UNIVERSITE DE SHERBROOKE

Faculté des sciences appliquées

CONTRIBUTION A L'ETUDE DE LA RESISTANCE ET DE LA CONSOLIDATION D'ARGILES REMANIEES

Mémoire de maîtrise ès sciences appliquées

spécialité: génie civil

Brahim BENMOKRANE

Sherbrooke, Québec

Canada

mars 1983

SOMMAIRE

Ce présent mémoire présente une étude en laboratoire sur le comportement des argiles remaniées de type marin (mer de Tyrrell et de Champlain). Les principaux points qui ont été analysés sont:

- variations de la résistance au cisaillement en fonction de l'indice de liquidité
- 2. consolidation et compressibilité
- variations de la résistance au cisaillement en fonction de la pression effective de consolidation.

Les travaux ont porté sur les sites suivants: . rivière Broadback (mer de Tyrrell)

- . Saint-Léon (mer de Champlain)
- . Saint-Marcel (mer de Champlain).

Les résultats obtenus ont montré principalement que: 1. la résistance au cisaillement de l'argile remaniée est reliée par une relation unique à l'indice de liquidité

- 2. l'évolution de la résistance au cisaillement Cu en fonction de la pression effective de consolidation σ'_{v} se décompose en trois zones distinctes;
 - a. une première zone où Cu croît fortement en fonction de $\sigma'_{\rm v}$
 - b. une deuxième zone dans laquelle Cu croît très peu en fonction de $\sigma_{\rm v}^{\,\prime}$
 - c. une troisième zone dans laquelle Cu croît de façon proportionnelle à σ'_v .

Ce comportement découlant des essais en laboratoire peut se rapprocher de celui observé en chantier dans les dépôts d'argile homogène. Le modèle de comportement mécanique proposé est particulièrement très important pour la prévision du comportement des digues et remblais construits avec de tels matériaux (argile).

 3. une sensibilité S_t se développe durant la consolidation.
 4. les gains de résistance résultant de la thixotropie sont fort appréciables.

REMERCIEMENTS

Je tiens à exprimer par la présente ma reconnaissance à toutes les personnes qui ont collaboré, de près ou de loin à la réalisation de cette étude. Je remercie tout particulièrement les personnes suivantes:

. Messieurs Gérard BALLIVY, D.Sc.A. et Guy LEFEBVRE, D.Sc.A., mes directeurs de thèse qui ont su me transmettre durant toute la période de cette étude de valeureux et précieux conseils tant pratiques que théoriques.

. M. Jean Pierre LEBIHAN, pour la qualité de l'aide tant technique que théorique qu'il m'a fournie tout au long de cette recherche.

. M. Jean Guy LEMELIN pour son aide dans les essais.

. Ouahida, mon épouse pour son appui et encouragement.

Je désire remercier une nouvelle fois mes directeurs de recherche pour l'assistance financière obtenue à partir d'un octroi FCAC (Québec).

TABLE DES MATIERES

	SOMMAIRE	ii
	REMERCIEMENTS	iv
	TABLE DES MATIERES	v
	LISTE DES TABLEAUXvi	lii
	LISTE DES FIGURES	xi
	LISTE DES SYMBOLES ET ABREVIATIONS	7ii
1.	INTRODUCTION	1
	<pre>1.1 Qu'est-ce qu'une argile remaniée? 1.2 But de l'étude, déroulement des essais 1.3 Division de la présente étude</pre>	1 1 4
2.	REVUE DE LA LITTERATURE	6
	2.1 Théories de la consolidation unidimensionnelle 2.2 Compressibilité	6 21
	2.2.1 Analyse classique definissant i indice de recompression et l'indice de compression 2.2.2 Analyse de JANBU définissant le module	21
	2.3 Etudes sur la résistance au cisaillement de l'ar-	26
	gile remaniee 2.4 Sensibilité 2.5 Thixotropie	29 31 35
	non drainée et la pression effective de consoli-	36
	2.7 Résistance au cisaillement mesurée en cisaille-	40
· .	2.8 Résistance au cisaillement mesurée au cône tom- bant	41
3.	CARACTERISTIQUES GENERALES DES ARGILES ETUDIEES ET PROCEDURES D'ESSAIS	48
	3.1 Caractéristiques générales des argiles étudiées 3.1.1 Argile de Broadback (B6) 3.1.2 Argile de Saint-Léon 3.1.3 Argile de Saint-Marcel 3.1.4 Argile de Broadback (B2)	48 48 56 56 59
	3.2 Procédures d'essais 3.2.1 Essais d'identification 3.2.2 Essais de consolidation 3.2.2.1 Appareil d'essai et mode de	49 64 64
	cnargement applique	00

3.2.2.2 Essais de consolidation avec mesures de la pression interstitielle et de la perméabilité 67 3.2.3 Essais au cône tombant 67 3.2.4 Essais de cisaillement simple 68 ANALYSES ET INTERPRETATIONS DES RESULTATS D'ESSAIS 4. 71 4.1 Essais de pénétration au cône tombant sur argile remaniée 71 Argile de Broadback (B6) 4.1.1 72 4.1.1.1 Essais à teneur en eau naturelle et à teneur en eau augmentée 72 . . 4.1.1.2 Résistance au cisaillement versus indice de liquidité 75 4.1.2 Argile de Saint-Léon 75 4.1.2.1 Essais à teneur en eau naturelle et à teneur en eau augmentée 75 . . 4.1.2.2 Résistance au cisaillement versus 78 indice de liquidité Argile de Saint-Marcel 79 4.1.3 4.1.3.1 Essais à teneur en eau naturelle et à teneur en eau augmentée .. 79 4.1.3.2 Résistance au cisaillement versus 79 indice de liquidité 81 4.1.4 Conclusions 4.2 Analyse des résultats relatifs à la consolidation et la compressibilité des argiles étudiées 82 87 4.2.1 Evolution de la compression dans le temps 4.2.2 Relations entre la pression effective de 92 consolidation et la déformation unitaire 4.2.3 Relations entre la pression effective de consolidation et l'indice des vides 97 4.2.4 Variations du coefficient de perméabilité avec l'indice des vides 102 4.2.5 Relations entre le module tangent de JANBU et la pression effective de consolidation 112 4.2.6 Relations entre le coefficient de consolidation et la pression effective de consolidation 114 Relations entre le degré de tapement moyen 4.2.7 et le degré de dissipation moyen 118 4.3 Analyse des résultats relatifs aux essais de 4.3.1 Evolution de la résistance thixotropique dans le temps 120 4.4 Analyse des résultats relatifs aux essais de cisaillement simple à volume constant 126 Evolution de la résistance au cisaillement de 4.5 l'argile préalablement remaniée et consolidée . 133 4.5.1 Argile de Broadback (B6) 134 4.5.1.1 Variations de la résistance au cisaillement et l'indice de liquidité en fonction de la pression effective de consolidation 134

vi

		4.5.2	Argile de Saint-Léon 4.5.2.1 Variations de la résistance au cisaillement et l'indice de li- quidité en fonction de la pres-	. 144
		4.5.3	Argile de Saint-Marcel	144 149
· .		4.5.4	Conclusions	. 163
5.	SYNTH	HESE		. 170
	5.1	Général Modèle	lités de comportement de l'argile préalablement	. 170
	5.3	remanié Compara en labo 5.3.1 5.3.2 5.3.3 5.3.4 Utilisa tructio	ée et consolidée aisons des profils de résistance déterminé pratoire avec ceux mesurés in-situ Argile de Broadback (B6) Argile de Broadback (B2) Argile de Saint-Léon Argile de Saint-Marcel ation de l'argile remaniée pour la cons- on de remblais	170 ≤s 177 179 182 184 187 189
	CONCI	LUSIONS	••••••••••••••••	. 195
	APPEI	DICES	· · · · · · · · · · · · · · · · · · ·	. 197
	A. M B. H	Mode opé Figures	ératoire de l'essai de consolidation complémentaires relatives aux essais de	. 198
	C. I	Figures ple à vo	relatives aux essais de cisaillement sim- olume constant	202
	BIBLI	OGRAPHI	EE	249

LISTE DES TABLEAUX

Tableau 2.1	Quatre cas de distribution de l'excès de pression interstitielle initiale, avec double drainage	12
Tableau 2.2	Equations empiriques pour la détermination de C _C selon AZZOUZ, KIZEK et COROTIS (1976)	25
Tableau 2.3	Contrôle géochimique et minéralogique de la sensibilité des sols argileux (d'après QUIGLEY, 1980)	34
Tableau 3.1	Caractéristiques géotechniques des diffé- rentes argiles étudiées. Etat naturel	55
Tableau 4.1	Valeurs des limites de liquidité détermi- nées par utilisation du cône tombant avec différents modes de préparation et par uti- lisation de l'appareil de Casagrande pour les échantillons des différentes argiles étudiées	86
Tableau 4.2	Valeurs des différentes pressions de conso- lidation utilisées	88
Tableau 4.3	Caractéristiques géotechniques des diffé- rentes argiles étudiées lors de leur mise en place dans la cellule de consolidation	89
Tableau 4.4	Fin de la consolidation primaire (Casagran- de et u _b) pour différentes étapes de char- gement des argiles étudiées	91
Tableau 4.5	Résultats obtenus suite à la consolidation d'argile de Broadback (B6)	93
Tableau 4.6	Résultats obrenus suite à la consolidation d'argile de Saint-Léon	94
Tableau 4.7	Résultats obtenus suite à la consolidation d'argile de Saint-Marcel	95
Tableau 4.8	Données relatives aux courbes vierges de compression représentées à la figure 4.10	101
Tableau 4.9	Valeurs du coefficient de perméabilité ob- tenues à l'aide de mesures de pression in- terstitielle à la base de l'échantillon pour les différentes argiles étudiées	104

Tableau 4.10	Valeurs du coefficient de perméabilité éva- luées à l'aide d'une colonne d'eau à charge
· · ·	variable pour les différentes argiles étu- diées 105
Tableau 4.ll	Valeurs du coefficient de perméabilité en fonction de l'indice des vides selon le rap- port GEO-81-04 (échantillon intact) et selon nos résultats (échantillon remanié et conso- lidé) pour l'argile de Broad ack (B6) 110
Tableau 4.12	Coefficients de consolidation obtenus par les méthodes graphiques de Casagrande et de Taylor et par la formule théorique
	$(C_v = \frac{K}{m_v^{\gamma} \gamma_w})$ pour les différentes argiles
Tableau 4.13	Résultats obtenus suite aux essais de thi- xotropie pour les différentes argiles étu- diées
Tableau 4.14	Résultats des essais de cisaillement simple à volume constant des différentes argiles étudiées
Tableau 4.15	Compilation des résultats des essais de ci- saillement simple à volume constant pour échantillons intacts
Tableau 4.16	Compilation des résultats obtenus sur échan- tillons intacts suite à la consolidation d'argile préalablement remaniée de Broad- back (B6)
Tableau 4.17	Gain thixotropique de résistance en fonc- tion de la pression de la consolidation pour les différentes argiles étudiées 138
Tableau 4.18	Compilation des résultats obtenus sur échan- tillons intacts suite à la consolidation d'argile préalablement remaniée de Saint- Léon
Tableau 4.19	Compilation des résultats obtenus sur échan- tillons intacts suite à la consolidation d'argile préalablement remaniée de Saint- Marcel
Tableau 4.20	Compilation des résultats obtenus sur échan- tillons intacts suite à la consolidation d'argile préalablement remaniée de Broad- back (B2)

ix

Tableau 4	4.21	Valeur de σ'_v , $\frac{Cu}{\sigma'_v}$ et S _t associées aux trois zones pour les différentes argiles étudiées	166
Tableau 5	5.1	Résumé des caractéristiques relatives au modèle de comportement (fig. 5.1) pour les différentes argiles étudiées	173
Tableau 5	5.2	Résumé des caractéristiques relatives à la zone II pour les différentes argiles étu- diées	176
Tableau 5	5.3	Valeurs du rapport $\frac{Cu}{\sigma T}$ obtenues pour la zone III, des relations empiriques ($\frac{Cu}{\sigma T}$ - Ip) et pour échantillon intact des différentes ar- giles étudiées	178
Tableau 5	5.4	Valeur de h (hauteur d'un remblai) en fonc- tion des trois zones (I, II et III) pour les différentes argiles étudiées	191

x

LISTE DES FIGURES

Figure	1.1	Variation de la sensibilité en fonction du temps de remaniement	2
Figure	2.1	Illustration de la détermination du coeffi- cient de consolidation C _v à l'aide de la méthode de Casagrande	13
Figure	2.2	Illustration de la détermination du coeffi- cient de consolidation C _v à l'aide de la méthode de Taylor	15
Figure	2.3	Courbe type de compressibilité (oedomètre)	23
Figure	2.4	Variations typiques du module tangent de la compression vierge pour différents types de sols. Selon JANBU (1969)	28
Figure	2.5	Relations entre la résistance au cisaille- ment de l'argile remaniée versus l'indice de liquidité. Selon J.K. MITCHELL (1976)	30
Figure	2.6	Relations I _{LC} - Cu _r pour argile de Grande- Baleine, d'Olga et de Saint-Marcel. LOCAT (1982)	32
Figure	2.7	Allure générale de la variation de la ré- sistance au cisaillement en fonction de l'indice des vides et de la pression effec- tive de consolidation pour une argile N.C. de Norvège. Selon BJERRUM (1967)	37
Figure	2.8	Relations empiriques entre I_p et $\frac{Cu}{\sigma_V}$	39
Figure	2.9	Résistance au cisaillement sous l'état de contrainte initiale. Site de Broadback (B2)	42
Figure	2.10	Résistance au cisaillement sous l'état de contrainte initiale. Site de Broadback (B6)	43
Figure	2.11	Relations pénétration du cône tombant et résistance au cisaillement non drainée	47
Figure	3.1	Localisation des différents sites étudiés .	49
Figure	3.2	Profil stratigraphique de Broadback (B6)	51

Figure	3.3	Salinité et concentration en cations de l'eau interstitielle. Argile naturelle de Broadback (B6)	52
Figure	3.4	Dosage de matières organiques. Dépôt de Broadback (B6)	53
Figure	3.5	Pression de préconsolidation. Dépôt de Broadback (B6)	54
Figure	3.6	Profil géotechnique au site α e Saint-Léon .	57
Figure	3.7	Profil géotechnique au site de Saint-Marcel	58
Figure	3.8	Profil stratigraphique. Dépôt de Broadback (B2)	60
Figure	3.9	Salinité et concentration en cations de l'eau interstitielle. Dépôt de Broadback (B2)	61
Figure	3.10	Dosage de matières organiques. Dépôt de Broadback (B2)	62
Figure	3.11	Pression de préconsolidation. Dépôt de Broadback (B2)	63
Figure	3.12	Cellule utilisée pour les essais de conso- lidation	66
Figure	3.13	Appareil de cisaillement simple utilisé	69
Figure	4.1	Profondeur de pénétration sur échantillon d'argile remaniée de Broadback (B6) versus teneur en eau	73
Figure	4.2	Relation entre la résistance au cisaille- ment de l'argile remaniée et l'indice de liquidité déterminé au cône tombant	76
Figure	4.3	Profondeur de pénétration sur échantillon d'argile remaniée de Saint-Léon versus te- neur en eau	77
Figure	4.4	Profondeur de pénétration sur échantillon d'argile remaniée de Saint-Marcel versus te- neur en eau	80
Figure	4.5	Profondeur de pénétration sur échantillons d'argile remaniée de Broadback (B6) (une fois consolidés) versus teneur en eau	83

xii

Figure 4.6 Profondeur de pénétration sur échantillons d'argile remaniée de Saint-Léon (une fois consolidés) versus teneur en eau 84 Figure 4.7 Profondeur de pénétration sur échantillons d'argile remaniée de Saint-Marcel (une fois consolidés) versus teneur en eau 85 Figure 4.8 Courbes pression effective de consolidation versus déformation unitaire 96 Figure 4.9 Courbes indice des vides versus logarithme de la pression effective de consolidation . 98 Figure 4.10 Courbes vierges de compression de différentes sources exprimées par la relation $e - \log \sigma'_{v}$ 100 Figure 4.11 Courbe indice des vides versus perméabilité d'argile de Broadback (B6) Figure 4.12 Courbe indice des vides versus perméabilité d'argile de Saint-Léon 107 Figure 4.13 Courbe indice des vides versus perméabilité d'argile de Saint-Marcel 108 Figure 4.14 Courbes module tangent versus pression effective de consolidation des différentes argiles étudiées 113 Courbes coefficient de consolidation versus Figure 4.15 pression effective de consolidation des différentes argiles étudiées 116 Evolution de la résistance au cisaillement Figure 4.16 non drainée évaluée au cône suédois en fonction du temps, d'argile de Broadback (B6) (Effets de thixotropie) 122 Figure 4.17 Evolution de la résistance au cisaillement non drainée évaluée au cône suédois en fonction du temps d'argile de Saint-Léon (Effets de thixotropie) 123 Figure 4.18 Evolution de la résistance au cisaillement non drainée évaluée au cône suédois en fonction du temps d'argile de Saint-Marcel (Effets de thixotropie) 124 Figure 4.19 Comparaison des résultats obtenus à l'aide du cône suédois et du cisaillement simple à volume constant 128

xiii

Figure 4.20	Relations entre le module de rigidité ini- tial et la pression de consolidation pour les différentes argiles étudiées 130
Figure 4.21	Résistance au cisaillement non drainée mesu- rée au cône suédois versus pression effecti- ve de consolidation de l'argile de Broadback (B6)
Figure 4.22	Variations de $\left(\frac{W_{i}^{-W_{f}}}{W_{i}}\right)$ en fonction de Cu et
	σ' pour l'argile de Broadback (B6) 139
Figure 4.23	Résistance au cisaillement non drainée nor- malisée versus pression effective de conso- lidation de l'argile de Broadback (B6) 141
Figure 4.24	Relations entre Cu _r , Cu et σ_v' avec I $_{ m LC}$ de
	l'argile de Broadback (B6) 143
Figure 4.25	Résistance au cisaillement non drainée mesu- rée au cône suédois versus pression effective de consolidation de l'argile de Saint-Léon .146 WW-
Figure 4.26	Variations de $\frac{1}{W_i}$ en fonction de Cu et σ'_v
	pour l'argile de Saint-Léon 148
Figure 4.27	Résistance au cisaillement non drainée nor- malisée versus pression effective de conso- lidation de l'argile de Saint-Léon 150
Figure 4.28	Relations entre Cu _r , Cu et σ'_V avec I _{LC} de l'argile de Saint-Léon 151
Figure 4.29	Résistance au cisaillement non drainée mesu- rée au cône suédois versus pression effective de consolidation de l'argile de Saint-Marcel154
Figure 4.30	Variations de $(\frac{u_i u_f}{W_i})$ en fonction de Cu et
	σ'_{v} pour l'argile de Saint-Marcel 155
Figure 4.31	Résistance au cisaillement non drainée nor- malisée versus pression effective de conso- lidation de l'argile de Saint-Marcel 157
Figure 4.32	Relations entre Cu $_{ m r}$, Cu et $\sigma_{ m v}^{\prime}$ avec I $_{ m LC}$ de l'argìle de Saint-Marcel 158
Figure 4.33	Résistance au cisaillement non drainée mesu- rée au cône suédois versus pression effecti- ve de consolidation de l'argile de Broadback (B2)

xiv

Figure 4	4.34	Résistance au cisaillement non drainée nor- malisée versus pression effective de conso- lidation de l'argile de Broadback (B2)	162
Figure 4	1.35	Relations entre Cu _r et σ'_v avec I _{LC} des argiles étudiées	- 169
Figure 5	5.1	Modèle de comportement mécanique de l'argile préalablement remaniée et consolidée	172
Figure 5	5.2	Profils de Cu (laboratoire eu dépôt) pour Broadback (B6)	180
Figure 5	5.3	Profils de Cu (laboratoire et dépôt) pour Broadback (B2)	183
Figure 5	5.4	Profils de Cu (laboratoire et dépôt) pour Saint-Léon	185
Figure 5	5.5	Profils de Cu (laboratoire et dépôt) pour Saint-Marcel	188
Figure 5	5.6	Profils de Cu pour une couche de remblai au temps initial (t-0) et après complète conso- lidation	- 193
APPENDIC	ם שר		
	-E D		
Figure B ā Figure B	3.1 3.4	Courbes compression versus logarithme du temps de l'argile de Broadback (B6)	203 à 206
Figure B Figure B	3.1 3.4	Courbes compression versus logarithme du temps de l'argile de Broadback (B6)	203 à 206 207
Figure B Figure B Figure B Figure B Figure B	3.1 3.4 3.5 3.8	Courbes compression versus logarithme du temps de l'argile de Broadback (B6) Courbes compression versus logarithme du temps de l'argile de Saint-Léon	203 à 206 207 à 210
Figure B Figure B Figure B Figure B Figure B Figure B	3.1 3.4 3.5 3.8 3.9	Courbes compression versus logarithme du temps de l'argile de Broadback (B6) Courbes compression versus logarithme du temps de l'argile de Saint-Léon Courbes compression versus logarithme du	203 à 206 207 à 210 211
Figure B Figure B Figure B Figure B Figure B Figure B A Figure B	3.1 3.4 3.5 3.8 3.9 3.12	Courbes compression versus logarithme du temps de l'argile de Broadback (B6) Courbes compression versus logarithme du temps de l'argile de Saint-Léon Courbes compression versus logarithme du temps de l'argile de Saint-Marcel	203 à 206 207 à 210 211 à 214
Figure B Figure B Figure B Figure B Figure B Figure B Figure B Figure B	3.1 3.4 3.5 3.8 3.9 3.12 3.13	Courbes compression versus logarithme du temps de l'argile de Broadback (B6) Courbes compression versus logarithme du temps de l'argile de Saint-Léon Courbes compression versus logarithme du temps de l'argile de Saint-Marcel	203 à 206 207 à 210 211 à 214 215
Figure B Figure B Figure B Figure B Figure B Figure B Figure B Figure B Figure B	3.1 3.4 3.5 3.8 3.9 3.12 3.13 3.15	Courbes compression versus logarithme du temps de l'argile de Broadback (B6) Courbes compression versus logarithme du temps de l'argile de Saint-Léon Courbes compression versus logarithme du temps de l'argile de Saint-Marcel Courbes compression et pression intersti- tielle versus logarithme du temps de l'ar- gile de Broadback (B6)	203 à 206 207 à 210 211 à 214 215 à 217
Figure B Figure B	3.1 3.4 3.5 3.8 3.9 3.12 3.13 3.15 3.16 3.18	Courbes compression versus logarithme du temps de l'argile de Broadback (B6) Courbes compression versus logarithme du temps de l'argile de Saint-Léon Courbes compression versus logarithme du temps de l'argile de Saint-Marcel Courbes compression et pression intersti- tielle versus logarithme du temps de l'ar- gile de Broadback (B6) Courbes compression et pression intersti- tielle versus logarithme du temps de l'ar- gile de Broadback (B6)	203 206 207 210 211 214 215 217 218 220
Figure B Figure B	3.1 3.4 3.5 3.8 3.9 3.12 3.13 3.15 3.16 3.18 3.19	Courbes compression versus logarithme du temps de l'argile de Broadback (B6) Courbes compression versus logarithme du temps de l'argile de Saint-Léon Courbes compression versus logarithme du temps de l'argile de Saint-Marcel Courbes compression et pression intersti- tielle versus logarithme du temps de l'ar- gile de Broadback (B6) Courbes compression et pression intersti- tielle versus logarithme du temps de l'ar- gile de Saint-Léon Courbes compression et pression intersti-	203 206 207 210 211 214 215 217 218 220 221

xv

Courbes compression versus $\sqrt{\text{temps}}$ de l'ar-223 Figure B.21 gile de Broadback (B6) à à 225 Figure B.23 Courbes compression versus $\sqrt{\text{temps}}$ de l'ar-226 Figure B.24 · · · · · · · · · · · · · · · · · · gile de Saint-Léon à à 228 Figure B.26 Courbes compression versus $\sqrt{\text{temps}}$ de l'ar-229 Figure B.27 gile de Saint-Marcel et et 230 Figure B.28 Comparaison des coefficients de consolida-Figure B.29 tion de l'argile de Broadback (B6)..... 231 Comparaison des coefficients de consolida-Figure B.30 tion de l'argile de Saint-Léon..... 232 Courbes degré de tassement moyen versus de-Figure B.31 gré de dissipation moyen de l'argile de Broadback (B6),.... 233 Courbes degré de tassement moyen versus de-Figure B.32 gré de dissipation moyen de l'argile de Saint-Léon..... 234 Courbes degré de tassement moyen versus de-Figure B.33 gré de dissipation moyen de l'argile de Saint-Marcel..... 235 APPENDICE C Courbes contrainte horizontale de cisaille-Figure C.1 ment et variation de la contrainte normale ã Figure C.9 versus déformation angulaire de l'argile de Broadback (B6) (C.1 à C.3), de Saint-Léon 237 (C.4 à C.6), de Saint-Marcel (C.7 et C.8) à et de Broadback (B2) (C.9) Figure C.10 Courbes contrainte horizontale de cisaillement versus contrainte effective normale de 246 ā l'argile de Broadback (B6) (C.10), de Saint-à Figure C.12 Léon (C.11) et de Saint-Marcel (C.12) 248

xvi

LISTE DES SYMBOLES ET ABREVIATIONS

a	:	exposant de la contrainte, variant de 0 à 1
a _v	:	coefficient de compressibilité
A	:	surface de l'échantillon
C _c	:	indice de compression
C _{rc}	:	indice de recompression
Cv	:	coefficient de consolidation
Cu	:	résistance au cisaillement non drainée de l'ar- gile intacte
Cu _r	:	résistance au cisaillement non drainée de l'ar- gile remaniée
Cut	:	résistance au cisaillement non drainée acquise par thixotropie
Δε, dε	:	variation de la déformation unitaire (axiale ou verticale)
Δe	:	variation de l'indice des vides
ΔН	:	variation de la hauteur de l'échantillon ou tas- sement de l'échantillon
dQ		variation du débit d'eau
$\Delta \sigma_{\rm V}^{\prime}$, $d\sigma_{\rm V}^{\prime}$:	variation de la pression effective
ε	:	déformation unitaire (verticale ou axiale)
ε	:	déformation unitaire moyenne
Ê	:	vitesse de déformation unitaire
Ē	:	vitesse de déformation unitaire moyenne
е	:	indice des vides
eo	:	indice des vides initial
ef	:	indice des vides final
ē	:	indice des vides moyen
н	:	hauteur de l'échantillon

Hi	:	hauteur initiale de l'échantillon
Hf	:	hauteur finale de l'échantillon
t	:	temps
t _x	:	temps à X(%) de consolidation primaire
t ₁₀₀	.:	temps à 100% de consolidation primaire
(AH)tx	:	tassement de l'échantillon au temps t _X
(AH) t100	:	tassement de l'échantillon au temps t ₁₀₀
Ū	:	degré de consolidation moyen
\overline{U}_{z}	:	degré de consolidation local
$\overline{\mathtt{U}}_{\mathtt{T}}$:	degré de consolidation moyen en terme de tasse- ment (degré de tassement moyen)
^Ū u	:	degré de consolidation moyen en terme de pression interstitielle (degré de dissipation moyen)
u	:	pression interstitielle
ū	:	pression interstitielle moyenne
u _b	:	pression interstitielle à la base de l'échantillon
W	:	teneur en eau
Wnat	:	teneur en eau naturelle
Wi	:	teneur en eau initiale
W_{f}	:	teneur en eau finale
M ^L	:	limite de liquidité déterminée à l'aide de l'ap- pareil de Casagrande
W _{LC}	:	limite de liquidité déterminée à l'aide du cône suédois
I _P	:	indice de plasticité
I_{LC}	:	indice de liquidité déterminé en utilisant ${ t W}_{ m LC}$
T_v	:	facteur temps
m _v	:	module de compressibilité
K	:	coefficient de perméabilité

xviii

Q	:	débit d'eau
Pa	:	pression de référence égale à la pression atmos- phérique
i .	:	gradient hydraulique
σ	:	pression de préconsolidation
σ	:	pression verticale effective
σv	:	pression verticale totale
М	:	module tangent de JANBU
^h 10	:	profondeur de pénétration en mm du cône 10 g/60°
^h 60	:	profondeur de pénétration en mm du cône 60 g/600
^h 100	:	profondeur de pénétration en mm du cône 100 g/30°
h ₄₀₀	:	profondeur de pénétration en mm du cône 400 g/300
s _t	:	sensibilité
β	:	angle au sommet du cône

CHAPITRE 1

INTRODUCTION

1.1 Qu'est-ce qu'une argile remaniée?

Un échantillon d'argile est dit INTACT lorsqu'après prélèvement, les propriétés géotechniques et tout particulierement mécaniques qui sont présentes dans l'échantillon in-situ ne sont aucunement modifiées. Il s'agit entre autres par exemple de l'indice des vides et de la résistance au cisaillement. Si l'on exerce des cisaillements répétés sur cet échantillon, on arrive à détruire et à rompre l'arrangement des particules et c'est ainsi que cette argile tend vers un état dit REMANIE se traduisant par une faible, moyenne ou forte diminution de la résistance au cisaillement. La figure l.1 montre la décroissance de la résistance au cisaillement, en termes de variation de la sensibilité en fonction du temps de remaniement. La valeur de la sensibilité se stabilise lorsque la résistance au cisaillement atteint la valeur dite remaniée Cu_r. C'est de cette valeur minimum dont il est question dans cette étude lorsqu'on parle de résistance au cisaillement non drainée d'une argile remaniée.

