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Abstract. Glucose regulation is an essential function of the human body which enables energy to be effectively utilized by the brain,
organs and muscles. This regulation operates in a cyclic manner, in different periodic regimes. Indeed, ultradian rhythms with a
period of 70 to 150 minutes have been clinically observed in healthy patients under various glucose stimulation patterns. Various
models of these oscillations in plasma glucose and insulin have shown that the presence of two delays in hepatic glycogenesis and
pancreatic insulin secretion provide a pathway for explaining these oscillations. The efficacy of this control is typically reduced in
the presence of diabetes. In this contribution, we adopt the presence and the accurate tuning of ultradian rhythms as a criterion for
healthy glucose regulation. We then investigate a model with two delays of these ultradian rhythms which incorporates parameters
accounting for insulin sensitivity and insulin secretion. Additionally, the effect of diabetic deficiencies on this feedback loop is
explored by quantifying the joint contribution of delays and diabetic parameters on the limit cycle of this model, which is generated
through a Hopf bifurcation. Strategies for restoring an oscillatory regime in a physiologically appropriate range are discussed.
Finally, a simple polynomial model of the oscillations is introduced to give further insight into the influence of each physiological
subsystem. The approach provides a quantified relationship between diabetic impairments and the plasma glucose-insulin feedback
loop.

INTRODUCTION

In individuals without diabetes, ultradian oscillations in plasma glucose and insulin levels have been clinically ob-
served and described [1]. These have also been detected in patients with diabetes, although they appear to be less
controlled, damped and slower [2, 3]. A number of mathematical models, most often in the form of differential equa-
tions, have been devised to explain these oscillations in patients without diabetes [4, 5, 6] (see [7] for a review). One of
the most important contributions of these studies is the discovery that the generation and sustainability of these oscil-
lations can be explained by the presence of delays in pancreatic insulin secretion and hepatic glucose production [4].
The tuning of the resulting feedback loop therefore strongly depends on the delays which are inherent to production
and transport mechanisms entering the regulation of glucose. Deficiencies in basic insulin functions typically break
this loop, and may lead to diabetes.

While it can argued that there are five types of diabetes [8], it is broadly accepted that there are two principal
ones: Type 1 diabetes mellitus (T1DM) and Type 2 diabetes mellitus (T2DM). T1DM refers to a condition whereby
an individual has a much reduced or null ability to secrete insulin. T2DM corresponds to an impaired ability of an
individual to utilise insulin to degrade glucose molecules to produce energy and reduce their level in plasma.

It can be seen that Type 1 and Type 2 diabetes have distinct effects on the feedback mechanism. While both types
lead to increased blood glucose levels, insulin resistance seen in early stages of T2DM results in higher plasma insulin
levels as well as a gradual loss of amplitude in the oscillations [2]. Various strategies for reinstating an oscillatory
regime within appropriate healthy physiological ranges for both glucose and insulin are explored by recalibrating
parameters. The effects of current therapeutical approaches, such as the use of biguanide medications, are discussed
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along with more recently proposed treatments altering insulin clearance. In particular, the usage of the model has
permitted the recovery of healthy regulation through the original objectives of producing a sustained oscillatory regime
while stabilising the average glucose levels within a physiologically acceptable range.

To study in more details the influence of each physiological function, we also study a minimal model of the
oscillations. This provides a novel technique for estimating the efficacy of glucose regulation in pre- and diabetic
individuals.

THE TWO-DELAY MODEL

In this section, we provide the general form of the nonlinear two-delay model under study. It is an adaptation of the
one devised and studied in [6, 9, 10] and follows the framework presented in Figure 1. Correspondingly, the system is

FIGURE 1. Modelling framework of glucose-insulin negative feedback loop at the organ level.

modelled using a set of two delay-differential equations

Ġ = Gin − f2(G) − β f3(G) f4(I) + γ f5(I(t − τ2)), İ = α f1(G(t − τ1)) − diI, (1)

where the phase variables G(t), I(t) correspond to plasma glucose (in mg/dl) and insulin (in mU/l) levels, respectively.
All parameters are assumed to be strictly positive. The function f3 is linear while f1, f2, f4, f5 are selected as Hill
functions of the form

f1(x) = p1
xh1

xh1 + kh1
1

, f2(x) = p2
xh2

xh2 + kh2
2

, f3(x) = p3x, f4(x) = p40 + p4
xh4

xh4 + kh4
4

f5(x) =
p5

xh5 + kh5
5

.

