under which they may entertain different proba-
bilistic beliefs.

Where do beliefs come from? How do economic agents predict future realizations
of relevant variables? We consider an agent who, in each period, predicts the
realization of a variable of interest, after observing the realization of presumably-
related other variables. Agents predict that the variable of interest will be a
weighted average of its past values, and they assign a higher weight to values
that were observed under more similar circumstances. This method is known
in statistics and machine learning as “kernel estimation” (see [1] and [2] as well
as support vector machines in [3] and [4]). Surprisingly, a very similar formula
appeared in the psychological literature in the context of the Generalized Con-
text Model (GCM) (see [5] and [6]). The latter deals with a classification task,
where participants are asked to decide to which category an object belongs. The
GCM suggests that the category chosen is the “most frequent” one encountered,
where frequency is weighted by similarity.

While psychology aims at modeling human reasoning, whether optimal or
not, statistics and machine learning attempt to develop effective ways of pre-
diction based on past data, with no claim to describe the way people think.
A priori, there is no reason to believe that these disciplines would converge to

∗We thank Yotam Alexander, Thibault Gajdos, Ed Green, Offer Lieberman, Yishay Man-
sour, and David Schmeidler for comments and references. Gilboa gratefully acknowledges ISF
Grant 704/15.

†Department of Economics, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester,
U.K.

‡Economics and Decision Sciences Department, HEC Paris, 1 rue de la Liberation, 78351
Jouy-en-Josas cedex FRANCE; Berglas School of Economics, Tel-Aviv University, Tel Aviv
6997801, ISRAEL.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/199235826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the same class of models. The fact that they did independently derive similar
techniques makes these techniques very promising for modeling beliefs of eco-
nomic agents. As noted by [7], (p.831). “...kernel methods have neural and
psychological plausibility, and theoretical results concerning their behavior are
therefore potentially relevant for human category learning.” This paper presents
a model of belief formation based both on insights from the GCM and on kernel
techniques.

The GCM assumes that individuals store “exemplars” (objects) in their mem-
ory as points in a multidimensional psychological space, in which each dimension
is a feature of the objects. They then classify new objects based on their sim-
ilarity to the stored exemplars (see [8] for a survey). Individuals use selective-
attention weights to measure the importance of each feature in their similarity
assessments. The empirical evidence reviewed by [9] strongly suggests that the
similarity between two objects is measured as a negative exponential function
of their distance in this psychological space. Crucially for our model, experi-
mental evidence shows that individuals use different selective-attention weights
for different tasks, and, moreover, that for any given task they learn the weights
that optimize their classification performance in that context (see [6], [10], and
[11]).

Inspired by these results on classification tasks, we present a model of pre-
diction based on two levels of learning.1 First, we assume that the value of a
variable y is estimated by the similarity-weighted average of its past realizations.
Specifically, observation i consists of a realization of a vector of predictors xi

and a value of the predicted variable yi; a new datapoint xp is presented, and
the task is to estimate the value of the corresponding yp. First-order induction
assumes a similarity function s (xi, xp) ≥ 0 such that yp is estimated by the
s (xi, xp)-weighted average of past yi’s. Past occurrences are weighted by their
similarity: values yi observed under circumstances xi more similar to the current
xp gain higher weight. In statistical terms, ysp is the kernel-based estimate of yp
with kernel s. Following the empirical regularity observed by [9], we use a sim-
ilarity function that is a negative exponential of the weighted distance between
pairs of vectors of predictors. The weights given to the different predictors are
analogous to the selective-attention weights of the GCM in that they identify
the relative importance of each component in the similarity assessment.

The second level of learning involves finding the optimal weights. We model
this problem by a Leave-One-Out cross-validation technique and refer to a sim-
ilarity function that uses optimal weights as an empirically optimal similarity
function (EOSF).2 Because this process deals with learning how first-order in-
duction should be performed, it will be dubbed second-order induction. In

1We refer here to the learning needed in order to form prior beliefs, and not to Bayesian
learning that such beliefs may later be used for.

2[12] also suggested the notion of “empirical similarity”, based on the notion of a maxi-
mum likelihood estimator of the similarity, assuming that the actual Data Generating Process
(DGP) is similarity-based. [13], [14], [15] and [16] analyzed the asymptotic properties of such
estimators. The asymptotic results in this literature assume a given DGP (typically, using
a formula such as (1.1), with a noise variable, as the “true” statistical model), whereas our
results are more agnostic about the underlying DGP.
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statistical terms, this is akin to finding the optimal kernel to estimate yp. (See
[17]).

We conceive of this two-stage learning process as an idealized model of the
way economic agents form beliefs and we ask whether rational individuals with
access to the same information will agree on their predictions. We investigate
whether the EOSF is unique and easily computable. If that is the case, we can
expect agents to agree on the similarity function to be used, and consequently
to share the same predictions. We find that, if the number of predictors is fixed,
and the predicted variable is a function of the predictors, then, as the num-
ber of observations grows following an i.i.d. process, the EOSF will learn the
functional relationship. The EOSF will be almost unique with high probability,
with different such functions providing similar predictions (Proposition 1). By
contrast, if the number of predictors is large relative to the number of observa-
tions, it is highly probable that the EOSF will not be unique (Proposition 2).
Further, if the number of predictors is not bounded, the problem of finding the
EOSF is NPC (Theorem 3).