1.2 But de l'étude, déroulement des essais

Dans les régions où les matériaux granulaires sont rares ou absents, l'utilisation de l'argile comme matériel

35 FORT RUPERT
 ST-JEAN VIANNEY 30-(um) 25 TEMPS DE REMANIEMENT l. 20. h + 15 10 111 IIII 0 2 3 4 5 6 7 8 9 10 50 iòo 200 SENSIBILITÉ St= Cu/Cur D'APRÈS MOON, 1979

substitut pour la construction de digues et de remblais de faible à moyenne hauteur pourrait s'avérer comme une solution intéressante. La conception de tels ouvrages nécessite une connaissance du comportement de l'argile remaniée, consolidée sous de faibles pressions: ceci constitue l'étape principale de cette étude. Afin de compléter cette dernière, nous avons réalisé en parallèle des essais pour déterminer l'évolution de la résistance au cisaillement remaniée Cu_r en fonction de la teneur en eau ou de l'indice de liquidité ainsi que les gains thixotropiques de résistance.

Le déroulement des travaux effectués au laboratoire est comme suit:

- 1. essais d'identification
- 2. essais de pénétration au cône tombant sur échantillons d'argile remaniée à différentes teneurs en eau. Ces essais nous ont permis d'analyser la variation de Cu_r en fonction de l'indice de liquidité
- 3. essais de consolidation sur échantillons d'argile préalablement remaniée. Ces derniers nous ont permis de:
 - déterminer les différents paramètres associés
 à la compressibilité et à la consolidation
 - . illustrer la variation de la résistance au cisaillement non drainée Cu en fonction de la pression effective de consolidation. Les mesures de Cu ont été évaluées à l'aide du cône

tombant. Sur certains échantillons, nous avons également déterminé Cu à l'aide de l'appareil de cisaillement simple et ce à titre de comparaison

4. essais pour évaluer les gains thixotropiques de résistance.

Si l'on considère le cas d'une digue ou d'un remblai, les résultats de ces différents essais présentés ci-dessus nous permettent de déduire:

- . la résistance initiale de l'argile (Cu_r)
- . le gain thixotropique de résistance à un temps donné
- . la résistance de l'argile après complète consolidation à un niveau donné
- . le tassement.

1.3 Division de la présente étude

Cette étude est composée de cinq chapitres:

Le chapitre deux est une revue de littérature comprenant notamment:

- la théorie de consolidation unidimensionnelle de TERZAGHI
- la description du concept de résistance à la déformation
- 3. études sur la résistance au cisaillement de l'argile remaniée, sensibilité et thixotropie

- 4. résistance au cisaillement non drainée et sa variation en fonction de la pression effective d'un dépôt d'argile normalement consolidée
- 5. évaluation de la résistance au cisaillement non drainée à l'aide de l'appareil de cisaillement simple et du cône tombant.

Tous les points cités ci-dessus constituent le cadre principal de la présente recherche.

Le chapitre trois décrit en premier les caractéristiques générales des argiles étudiées. En second, il traite les différents essais et appareils utilisés.

Le chapitre quatre est relatif aux analyses et interprétations des différents résultats obtenus.

Au dernier chapitre apparaissent les conclusions générales et plus particulièrement les incidences pratiques de cette étude et l'orientation qui devrait être donnée aux recherches ultérieures dans ce domaine.

CHAPITRE 2

REVUE DE LA LITTERATURE

2.1 Théorie de consolidation unidimensionnelle

Lors de l'application rapide d'une charge sur un sol saturé, l'eau par suite de sa déformabilité plus faible que celle du squelette reprend toute la charge à l'instant initial (apparition d'une pression interstitielle). Il se produit ainsi un gradient de pression au sein du liquide interstitiel. Sous l'action de ce gradient, l'eau a donc tendance à s'écouler. Dans le cas d'un échantillon d'argile saturée soumis à un essai oedométrique, cet écoulement se fera aux deux interfaces drainées. C'est cet écoulement d'eau qui va permettre au squelette du sol de se resserrer au fur et à mesure par rapprochement et réarrangement des grains.

La vitesse de cet écoulement est conditionnée directement par la perméabilité du milieu. Ainsi dans un milieu sableux très perméable, cet écoulement suit instantanément le chargement, on ne parle d'ailleurs plus de consolidation dans ce cas. En revanche moins le milieu est perméable tels les sols argileux, plus le tassement de consolidation peut se poursuivre sur de longues périodes. Nous verrons plus loin que les conditions de drainage et l'épaisseur de la couche de sol ont une incidence importante sur la durée de consolidation.

Nous allons rappeler ci-dessous la théorie de consolidation unidimensionnelle formulée par TERZAGHI (1925) suivie par d'autres approches développées au cours de cette dernière décennie et qui se basent sur les essais à chargement continu.

Afin de développer une formulation mathématique au phénomène de consolidation, TERZAGHI (1925) a été amené à formuler une série d'hypothèses qui sont:

- les déformations de la couche de sol sont unidimensionnelles
- 2. le sol est et demeure saturé
- 3. le sol est homogène
- 4. l'eau et les particules solides sont incompressibles
- le drainage est unidimensionnel et il obéit à la loi de DARCY
- 6. il existe une relation linéaire entre les contraintes effectives et les variations du volume de sol
- 7. les caractéristiques du sol (module de compressibilité, coefficient de perméabilité) sont constantes pendant toute la consolidation
- le sol ne présente pas de viscosité structurale, ou consolidation secondaire.

Dans une couche de sol compressible d'épaisseur dZ en cours de consolidation, la quantité d'eau qui s'échappe est supérieure à celle qui y pénètre. On considère, compte tenu des hypothèses 1, 2 et 4 que la variation dans la dimension de cette couche est égale à la différence entre les quantités d'eau entrée et sortie de cette couche. Autrement dit la différence entre ces deux quantités est égale à la réduction de volume

correspondant de la couche. Ceci s'exprime mathématiquement comme suit:

$$\frac{dH}{dt} = \frac{dQ}{A}$$
 (2.

où

dH = variation de hauteur de la couche de sol

dQ = variation du débit d'eau

A = section de la couche perpendiculaire à l'écoulement

compte tenu de l'hypothèse 5 qui veut que l'écoulement soit régi par la loi de DARCY, alors

$$Q = Ki A \qquad (2.2)$$

où

i = gradient hydraulique

de ces expressions, on écrit:

$$\frac{dH}{dt} = d \quad (Ki) \tag{2.3}$$

Le gradient hydraulique i s'exprime en fonction de la pression interstitielle u par:

$$i = - \frac{du}{dZ \gamma_W}$$
(2.4)

et compte tenu de l'expression (2.3) on déduit

$$\frac{dH}{dt} = -d \left(K \frac{du}{dZ \gamma_W}\right)$$
(2.5)

L'approche consiste par la suite à introduire dans l'expression (2.5) le module de compressibilité m_v qui est défini par

8

1)

$$m_{v} = \frac{dH}{dZ \cdot d\sigma'_{v}}$$
(2.6)

où $d\sigma'_{v}$ = variation de pression effective et ainsi l'équation (2.5) devient

$$\frac{n_v dz d\sigma'_v}{dt} = -d \left(\frac{K du}{\gamma_w dZ}\right)$$
(2.7)

compte tenu de l'hypothèse 7, cette dernière expression est équivalente à:

$$\frac{m_{v} \gamma_{W}}{K} \frac{dz d\sigma'_{v}}{dt} = -d \left(\frac{du}{dz}\right)$$

ou bien

$$\frac{m_{v} \gamma_{W} d\sigma'_{v}}{K dt} = -\frac{d^{2}u}{dz^{2}}$$
(2.8)

or à tout instant en cours de consolidation on a

$$\sigma_{x} = \sigma'_{x} + u \qquad (2.9)$$

 σ_v étant par définition constant, on en déduit:

$$d \sigma' = - du$$

et en introduisant le coefficient de consolidation C_v qui est défini par:

$$C_{V} = \frac{K}{m_{V} \cdot \gamma_{W}}$$
(2.10)

l'équation (2.8) devient

$$C_{v} \frac{d^{2}u}{dz^{2}} = \frac{du}{dt}$$
(2.11)

cette expression est l'équation différentielle qui régit la consolidation unidimensionnelle.

Compte tenu de l'hypothèse 3 d'homogénéité du sol, TERZAGHI (1936) arrive à la solution bien connue de l'équation (2.11), donnant la pression interstitielle u (Z,t) en tout point et en tout temps d'une couche d'épaisseur 2H, drainée des deux côtés:

$$u(Z,t) = \frac{4}{\pi} \Delta \sigma_{v} \left(\sum_{m=0}^{\infty} \frac{1}{2m+1} \sin \frac{(2m+1)\pi Z}{2H} e^{-\frac{(2m+1)^{2}\pi^{2}Tv}{4}} \right) (2.12)$$

dans laquelle T_v est le facteur temps sans dimension de la forme:

$$T_v = \frac{C_v H^2}{t}$$
 (2.13)

Afin de trouver une loi de variation du tassement d'une couche de sol en fonction du temps, TERZAGHI a défini:

1. le degré de consolidation local U_{z} :

$$U_{\rm Z} = 1 - \frac{u}{u_{\rm j}}$$
 (2.14)

u = surpression interstitielle au temps t et à la profondeur Z

u_i = surpression interstitielle initiale à la profondeur Z

2. le degré moyen de consolidation
$$\overline{U}$$

 $\overline{U} = 1 - \frac{\int_{0}^{2H} u.dZ}{\int_{0}^{2H} u_{i}.dZ}$
(2.15)

Lorsque u_i est constant le long de Z et en tenant compte de l'expression (2.9), alors

où

$$\overline{U} = 1 - \sum_{m=0}^{\infty} \frac{2}{M^2} e^{-M^2 T} v$$
 (2.16)

 $M = \frac{\pi}{2} (2m+1)$

Cette sommation peut être donnée sous forme de tables ou d'abaques. Le tableau 2.1 en est un e emple. Il donne également les solutions pour trois autres distributions de surpression interstitielle initiale u_i.

Le calcul pratique de la consolidation se fait à partir de la valeur du coefficient de consolidation C_v . Cette valeur ne peut se calculer à partir de l'équation (2.10), vu que les valeurs du coefficient de perméabilité K et du module de compressibilité m_u nous sont inconnues.

Nous allons rappeler ci-dessous deux méthodes les plus couramment utilisées pour la détermination de C_v qui se basent sur les résultats de l'essai oedométrique et sur la relation (2.13).

1. Méthode de CASAGRANDE dite "logarithme du temps"

Dans cette méthode, les lectures des tassements à l'extensomètre (ΔH) sont portées en fonction du logarithme du temps. Il s'agit ensuite de déterminer par construction les points correspondant au degré de consolidation $\overline{U} = 0$ % et $\overline{U} = 100$ %.

. Détermination de \overline{U} = 0% (figure 2.1)

On considère le tassement λ survenu entre t = 1/10 et t = 4/10 minute et on suppose que le même tassement λ s'est produit entre t = 0 et t = 1/10 minute, ce qui

U %	T_v (facteur temps)					
	Cas 1	Cas 2	Cas 3	Cas 4		
0	0	0	0	0		
5	0,001 7	0,002 1	0,020 8	0.024 7		
10	0,007 7	0,011 4	0,042 7	0.050 0		
15	0,017 7	0,023 8	0,065 9	0.075 0		
20	0,031 4	0,040 3	0,090 4	0,102		
25	0,049 1	0,060 8	0,117	0.128		
30	0,070 7	0,084 5	0,145	0,157		
35	0,096 2	0,112	0,175	0.188		
40	0,126	0,143	0,207	0.221		
45	0,159	0,177	0,242	0.257		
50	0,196	0,215	0,281	0,294		
55	0,238	0,257	0,324	0,336		
60	0,286	0,304	0,371	0,384		
65	0,342	0,358	0,425	0,438		
70	0,403	0,421	0,488	0,501		
75	0,477	0,494	0,562	0.575		
80	0,567	0,586	0,652	0,665		
85	0,684	0,700	0,769	0,782		
90	0,848	0,862	0,933	0,946		
95	1,129	1,163	1,214	1,227		
100	∞ .	- 00	o;	∞		

D, valeurs de I, Dour differences valeurs de (В.	Valeurs	de T_{n}	pour	différentes	valeurs	de	Ľ
--	----	---------	------------	------	-------------	---------	----	---

Tableau 2.1 Quatre cas de distribution de l'excès de pression interstitielle initial, avec double drainage. (d'après G.A. Leonards, Les fondations, 1968<u>)</u>

Fig. 2.1 Illustration de la détermination du coefficient de consolidation C $_{\rm V}$ à l'aide de la méthode de Casagrande

fournit $\overline{U} = 0$ %.

où

. Détermination de \overline{U} = 100%

Le point correspondant à \overline{U} = 100% est obtenu par l'intersection de la partie droite de la courbe de compression secondaire et de la tangente au point d'inflexion de la courbe.

On peut alors déterminer le temps correspondant à tout autre degré de consolidation en se servant de l'échelle de consolidation ainsi établie. Le coefficient C_v défini par CASAGRANDE est égal à:

$$C_{v} = \frac{0.197 \text{ H}^2}{t_{50}}$$
(2.17)

 t_{50} = au temps correspondant à \overline{U} = 50%

2. Méthode de TAYLOR dite "racine carrée du temps"

Cette méthode se base sur le fait que la relation (\overline{U}, T_{V}) dans un diagramme \overline{U} versus $\sqrt{T_{V}}$ décrit approximativement une droite avant de devenir asymptotique à l'axe T_{V} pour $\overline{U} = 100$ % et que l'équation de cette droite s'écrit $\overline{U} = 2\sqrt{T_{V}/\pi}$. En utilisant un diagramme sur lequel les lectures des tassements ΔH sont portées en fonction de la racine carrée du temps (figure 2.2), la méthode consiste à tracer la droite approximant le mieux la courbe et passant par les premiers points donnés sur la courbe. La droite est représentée sur cette figure par ab. Le point a correspond à $\overline{U} = 0$ %. Une seconde droite ac est tracée de façon telle que la valeur de c = 1.15 fois la valeur de b. Le point d intersection de ac et de la courbe est choisi comme correspondant à $\overline{U} = 90$ %. L'absciss du point d fournit

Ч 5

t₉₀. Le coefficient C_v définit par TAYLOR est égal à

$$C_{v} = \frac{0.848 \text{ H}^{2}}{t_{90}}$$
(2.18)

Le développement de la théorie de consolidation unidimensionnelle de TERZAGHI s'appuie comme on vient de voir sur de nombreuses hypothèses. Celle qui est loin de la réalité est sans contredit l'hypothèse 7. Il est maintenant bien établi que le coefficient de perméabilité et le module de compressibilité entre autres varient en cours de consolidation. Quoique la théorie de TERZAGHI n'apporte qu'une solution approchée, sa principale utilisation est: la détermination de C_v par interprétation graphique des résultats d'un essai oedométrique réalisé sur un échantillon puis l'insertion de ce C_v dans le calcul de tassement.

Au cours de ces dernières décennies, de nouveaux procédés d'essais de consolidation furent développés dans le but de se rapprocher autant que possible du phénomène réel. Il s'agit d'essais à chargement continu et les méthodes utilisées sont:

- vitesse de déformation constante par HAMILTON et CRAWFORD (1959), SMITH et WAHLS (1969)
- 2. pression interstitielle à la base de l'échantillon u_b maintenue constante, par LOWE et al. (1969)
- 3. le rapport entre la pression interstitielle à la base de l'échantillon et la pression appliquée $(\frac{u_b}{\Lambda_{GW}})$ est maintenu constant, par JANBU (1981)

L'échantillon de sol est soumis à un chargement lent et continuel contrairement à la méthode de chargement incrémental où l'échantillon est chargé par palier en général à toutes les 24 heures.

L'interprétation des données des essais de consolidation à chargement continu dont:

- $\cdot \sigma_v$ = contrainte verticale totale sur le spécimen
- u_b = pression interstitielle en excès à l'interface non drainée (base du spécimen)
- $\overline{\epsilon}$ = déformation verticale unitaire moyenne de l'échantillon
- . ε = vitesse de déformation unitaire moyenne de l'échantillon

nous fournit en général les paramètres suivants: K, m_v , a_v (coefficient de compressibilité), C_c (indice de compression) et C_v. La description des appareils et des méthodes utilisés pour réaliser ces essais est en dehors du cadre de cette étude; on pourra se référer aux articles suivants: [36], [53], [85] et [94] mentionnés dans la liste bibliographique.

Nous allons par contre présenter les principales formulations et équations obtenues à l'aide de ces trois méthodes à chargement continu décrites dans ce présent paragraphe:

> 1. <u>essai</u> à vitesse <u>de</u> <u>déformation</u> <u>constante</u> (CRS: constant rate of strain)

SMITH et WAHLS (1969), à l'aide de certaines hypothèses ont déduit les expressions suivantes:

$$u_{Z} = \frac{\gamma_{W} \cdot r}{K(1+\epsilon)} \left((H \cdot Z - \frac{Z^{2}}{2}) - \frac{b}{r} (\frac{Z^{2}}{4} - \frac{Z^{3}}{6H}) \right)$$
 (2.19)
$$\overline{u} = \alpha u_{b}$$
(2.20)

$$C_{v} = \frac{r H^{2}}{a_{v} u_{b}} \left(\frac{1}{2} - \frac{b}{r} \cdot \frac{1}{12}\right)$$
(2.21)

 $\begin{array}{l} u_{Z} = \text{ pression interstitielle à la profondeur Z} \\ Z = \text{ profondeur ou cote variant de 0 à H} \\ H = \text{ hauteur ou épaisseur de l'échantillon} \\ \gamma_{W} = \text{ poids spécifique de l'eau interstitielle} \\ \overline{e} = \text{ indice des vides moyen} = \frac{1}{H} \int_{O}^{H} e \ dZ \\ e = \text{ indice des vides} \\ r = \text{ vitesse de variation de e; } (r = \frac{de}{dt}) \\ \overline{u} = \text{ pression interstitielle moyenne dans l'échantillon} \\ b = \text{ une constante: fonction de la variation de e} \\ \frac{b}{r} = \text{ indique la variation de e avec Z} \\ \alpha = \text{ représente le rapport entre } \overline{u} \text{ et } u_{b}. \ \text{Il est fonction de } \frac{b}{r} \\ \end{array}$

 $a_v = coefficient de compressibilité défini par <math>\frac{d\overline{e}}{d\sigma_v}$ Il est à noter que le terme $\frac{b}{r}$ varie de 0 à 2 et vaut:

- 2 : lorsque l'indice des vides e demeure constant à la base de l'échantillon
- 0 : lorsque l'indice des vides e est uniforme à travers l'échantillon.

Ainsi lorsque e est assumé uniforme à travers l'échantillon, les termes $\frac{b}{r}$ et α valent respectivement 0 et $\frac{2}{3}$ et les expressions précédentes deviennent:

$$u_{Z} = \frac{\gamma_{W} \cdot r}{K(1+e)} \left(H \cdot Z - \frac{Z^{2}}{2} \right)$$
 (2.22)

où

$$C_{v} = \frac{r H^{2}}{a_{v} u_{b}} \cdot \frac{1}{2} = \frac{d\sigma'}{dt} \cdot \frac{H^{2}}{2 u_{b}}$$
(2.24)

Avec cette dernière hypothèse on en déduit que:

 $\overline{u} = \frac{2}{3} u_{b}$

- a. la courbe de distribution des pressions interstitielles sur un profil vertical est parabolique
- b. la contrainte effective σ'_V peut être exprimée par $\sigma_V = \frac{2}{3} u_b$
- c. le coefficient de consolidation C_v s'exprime simplement en fonction de la variation de σ'_v .
- 2. <u>essai à gradient contrôlé</u> (pression interstitielle à la base de l'échantillon maintenue constante)

A l'aide de certaines hypothèses simplificatrices, LOWE et al (1969) ont déduit les expressions suivantes:

$$u_{z} = u_{b} \left(1 - \frac{z^{2}}{H^{2}}\right)$$
 (2.25)

$$\overline{u} = \frac{1}{H} \int_{O}^{H} u_{Z} d_{Z} = \frac{2}{3} u_{b}$$
 (2.26)

$$C_{v} = \frac{\partial \sigma v}{\partial t} \cdot \frac{H^{2}}{2 u_{b}}$$
(2.27)

où

 $\frac{\partial \sigma}{\partial t} =$ représente la vitesse d'application de la charge

3. essai à chargement continu $\left(\frac{u_b}{\Delta \sigma_v} = Cste\right)$

Les équations qui dérivent de cet essai développé par JANBU et al. (1981), moyennant certaines hypothèses sont:

$$u_{Z} = u_{b} \left(1 - \left(\frac{Z}{H}\right)^{n}\right)$$
(2.28)

$$\overline{u} = \frac{1}{H} \int_{0}^{H} u_{Z} dZ = \frac{n}{n+1} u_{b}$$
(2.29)

$$C_{v} = \alpha_{c} \frac{\dot{\sigma}_{v} H^{2}}{2 u_{b}}$$
(2.30)

$$K = \alpha_{K} \frac{\gamma_{W}}{2 u_{b}}$$
(2.31)

$$M = \alpha_{M} \frac{\overset{\bullet}{\sigma} _{V} H}{\overset{\bullet}{\varepsilon}}$$
(2.32)

$$n = \frac{4 (3-2\lambda)}{6-5\lambda}$$
$$\lambda = \frac{d u_{b}}{d \sigma_{v}}$$

 α_{c} , α_{K} , α_{M} = coefficients qui sont fonction de λ M = module tangent de JANBU

$$\dot{\sigma}_{v} = \frac{d \sigma_{v}}{dt}$$
$$\dot{\epsilon} = \frac{d\epsilon}{dt}$$

les autres termes ont tous été définis précédemment.

De ces trois méthodes d'essais de consolidation que nous venons de présenter et qui sont basées principalement sur: 1. les lectures de tassements à la face supérieure de l'échan-

tillon

où

 les mesures de pressions interstitielles à la base de l'échantillon

il en ressort que:

- 1. les différents paramètres tels que C_v et K peuvent s'exprimer simplement selon des relations mathématiques, moyennant bien entendu certaines hypothèses simplificatrices qui sont en général réalistes
- 2. la distribution de la pression interstitielle dans l'échantillon peut être considérée globalement de type parabolique, c'est-à-dire d'équation:

$$u_{\rm Z} = u_{\rm b} (1 - \frac{{\rm z}^2}{{\rm H}^2})$$

2.2 Compressibilité

L'évaluation des caractéristiques de compressibilité des argiles repose sur l'analyse et l'interprétation de la relation contrainte versus déformation. Les méthodes utilisées actuellement dans les laboratoires de mécanique des sols pour l'étude de la compressibilité sont:

1. méthode dite classique définissant l'indice de recompres-

sion C_{rc} et l'indice de Compression C_c

2. méthode de JANBU définissant le module tangent M

2.2.1 Analyse classique définissant l'indice de recompression C_{rc} et l'indice de compression C_{c}

Cette méthode qui est la plus a cienne et la plus

répandue repose sur l'étude de la courbe indice des vides versus logarithme de la pression effective (e - log σ_v).

La compressibilité des argiles à l'état intact est caractérisée en général par une discontinuité dans la relation e vs log σ'_v . Cette discontinuité est due généralement à la pression de préconsolidation σ'_p qui correspond à la pression sous laquelle l'échantillon considéré a atteint un équilibre de compacité in-situ, équilibre qu'il a conservé à la profondeur à laquelle il a été prélevé sous une charge naturelle effective. Des processus physico-chimiques ont pu contribuer à cette discontinuité.

En partant de l'hypothèse que le sol adopte un comportement de la forme:

$$\frac{de}{d \log \sigma'_{v}} = Cste$$

alors la courbe de compressibilité peut être ainsi ramenée à deux droites de pentes respectives C_{rc} et C_c et qui se croisent au point définissant approximativement σ'_p comme indiqué à la figure 2.3.

