
	  

	   1	  

Reduction 

Andreas Hüttemann 

Alan C. Love 

Abstract 

Reduction and reductionism have been central philosophical topics in analytic philosophy 

of science for more than six decades. Together they encompass a diversity of issues from 

metaphysics and epistemology. This article provides an introduction to the topic that 

illuminates how contemporary epistemological discussions took their shape historically 

and limns the contours of concrete cases of reduction in specific natural sciences. The 

unity of science and the impulse to accomplish compositional reduction in accord with a 

layer-cake vision of the sciences, the seminal contributions of Ernest Nagel on theory 

reduction and how they strongly conditioned subsequent philosophical discussions, and 

the detailed issues pertaining to different accounts of reduction that arise in both physical 

and biological science (e.g., limit-case and part-whole reduction in physics, the 

difference-making principle in genetics, and mechanisms in molecular biology) are 

explored. The conclusion argues that the epistemological heterogeneity and patchwork 

organization of the natural sciences encourages a pluralist stance about reduction. 
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Reduction and reductionism have been central philosophical topics in analytic philosophy 

of science for more than six decades. Together they encompass a diversity of issues from 

metaphysics (e.g., physicalism and emergence) and epistemology (e.g., theory structure, 
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causal explanation, and methodology). “Reduction” usually refers to an asymmetrical 

relationship between two items (e.g., theories, explanations, properties, etc.) where one 

item is reduced to another. The nature of this relationship has been characterized in 

distinct ways for different sets of items: reductive relations between theories have often 

been understood in terms of logical derivation, whereas reductive relations between 

properties have sometimes been understood in terms of identity or supervenience. 

Depending on how the relationship is characterized, one can speak of successful 

reductions when the asymmetrical relationship is established or manifest, and 

unsuccessful reductions when for some reason the relationship does not hold. 

“Reductionism” usually refers to a more general claim or assumption about the existence, 

availability, or desirability of reductions in an area of research. For example, if particular 

kinds of reductions are established routinely in molecular biology and constitute a major 

part of its explanatory capacity, then reductionism can be used as a descriptive label 

(molecular biology pursues reductionist explanations or has a reductionist methodology). 

Arguments for and against reductionism often trade in several different meanings 

of reduction simultaneously or assume that a particular construal is primary, but the 

relationship between different conceptions of reduction is complex, and there are few if 

any entailment relations among them. The specialization trend in philosophy of science, 

whereby philosophers have increasingly concentrated on actual scientific practices and 

controversies, has shifted debates away from providing a uniquely correct account of 

what reduction is and toward why or how scientists pursue reductions in more localized 

contexts. As a consequence, a rift has grown between metaphysical and epistemological 

questions because the former often invoke “in principle” considerations about what a 
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completed science would be able to say, whereas the latter emphasizes “in practice” 

considerations that temper the metaphysical inferences one might draw, in part because 

we find both successful and unsuccessful reductions of different kinds in scientific 

practice. Thus an argument establishing a particular relationship of reduction between 

two items in an area of science does not necessarily generalize to an argument in favor of 

reductionism for all items in that area of science or for other areas of science. 

It is impossible to adequately summarize the many detailed analyses of reduction 

and reductionism in different sciences, even when only focused on the natural sciences. 

Our goal is not to be comprehensive but rather to provide an introduction to the topic that 

illuminates how contemporary discussions took their shape historically, especially 

through the work of Ernest Nagel, and limn the contours of concrete cases of reduction in 

specific natural sciences. To this end, we begin with a discussion of the unity of science 

and the impulse to accomplish compositional reduction in accord with a layer-cake vision 

of the sciences (Section 1). Next, we review Nagel’s seminal contributions on theory 

reduction and how they strongly conditioned subsequent philosophical discussions 

(Section 2). Then we turn to detailed issues that arise from analyzing reduction in 

different sciences. First, we explore physical science by explicating different accounts of 

reduction (e.g., limit reduction and part-whole reduction) and probing their applicability 

to cases from condensed matter physics and quantum mechanics (Section 3). Second, we 

explore biological science by rehearsing how an antireductionist consensus grew out of 

the juxtaposition of genetics with a refined Nagelian view of theory reduction and then 

subsequently dissipated into a myriad of perspectives on explanatory reduction that apply 

across the life sciences, including the growth of mechanism approaches (Section 4). In 
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conclusion, we argue that the epistemological heterogeneity and patchwork organization 

of the natural sciences encourages a pluralist stance about reduction (Section 5). 

1. Unity of Science and Microreduction 

A common thread running through different accounts of reduction is a concern with 

coherence between two or more domains. This has appeared frequently under the guise of 

unification, such as how different theories fit together and provide a more unified 

explanation. Whether or not this unification obtained seemed to speak to perennial 

questions: Are living systems anything over and above physical constituents with suitable 

organization? Are tables and chairs simply swarms of subatomic particles? Many logical 

empiricists of the mid-twentieth century officially bracketed such metaphysical questions 

and approached the issues indirectly. They focused on how these questions would be 

formulated within the framework of scientific theories: Is biology reducible to physics? Is 

the macroscopic behavior of objects reducible to the behavior of their microscopic 

constituents? The working assumption was that it was desirable to counterbalance the 

increasing specialization of the sciences with a meta-scientific study “promoting the 

integration of scientific knowledge” (Oppenheim and Putnam 1958, 3). This integration 

was advanced under the auspices of the “Unity of Science” as an organizing principle 

pertaining to “an ideal state of science” and “a pervasive trend within science, seeking the 

attainment of that ideal” (4). The “unity” invoked relied on a complex conception of 

reduction and a vision of reductionism, and the diversity of issues now seen in 

philosophical discussions can be understood as a slow disentangling of these interwoven 

claims. 
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Logical empiricists conceived of reduction as a form of progress: “The label 

‘reduction’ has been applied to a certain type of progress in science . . . replacement of an 

accepted theory . . . by a new theory . . . which is in some sense superior to it” (Kemeny 

and Oppenheim 1956, 6–7). Thus the unity of science was underwritten by the 

progressive reduction of one theory to another (i.e., a form of reductionism). Successful 

reductions contribute to the goal of unification. The conception of reduction appealed 

to—“microreduction”—involves establishing explicit compositional relations between 

the objects in one science (e.g., molecules in chemistry) and its components in another 

science (e.g., subatomic particles in physics). This picture relies on a hierarchy of levels 

so that every whole at one level can be decomposed into constituents at a lower level: 

social groups, multicellular organisms, cells, molecules, atoms, and elementary particles. 