Thus, as in previous studies [11, 12, 10, 13, 14] the functions f1, f2, f4 are monotonically increasing while f5 is
monotonically decreasing, in line with clinical observations (see [4] and references therein). Under these conditions,
it is easily shown that system (1) always possesses a strictly positive steady state (Ḡ, Ī) (see e.g. [9]), satisfying the
equations

Gin − f2(Ḡ) − β f3(Ḡ) f4(Ī) + γ f5(Ī) = 0, α f1(Ḡ) − di Ī = 0, (2)

which is here assumed to coincide with the basal levels. Parameters for a healthy individual are chosen as in [10],
following the fitting of the functions to previously published clinical data using the logit transform, and are shown
in Table 1. Using these values, the system is solved numerically using the Bogacki-Shampine algorithm and seen to
reproduce oscillations in a physiologically acceptable range (Figure 2). The linearisation of system (1) about the
positive steady state (Ḡ, Ī) can be written in matrix form as(

Ġ
İ

)
=

(
−A −B
0 −di

) (
G
I

)
+

(
0 0
D 0

) (
G(t − τ1)
I(t − τ1)

)
+

(
0 −C
0 0

) (
G(t − τ2)
I(t − τ2)

)
(3)
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TABLE 1. Parameter values used for a non-diabetic individual [10, 14].
Parameter Value Parameter Value Parameter Value

p1 210 h1 2 k1 58300
p2 72 h2 1.8 k2 1035
p3 10−4

p40 40
p4 900 h4 1.5 k4 567.74
p5 180 h5 −8.5 k5 80.16

FIGURE 2. Simulation of system (1) using parameter values from Table 1 and the constant initial condition G(t) = 105, I(t) = 30
for t < 0.

where we introduced the positive quantities

A = f ′2(Ḡ) + β f ′3(Ḡ) f3(Ī), B = β f3(Ḡ) f ′4(Ī), C = −γ f ′5(Ī), D = α f ′1(Ḡ). (4)

Looking for exponential solutions (G, I) = (G0, I0)eλt, λ ∈ C, of (3) leads to the following characteristic equation,

λ2 + (A + di)λ + Adi + BDe−λτ1 + CDe−λ(τ1+τ2) = 0. (5)

Equation (5) possesses an infinite number of roots, and it is a classical result that they are all contained in a half-
plane Reλ < r, for some r ∈ R. Oscillations in the linearised system are the result of a supercritical Hopf bifurcation
occurring when a pair of eigenvalues cross the imaginary axis. Hence, we look for roots λ = iω, ω > 0 of (5) which
leads to the system

−ω2 + Adi + BD cos (ωτ1) + CD cos (ω(τ1 + τ2)) = 0, (A + di)ω − BD sin (ωτ1) −CD sin (ω(τ1 + τ2)) = 0. (6)

Expanding the trigonometric functions in (6) and using the fundamental trigonometric identity cos2 x + sin2 x = 1, we
obtain that periodic solutions of (3) with frequency ω occurs for delays τ1 and τ2 if the following relations

(ω2 + A2)(ω2 + d2
i ) + D2(B2 −C2) + 2BD

(
(Adi − ω

2) cos (τ1ω) − ω(A + di) sin (τ1ω)
)

= 0, (7)

cos (τ2ω) =
(ω2 + A2)(ω2 + d2

i ) − D2(B2 + C2)
2BCD2 , (8)

are satisfied. Equations (7),(8) define a curve of Hopf bifurcations in the space of delays (τ1, τ2). Indeed, for any
τ1 > 0, equation (7) can be solved to obtain ω > 0. In turn, (8) provides a periodic set of values of τ2, from which
we select the smallest positive one. This gives the graph shown in Figure 3. The curve separates the (τ1, τ2) into two
regions: non-oscillatory (below) and oscillatory (above).

THE EFFECT OF DIABETIC DEFICIENCIES

We now turn to the question of describing the effect of gradually decreasing normal insulin-related functions. As can
be seen in Figure 4, T1DM and T2DM diabetes have very distinct effects on the basal levels. On the one hand, values
of α < 1 lead to a deficiency in the insulin levels which in turn incurs high glucose. On the other hand, values of β < 1
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FIGURE 3. Threshold curve (in blue) of supercritical Hopf bifurcations in the space of delays. On the curve, a pair of eigenvalues
has null real part.