L'équation de chacune des droites peut être définie de la façon suivante:

> . pour $\sigma'_{v} < \sigma'_{p}$ $e = e_{o} - (\log \frac{\sigma'_{v}}{\sigma'_{v}}) C_{rc}$

$$pour \sigma'_{v} > \sigma'_{p}$$

$$e = e_{o} - (\log \frac{\sigma'_{p}}{\sigma'_{vo}}) C_{rc} - (\log \frac{\sigma'_{v}}{\sigma'_{p}}) C_{c}$$

 C_{c} = indice de compression

 σ'_{vo} = contrainte effective verticale naturelle σ'_p = contrainte de préconsolidation e = indice des vides sous σ'_v C_{rc} = indice de recompression

Les indices de recompression et de compression sont définis par:

$$C_{c} \text{ ou } C_{rc} = -\frac{\Delta e}{\Delta \log \sigma_{v}}$$
 (2.33)

Selon LEONARDS (1976), les valeurs de C_{rc} varient en général entre 0.015 et 0.035.

Une recherche effectuée par TERZAGHI et PECK (1967) sur des argiles intactes de faible à moyenne sensibilité a montré que:

 $C_{c} = 0.009 (W_{L} - 10)$ (2.34)

où

où

W_{T} = limite de liquidité

L'équation (2.34) ne peut être appliquée si la sensibilité est supérieure à 4 ou la limite de liquidité est plus élevée que 100 pourcents ou l'argile contient un fort pourcentage de matière organique.

Le tableau 2.2 présente plusieurs équations pour l'indice de compression C_c (AZZOUZ, KRIZEK et COROTIS, 1976).

GARNEAU et LEBIHAN (1977) ont proposé une méthode d'estimation de C_c basée sur le cône tombant.

$$\frac{C_c}{1+e_o} = 0.018 \ (W_L - 20) + 0.55 \ \log \frac{h_{60}}{10}$$
 (2.35)

Equation	Domaine d'application		
$C_{c} = 0.007 \ (W_{L} - 7)$	Argiles remaniées		
$C_{c} = 17.66 \times 10^{-5} W_{nat}^{2} + 5.93 \times 10^{-3} W_{nat} - 1.35 \times 10^{-1}$	Argiles de Chicago		
$C_{c} = 1.15 \ (e_{o} - 0.35)$	Toutes les argiles		
$C_{c} = 0.30 \ (e_{0} - 0.27)$	Argile inorganique silteuse ou non		
$C_{c} = 1.15 \times 10^{-2} W_{n}$	Sols organiques		
$C_{c} = 0.75 \ (e_{o} - 0.50)$	Sols à faible plasticité		
$C_c = 0.01 W_n$	Argiles de Chicago		

Tableau 2.2 Equations empiriques pour la détermination de C_c selon AZZOUZ, KRIZEK et COROTIS (1976) (d'après R.D. HOLTZ et W.D. KOVACS: an introduction to geotechnical engineering 1981)

h₆₀ = profondeur de pénétration en mm du cône tombant de 60 g/60º

2.2.2 Analyse de JANBU définissant le module tangent

e = indice des vides initial

JANBU (1962) a caractérisé la compressibilité d'un sol par un module tangent M défini tout au long de la courbe pression effective versus déformation unitaire. Ce module représente au fait la résistance à la déformation et est défini par:

$$M = \frac{d \sigma'}{d\varepsilon}$$
(2.36)

Il a été trouvé expérimentalement que le module tangent M varie en fonction des contraintes effectives σ'_v de diverses façons pour différents types de matériaux, JANBU (1969). Néanmoins, tous les types de variations peuvent être adéquatement représentés au moyen d'une expression relativement simple:

$$M = m P_a \left(\frac{\sigma'}{P_a}\right)$$
(2.37)

où

m = coefficient de module

a = exposant de la contrainte, varie de 0 à 1

 σ'_{tr} = pression effective

P_a = pression de référence égale à la pression atmosphérique

Ces travaux expérimentaux menés par cet auteur ont montré que:

1. pour un sol à comportement élastique tels que roc, moraines compactes, argiles surconsolidées etc..., la valeur de

26

où

l'exposant de la contrainte a vaut approximativement l et l'expression précédente devient:

$$M = m P_{a} = Cste \qquad (2.38)$$

2. pour les sols à comportement élasto-plastique comme les sables, la valeur de l'exposant a varie de l à 0 selon la densité. Pour un sable de densité moyenne, a vaut à peu près 0.5 et de ce fait:

$$M = m \sqrt{\sigma' P_a}$$
(2.39)

3. pour les sols à comportement plastique telles que les argiles normalement consolidées, l'exposant a est égal à 0 et

$$M = m \sigma'_{x} \qquad (2.40)$$

La figure 2.4 montre une représentation de M versus σ'_v selon que a vaut 1, 0.5 ou 0.

Le coefficient de module m a une valeur de l'ordre de 10^5 à 10^6 pour le roc (porosité n \approx 0), mais il décroît rapidement au fur et à mesure que la porosité augmente. Ainsi pour les sols morainiques (n = 20 à 50%), la valeur de m varie de 10000 à 500; pour le sable et le sable silteux, où n = 35 à 50%, m varie de 500 à 50 et enfin pour les argiles, où n = 50 à 90%, m varie à peu près de 30 à 2.

A partir de l'expression (2.37), il est facile d'obtenir une expression pour la déformation verticale ε correspondant à une augmentation de contrainte verticale σ'_{VO} à $\sigma'_{V} = \sigma'_{VO} + \Delta \sigma'_{V}$. En intégrant à partir de d $\varepsilon = \frac{d\sigma'_{V}}{M}$, on obtient:

Fig. 2.4 Variations typiques du module tangent de la compression vierge pour différents types de sols. (d'après JANBU, 1969)

$$\varepsilon = \frac{1}{\mathrm{ma}} \left(\left(\frac{\sigma' v \sigma' + \Delta \sigma' v}{P_{\mathrm{a}}} \right)^{\mathrm{a}} - \left(\frac{\sigma' v \sigma}{P_{\mathrm{a}}} \right)^{\mathrm{a}} \right)$$
(2.41)

c'est l'expression générale donnant la déformation verticale ε en fonction de la pression effective σ'_v selon l'analyse de compressibilité des sols de JANBU.

Ainsi quand:

a = 1, on a
$$\varepsilon = \frac{\Delta \sigma'_v}{m P_a}$$
 (2.42)

a = 0.5, on a
$$\varepsilon = \frac{2}{m} \left(\sqrt{\frac{\sigma' v + \Delta \sigma'}{P_a}} - \sqrt{\frac{\sigma' v o}{P_a}} \right)$$
 (2.43)

a = 0, on a
$$\varepsilon = \frac{1}{m} \ln \left(\frac{\sigma' v \sigma' + \Delta \sigma' v}{\sigma' v \sigma'} \right)$$
 (2.44)

Une fois la déformation verticale évaluée, il est facile de calculer le tassement vertical δ d'une couche de sol d'épaisseur H, vu que par définition:

$$\delta = \int_{O}^{H} \epsilon \cdot dZ$$

où

dZ = petit élément de la couche de sol

2.3 <u>Etudes sur la résistance au cisaillement de l'argile re-</u> maniée

Les études de SKEMPTON et NORTHEY (1953) et de HOUS-TON et MITCHELL (1969) ont montré qu'il existait une relation entre la résistance au cisaillement de l'argile dans son état remanié et son indice de liquidité. Les données recueillies par MITCHELL (1976) sont présentées à la figure 2.5. Le domaine

Fig. 2.5 Relations entre la résistance au cisaillement de l'argile remaniée versus indice de liquidité. (d'après J.K. MITCHELL, 1976)

de variation est assez limité compte tenu du grand nombre de sols impliqués et de la diversité des méthodes de détermination de la résistance utilisées.

Plusieurs auteurs tels que GARNEAU et LEBIHAN (1977), WROTH et WOOD (1978) considèrent qu'il existe une relation unique entre la résistance au cisaillement de l'argile dans son état remanié et son indice de liquidité.

Pour l'argile de la mer de Champlain, GARNEAU et LE-BIHAN (1977) ont déduit la relation suivante:

$$Cu_r = \frac{1}{(I_{LC} - 0.21)^2}$$
 (kPa) (2.45)

I_{LC} = indice de liquidité défini par:

$$I_{LC} = \frac{W - W_p}{W_{LC} - W_p}$$

avec

où

W = teneur en eau

W_p = limite de plasticité

 W_{LC} = limite de liquidité déterminée au cône tombant Les résultats obtenus par LOCAT (1982) en utilisant de l'argile de Grande-Baleine, d'Olga et de Saint-Marcel montrent que la relation entre Cu_r et I_{LC} est unique quelque soit la nature du sol et la salinité (figure 2.6). Ces résultats sont également en accord avec l'équation (2.45).

2.4 Sensibilité

La sensibilité se définit par:

$$S_t = \frac{Cu}{Cu_r}$$

(2.46)

Fig. 2.6 Relation I_{LC} - Cu_r pour argile de Grande-Baleine, d'Olga et de Saint-MarceI. (d'après LOCAT, 1982)

ω 2

Une étude conduite par PENNER (1965) sur les argiles de la mer Champlain a montré que la sensibilité augmente avec le potentiel électro-cinétique des particules ou leur répulsion, tout comme l'ont déduit ROSENQUIST et BJERRUM (1956). TORRANCE (1976) discute les résultats obtenus par PENNER et conclut qu'il y a une relation directe entre la sensibilité et la teneur en sel. Ceci est également confirmé par LOCAT (1982). En fait, la réduction de la teneur en sel d'un sol fait augmenter la répulsion inter-particulaire, réduit la résistance au cisaillement et augmente la sensibilité.

PENNER (1965) a également montré que la sensibilité est aussi fonction de la granulométrie et de la valence des ions de l'eau interstitielle de charge opposée aux particules solides.

QUIGLEY (1980) a fait une synthèse de tous les travaux réalisés concernant les facteurs influençant la sensibilité. Un résumé de ces résultats est compilé au tableau 2.3.

Des essais de sédimentation-compression réalisés par LOCAT (1982) en utilisant trois argiles du Québec ont montré que les sols ont tendance à se structurer et se créer une sensibilité. Cette dernière sera d'autant plus forte que la plasticité du sol sera faible. Il ajoute qu'il semble que la nature d'un sol donné (granulométrie et minéralogie) le prédestine à un comportement structuré et d'une façon plus prononcée au fur et à mesure de la diminution de la plasticité. NEWLAND et ALLELY (1957) ont rapporté que la consolidation d'argile remaniée peut conduire à des valeurs de sensibilité autour de 4.

- 1. Floculation à la déposition
 - salin (faible potentiel zéta)
 - forte concentration en sédiments
 - adsorption de cations bivalents.
- 2. Augmentation lente de la charge sédimentaire.
- 3. Liens de cimentation

 $S_t = \frac{Cu}{Cu_r}$

- carbonates et sesquioxydes (amorphes).

FACTEURS DE FAIBLE RESISTANCE REMANIEE ET DE SENSIBILITE ELEVEE

- 1. Teneur en eau élevée $(w_n > w_{\ell})$
 - peu de consolidation ou diminution de w_o > diminution de w_n.
- 2. Faible surface spécifique des grains
 - teneur élevée en limon ou teneur élevée de farine de roche dans la fraction argileuse
 - teneur élevée en minéraux primaires
 ≃ faible teneur en minéraux argileux.
- 3. Potentiel zéta élevé
 - double couche en expension = forte répulsion inter-particulaire = état dispersé (ou peptisé)
 - faible salinité par lessivage (< 2 g/L)</p>
 - dispersants organiques (adsorption des anions)
 - dispersants inorganiques (adsorption des anions)
 - adsorption plus élevée des cations monovalents par rapport aux cations divalents.
- 4. Faible teneur en amorphes.

5. Faible teneur en smectite.

Tableau 2.3 Contrôle géochimique et minéralogique de la sensibilité des sols argileux (d'après QUIGLEY, 1980) Suite à cela MITCHELL a suggéré que la thixotropie a une grande part au développement de cette sensibilité. HOUSTON (1967) a réalisé des essais de consolidation en utilisant de la kaolinite pure (matériau relativement non thixotropique) et que toutes les particules avaient une dimension inférieure à 2 μ . Il a observé que les sensibilités (déterminées par les tests triaxiaux en compression non drainée) se situaient entre 2 et 12.

2.5 Thixotropie

La thixotropie est un processus d'augmentation de résistance et ce à volume constant. Ce gain de résistance résulterait d'une ré-orientation des molécules d'eau au pourtour des particules (MESRI et al., 1975). Ainsi à la suite du remaniement d'une argile on observe, à partir d'une valeur minimale évaluée immédiatement après, un gain de résistance à volume constant, et ce phénomène est désigné par un gain thixotropique de résistance (GRONDIN, 1978).

La thixotropie peut jouer dans certains cas un rôle très important sur le comportement mécanique d'une argile. Ainsi MESRI et al. (1975) démontrent que la surconsolidation de l'argile de Mexico provient surtout des phénomènes thixotropiques. Ces derniers auteurs prétendent également que toute la résistance de l'argile de Mexico peut être récupérée par la thixotropie.

Selon SKEMPTON et NORTHEY (1952), la sensibilité

peut être dûe à la thixotropie pour les argiles de faible à moyenne sensibilité. Ceci a été déduit à partir d'essais de thixotropie faits sur une période de plus d'un an; les argiles peu sensibles ont un regain de résistance beaucoup plus élevé que les argiles très sensibles, le regain de résistance étant calculé par rapport à la résistance non remaniée.

2.6 <u>Relations entre la résistance au cisaillement non drainée</u> <u>et la pression effective de consolidation d'une argile</u> normalement consolidée

La résistance au cisaillement dans les sols est contrôlée par la contrainte effective. La théorie de consolidation admet quant à elle une dissipation de pressions interstitielles qui causera une augmentation de la contrainte effective dans le temps. On devrait donc s'attendre à une augmentation constante de la résistance au cisaillement avec la consolida-Une correlation entre l'indice des vides, la résistance tion. au cisaillement et la pression de consolidation, établie par BJERRUM (1967) sur la figure 2.7, résume les propriétés essentielles d'une argile normalement consolidée. Sur cette figure la résistance au cisaillement est tracée en fonction de l'indice des vides sur un diagramme e - log σ'_v et la courbe de la résistance au cisaillement ainsi obtenue est parallèle à la courbe de consolidation vierge. Il ressort de ceci que la résistance au cisaillement augmente avec la pression de consolidation et avec la diminution de l'indice des vides.

Pour des argiles normalement consolidées, BJERRUM

(Echelle logarithmique)

Fig. 2.7 Allure générale de la variation de la résistance au cisaillement en fonction de l'indice des vides et de la pression effective de consolidation pour une argile N.C. de Norvège. (d'après BJERRUM, 1967).

(1954) et SKEMPTON (1954) proposaient pratiquement en même temps des relations très semblables du rapport $\frac{Cu}{\sigma'_V}$ en fonction de l'indice de plasticité I_p. La relation proposée par SKEMP-TON est:

$$\frac{Cu}{\sigma'_{v}} = 0.11 + 0.0037 I_{p}$$
(2.47)

Les valeurs de Cu provenaient d'essais en compression simple et d'essais scissométriques. Par ailleurs, dans son étude sur le cône tombant, HANSBO (1957) a noté l'existence pour les argiles normalement consolidées d'une relation linéaire entre le rapport $\frac{Cu}{\sigma_{i}}$ et la limite de liquidité W_L:

$$\frac{Cu}{\sigma'_{\rm V}} = 0.0045 \ W_{\rm L} \tag{2.48}$$

Compte tenu de la très bonne relation existant entre W_L et I_p pour les argiles étudiées par HANSBO, l'équation (2.48) peut s'écrire:

$$\frac{Cu}{\sigma_{v}} = 0.085 + 0.0053 I_{p}$$
(2.49)

Depuis ces relations (2.47) et (2.49) ont été généralisées aux argiles surconsolidées, σ'_v de la relation originale étant remplacée par σ'_p .

Finalement BJERRUM (1973) propose une relation $\frac{Cu}{\sigma_v^{\dagger}}$ en fonction I_p, dans laquelle Cu était mesurée au scissomètre. Ces différentes relations sont présentées à la figure 2.8. En général le rapport $\frac{Cu}{\sigma_v^{\dagger}}$ ou $\frac{Cu}{\sigma_p^{\dagger}}$ prend une valeur entre 0.2 et 0.3

Fig. 2.8 Relations empiriques entre I_p et $\frac{Cu}{\sigma'_V}$

2.7 <u>Résistance au cisaillement mesurée en cisaillement simple</u> à volume constant

L'appareil de cisaillement simple utilisé, fut développé par le Norvegian Geotechnical Institute. La description de cet appareil est présentée au chapitre .

BJERRUM (1962) fut l'un des premiers à avoir étudié la variation de la résistance au cisaillement non drainée déterminée en cisaillement simple à volume constant en fonction de la pression effective de consolidation, en utilisant de l'argile de Manglerud (à l'est d'Oslo). Les valeurs moyennes du rapport $\frac{Cu}{\sigma_V}$ qu'il a obtenues sont de 0.18. La même argile, testée à l'essai triaxial du type CAUC (consolidé anisotropiquement et cisaillé dans un état non drainé en compression) a donné des rapports $\frac{Cu}{\sigma_V}$ d'une valeur moyenne de 0.29. Le scissomètre de terrain donnait un rapport moyen d'environ 0.13.

Des essais réalisés aux laboratoires de géotechnique des universités de Sherbrooke et de Laval en 1980-81 en utilisant de l'argile de Broadback (B6 et B2), ont montré en général que:

Cu σv déterminé à l'essai triaxial CAUC est supérieur à celui déduit en cisaillement simple.
 Cu σv déterminé à l'essai triaxial CAUE (consolidé anisotropiquement et cisaillé dans un état non drainé en extension) est inférieur à celui évalué en cisaillement simple

3. $\frac{Cu}{\sigma'}$ mesuré en cisaillement simple correspond

globalement à la valeur moyenne des rapports $\frac{Cu}{\sigma'_v}$ évalués aux essais type CAUC et CAUE $\frac{Cu}{\sigma'_v}$ (cisail.simple) $\simeq \left(\frac{Cu}{\sigma'_v}(CAUE) + \frac{Cu}{\sigma'_v}(CAUC)\right)/2$ 4. le cône tombant et le scissomètre de terrain donnent approximativement les mêres valeurs que le cisaillement simple à volume constant. Les figures 2.9 et 2.10 illustrent ces résultats respectivement pour l'argile de Broadback (B2 et B6).

2.8 Résistance au cisaillement mesurée au cône tombant

L'essai au cône tombant fut conçu en Suède par OLSON (1922).

La résistance au cisaillement de l'argile mesurée à l'aide de cet appareil fut initialement reliée et associée à un nombre H exprimant une résistance relative "Relative Strength Number H". Le cône de poids Q = 60 g et d'angle à la pointe $\beta = 60^{\circ}$ fut choisi comme cône standard. Le nombre H était déterminé comme suit:

- 1. utiliser un cône d'angle $\beta = 60^{\circ}$
- 2. faire varier le poids de ce cône jusqu'à l'obtention d'une pénétration h = 10 mm
- 3. le poids obtenu en grammes divisé par 60 grammes correspond au 1/10 de H

Ainsi une résistance, tel que H = 10 correspond à une pénétration h = 10 mm mesurée au cône de poids 60 g et d'angle au

42

• cône tombant

Profondeur (m)

sommet $\beta = 60^{\circ}$.

Les nombres H₁ et H₃ furent choisis pour représenter la résistance au cisaillement d'une argile respectivement à l'état remanié et intact.

Plusieurs formules et expressions ont été développées pour évaluer la résistance au cisaillement. Ainsi HAUG (1931) proposa:

$$Cu = \frac{H_3}{32 + 0.073 H_3} (t/m^2)$$
 (2.50)

et ce par comparaison avec les valeurs de résistance évaluées à l'aide de la boîte de cisaillement direct sur argiles norvégiennes.

HULTIN et CALDENIUS (1938) ont formulé l'expression:

$$Cu = \frac{H_3}{40 + 0.055 H_3} (t/m^2)$$
 (2.51)

par comparaison aux résultats obtenus à l'aide de l'essai de compression simple sur l'argile de GOTHENBURG en Suède.

Pour les argiles de Suède, l'équation suivante fut utilisée:

$$Cu = \frac{H_3}{36 + 0.064 H_3} (t/m^2)$$
 (2.52)

Il a été constaté par la suite que les valeurs de la résistance Cu déduites à l'aide de ces précédentes expressions ne correspondaient pas souvent aux valeurs de la résistance évaluées à l'aide d'autres essais de laboratoire et au scissomètre de terrain. De ce fait, SKEMPTON et BISHOP (1950) ont tenté d'exprimer Cu directement à partir de la profondeur de pénétration.

Ces deux derniers auteurs ont formulé l'équation suivante:

$$Cu = \frac{Q}{K\pi (h tg \frac{\beta}{2})^2}$$
 (2.53)

où

Q = poids du cône utilisé

h = profondeur de pénétration

K = coefficient variant de 3 à 7 selon la teneur en eau

C'est seulement après les travaux tant théoriques qu'expérimentaux réalisés par HANSBO (1957) qu'une solution quasi-définitive fut apportée pour l'évaluation de la résistance au cisaillement non drainée Cu d'une argile à l'aide du cône tombant. Par comparaison avec des valeurs de résistance au cisaillement obtenues à l'aide de l'utilisation du scissomètre de terrain, du scissomètre de laboratoire et de l'appareil de compression simple, ce dernier auteur a déduit l'expression générale suivante:

$$Cu = \frac{9.8 K Q}{h^2} \quad (kPa) \tag{2.54}$$

dans laquelle Q est la masse en grammes du cône, h est la pénétration en mm et K est une constante dépendant de l'angle du cône et du degré de remaniement du sol.

Pour un sol intact et un cône de 30° d'angle en pointe, K = 1.0 (HANSBO, 1957). Cette valeur de K a été établie par comparaison des résultats obtenus au cône tombant avec les résistances mesurées au scissomètre de chantier, tel que décrit par CADLING et ODENSTAD (1950).

Pour un sol remanié, K est égal à 0.8 pour un cône de 30° d'angle et est égal à 0.27 pour un cône de 60° d'angle (KARLSSON, 1961, 1977). Ces valeurs ont été établies par comparaison des résultats obtenus au cône tombant et au scissométre de laboratoire. Le rapport de ces valeurs K relatives aux angles de 30° et de 60° a été confirmé sur les argiles remaniées de l'est du Canada (LEBIHAN et LEROUEIL, 1980).

Compte tenu de ces valeurs de K, l'expression (2.54) devient pour un sol à l'état intact:

$$Cu = \frac{3920}{(h_{400})^2} (kPa) \quad ou \quad \frac{980}{(h_{100})^2} (kPa) \quad (2.55)$$

où

 $h_{400} = profondeur de pénétration en mm du cône 400 g/300$

 $h_{100} = profondeur de pénétration en mm du cône 100 g/30°$

et pour un sol à l'état remanié:

Cu
$$\frac{784}{(h_{100})^2}$$
 (kPa) ou $\frac{159}{(h_{60})^2}$ (kPa) ou $\frac{26.5}{(h_{10})^2}$ (kPa) (2.56)

où

 $h_{100} = profondeur de pénétration en mm du cône 100 g/30°$

 $h_{60} = profondeur de pénétration en mm du cône$ 60 g/60^o

 $h_{10} = profondeur de pénétration en mm du cône$ 10 g/60°

Une représentation graphique de ces expressions (2.55) et (2.56) est illustrée à la figure 2.11.

Fig. 2.11 Relations pénétration du cône tombant et résistance au cisaillement non drainée (Equations (2.55) et 2.56)).

CHAPITRE 3

CARACTERISTIQUES GENERALES DES ARGILES ETUDIEES ET PROCEDURES D'ESSAIS

3.1 Caractéristiques générales des argiles étudiées

Les argiles des sites de Broadback, de Saint-Léon et de Saint-Marcel choisies dans le cadre de cette recherche ont fait l'objet de multiples études géotechniques pendant ces dernières années à l'Université de Sherbrooke.

Les sites de B6 (Broadback) et de B2 (Broadback) (qui fait l'objet d'essais complémentaires dans le cadre de cette étude), sont reliés aux travaux exécutés pour les projets hydroélectriques de la Baie de James. Leur localisation est montrée à la figure 3.1.

Le site de Saint-Léon est relatif à l'étude des mécanismes de dégradation des talus argileux en relation avec leur stabilité. La localisation du site est montrée à la figure 3.1.

Quant au site de Saint-Marcel, il est relié à l'étude du comportement des silos sur les argiles marines de la vallée du Saint-Laurent. La localisation est indiquée à la figure 3.1.

3.1.1 Argile de Broadback (B6)

Le site de B6 est situé sur la rive gauche de la

Fig. 3.1 Localisation des différents sites étudiés

rivière Broadback à environ 60 km de la Baie de James (Fort Rupert, figure 3.1).

L'argile étudiée dans le cadre de cette recherche provient du bloc codifié par B6-80-01-11D. Ce type de codification appliquée au laboratoire de mécanique des sols de l'Université de Sherbrooke identifie en premier le site (B6), l'année d'échantillonnage (80), le trou de forage (01), le numéro du bloc (11) et le numéro de la tranche (D). Ce bloc d'environ 12 cm d'épaisseur provient d'environ 5.90 m de profondeur. L'argile est de type marin (mer de Tyrrell), silteuse, de couleur grise, homogène et avec quelques traces de sable fin disséminé et de nodules de silt uniforme. La portion inférieure à 2 µ est d'environ 75%.

Le profil géotechnique détaillé correspondant au site de B6 est illustré à la figure 3.2. Quant aux figures 3.3, 3.4 et 3.5 elles représentent respectivement la salinité et concentration en cations de l'eau interstitielle, le dosage de matières organiques et la pression de préconsolidation en fonction de la profondeur. Ces quatre précédentes figures ont été tirées du Rapport GEO-81-04, G. LEFEBVRE (1981).

Quelques caractéristiques géotechniques sont compilées au tableau 3.1 relatives au bloc d'argile présenté auparavant. On y retrouve la teneur en eau naturelle W_{nat} , la limite de liquidité W_1 , la limite de plasticité W_p , l'indice de plasticité I_p , la densité relative des grains G_S , le pourcentage de la fraction inférieure à 2 μ , la salinité, la surface spécifique et le pourcentage des minéraux phyllo-silicates.