Theories of objects and their constituents were related in microreductions, which 

encourages a layer-cake view of the sciences as offering theories at corresponding levels 

of the compositional hierarchy: sociology, organismal biology, molecular biology, 

chemistry, and physics. Thus a microreduction reduces one branch of science with a 

theory of objects in its domain (e.g., chemistry) to another branch of science with a 

theory of the constituents of those objects in its domain (e.g., physics). 

This perspective sets out a clear philosophical agenda: characterize the nature of 

theory reduction so that assessments can be made of the success (or failure) of 

microreductions at different hierarchical levels with respect to the trend of attaining the 

ideal of unification (i.e., reductionism). Associated tasks include explicating the structure 

of scientific theories, translating the distinct vocabulary of one science into another, and 

spelling out the derivation of the higher-level science from the lower-level one. Given the 
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predominant view of explanation as a logical derivation of an explanandum phenomenon 

from universal laws and initial conditions (Hempel and Oppenheim 1965[1948]), a 

successful microreduction was explanatory. Although it might not occur in practice 

(“whether or not unitary [completed, unified] science is ever attained”; Oppenheim and 

Putnam 1958, 4), the “in principle” vision was bracing: a fundamental theory of the 

ultimate constituents of the universe from which we can derive all the theories and laws 

that pertain to its more complex wholes. An epistemological consequence would be a 

reduced total number of laws, “making it possible, in principle, to dispense with the laws 

of [the higher-level science] and explain the relevant observations by using [the lower-

level science]” (7). 

There are a variety of different claims about reduction contained within this 

global vision of the unity of science based on microreduction: (a) reduction is a type of 

progress, (b) reduction is a relation between theories, (c) reduction involves logical 

derivation, (d) reduction is explanatory, and (e) reduction is compositional (part-whole). 

Much of the debate about reduction from the 1960s through the 1980s can be described 

as a disentangling and evaluation of these claims: (a) How should we understand 

scientific progress? Is it always reductionist in character? (b) What is the structure of 

theories? Are theories the only thing that can be reductively related? (c) Does reduction 

always involve logical derivation or should we understand it differently? (d) Is reduction 

always explanatory? How should we understand what counts as an explanation? (e) Is 

reduction always compositional or can it sometimes be, for example, causal? 

Within the debates surrounding these questions there are at least three identifiable 

trends: (a) conceptualizing scientific progress required far more than the concepts of 
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reduction developed by logical empiricists; (b) questions about the nature of theory 

reduction came to predominate through discussions of theory structure (Suppe 1977), 

whether theories relate logically or otherwise, the empirical inadequacy of a layer-cake 

view of the sciences, and an unraveling of the consensus about a deductive-nomological 

view of explanation (Woodward 2011); and, (c) increasing attention to examples from 

nonphysical sciences called into question whether reduction should be seen as a relation 

between theories and pertain to composition (Hüttemann and Love 2011; Kaiser 2012; 

Love and Hüttemann 2011). We ignore (a) in what follows and concentrate on (b) and (c) 

by reviewing Nagel’s influential conception of theory reduction (Section 2), exploring the 

development of ideas about reduction and explanation in physical science (Section 3), 

and analyzing biological reasoning that challenged the applicability of theory reduction 

and encouraged different formulations of explanatory reduction (Section 4). 

Oppenheim and other logical empiricists were already aware of a proliferation of 

notions of reduction: “the epistemological uses of the terms ‘reduction’, ‘physicalism’, 

‘Unity of Science’, etc. should be carefully distinguished from the use of these terms in 

the present paper” (Oppenheim and Putnam 1958, 5). In order to increase clarity 

regarding the diversity of meanings for reduction and reductionism that have been 

treated, we offer the following coarse-grained classification scheme (Brigandt and Love 

2012, Sarkar 1992). 

Metaphysical reduction: This refers to theses like metaphysical reductionism or 

physicalism, which claim that all higher-level systems (e.g., organisms) are constituted 

by and obtain in virtue of nothing but molecules and their interactions. Associated 

concepts include supervenience (no difference in a higher-level property without a 



	  

	   8	  

difference in some underlying lower-level property), identity (each higher-level token 

entity is the same as an array of lower-level token entities), emergence (a higher-level 

entity is not reducible to its constituent molecules and their interactions), and downward 

causation (a higher-level entity has the capacity to bring about changes in lower-level 

entities, which is not reducible to its lower-level constituents). 

Epistemological reduction: This refers to claims about representation and 

explanation or methodology. For representation and explanation, issues revolve around 

the idea that knowledge about higher-level entities can somehow be reduced to 

knowledge about lower-level entities. Dominant themes include what form the 

knowledge takes, such as whether it is theories structured in a particular way or other 

units (e.g., models or concepts), what counts as an explanation, and whether this is 

manifested similarly in different areas of science. For methodology, issues revolve 

around the most fruitful tactics for scientific investigation. Should experimental studies 

always be aimed at uncovering lower-level features of higher-level entities, such as by 

decomposing a complex system into parts (Bechtel and Richardson 1993)? Although a 

track record of success might suggest an affirmative answer, the exclusive use of 

reductionist research strategies may lead to systematic biases in data collection and 

explanatory models (Wimsatt 2007). 

The remainder of our discussion focuses on epistemological reduction with 

special reference to representation and explanation, beginning with Nagel’s influential 

treatment. 

2. Nagel’s Account of Reduction 
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Debates about theory reduction concern the relation of two theories that have an 

overlapping domain of application. This is typically the case when one theory succeeds 

another and thereby links reduction to progress, such as by requiring that the new theory 

predict or explain the phenomena predicted or explained by the old theory (Kemeny and 

Oppenheim 1956). Ernest Nagel’s (1961, ch. 11) account of reduction was the most 

influential attempt to spell out this idea. It remains the shared background for any 

contemporary discussion of theory reduction. Nagel conceived of reduction as a special 

case of explanation: “the explanation of a theory or a set of experimental laws established 

in one area of inquiry, by a theory usually though not invariably formulated for some 

other domain” (1961, 338). Explanation was understood along the lines of the deductive-

nomological model: “a reduction is effected, when the experimental laws of the 

secondary science . . . are shown to be logical consequences of the theoretical 

assumptions . . . of the primary science” (352). Nagel gave two formal conditions that 

were necessary for the reduction of one theory to another. The first was the condition of 

connectability. If the two theories in question invoke different terminology, connections 

of some kind need to be established that link their terms. For example, “temperature” in 

thermodynamics does not appear in statistical mechanics. These connections became 

known as bridge laws and were frequently assumed to be biconditionals that express 

synthetic identities (e.g., the temperature of an ideal gas and the mean kinetic energy of 

the gas). 