FIGURE 4. Effect of decreasing insulin production capacity (left) and insulin sensitivity (right) on the steady state values.

reduce the ability of the body to take-up glucose, especially in the skeletal muscles, which leads to additional insulin
secretion and results in elevated glucose and insulin levels. This is seen in the early phases of Type 2 diabetes, where
the phenomenon of insulin resistance gains in importance. With regard to the oscillations, repeating the analysis of
equations (7) and (8) for various values of β leads to a sequence of threshold curves in the (τ1, τ2) plane. The result
is shown in Figure 5 and can be interpreted as follows. Consider an individual with fixed secretion times τ1 and τ2.
Upon the alteration of insulin sensitivity (value of β), the point (τ1, τ2) may fall below or above the new threshold
curve. Since decreasing insulin sensitivity (i.e. taking β < 1) ”raises” the threshold curve in the (τ1, τ2) plane, we can
see that insulin resistance implies a gradual loss of oscillations.

FIGURE 5. Effect of altering insulin sensitivity on the production of an oscillatory regime.
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Restoring healthy regulation

Several treatment strategies can be assessed through a recalibration of parameters. These focus on two essential objec-
tives, namely bringing glucose levels within a healthy range and ensuring that they oscillate with an ultradian rhythm.
For a given diabetic state, namely for fixed (α, β), we can look at the recalibration of several parameters to achieve
this goal. As was shown in [14] and recalled below, recalibrating γ and di individually allows us to achieve both goals
for a range of diabetic states. We then evaluate the possibility of combining both strategies.

Altering hepatic production

Amongst the most used therapeutical approaches for treating Type 2 diabetes, biguanide medications such as Met-
formin help in inhibiting the production of glucose by the liver, thus providing an effective mechanism for helping
reduce overall glucose levels. Let us consider a situation in which a given level of insulin resistance is present, β < 1,
and investigate under which circumstances the reduction of hepatic glucose allows the value of Ḡ to be kept constant.
Assuming b2, Iin and delays are fixed, equation (2) can be rearranged to obtain the value of γ which enables Ḡ to be
fixed,

γ =
Gin − f2(Ḡ) − β f3(Ḡ) f4

(
α f1(Ḡ)

di

)
f5

(
α f1(Ḡ)

di

) . (9)

One can assess whether the resulting pattern is oscillatory by verifying if the point (τ1, τ2) falls above the threshold
curve. This thus divides the (α, β) domain into three regions, depending on the outcome of this strategy: Oscillatory,
non-oscillatory and not-applicable (Figure 6).

FIGURE 6. Value of γ that stabilises Ḡ = 97.87mg/dl (left, for α = 1). On the right, the red region in the (α, β) domain corresponds
to values for which the resulting solution is oscillatory. The blue area is non-oscillatory, while this strategy cannot be applied in the
white zone as it leads to a negative value of γ.

Altering insulin clearance to restore oscillations

A second potential strategy for reinstating an accurate regulation is the retuning of insulin clearance. This possible
novel treatment has been recently suggested and clinically evidenced following the discovery of new insulin degrada-
tion modulators [15]. Here, we use di as a bifurcation parameter, that is for various diabetic states (α, β), we look for
values of insulin degradation such that the resulting solution is oscillatory. Furthermore, we verify that the resulting
set of values lead to acceptable fasting glucose values, i.e. 70 ≤ Ḡ ≤ 110 for Gin = 0 (Figure 7). It is clearly seen that
for values of β < 0.9, this strategy cannot be used to recover oscillations.

Combining strategies

Here, we aim to combine both techniques to assess whether a larger range of diabetic states can be successfully
recalibrated. We proceed as follows. For fixed values of α, β and delays, we look at whether any value in the ranges
di ∈ [0.01, 0.3] and γ ∈ (0, 1] leads to an oscillatory solution with acceptable fasting glucose values. As seen in Figure
8, this combination does extend the range of (α, β) values which can be successfully recalibrated. In particular, even
in cases where insulin secretion is relatively low, the retuning of insulin degradation and hepatic production allows to
restore an oscillatory regime.
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FIGURE 7. Values of di leading to oscillatory regulation.

FIGURE 8. Values of α and β for which oscillations can be restored with a healthy fasting basal level using a combined strategy.

