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Abstract 

This work presents an analytical approach for solving the non-linear mechanical response of 

hybrid glass fibers reinforced graphene polymer composite materials. Two-scale 

homogenization technique derives the effective properties of the composite. At the first scale, 

the properties of a 2-phases graphene/polymer composite are obtained by accounting for the 

J2 plasticity coupled with the “Lemaitre-Chaboche” ductile damage model. An interfacial 

imperfection between the fillers and the matrix is considered through the linear spring model 

LSM. At the second scale, the modeling of the 3-phases glass fibers/graphene/polymer 

composite combines the 2-phases composite as a matrix phase in which are embedded the glass 

fibers. For both scales, a modified Mori-Tanaka scheme derives the effective properties. 

Numerical results, obtained for a thermoplastic PA6 matrix, are compared with the multistep 

method of Digimat software. Finally, a tension-torsion test shows that the imperfection of 

fibers/polymer interface is the driven parameter to weaken the mechanical responses in the 

shear direction. 

Keywords: graphene nanoplatelets, micromechanics, interface, ductile damage, 3-phases composite 
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1. Introduction 

Fibers reinforced polymer composite materials FRPCMs are well acknowledged for lightweighting 

due to their outstanding mechanical properties and high strength to weight ratio. However, 

FRPCMs need to overcome certain drawbacks related to poor transverse mechanical properties [1] 

and an interfacial interaction problem [2, 3] leading to an ineffective stress transfer and easy crack 

initiation and propagation [4]. The solution for such limitations passes upon the development of new 

fillers that can preserve the composite interfacial properties. As a contribution for solving such 

limitations, graphene based nanocomposites have been widely used for enhancing the 

multifunctional properties of polymer composite materials [5-11]  

Besides, the development of advanced hybrid graphene-based polymer composites constitutes an 

efficient way to replace conventional composites in structural applications. Indeed, hybrid glass 

fibers GF reinforced graphene nanoplatelets GNP polypropylene PP composites have shown that 

the combined effect of the two fillers of rather different size scales i.e. micro- and nanoscale can 

lead to significant improvement of the tensile modulus and impact strength [12, 13]. Moreover, the 

dispersion of the nanofiller in the PP matrix promoted the formation of a stronger interface between 

the matrix and GF. The carbon fibers CF and GNPs reinforced poly-arylene ether nitrile (PEN) 

PEN/CF/GNP composites have demonstrated the synergic effect of combining reinforcements to 

deliver excellent mechanical properties higher 1.7, 4.5 and 6.4 times larger than those of PEN/CF 

composites, PEN/GNP composites and PEN host, respectively [4]. Several experimental techniques 

investigate the mechanical and interfacial properties of the hybrid fibers/nanofillers/polymer 

composites [14-16]. However, few researches [17, 18] have been devoted to the modeling and 

simulation of the hybrid nanocomposites. Except works by Feng et al. [19, 20] on the reorientation of 

graphene platelets on the mechanical properties of polymer nanocomposites, there is a lack of 

analytical developments (at the authors’ best knowledge) devoted to the multiscale modelling of 

the hybrid nanocomposites to support simulations for structural applications. 
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In this work, an algorithm based on a multiscale modelling is proposed for deriving the hierarchical 

mechanical properties of the hybrid fibers reinforced graphene polymer matrix composites 

FRGPMCs. Multiscale modeling represents a powerful tool for dealing with the effective 

properties of composite materials. Boehm [21] proposes a good review of the multiscale modeling 

based on micromechanics approaches. Herein, the graphene is considered as continuum platelets 

embedded within a rate-independent elasto-plastic polymer matrix. For the nonlinear matrix, 

Lemaitre and Chaboche’s model introduces a ductile damage behavior within the composite. A 

linear spring model LSM studies the interface between the reinforcements and the matrix. As a 

homogenization scheme, a modified Mori-Tanaka scheme derives the effective non-linear response 

of the 2-phases composite. Next, the fibers are embedded within the 2-phases composite leading to 

the 3-phases composite. Numerical results show that the volume fraction and the interfacial sliding 

coefficient have an influence on the effective nonlinear stress-strain behavior. It is shown through a 

tension-torsion loading that the fibers/polymer interface is the parameter to damage the composite 

mainly under a shear loading. 