EUR	HIE	DESCRIPTION	LIMITES DE CONSISTANCE	RESISTANCE AU CISAILLEMENT (kPa)	LITE	GRA LOMET	NU- RIE
PROFONDI METRE	TAT I GRAP		₩ _₽ ₩ _L ₩ ├	• cône suédois-sol intact (c _u) © cône suédois sol remanié (c _{ur}) C _U 20 40 60 80 100 120-	SENSIEI	% <8 Ou	%<2″
0- 		Tourbe Silt avgileux / silt subleux gris, ox/dé Argile silteuse juise très fissurée, texture granuleuse jusqu'à 1.42m, très frachile jusqua 2.65m. Argile silteuse grise homogène, traces de sable fin dissemine, présence occasionnelle de quelques éléments de sable grossier Fissures ouvertes et fermées de 8,00 à probablement9,50m. Quelques fissures peu fragiles de 11.0 à 12.0 m Argile et siltgris, traces de suble fin à grossier, traces de Suble fin à grossier, traces de gravier (Ømex echantillorme: 80mm)		$ \begin{array}{c cccc} $	$ $	95 95 95 95 95 98 95 98 97 97 98 97 97 98 97 98 98 97 99 97 99 98 9000 98 9000 98 9000 98 9000 98 9000 98 9000 98 9000 98 9000 98	70 9 76 70 9 75 76 76 76 76 76 76 76 76 76 76 76 76 70 77 71 70 76 76 76 76 76 76 76 76 70 77 71 70 75 12 70 75 12
		contenant 2 zones dulterrainces horizontales duryile eldesilt, de 13,76 à 13,84 et de 19,78à, 19,89 (probablement varvees) el de nombre ux nodules de silt de 13.88 à 19,10m.			- 310 - 160 - 400	51 94 92	51 53 60

Fig. 3.2 Profil stratigraphique de Broadback (B6) (d'après le rapport GEO-81-04, G. LEFEBVRE, 1981)

Fig. 3.3 Salinité et concentration en cations de l'eau interstitielle. Argile naturelle de Broadback (B6) (d'après le rapport GEO-81-04, G. LEFEBVRE, 1981)

Dosage de matières organiques. Dépôt de Broadback (B6) (d'après le rapport GEO-81-04, G. LEFEBVRE, 1981) Fig. 3.4

53
Pression (kPa)

	Profondeur (m)	Teneur en eau naturelle, W _{nat} (%)	Limite de liquidité au cône tombant W _{LC} (%)	Limite de plasticité, W _p (%)	Indice de plasticité, I _p (%)	Indice de liquidité, I _{LC}	Densité relative des grains, G _S	Salinité de l'eau interstitielle, (g/l)	Pourcentage de la fraction inférieure ầ 2 μ (%)	Surface spécifique, (m ² /g)	Minéraux phyllo- silicates, (%)
Broadback (B6)	5.90	46	49.50	26.60	22.9	0.847	2.747	0.45	75	40	7*
Broadback (B2)	10	43.30	27	17	10	2.63	2.750	0.9	40	47	37*
Saint-Léon	5.35	48.50	53	21.40	31.60	0.857	2.794	15	65	40	22
Saint-Marcel	10.50	80	62	25	37	1.486	2.777	2	75	67	25*

Tableau 3.1 Caractéristiques géotechniques des différentes argiles étudiées. Etat naturel.

*: Selon P. DELAGE, (1982)

ភ ភ

3.1.2 Argile de Saint-Léon

Le site de Saint-Léon est situé sur la rive nord du Saint-Laurent à quelque 12 km au nord de Louiseville à la hauteur du lac Saint-Pierre (fig. 3.1). L'argile étudiée provient du bloc codifié par SLB-81-01-03B. Le bloc est d'environ 11 cm d'épaisseur. Il a été prélevé à environ 5.35 m de profondeur. L'argile est de type marin (mer de Champlain), grise et silteuse. Les particules plus petites que de 2 μ représentent à peu près 60%, tandis que la portion inférieure à 80 μ est d'environ 100%. La densité relative des grains est de 2.79.

Le profil géotechnique du dépôt de Saint-Léon est illustré à la figure 3.6 (MORISSETTE, 1983). Quelques caractéristiques géotechniques sont compilées au tableau 3.1 pour le bloc d'argile considérée.

3.1.3 Argile de Saint-Marcel

Le site de Saint-Marcel, dans la vallée du Saint-Laurent, se trouve à près de 60 km à l'est de Montréal (fig. 3.1). L'argile étudiée provient du bloc codifié par SM-78-01-11A. Il est prélevé à environ 10.5 m de profondeur. L'argile est de type marin (mer de Champlain), grise, homogène et sa fraction inférieure à 2 μ est à peu près de 75%. La densité relative des grains est de 2.78.

Le profil géotechnique du site de Saint-Marcel est illustré à la figure 3.7 (FRECHETTE, 1981). Quelques

Fig. 3.6 Profil géotechnique au site de Saint-Léon (MORISSETTE, 1983)

Fig. 3.7 Profil géotechnique au site de Saint-Marcel (FRECHETTE, 1981)

С

ω

caractéristiques géotechniques sont présentées au tableau 3.1. D'après DELAGE (1981), la structure de l'argile de Saint-Marcel serait très proche de celle de Saint-Léon et serait typique d'un pôle à texture argileuse.

3.1.4 Argile de Broadback (B2)

Le site de B2 est situé sur la rive gauche de la rivière Broadback à quelque 25 km de l'embouchure (Baie de James). L'échantillon utilisé provient du bloc codifié par B2-81-02-12A. Il est prélevé à environ 10 m de profondeur. L'argile est de type marin (mer de Tyrrell), moucheté et gris noir, présence de coquillages, de silt et un peu de sable. La portion inférieure à 2 μ est d'environ 40%, tandis que la portion inférieure à 80 μ est de 100%. La densité relative des grains est de 2.75. D'autres caractéristiques géotechniques sont compilées au tableau 3.1.

Le profil stratigraphique est illustré à la figure 3.8. Quant aux figures 3.9, 3.10 et 3.11 elles représentent la salinité, le dosage de matières organiques et la pression de préconsolidation. Ces quatre précédentes figures ont été tirées du rapport GEO-82-02, G. LEFEBVRE (1982).

3.2 Procédures d'essais

Le but de ce paragraphe est de décrire les différents appareils et normes utilisés dans le cadre de cette

NDEUR RE APHIE		DESCRIPTION	LIMITES DE CONSISTANCE RESISTANCE AU C (kPa)	RESISTANCE AU CISAILLEMENT (kPa)			NU- RIE
PROFON METR	STATIGRA		W _P W _L W ← +(82-80-01) C ₁ 10 + cône suédois-so C ₁ 10 C ₁	l intact (c _u) l remanié (c _{ur}) 40 50 60	SENSIBI	% > 8 Ou	% <2 n
0_		0.0-3,05 ; Tourbe	$10 \ 20 \ 30 \ 40 \ 50 \ ur \ 2 \ 3$	4 5 6			
- 1 2 -							
3		3.05-13.93: Silt et avgile, gris mouchete, et maxbre avia noiv:		• • • • •	<u>A-11</u>	95	32
5 _		quelques lits irregulies de silt un peudesable,		•	18 35 27	97 97 96	39 39 37
		Presence occasionnelle dele-			39	98	43
7 -		degrovier, sur tout après 10m.			41	100	43
8 _		Presence decoquillages.			48 87	99 99	41 42
5 - -	-	Marbrures brun beige de 133 a 14.1.			110 160 220	100 100 98	35 43 38
10 -					240	100	37
N _					270	58	38
12 -					380	100	44
-		13.93 - 14.13 : Alternance .			260	100	42
ר כי ר		et grisbleute			190	95	35 32
14		19,13-19.49 Argile silleuse gize. \ contenant deséléments grossiers. /			170	100 99 -97	61 94 78
Fig. 3	.8 P	rofil stratigraphique. Dé	pôt de Broadback (B2) (d'après le rap	vort GEO-82-0	2, G	. LE	FEBVRI

Fig. 3.9 Salinité et concentration en cations de l'eau interstitielle. Dépôt de Broadback (B2) (d'après le rapport GEO-82-02, G. LEFEBVRE, 1982)

61

Fig. 3.10 Dosage de matières organiques. Dépôt de Broadback (B2) (d'après le rapport GEO-82-02, G. LEFEBVRE, 1982)

Pression (kPa)

Fig. 3.11 Pression de préconsolidation. Dépôt de Broadback (B6) (d'après le rapport GEO-8?-02, G. LEFEBVRE, 1982)

étude pour la détermination des différentes caractéristiques géotechniques.

3.2.1 Essais d'identification

La limite de liquidité par percussions W_L et la limite de plasticité W_p sont déterminées selon la procédure BNQ-2501-090.

La limite de liquidité à l'aide du cône tombant $W_{\rm LC}$ est faite suivant la procédure BNQ-2501-092. Les essais de sédimentométrie ont été faits selon la procédure ASTM-422-63. Quant à la densité relative des grains G_S, elle a été déterminée suivant la procédure BNQ-2501-070.

3.2.2 Essais de consolidation

Tous les essais de consolidation réalisés dans le cadre de cette recherche ont été effectués en utilisant des échantillons d'argile préalablement remaniée.

Afin d'obtenir une bonne mise en place de l'argile remaniée dans la cellule de consolidation, on fut amené à augmenter la teneur en eau et ce par ajout de l'eau distillée à l'exception de l'argile de B2 qui est très fortement sensible. Ainsi la teneur en eau naturelle W_{nat} est de 46%, 48.5%, 80% et 43.3% respectivement pour B6, Saint-Léon, Saint-Marcel et B2. Quant à la teneur en eau de mise en place W_i, elle est de 52%, 62.5%, 85% et 43.3% respectivement pour B6, Saint-Léon,

Saint-Marcel et B2.

3.2.2.1 Appareil d'essai et mode de chargement appliqué

La cellule oedométrique utilisée pour les essais de consolidation est illustrée à la figure 3.12. Elle comporte un cylindre d'acrylique de 101.6 mm de diamètre. L'application de la pression verticale est transmise au sol à l'aide d'un piston auquel on a accolé une pierre poreuse de 6.4 mm d'épaisseur. La sortie de l'eau à la base est contrôlée par une valve. Ainsi le drainage peut être assuré aux deux extrémités en ouvrant la valve ou uniquement à la face supérieure en fermant la valve. La transmission entre la colonne de sol et les deux pierres poreuses est assurée par des papiers filtres en fibre de verre de marque WHATMAN GF/A.

Le déroulement de l'essai est détaillé dans l'appendice A. Le montage nous a permis d'atteindre des contraintes de consolidation d'environ 95 kPa. Tous les essais ont été réalisés avec drainage par les faces supérieure et inférieure de l'échantillon sauf pour les essais effectués avec mesures de pression interstitielle et de perméabilité où le drainage n'était permis que par la face supérieure. Tous les papiers filtres et les pierres poreuses utilisés ont été saturés sous vide. Des corrections ont été apportées aux mesures de tassement pour tenir compte de la compressibilité des pierres poreuses et papiers filtres. Les déformations du bâti sur lequel repose la cellule sont négligeables, vu sa grande rigidité.

3.2.2.2 <u>Essais de consolidation avec mesures de la pression</u> interstitielle et de la perméabilité

La pression interstitielle a été mesurée à la base de l'échantillon à l'aide d'un capteur de pression de marque KULITE, relié à un appareil de lecture (basé sur le principe du pont de WHEATSTONE) de marque BUDD et de précision 0.01 kPa.

Les essais de perméabilité ont été effectués à l'aide d'une colonne d'eau à charge variable. Une période d'écoulement sans mesures allant jusqu'à l heure, précédait les essais; ceci pour permettre de stabiliser l'écoulement dans l'échantillon.

3.2.3 Essais au cône tombant

Les essais au cône tombant ont été effectués pour les raisons suivantes:

- Étudier les variations de la profondeur de pénétration sur des échantillons d'argile remaniée sous différentes teneurs en eau.
- 2. déterminer la limite de liquidité $W_{\rm LC}$.
- évaluer la résistance au cisaillement non drainée
 Cu de l'échantillon intact c'est-à-dire une fois retiré de la cellule de consolidation.
- 4. évaluer la résistance au cisaillement remaniée Cu_r.

Toutes ces mesures ont été réalisées à l'aide d'un appareil norvégien de marque GEONOR et de type g-200 et ce conformément à la procédure recommandée par le manufacturier (GEONOR S.A., NORVEGE).

3.2.4 Essais de cisaillement simple

Certains échantillons, juste après l'évaluation de Cu au cône tombant et la mesure de la teneur en eau, ont été soumis à un essai de cisaillement simple à volume constant et ce après une période de reconsolidation à la même pression qu'ils ont eu auparavant dans la cellule de consolidation. Ces essais ont été réalisés dans le but de pouvoir établir une certaine comparaison entre le Cu évalué au cône tombant et le Cu évalué en cisaillement simple.

Tous les essais de cisaillement simple ont été effectués à l'aide d'un appareil de marque GEONOR et de modèle H-12, figure 3.13. Cet appareil mis au point par le Norvegian Geotechnical Institute est conçu pour recevoir un échantillon cylindrique de diamètre fixe d'environ 79.8 mm, confiné dans une membrane de caoutchouc armé de fils métalliques. La hauteur du spécimen est d'environ 20 mm. Le cisaillement est opéré par le déplacement de la partie supérieure du cylindre par rapport à la base qui est fixe. La membrane renforcée agit comme un cadre rigide obligeant une répartition à peu près uniforme des contraintes de cisaillement à travers l'échantillon.

L'essai en cisaillement simple s'effectue en deux étapes. La première est un stade de consolidation pendant lequel la pression normale est appliquée en un ou plusieurs

Fig. 3.13 Appareil de cisaillement simple utilisé (d'après BJERRUM, 1961)

chargements. La seconde correspond au cisaillement.

Deux types d'essais différents sont possibles avec cet appareil:

- 1. essai de cisaillement simple à volume constant ou essai non drainé (par analogie avec l'essai triaxial)
- 2. essai drainé, cisaillé sous une pression normale constante.

Tous les essais de cisaillement simple dont il est question dans cette étude sont des essais du premier type. Tous les échantillons ont été cisaillés à une vitesse de 0.0059 mm/mn de déplacement horizontal. Le montage de l'échantillon et l'essai ont été effectués conformément à la procédure suggérée par le manufacturier (GEONOR S.A., NORVEGE).

CHAPITRE 4

ANALYSES ET INTERPRETATIONS DES RESULTATS D'ESSAIS

4.1 Essais de pénétration au cône tombant sur argile remaniée

Les essais de pénétration au cône tombant sur échantillons d'argile remaniée, ont été réalisés en utilisant deux modes de préparation:

1. argile remaniée à teneur en eau naturelle

2. argile remaniée à teneur en eau augmentée

Dans le mode 1, les essais de pénétration ont été effectués immédiatement après la préparation. Dans le second mode, le sol a été conservé pendant 24 heures dans une chambre humide (humidité relative d'environ 100%).

Il est à noter que ces différents essais de pénétration nous ont permis de:

- a. déterminer la limite de liquidité (W_{LC}) suivant la procédure BNQ-2501-092
- b. étudier la variation de la résistance au cisaillement non drainée de l'argile remaniée en fonction
 de l'indice de liquidité.

Nous allons traiter ci-après ces deux points (a et b) pour l'argile des trois sites: Broadback (B6), Saint-Léon et Saint-Marcel, choisis dans le cadre de cette étude.

4.1.1 Argile de Broadback (B6)

4.1.1.1 Essais à teneur en eau naturelle et à teneur en eau augmentée

Les résultats des essais de pénétration au cône tombant d'une masse de 60 g et 60 degrés d'angle à la pointe, réalisés sur échantillons d'argile remaniée, (prélevée du bloc B6-80-01-11D), selon les deux modes de préparation présentés ci-avant sont illustrés à la figure 4.1. Cette dernière nous permet de faire les observations suivantes:

- dans les deux modes de préparation, la profondeur de pénétration du cône 60 g/60° exprimée en mm, paraît varier plus ou moins linéairement avec la teneur en eau correspondante.
- 2. à teneur en eau égale, la profondeur de pénétration déduite selon le second mode de préparation est supérieure à celle déduite selon le premier mode. Cette différence paraît néanmoins diminuer, à mesure que la teneur en eau diminue. Les raisons d'un tel comportement sont mal connues mais on pense qu'il serait dû à un phénomène d'oxyda-

tion qui serait amorcé lors du premier remaniement. Des essais réalisés en parallèle ont montré que pour un même travail de remaniement, un spécimen dont le premier remaniement remonte à 10 minutes n'aura pas la même valeur de pénétration qu'un spécimen dont le premier remaniement remonte à 60 mn,

Fig. 4.1 Profondeur de pénétration sur échantillon d'argile remaniée de Broadback (B6) versus teneur en eau

même si les deux spécimens ont la même teneur en eau et sont remaniés à nouveau immédiatement avant l'essai de pénétration.

Selon la norme BNQ 2501-092, la limite de liquidité $(W_{\rm LC})$ est atteinte lorsqu'un sol, placé dans un récipient normalisé (conformément à la norme), laisse pénétrer d'une profondeur de 10 mm un cône ayant une masse de 60 g et 60 degrés d'angle à la pointe.

L'application de cette précédente définition à la figure 4.1 nous permet de déduire:

. pour le mode 1, $W_{LC} = 49.5$ %

. pour le mode 2, $W_{LC} = 47.5\%$

Quant à la limite de liquidité déterminée par percussions à l'aide de l'appareil de Casagrande, elle est de 46%.

La différence observée entre les valeurs de limite de liquidité (49.5% - 47.5% = 2%) déterminées au cône tombant, selon les deux modes de préparation a été traitée précédemment.

On observe également que la limite de liquidité déterminée par percussion est inférieure à celle déterminée au cône tombant. Cette différence provient du fait que la résistance au cisaillement du sol à la limite de liquidité par percussion varie avec cette valeur. La limite de liquidité $W_{\rm LC}$ associée à une profondeur de pénétration de 10 mm au cône de 60 g/60° correspond d'après l'équation (2.47) à une résistance au cisaillement de l'argile remaniée de 1.59 kPa.

4.1.1.2 Résistance au cisaillement versus indice de liquidité

Nous avons vu au chapitre 2 que la résistance au cisaillement de l'argile remaniée Cu_r est reliée par une relation unique à l'indice de liquidité (équation (2.45)), GARNEAU et LE-BIHAN (1977), LOCAT (1982).

L'équation (2.45) est représentée en traits pleins à la figure 4.2 sur laquelle on a reporté également les différents points (I_{LC} , Cu_r) obtenus en utilisant de l'argile de Broadback (B6). Il en ressort clairement que nos points expérimentaux se situent de très près de la courbe décrite par l'équation (2.45).

4.1.2 Argile de Saint-Léon

4.1.2.1 Essais à teneur en eau naturelle et à teneur en eau augmentée

Les résultats des essais de pénétration au cône tombant d'une masse de 60 g et de 60 degrés d'angle à la pointe, réalisés sur échantillons d'argile remaniée (prélevée du bloc SLB-81-01-03B), selon les deux modes de préparation sont illustrés à la figure 4.3. Il en ressort de cette dernière que:

> 1. dans les deux modes de préparation, la profondeur de pénétration du cône 60 g/60⁰ exprimée en mm, paraît également varier plus ou moins linéairement avec la teneur en eau.

Fig. 4.2 Relation entre la résistance au cisaillement de l'argile remaniée et l'indice de liquidité déterminé au cône tombant

δ

Léon versus teneur en eau

2. à teneur en eau égale, la profondeur de pénétration déduite selon le second mode de préparation est supérieure à celle déduite selon le premier mode. La différence paraît néanmoins diminuer au fur et à mesure que la teneur en eau diminue. Nous avons décrit précédemment les raisons éventuelles d'un tel phénomène couramment observé pour l'argile de l'est du Canada.

Quant à la limite de liquidité W_{LC} elle est de:

. pour le mode 1; $W_{LC} = 53\%$

. pour le mode 2; $W_{LC} = 49.5\%$

A titre de comparaison, la valeur de la limite de liquidité obtenue par percussions W_{T} est de 47.5%.

On retrouve ainsi plus ou moins le même phénomène que celui observé pour l'argile de B6 et dont une tentative d'explication fut présentée précédemment.

4.1.2.2 Résistance au cisaillement versus indice de liquidité

Les points expérimentaux (I_{LC} , Cu_r) obtenus pour l'argile remaniée de Saint-Léon sont également représentés à la figure 4.2 avec ceux de B6. On constate de nouveau que les différents points (I_{LC} , Cu_r) mesurés se situent de très près de la courbe décrite par l'équation (2.45).

4.1.3.1 Essais à teneur en eau naturelle et à teneur en eau augmentée

Les résultats des essais de pénétration au cône tombant d'une masse de 60 g et de 60 degrés d'angle à la pointe, réalisés sur échantillons d'argile remaniée (prélevée du bloc SM-78-01-11A), selon les deux modes de préparation sont illustrés à la figure 4.4. Cette dernière nous permet de faire les constatations suivantes:

- dans les deux modes de préparation, la profondeur de pénétration du cône 60 g/60° exprimée en mm, paraît comme pour les argiles de B6 et Saint-Léon, varier linéairement avec la teneur en eau.
- 2. les deux modes de préparation semblent donner les mêmes résultats et ce contrairement à ce que l'on a observé pour les argiles de B6 et Saint-Léon. Ainsi la limite de liquidité W_{LC} est identique et elle vaut 62%. Quant à la limite de liquidité déterminée par percussions W_L elle est de 61%.

4.1.3.2 Résistance au cisaillement versus indice de liquidité

Les points expérimentaux (I_{LC}, Cu_r) obtenus pour l'argile remaniée de Saint-Marcel sont illustrés également à la figure 4.2, conjointement avec ceux de B6 et Saint-Léon, où

l'on observe de nouveau que les points expérimentaux se situent aux environs de la courbe décrite par l'équation (2.45).

4.1.4 Conclusions

Les essais de pénétration au cône tombant effectués en utilisant de l'argile remaniée de B6, de Saint-Léon et de Saint-Marcel nous permettent de conclure par les observations suivantes:

- les profondeurs de pénétration exprimées en mm du cône tombant d'une masse de 60 g et 60 degrés d'angle à la pointe paraissent varier plus ou moins linéairement avec la teneur en eau.
- 2. nos résultats expérimentaux sont en accord avec ceux obtenus par GARNEAU et LEBIHAN (1977). Ainsi l'équation (2.45) peut être utilisée directement pour déduire la résistance au cisaillement remaniée de l'argile de B6, de Saint-Léon et de Saint-Marcel en connaissant l'indice de liquidité.
- 3. la limite de liquidité W_{LC} semble varier avec le mode de préparation (B6 et Saint-Léon). La valeur de la limite de liquidité W_{LC} qui fut choisie pour tous les prochains calculs et formulations est celle déduite des essais de pénétration au cône 60 g/60° effectués sur l'argile remaniée une fois qu'elle a été consolidée dans la cellule représentée à la figure 3.12. A notre avis, cette façon de procéder semble être logique. Les figures

4.5, 4.6 et 4.7 montrent respectivement les résultats obtenus pour l'argile de B6, de Saint-Léon et de Saint-Marcel selon ce mode de préparation que l'on nommera par mode 3. Le tableau 4.1 récapitule les valeurs de W_L obtenues par le mode 1, le mode 2, le mode 3 et par utilisation de l'appareil de Casagrande. On remarque que W_{LC} (mode 2) pour B6 et Saint-Léon sont respectivement égales à W_{LC} (mode 3) et supérieures d'environ 2% de W_L (Casagrande). Quant à Saint-Marcel W_{LC} (mode 1 ou mode 2) est respectivement supérieure de 3% du W_{LC} (mode 3) et de 1% du W_L (Casagrande).

4.2 <u>Analyse des résultats relatifs à la consolidation et com-</u> pressibilité

Nous allons décrire et interpréter dans ce paragraphe les résultats des essais de consolidation d'argile préalablement remaniée, qui ont été réalisés à l'aide de l'appareil représenté à la figure 3.12 et selon la procédure décrite en appendice A.

Nous avons initialement consolidé quatre différents échantillons d'argile remaniée pour chaque site et ce à des pressions effectives de consolidation de 7, 15.5, 32.5 et 60 kPa. Ainsi pour une argile de poids spécifique de 1.6 g/cm³, ces pressions de consolidation correspondent à des hauteurs de remblais respectivement de 45 cm, 95 cm, 200 cm et 370 cm. Par la

Fig. 4.6 Profondeur de pénétration sur échantillons d'argile remaniée de Saint-Léon (une fois consolidés) versus teneur en eau

Teneur en eau, W(%)

8. 5

	W _{LC} (%)	W _{LC} (%)	W _{LC} (%)	W _L (%)	W _p (%)	I _p (%)
	mode l	mode 2	mode 3	Casagrande		(mode 3)
Broadback (B6)	49.5	47.5	47.5	46	26.6	20.9
Saint-Léon	53	49.5	49.5	47.5	21.4	28.1
Saint-Marcel	62	62	59	61	25	34

and the second of the second second

Tableau 4.1 Valeurs des limites de liquidité déterminées par utilisation du cône tombant avec différents modes de préparation et par utilisation de l'appareil de Casagrande suite et ce dans le but de compléter rigoureusement les résultats obtenus, nous avons exécuté d'autres essais de consolidation à des pressions effectives de consolidation situées entre 32.5 kPa et 60 kPa ainsi qu'au-delà de cette dernière.

Le tableau 4.2 montre les différentes pressions de consolidation utilisées et ce pour chaque échantillon d'argile remaniée de Broadback (B6), de Saint-Léon, de Saint-Marcel et de Broadback (B2). Ce dernier a été utilisé à titre de complément.

Nous rappelons que lors de la préparation des échantillons d'argile remaniée, pour effectuer les essais de consolidation, nous avons été amenés à modifier la teneur en eau naturelle par ajout de l'eau distillée afin d'avoir une bonne mise en place de l'échantillon dans la cellule de consolidation. Le tableau 4.3 montre les valeurs de la teneur en eau naturelle W_{nat} et de la teneur en eau initiale W_i : c'est-à-dire lors de la mise en place de l'échantillon dans la cellule de consolidation et ce pour les différentes argiles étudiées.