A SIMPLE POLYNOMIAL MODEL

In this section, we describe the behaviour of a minimal model which provides a simpler basis for studying the oscilla-
tions. This model is given as a 2-variable system with one delay

Ġ = A − a1G − a2GI, İ = b1G(t − τ)2 − b2I. (10)

Here again, all parameters are assumed to be strictly positive. This model has also been studied in [16], as a limiting
case of a novel model with a distributed delay. The constant A contains both the glucose infusion and the hepatic
glucose production, which is here assumed to be constant. The steady state of (10) satisfies the equations

a2b1Ḡ3 + a1b2Ḡ − b2A = 0, Ī =
b1

b2
Ḡ2, (11)

which always possess a strictly positive solution by Descartes’ rule of signs. The characteristic equation of the lineari-
sation of (10) can be written as

λ2 + (a1 + a2 Ī + b2)λ + b2(a1 + a2 Ī) + 2a2b1Ḡ2e−λτ = 0. (12)

Proceeding as previously, looking for purely imaginary roots λ = iω, ω > 0 leads to the system

−ω2 + 2a2b1Ḡ2 cos (ωτ) + b2(a1 + a2 Ī) = 0, (a1 + a2 Ī + b2)ω − 2a2b1Ḡ2 sin (ωτ) = 0, (13)
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FIGURE 9. Range of values of τcr which can be attained by varying a1 and a2 for each given value of b2. Here, we used the fixed
values Ḡ = 97.87 mg/dl and Ī = 30 mU/l. Any value of τ above the range leads to an oscillatory solution.

or equivalently,

cos (ωτ) =
ω2 − b2(a1 + a2 Ī)

2a2b1Ḡ2
, sin (ωτ) =

(a1 + a2 Ī + b2)ω
2a2b1Ḡ2

. (14)

Equations (14) imply that ω must be a root of the following quartic polynomial

ω4 + ω2
(
(a1 + a2 Ī)2 + b2

2

)
+ b2

2

(
a1 − a2 Ī

) (
a1 + 3a2 Ī

)
= 0, (15)

which has roots

ω = ±

√√
−

(
(a1 + a2 Ī)2 + b2

2

)
±

√(
(a1 + a2 Ī)2 + b2

2

)2
− 4b2

2

(
a1 − a2 Ī

) (
a1 + 3a2 Ī

)
2

. (16)

In order for equation (15) to possess one positive root, one needs to have

a1 < a2 Ī.

This gives a criterion for an oscillatory solution to exist. The positive root ω is associated with a critical delay value
τcr for which an oscillatory solution occurs. This value is obtained from (14) as

τcr =
1
ω

(
arccos

(
ω2 − b2(a1 + a2 Ī)

2a2b1Ḡ2

)
+ 2kπ

)
, (17)

where k ∈ Z is the smallest integer such that (17) defines a positive value. Larger values of k gives successive values
of τcr for which stability switches may occur in the linear system. However, for the nonlinear system (10), it is
numerically observed that oscillations are present whenever τ ≥ τcr.

The process of choosing parameters in the minimal model (10) can be addressed by requiring that it produces
oscillations around a fixed basal state (Ḡ, Ī). The insulin degradation term b2 has been numerically estimated in the
narrow range [0.05, 0.3]min−1 [17], with a value of b2 = 0.06 being regarded as typical. Fixing (Ḡ, Ī) and, for instance
b2, equations (11) imply that A and b1 are given by

A =
1
b2

(
a2b1Ḡ3 + a1b2Ḡ

)
, b1 = b2

Ī
Ḡ2

. (18)

The parameters a1 and a2 can be chosen such that oscillations are present for a physiologically relevant value of
the critical delay τcr. For different values of b2, one can numerically compute the range of achievable values for τcr
using equation (17). This gives the graph shown in Figure 9. As observed in [16], the model leads to slightly higher
values of τcr than in the two-delay model (1), although it is comparable with the value one obtains when formally
setting τ2 = 0 in (1) (see Figure 3). This highlights the importance of both delays in generating a negative feedback
loop. Nevertheless, this approach provides a model able to replicate the nonlinear oscillations within an appropriate
physiological range (Figure 10).
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FIGURE 10. Oscillations described by the minimal model (10).

CONCLUSIONS

The regulation of glucose is an essential feature of the human body and ultradian oscillations have been observed under
a variety of conditions. The role of observed oscillations in glucose levels is subject to debate. However, similarly to
the feedback mechanisms present in the HPA axis [18], it could be argued that oscillatory glucose levels ensures that
the strain on pancreatic cells is not continuous.

Stochastic effects may also play an important role in this mechanism. Of particular relevance, the uncertainty
and fluctuations on parameter values can have an effect on the obtained solution. For instance, insulin sensitivity (β)
is known to be influenced by a large number of factors such as fatigue and stress, as well as a circadian rhythm.
Incorporating these effects into the insulin sensitivity term, for instance using a sinusoidal circadian rhythm and a 5%
normally distributed random noise leads to a fluctuating pattern (Figure 11). Further quantification of these phenomena
is needed to provide additional insight into the insulin resistance dynamics.

FIGURE 11. Stochastic simulation of the minimal model when β is assumed to include a sinusoidal circadian variation and 5%
random fluctuations.
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