Our results suggest that whether rational agents who have access to the
same information will agree on their predictions depends, to a large extent, on
the comparison of the number of potentially-relevant variables and the number
of observations. Consider two prediction problems: in the first, an agent tries
to estimate the probability of water boiling. In the second, the probability of
success of a revolution attempt. In the first problem, the number of observations
can be increased at will, through experimenting, and there is a relatively limited
number of variables to take into account, such as temperature, pressure, and
a few other experimental conditions. In this type of problems it stands to
reason that the EOSF be unique. Further, as the number of variables is not
large, the computational complexity result has little bite. Thus, different people
are likely to come up with the same similarity function, and therefore with
the same probabilistic predictions. By contrast, in the revolution example the
number of observations is very limited. One cannot gather more data at will,
neither by experimentation nor by empirical research. To complicate things
further, the number of variables that might be relevant predictors is very large:
researchers may come up with novel perspectives on a given history, and suggest
new potentially relevant military, economic, and sociological variables. In this
type of examples our results suggest that the EOSF may not be unique, and
that, even if it is unique, people may fail to find it. As a result, it may not be
too surprising that experts may disagree on the best explanation of historical
events, and, consequently, on predictions for the future.

1 Model

1.1 Case-Based Beliefs

The basic problem we deal with is predicting a value of a variable y ∈ R based
on other variables x1, ..., xm ∈ R. We assume that there are n observations of
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the values of the x variables and the corresponding y values, and, given a new
value for the x’s, attempt to predict the value of y. We use the terms “cases”
and “similarity”, as equivalent to “observations” and “kernel”.

We assume that prediction is made based on a similarity function s : Rm ×
Rm → R+. Such a function is applied to the observable characteristics of
the problem at hand, xp =

(

x1
p, ..., x

m
p

)

, and the corresponding ones for each

past observation, xi =
(

x1
i , ..., x

m
i

)

, so that s(xi, xp) would measure the degree
to which the past case is similar to the present one. The similarity function
should incorporate not only intrinsic similarity judgments, but also judgments
of relevance, recency, and so forth.

More formally, let the set of predictors be indexed by j ∈ M ≡ {1, ...,m}
for m ≥ 0. When no confusion is likely to arise, we will refer to the predictor
as a “variable” and also refer to the index as designating the variable. The
predictors x ≡

(

x1, ..., xm
)

assume values (jointly) in Rm and the predicted
variable, y, – in R. The prediction problem is defined by a pair (B, xp) where
B = ((xi, yi))i≤n (with n ≥ 0) is a database of past observations (or “cases”),
xi =

(

x1
i , ..., x

m
i

)

∈ Rm, and yi ∈ R, while xp ∈ Rm is a new data point. The
goal is to predict the value of yp ∈ R corresponding to xp.

Given a function s : Rm × Rm → R+, the value of yp is estimated by the
similarity weighted average formula

ysp =

∑

i≤n s(xi, xp)yi
∑

i≤n s(xi, xp)
. (1.1)

In case s(xi, xp) = 0 for all i ≤ n, we set ysp = y0 for an arbitrary value
y0 ∈ R.3 This formula is identical to the kernel-averaging method (where the
similarity s plays the role of the kernel function). Similarity-weighted estimation
as in (1.1) was axiomatized in [18] and in [19].

We use the similarity function 4

sw (x, x′) = exp

⎛

⎝−
m
∑

j=1

wj
(

xj − x′j)2

⎞

⎠ (1.2)

with wj ≥ 0.
Similarity functions that are negative exponentials of norms on the Euclidean

space were axiomatized by [20]. [19] and [12] specified the norm to be a weighted
Euclidean distance. We will use the extended non-negative reals, R+ ∪ {∞} =
[0,∞], allowing for the value wj = ∞. Setting wj to ∞ would be understood
to imply sw (x, x′) = 0 whenever xj ≠ x′j , but if xj = x′j , the j-th summand

3We choose some value y0 only to make the expression ȳsp well-defined. Its choice will have
no effect on our analysis.

4Our results hold for other similarity functions as well. First, the distance it is based

on may be based on any semi-norm nw, such as nw (x, x′) =
(

∑m
j=1

wj
∣

∣xj − x′j
∣

∣

r
)1/r

for

r ≥ 1. (Note that these are semi-norms because some wj’s may vanish.) The key feature we
need is that nw (x, x′) = 0 iff xj = x′j for all j such that wj > 0. Second, one can select other
decreasing functions (rather than the exponential), as long as they vanish at ∞.
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in (1.2) will be taken to be zero. In other words, we allow for the value wj =
∞ with the convention that ∞ · 0 = 0. For the computational model, the
value ∞ will be considered an extended rational number, denoted by a special
character (say “∞”). The computation of sw (x, x′) first goes through all j ≤ m,
checking if there is one for which xj ≠ x′j and wj = ∞. If this is the case, we
set sw (x, x′) = 0. Otherwise, the computation proceeds with (1.2) where the
summation is taken over all j’s such that wj < ∞.

1.2 Empirically Optimal Similarity Function

How do individuals select a similarity function? Evidence in [6], [10], and [11]
supports the notion that individuals learn the weights that optimize their perfor-
mance in a classification task. The notion of second-order induction is designed
to capture this idea in the context of estimation. It suggests that, within a given
class of possible functions, S, individuals choose one that fits the data best.5

To what extent does a function “fit the data”? One popular technique to
evaluate the degree to which a prediction technique fits the data is the “leave one
out” cross-validation technique: for each observation i, one may ask what would
have been the prediction for that observation, given all the other observations,
and use a loss function to assess the fit. In our case, for a database B =
((xi, yi))i≤n and a similarity function s, we simulate the estimation of yi, if
only the other observations ((xk, yk))k≠i were given, using the function s; the
resulting estimate is compared to the actual value of yi, and the similarity is
evaluated by the mean squared error it would have had.

Explicitly, we consider the set of similarity functions S = { sw |w ∈ [0,∞]m }.
For w ∈ [0,∞]m, let

ysi =

∑

k≠i s
w(xk, xi)yk

∑

k≠i s
w(xk, xi)

if
∑

k≠i s
w(xk, xi) > 0 and ysi = y0 otherwise. Define the mean squared error

to be6

MSE (w) =

∑n
i=1 (y

s
i − yi)

2

n
.