4.2.1 Evolution de la compression dans le temps

Pour chacun des chargements, l'évolution de la compression a été observée en fonction du temps. Les courbes de la compression exprimée en tassement ou lecture de l'extensomètre en fonction du logarithme du temps correspondant à la dernière étape de chargement pour les pressions finales de 7 kPa ($\Delta\sigma_{y}$ = 4.5 kPa - 7 kPa), de 15.5 kPi ($\Delta\sigma_{y}$ = 10 kPa -

Echantillon	Pression effective de consolidation finale utilisée (kPa)								
Broadback (B6)	7 15.5 32.5 42 51 60 75 92.5 150*								
Saint-Léon	7 15.5 32.5 44 60 84 95 150*								
Saint-Marcel	7 15.5 32.5 60 81 95 150*								
Broadback (B2)	7 15.5 35 45 60 85								

Tableau 4.2 Valeurs des différentes pressions de consolidation utilisées

* L'essai à la pression de consolidation de 150 kPa a été réalisé à l'aide de l'appareil de cisaillement simple

	W _{nat} (%)	Winitial [%]	Wp [%]	W_{LC} %	I _p (%)	I _{LC} initial	e _{initial}
Broadback (B6)	46	52	26.60	47.50	20.90	1.20	1.423
Saint-Léon	48.50	62.50	21.40	49.50	28.10	1.46	1.743
Saint-Marcel	80	85	25	59	34	1.71	2.36
Broadback (B2)	43.30	43.30	17	27	10	2.63	1.20

Tableau 4.3 Caractéristiques géotechniques des différentes argiles étudiées lors de leur mise en place dans la cellule de consolidation
15.5 kPa), de 32.5 kPa ($\Delta \sigma_{y}$ = 26.8 kPa - 32.5 kPa) et de 60 kPa ($\Delta \sigma_v = 54.8$ kPa - 60 kPa) sont illustrées en appendice B. Les résultats obtenus pour l'argile de Broadback (B6) sont représentés aux figures B.1 à B.4, pour Saint-Léon: figures B.5 à B.8 et pour Saint-Marcel: figures B.9 à B.12. Pour certaines étapes de chargement, nous avons mesuré la pression interstitielle à la base de l'échantillon. Les résultats de ces mesures sont représentés en fonction du logarithme du temps et du tassement observé aux figures B.13 à B.15 pour Broadback (B6), B.16 à B.18 pour Saint-Léon et B.19 et B.20 pour Saint-Marcel. On note des comportements similaires pour les trois argiles. Pour certaines étapes de chargement, la fin de la consolidation primaire (construction de Casagrande ou $u_{h} = 0$) est bien observée, tandis que pour d'autres elle l'est moins bien. Le tableau 4.4 résume ces différents cas pour les trois argiles. On constate que la fin de consolidation primaire est mal définie pour l'étape de chargement 54.8 kPa - 60 kPa et ce pour les trois argiles. Pour le reste des étapes de chargement, elle est bien ou plus ou moins bien définie. Dans les cas où elle est plus ou moins bien définie, on observe qu'une pression interstitielle d'environ 0.5 kPa demeure à la base de l'échantillon (interface non drainée) ce qui correspond à un degré de dissipation d'environ 95%. Tandis que pour les étapes de chargement où la fin de consolidation primaire est bien définie (t100, Casagrande), la pression interstitielle à la base de l'échantillon u_b est nulle et ce bien entendu pour les cas où les mesures de u_h ont été effectuées.

	Etape de	Fin de la co	onsolidation		
	chargement	prir	naire		
		t ₁₀₀	^u b		
	2.8 kPa-4.25 kPa	bien définie	0 kPa		
	4.25 kPa-7 kPa	bien définie	pas de mesures		
Broadback	10 kPa-15.5 kPa	bien définie	pas de mesures		
(B6)	21 kPa-26.8 kPa	bien définie	0.5 kPa		
	26.8 kPa-32.5 kPa	bien définie	pas de mesures		
	49. kPa-54.8 kPa	tbien définie	0.25 kPa		
	54.8 kPa-60 kPa	mal définie	pas de mesures		
	4.25 kPa-7 kPa	bien définie	0 kPa		
	10 kPa-15.5 kPa	bien définie	pas de mesures		
	21 kPa-26.8 kPa	tbien définie	0.5 kPa		
Saint-Léon	26.8 kPa-32.5 kPa	bien définie	pas de mesures		
	37.9 kPa-43.5 kPa	bien définie	0 kPa		
	54.8 kPa-60 kPa	mal définie	pas de mesures		
	4.25 kPa-7 kPa	bien définie	pas de mesures		
	10 kPa-15.5 kPa	bien définie	pas de mesures		
Saint-Marcel	15.5 kPa-21 kPa	tbien définie	0.5 kPa		
Jarne-marcer	26.8 kPa-32.5 kPa	bien définie	pas de mesures		
	37.9 kPa-43.5 kPa	±bien définie	0.5 kPa		
	54.8 kPa-60 kPa	mal définie	pas de mesures		

Tableau 4.4

4 Fin de la consolidation primaire. (Casagrande et u_b) pour différentes étapes de chargement des argiles étudiées

Il est à noter qu'en général pour une argile intacte, la fin de la consolidation primaire ne peut être observée ou définie (construction de Casagrande) pour l'étape de chargement que chevauche la pression de préconsolidation σ'_p . Y a-t-il un lien avec nos résultats? Nous verrons un peu plus loin si on peut répondre à cette question.

Les résultats obtenus suite aux essais de consolidation sont compilés aux tableaux 4.5, 4.6 et 4.7 respectivement pour Broadback (B6), Saint-Léon et Saint-Marcel. On y retrouve le tassement observé ΔH , l'indice des vides final e_f et la teneur en eau finale W_f.

4.2.2 <u>Relations entre la pression effective de consolidation</u> et la déformation unitaire

Les essais de consolidation réalisés en utilisant de l'argile préalablement remaniée de Broadback (B6), de Saint-Léon et de Saint-Marcel nous ont permis de déduire les variations de la déformation unitaire en fonction de la pression effective de consolidation. Les résultats obtenus sont illustrés à la figure 4.8 et ce pour les trois argiles. On observe que les trois courbes se caractérisent par une première partie où la déformation ($\varepsilon = \frac{\Delta H}{H_O}$) varie beaucoup avec la contrainte appliquée. Par la suite, au fur et à mesure que la contrainte augmente, la pente de la courbe diminue graduellement. En d'autres mots cela signifie que ε augmente assez fortement (grand tassement à faibles pressions σ'_v et que par la suite ε ne croît que

Δσ _v (kPa)	Wf (%)	ILC	H _i (mm)	^H f (mm)	^{∆H=H} i ^{−H} f (mm)	e _f
7	47.45	0.997	54.00	51.39	2.61	1.306
15.5	43.63	0.815	52.33	47.46	4.87	1.197
32.5	42.00	0.736	49.64	43.74	5.90	1.135
42	41.52	0.714	49.95	43.71	6.22	1.121
51	41.02	0.690	51.00	44.30	6.70	1.105
60	40.51	0.665	49.10	42.43	6.67	1.095
75	39.67	0.625	55.80	47.8	8.00	1.076
92.5	39.00	0.593	50.50	42.94	7.56	1.060

Tableau 4.5 Résultats obtenus suite à la consolidation d'argile de Broadback (B6)

i = initial

f = final

^{Δσ} v (kPa)	Wf (%)	ILC	H _i (mm)	^H f (mm)	^{∆H=H} i ^{−H} f (mm)	e _f
7	54.80	1.188	51.50	46.61	4.89	1.482
15.5	49.52	1.000	49.23	41.45	7.78	1.309
32.5	46.31	0.886	51.84	42.08 9.76		1.226
44	45.15	0.845	49.98	39.41	10.57	1.163
60	44.01	0.804	52.40	40.79	11.61	1.135
84	41.66	0.721	53.13	40.09	13.04	1.069
95	40.62	0.684	49.95	37.33	12.62	1 050

Tableau 4.6 Résultats obtenus suite à la consolidation d'argile de Saint-Léon

i = initial

f = final

^{Δσ} v (kPa)	[₩] f (%)	ILC	H (mm)	H _f (mm)	${}^{\Delta H=H}i^{-H}f$ (mm)	e _f
7	74.50	1.456	52.50	48.97	3.53	2.134
15.5	69.00	1.294	53.23	47.02	6.21	1.968
32.5	63.80	1.141	50.20	41.85	8.35	1.801
60	60.21	1.036	52.30	41.74	10.56	1.681
81	57.12	0.944	53.20	41.07	12.13	1.594
95	55.60	0.900	49.97	38.22	11.75	1.570

Tableau 4.7 Résultats obtenus suite à la consolidation d'argile de Saint-Marcel

- i = initial
- f = final

de façon modérée (faible tassement) en fonction de $\sigma_V^{\,\prime}.$

A titre de comparaison, on note que pour un même σ'_v , on a: ϵ (Broadback) < ϵ (Saint-Marcel) < ϵ (Saint-Léon).

4.2.3 <u>Relations entre la pression effective de consolidation</u> et l'indice des vides

La consolidation d'argile préalablement remaniée nous permet d'obtenir dans l'espace e versus log $\sigma_{\rm V}^{\, \prime}$ une courbe appelée couramment: courbe vierge de compression (C.V.C.), (LEO-NARDS et ALTSCHAEFFL, 1964; SKEMPTON, 1970). Idéalement ces courbes doivent constituer une courbe d'équilibre, pour un sol donné, entre la contrainte effective verticale σ'_v et l'indice des vides e. Les C.V.C. obtenues pour l'argile de Broadback (B6), de Saint-Léon et de Saint-Marcel sont illustrées à la figure 4.9. Nous observons que les C.V.C. de Saint-Léon et de Saint-Marcel sont approximativement des droites avec un indice de compression C respectivement de 0.37 et 0.52. Quant à la courbe vierge de Broadback (B6), elle est concave vers le bas et ce jusqu'à environ $\sigma'_{\rm v}$ = 60 kPa. Au delà de cette pression, la courbe tend vers une droite présentant un C_{c} de 0.14. Les C.V.C. obtenues par LOCAT (1982) en utilisant de l'argile de Saint-Marcel remaniée à la teneur en eau naturelle (W_{nat} = 80%) et à teneur en eau augmentée (W = 103%) sont approximativement des droites avec respectivement un indice de compression de 0.53 et 0.65. Nos essais pour l'argile remaniée de Saint-Marcel ont été réalisés avec une teneur en eau initiale d'environ

Fig. 4.9 Courbes indice des vides versus logarithme de la pression effective de consolidation

85% et on a obtenu une valeur de C $_{\rm c}$ de 0.52 ce qui est proche de la valeur obtenue par LOCAT pour l'essai avec une teneur en eau initiale de 80%. SKEMPTON (1970) a indiqué que la position de C.V.C. dans l'espace e versus log σ'_v est en bonne partie contrôlée par la limite de liquidité. Ceci est en accord avec nos résultats où l'on observe effectivement que la C.V.C. de Saint-Marcel est tout à fait à droite ($W_{T_{1}} = 59\%$), vient par la suite celle de Saint-Léon (W_L = 49.5%) et enfin celle de Broadback (B6) (W_{T} = 47.5%). Par ailleurs, LOCAT (1982) a observé que plus la teneur en eau W_i au début de la consolidation d'argile remaniée est grande par rapport à la teneur en eau naturelle W_{nat} plus la courbe e - log σ'_{v} se déplace vers la droite pour se rapprocher de la courbe de sédimentation-compression. Nous ne pouvons malheureusement confirmer ceci, vu que nos essais n'ont été réalisés que pour une seule valeur de W_i . Il est à noter que le déplacement vers la droite d'une courbe e - log σ'_v indique que globalement plus le sol a une teneur en eau initiale de consolidation élevée et plus il aura une structuration pro-Cette structure plus prononcée s'exprime par un indice noncée. des vides plus élevé pour une même pression effective.

Nous montrons à la figure 4.10 plusieurs C.V.C. provenant de différents sites. Les caractéristiques d'identification de ces argiles sont résumées au tableau 4.8. Nous constatons que l'étalement de ces courbes est important et que l'indice de compression semble augmenter avec l'augmentation de la limite de liquidité et ce tel qu'illustré par SKEMPTON (1970).

Fig. 4.10 Courbes vierges de compression de différentes sources exprimées par la relation e - log σ'_v , (LOCAT, 1982)

100

	·						
No	Site/Argile	< 2 µ	S	W _p	W _L	Ip	Référence
		8	g/L	0	₽ S	90	
1	Grande-Baleine	56	0,2	21,3	34,1	12,8	
2	Olga	93	0,2	27,0	71,7	44,7	Locat, 1982
3	St-Marcel	76	0,2	25,4	61,6	36,2)
4	Residual Clay	55	-	26,0	87,0	61	Leonards et Altschaefl, 1964
5	Paulding Clay	53	-	45,0	70,0	25,0	Anoushiravan, 1973
6	Kaolin	95	0,01	34	62	28	Monte et Krizek, 1976
7	Illite - Ca	100	-	37	85	48	Olsen, 1962
8	Djuprenna	55±16	34,4±1,1	34±7	92±22	58±18	Richards, 1976
9	M2-L-Théorique	83	- 8	-	-	-	Sneddon, 1967
10	Bangkok	76	35,8	34,5	89,5	55,0	Bumrungsup et Moh, 1972
11	Asrum - 35 g/L	50,0	35	21,6	48,8	27,2	Bjerrum et Rosenqvist, 1956
12	Asrum - 5 g/L	50,0	5	18,6	28,1	9,5	Bjerrum et Relenquist, 1956
13	Mexico-City	40	-	162	537	375	Anoushiravan, 1973 (fig. 5.1)
16	Ngasaka-Loam	-		48,5	.93,5	4,5,0	Murakami, 1979

Tableau 4.8 Données relatives aux courbes vierges de compression représentées à la figure 4.10

4.2.4 <u>Variations du coefficient de perméabilité avec l'indice</u> des vides

Le coefficient de perméabilité K a été déterminé de deux manières:

1. à l'aide d'une colonne d'eau . charge variable

2. à l'aide de mesures de pression interstitielle

à la base de l'échantillon, u_b,

La valeur de K déduite de l'essai à charge variable est évaluée à l'aide de l'équation suivante:

$$K = \frac{\ln \left(\frac{H_1}{H_2}\right)}{t_2 - t_1} \cdot \frac{L A_t}{A}$$
(4.4)

 H_1 = charge hydraulique au temps t_1

 H_2 = charge hydraulique au temps t_2

L = longueur ou hauteur de l'échantillon

A = section de l'échantillon perpendiculaire à l'écoulement

 $A_t = section du tube$

où

Pour déterminer le coefficient de perméabilité à l'aide de mesures de pression interstitielle à la base de l'échantillon, nous nous sommes basés sur l'hypothèse que la distribution de la pression interstitielle à travers l'échantillon est de type parabolique. Cette dernière nous permet d'appliquer l'équation (2.24), qui combinée aux expressions (2.6) et (2.10) nous conduit à:

$$x = \frac{dH}{dt} \cdot \frac{H}{2 u_{b}}$$

(4.5)

L'utilisation de la courbe de tassement versus log t établie lors des mesures de u_b nous permet de transformer l'expression (4.5) en:

$$K = \frac{G}{t \ ln \ 10} \cdot \frac{H}{2 \ u_{b}}$$
(4.6)

où

G = pente de la tangente à la courbe tassement log t au temps t

H = épaisseur de l'échantillon au temps t

u_b = pression interstitielle mesurée à la base de l'échantillon au temps t

Le tableau 4.9 montre les valeurs de K déduites à l'aide de l'expression (4.6) pour l'argile de Broadback (B6), de Saint-Léon et de Saint-Marcel. Il est à noter que pour chaque essai, le calcul a été effectué en deux endroits correspondant respectivement au début et à mi-consolidation primaire tel qu'illustré par les figures B.13, B.14 et B.15 pour Broadback, B.16, B.17 et B.18 pour Saint-Léon, B.19 et B.20 pour Saint-Marcel.

Les valeurs de K évaluées à l'aide d'une colonne d'eau à charge variable sont présentées au tableau 4.10 et ce pour les différentes argiles étudiées.

Les variations du coefficient de perméabilité porté en abscisse sur échelle logarithmique avec l'indice des vides porté en ordonnée sur échelle arithmétique sont illustrées aux figures 4.11, 4.12 et 4.13 respectivement pour Broadback (B6), Saint-Léon et Saint-Marcel. Il en ressort de ces dernières figures que le logarithme du coefficient de perméabilité (log K) paraît varier de façon linéaire avec l'indice des vides e. La loi est de type:

	Tangente 1							Tangente 2					
Argile	Pression de consolidation $\sigma_{\mathbf{V}}$ (kPa)	Pente de la tangente, G	Temps correspondant, t(s)	Hauteur de 1'échantillon H(cm)	Pression interstitielle u _b (cm)	Indice des vides, e	Coefficient de perméabilité K x 10 ⁻⁸ cm/s	Pente de la tangente, G	Temps correspondant t(s)	Hauteur de l'échantillon, H(cm)	Pression interstitielle u _b (cm)	Indice des vides, e	Coefficient de perméabilité K x(l0 ⁻⁸ cm/s)
łck	4.25	0.0170	200x60	4.760	8.50	1.349	1.7.2.3	0.0299	.8.00x6.0	4.740	5.00	1.341	12.82
adba (B6)	26.62	0.0166	100x60	4.420	24.50	1.182	.1084	0.0245	400x60	4.410	14.00	1.176	6.98
Bro	54.76	0.0150	350x60	4.280	13.50	1.112	4.92	00229	.1000x60	4.270	8.50	1.110	4.16
	6.78	0.0390	150x60	4.855	12.00	1.541	38.10	0.0700	700x60	4.817	8.00	1.521	21.80
Léon	26.62	0.0260	200x60	4.436	17.33	1.322	12.0	0.060.0	100x60	4.404	10.00	1.305	9.60
ω Ω	43.50	0.0320	300x60	4.227	21.00	1.213		0.0700	7.00x60	4.203	20.00	1.200	8.00
el-	21.00	0.0260	200x60	4.567	36.50	1.934	58.8	0.0520	600x60	4.551	26.00	1.923	5.49
Sain Marc	43.58	0.0280	400x60	4.324	23.00	1.778	4.76	0.0510	1100x60	4.308	15.00	1.767	4.82
				Contraction of the second s			Statement, Support Statement and Statements				-		

Tableau 4.9 Valeurs du coefficient de perméabilité obtenues à l'aide de mesures de pression interstitielle à la base de l'échantillon pour les différentes argiles étudiées

Br	oadback	(B6)		Saint-	Léon	Saint-Marcel			
σ ' v (kPa)	e	K (10 ⁻⁸ cm/s)	σ <mark>'</mark> v (kPa)	е	K (10 ⁻⁸ cm/s)	σ <mark>'</mark> v (kPa)	e	K (10 ⁻⁸ cm/s)	
6.78	1.309	9.00	6.78	1.501	22.3	6.78	2.134	10.30	
37.87	1.134	5.90	32.25	1.275	8.5	15.37	1.973	6.63	
60.38	1.093	4.95	49.13	1.162	8.0	49.13	1.736	4.41	
						60.38	1.692	3.33	
	1 · · ·		1		• • • • •			•	

Tableau 4.10 Valeurs du coefficient de perméabilité évaluées à l'aide d'une colonne d'eau à charge variable pour les différentes argiles étudiées

Fig. 4.11 Courbe indice des vides vs perméabilité d'argile de Broadback (B6)

Indice des vides,

Φ

2.20 2.10 2.00 U 1.90 1.80 1.70 1x10⁻⁸ 1x10⁻⁶ 2 1×10^{-7} 5 2 5 Perméabilité, K (cm/s)

Fig. 4.13 Courbe indice des vides versus perméabilité d'argile de Saint-Marcel

vides, des Indice

8 O T

$$e = A + B \log K$$
 (4.7)
 $K = 10$ (4.8)

ou

En déduisant les coefficients A et B des graphes, on peut écrire:

e = 4.68 + 0.49 log K (Broadback, B6)
e = 6.05 + 0.68 log K (Saint-Léon)
e = 8.08 + 0.85 log K (Saint-Marcel)

Selon SAMSON et al. (1981), les valeurs de B sont généralement comprises entre 0.5 et 0.9 avec quelques exceptions allant jusqu'à 1.2. Nous constatons effectivement que les valeurs de B obtenues pour nos argiles sont en accord avec les valeurs rapportées par ces auteurs.

Un échantillon d'argile intacte de Broadback (B6), prélevée à 4.16 m de profondeur a montré (rapport GEO-80-04, G. LEFEBVRE) que l'indice des vides e peut être exprimé en fonction de la perméabilité K par la relation suivante:

 $e = 5.58 + 0.61 \log K$

L'échantillon avec lequel nous avons réalisé nos essais provient de la profondeur (5.90 m). Le profil stratigraphique de Broadback (B6) représentée à la figure 3.1 nous montre que le dépôt est particulièrement homogène pour la tranche de sol située entre 4 m et 6 m de profondeur; nous nous permettons ainsi de comparer nos résultats (e = 4.68 + 0.49 log K) avec ceux du rapport GEO-81-04 (e = 5.58 + 0.61 log K). Le tableau 4.11 donne les valeurs de K pour un même e selon les deux

Indice des vides e	Valeurs du coefficient de perméabilité K selon nos résultats (10 ⁻⁸ cm/s)	Valeurs du coefficient de perméabilité K selon les résultats du rapport GEO-81-04 (10 ⁻⁸ cm/s)
1.10	4.8	5.1
1.15	6.1	6.2
1.20	7.7	7.4
1.25	9.7	9.0
1.30	12.2	10.8
1.35	15.5	13
Contraction of the local data and the local data an		· · · · · · · · · · · · · · · · · · ·

Tableau 4.11 Valeurs du coefficient de perméabilité en fonction de l'indice des vides selon le rapport GEO-81-04 (échantillon intact) et selon nos résultats (échantillon remanié et consolidé) pour l'argile de Broadback (B6)

équations. Nous constatons que pour:

e = 1.15 (les valeurs de K sont identiques)

- e > 1.15 (les valeurs de K de l'échantillon remanié et consolidé sont légèrement supérieures à celles de l'intact. La différence augmente quand e augmente)
- e < 1.15 (nos résultats qui sont limités à e > 1.10 ne nous permettent pas de tirer des conclusions satisfaisantes).

Nous savons que si pour un même e, on obtient une même valeur de K pour un échantillon (intact) et un échantillon (remanié et consolidé) ceci entraîne un effet de structure sur K. Dans nos essais la valeur de e = 1.15 correspond à une pression de consolidation d'environ 30 kPa. Y a-t-il eu un effet de structure sur K à ce niveau-là? Nous ne pouvons répondre de manière satisfaisante à cette question, vu que nos essais de mesures de K sont limités à $e \ge à$ 1.1. Nous pouvons par contre dire qu'il n'y a eu aucun effet de structure sur K pour e > à 1.15.

Une autre importante observation à relever est que les valeurs du coefficient de perméabilité déterminées selon les deux modes présentés auparavant, c'est-à-dire par mesures directes (relation (4.4)) et par mesures indirectes (relation (4.6)) présentent une bonne corrélation. Cette constatation nous permet de conclure que l'hypothèse émise précédemment concernant la distribution de type parabolique des pressions interstitielles à travers l'échantillon est réaliste.

4.2.5 <u>Relation entre le module tangent de JANBU et la pression</u> effective de consolidation

La valeur du module tangent M (équation (2.34)), évaluée pour chaque augmentation de charge en divisant l'accroissement de charge par l'accroissement de dé ormation axiale, a été portée sur graphique en fonction de la pression effective de consolidation. Les résultats obtenus sont illustrés à la figure 4.14. On constate que M croît linéairement en fonction de la pression effective selon l'équation (2.38). Les pentes m des droites obtenues sont égales à 23, 15 et 14 respectivement pour Broadback (B6), Saint-Léon et Saint-Marcel. Ces résultats obtenus représentent typiquement le cas d'une argile totalement destructurée (normalement consolidée) tels qu'illustrés par JANBU (1963). Les valeurs de m mentionnées ci-dessus nous permettent de dire qu'à égale pression effective de consolidation, la résistance à la déformation présentée par l'argile de Broadback (B6) est supérieure à celles de Saint-Léon et de Saint-Marcel qui sont à toutes fins pratiques identiques.

Par ailleurs, nous savons que pour les essais faits sur des échantillons d'argile non remaniés (intacts), la variation de M en fonction de σ'_v est en général la suivante: la valeur de M est très élevée à faibles pressions, décroît par la suite jusqu'à devenir pratiquement nulle et atteindre ainsi un minimum à une pression voisine de la pression de préconsolidation σ'_p et finalement M croît linéairement en fonction des pressions effectives excédant σ'_p . La linéarité entre

M et σ'_v se situe dans le domaine normalement consolidé $(\sigma'_v > \sigma'_p)$ ou destructuré (argile remaniée). Nous présentons ci-dessus les valeurs de m obtenues par certains auteurs pour différentes argiles intactes:

- m varie entre 14.5 et 19.5 pour les argiles lacustres du lac Barlow-Ojibway par LEMIEUX (1975)
- 2) m varie entre 14.5 et 17 pour les argiles marines de la mer Champlain (sites de Saint-Louis de Bonsecours, Saint-Vallier de Bellechasse), par LE-FEBVRE (1971)
- 3) m varie entre 11 et 19 pour les argiles marines des basses terres du Saint-Laurent par MORIN Jr. (1977)
- 4) m varie entre 8 et 30 pour les argiles marines de Norvège par JANBU (1963 et 1968).

Pour l'argile lacustre remaniée du lac Barlow-Ojibway, les valeurs de m obtenues par LEMIEUX (1975) se situent aux environs de 15.5.

4.2.6 <u>Relations entre le coefficient de consolidation et la</u> pression effective de consolidation

Le coefficient de consolidation C_v a été défini précédemment (équation (2.10)).

Nous avons vu aux paragraphes précédents que le coefficient de perméabilité K et le module de compressibilité m, (égal à l'inverse du module tangent M) diminuent avec

l'augmentation de la pression effective de consolidation σ'_{v} . La question qui se pose est: est-ce que pendant ce temps, le coefficient de consolidation demeure constant? diminue? ou augmente?

Pour répondre à cette question, nous avons reporté à la figure 4.15 les variations de log C_v en fonction de σ'_v pour les argiles étudiées et ce bien entendu par utilisation de l'équation (2.10) et des figures 4.9, 4.11, 4.12, 4.13 et 4.14.

Nous constatons pour toutes les argiles étudiées que le coefficient de consolidation augmente avec l'augmentation de la pression effective de consolidation. L'augmentation de C_v en fonction de σ'_v pour l'argile normalement consolidée a été observée par de nombreux auteurs dont: (WISSA et al. (1969), SMITH et al. (1969), JANBU (1980)).

Dans cette deuxième partie, nous allons comparer les valeurs de C_v obtenues à l'aide de l'expression (2.10) avec celles déduites par les méthodes graphiques de CASAGRANDE et de TAYLOR (équations (2.17) et (2.18)). Les valeurs obtenues pour t_{50} (CASAGRANDE) sont illustrées aux figures B.13, B.14 et B.15 pour Broadback (B6), B.16, B.17 et B.18 pour Saint-Léon et B.19, B.20 pour Saint-Marcel. Quant aux valeurs pour t_{90} (TAYLOR), elles sont indiquées aux figures B.21, B.22 et B.23 pour Broadback, B.24, B.25 et B.26 pour Saint-Léon et B.27, B.28 pour Saint-Marcel.