The second condition was derivability. Laws of the reduced theory must be 

logically deducible from laws of the reducing theory. A putative example is provided by 

the wave theory of light and Maxwell’s theory of electromagnetism. Once it was 
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established that light waves are electromagnetic radiation of a certain kind (a bridge law), 

connectability was fulfilled and the wave theory of light could be reduced to Maxwell’s 

theory. Everything the wave theory had to say about the propagation of light could 

(seemingly) be deduced from Maxwell’s theory plus the bridge law (derivability). The 

wave theory becomes a part of Maxwell’s theory that describes the behavior of a certain 

kind of electromagnetic radiation (light waves), though expressed in a different 

terminology that can be mapped onto Maxwell’s terminology (Sklar 1967). Provided this 

account is correct, the wave theory of light can be reduced to Maxwell’s theory of 

electromagnetism. Thus successful “Nagelian reductions” absorb, embed, or integrate the 

old theory into the successor theory and reduce the number of independent laws or 

assumptions that are necessary to account for the phenomena (i.e., just those of the new 

theory). Although the successful predictions of the old theory concerning the phenomena 

are retained, one can dispense with its assumptions or laws, at least in principle. 

Nagel and other logical empiricists were aware that their conception of reduction 

was a kind of idealization, but a number of key problems soon surfaced. The first was 

meaning incommensurability. If the meaning of a theoretical term is partially determined 

by its context, then terms in the old and new theories will have different meanings. Thus 

a prerequisite for the condition of derivability is violated (Feyerabend 1962). However, 

this criticism rested on the controversial assumption that the meaning of theoretical terms 

derived from the context of the entire theory (meaning holism). The second problem was 

the absence of bridge laws in the form of biconditionals, especially in biology and 

psychology. A third problem was the absence of well-structured theories with universal 

laws; Nagel’s account cannot explicate reduction in sciences where theories and laws 
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play a less significant role (see Section 4). Finally, the new theory typically does not 

recover the predictions of the old theory—and for good reasons, because the new theory 

often makes better predictions. This last objection was particularly influential in debates 

about theory reduction in physics (see Section 3). 

Despite these problems, Nagel’s account of reduction served as the primary 

reference point for almost all debates on reduction and reductionism. This is true for 

debates about whether chemistry can be reduced to physics (Weisberg, Needham, and 

Hendry 2011, Hendry and Needham 2007) and whether classical genetics can be reduced 

to molecular genetics (see Section 4). These debates followed a standard pattern. First, 

they assumed that if some sort of reductionist claim is true, then the pertinent concept of 

reduction was Nagelian. Second, it was discovered that Nagelian theory reduction failed 

to capture the relations between different theories, models, or representations in the field 

of science under scrutiny. As a consequence, various sorts of antireductionist or 

nonreductionist claims became popular, but it became apparent that such purely negative 

claims fail to do justice to the relations under investigation in the natural sciences, which 

encouraged the development of new conceptions of reduction. 

Debates about reduction in philosophy of mind, which were tracked widely by 

philosophers who did not necessarily work on specific natural sciences, serve as an 

illustration of how Nagelian theory reduction shaped discussions. When it became 

apparent that claims about mental states, properties, or events could not be reduced sensu 

Nagel to neurobiology or allied sciences, various forms of nonreductive physicalism 

became popular. This in turn led to the development of alternative conceptions of 

reduction in order to characterize the relation between different forms of representations. 
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For example, it has been argued that the essential desideratum in philosophy of mind is 

not Nagelian reduction but rather the explanation of bridge laws. What is needed is an 

explanation of why pain is correlated with or identical to the stimulation of certain nerve 

fibres, which is left unexplained in Nagelian reduction. So-called functional reduction, if 

achieved, would give us a reductive explanation of pain in terms of underlying physical 

or neurobiological features and thereby provide evidence for a metaphysical reduction of 

the mental to the physical (Chalmers 1996, Levine 1993, Kim 1998, 2005). Functional 

reduction consists of three steps: (1) the property M to be reduced is given a functional 

definition of the following form: having M = having some property P (in the underlying 

reduction domain) such that P performs causal task C; (2) the properties or mechanisms 

in the reduction domain that perform causal task C are discovered; and, (3) a theory that 

explains how the realizers of M perform task C is constructed (Kim 2005, 101–102). 

This account of functional reduction is abstract and not well connected to the 

actual scientific practices of neurobiology or well anchored in empirical details of 

concrete examples. In this respect, the discussion in philosophy of mind differs from 

developments surrounding reduction in philosophy of science. This divergence in part 

explains why the revival of talk about mechanisms in neuroscience has been associated 

with a rejection of reduction (see Section 4). 

3. Reduction in Physics 

3.1. Amending Nagel’s Model 

When one theory succeeds another in an area of science, the theories typically make 

contradictory claims. This can be illustrated by what Newtonian mechanics (NM) and the 

special theory of relativity (STR) have to say about the dependence of momentum on 
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velocity. Figure 1 depicts how, relative to some fixed observer, there is an increasing 

divergence in the predictions made by NM and STR as the ratio of the velocity of a 

particle to the velocity of light approaches 1. This divergence indicates that STR makes 

better predictions in certain domains, which is part of the reason why it was accepted as a 

successor of NM. But if NM and STR make contradictory claims, then they are logically 

incompatible; NM cannot be deduced from STR. Because STR makes better and 

contradictory predictions compared to NM, Nagelian theory reduction is incapable of 

adequately describing the reductive relations between STR and NM. 

[INSERT FIGURE 1 NEAR HERE] 

In the light of this objection, Kenneth Schaffner (1967, 1969, 1976, 1993) revised 

and developed the theory reduction framework into the general reduction model (GRM). 

Schaffner acknowledged that the old or higher-level theory typically could not be 

deduced from the succeeding or lower-level theory. However, he argued that a suitably 

corrected version of the higher-level theory should be the target of a deduction from the 

lower-level theory, assuming there are bridge laws that facilitate connectability. This 

corrected version of the higher-level theory needs to be strongly analogous to the original 

higher-level theory (Schaffner 1993, 429). Strong analogy or “good approximation” 

(Dizadji-Bahmani et al. 2010) allows for some divergence in predictions, as well as some 

amount of meaning incommensurability, but the details of the analogical relation are left 

unspecified (Winther 2009). More recently, Dizadji-Bahmani and colleagues (2010) have 

defended a generalized Nagel-Schaffner account (GNS) where the higher-level theory is 

corrected and the lower-level theory is restricted by the introduction of boundary 

conditions and auxiliary assumptions. Only then are bridge laws utilized to logically 

deduce the former from the latter. The GNS account retains the Nagelian idea that 
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reduction consists in subsumption via logical deduction, though it is now a corrected 

version of the higher-level theory that is reduced to a restricted version of the lower-level 

theory. 