We also assume that there is a preference for using fewer variables rather than
more. A variable with weight wj > 0 incurs some fixed cost associated with
managing it, collecting the data, recalling it etc. Thus, in a way that paral-
lels the “adjusted R2” in regression analysis, we define the adjusted MSE by
AMSE(w, c) ≡ MSE(w) + c|supp (w) |, where supp (w) ≡

{

j ≤ m
∣

∣wj > 0
}

5Notice that the axiomatic derivations mentioned above ([18],[19],[20]) rely on the implicit
assumption that the similarity function does not change from one prediction problem to the
next. It is natural, however, to think of first and second order induction occurring at different
time scales. The assessment of y based on x values occurs continuously, while learning of
the similarity function – relatively infrequently. Thus the axiomatic derivations hold approx-
imately, and the appropriate similarly function is learnt over longer time spans.

6Analogous results hold for other loss functions (such as the average absolute value of the
deviations) and other cross-validation techniques, as long as they yield 0 loss if, and only if,
a perfect fit is obtained in-sample.
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and c > 0. We will also use supp(A) to denote the set of supports of all the
weight vectors in A.

We intuitively think of an EOSF as a function sw that minimizes the AMSE,
but we need to be careful: the argmin of the AMSE may be empty:

Observation 1. There are databases and c0 > 0 such that, for every 0 < c < c0,

arg min
w∈[0,∞]m

AMSE (w, c) = arg min
w∈[0,∞]m

MSE (w) = ∅.

(Observation 1 is proved in the S.I.) The reason that the argmin of the
MSE, and hence of the AMSE, may be empty is that the MSE is well-defined
at wj = ∞ but need not be continuous there. We will therefore be interested
in vectors w that obtain the lowest AMSE approximately. More precisely, we
define ε-empirically optimal similarity function as follows:

Definition. For ε > 0, a function sw is an ε-empirically optimal similarity
function (ε-EOSF) if

w ∈ ε- argminAMSE =
{

w ∈ [0,∞]m
∣

∣

∣
AMSE (w, c) ≤ inf

w′

AMSE (w′, c) + ε
}

.

The ε-argminAMSE is, thus, the set of weight vectors that are ε-optimal.
We are interested in the shape of this set for small ε > 0. We will informally
use the terms “an EOSF” to refer to a 0-EOSF if such exists, and to an ε-EOSF
for a small ε if not, as will be clear from the context.

2 Results

2.1 Almost-Uniqueness

In this section we provide three results. Their proofs are contained in the S.I.
We first consider the case in which there is an underlying functional relationship
between y and x, such that for some function f we have y = f (x). This implies,
in particular, that yi depends only on (xi), and not on past values of x or of y
itself. The agents do not need to know or assume that such a relationship exists,
but we would expect that, with sufficiently many observations that represent
the entire domain, they would figure it out. This is indeed the message of the
following result.

Assume that the observations (xi, yi) are i.i.d. For simplicity, assume also
that each xj

i and each yi is in the bounded interval [−K,K] for K > 0. Let g
be the joint density of x, with g (x) ≥ η > 0 for all x ∈ X ≡ [−K,K]m and
let a continuous f : X → [−K,K] be the underlying functional relationship
between x and y so that yi = f (xi) .7 Refer to this data generating process as

7A similar result would hold if we allow yi to be distributed around f (xi) with an i.i.d.
error term.
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(g, f). Given such a process, we say that a variable xj is informative if f is not
constant with respect to xj and denote by I(f) the set of indices j such that xj

is informative.

Proposition 1. Assume a data generating process (g, f) (where f is continu-
ous). Let there be given ν, ξ > 0. There are an integer N and W ≥ 0 such that
for every n ≥ N , for any vector w such that W ≤ wj < ∞ for all j ≤ m we
have

P (MSE (w) < ν) ≥ 1− ξ.

where the probability P = P (n,m, g, f) is the measure induced by the process
described above.
Conversely, if j ∈ I(f), then for every W ≥ 0 and ξ > 0 there exist ν > 0 and
N such that, if wj ≤ W , then, for every n ≥ N ,

P (MSE (w) > ν) ≥ 1− ξ.

Consequently, for every ξ > 0 there exist N and c0 > 0 such that, for every
n ≥ N , and every c < c0, 0 < ε < c/2,

P (w ∈ ε- argminAMSE =⇒ supp(w) = I(f)) ≥ 1− ξ

The proposition deals with the case that yi is a continuous function of xi,
fixed for all observations. Thus, the question is whether an agent who thinks in
terms of similar cases will be able to predict y given x without knowing or even
conceiving of such a function.

The proposition addresses this question by two statements and a corollary.
On the positive side, it guarantees that if the weights attached to all variables
are high enough (but finite) and there are sufficiently many observations, then,
with very high probability, the MSE will be small. This is consistent with
known results about convergence of kernel estimation techniques (see [1], [2],
and [17]) although we are unaware of a statement of a result that directly implies
this one. On the other hand, the second part of the proposition states that, if
the weight on an informative variable xj is bounded, then the MSE will be
bounded from below. Finally, as a result, with very high probability, all the
weight vectors in ε-argminAMSE share the same support, namely the set of
informative variables.

Denoting a “ball” of ∞ as NW (∞) =
{

w ∈ [0,∞)m
∣

∣wj ≥ W ∀j ≤ m
}

,
the first part of the proposition states that, given (a small) ν > 0, there exists
(a large) W such that any point in NW (∞) is, with high probability, in ν-
argminMSE; the second part states that, given (a large) W , there exists (a
small) ν > 0 such that any point in ν-argminMSE is, with high probability,
in NW (∞).