 

2. Micromechanics formulation 

 

2.1. Effective properties based on the LSM model 

Let us consider a macroscopic homogeneous and microscopic heterogeneous material under the 

assumption of a representative volume element RVE. The associated boundary-value problems are 

formulated, in the terms of uniform macro field traction vector or linear displacement fields with 

body forces and inertia term neglected. The effective properties are given by: 

    
1eff

ijkl ijmn mnkl

V

C c r A r dV
V

   (1) 

Or in others terms 
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with I
c , I

A , If  the uniform stiffness tensor, the global strain concentration tensor and the volume 

fraction of phase I respectively. By considering the interface between two phases of a composite 

material, the linear spring model LSM supposes the continuity of the traction vector across the 

interface while the jump of displacement field is considered to be proportional to the traction on 

that interface. Based on these assumptions, the modified Mori-Tanaka effective properties for 

multiphasic composite are given such as [22-24]: 
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where I
a  states for the local strain concentration tensor of the phase I . The relationship between 

the global I
A and local I

a  strain concentration tensors yields: 
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 (4) 

In Eq. (4), M
S and I

H  denote the modified Eshelby’s tensor and a four-order tensor depending on 

the interface properties and the geometry of the inclusion, respectively. Expressions of M
S and I

H  

for ellipsoidal inclusions can be found in works by Qu [25, 26]. The modified Eshelby's tensor for this 

problem yields: 

    : : :   M
S S I S H I Sc  (5) 

where S  denotes the original Eshelby's tensor [27]. The components of the interfacial tensor H  are 

given by: 

  ijkl ijkl ijklH P Q      (6) 
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where ijklP  and ijklQ  are given for ellipsoidal inclusions by: 
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The constants   and   stand for the extent of interfacial sliding and the interfacial separation, 

respectively. 

 

2.2 Ductile damage tangent modulus 

 

The concept of the effective stress ̂  describes the damage variable D (0 ≤ D < 1). It characterizes 

the undamaged representation of the RVE. The effective stress is related to the damaged stress   

such as: 

 
 

ˆ
1 D
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  (8) 

Doghri and Ouaar [28] define at least two tangent operators for the non-linear stiffness: the effective 

elasto-plastic ˆ ep
C tangent operator, which is derived from the rate constitutive equation, and the 

algorithmic lga
C  (algorithmic effective lgˆ a

C ) tangent operator, which is solved using a 

discretization in the time interval  1,n nt t  . These tangent operators are related to the rate of the 

constitutive equation as follows: 
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The above tangent operators are obtained from the classical 
2

J plasticity and “Lemaitre-Chaboche” 

ductile damage model such as: 
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 (10) 

The effective elasto-plastic ˆ ep
C tangent operator yields: 
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while the effective algorithmic lgˆ a
C tangent operator is given by: 

 

 
2lg
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In equations (11) and (12),   denotes the material shear modulus while el
C represents the elastic 

stiffness tensor and  R p  is the hardening stress function with p  the accumulated plastic strain. N  

represents the normal to the yield surface in the stress space. tr
eq  denotes a trial elastic predictor of 

eq . dev
I  stands for the deviatoric part of the fourth order symmetric identity tensor. The internal 

variables such as p  and tr
eq  are important for computing the algorithmic tangent operator in Eq. 

(12). Azoti et al. [29] present a detailed procedure about the update of internal variables.  

lga
C  will be later used to determine the effective behavior of the composite using the modified MT 



 
    

 7 

scheme by Eqs. (3)-(7). From the Eq. (9) the algorithmic tangent operator lga
C can be obtained by: 

  lg lgˆ1
a aD C C  (13) 

3. Methods for the hierarchical modelling 

3.1. Modelling strategy 

The multiscale strategy shown by Figure 1 is set up around two points: 

 The modelling of 2-phases graphene/polymer composite. The mechanical properties of the 

graphene which are widely derived at the atomistic scale [30, 31] are considered through 

graphene platelets GNPs as continuum phases interacting with a rate-independent elasto 

plastic polymer matrix. The composite response is therefore computed under a boundary 

value problem by applying static or kinematic admissible loading. Mean-field 

homogenization schemes for instance the Mori-Tanaka are applied to obtain the overall 

response [22-24]. 

 The modelling of 3-phases fibres/graphene polymer composite. It consists on a double-

scale approach combining the 2-phases graphene/polymer composite developed above as 

matrix phase in which are embedded the fibers. The derivation of the effective properties 

remains analytical-based formalism. 