One might be skeptical about how well GRM or GNS capture actual cases of 

theory relations because, as Figure 1 illustrates, NM is not a good approximation of STR. 

GRM and GNS are limited to cases in which pairs of theories have largely overlapping 

domains of application and are simultaneously held to be valid (Dizadji-Bahmani et al. 

2010). Most of the cases that Nagel and Schaffner had in mind do not fall in this range. 

Additionally, the authors’ paradigm case—the reduction of thermodynamics to statistical 

mechanics—generates problems for this account (see Section 3.2). At best, Nagel’s 

model of reduction, where a higher-level level theory is absorbed into a lower-level 

theory and cashed out in terms of logical deduction, only applies to a restricted number of 

theory pairs. 

3.2. Limit-Case Reduction 

Even though it is false that predictions from NM and STR are approximately the same, it 

is nevertheless true that in the limit of small velocities, the predictions of NM 

approximate those of STR. While Nagelian reduction does not apply in the case of NM 

and STR, physicists use a notion of reduction according to which STR reduces to NM 

under certain conditions (Nickles 1973).1 Nickles refers to this latter concept as limit-case 

reduction in order to distinguish it from Nagel’s concept of theory reduction. Limit-case 

reduction often permits one to skip the complexities of STR and work with the simpler 

theory of NM, given certain limiting conditions. 
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Limit-case reduction is very different from Nagelian reduction. Not only does it 

obtain in the converse direction (for Nagelian reduction, NM reduces to STR; for limit-

case reduction, STR reduces to NM), but limit-case reduction is also a much weaker 

concept. Successful Nagelian reduction shows that the old theory can be embedded 

entirely in the new theory, whereas limit-case reduction focuses on two theories that 

make different predictions about phenomena that converge under special circumstances. 

Thus limit-case reduction is typically piecemeal; it might be possible for one pair of 

equations from STR and NM to be related by a limit-case reduction, while another pair of 

equations fails. Further, even though both accounts involve derivation, they differ on 

what is derived. On Nagel’s account, the laws of the old or higher-level theory have to be 

logically deducible from the new theory. For limit-case reduction, the classical equation 

(as opposed to a particular value) is derived from the STR equation, but this sense of 

“derivation” refers to the process of obtaining a certain result by taking a limit process. 

So, strictly speaking, it is not the classical equation that is logically derived from STR but 

rather solutions of the new equations that are shown to coincide with solutions of the old 

equations in the limit, and solutions of the new equations are shown to differ from those 

of the old theory only minimally in the neighborhood of the limit (e.g., Ehlers 1997). 

Limit-case reduction aims to explain the past success as well as the continued 

application of a superseded theory from the perspective of a successor theory. It is a 

coherence requirement that the successes of the old theory should be recoverable from 

the perspective of the new theory (Rohrlich 1988). Although there are many detailed 

studies of the relations between thermodynamics and statistical mechanics (e.g., Sklar 

1993, Uffink 2007), NM and the general theory of relativity (e.g., Earman 1989, Ehlers 
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1986, Friedman 1986, Scheibe 1999), and classical mechanics and quantum mechanics 

(e.g., Scheibe 1999, Landsman 2007), we confine ourselves to some observations about 

the limit-process that are relevant for all of these cases. 

1. If limit-case reductions aim to explain the past successes of an old theory, 

then not all limits are admissible. The equations of STR may reduce to 

those of NM in the limit c →∞ (i.e., the solutions of STR and NM 

coincide in the limit c →∞), but this kind of limit does not explain why the 

old theory was successful. As a matter of fact, c is constant and the actual 

success of the old theory cannot be accounted for in terms of solutions that 

converge only under counterfactual circumstances (Rohrlich 1988). For 

limit-case reduction to explain the success of the old theory and yield the 

coherence in question, the limits have to be specified in terms of 

parameters that can take different values in the actual world, such as v/c. 

2. Limit processes presuppose a “topological stage” (Scheibe 1997). A 

choice of topology is required to define the limit because it assumes a 

concept of convergence. This choice could be nontrivial, and whether or 

not a pair of solutions counts as similar may depend on it. Some recent 

work focuses on developing criteria for this choice (Fletcher 2015). 

3. Limit processes may involve idealizations. The “thermodynamic limit” 

assumes that the number of particles in a system goes to infinity. This 

issue has been discussed extensively with respect to phase-transitions and 

critical phenomena (Batterman 2000, 2002, 2011, Butterfield 2011, 

Morrison 2012, Norton 2012, Menon and Callender 2013). 
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Thermodynamics typically describes systems in terms of macroscopic 

quantities, which often depend only on other macroscopic quantities, not 

the microphysical details. From the perspective of statistical mechanics, 

this can be explained only in the thermodynamic limit (i.e., for systems 

with an infinite size) because it is only in this limit that the sensitivity to 

microphysical details disappears. Explaining the nonfluctuating quantities 

in terms of infinite system size is an idealization because real systems 

have only finitely many constituents. However, this is unproblematic if 

one can approach the limit smoothly; that is, neighbouring solutions for 

large yet finite systems differ minimally from solutions in the 

thermodynamic limit. Thus, in this case, statistical mechanics can explain 

why thermodynamic descriptions apply to large systems—the appeal to 

infinity is eliminable (Hüttemann et al. 2015). 

Other cases may be more problematic for limit-case reduction. 

Thermodynamically, phase transitions and critical phenomena are associated with non-

analyticities in a system’s thermodynamic functions (i.e., discontinuous changes in a 

derivative of the thermodynamic function). Such non-analyticities cannot occur in finite 

systems as described by statistical mechanics because it allows for phase transitions only 

in infinite particle systems (see, e.g., Menon and Callender 2013). It has been argued that 

if the limit is singular, then solutions in the limit differ significantly from the neighboring 

(i.e., finite-system) solutions, and these fail to display phase transitions. Thus the appeal 

to infinity appears to be ineliminable for the explanation of the observed phase transitions 

(Batterman 2011), though this claim has been disputed (Butterfield 2011, Norton 2012, 
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Menon and Callender 2013). The question then is: Under what conditions does the appeal 

to (infinite) idealizations undermine limit-case reduction? Disagreement partially depends 

on the conditions that successful reductions are supposed to fulfill. Does it suffice for the 

new theory to explain the success of the old theory, or should it explain the old theory 

itself, which may require the logical deduction of the equations of the old theory (Menon 

and Callender 2013)? 