These first two parts of the proposition jointly establish that the ε-EOSF is
“almost unique”. Clearly, uniqueness in its literal sense cannot be expected,
as we do not consider the argminAMSE (which may be empty) but the
ε-argminAMSE. However, the proposition states that this optimal set is
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closely related to neighborhoods of infinity, NW (∞). In bold strokes, the in-
formative variables would be identified by the ε-EOSF as having a high weight
wj . Hence, under the conditions of Proposition 1 different individuals who use
nearly-optimal similarity functions are likely to converge to similar beliefs. If
y = f (x) and if we assume, for simplicity, that f depends on all variables, then
such individuals may assign different weights to the variables in their similarity
functions, but they should all be rather large weights. As a result, in predicting
any given yp they would use only past observations with xi values that are very
close to xp for making predictions. Given continuity of f (x), their predictions
will not vary significantly.

The paradigmatic example in which Proposition 1 applies is experimenta-
tion. If reality is simple enough to have y = f (x), and one can conduct many
independent experiments for a variety of x values, one would learn the relation-
ship without needing to assume that a functional relationship exists or to state
the findings in the language of such a relationship. Using the ε-EOSF would be
enough to guarantee that the agent makes predictions as if she realized that
the functional relationship existed. Proposition 1 can thus explain how differ-
ent agents converge on the belief that water boils at 100 degrees, with some
corrections for the air pressure, but disregarding other variables such as the
identity of the person who conducts the experiment. Assume instead that the
agents are interested in the possibility of a revolution or a financial crisis. The
number of relevant observations is rather limited. One cannot run experiments
on revolutions. Moreover, the phenomenon of interest is highly complex, and
a large variety of variables might a priori be relevant to its prediction. Thus,
rather than thinking of n as large relative to m, we consider the opposite case,
in which there are many variables relative to observations.

Formally, given n,m, assume that for each i ≤ n, yi is drawn, given (yk)k<i,
from a continuous distribution on [−K,K] with a continuous density function hi

bounded below by η > 0. Let v be a lower bound on the conditional variance of
yi (given its predecessors). Next assume that, for every j ≤ m and i ≤ n, given

(yi)i≤n,
(

xl
i

)

i≤n,l<j
, and

(

xj
k

)

k<i
, xj

i is drawn from a continuous distribution

on [−K,K] with a continuous conditional density function gji bounded below
by η > 0. Thus, we allow for a rather general class of data generating processes,
where, in particular, the x’s are not constrained to be independent.8

The message of the following result is that as the number of observations,
n, grows, if the number of variables, m, grows sufficiently fast, then the ε-
EOSF is non-unique in a fundamental way: there are weight vectors in the
ε-argminAMSE that assign positive weight to distinct sets of variables, but
not to their union. The fact that the ε-argminAMSE is not a singleton is
hardly surprising, as we allow the AMSE to be ε-away from its infimum, and
thus expect the ε-argminAMSE to be a set of weights w with a non-empty
interior. Indeed, this was found to be the case even under the conditions of
Proposition 1, which we interpret as a learning result of an almost-unique simi-

8The assumption of independence of the yi’s is only used to guarantee that each observation
yi has sufficiently close other observations, and it can therefore be significantly relaxed.
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larity function. But the following proposition suggests that, assuming a process
as discussed here, the non-uniqueness of the weights of the ε-EOSF is not a
matter of approximations. More precisely, the set of all supports of the weight
vectors in the ε-argminAMSE will typically not be closed under union. For
example, we might find one ε-EOSF whose weight vector has a support J ⊂ M
and another such function whose corresponding support is a distinct J ′, while
no ε-EOSF assigns positive weights to all the variables in J ∪ J ′. Hence, agents
who seek an ε-EOSF to explain the data may believe either that J as the set of
predictors or that J ′ is, but none would adopt both sets.

Proposition 2. Let there be given c ∈ (0, v/2). There exists ε̄ > 0 such that
for all ε ∈ (0, ε̄) and for every δ > 0 there exists N = N (c, ε, δ) such that
for every n ≥ N there exists M (n) such that for every m ≥ M (n), denoting

by P = P

(

n,m, (hi)i≤n ,
(

gji

)

j≤m,i≤n

)

the measure induced by the process

described above,

P (supp(ε-argminAMSE) is not closed under union) ≥ 1− δ.

Proposition 2 suggests a result that is, in a sense, the opposite of Proposition
1: the latter proved that, with very high probability, the ε-EOSF will be almost
unique, with the support of the EOSF weight vectors including all informative
variables; the present result shows that, with very high probability, the supports
of the weight vectors of the ε-EOSFs will include distinct sets of variables but
not their union. 9

Which assumptions are responsible for these starkly different conclusions?
Two main differences arise when comparing the conditions of the two propo-

sitions: first, Proposition 1 assumes that there exists an underlying functional
relationship f between x and y, such that each yi depends only of the observed
xi. Thus, there is something to be learnt. And, indeed, the reason that different
ε-EOSFs need to be close to each other, or at least to provide close predictions,
is that they all uncover the same “truth”. By contrast, no such underlying re-
lationship is assumed in Proposition 2. Thus, convergence to the truth cannot
serve as an engine of agreement.

Second, the order of quantifiers is reversed in the two propositions: in Propo-
sition 1 it is assumed that the number of predictors, m, is fixed, and the number
of observations is driven to infinity. By contrast, Proposition 2 assumes almost
the opposite. True, the number of observations, n, is not held fixed;10 but the
number of variables grows relative to n. Thus, uniqueness (as in Proposition
1) is possible because there are relatively many observations and few variables,
and it is impossible (in Proposition 2) if the converse is true.