 

 

Figure1: Schematics of the multiscale modelling of the hybrid 3-phases composite. 
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3.2. Volume fraction management 

Let us consider the 3-phases composite and let us denote 0,  ,  F I   the volume fraction of the 

fibers, the GNPs and the polymer matrix respectively. They represent the input volume fractions of 

the problem. The total volume fraction T is given such as: 

 0 1T F I        (14) 

The volume fraction 0I of the 2-phases composite (GNPs/Polymer) considered as a matrix is given 

by: 

 0 0 1I I T        (15) 

Within the 2-phases composite (GNPs/Polymer), let us denote 0,  If f the volume fraction of GNPs 

and the polymer matrix respectively. These volume fractions yield: 
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f
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f f
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
  



 (16) 

In summary, the effective properties of the 2-phases composite (GNPs/Polymer) are computed with 

0,  If f  while the effective properties of the 3-phases composite are computed with 0,  ,  F I   . These 

volume fractions will be used in the sequel for deriving the mechanical properties through a 

developed algorithm. 

 

3.3. Algorithm for solving the effective properties 

The input for the algorithm is the strain increment Ε , which comes either analytically or 

numerically from Finite Element code. Ε  is split between the phases of the 3-phases 

composite.Voigt assumption states the strain increment in the fibers while an averaged technique 

expresses the strain increment in the 2-phases Graphene/Polymer composite considered as a matrix. 
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Inside the 2-phases Graphene/Polymer composite, the strain increment is one more time switched 

between the Graphene inclusions and the Polymer matrix. Once the strain field is well equilibrated 

between the phases after a convergence check, the modified Mori-Tanaka scheme for imperfect 

interfaces computes the global strain concentration tensor and the effective properties of the 2-

phases composite. At the next step, these effective properties for the 2-phases composite are used 

conjunctly with the algorithmic tangent modulus of the fibers to provide the whole 3-phases 

composite with the global strain concentration tensor and finally the effective tangent modulus 

through a convergence checking. The output of the algorithm is the stress increment  , which 

describes the multiscale modelling of the hybrid composite. The following steps summarize the 

constitutive algorithm presented in Figure 2. 

1. Initialization of the strain increment in the fibers :
F F

  A E   such as 
F
A I  

Update the stress in the fibers and compute the fibers algorithmic modulus lga

FC  using Eq.(13) 

Apply the mid-point rule at time nt    to the algorithmic moduli of the fibers such as 

   lg lg lg

1
1 ,  0,1a a a

F F Fn n n
  

 
             C C C  

2. Compute the strain increment in the 2-phases composite 0

1

F
I F

F





  
 



E 
  

2.1. Initialization of the strain increment in the GNP 0
:

I I I
  A    such as 

I
A I  

Update the stress in the GNP and compute the GNP algorithmic modulus lga

IC  using 

Eq.(13) 

Apply the mid-point rule at time nt    to the algorithmic modulus of the GNP such as 

   lg lg lg

1
1 ,  0,1a a a

I I In n n
  

 
             C C C  

2.2 Compute the strain increment in the polymer matrix 
0

0

1

I I
I

I

f

f

  
 



 
  

Update the stress in the matrix and compute the matrix algorithmic modulus lg

0

a
C  using 

Eq.(13) 
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Apply the mid-point rule at time nt    to the algorithmic modulus of the matrix such as 

   lg lg lg

0 0 0 1
1 ,  0,1a a a

n n n
  

 
             C C C  

2.3 Compute the global strain concentration tensor of GNP such as 0
:

I I
A a   using Eq.(4) 

2.4 Compute the residual 0
:

I I I
R   A    

2.5 If 8TOL=10R  , then exit the loop and go to step 2.7 

2.6 Else, go to step 2.1 using the computed value of the global strain concentration tensor I
A  

2.7 Compute the effective tangent modulus eff
IOC  of the 2-phases composite using Eq.(3) along 

with the algorithmic moduli in steps 2.1 and 2.2 

3. Using eff
IOC as a matrix phase, compute global strain concentration tensor of the fibres such as 

0
:

F F I
A a   using Eq.(4) 

4. Compute the residual :
F F

R   EA   

5 If 8TOL=10R  , then exit the loop and go to step 7 

6. Else, go to step 1 using the computed value of the global strain concentration tensor of the fibres 

F
A  

7. Compute the effective tangent modulus eff
FIOC  of the 3-phases composite using Eq.(3) along with 

the algorithmic modulus in step 1 and the effective tangent modulus eff
IOC  in step 2.7 

8. Finally, compute the macroscopic stress increment :eff
FIO  C E  
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Figure2: Algorithm for solving the nonlinear response of the 3-phases composite 
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4. Results and discussions 

Numerical results are conducted on a 3-phases composite. As the matrix phase, a thermoplastic 

PA6 polymer is used while graphene platelets GNPs and short E-Glass fibres are considered as 

reinforcements. In order to simulate the aspect ratio AR , ellipsoidal inclusions of dimensions 

 1 2 3, ,a a a  with aspect ratio AR  such as 3 1AR a a  and 1 2a a a   are used for the homogenization. 