3.3. Reductive Explanations in Physics 

It is sometimes argued that quantum mechanics and quantum entanglement in particular 

tell us that, “reductionism is dead . . . the total physical state of the joint system cannot be 

regarded as a consequence of the states of its (spatially separated) parts, where the states 

of the parts can be specified without reference to the whole” (Maudlin 1998, 54). This 

claim concerns neither Nagelian reduction nor limit-case reduction because it is not about 

pairs of theories. The claim is rather that, within one and the same theory (i.e., quantum 

mechanics), the state of the compound system cannot be explained in terms of the states 

of the parts. Maudlin’s anti-reductionist claim does not concern the failure of a particular 

theory reduction but rather the failure of a kind of part-whole explanation. 

In contrast to philosophy of biology (see Section 4), part-whole explanations have 

not been discussed in detail within philosophy of physics. One attempt to characterize 

part-whole explanations in physical science follows suggestions made by C. D. Broad 

(1925). According to this conception, a compound (whole) system’s behavior can be 

explained by its parts if it can be explained in terms of (a) general laws concerning the 

behavior of the components considered in isolation, (b) general laws of composition, and, 

(c) general laws of interaction. Many macroscopic features like specific heat and the 
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thermal or electrical conductivity of metals or crystals can be explained according to this 

model (Hüttemann 2004, 2005). Quantum entanglement is perhaps the most interesting 

case because the reductive explanation of the whole in terms of its parts clearly fails 

(Humphreys 1997, Hüttemann 2005, Maudlin 1998). 

4. Biology 

4.1. From Nagelian Theory Reduction to an Antireductionist Consensus 

Historically, discussions of reductionism in the life sciences included extended arguments 

about vitalism, the claim that nonphysical or nonchemical forces govern biological 

systems. The story is more complex than a bald denial of physicalism, in part because 

what counts as “physicalism” and “vitalism” differ among authors and over time. Some 

late-eighteenth-century authors took a vitalist position that appealed to distinctly 

biological (i.e., natural) forces on analogy with NM, whereas organicists of the early 

twentieth century focused on organization as a nonreducible, system-level property of 

organisms. Many questions in the orbit of vitalism are reflected in contemporary 

discussions, but here we concentrate on how different aspects of reduction gained traction 

when the molecularization of genetics was juxtaposed with a revised form of Nagelian 

theory reduction. The manifold difficulties encountered in applying theory reduction to 

the relationship between classical and molecular genetics encouraged new approaches to 

explanatory reduction that were forged on a wide variety of biological examples where 

theories were much less prominent, especially within the ambit of different approaches to 

scientific explanation (e.g., mechanism descriptions). 

A central motivation for Schaffner’s refinement of the Nagelian model (see 

Section 2) was the putative success of molecular biology in reducing aspects of 
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traditional fields of experimental biology to biochemistry. Although this was a work in 

progress, it was assumed that a logical derivation of classical genetics from a finished 

theory of biochemistry was in principle possible and would eventually be achieved. 

Schaffner’s account and the case of genetics was the touchstone of discussions about 

reduction in philosophy of biology for several decades. Most of the reaction was critical, 

spawning an “antireductionist consensus.” Three core objections were leveled against 

Schaffner’s GRM: 

1. Molecular genetics appeared to be replacing classical genetics, which 

implied that the reductive relations among their representations were moot 

(Ruse 1971, Hull 1974). A suitably corrected version of the higher-level 

theory seemingly yields a different theory that has replaced classical 

genetics in an organic, theory-revision process (Wimsatt 2007, ch. 11). 

2. Nagel and Schaffner assumed that a theory is a set of statements in a 

formal language with a small set of universal laws (Kitcher 1984). The 

knowledge of molecular genetics does not correspond to this type of 

theory structure, which called into question the presumed logical 

derivation required to accomplish a reduction (Culp and Kitcher 1989, 

Sarkar 1998). 

3. GRM focused on formal considerations about reduction rather than 

substantive issues (Hull 1976, Sarkar 1998, Wimsatt 2007, ch. 11). This 

was made poignant in the acknowledgment that GRM was peripheral to 

the actual practice of molecular genetics (Schaffner 1974). If reduction is a 

logical relation between theories that is only “in principle” possible, why 
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should we think GRM captures the progressive success of molecular 

genetics in relation to classical genetics?2 

4.2. Models of Explanatory Reduction 

These three objections—the difference between reduction and replacement in the context 

of theories changing over time, the mismatch between GRM theory structure assumptions 

and the knowledge practices of geneticists, and the gap between in principle formal 

problems and in practice substantive issues—collectively spurred new approaches to 

reduction in biology that were more sensitive to case studies of knowledge development, 

more empirically adequate with respect to the actual reasoning practices observed, and 

more responsive to substantive issues about reduction in practice (Kaiser 2011). These 

models of explanatory reduction differ from theory reduction in at least two salient ways: 

(a) they permit a variety of features as relata in reductions, such as subsets of a theory, 

generalizations of varying scope, mechanisms, and individual facts; and (b) they 

foreground a feature absent from the discussion of GRM, the idea that a reduction 

explains the whole in terms of its parts (Winther 2011). 

One model of explanatory reduction that was animated by all three objections and 

exemplifies different reductive relata is the difference-making principle—gene 

differences cause differences in phenotypes (Waters 1990, 1994, 2000). Waters identifies 

this as a central principle of inference in both classical genetics and molecular genetics. 

An explanatory reduction is achieved between them because the causal roles of genes in 

instantiations of the inference correspond in both areas of genetics. Another model—

explanatory heteronomy—requires that the explanans include biochemical 

generalizations, but the explanandum can be generalizations of varying scope, 
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mechanisms, and individual facts that make reference to higher-level structures, such as 

cells or anatomy (Weber 2005). One of the most prominent models of explanatory 

reduction to emerge in the wake of theory reduction is mechanistic explanation (Darden 

2006, Craver 2007, Bechtel 2011, Bechtel and Abrahamsen 2005, Glennan 1996), but 

whether it should be categorized as explanatory reduction is unclear (see Section 4.3). 

Many models of explanatory reduction focus on how a higher-level feature or 

whole is explained by the interaction of its lower-level constituent parts. These 

approaches stress the importance of decomposing complex wholes into interacting parts 

of a particular kind (Kauffman 1971, Bechtel and Richardson 1993, Wimsatt 2007, ch. 9, 

Sarkar 1998). There is no commitment to the wholes and parts corresponding to different 

sciences or theories in order to achieve a compositional redescription or causal 

explanation of a higher-level state of affairs in terms of its component features (Wimsatt 

2007, ch. 11, Hüttemann and Love 2011). These models avoid the basic objections facing 

GRM and fit well with the absence of clearly delineated theories in genetics, the 

emphasis on a whole being explained in terms of its parts in molecular explanations, and 

the piecemeal nature of actual scientific research. Molecular biology can offer reductive 

explanations despite the fact that many details are left our or remain unexplained. 