Intuitively, the reason that Proposition 2 holds is that, with a large set
of randomly drawn variables, there is a high probability that a subset thereof
(and even a single one) would provide a near-perfect fit. As this holds for

9The proof shows that these sets can also be disjoint .
10Holding n fixed, a perfect fit for the yi’s will not be obtained even if m grows to infinity.
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any large enough set of variables, there will be disjoint sets that provide near-
perfect fit, and thus the ε-EOSF will be non-unique in a way that we think of
as “fundamental”.

2.2 Complexity

Proposition 2 suggests one reason why rational agents faced with the same
prediction problem might adopt similarity functions with very different weights
and therefore disagree in their predictions. In this subsection, we present a
second reason why this may occur: As the number of possible predictors in
a database grows, so does the complexity of finding the ε-EOSF, even if it is
almost unique. Formally, we define the following problem.

Problem. ε-EOSF: Given integers m,n ≥ 1, a database of rational valued
observations, B = ((xi, yi))i≤n, and (rational) numbers c, R ≥ 0, is there a
vector of extended rational non-negative numbers w such that AMSE(w, c) ≤
R?

And we can state

Theorem 3. ε-EOSF is NPC.

Theorem (3) states that Problem (2.2) is computationally hard: there is no
known algorithm that can solve it in polynomial time. It follows that, when
many possibly relevant variables exist, as in the case of predicting a social phe-
nomenon, we should not assume that people can find an (or the) ε-EOSF.

The key assumption that drives the combinatorial complexity is that there
is a fixed cost associated with including an additional variable in the similarity
function. That is, that the AMSE is discontinuous at wj = 0. This disconti-
nuity at 0 adds the combinatorial aspect to the AMSE minimization problem,
and allows the reduction of combinatorial problems used in our proof. Theorem
(3) does not directly generalize to an objective function that is continuous at
zero and it is possible that it does not hold in this case.11

2.3 Second-Order Induction and Learnability

Our analysis can be viewed as adding to a large literature on what can and what
cannot be learnt. We consider the problem of predicting yp based on a database
(xi, yi)i≤n and the value of xp allowing for three types of set-ups:

(i) There exists a basic functional relationship, y = f (x), where one may
obtain observations of y for any x one chooses to experiment with;

(ii) There exists a basic functional relationship, y = f (x), and one may
obtain i.i.d. observations (x, y), but can’t control the observed x’s;

(iii) There is no bounded set of variables x such that yi depends only on xi,
independently of past values.

11See also [21], which finds that the fixed cost for including a variable is the main driving
force behind the complexity of finding an optimal set of predictors in a regression problem (as
in [22]).
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Set-up (i) is the gold standard of scientific studies. It allows testing hypothe-
ses, distinguishing among competing theories and so forth. However, many
problems in fields such as education or medicine are closer to set-up (ii). In
these problems one cannot always run controlled experiments, be it due to the
cost of the experiments, their duration, or the ethical problems involved. Still,
statistical learning is often possible. The theory of statistical learning (see [23])
suggests the VC dimension of the set of possible functional relationships as a
litmus test for the classes of functions that can be learnt and those that cannot.
Finally, there are problems that are closer to set-up (iii). The rise and fall of
economic empires, the ebb and flow of religious sentiments, social norms and
ideologies are all phenomena that affect economic predictions, yet do not be-
long to problems of types (i) or (ii). In particular, there are many situations in
which there is causal interaction among different observations, as in autoregres-
sion models. In this case we cannot assume an underlying relationship y = f (x),
unless we allow the set of variables x to include past values of y, thereby letting
m grow with n.

Our positive learning result (Proposition 1) assumes that there is an under-
lying functional relationship of the type y = f (x), keeps m fixed and lets n
grow to infinity, as in set-up (ii). However it does not assume that the predictor
is aware of the existence of such a function, nor that she tries to learn it by
selecting the best fit from a given class F of functions of x. Rather, she pre-
dicts y by averaging over its past values, as in kernel regression (see [1] and [2]).
Indeed, Proposition 1 is in the spirit of [17] in showing that, as n grows, kernel
estimation with optimal kernel parameters leads to good predictions. However,
[17] and the bulk of the literature that followed focus on a single parameter,
the kernel’s bandwidth. In our model, a separate parameter is learnt for each
variable: agents learn which variables to attend to. In this context, Proposition
1 might be viewed as saying that this additional freedom does not come at the
expense of the optimality in the results of [17].

Our negative result (Proposition 2) may sound familiar: with few observa-
tions and many variables, learning is not to be expected. However, our notion
of a negative result is starker than that used in the bulk of the literature: we
are not dealing with failures of convergence with positive probability, but with
convergence to multiple limits. In particular, we conclude that, with very high
probability, there will be vastly different similarity functions, each of which ob-
tains a perfect fit to the data. When applied to the generation of beliefs by
economic agents, our result discusses the inevitability of large differences in
opinion.

Finally, our complexity result (Theorem 3) points at a different difficulty:
the task of finding the ε-EOSF is computationally complex. There is no known
algorithm that can find it in polynomial time. Thus, even if the process is
learnable in the sense of being governed by a function from a low VC-dimension
class, agents using first- and second-order induction for their predictions might
still not be able to learn it correctly.
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3 Discussion

3.1 Comparison with Regression

Similar results hold for linear regression. It is well known that if the underlying
DGP is such that y is a linear function of x (with random noise), the OLS
(ordinary least square) method would uncover the relationship when n is large;
that if, by contrast, m is larger than n, then, generically, there will be multiple
sets of variables that obtain a perfect fit to the data; and also that finding the
best set of predictors is NP-Hard (see [22]).