Les valeurs de C_v obtenues à l'aide de ces deux méthodes graphiques sont compilées au tableau 4.12. Il en

Courbes coefficient de consolidation versus pression effective de consolidation des différentes argiles étudiées Fig. 4.15

	Pression de consolidation (kPa)	Coefficient de consolidation selon Casagrande (10 ⁻⁵ cm ² /s)	Coefficient de consolidation selon Taylor (10 ⁻⁵ cm ² /s)	Coefficient de consolidation selon C _v = $\frac{K}{m_v \gamma_w}$ (10 ⁻⁵ cm ² /s)
Broadback	4.25	10.51	12.63	15.47
(B6)	26.62	19.27	17.05	38.46
	54.76	10.67	12.61	57.14
	6.78	18.56	21.51	20.40
Saint-Léon	26.62	10.92	12.64	32.90
	43.50	8.97	13.56	45.40
Saint-Marcel		13.73	9.59	18.00
	43.58	7.17	.8.55	25.30

Tableau 4.12 Coefficients de consolidation obtenus par les méthodes graphiques de Casagrande, de Taylor et par la formule théorique $(C_v = \frac{K}{m_v \gamma_w})$ pour les différentes argiles étudiées

ressort de ces résultats que:

- 1. les valeurs de C_v déduites à l'aide des deux méthodes graphiques sont dans l'ensemble identiques. Nous savons que ces deux modes de détermination de C_v sont basés sur l'interprétation de la courbe théorique de TERZAGHI et devraient conduire plus ou moins à la même valeur de C_v . S'il existe un écart, ceci signifie que l'essai de consolidation a eu un comportement différent de celui impliqué par la théorie de TERZAGHI et ainsi le recalage de la courbe expérimentale avec la courbe théorique conduit à des valeurs de C_v différentes.
- 2. les valeurs de C_v évaluées à l'aide de l'expression (2.10) sont supérieures à celles déduites par les méthodes graphiques et l'écart croît avec l'augmentation de σ'_v tel qu'illustré par les figures B.29 et B.30 respectivement pour Broadback et Saint-Léon. Ceci signifie que l'utilisation de C_v (déduit par les méthodes graphiques) va surestimer le temps nécessaire de consolidation (surpressions interstitielles complètement dissipées) qu'il ne l'est en réalité.

4.2.7 <u>Relations entre le degré de tassement moyen et le degré</u> de dissipation moyen

La théorie de TERZAGHI est essentiellement basée sur

la dissipation de la pression interstitielle et sa solution utilise le degré moyen de consolidation en terme de pression interstitielle ou degré de dissipation moyen \overline{U}_u , alors que les méthodes graphiques conventionnelles d'évaluation de C_v et de calcul utilisent les courbes de tassement donc du degré moyen de consolidation en terme de tassement ou cegré de tassement moyen \overline{U}_T . Ceci nous a amené à établir selon nos résultats d'essais une comparaison entre \overline{U}_u et \overline{U}_T .

Le degré de dissipation moyen \overline{U}_u a été défini précédemment (équation (2.15)). Or nous avons vu auparavant que la distribution de la pression interstitielle à travers l'échantillon est de type parabolique, c'est-à-dire l'équation (2.23) est valide. En combinant les équations (2.15), (2.23) et en sachant que $\Delta\sigma_v = u_j$, on déduit:

$$\overline{U}_{u} = 1 - \frac{\frac{2}{3} u_{b}}{\Delta \sigma_{u}}$$
(4.9)

où

 $\Delta \sigma_v$ = incrément de pression Quant au degré de tassement \overline{U}_m , il se définit par:

$$\overline{U}_{T} = \frac{\Delta H(t_{x})}{\Delta H(t_{100})}$$
(4.10)

où

 $\Delta H_{(t_{100})} = \text{tassement au temps } t_{100}, \text{ c'est-à-dire} \\ \text{tassement total dû à la consolidation pri-} \\ \text{maire (construction de Casagrande)}$

Ainsi pour: $t_x = 0$ "instant initial", $\overline{U}_T = 0$ % $t_x = t_{100}$ "instant final", $\overline{U}_T = 100$ %

 $^{\Delta H}(t_{v})$ = tassement au temps t_{x}

Les courbes expérimentales obtenues montrant les variations de \overline{U}_{u} en fonction de \overline{U}_{π} sont illustrées aux figures

B.31, B.32 et B.33 respectivement pour Broadback (B6), Saint-Léon et Saint-Marcel. On remarque que la valeur de \overline{U}_u est toujours supérieure à la valeur de \overline{U}_T sauf aux instants initial et final de la consolidation où elles sont égales. On peut ainsi déduire que \overline{U}_u n'est pas représentatif de la progression du tassement et ce contrairement à la théorie de TERZAGHI qui préconise qu'en tout temps \overline{U}_T est égal à \overline{U}_u . Ainsi l'équation (2.16) de TERZAGHI donnant la vitesse de dissipation des pressions interstitielles ne permet pas de prévoir l'accroissement des tassements en fonction du temps.

4.3 Analyse des résultats relatifs aux essais de thixotropie

Une partie de l'argile remaniée préparée pour les essais de consolidation a été mise dans une boîte en plastique fermée. Cette dernière a été conservée dans une chambre humide (humidité relative d'environ 100%). Des mesures de résistance au cône tombant ont été effectuées dans le temps et ce pendant deux mois. A la fin de ces deux mois, l'argile fut remaniée et les mêmes opérations ont été réalisées pendant un autre cycle de deux mois. Nous allons analyser ci-dessous les résultats et ce pour les différentes argiles étudiées.

4.3.1 Evolution de la résistance thixotropique dans le temps

L'évolution de la résistance au cisaillement en fonction du temps due à la thixotropie est illustrée aux figures 4.16, 4.17 et 4.18 respectivement pour Broadback (B6), Saint-Léon et Saint-Marcel. Les deux cycles sont indiqués sur la même figure. Au tableau 4.13, nous avons compilé le temps t, la résistance au cisaillement Cu_t , la sensibilité S_t et le gain de résistance exprimé en pourcentage. La sensibilité et le gain de résistance sont calculés par rapport à la résistance au cisaillement au temps t = 0. Il en ressort que:

- 1. l'évolution de la résistance en fonction du temps est identique pour les deux cycles
- 2. pour t < à 30 jours, on observe que Cu_tcroît fortement et ce pour les trois argiles étudiées. Par la suite Cu_t croît de façon modérée en fonction du temps
- 3. à un même temps, la sensibilité S_t et le gain thixotropique pour Saint-Marcel sont supérieurs à ceux de Broadback (B6) et de Saint-Léon. Ces deux derniers présentent des valeurs identiques pour S_t et le gain thixotropique et ce durant les 30 premiers jours. Par la suite Broadback (B6) montre des valeurs un peu plus élevées que celles de Saint-Léon
- 4. à un même temps, les valeurs de Cu_tpour Broadback (B6) sont supérieures à celles de Saint-Léon et de Saint-Marcel qui présentent des valeurs très proches. La différence entre Cu_t (Broadback (B6)) et Cu_t (Saint-Léon ou Saint-Marcel) semble croître en fonction du temps.

(kPa) cu_t drainée, non cisaillement au Résistance

Fig. 4.16 Evolution de la résistance au cisaillement non drainée mesurée au cône suédois en fonction du temps d'argile de Broadback (B6) (Effets de

Evolution de la résistance au cisaillement non drainée mesurée au cône suédois en fonction du temps, d'argile de Saint-Léon (Effets de thixo-Fig. 4.17 tropie)

123

suédois en fonction du temps, d'argile de Saint-Marcel (Effets de thixotropie)

12

	Broadback (B6)			Sa	lint-Léoi	n	Saint-Marcel		
Temps (jours)	^{Cu} t (kPa)	s _t	gain de résistanœ (%)	Cu _t (kPa)	s _t	gain de résistance (%)	^{Cu} t (kPa)	St	gain de résistanœ (%)
0	0.75	1 .	0.	0.50	1	0.	0.45	1	0
7	1.8	2.4	140	1.20	2.4	140	1.40	3.1	210
15	3.15	4.2	.320.	2.05	4.1	310	2.40	5.3	433
22	4.00	5.3	4.3.3	2.70	5 . 4	440	2.90	6.4	544
30	4.80	6.4	5.40	3.20		540	3.65	8.1	711
45	5.40	7.2	620	3.25	. 6	5.5.0	4.20	9.3	833
.60	6.10	8.1	713	3.50	7.0	600	4.50	10	900

Tableau 4.13 Résultats obtenus suite aux essais de thixotropie pour les différentes argiles étudiées
De ces résultats nous retiendrons tout particulièrement que les valeurs de Cu_t acquises par l'effet de thixotropie sont loin d'être négligeables. Dans le cas de construction par stages d'un remblai en argile, ces valeurs de Cu_t peuvent contribuer grandement à la capacité portante (particulièrement avec l'argile de Broadback (B6)).

4.4 <u>Analyse des résultats relatifs aux essais de cisaillement</u> simple à volume constant

Comme il a été mentionné dans le chapitre I, les essais d'évaluation de C $_{\rm u}$ en cisaillement simple ont été effectués dans le but principal d'établir une comparaison avec les valeurs de C déterminées au cône tombant. Les résultats obtenus sont compilés au tableau 4.14. On y retrouve la contrainte de consolidation σ'_v , la déformation angulaire à la rupture γ , la résistance au cisaillement à la rupture τ_h , le module de rigidité initiale G_o , τ_h/σ_v , la contrainte normale au moment de la rupture σ'_{vr} et τ_h/σ'_{vr} . A la figure 4.19, nous avons représenté les valeurs de C₁₁ obtenues et au cône tombant et au cisaillement simple à volume constant et ce bien entendu pour la même pression de consolidation. Il en ressort que le cône tombant et le cisaillement simple à volume constant donnent des valeurs assez proches. Les courbes de la contrainte horizontale de cisaillement et du changement de contrainte normale en fonction de la déformation angulaire sont présentées en appendice C (figures C.l à C.9). Les cheminements

	Contrainte de consolidation o' (kPa)	Déformation angulaire à la rupture Y(%)	Résistance au cisaillement à la rupture ^T h ^(kPa)	Module de rigidité initiale G _o (kPa)	$\frac{\tau_{h}}{\sigma_{v}}$	Contrainte normale au moment de la rupture σ'r (kPa)	^τ h σ' vr
	60	7.5	20	2400	0.33	35	0.57
Broadback (B6)	92.5	4.5	4.5 28.75		0.31	50	0.57
	150	4.5	45	. 5500	0.30	85	0.53
	7	3.5	4	30.0	0.57	7	0.57
Léon	60	4.5	19.8	2200	0.33	38	0.52
	150	2.5	39.5	5500	0.26	95	0.42
Saint-	15.5	7.5	7.5	5.00	0.48	10	0.75
Marcel	150	4	36	5.5.00	0.24	95	0.38
Broadback (B2)	35	4.5	15.5	1500	0.44	25	0.62

Tableau 4.14 Résultats des essais de cisaillement simple à volume constant des différentes argiles étudiées

Résistance au cisaillement non drainée évaluée au cisaillement simple, C_u (KPa)

Fig. 4.19 Comparaison des résultats obtenus à l'aide du cône suédois et du cisaillement simple à volume constant

de contrainte dans un espace contrainte de cisaillement horizontale - contrainte normale appliquée sont illustrées aux figures C.10 à C.12. Du tableau 4.14 et de ces précédentes figures, il en ressort que:

- 1. tous les essais ont montré une tendance à la compression durant le cisaillement résultant en une diminution de la contrainte normale durant l'essai, sauf pour l'essai à σ'_V = 7 kPa (Saint-Léon) où la contrainte normale est demeurée toujours constante.
- 2. la valeur de la déformation angulaire à la rupture est en général égale à 4.5% sauf pour $\sigma'_{\rm V}$ = 60 kPa (Broadback (B6)) et $\sigma'_{\rm V}$ = 15.5 kPa (Saint-Marcel) où elle atteint une valeur de 7.5%.
- 3. la valeur du module de rigidité initial G_0 augmente en fonction de σ'_V . A la figure 4.20 nous illustrons la variation de G_0 en fonction de σ'_V et ce pour les quatre argiles. On s'aperçoit que G_0 varie de façon linéaire en fonction de σ'_V et que la relation peut s'écrire par

 $G_o \simeq 38 \sigma'_V$

Donc à une même pression de consolidation, les quatre argiles présentent des modules de rigidité semblables.

4. les cheminements de contraintes présentent des comportements semblables et ce pour les différentes pressions de consolidation utilisées et argiles

Fig. 4.20 Relation entre le module de rigidité initial et la pression de consolidation pour les différentes argiles étudiées

étudiées. Le rapport $\frac{h}{\sigma_{vr}}$ est supérieur à 0.5 sauf pour $\sigma_v' = 150$ kPa où il fait 0.42 (Saint-Léon) et 0.38 (Saint-Marcel). Pour toutes les argiles le rapport $\frac{\tau_h}{\sigma_{vr}'}$ diminue quand σ_v' augmente. Sur le tableau 4.15, nous résumons quelques résultats obtenus en utilisant des échantillons intacts de Broadback (B6) (Rapport GEO-81-04, G. Lefebvre), de Broadback (B2) (Rapport GEO-82-02, G. Lefebvre) et de Saint-Léon (Morissette, 1983) et ce à titre de comparaison avec nos résultats obtenus en utilisant de l'argile remaniée et consolidée. Sur ce tableau on retrouve la profondeur, σ_p' , σ_v' , γ , τ_h , τ_h/σ_v' , G_o , σ_{vr}' et τ_h/σ_{vr}' . La profondeur considérée est celle qui se trouve le plus près possible de celle de nos échantillons. Trois cas sont présentés:

> 1. $\sigma'_{v} < \sigma'_{p}$ surconsolidé 2. $\sigma'_{v} \simeq \sigma'_{p}$ anormalement consolidé 3. $\sigma'_{v} > \sigma'_{p}$ anormalement consolidé

Les deux précédents tableaux nous montrent que:

l'argile intacte présente des valeurs de G_o plus élevées, c'est-à-dire que l'argile intacte semble plus rigide que l'argile remaniée et consolidée.
la valeur de ^Th/_{σ'} (0.30) montrée par l'argile intacte de B6 consolidée à σ'_v = σ'_p est très proche de celles présentées par l'argile (B6) remaniée et consoli-dée à σ'_v égales à 60 kPa, 92.5 kPa et 150 kPa.
les valeurs de ^Th/_{σ'} (0.32 et 0.27) montrées par l'argile de Saint-Léon consolidée à σ'_v = σ'_p et à

	Profondeur (m)	σ¦(kPa)	σ <mark>'</mark> (kPa) v	γ(%)	τ _h (kPa)	$\tau_{h}^{\sigma'}v$	G _o (kPa)	σ <mark>'</mark> (kPa)	^τ h ^{/σ} vr
Broadback (B6)	6.64-6.78	145	85	5	.35	0.41	4500	55	0.63
(Rapport GEO- 81-04, G. Le-	6.64-6.78	145	145	2.4	.44	.0.30	6000	90	0.49
iebvre)	6.64-6.78	1.45		67	6.3	0.24	10000	149	0.42
Broadback (B2)	10.36-10.48	132	63	4.5	35.6	0.56	4700	59	0.60
(Rapport GEO- 82-02, G. Le-	10.36-10.48	132	132	1.6		.027	6.5.00	81.7	0.44
febvre)	10.36-10.48	132	264		.6.6	0.25	11000	168.7	0.39
Saint-Léon (Morissette, 1983)	8.23-8.34	340	77	5.3	5.6.3	. 073	7000	63	0.89
	8.23-8.34	340	30.0	4.2		0.32	1.2.00.0	188	0.51
	8.23-8.34	340	400	3.9	107	. 027	14000	236	0.45

Tableau 4.15 Compilation des résultats des essais de cisaillement simple à volume constant pour échantillons intacts

 $\sigma'_{v} > \sigma'_{p}$ sont respectivement très proches de celles présentées par l'argile (Saint-Léon) remaniée et consolidée à σ'_{v} égales à 60 kPa et 150 kPa. (tableau 4.14)

4.5 <u>Evolution de la résistance au cisaillement de l'argile</u> préalablement remaniée et consolidée

A la fin de l'essai de consolidation, étape 6.4 (appendice A), nous avons effectué et ce pour chaque échantillon les opérations suivantes:

- Mesure de la résistance au cisaillement Cu au cône tombant sur échantillon intact
- 2. Mesure de la teneur en eau

3. Remaniement de l'échantillon et mesure de Cu_r Certains échantillons, juste après l'évaluation de Cu et de la teneur en eau, ont été soumis à l'essai de cisaillement simple à volume constant après une période de reconsolidation à la même pression qu'ils ont eue dans la cellule de consolidation. Les résultats de ces essais ont été présentés et discutés au paragraphe précédent. Le point 3 relatif à l'évaluation de Cu_r a été illustré et commenté au paragraphe 4.1.

Nous allons décrire et analyser tous les résultats relatifs à la résistance au cisaillement acquise après consolidation et ce pour l'argile de Broadback (B6), de Saint-Léon, de Saint-Marcel et de Broadback (B2) qui a été ajouté à titre de complément.

4.5.1 Argile de Broadback (B6)

4.5.1.1 <u>Variations de la résistance au cisaillement et l'in-</u> dice de liquidité en fonction de la pression de consolidation

Les résultats obtenus sont compilés au tableau 4.16. On y retrouve les valeurs de la pression de consolidation σ'_v , la résistance au cisaillement intacte Cu, la teneur en eau finale W_f , $\frac{W_i - W_f}{W_i}$, l'indice de liquidité I_{LC} final, la résistance au cisaillement remaniée Cu_r, la sensibilité S_t et $\frac{Cu}{\sigma'_{L}}$.

Les variations de Cu en fonction de σ'_V sont illustrés à la figure 4.21. On observe que la résistance au cisaillement croît d'abord assez fortement avec l'augmentation de la pression effective de consolidation. Cu demeure par la suite approximativement stable dans la plage de pression 30 kPa -60 kPa, puis réaugmente de nouveau apparemment de façon proportionnelle à σ'_V . A notre avis, la forte augmentation du Cu au début c'est-à-dire pour les valeurs de σ'_V inférieures à 30 kPa est associée aux phénomènes suivants:

> 1. gain appréciable de la résistance par l'effet de thixotropie telle qu'illustrée à la figure 4.16. Les résultats des essais de thixotropie ont été discutés au paragraphe 4.3. Ces essais ont été réalisés à teneur en eau constante, ce qui n'est pas le cas d'un échantillon en cours de consolidation où la diminution de la teneur en eau risque probablement d'atténuer le gain thixotropique de

σ ' V	Cu	Wf	W _i -W _f	$\frac{W_{i}-W_{f}}{W}$	ILC	$Cu_r = \frac{1}{(I_r - 0.21)^2}$	s _t	Cu σ'
(kPa)	(kPa)	(%)	(%)	1 (%)		(kPa)		
7	7.45	47.45	4.55	8.75	0.997	1.61	4.63	1.06
15.5	13.56	43.63	8.37	16.09	0.815	2.73	4.97	0.87
32.5	21.60	42.00	10.00	19.23	0.736	3.61	5.98	0.66
42	22.20	41.52	10.48	20.15	0.714	3.94	5.63	0.53
51	21.70	41.02	10.98	21.11	0.690	4.34	5.00	0.43
60	21.55	40.51	11.49	22.09	0.665	4.83	4.46	0.36
75	27.50	39.67	12.33	23.71	0.625	5.81	4.73	0.36
92.5	32.50	39.00	13.00	25.00	0.593	6.82	4.76	0.35
150*	44.00*	.–	-	-		-	_	0.29

Tableau 4.16 Compilation des résultats obtenus sur échantillons intacts suite à la consolidation d'argile préalablement remaniée de Broadback (B6)

* Consolidé et cisaillé à volume constant à l'aide de l'appareil de cisaillement simple.

drainée, cisaillement non

résistance, SKEMPTON et NORTHEY (1952). En supposant que cet effet est négligeable, nous illustrons au tableau 4.17, la valeur du gain thixotropique de résistance en fonction de chaque pression de consolidation en tenant compte du paramètre temps, c'est-à-dire temps de l'essai de consolidation = temps de conservation de l'échantillon pour essai de thixotropie. On s'aperçoit que le gain thixotropique de résistance correspondant à $\sigma'_V = 7$ kPa, 15.5 kPa et 32.5 kPa est respectivement de 2.5 kPa, 3.0 kPa et 3.25 kPa ce qui représente en pourcentage par rapport à Cu (tableau 4.16) les valeurs suivantes:

 $\frac{2.5}{7.45} \times 100 = 33.5 \qquad \text{pour } \sigma_V' = 7 \text{ kPa}$ $\frac{3.0}{13.56} \times 100 = 22 \qquad \text{pour } \sigma_V' = 15.5 \text{ kPa}$ $\frac{3.0}{21.60} \times 100 = 15 \qquad \text{pour } \sigma_V' = 32.5 \text{ kPa}$

Ce qui démontre que l'effet de thixotropie est fort important.

2. forte diminution de la teneur en eau telle qu'illustrée à la figure 4.22 représentant les variations de $\frac{W_i - W_f}{W_i}$ (%) en fonction de σ'_v . En effet, nous observons que $(\frac{W_i - W_f}{W_i})$ croît fortement à faibles pressions où il atteint des valeurs de 8.75%, 16.1% et 19.2% respectivement à σ'_v égale à 7 kPa, 15.5 kPa et 32.5 kPa. Au-dclà de cette dernière

	Gain thixotropique de résistance (kPa)							
Pression de consolidation (kPa)	Broadback (B6)	Saint-Léon	Saint-Marcel					
7	2.5	1.10	1.20					
15.5	3.0	1.40	1.60					
32.5	3.25	1.75	1.90					
42	3.50	2.20						
51	3.75		-					
60	4.00	2.60	2.70					
75	4.25		-					
84		2.90	3.10					
95	4.95	3.10	3.50					
1		An and a second s						

Tableau 4.17 Gain thixotropique de résistance en fonction de la pression de consolidation pour les différentes argiles étudiées

valeur, $\frac{W_i - W_f}{W_i}$ ne croît que de façon modérée avec l'augmentation de σ'_v en ne montrant aucune particularité (blocage ou autre).

Les deux points présentés ci-avant nous permettent de prétendre que la forte augmentation de Cu pour σ'_{v} inférieure à 30 kPa est en grande partie due aux appréciables gains thixotropiques de résistance et aux fortes diminutions de la teneur en eau.

Nous avons mentionné précédemment que Cu demeure plus ou moins stable dans la plage de pression délimitée par 32.5 kPa et 60 kPa. En effet Cu oscille entre 21.5 kPa et 22 kPa alors que l'échantillon a été soumis à σ_V' égale à 32.5 kPa, 42 kPa, 51 kPa et 60 kPa. Les raisons d'un tel comportement nous sont restées inconnues, mais on pense que celuici serait dû à une structuration qui aurait pris place à σ'_v inférieure à environ 30 kPa et que la limite de la structure aurait été atteinte à 30 kPa; c'est pourquoi Cu demeure cons-Cet effet de structure disparaît une fois que Cu (structant. ture) devient égale à Cu (consolidation) ce qui semble être aux environs de σ'_v = 60 kPa. En effet au delà de σ'_v = 60 kPa, Cu réaugmente de nouveau et de façon proportionnelle à σ'_v comme pour une argile normalement consolidée. Ceci est illustré à la figure 4.23, où nous avons représenté les variations de $\frac{cu}{\sigma_{v}!}$ en fonction de σ_{v}' . Cette dernière figure nous montre que:

> 1. fortes valeurs de $\frac{Cu}{\sigma_V}$, à faibles pressions. Ainsi pour $\sigma_V' = 7$ kPa, 15.5 kPa et 32.5 kPa, il vaut respectivement 1.06, 0.87 et 0.66.

Résistance au cisaillement non drainée normalisée versus pression effective de consolidation d'argile de Broadback (B6) Fig. 4.23

2. pour σ'_{v} supérieure ou égale à 60 kPa, le $\frac{Cu}{\sigma'_{v}}$ demeure constant et est égal à environ 0.35. Si l'on fait appel aux relations $\frac{Cu}{\sigma'_{v}}$ versus I_p représentées à la figure 2.8, nous obtenons un $\frac{Cu}{\sigma'_{v}}$ égal à 0.20 pour l'argile de B6 (I_p = 20.9%), ce qui est nettement inférieure à not valeurs de $\frac{Cu}{\sigma'_{v}}$ observées. La valeur de $\frac{Cu}{\sigma'_{v}}$ = 0.20 est assez proche de la valeur de $\frac{Cu}{\sigma'_{v}}$ (0.24) pour échantillon intact normalement consolidé (tableau 4.15).

Les variations de Cu et σ'_v ont été également étudiées en fonction de I_{LC} telles qu'illustrées à la figure 4.24. Nous avons en plus reporté sur cette figure les variations de Cu_r en fonction de I_{LC} déduites à l'aide de l'expression (2.45), ce qui implique que la sensibilité S_t est reliée à Cu par la relation suivante:

$$S_{t} = Cu (I_{LC} - 0.21)^{2}$$
 (4.11)

où Cu = est exprimée en kPa Les valeurs obtenues pour S_t sont indiquées au tableau 4.16. Les valeurs de S_t sont dans l'ensemble très voisines $(S_{t moyen} = 5)$. Le développement de la sensibilité durant la consolidation d'argile remaniée est fort peu connu. Durant la consolidation, le sol a tendance à se structurer, il se crée des contacts où Cu et σ'_v sont en équilibre avec l'indice des vides ou la teneur en eau. Si cette structure ou contacts sont brisés, il n'y a plus d'équilibre pour le même indice des vides: d'où une sensibilité. C'est ce cui s'est produit

apparemment. Nous verrons un peu plus loin ce qu'il en est pour les autres argiles étudiées.

Les variations de I_{LC} en fonction de Cu et σ'_v ne montrent aucun effet particulier. Des études antérieures (LOCAT, 1982) ont montré que la position de la courbe I_{LC} - log σ'_v est contrôlées tout particulièrement par la granulométrie, minéralogie et la salinité. Une comparaison des courbes $(I_{LC} - \log \sigma'_v)$ des différentes argiles étudiées est présentée un peu plus loin.