4.3. Mechanistic Explanation and Reduction 

Although several philosophers drew attention to the fact that biologists use the language 

of “mechanism” regularly and emphasize explanation in terms of decomposing a system 

into parts and then describing how these parts interact to produce a phenomenon 

(Kauffman 1971, Wimsatt 2007, ch. 9, 11), this was largely ignored because the 

conception of explanation diverged from the predominant deductive-nomological 
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framework (Hempel and Oppenheim 1965[1948]). Explanatory power derived from laws 

in this framework, and their absence from a mechanism description meant they were 

interpreted as either temporary epistemic formulations or, to the degree that they were 

explanatory, reliant on “laws of working” (Glennan 1996, Schaffner 1993). These laws of 

working were presumed to be a part of a lower-level theory that would (in principle) 

reductively explain the features of higher-level entities. 

One of the preeminent reasons offered for a mechanisms approach was its 

ubiquity in practice, both past and present (Darden 2006, Machamer, Darden, and Craver 

2000). Reduction and replacement fail to capture the relations between classical and 

molecular genetics. These sciences deal with different mechanisms that occur at different 

points of time in the cell cycle—classical genetics focuses on meiosis, whereas molecular 

genetics focuses on gene expression—and involve different entities, such as 

chromosomal behavior for classical genetics and nucleotide sequences for molecular 

genetics. Mechanisms approaches share the values of sensitivity to actual knowledge 

development, empirical adequacy with respect to scientific practices, and awareness of 

substantive rather than formal issues. Discussions about mechanistic explanation derive 

from attention to large areas of successful science, especially molecular biology and 

neurobiology, where standard conceptions of theory structure, explanation, and reduction 

seem ill suited to capture actual scientific practices. In this sense, they are motivated by 

the mismatch between GRM theory structure assumptions and the knowledge practices of 

geneticists: “these models do not fit neuroscience and molecular biology” (Machamer et 

al. 2000, 23). 
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Should we understand mechanisms as a variant on explanatory reduction? In one 

sense, the answer is “no” because of a stress on the multilevel character of mechanism 

descriptions. Instead of logical relations between two theories or levels, the entire 

description of the mechanism, which involves entities and activities operating at different 

levels, is required.3 

And yet almost all approaches to mechanistic explanation share the idea of 

explaining by decomposing systems into their constituent parts, localizing their 

characteristic activities, and articulating how they are organized to produce a particular 

effect. Mechanistic explanations illustrate and display the generation of specific 

phenomena by describing the organization of a system’s constituent components and 

activities. Additionally, entities and activities at different levels bear the explanatory 

weight unequally, and it becomes important to look at abstraction and idealization 

practices involved in representing mechanisms (Brigandt 2013b, Levy and Bechtel 2013, 

Love and Nathan forthcoming). These show patterns of reasoning where some kinds of 

entities and activities are taken to be more explanatory than others. To the degree that 

these are lower-level features, a form of explanatory reduction may be occurring. 

Discussions of “bottoming out” are germane to sorting out this possibility. The existence 

of “components that are accepted as relatively fundamental” (Machamer et al. 2000, 13) 

provides a clear rationale for why biologists often label mechanistic descriptions as 

reductive. That one science takes restricted types of entities or activities as fundamental, 

and another science takes different types of entities or activities as fundamental, does not 

mean reduction is inapplicable. 
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Whether mechanistic explanation circumvents discussions of explanatory 

reduction is an open question (Craver 2005). A core reason for the difficulty in answering 

the question is that mechanisms approaches are sometimes advanced as a package deal; 

they not only avoid reductionism but also provide a novel conception of how knowledge 

is structured and account for how scientific discovery operates. But once a shift has been 

made from theory reduction to explanatory reduction, many of the issues comprising 

Schaffner’s GRM package become disaggregated. The crucial issue becomes 

characterizing reduction so as to better identify what assumptions are and are not being 

made about associated issues, such as theory structure or explanation (Sarkar 1998). 

4.4 Standard Objections to Models of Theory and Explanatory 

Reduction 

Although Schaffner’s GRM faced a variety of specific objections, there are two standard 

objections to both theory and explanatory reduction that routinely arise: (a) context: the 

effects of lower-level entities and their interactions depend on the context in which they 

occur, which leads to one-many relations between lower-level features and higher-level 

features; and (b) multiple realization: higher-level features can be implemented by 

different kinds of lower-level features, so that many-one relations between lower-level 

features and higher-level features obtain. We cannot do justice to the complexity of these 

standard objections, but it is important to describe their main contours (see Brigandt and 

Love 2012). 

Classical geneticists were aware of the fact that a phenotype is brought about by 

the interaction of several classical genes—the same allele may lead to two different 

phenotypes if occurring in two individuals with a different genotype (Waters 2004). 
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There are many situations where the relationship between lower-level features and 

higher-level features is context dependent (Gilbert and Sarkar 2000, Hull 1974, Wimsatt 

1979, Burian 2004). These different contexts include the developmental history, spatial 

region, and physiological state of a cell or organism. Reduction seems to fail because 

there is a one-many relation between lower-level and higher-level features, both 

compositionally and causally. The context of the organized whole is somehow primary in 

understanding the nature and behavior of its constituent parts. 

Proponents of theory reduction have replied that a molecular reduction can take 

the relations of parts and the context of lower-level features into account. For example, 

one could specify the relevant context as initial conditions so that the higher-level 

features can be deduced in conjunction with premises about lower-level features. This 

strategy is subject to an objection plaguing Schaffner’s GRM—scientists simply do not 

do this. The logical derivation of theory reduction would require that a representation of 

higher-level features be deduced from premises containing any and all of the lower-level 

context (internal or external) that is causally relevant. This may be possible in principle 

but not in practice. Models of explanatory reduction avoid this concern entirely. 

Explanations can highlight one among many causes, relegating everything else to the 

background, which is often held fixed in experimental studies. Explanations can appeal to 

a gene as a salient causal factor relative to a context even if the other genes involved in 

the phenotype are unknown and the cellular context of the gene has not yet been 

understood (Waters 2007). If biologists discover that the same mechanism produces 

different effects in distinct contexts, and only one of these effects is the target of inquiry, 



	  

	   27	  

then the relevant aspects of the context can be included (Delehanty 2005). In this respect, 

models of explanatory reduction have a clear advantage over models of theory reduction. 