There are, however, important differences between the models. First, over-
fitting is not a problem for the similarity model discussed here as it is for regres-
sion analysis. For example, for a fixed number of observations, n, the number
of predictors, m, can go to infinity without obtaining a perfect fit. The reason
is that, as opposed to regression analysis, in our model y cannot be predicted
as a function of the x variables directly. It is only predicted as a function of
other y values, where the x values mediate this relationship via the similarity
weights. To consider a stark example, if the database consists of only two obser-
vations, with y1 = 0 and y2 = 1, we obtain MSE = 1 for any set of predictors,
irrespective of how large m is and of the values of these x’s.12

Second, OLS learning works well if the underlying relationship is indeed
linear. More generally, many learning methods work well if the DGP belongs
to a particular domain. By contrast, our learning process assumes very little
about the true DGP, thus allowing agents to learn a variety of processes. One
could argue that, on top of its simplicity, this is a significant advantage from an
evolutionary viewpoint.

3.2 Compatibility with Bayesianism

There are several ways in which the learning process we study can relate to
the Bayesian approach. First, one may consider our model as describing the
generation of prior beliefs, along the lines of the “small world” interpretation of
the state space (as in [24], section 5.5).

Alternatively, one can adopt a “large world” or “grand state space” approach,
in which a state of the world resolves all uncertainty from the beginning of
time, and a prior is defined over the space of all such states. This approach
is also compatible with the process we describe, when the prior beliefs assign
high probability to the data generating process being governed by a similarity
function. In the context of equilibrium selection in a coordination game (such
as a revolution), second order induction may thus define a natural focal point
that Bayesian players would find optimal to adhere to.

12This is also the reason that Proposition 2 required a large n before demanding that m be
large relative to n.
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3.3 Agreement

Economic theory tends to assume that, given the same information, rational
agents would entertain the same beliefs. In the standard Bayesian model, this
assumption is incarnated in the attribution of the same prior probability to all
agents, and it is referred to as the “Common Prior Assumption”. Differences in
beliefs cannot be commonly known, as proved by [25] in the celebrated “agreeing
to disagree” result.

The Common Prior Assumption has been the subject of heated debates
(see [26], [27], as well as [28] in the context of [29]). We believe that studying
belief formation processes might shed some light on the reasonability of this
assumption. Specifically, when adopting a small worlds view, positive learning
results (such as Proposition 1) can identify economic set-ups where beliefs are
likely to be in agreement. By contrast, negative results (such as Proposition 2)
point to problems where agreement is less likely to be the case.

The literature on polarization asks why agents can become further entrenched
in their world views, after observing the same information. In [30] disagreement
is possible because agents have different priors and use their current beliefs to
interpret ambiguous signals. In [31] disagreement can occur when agents ob-
serve imperfect private information about an ancillary variable that affects the
interpretation of evidence about the proposition of interest. This paper can be
viewed as contributing to this literature suggesting that, if the ε-EOSF isn’t
unique or is hard to compute, agents might focus on different variables and
interpret new observations differently.
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Supporting Information: Proofs

Proof of Observation 1
Assume that m = 1, n = 4 and

i xi yi
1 0 0
2 1 0
3 3 1
4 4 1

In this example observations 1, 2 are closer to each other than each is to any
of observations 3, 4 and vice versa. (That is, |xi − xj | = 1 for i = 1, j = 2 as
well as for i = 3, j = 4, but |xi − xj | ≥ 2 for i ≤ 2 < j.) Moreover the values
of y are the same for the “close” observations and different for “distant” ones.
(That is, yi = yj for i = 1, j = 2 as well as for i = 3, j = 4, but |yi − yj| = 1
for i ≤ 2 < j.) If we choose a finite w, the estimated value for each i, ȳswi , is
a weighted average of the two distant observations and the single close one. In
particular, for every w < ∞ we have MSE (w) > 0.

Observe that w = w1 = ∞ doesn’t provide a perfect fit either: if we set
w = w1 = ∞, each observation i is considered to be dissimilar to any other,
and its y value is estimated to be the default value, ȳswi = y0. Regardless of
the (arbitrary) choice of y0, the MSE is bounded below by that obtained for
y = 0.5 (which is the average y in the entire database). Thus, MSE (∞) ≥ 0.25.

Thus, MSE (w) > 0 for all w ∈ [0,∞]. However, as w → ∞ (but w <
∞), for each i the weight of the observation that is closest to i converges to
1 (and the weights of the distant ones – to zero), so that ȳswi → yi. Hence,
MSE (w) →w→∞ 0. We thus conclude that infw∈[0,∞]MSE (w) = 0 but that
there is no w that minimizes the MSE.

The same argument applied to the AMSE (w, c) for any c < c0 if we set
c0 = 0.25. !

Proof of Proposition 1
We first wish to show that arbitrarily low values of the MSE can be obtained

with probability that is arbitrarily close to 1, provided the weights wj are all
large enough. Let there be given ν > 0 and ξ > 0. We wish to find N and W
such that for every n ≥ N , and every vector w such that wj ≥ W but wj < ∞
(∀j ≤ m) we have

P (MSE (w) < ν) ≥ 1− ξ.

Observe that a single j for which wj = ∞ suffices to set the MSE at least as
high as the variance of (yi), as, with probability 1, each observation will be the
unique one with the specific value of xj .

We now define “proximity” of the x values that would guarantee “proximity”
of the y values. Suppose that the latter is defined by ν/2. As the function f
is continuous on a compact set, it is uniformly continuous. Hence, there exists
θ > 0 such that, for any x, x′ that satisfy ∥x− x′∥ < θ we have [f (x)− f (x′)]2 <
ν/2. Let us divide the set X into (4K

√
m/θ)

m
equi-volume cubes, each with

16



an edge of length θ
2
√
m

. Two points x, x′ that belong to the same cube differ

by at most θ
2
√
m

in each coordinate and thus satisfy ∥x− x′∥ < θ/2. Let us

now choose N1 such that, with probability of at least (1− ξ/2), each such cube
contains at least two observations xi (i ≤ N1). This guarantees that, when
observation i is taken out of the sample, there is another observation i′ (in the
same cube), with [yi′ − f (xi)]

2 < ν/2.
Next, we wish to bound the probability mass of each cube (defined by g).