4.5.2 Argile de Saint-Léon

4.5.2.1 <u>Variations de la résistance au cisaillement et l'indice</u> de liquidité en fonction de la pression de consolidation

Les résultats obtenus sont compilés au tableau 4.18. On y retrouve les valeurs de σ'_v , Cu, W_f , I_{LC} , Cu_r, S_t et $\frac{Cu}{\sigma'_v}$. Les variations de Cu en fonction de σ'_v sont illustrées à la figure 4.25. Il en ressort de cette figure que:

> 1. pour $\sigma'_V \leq a$ 15 kPa, Cu croît fortement en fonction de σ'_V . Les rapports $\frac{Cu}{\sigma'_V}$ sont de 0.63 et 0.55 respectivement pour σ'_V égale à 7 kPa et 15.5 kPa. Cette augmentation relativement élevée de Cu pour $\sigma'_V \leq 15$ kPa serait également due aux mêmes causes que l'on a présentées auparavant pour Broadback (B6), c'est-à-dire:

> > . forte diminution de la teneur en eau telle

σ ' v	Cu	Wf	W _i -W _f	$\frac{W_{i} - W_{f}}{W_{i}}$	I _{LC}	$Cu_{r} = \frac{1}{(I_{LC}^{-0.21})^{2}}$	s _t	$\frac{Cu}{\sigma'}$
(kPa)	(kPa)	(%)	(%)	(%)		(kPa)		
7	4.40	54.80	7.70	12.32	1.188	1.04	4.23	0.63
15.5	8.54	49.52	12.98	20.77	1.000	1.60	5.33	0.55
32.5	10.86	46.31	16.19	25.90	0.886	2.19	4.96	0.33
44	11.52	45.15	17.35	27.76	0.845	2.48	4.64	0.26
60	15.50	44.01	18.49	29.58	0.804	2.83	5.47	0.26
84	18.01	41.66	20.84	33.34	.07.2.1	3.83	4.70	0.21
95	22.50	40.62	21.88	35.00	.0.6.84	4.45	5.05	0.23
153*	41.00*	37.40	-	,			-	_

Tableau 4.18 Compilations des résultats obtenus sur échantillons intacts suite à la consolidation d'argile préalablement remaniée de Saint-Léon

* Consolidé et cisaillé à volume constant à l'aide de l'appareil de cisaillement simple.

(kPa) Cu drainée, non cisaillement au Résistance Pression effective de consolidation, σ'_v (kPa)

Fig. 4.25 Résistance au cisaillement non drainée mesurée au cône suédois versus pression effective de consolidation d'argile de Saint-Léon

que représentée à la figure 4.26. En effet $(\frac{W_i - W_f}{W_i})$ atteint des valeurs de 12.3% et 20.8% respectivement pour σ'_V égale à 7 kPa et 15.5 kPa. Au-delà de cette dernière valeur, on note que $(\frac{W_i - W_f}{W_i})$ ne croît que de facon modérée en fonction de σ'_V . Ainsi à $\sigma'_V = 60$ kPa, $\frac{W_i - W_f}{W_i} = 29.5\%$ comparativement à 20.8% pour $\sigma'_V = 15.5$ kPa. gains thixotropiques de résistance appréciables tels que montrés au tableau 4.17. Ainsi à σ'_V égale à 7 kPa et 15.5 kPa, le gain thixotropique de résistance est respectivement de 1.10 kPa et 1.40 kPa ce qui représente en pourcentage par rapport à Cu les valeurs suivantes:

 $\frac{1.10}{4.40} \times 100 = 25$ pour $\sigma'_{v} = 7$ kPa

1.40/8.54 x 100 = 16.4 pour σ' = 15.5 kPa
Ces valeurs, quoique légèrement inférieures à celles montrées par B6, démontrent également que la thixotropie joue un rôle imporant.
Cu n'augmente que faiblement dans la plage de pression 15.5 kPa - 45 kPa. En effet Cu varie de
8.5 kPa (σ' = 15.5 kPa) à 11.5 kPa (σ' = 45 kPa). Comme nous l'avons mentionné précédemment pour B6, ce phénomène serait dû à une structuration qui aurait pris place à σ' inférieure à 15.5 kPa et que la limite de la structure aurait été atteinte à environ 45 kPa ce qui a fait que Cu n'a augmenté

que faiblement.

3. pour $\sigma'_{V} \geq 45$ kPa, Cu augmente de façon proportionnelle à σ'_{V} . La valeur du rapport $\frac{Cu}{\sigma'_{V}}$ (figure 4.27) observée pour $\sigma'_{V} \geq 45$ kPa est d'environ 0.24. Si l'on applique les relations $\frac{Cu}{\sigma'_{V}}$ versus I_p (figure 2.8), on obtient un $\frac{Cu}{\sigma'_{V}}$ égal à $\cup.22$ pour l'argile de Saint-Léon (I_p = 28.1%), ce qui est très proche de notre valeur (0.24) mais inférieure à celle obtenue (0.27) par MORISSETTE (1983) en utilisant de l'argile intacte (tableau 4.15).

Les variations de Cu et σ'_V ont été également étudiées en fonction de I_{LC} telles que représenteés à la figure 4.28. Nous illustrons également sur cette figure les variations de Cu_r en fonction I_{LC} (équation (2.45)) afin de mettre en évidence la sensibilité développée durant la consolidation (tableau 4.18). On aperçoit que la sensibilité demeure plus ou moins constante en fonction de σ'_V (S_{t moyen} = 4.9) ce qui égale à celle observée pour l'argile de B6 (S_{t moyen} = 5) et ce malgré leur différence de point de vue: origine, caractéristiques géotechniques, salinité etc...

4.5.3 Argile de Saint-Marcel

4.5.3.1 <u>Variations de la résistance au cisaillement et de l'in-</u> dice de liquidité en fonction de la pression de consolidation

Les résultats obtenus ont été compilés au tableau 4.19.

σ ' v	Cu	Wf	Wi-Wf	$\frac{W_{i} - W_{f}}{W_{i}}$	ILC	$Cu_{r} = \frac{1}{(I_{LC} - 0.21)^{2}}$	s _t	Cu σ' v
(kPa)	(kPa)	(%)	(응)	(%)		(kPa)		
7	4.40	74.50	10.50	12.35	1.456	0.64	6.87	0.63
15.5	6.20	69.00	16.00	18.82	1.294	0.85	7.29	0.40
32.5	9.80	63.80	21.20	24.91	1.141	1.15	8.52	0.30
60	15.10	60.21	24.79	29.16	1.036	1.46	10.34	0.25
81	18.70	57.12	27.88	32.80	0.944	1.85	1.0.10	0.23
95	21.20	55.60	29.40	34.58	0.900	2.10	10.09	0.22
150*	36.00*	-	-	-	_	-	-	0.24

Tableau 4.19 Compilation des résultats obtenus sur échantillons intacts suite à la consolidation d'argile préalablement remaniée de Saint-Marcel

* Consolidé et cisaillé à volume constant à l'aide de l'appareil de cisaillement simple.

Les variations de Cu en fonction de σ'_V sont illustrées à la figure 4.29. On observe dans l'ensemble que l'évolution de Cu en fonction de σ'_V est dans l'ensemble similaire à celle constatée pour B6 et Saint-Léon sauf que l'effet de structure est moins prononcé . En effet la plage de pression dans laquelle Cu stagne (B6)ou n'augmente que faiblement (Saint-Léon) n'est pas très visible pour l'argile de Saint-Marcel. On note tout de même que pour $\sigma'_V < a$ 15.5 kPa, Cu augmente relativement fortement. Le rapport $\frac{Cu}{\sigma'_V}$ est égal à 0.63 et 0.40 respectivement à $\sigma'_V = 7$ kPa et 15.5 kPa. Ceci est probablement dû également aux mêmes causes que l'on a présentées précédemment pour les argiles de B6 et de Saint-Léon. En effet on observe:

- . une forte diminution de la teneur en eau telle qu'illustrée à la figure 4.30. Ainsi $\frac{W_i - W_f}{W_i}$ atteint des valeurs de l2% et l9% respectivement pour σ'_V égale à 7 kPa et l5.5 kPa. Au-delà de cette dernière valeur $\frac{W_i - W_f}{W_i}$ ne croît que de façon modérée en fonction de σ'_V .
- un appréciable gain de résistance résultant de la thixotropie (tableau 4.17). En effet à σ'_v égale à 7 kPa et 15.5 kPa le gain thixotropique est respectivement de 1.20 kPa et 1.60 kPa ce qui représente en pourcentage par rapport à Cu:

 $\frac{1.20}{4.40} \times 100 = 27.2\%$ pour $\sigma'_v = 7$ kPa

 $\frac{1.60}{6.20} \times 100 = 25.8\%$ pour $\sigma'_{v} = 15.5$ kPa

Fig. 4.29 Résistance au cisaillement non drainée mesurée au cône suédois versus pression H effective de consolidation d'argile de Saint-Marcel

A partir de σ'_{v} d'environ 45 kPa, le rapport $\frac{Cu}{\sigma'_{v}}$ demeure plus ou moins constant en fonction de l'augmentation de σ'_{v} (figure 4.31). La valeur de ce rapport est de 0.24. L'utilisation des relations empiriques $\frac{Cu}{\sigma'_{v}}$ versus I_p (figure 2.8) nous donne pour $\frac{Cu}{\sigma'_{v}}$ une valeur de 0.25 ce qui est très proche de notre valeur ainsi que celle obtenue par GERVAIS (1980) et qui est de 0.27.

Les variations de Cu et de σ'_{V} en fonction de I_{LC} sont illustrées à la figure 4.32 sur laquelle nous avons également reporté les variations de Cu_r - I_{LC} . Comme pour B6 et Saint-Léon, on observe une sensibilité se développant durant la consolidation. Contrairement à B6 et Saint-Léon où S_t demeure plus ou moins constant en fonction de σ'_{V} , les résultats de Saint-Marcel montrent les faits suivants:

> . pour $\sigma'_{v} \leq 60$ kPa, S_t croît en fonction de σ'_{v} . Ainsi S_t atteint les valeurs de 6.87, 7.29, 8.52 et 10.34 respectivement à σ'_{v} de 7 kPa, 15.5 kPa, 32.5 kPa et 60 kPa.

. pour $\sigma'_V \ge 60$ kPa, S_t demeure constant en fonction de σ'_V à une valeur d'environ 10 ce qui est le double de celle montrée par B6 et Saint-Léon.

Les résultats obtenus pour l'argile de Broadback (B2) qui a été ajoutée à titre d'étude complémentaire sont compilés au tableau 4.20. Les variations de Cu en fonction de σ'_{v} sont illustrées à la figure 4.33. Un comportement similaire à ceux présentés précédemment pour les trois autres argiles se retrouve pour l'argile de B2. En effet, on note que pour $\sigma'_{v} \leq 15.5$ kPa,

Fig. 4.31 Résistance au cisaillement non drainée normalisée versus pression effective de consolidation d'argile de Saint-Marcel

.

с 8

σ' v	Cu	W _f	Wi-Wf	$\frac{W_{i} - W_{f}}{W_{i}}$	ILC	$Cu_{r} = \frac{1}{(I_{LC} - 0.21)^{2}}$	s _t	$\frac{Cu}{\sigma'}$
(kPa)	(kPa)	(응)	(%)	(%)		(kPa)		
7	5.41	34.90	8.4	19.40	1.790	0.40	13.53	0.77
15.5	8.95	32.05	11.25	25.98	1.505	0.60	14.91	0.57
35	14.57	31.07	12.23	28.24	1.407	0.70	20.81	0.42
45	16.62	30.46	12.84	29.60	1.346	0.77	21.58	0.37
60	23.00	29.79	13.52	31.22	1.278	0.87	26.44	0.38
85	30.10	28.93	14.37	33.18	1.193	1.03	29.22	0.35

Tableau 4.20 Compilation des résultats obtenus sur échantillons intacts suite à la consolidation d'argile préalablement remaniée de Broadback (B2)

(kPa) Сu non drainée, cisaillement au Résistance

Cu augmente relativement fortement. Le rapport $\frac{Cu}{\sigma_{\perp}^{\prime}}$, prend des valeurs de 0.77 et 0.57 respectivement à σ'_{v} égale à 7 kPa et 15.5 kPa. Ce comportement pour l'argile de B2 est dû principalement aux fortes diminutions de la teneur en eau observées pour σ'_{v} égale à 7 kPa et 15.5 kPa où $\frac{W_{i} - W_{f}}{W_{i}}$ vaut respectivement 19.4% et 25.98%. Au-delà de cette dernière valeur, $\frac{W_i - W_f}{W_i}$ n'augmente que faiblement (tableau 4.20). Nous avons dit principalement car les gains thixotropiques de résistance observés pour B2 durant toute la période des essais de consolidation ont été très faibles (inférieurs à 0.5 kPa). La limite inférieure de la zone pour B2 dans laquelle Cu augmente très peu est mal définie. Cette limite correspond possiblement à σ_{v}' d'environ 25 kPa. Par contre la limite supérieure en est bien définie (σ'_v = 45 kPa). Au-delà de cette dernière valeur, Cu augmente de façon proportionnelle à $\sigma_{\mathbf{v}}'$ se traduisant par des rapports $\frac{Cu}{\sigma'}$ à peu près constants, d'une valeur moyenne de 0.36 (figure 4.34). On note que cette valeur est semblable à celle montrée par l'argile de B6 (0.35). Les relations empiriques $\frac{Cu}{\sigma'}$ - I_p (fig. 2.8) nous donnent une valeur pour $\frac{Cu}{\sigma'}$ de 0.15 ce qui est nettement inférieur à 0.36. L'échantillon intact de B2 (tableau 4.15) indique un $\frac{Cu}{\sigma_{L}^{1}}$ égal à 0.25. Les valeurs de S_t développées par l'argile de B2 durant la consolidation (tableau 4.20) montrent que:

. S_t augmente en fonction de σ'_V contrairement à Saint-Marcel ($\sigma'_V \ge 60$ kPa), B6 et Saint-Léon où S_t demeure plus ou moins constant

. les valeurs de S_t pour B2 sont nettement supérieures

à celles montrées par les autres argiles étudiées. Ceci est dû principalement aux faibles valeurs de Cu_r pour B2 (tableau 4.20).

4.5.4 Conclusions et discussions

Les analyses présentées dans ce paragraphe nous permettent de conclure par les points suivants:

> 1. une sensibilité S_t se développe durant la consolidation. Nous avons observé que St demeure plus ou moins constant en fonction de l'augmentation de σ'_{v} et ce pour B6, Saint-Léon et Saint-Marcel (pour $\sigma'_{v} \ge 60$ kPa). Par contre pour B2, S_t augmente continuellement en fonction de σ_V^{\prime} . La sensibilité montrée par B2 est incontestablement plus élevée que celle des autres argiles. Ceci est dû principalement aux faibles valeurs de Cu_r (I_{LC} élevé pour B2). Pour la même raison, l'arqile de Saint-Marcel est associée à des valeurs de S₊ supérieures à celles de B6 et de Saint-Léon. Ces deux dernières montrent des valeurs de S_t très proches. La salinité de l'eau interstitielle, la granulométrie et la minéralogie de l'argile de B6 sont très différentes de celles de Saint-Léon (tableau 3.1). Nous pensons que les raisons d'un tel résultat sont dues uniquement aux valeurs de Cu_r et Cu qui font que le rapport

Cu pour B6 et Saint-Léon sont à peu près sembla-Cu_r bles. En ce qui concerne l'évolution de S_t en fonction de σ'_v , nous remarquons que pour les argiles où l'effet de structure (développé au cours de première zone) est bien marqué (B6 et Saint-Léon) sont rattachées des valeurs de S_t qui sont plus ou moins constantes en fonction de σ'_v . Là où l'effet de structure a été moins prononcé (B2 et Saint-Marcel), la valeur de S_t évolue en fonction de σ'_v .

- 2. l'évolution de Cu en fonction de $\sigma_{\rm V}^{\,\prime}$ a eu dans l'ensemble le comportement suivant:
 - a. une première zone dans laquelle Cu croît fortement en fonction de l'augmentation de σ'_V . Dans cette zone, on a observé de forte diminution de la teneur en eau (pour les quatre argiles) et d'appréciables gains thixotropiques de résistance (sauf pour B2 où ce gain est très insignifiant).
 - b. une deuxième zone dans laquelle Cu ne croît que peu ou pas (B6) en fonction de l'augmentation de σ'_v . Nous avons attribué ce comportement à une structuration qui s'est développée dans la première zone. Cet effet de structure disparaît graduellement tout au long de cette deuxième zone.

c. une troisième zone dans Jaquelle Cu croît

proportionnellement à l'augmentation de σ'_V se traduisant par des rapports $\frac{Cu}{\sigma'_V}$ plus ou moins constants.

Au tableau (4.21), nous illustrons les valeurs de σ'_v , de $\frac{Cu}{\sigma'_v}$ (moyen) et S_t (moyenne) pour chaque zone et ce pour les quatre argiles étudiées. De ce tableau, il en ressort que:

. les deux argiles de la mer de Champlain (Saint-Léon et Saint-Marcel) sont reliées à des résultats similaires sauf que Saint-Marcel montre des valeurs de S_t supérieures à celles de Saint-Léon à cause probablement des valeurs de Cu_r (ou I_{LC}). En effet les deux argiles présentent des valeurs de σ'_{v} et du rapport $\frac{Cu}{\sigma'_{v}}$ très proches et ce dans chaque zone. Le tableau 3.1 relatif aux caractéristiques géotechniques nous montre que ces deux argiles ont des limites de plasticité, des pourcentages de la fraction inférieure à 2 μ et des minéraux phyllo-silicates très voisins. Ceci nous amène à prétendre que la granulométrie et la minéralogie sont grandement responsables de la similitude des résultats pour ces deux argiles.

 quant aux deux argiles de la mer de Tyrrell
 (B2 et B6), les résultats nous montrent beaucoup plus de divergences que de convergences.
 Outre la différence entre les valeurs de S₊

	-	Mer de 1				Mer de Champlain						
	Broadback (B6)			Broadback (B2)			Saint-Léon			Saint-Marcel		
		Cu ^σ ^v	s _t		Cu σ' v	s _t		Cu ^σ ^v ^v	st	σ' V	Cu σ' v	s _t
première zone	(RPa)	0.86	5.1	(KPA) < 20	0.65	14	(KPA)	0.59	4.8	(KFA) < 15	0.51	7
(zone I)				-						-		
deuxième zone (zone II)	30-60	0.50	5	20-45	0.45	20	15-45	0.32	4.9	15-45	0.30	8.2
troisième zone (zone III)	<u>></u> 60	0.35	4.7	<u>></u> 45	0.36	26	<u>></u> 45	0.24	5.1	<u>></u> 45	0.23	10.1

Nota: les valeurs de $\frac{Cu}{\sigma'_v}$ et S_t sont des valeurs moyennes

Tableau 4.21 Valeurs de σ'_v , $\frac{Cu}{\sigma'_v}$ et S_t associées aux trois zones pour les différentes argiles étudiées

(traitée précédemment), ces deux argiles sont rattachées à des valeurs de σ'_v (pour les trois zones) et du rapport $\frac{Cu}{\sigma}$ (zone I) différentes. Leurs points communs se situent au niveau des valeurs du rapport $\frac{Cu}{\sigma_{v}^{!}}$ (zones II et III). L'effet de structure qui s'est développé dans la zone I a été beaucoup plus marqué pour B6 que Cet effet disparaît à $\sigma_{f v}$ d'environ 60 kPa B2: et 45 kPa respectivement pour B6 et B2. deux argiles, quoique provenant du même bassin sédimentaire (mer de Tyrrell) sont associées à des caractéristiques géotechniques (tableau 3.1) dans l'ensemble très différentes (indice de plasticité, pourcentages de la fraction inférieure à 2 µ et des minéraux phyllo-silicates). Si l'on écarte l'égalité des rapports $rac{ ext{Cu}}{\sigma}$ (zones II et III) pour ces deux argiles (qui nous est demeurée sans explications), ceci nous amène à conclure que la granulométrie et la minéralogie ont été des facteurs importants dans la différence des résultats entre B2 et B6. les argiles de la mer de Tyrrell (B2 et B6) sont associées à des valeurs de $\frac{Cu}{\sigma}$ plus élevées que celles de la mer de Champlain (Saint-Léon et Saint-Marcel). Ainsi dans la troisième zone où $\frac{Cu}{\sigma_{-}}$ demeure constant, les valeurs de ce rapport sont de 0.355 et 0.225 respectivement

pour la mer de Tyrrell et de Champlain. Il est à noter également que les rapports $\frac{Cu}{\sigma_v}$ (troisième zone) des argiles de Saint-Léon et de Saint-Marcel sont très proches de ceux données par les relations empiriques $\frac{Cu}{\sigma_v} - I_p$. Les deux argiles de la mer de Tirrel. montrent des rapports $\frac{Cu}{\sigma_v}$ (troisième zone) beaucoup plus élevés que ceux fournis par les relations empiriques $\frac{Cu}{\sigma_v} - I_p$.

3. à la figure (4.35) nous illustrons les variations de I_{LC} versus σ'_V pour B6, Saint-Léon et Saint-Marcel et ce à titre de comparaison. Nous constatons que les trois courbes présentent des concavités vers le bas et que plus σ'_V augmente plus les courbes se rapprochent. On observe que la courbe de Saint-Marcel ($I_p = 34$ %) est à droite, vient ensuite celle de Saint-Léon ($I_p = 28$ %) et finalement celle de B6 ($I_p = 20.9$ %) ce qui montre que la position d'une courbe I_{LC} - log σ'_V est contrôlée en tout cas par la granulométrie et minéralogie (LOCAT, 1982).

CHAPITRE 5

SYNTHESE

5.1 Généralités

Le chapitre précédent a montré que:

- Cu_r est liée par une relation unique à l'indice de liquidité, I_{LC}.
- 2. la consolidation et la compressibilité de l'argile remaniée sont du même type que celles de l'argile normalement consolidée.
- 3. l'évolution de Cu en fonction de $\sigma_{\rm V}^{\,\prime}$ se décompose en trois zones distinctes.

Les objets du présent chapitre sont de:

- a. proposer un modèle de comportement mécanique de l'argile préalablement remaniée et consolidée
- b. comparer les profils de résistance déterminés en laboratoire avec ceux mesurés in-situ
- c. discuter de l'utilisation de l'argile remaniée pour la construction de digues et de remblais.

5.2 Modèle de comportement mécanique de l'argile préalablement remaniée et consolidée

Nous avons vu au chapitre précédent que l'évolution de Cu en fonction de σ'_v se décompose en trois zones distinctes. Ce comportement a été observé pour les quatre argiles étudiées (deux de la mer de Tyrrell et deux de la mer de Champlain). Cet état de fait nous a conduit à proposer un modèle de comportement. Ce dernier est illustré à la figure 5.1. Un résumé de ses caractéristiques est présenté au tableau 5.1 et ce pour les différentes argiles étudiées. On y retrouve les valeurs de σ'_{v} , Cu, $\frac{Cu}{\sigma'_{v}}$, Cu_t, $\frac{Cu-Cu_{t}}{\sigma'_{v}}$, $\frac{W_{i}-W_{f}}{W_{i}}$, I_{LC} et e.

Comme le montre la figure précédente, le modèle de comportement est constitué de trois zones:

- 1. la zone I dans laquelle Cu croît fortement en fonction de l'augmentation de σ'_V se traduisant par des valeurs de $\frac{Cu}{\sigma'_V}$ élevées telles que montrées au chapitre précédent (tableaux 4.16, 4.18, 4.19 et 4.20). Dans cette zone, nous avons observé: . d'une part une forte diminution de la teneur en eau (grande compressibilité). Ceci va se traduire par un rapprochement des particules qui fait que la résistance va augmenter de manière importante
 - et d'autre part un appréciable gain thixotropique de résistance, sauf pour l'argile de B2 où il a été très insignifiant.

Le tableau 5.1 nous montre l'importance de ces deux derniers aspects. En effet $\frac{W_i - W_f}{W_i}$ atteint les valeurs de 19%, 26%, 20.7% et 18.8% respectivement pour B6, B2, Saint-Léon et Saint-Marcel à la fin de la zone I. Quant aux gains thixotropiques de résistance, ils sont de 3.25 kPa,

Résistance au cisaillement non drainée, Cu

Fig. 5.1 Modèle de comportement mécanique de l'argile préalablement remaniée et consolidée

	ſ	Fin zone I - Début zone II							Fin zone II - Début zone III								
		(σ <mark>'</mark>)]	(Cu) _I	$\left(\frac{Cu}{\sigma'v}\right)_{I}$	(Cu _t) _I	$\left(\frac{Cu-Cu_{t}}{\sigma_{v}}\right)_{I}$	$\left(\frac{W_{i}-W_{f}}{W_{i}}\right)$	(I ^{LC})I	eI	(σ') v'II	(Cu) _{II}	$\left(\frac{Cu}{\sigma_{v}^{\prime}}\right)_{v}$ II	(Cu _t) _{II}	$\left(\frac{Cu-Cu_{t}}{\sigma_{v}^{\prime}}\right)_{II}$	$(\frac{W_i - W_f}{W_i})_{II}$	(I ^{LC)} II	e _{II}
		(kPa)	(kPa)		(kPa)	-	(^भ र)			(kPa)	(kPa)		(kPa)		(%)		
de ell	B6	30	21	0.7	3.25	0.59	19 .	0.734	1.14	60	21.5	0.35	4.00	0.29	22	0.665	1.09
Mer Tirr	B2	20	10	0.5	faible	-	26	1.450	0.86	45	16.6	0.36	faible		29.5	1.346	0.84
de lain	saint- Léon	15	8.50	0.56	1.40	0.47	20.7	1.000	1.34	45	10.35	0.23	2.2	0.18	28	0.845	1.16
Mer Champ	Saint-	15	6.20	0.47	1.60	0.30	18.8	1.294	1.97	45	9.90	0.22	2.2	0.17	27.	1.090	1.74

Cu_t : gain thixotropique de résistance

Tableau 5.1 Résumé des caractéristiques relatives au modèle de comportement (fig. 5.1) pour les différentes argiles étudiées

1.40 kPa et 1.60 kPa respectivement pour B6, Saint-Léon et Saint-Marcel. Les valeurs du rapport $\frac{Cu}{\sigma_{-}^{1}}$ sont de 0.7 (B6), 0.5 (B2), 0.56 (Saint-Léon) et 0.41 (Saint-Marcel). Si l'on déduit de Cu la valeur du gain thixotropique, les valeurs de $\frac{Cu}{\sigma'_{-}}$ deviennent 0.59 (B6), 0.5 (B2), 0.47 (Saint-Léon) et 0.3 (Saint-Marcel) ce qui démontre une fois de plus l'importance de la thixotropie. On note qu'à la fin de la zone I, à l'exception de B2, les autres argiles présentent des valeurs de $\frac{M_{i}}{W_{i}}$ très proches. Les deux argiles de la mer de Champlain ont la même valeur pour σ_V' à la fin de la zone I ((σ'_v) = 15 kPa). Quant à celles de la mer de Tyrrell, les valeurs de (σ'_v)_I sont de 30 kPa et 20 kPa respectivement pour B6 et B2.