A pure sliding case is considered i.e 0   and 0  . The sliding interfacial separation constant   

is given such as 0 0a    with 0  the sliding coefficient, a  the ellipsoid semi-axis and 0  the 

shear modulus of the matrix. Since two interfaces are concerned in this work, it is denoted by 01  

the sliding coefficient for the interface between the graphene nanoplatelets and the polymer matrix 

while 02  stands for the sliding coefficient of the interface between the short E-Glass fibers and the 

polymer matrix. Material properties used for the analysis are gathered in Table1 and Table 2. The 

aspect ratio of the GNPs and that of the short E-Glass fibers are given by Table 3. 

 

Table 1: Material properties for the reinforcements 

Short E-Glass fibers Graphene G2NAN 

EGFE  
EGF  

IE  
I  

85 GPa 0.23 700 GPa 0.22 

 

Table 2: Material properties for the polymer matrix  

Matrix (Polymer PA6-B3K) 

0E  
0  

Y  k  m  0S  
s  

2000 MPa 0.39 60.5 MPa 63 MPa 0.4 2 MPa 0.5 
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Table 3: Aspect ratio AR  for the reinforcements 

Aspect Ratio AR  

Graphene platelets GNPs Short E-Glass fibers 

3
10AR


  10AR   

 

The GPNs are assumed elastic while the PA-6 matrix is considered elasto-plastic with an isotropic 

hardening power law defined as   mR p kp . The macro stress-strain response is studied under 

uniaxial loading. The loading is given by a macro stain increment such as  E E =   with 

 1 1 2 2 3 3

1

2
     e e e e e e . The effective response of the composite is assessed through different 

design parameters for instance the platelets aspect ratio AR , the volume fraction 
I

f  and the interface 

sliding coefficient 
01

 , 
02

 for both interfaces. 

Figure 3 shows the evolution of the effective stress versus the equivalent strain for different volume 

fraction F  of short glass fibers. The analyses have been conducted for 2 sets of volume fraction 

F  mainly lower and moderate volume fractions. Figure 3.a-b addressed the studied volume 

fractions. In both cases, the effective behavior is enhanced with the increase of F . The higher the 

volume fraction F , the better the equivalent stress of the 3-phases composite material. The results 

are plotted along with the PA-6 matrix behavior. Present developments are compared with 

simulations performed with Digimat-MF [32]. Indeed, for low volume fraction F , a fair agreement 

is found between the present model and Digimat. However, Digimat overestimates present 

modelling when F  increases. Indeed, the Mori-Tanaka scheme has been implemented for both 

scales i.e the 2-phases and 3-phases composites while Digimat employs the so-called “multi-step” 

procedure for dealing with the homogenization of composite materials, which contain more than 2 

phases. The multi-step procedure therefore uses a different approach. A first step consists on the 

separation of the multiphasic composite into several domains of 2-phases composites that will be 

homogenized by the Mori-Tanaka scheme. A Voigt model is then used afterwards for the final 
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effective response of the multi-phasic composites. The present development and the “multi-step” 

procedure are quite different approaches. This fact is explaining the gap obtain for high volume 

fraction of F . 

 

 

(a) 

 

(b) 

 

Figure 3: Effective response of 3-phases composite under uniaxial loading: (a) low volume 

fraction; (b) increasing volume fraction 

Figure 4 presents the influence of the imperfection at both scales of the 2-phases and 3-phases 

composites. The effective response for the 2-phases composite is presented in Figure 4-a. The 

sliding coefficient 01  shows an influence on the stress-strain response. Even the variation seems 

very weak, the higher the sliding coefficient 01 , the weaker the 2-phases composite response. 

Figure 4-b presents the combined effect of a sliding at both 2-phases and 3-phases composites. The 

higher 02 , the weaker the mechanical response in terms of young modulus, yield stress and 

hardening modulus. 
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(a) 

 

(b) 

 

Figure 4: Effect of the imperfection on the response of 2-phases and 3-phases composites: (a) 2-

phases composite; (b) 3-phases composite. 