Turning to multiple realization, the fact that higher-level features can be 

implemented by different kinds of lower-level features (many-one relations) also seems 

to challenge reductions. Knowledge of the lower-level features alone is somehow 

inadequate to account for the higher-level feature. For example, higher-level wholes can 

be composed of different lower-level component configurations or produced through 

causal processes that involve different interactions among lower-level components 

(Brigandt 2013a). Schaffner defends GRM against this objection by emphasizing that it is 

sufficient to specify one such configuration of lower-level features from which the 

higher-level feature can be derived (Schaffner 1976). This reply is inadequate because 

scientists usually attempt to explain types of higher-level phenomena rather than tokens; 

for example, not this instantiation of classical genetic dominance in pea plants but 

classical genetic dominance in sexually reproducing multicellular organisms. Token-

token reduction may be possible but is relatively trivial epistemologically, whereas type-

type theory reduction is empirically false due to multiple realization (Fodor 1974, 1997, 

Kimbrough 1978). 

One inference that has been drawn from this result is that higher-level theories are 

justified in abstracting away from irrelevant variation in lower-level features to arrive at 

explanatory generalizations that involve natural kinds at higher levels (Kitcher 1984, 

Strevens 2009), though lower-level features may be informative for exceptions to a 

higher-level generalization. Models of explanatory reduction must deal with many-one 

relations between lower-level features and higher-level features, but it is a potentially 
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manageable problem. One mitigation strategy is to challenge the commitment to 

unification that implies there is an explanatory loss in appealing to the multiply realized 

“gory details” (Waters 1990). Scientists find explanations of higher-level phenomena in 

terms of disjunctive lower-level types preferable in many cases. More generally, 

scrutinizing this lower-level heterogeneity facilitates a fine-grained dissection of 

compositional and causal differences that are otherwise inexplicable at the higher-level 

(Sober 1999). Thus models of explanatory reduction can manage multiple realizability 

objections through an emphasis on different explanatory virtues. Sometimes a lower-level 

explanation is better relative to one virtue (e.g., specificity), while a higher level 

explanation is preferable relative to another (e.g., generality). 

4.5 Case Studies: Molecular, Developmental, and Behavioral Biology 

Despite the emphasis on the relationship between classical and molecular genetics, 

philosophers of biology have analyzed reduction in other domains, such as evolutionary 

biology (Beatty 1990, Dupré 1993, Rosenberg 2006, Okasha 2006). Three brief examples 

from molecular, developmental, and behavioral biology are valuable in surfacing further 

conceptual issues relevant to models of explanatory reduction. 

All models of explanatory reduction require representing the phenomena under 

investigation, just not always in terms of a theory (Sarkar 1998). Mathematical equations, 

scale miniatures, and abstract pictorial diagrams are examples. Every epistemological 

reduction involves a representation of the systems or domains to be related. Discussions 

surrounding the standard objections of one-many and many-one relationships in 

biological systems largely ignore questions related to representation, such as idealization 

or approximation, even though these have an impact on arguments about reduction. For 
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example, hierarchical levels (“higher” and “lower”) can be represented in different ways. 

Questions of one-many or many-one relations between different levels can be answered 

differently depending on how a hierarchy is represented (Love 2012). The decomposition 

of a system into parts depends on the principles utilized, such as function versus 

structure, and these can yield competing and complementary sets of part representations 

for the same system (Kauffman 1971, Wimsatt 2007, ch. 9, Bechtel and Richardson 1993, 

Winther 2011). Therefore, questions of representational choice and adequacy need to be 

addressed prior to determinations of whether reductive explanations succeed or fail. One 

can have successful reductions of features of complex wholes to constituent parts under 

some representations and simultaneously have failures of reduction under different 

representations, a situation that scientists methodologically exploit for the purpose of 

causal discovery (Wimsatt 2007, ch. 12). 

In addition to hierarchy, another representational issue salient in biological 

explanations is temporality (Hüttemann and Love 2011). In most discussions of 

explanatory reduction, no explicit distinction has been drawn between compositional or 

spatial relations (arrangements) and causal or temporal relations (dynamics). Spatial 

composition questions have dominated, but biological models are frequently temporal if 

not explicitly causal (Schaffner 1993).4 This is because a key aim is to explain how the 

organizational relations between parts change over time. Scientific explanations 

commonly invoke dynamic (causal) processes involving entities on several levels of 

organization (Craver and Bechtel 2007). Temporality takes on special significance in 

developing organisms where interactions over time among parts bring about new parts 

and new interactions (Parkkinen 2014). An orientation toward compositional reduction 
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has encouraged an assumption of no change in the constituency of a whole being related 

to its parts. 

Protein folding within molecular biology illustrates the importance of temporality 

(Love and Hüttemann 2011, Hüttemann and Love 2011). Functional proteins are folded 

structures composed of amino acid components linked together in a linear chain. If we 

ask whether the folded protein is mereologically composed of its amino acid parts given 

current representations in molecular biology, then we get an affirmative answer for an 

explanatory reduction with respect to composition. But if we ask whether the linear 

amino acid chain folds into a functional protein (a causal process with a temporal 

dimension) purely as consequence of its linked amino acid parts, then the answer is less 

clear. Empirical studies have demonstrated that other folded proteins (i.e., wholes) are 

required to assist in the proper folding of newly generated linear amino acid chains 

(Frydman 2001). The significance of temporality and dynamics is foregrounded precisely 

because the linked amino acid components alone are sufficient constitutionally but 

insufficient causally (Mitchell 2009), and the relations concern only molecular biological 

phenomena (as opposed to higher levels of organization, such as cells or anatomy). 

Once the distinction between composition and causation is drawn, another issue 

related to representation becomes visible: reductive causal explanations that involve 

appeals to more than one type of lower-level feature (Love 2015, forthcoming). 

Explanations in developmental biology can be interpreted as reductive with respect to the 

difference-making principle (Waters 2007). Genetic explanations identify changes in the 

expression of genes and interactions among their RNA and protein products that lead to 

changes in the properties of morphological features during ontogeny (e.g., shape or size), 
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while holding a variety of contextual variables fixed. Another type of reductive 

explanation invokes mechanical forces due to the geometrical arrangements of mesoscale 

materials, such as fluid flow (Forgacs and Newman 2005), which also can be interpreted 

as ontogenetic difference makers. Instead of preferring one reductive explanation to 

another or viewing them as competitors, many biologists seek to represent the combined 

dynamic of both types of lower-level features to reductively explain the manifestation of 

higher-level features of morphology: “an increasing number of examples point to the 

existence of a reciprocal interplay between expression of some developmental genes and 

the mechanical forces that are associated with morphogenetic movements” (Brouzés and 

Farge 2004, 372, Miller and Davidson 2013). 