The volume of a cube is
(

θ
2
√
m

)m

and the density function is bounded from

below by η. Thus, the proportion of observations in the cube (out of all the n
observations) converges (as n → ∞) to a number that is bounded from below

by ζ ≡ η
(

θ
2
√
m

)m

> 0. Choose N ≥ N1 such that, with probability of at least

(1− ξ/2), for each n ≥ N the proportion of the observations in the cube is at
least ζ/2. Note that this is a positive number which is independent of n.

We can now turn to choose W . For each i, the proportion of observations
xk with [f (xi)− f (xk)]

2 > ν is bounded above by (1− ζ). Choose w such that
wj = W . Observe that, as W → ∞,

∑

k≠i,[f(xi)−f(xk)]
2>ν s(xi, xk)

∑

k≠i,[f(xi)−f(xk)]
2≤ν s(xi, xk)

→ 0

and this convergence is uniform in n (as the definition of ζ is independent of n).
Thus a sufficiently high W can be found so that, for all n ≥ N , MSE (w0) < ν
with probability (1− ξ) or higher.

Next we prove the second part of the proposition. Assume that xj is
informative, so that there exist x, x′ such that xl = x′l for all l ≠ j but
f (x) − f (x′) = δ > 0. Assume that, for some W < ∞, wj ≤ W . Similar
arguments to those above yield an lower bound ν > 0 such that, for large n,
with very high probability, MSE (w) > ν: points around x will have estimated
y values that are affected by points around x′, and the weight of these will not
converge to zero (it is bounded from below by e−W ).

Finally, we wish to show that one can have a low enough cost c0 such that
all the vectors in ε-argminAMSE would use the informative variables, as well
as a low enough ε so that they would not use the uninformative variables. This
would mean that for appropriately chosen c0 and ε, the supports of all vectors
in ε-argminAMSE have to coincide with I(f). Let there be given ξ > 0. For
each j ∈ I(f) we can use the second part of the proposition (corresponding to
W = 0) to find νj > 0 and Nj such that, for every n > Nj, with probability of
at least (1− ξ/2m), wj = 0 implies MSE (w) > νj . Define Nj = 0 for j /∈ I(f)
.

Choose c0 = minj(νj)/2(m + 1) and let c < c0. Using the first part of
the proposition, let N0 and W0 be such that, for all n ≥ N0, with probability
of at least (1 − ξ/2), MSE (w0) < c for w0 defined by wl

0 = W0 for all l.
Consider N = max(Nl)l≥0. For every n ≥ N , with probability of at least
(1− ξ) we have that (i) there are w with MSE (w) < c ; (ii) for these w’s,
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AMSE(w) < (m + 1)c; (iii) for any vector w whose support does not include
j ∈ I(f), AMSE(w) > νj > (m + 1)c. This means that for every w with
AMSE(w) < (m+1)c, we must have I(f) ⊂ supp(w) . Thus, considering near-
minimizers of the AMSE we will only find vectors that use all the informative
variables. On the other hand, we wish to show that in the (high-probability)
event considered above, variables that are not informative will not be used.
Observe that ε < c/2 is small enough so that for every w ∈ ε-argminAMSE,
wj = 0 for every j /∈ I(f) (as the inclusion of such a variable in the support of
w would incur a cost that is by itself enough to make the AMSE of the vector
larger than the argmin by more than ε < c/2).

!

Proof of Proposition 2:

Non-uniqueness is obtained by showing that, with a high probability there
will be two variables, each of which can provide an almost perfect fit on its own.
To this end, we first need to make sure that each observation yi has a close
enough yk. For this reason the result only holds for a relatively large n (making
sure that, with a high probability, no yi is “isolated”), and then, given such an
n, for a large enough number of predictors, M (n), so that we should think of
this case as m >> n >> 1.

We now turn to prove the result formally. Let there be given c > 0. Choose
ε̄ = c/3. We wish it to be the case that if MSE (w) ≤ ε with #supp(w) = 1,
then w ∈ ε-argminAMSE, but for no w ∈ ε-argminAMSE is it the case that
#supp(w) > 1. Clearly, the choice ε̄ = c/3 guarantees that for every ε ∈ (0, ε̄),
the second part of the claim holds: if a vector w satisfies MSE (w) ≤ ε, no
further reduction in the MSE can justify the cost of additional variables, which
is at least c. Conversely, because c < v/2 (the variance of y), a single variable j
that obtains a near-zero MSE would have a lower AMSE than the empty set.

Let there now be given ε ∈ (0, ε̄) and every δ > 0. We need to find N and,
for every n ≥ N , M (n), such that for every n ≥ N and m ≥ M (n),

P (supp(ε-argminAMSE) is not closed under union) ≥ 1− δ.

Let N be large enough so that, with probability (1− δ/2), for all n ≥ N ,

max
i

min
k≠i

[yi − yj ] < ε/2.

(To see that such an n can be found, one may divide the [−K,K] interval of
values to intervals of length ε/2 and choose N to be large enough so that, with
the desired probability, there are at least two observations in each such interval.)