Besides, the damage parameter D  within the polymer matrix PA6 is studied versus the volume 

fraction F  in Figure 5. Beyond the elastic zone, the volume fraction F  has an impact on the 

damage of the matrix, which increases when F  is high. A similar trend is confirmed for the strain 

energy release Y  of the 3-phases composite as shown by Figure 5-b. The higher the volume 

fraction F , the higher the strain energy release. 

 

 

(a) 

 

(b) 
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Figure 5: Damage and strain energy release for a perfect interface under uniaxial loading: (a) 

Damage parameter; (b) Strain energy release 

 

 

(a) 

 

(b) 

 

Figure 6: Damage and strain energy release for an imperfect interface under uniaxial loading: (a) 

Damage parameter; (b) Strain energy release 

Figure 6 shows the variation of the damage parameter D  and the strain energy release Y  as a 

function of the interfacial sliding coefficient. It is seen in Figure 6-a that the damage D  increases 

highly from the imperfection interface to the configuration of the perfect interface. No significant 

variation is noticed in the evolution of D  for imperfect interface when 02  has increased. The 

damage D  and the sliding coefficients are the parameters that weaken the material stiffness. We 

assume no coupling between these parameters, which remain independent variables. Concerning 

the strain energy Y , a huge difference is noticed between the perfect interface and the imperfect 

one. In addition, for the imperfect interface, the sliding coefficient 02  shows an impact on the 

strain energy Y , the higher 02 , the lower the strain energy Y . In general, the strain energy Y  

decreases when the imperfection is growing within the microstructure. 
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(a) 

 

(b) 

 

Figure 7: Effective response of 3-phases composite under tension-torsion loading: (a) 

GNPs/polymer interface 01 ; (b) Glass fibers/polymer interface 02  

Results in Figure 7 have been obtained for a tension-torsion loading. The loading is given by a 

macro time dependent stain increment  tE  such as: 

       33 1 1 2 2 3 3 13 1 3 3 1 2 3 3 2

1 1

2 2
t E t E t

 
                  

 
E e e e e e e e e e e e e e e  (17) 

where the analytical expressions of the axial  33E t  and shear  13E t  strain components can be 

deduced from Figure 2b of works by Lahellec and Suquet [33]. Both interfacial conditions 

represented by 01  for the graphene/polymer interface and 02  for the fibers/polymer interface are 

considered in the analysis. Firstly, .an axial strain  33E t  is applied with no applied shear. This 

stage corresponds to a tensile loading. A decrease of the tensile modulus 33  is therefore obtained 

in Figure 7-a from a perfect interface case 01 0.0   to an imperfect case for instance 01 0.5   with 

respect to the GNPs/polymer interface. A similar trend is observed in Figure 7-b for the 

fibers/polymer interface. Next, a shear deformation  13E t  is applied while the axial strain  33E t  

is kept constant at its maximum threshold. The modulus 13  increases under this loading condition. 

Finally, axial strain  33E t  is decreased to zero while the shear strain  13E t  is kept constant. For 
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these last loading condition, a decrease in the composite response is noticed versus the sliding 

coefficients 
01

  and
02

 . It appears from a comparison between Figure 7-a and Figure 7-b that 

below a sliding coefficient value, the fibers/polymer interface is the principal driven mechanism in 

the degradation of the composite stiffness in the shear direction 13 . 

 

5. Conclusion 

The nonlinear effective mechanical properties have been studied during this work, for hybrid fibers 

reinforced graphene polymer matrix composites. To deal with the material length scale, the 

modelling strategy is based on mean-field homogenization techniques. Interfacial imperfections 

mainly the GNPs/Polymer and the fibers/polymer interfaces are considered through a linear spring 

model LSM. Three phases are involved in the modelling leading to a hierarchical modelling 

strategy. The volume fraction of the fibers and the sliding coefficient at the interface as well as the 

aspect ratio are the selected design parameters of the study. 

Numerical results, performed on a short Glass fibers reinforced GNPs polymer PA6 matrix, show 

that the volume fraction and the sliding coefficient greatly influence the effective nonlinear stress-

strain behavior. The higher the volume fraction of the fibers, the stiffer the composite. The higher 

the sliding coefficient, the lower and softer the mechanical response of the composite. On the other 

hand, it has been seen through a tension torsion loading that the fibers/polymer interface is the most 

likely parameter to damage the composite mainly under a shear loading. The developed 

methodology is versatile modeling, which is used analytically in this work. As a perspective, it will 

be implemented numerically through a user-defined material UMAT for analyzing the multiscale 

behavior of the 3-phases composites for automotive applications like crashworthiness. 
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