Finding philosophical models for the explanatory integration of genetics and 

physics is an ongoing task, but the ability to represent these causal relations in temporal 

periodizations is a key element of explanatory practice (Love forthcoming). This type of 

situation was not recognized in earlier discussions because reduction was conceptualized 

in terms of composition rather than causation and as a two-place relation with a single, 

fundamental lower level. A reductive explanation of a higher-level feature in terms of 

two different kinds of lower-level features was unimagined (and ruled out) within theory 

reduction because of the layer-cake view of theories corresponding to distinct levels of 

organization. It was ignored in most models of explanatory reduction, which focused on 

dyadic relations between classical genetics and molecular genetics or morphology and 

molecules. 

The possibility of reductive explanations involving both molecular genetics and 

physics is a reminder that we routinely observe the coordination of a multiplicity of 
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approaches, some reductive and others not, in biological science. An illuminating 

example is the study of human behavioral attributes such as aggression and sexuality 

(Longino 2013). Several different approaches to these behaviors can be distinguished, 

such as quantitative behavioral genetics, social-environmental analysis, molecular 

behavioral genetics, and neurobiology. Some of these are reductive in the sense of 

identifying lower-level features (e.g., genetic differences) to account for higher-level 

features (i.e., behavioral differences); others are not (e.g., social-environmental 

differences). Reductive relationships exist among the approaches themselves, such as the 

relationship between quantitative behavioral genetics and molecular behavioral genetics. 

When examined closely, Longino shows that different approaches conceptualize the 

higher-level phenomenon of behavior differently (e.g., patterns of individual behavior or 

tendencies in a population) and parse the space of causal possibilities differently (e.g., 

allele pairs, neurotransmitter metabolism, brain structure, and parental income). Each 

approach, reductive or otherwise, is limited; there is no fundamental level in the science 

of behavior and no single hierarchy of parts and wholes in which to organize the 

approaches.5 There can be multiple successes and failures of different kinds of reductive 

explanation within the study of aggression and sexuality, but these arise from different 

representational assumptions and explanatory standards—multiple concepts of reduction 

are required simultaneously. 

5. Conclusion 

A major theme emerging from the previous discussion is that the epistemological 

heterogeneity and patchwork organization of the natural sciences requires an array of 

concepts to capture the diversity of asymmetrical, reductive relations found in the 
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sciences, in addition to symmetrical, coordinative relations. This theme has been tracked 

in the growing specialization within philosophy of science, but it also has nurtured a 

growing rift between metaphysical questions about reductionism and epistemological 

questions about reduction. The “in practice” successes or failures of particular 

explanatory reductions do not yield straightforward building blocks for various projects 

in metaphysics that frequently demand more universal claims about the existence, 

availability, or desirability of reductions (i.e., forms of reductionism). A shift toward in 

practice considerations does not mesh tightly with metaphysical projects, such as 

deciding whether a higher-level feature is emergent and not reducible, and therefore the 

significance of debates about mechanistic explanation and models of explanatory 

reduction may appear irrelevant to topics of discussion in philosophy of mind or 

metaphysics. 

We offer a procedural recommendation by way of a conclusion: given the 

existence of many senses of reduction that do not have straightforward interrelations, 

terminology such as “reductionist versus anti-reductionist” should be avoided. It is more 

perspicuous to articulate particular metaphysical and epistemological notions of reduction 

and then define acceptance or rejection of those notions or their failure or success in 

specific areas of science. This means it will be possible to argue for the success and 

failure of different types of reduction simultaneously within a domain of inquiry 

(Hüttemann and Love 2011). There is a strong rationale for talking about different kinds 

of reduction rather than in terms of a unified account of reduction or overarching 

dichotomies of reductionism versus anti-reductionism. Once we incorporate distinctions 

regarding different types of epistemological reduction (e.g., Nagel reduction, limit-case 
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reduction, and part-whole reduction), the different interpretations of these types (e.g., the 

difference-making principle versus mechanisms as types of explanatory reduction), the 

different kinds of explanatory virtues that operate as standards (e.g., logical derivation, 

specificity, and generality), and the different kinds of representational features involved 

(spatial composition, causal relationships, or temporal organization), it is problematic to 

seek a single conception of reduction that will do justice to the diversity of phenomena 

and reasoning practices in the sciences. No global notion of reduction accurately 

characterizes what has occurred in the past or is currently happening in all areas of 

scientific inquiry. A pluralist stance toward reduction seems warranted (Kellert et al. 

2006). 
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Figure 1 

Kinetic energy as a function of the velocity of a particle relative to some observer 

(measured in v/c), as predicted by Newtonian mechanics and the special theory of 

relativity. 

Attribution: By D. H (Own work using Gnuplot) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-

sa/3.0)], via Wikimedia Commons (http://upload.wikimedia.org/wikipedia/commons/3/37/Rel-Newton-

Kinetic.svg) 

                                                             
1 “[I]n the case of (N)M and STR it is more natural to say that the more general STR 

reduces to the less general (N)M in the limit of low velocities. Epitomizing this 

intertheoretic reduction is the reduction of the Einsteinian formula for momentum, 

p = m0v / √ (1 − (v/c)2), where m0 is the rest mass, to the classical formula p = m0v 

in the limit as v→0” (Nickles 1973, 182). 
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2 Other formal approaches to theory structure also failed to capture the actual practices of 

scientific reasoning in genetics, thereby running afoul of the latter two objections 

(Balzer and Dawe 1986a, 1986b). 

3 “Higher-level entities and activities are . . . essential to the intelligibility of those at 

lower levels, just as much as those at lower levels are essential for understanding 

those at higher levels. It is the integration of different levels into productive 

relations that renders the phenomenon intelligible and thereby explains it” 

(Machamer et al. 2000, 23). 

4 A very different distinction utilizing time separates the historical succession of theories 

via reduction—diachronic reduction—from attempts to relate parts to wholes, 

such as in explanatory reduction or interlevel theory reduction —synchronic 

reduction (Rosenberg 2006, Dupré 1993). 

5 “Each approach offers partial knowledge of behavioral processes gleaned by application 

of its investigative tools. In applying these tools, the overall domain is parsed so 

that effects and their potential causes are represented in incommensurable ways. 

We can (and do) know a great deal, but what we know is not expressible in one 

single theoretical framework” (Longino 2013, 144). 