Given such n ≥ N and the realizations of (yi)i≤n, consider the realizations

of xj . Assume that, for some j, it so happens that
∣

∣

∣
xj
i − yi

∣

∣

∣
< ε/4 for all

i ≤ n. In this case, by setting wj to be sufficiently high, and wl = 0 for l ≠ j,
one would obtain MSE (w) ≤ ε and AMSE (w, c) ≤ ε + c.13 For each j,

13The fact that xj
i is close to yi is immaterial, of course, as the variables xj

i are not used

to predict yi directly, but only to identify the yk that would. If xj
i is close to some monotone

function of yi the same argument would apply.
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however, the probability that this will be the case is bounded below by some
ξ > 0, independent of n and j. Let M1 (n) be a number such that, for any

m ≥ M1 (n), the probability that at least one such j satisfies
∣

∣

∣
xj
i − yi

∣

∣

∣
< ε/4 is

(1− δ/4), and let M (n) > M1 (n) be a number such that, for any m ≥ M (n),

the probability that at least one more such j′ > j satisfies
∣

∣

∣
xj′

i − yi
∣

∣

∣
< ε/4 is

(1− δ/8).
Thus, for every n ≥ N , and every m ≥ M (n), with probability 1 − δ there

are two vectors, wj with support {j} and wj′ with support {j′}, each of which
obtaining MSE (w) ≤ ε and thus, both belonging to ε-argminAMSE. To see
that in this case the supp(ε-argminAMSE) is not closed under union, it suffices
to note that no w with support greater than a singleton, nor a w with an empty
support (that is, w ≡ 0) can be in the ε-argminAMSE. !

Proof of Theorem 1

We first verify that the problem is in NP. Given a database and a vector
of extended rational weights wj ∈ [0,∞], the calculation of the AMSE takes
O
(

n2m
)

steps. Specifically, the calculation of the similarity function s (x, x′) is
done by first checking whether there exists a j such that wj = ∞ and xj ≠ x′j

(in which case s (x, x′) is set to 0), and, if not – by ignoring the j’s for which
wj = ∞.

The proof is by reduction of the SET-COVER problem to EMPIRICAL-
SIMILARITY. The former, which is known to be NPC (see [32]), is defined
as

Problem. SET-COVER: Given a set P , r ≥ 1 subsets thereof, T1, ..., Tr ⊆ P ,
and an integer k (1 ≤ k ≤ r), are there k of the subsets that cover P? (That is,
are there indices 1 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ r such that ∪j≤kTij = P?)

Given an instance of SET-COVER, we construct, in polynomial time, an
instance of EMPIRICAL-SIMILARITY such that the former has a set cover iff
the latter has a similarity function that obtains the desired AMSE. Let there be
given P , r ≥ 1 subsets thereof, T1, ..., Tr ⊆ P , and an integer k. Assume without
loss of generality that P = {1, ..., p}, that ∪i≤rTi = P , and that zuv ∈ {0, 1} is
the incidence matrix of the subsets, that is, that for u ≤ p and v ≤ r, zuv = 1
iff u ∈ Tv.

Let n = 2 (p+ 1) and m = r. Define the database B = ((xi, yi))i≤n as
follows. (In the database each observation is repeated twice to avoid bins of size
1.)

For u ≤ p define two observations, i = 2u− 1, 2u by

xj
i = zuj yi = 1

and add two more observations, i = 2p+ 1, 2p+ 2 defined by

xj
i = 0 yi = 0.
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Next, choose c to be such that 0 < c < 1
mn3 , say, c =

(

mn3
)−1

/2 and R = kc.14

This construction can obviously be done in polynomial time.

We claim that there exists a vector w with AMSE(w, c) ≤ R iff a cover of
size k exists for the given instance of SET-COVER.15 For the “if” part, assume
that such a cover exists, corresponding to J ⊆ M . Setting the weights

wj =

{

∞ j ∈ J
0 j /∈ J

one obtains AMSE(w, c) ≤ R.

Conversely, for the “only if” part, assume that a vector of rational weights
w =

(

wj
)

j
(wj ∈ [0,∞]) obtains AMSE(w, c) ≤ R. Let J ⊆ M be the set of

indices of predictors that have a positive wj (∞ included). By the definition of
R (as equal to ck), it has to be the case that |J | ≤ k. We argue that J defines
a cover (that is, that {Tv}v∈J is a cover of P ).

Observe that, if we knew that |J | = k, the inequality

AMSE(w, c) = MSE (w) + c |J | ≤ R = ck

could only hold if MSE (w) = 0, from which it would follow that w provides a
perfect fit. In particular, for every i ≤ 2p there exists j ∈ J such that xj

i ≠ xj
2p+1

that is, xj
i = 1, and J defines a cover of P .

However, it is still possible that |J | < k and 0 < MSE (w) ≤ c (k − |J |).
Yet, even in this case, J defines a cover. To see this, assume that this is not
the case. Then there exists i ≤ 2p such that for all j, either wj = 0 (j /∈ J) or
xj
i = 0 = xj

2p+1. This means that s (xi, x2p+1) = s (xi, x2p+2) = 1. In particular,
y2p+1 = y2p+2 = 0 take part (with positive weights) in the computation of yswi
and we have yswi < 1 = yi. The cases 2p+ 1, 2p+ 2 obtain maximal similarity
to i (s (xi, x2p+1) = s (xi, x2p+2) = 1), because xj

2p+1 = xj
2p+2 = xj

i (= 0) for
all j with wj > 0. (It is possible that for other observations l ≤ 2p we have
s (xi, x2p+1) ∈ (0, 1),but the weights of these observations are evidently smaller
than that of 2p + 1, 2p+ 2.) Thus we obtain that the error |yswi − yi| must be
at least 1

n
, from which SSE (w) ≥ 1

n2 and MSE (w) ≥ 1
n3 follow. This implies

AMSE(w, c) > R and concludes the proof. !

14As will be clarified shortly, the power of n in the constant c reflects the choice of the
quadratic loss function. Different loss functions would require a corresponding cost c. For

example, for an absolute value c =
(

mn2
)−1

/2 would suffice.
15This proof uses values of x and of y that are in {0, 1}. However, if we consider the same

problem in which the input is restricted to be positive-length ranges of the variables, one
can prove a similar result with sufficiently small ranges and a value of R that is accordingly
adjusted.
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