2. la zone II dans laquelle Cu croît très peu en fonction de l'augmentation de σ'_{V} (phénomène très accentué pour l'argile de B6 où un vrai plateau s'est formé). Nous pensons que ceci est dû à une structuration qui s'est développée au cours de la zone I. Cette structuration disparaît par la suite graduellement tout au long de la zone II. La pression de consolidation relative à la fin de cette zone, $((\sigma'_{V})_{II})$ est de 60 kPa, 45 kPa, 45 kPa et 45 kPa respectivement pour B6, B2, Saint-Léon et Saint-Marcel. Cette pression correspond au niveau où Cu (structuration) est égale à Cu (acquis sous l'effet de consolidation, c'est-à-dire σ'_{v}). Les courbes de compressibilité des argiles étudiées (fig. 4.9) n'ont montré aucun effet particulier lors du passage de cette phase. Le changement de voluie d'eau a été continuel (figures 4.23, 4.27 et 4.31). Au tableau 5.2 nous présentons un résumé des caractéristiques relatives à la zone II. De ce dernier tableau il en ressort que:

. l'étendue de cette phase, représentée par $(\sigma'_{v})_{II} - (\sigma'_{v})_{I}$ est sensiblement la même pour les différentes argiles. Cette étendue vaut environ 30 kPa. Existe-t-il une unicité? Nous ne pouvons répondre à cette question d'une façon catégorique vu que l'on a utilisé que quatre argiles.

l'effet de la structuration sur les variations de Cu dans la zone II a été plus important chez B6. En effet durant toute cette phase $(\Delta \sigma_V' = 30 \text{ kPa})$, la résistance au cisaillement n'a que très faiblement augmenté $(\Delta C_u \approx 0.5 \text{ kPa})$. Viennent ensuite Saint-Léon $(\Delta C_u \approx 1.85 \text{ kPa})$, Saint-Marcel $(\Delta C_u = 3.70 \text{ kPa})$ et B2 $(\Delta C_u = 6.6 \text{ kPa})$. Le tableau 3.1 nous montre que le pourcentage des minéraux argileux (phyllo-silicates) est de 7, 22, 25 et 35 respectivement pour B6,

	· ·	((Cu) _{II} -(Cu) _I	$\left(\frac{W_{i}-W_{f}}{W_{i}}\right)_{II} - \left(\frac{W_{i}-W_{f}}{W_{i}}\right)_{I}$	(I ^{TC}) ^{II} -(I ^{TC}) ^I	e ^{II} -e ^I
·		(kPa)	(kPa)	(%)		
le 11	B6	30	0.5	3	- 0.069	- 0.05
Mer d Tyrre	B2	25	6.6	3.5	- 0.104	- 0.02
de lain	Saint- Léon	30	1.85	7.3	- 0.155	- 0.17
Mer d Champ]	Saint- Marcel	30	3.70	8.2	- 0.204	- 0.23

Tableau 5.2 Résumé des caractéristiques relatives à la zone II pour les différentes argiles étudiées

Saint-Léon, Saint-Marcel et B2. On note que plus ce pourcentage augmente plus ACu augmente. 3. la zone III dans laquelle Cu croît de façon proportionnelle à o' telle qu'une argile normalement consolidée ($\frac{Cu}{\sigma'}$ = Cste). A l'ontrée de cette phase, la structuration a été complètement anéantie par σ'_v . La valeur de cette pression de consolidation est de 60 kPa, 45 kPa, 45 kPa, et 45 kPa respectivement pour B6, B2, Saint-Léon et Saint-Marcel. A l'exception de B6, la structuration semble disparaître sous σ'_v d'environ 45 kPa. Les valeurs du rapport $\frac{Cu}{\sigma_{v}}$ sont de 0,35, 0.36, 0.23 et 0.22 respectivement pour B6, B2, Saint-Léon et Saint-Marcel. Nous résumons au tableau 5.3 les valeurs de $\frac{Cu}{\sigma_{\perp}}$ obtenues pour la zone III, des relations empiriques (fig. 2.8) et pour échantillon intact (tableau 4.15). Les différences et les concordances entre les valeurs de $\frac{Cu}{\sigma}$ présentées dans ce tableau ont été discutées au chapitre précédent. Nous l'avons joint à ce présent chapitre qu'à titre complémentaire.

5.3 <u>Comparaisons des profils de résistance déterminés en</u> laboratoire avec ceux mesurés in-situ

Ce paragraphe présente une comparaison des profils de résistance déterminés en laboratoire à l'aide d'échantillons

	•	Cu/ơ <mark>y</mark> (zone III) Echantillon remanié et consolidé	Cu/ơɣ Selon relations empiriques (fig. 2.8)	Cu/ơ <mark>v</mark> Echantillon intact (tableau 4.15)
de ell	B6	0.35	0.20	0.24
Мег (Тугг	B2	0.36	0.15	0.25
de plain	Saint- Léon	0.23	0.22	0.27
Mer (Cham	Saint- Maroel	0.22	0.24	-

Tableau 5.3 Valeurs du rapport $\frac{Cu}{\sigma \cdot}$ obtenues pour la zone III, des relations empiriques $(\frac{Cu}{\sigma \cdot} - I_p)$ et pour échantillon intact des différentes argiles étudiées

8 L J

préalablement remaniés et consolidés (présente étude) avec ceux des dépôts naturels (chapitre 3).

5.3.1 Argile de B6

Les deux profils de Cu (laborato_re et dépôt) sont illustrés à la figure 5.2. Le profil de Cu du dépôt naturel est constitué de trois parties:

> . une première partie où Cu diminue en fonction de la profondeur, caractérisée par la couche altérée de surface (croûte) allant jusqu'à 5 m de profondeur. A ce niveau (5 m) la pression effective naturelle σ'_{vo} et la pression de préconsolidation σ'_p sont respectivement égales à 40 kPa et 150 kPa. une deuxième partie où Cu demeure constant en fonction de la profondeur (5 m - 11 m). Au niveau ll m on a $\sigma'_{vo} = 90$ kPa et $\sigma'_p = 180$ kPa. Dans cette zone (5 m - 11 m) la surconsolidation $\sigma'_p - \sigma'_{vo}$ est à peu près constante à 90 kPa.

. une troisième partie (à partir de 16 m) où Cu augmente en fonction de la profondeur caractérisée par un $\frac{Cu}{\sigma'_{VO}}$ à peu près constant à 0.19. Dans cette zone l'argile est normalement consolidée. La couche de sol comprise entre ll m et 16 m est une zone de changement de matériaux (présence de silt, sable et gravier), pour ce fait elle n'est pas prise en considération.

Ainsi comparativement au profil de Cu (labo), le profil de Cu (dépôt) montre un comportement plus ou moins similaire. On devine facilement que l'écart entre les valeurs de Cu de la zone I (labo) et de Cu de la première partie (dépôt) est relié uniquement aux effets combinés de l'altération et l'oxydation. La différence entre($(\sigma_v')_I = (3 \cup kPa)$)et($\sigma_p' = (150 \ kPa)$) est également associée à ces mêmes effets (altération et oxydation). La zone II (labo) est similaire à la deuxième partie (dépôt). La surconsolidation ($\sigma'_p - \sigma_{vo} = 90$ kPa) régnant dans cette partie (5 m - 11 m) est certainement due au fluage (BJERRUM, 1967); ceci nous permet de prédire que la différence (ACu = 12 kPa) entre Cu (Zone II) et Cu (deuxième partie) est également contrôlée par ce même phénomène (fluage). Il en va de même pour l'écart entre $((\sigma'_v)_{II} = (60 \text{ kPa}))$ et $\sigma'_p = (180 \text{ kPa})$. Finalement une zone similaire à la zone III (labo) se retrouve pour le dépôt (troisième partie). Ces deux zones sont caractérisées par un $\frac{Cu}{\sigma'}$ = Cste (argile normalement consolidée). L'écart entre les valeurs de $\frac{Cu}{\sigma_v}$ qui sont de 0.35 (labo) et de 0.19 (dépôt) est probablement dû à la différence entre les caractéristiques de l'échantillon utilisé en laboratoire et celle du dépôt. Il en ressort de cette comparaison que la faible augmentation de Cu dans la zone II (labo) est due à une surconsolidation comme le montre la deuxième partie du profil Cu (dépôt).

5.3.2 Argile de B2

Les deux profils de Cu (labo et dépôt) sont représentés à la figure 5.3. Le profil de Cu du dépôt naturel est constitué de deux parties:

- . une première partie dans laque le Cu diminue en fonction de la profondeur, caractérisée par la couche altérée de surface (croûte) allant de 3 m à 6 m de profondeur. La couche de sol (0 m - 3 m) est constituée de tourbe. La pression naturelle σ'_{vo} et la pression de préconsolidation σ'_{vo} au niveau 6 m sont respectivement de 30 kPa et 110 kPa une deuxième partie dans laquelle Cu demeure constant en fonction de la profondeur (6 m - 14 m). De 6 m à 12 m de profondeur, la surconsolidation est à peu près constante à 70 kPa (fig. 3.11). De 12 m à 14 m, σ'_p diminue progressivement jusqu'à $\sigma'_p - \sigma'_v$ d'environ 25 kPa. Les essais réalisés à plus grande profondeur (rapport GEO-82-02, G. LE-FEBVRE) indiquent une augmentation rapide de la surconsolidation. Comparativement aux deux profils de Cu (labo et dépôt) de B6, les deux profils de Cu (labo et dépôt) de B2 montrent moins de concordances. On pourrait toutefois rattacher:
 - . la zone I (labo) à la première partie (dépôt) et que les écarts entre les valeurs de Cu (labo et dépôt) et entre((σ'_v)_I=(20 ŀPa))et(σ'_p =(l10 kPa))

Fig. 5.3 Profils de Cu (laboratoire et dépôt) pour Broadback (B2)

sont reliés aux effets de l'oxydation et l'altération

la zone II (labo) à la deuxième partie (dépôt) et prédire que sous les effets de fluage dans le temps et des phénomènes physico-chimiques (dissication, cimentation, e.c.) qu'a connus la deuxième partie du dépôt (traduits par la surconsolidation $\sigma'_p - \sigma'_{vo}$), les valeurs de Cu (labo) vont tendre vers celles du dépôt. Les données relatives au profil de Cu du dépôt qui sont limitées à environ 14 m de profondeur ne nous permettent pas d'associer à la valeur de $(\sigma'_v)_{II}$ (45 kPa) une valeur de σ'_p (dépôt) comme on l'a fait pour B6. Il en va de même pour la zone III (labo).

Nous sommes conscients que ces comparaisons ne sont qu'approximatives. Néanmoins on peut de nouveau relier la faible augmentation de Cu dans la zone II (labo) à une surconsolidation.

5.3.3 Argile de Saint-Léon

Les deux profils de Cu (labo et dépôt) sont illustrés à la figure 5.4. Le profil de Cu du dépôt naturel est constitué de deux parties:

> une première partie dans laquelle Cu diminue en fonction de la profondeur, caractérisée bien évidemment par la croûte altéréε de surface allant

Résistance au cisaillement, Cu (kPa)

c----→ profil de résistance en laboratoire (Cu cône) Fig. 5.4 Profils de Cu (laboratoire et dépôt) pour Saint-Léon

jusqu'à environ 3 m de profondeur. Les valeurs de σ'_{vo} et de σ'_{p} au niveau 3 m sont respectivement égales à 45 kPa et 265 kPa (0.C.R. = 6). une deuxième partie où Cu augmente en fonction de la profondeur (3 à 10 m). La diminution de Cu entre 9 m et 10 m est négligée Dans cette zone (3 à 10 m) l'argile est fortement surconsolidée. Selon MORISSETTE (1983), le degré de surconsolidation (O.C.R.) est de 5.5, 4.5 et 4 respectivement à 5 m, 8 m et 10 m de profondeur (limite du forage et des essais). La résistance au cisaillement Cu varie plus ou moins de façon proportionnelle à σ'_p , caractérisée par un rapport $\frac{Cu}{\sigma_{D}^{\prime}}$ à peu près constant à 0.20. Si l'on considère l'hypothèse (très réaliste) que ce rapport demeure constant à 0.20 lorsque le dépôt devient normalement consolidé $(\sigma'_{vo} = \sigma'_{p})$ on constate que la valeur de $\frac{Cu}{\sigma_{v}}$ de la zone III qui est de 0.23 (tableau 5.3) lui est très proche.

De point de vue comparaisons, on peut rattacher la zone I (labo) à la première partie (dépôt) et ce pour les mêmes raisons que celles présentées précédemment pour B6 et B2. Les différences (comportement et valeur de Cu) entre la zone II (labo) et la deuxième partie (dépôt) sont probablement dues à la forte surconsolidation qu'a connue ce dépôt (Saint-Léon).

5.3.4 Argile de Saint-Marcel

Les deux profils de Cu (labo et dépôt) sont représentés à la figure 5.5. Le profil de Cu du dépôt est constitué de deux parties:

- . une partie dans laquelle Cu diminue en fonction de la profondeur, caractérisée par la croûte altérée de surface allant jusqu'à 2 m de profondeur. A ce niveau, σ'_{vo} et σ'_p valent respectivement 23 kPa et 48 kPa
 - une deuxième partie dans laquelle Cu augmente en fonction de la profondeur (2 à 10 m: niveau maximum atteint par le forage et les essais). La résistance au cisaillement passe de 12 kPa à la base de la croûte (2 m) à près de 25 kPa (10 m). Dans cette zone le rapport $\frac{Cu}{\sigma_1^r}$ est à peu près constant à 0.27 et que l'argile est légèrement surconsolidée se traduisant par un $\sigma_p^r - \sigma_{VO}^r$ d'environ 22 kPa et un $\frac{\sigma_p^r}{\sigma_1^r}$ moyen de 1.5 (fig. 3.7). Si l'on considère que $\frac{Cu}{\sigma_p^r}$ demeure constant à 0.27 lorsque le dépôt devient normalement consolidé, on constate que la valeur de $\frac{Cu}{\sigma_V^r}$ de la zone III (labo) qui est de 0.22 (tableau 5.3) n'est pas très lointaine de celle-ci (0.27).

Mis à part la zone I (labo) que l'on pourra relier à la première partie (dépôt) comme pour B6, B2 et Saint-Léon, la zone II (labo) ne paraît pas se retrouver dans le profil de Cu du

Résistance au cisaillement, Cu (kPa)

G--- - O Profil de résistance en laboratoire (Cu cône) Fig. 5.5 Profils de Cu (laboratoire et dérôt) pour Saint-Marcel

188

Profondeur (m)

dépôt. En effet pour l'argile intacte (dépôt) la résistance augmente constamment avec la profondeur ou σ_{p}^{\prime} .

Les comparaisons entre profils de Cu (labo et dépôt) menées dans le présent paragraphe pour les différentes argiles étudiées, quoique peu concluantes, vu la complexité du problème et le manque de données (essais sur un seul échantillon), nous amènent à prétendre que la fabile augmentation de Cu dans la zone II est due à une surconsolidation, particulièrement bien mise en évidence par l'argile de B6 (fig. 5.2) où une assez bonne similitude existe entre les profils de Cu (labo et dépôt). Les trois autres argiles l'expriment beaucoup moins.

5.4 <u>Utilisation de l'argile remaniée pour la construction de</u> remblais

La conception de tels ouvrages nécessite la connaissance des points suivants:

- 1. résistance au cisaillement de l'argile remaniée
- 2. consolidation et compressibilité de l'argile remaniée, avec drainage radial et vertical (détermination des coefficients de perméabilité, de consolidation, etc...)
- 3. évolution de la résistance au cisaillement en fonction de la pression verticale et du temps
- 4. effets des conditions climatiques (précipitations, température, etc...)
- 5. effets de fissuration, d'oxydation et d'altération.

L'étude entreprise dans le cadre de cette recherche ne concerne qu'un nombre limité de ces points, de ce fait elle ne nous permet pas de répondre à tous les aspects du problème.

Nous allons toutefois présenter et discuter quelques observations et principes de design découlant de la présente étude pour une éventuelle utilisation de l argile pour la construction de remblais.

Le dimensionnement et la construction de tels ouvrages doit satisfaire les critères suivants:

- . stabilité durant la construction
- . capacité portante suffisante pour permettre l'addition de couches
- . stabilité durant le service.

On a vu précédemment que:

- 1. Cu_r est reliée de façon unique à I_{LC} (équation (2.45))
- les gains de résistance thixotropiques peuvent être fort appréciables (argile de B6)
- 3. Cu augmente fortement à faibles σ'_V (zone I), demeure par la suite plus ou moins stable (zone II) et finalement croît de façon proportionnelle à σ'_V (zone III).

Concernant ce dernier point (3), nous illustrons au tableau 5.4 les valeurs de h (hauteur d'un remblai) relatives aux limites de la zone I ($\sigma'_{V_{I}}$) et de la zone II ($\sigma'_{V_{I}}$) et ce pour les différentes argiles étudiées en considérant un γ de l6 kN/m³. On observe que la zone I (où Cu augmente fortement en fonction

	Вб	B.2	Saint-Léon	Saint-Marcel
Fin zone I - Début Zone II h (m)	1.9	1.25	1	1
Fin Zone II - Début Zone III h (m)	3.75	2.8	2.8	2.8

the second s

Tableau 5.4 Valeurs de h (hauteur d'un remblai) en fonction des trois zones (I, II et III) pour les différentes argiles étudiées σ_v') correspond à des valeurs de h relativement faibles: 1.9 m (B6), 1.25 m (B2) et l m pour Saint-Léon et Saint-Marcel. Quant à la zone II (zone dangereuse car Cu n'augmente que faiblement), elle se retrouve dans une couche d'environ 1.8 m d'épaisseur et ce pour les quatre argiles étudiées. Une attention très particulière doit être apportue aux effets néfastes de cette zone sur la stabilité de l'ouvrage.

Considérons une couche de remblai d'épaisseur 1 m fraîchement déposée (fig. 5.6). Au temps initial (t=o), l'argile offre sa résistance au cisaillement remaniée (Cu $_{
m r}$), c'est-à-dire la conception de ce remblai (pentes des talus) est dictée uniquement par la valeur de Cu $_{_{\sf T}} igodot$ qui est ellemême reliée à l'indice de liquidité (équation (2.45)). La valeur de Cu_r est d'autant plus élevée (favorable) quand l'indice de liquidité est faible (argile de croûte). Si l'on suppose pour cette argile de ce remblai un indice de liquidité de 0.8 (Cu_r = 3 kPa), la pente des talus nécessaire pour un facteur de sécurité de 1.3 est de 0.8/1. Par la suite, sous les effets combinés de la thixotropie et de la consolidation, la résistance au cisaillement de cette argile va augmenter ② . Le temps nécessaire pour une consolidation complète (Cu_{max}) est fonction de C $_{_{\rm V}}$ (figure 4.15) et de l'épaisseur de la couche (1 m). Si l'on considère un C_v moyen de 20×10^{-5} cm²/s (argile de B6), la consolidation complète de ce remblai (sous l'effet de son poids propre) sera atteinte en 17 mois. Cette durée pourrait être grandement diminuée par l'introduction de couches horizontales drainantes tels que les géotextiles. Si

(1) Au temps initial (t=0)

(2) Après complète consolidation

Fig. 5.6 Profils de Cu pour une couche de remblai au temps initial (t=o) et après complète consolidation

l'on introduit cinq membranes de géotextiles espacées de 20 cm dans ce remblai, la durée de consolidation complète deviendrait à peu près égale à 20 jours. Ce résultat ne tient pas compte d'un éventuel colmatage de la membrane de géotextile. Supposons qu'après une consolidation complète nous désirions ajouter une deuxième couche. La conception de cette couche (dimensions) doit être faite en satisfaisant les points suivants:

- couche ajoutée stable. Celle-ci est dictée par la valeur de Cu_r
- 2. la capacité portante de la première couche ne doit pas être dépassée. Celle-ci est fonction du gain thixotropique de résistance qu'a acquis l'argile de la première couche. Ainsi si l'on considère à titre d'exemple un Cu_t de 5 kPa (acquis en un mois par B6), la pression supplémentaire (amenée par la deuxième couche) doit être inférieure à (π + 2) 5 kPa \simeq 26 kPa ce qui correspond à une hauteur de l.6 m pour un γ de l6 kN/m³
- la première couche demeure stable. Celle-ci est contrôlée par le profil de Cu qu'a eu la couche après sa consolidation ②.

Si après consolidation de l'ouvrage (première et deuxième couche), on désire rajouter une troisième couche, on réexamine de nouveau les trois points cités ci-dessus.

CONCLUSIONS

Cette présente étude nous a montré que:

- la compressibilité et la consolidation de l'argile remaniée sont du même type que celles de l'argile normalement consolidee
- la résistance au cisaillement de l'argile remaniée est reliée par une relation unique à l'indice de liquidité
- les gains thixotropiques de résistance sont fort appréciables et sont atteints dans un temps relativement court
- 4. une sensibilité se développe durant la consolidation
- 5. l'évolution de Cu en fonction de σ'_v se décompose en trois zones distinctes:
 - . une première zone (zone I) dans laquelle Cu croît fortement en fonction de σ'_v , se traduisant par des rapports $\frac{Cu}{\sigma}$ élevés

. une deuxième zone (zone II) dans laquelle Cu croît très peu en fonction de σ'_v . Nous avons attribué ce comportement à une structuration qui s'est développée au cours de la zone I . une troisième zone (zone III) dans laquelle Cu croît de façon proportionnelle à σ'_v , se traduisant par un rapport $\frac{Cu}{\sigma'_v}$ = Cste (argile normalement consolidée). Ce comportement en laboratoire peut se rapprocher à celui observé en chantier (dépôts de B6 et B2). Le modèle de comportement mécanique (paragraphe 5.2) est particulièrement très important pour une utilisation éventuelle à la prévision du comportement des digues et remblais construits avec de l'argile.

Pour compléter cette étude plusieurs recherches peuvent être entreprises:

- . étudier les effets sur les valeurs de Cu et de S_t en faisant varier la teneur en eau initiale W_i et en choisissant d'autres échantillons (autre profondeur)
- déterminer à l'aide d'essai oedométrique (après essai de consolidation) si σ_p' est égal ou différent de σ_v' . Les résultats de ces essais peuvent être capitaux pour expliquer et quantifier plus le modèle de comportement proposé
- étudier le comportement de l'argile de croûte pour une utilisation éventuelle dans la construction de digues et de remblais.

APPENDICES
APPENDICE A

Le déroulement de l'essai de consolidation réalisé à l'aide de la cellule (fig. 3.12) a été comme suit:

Jour 1

- 1.1 Mise en place de l'argile remaniée dans la cellule oédométrique, en laissant le moins possible de vides (poches d'air).
- 1.2 Installation du piston en contact avec le sol. On peut éventuellement remplir le piston avec de l'eau afin que le contact soit bien établi. Cette charge d'assise est maintenue pendant 24 heures.

Jour 2

- 2.1 Lectures optiques à l'aide d'un cathétomètre et à la base de la cellule et à la face supérieure du piston. Ces deux mesures nous permettent de calculer la hauteur initiale H_o de l'échantillon qui était choisie en moyenne à environ 50 mm pour tous les essais.
- 2.2 Installation de la potence ou de l'étrier de chargement sur le piston. Le poids de l'étrier à vide constituera une surcharge supplémentaire $\Delta \sigma_v$ d'environ 1.3 kPa au niveau du spécimen.

Jour 3

- 3.1 Lectures optiques à l'aide du cathétomètre et à la base de la cellule et à la face supérieure du piston. Ces deux mesures nous permettent de calculer le tassement ΔH observé sous l'étrier à vide (aucun chargement).
- 3.2 Mise en place de l'extensomètre de graduation0.002 mm. Lecture initiale.
- 3.3 Premier chargement sur l'étrier. La charge Δq est de 1.75 livres (lbs) créant une contrainte supplémentaire Δσ_v au niveau du spécimen d'environ l kPa.
- 3.4 Lectures de l'extensomètre selon des intervalles croissants (15 s, 30 s, 1 mn, 2 mn, 4 mn, 8 mn, 15 mn, 30 mn, 60 mn, ...).

Jour 4

4.1 Lecture de l'extensomètre (lecture finale de l'étape 3.4).

4.2 Second chargement sur l'étrier

- $\Delta q = 2.5$ lbs
- $\Delta \sigma_{\rm W} = 1.45 \text{ kPa}$
- 4.3 Idem à 3.4.

Jour 5 et suivants (jusqu'à l'obtention de la contrainte _v désirée)

5.1 Lecture de l'extensomètre correspondante à la fin du précédent chargement.

5.2 nième chargement

· .		Jour 5	Jour 6	Jour 7	Jour n
Δđ	(lbs)	3.5	5.25	10	10
Δσv	(kPa)	2.5	3.0	5.6	5.6

Fin de l'essai 6

- 6.1 Lecture de l'extensomètre jusqu'à l'obtention de t > t_{100} (méthode de Casagrande).
 - 6.2 Déchargement à $\sigma_v = 1.3$ kPa (étrier seul) et maintenir ce dernier pendant 24 heures pour le rebondissement.
 - 6.3 Démontage et transfert à la chambre humide du spécimen dans le moule d'acrylique.
 - 6.4 Extraction du spécimen de son moule suivie par: mesures de la teneur en eau et essais au cône suédois sur le sol intact et remanié.

APPENDICE B

1.3.12.1

. .

9000000 ------5 ------

TUIIUL

Lucian Differentings

-

ويورو ويسمونو 1 - 1 - 1

1.31

THEFT

daharan permeter terterak

Fig. B.12 Compression versus logarithme du temps d'un échantillon de Saint-Marcel

(.002 mm)

Compression X

and reverses

Courbes compression et pression interstitielle versus temps d'argile de Boradback (B6)

Fig. B.16 Courbes compression et pression interstitielle versus temps d'argile de Saint-Léon

Courbes compression et pression interstitielle versus temps d'argile de Saint-Léon Fig. B.17

Fig. B.18 Courbes compression et pression interstitielle versus temps d'argile de Saint-Léon

22.0

Fig. B.19

19 Courbes compression et pression interstitielle versus temps d'argile de Saint-Marcel

Fig. B.20 Courbes compression et pression interstitielle versus temps d'argile de Saint-Marcel

- THE THE

affailteanna an Cu

Fig. B.29 Comparaison des coefficients de consolidation d'argile de Broadback (B6)

231

consolidation

de

Fig. B.30 Comparaison des coefficients de consolidation d'argile de Saint-Léon

232

Degré de dissipation moyen, \overline{U}_{11}

Fig. B.31 Courbes degré de tassement moyen versus degré de dissipation moyen d'argile de Broadback (B6)
Degré de dissipation moyen, \overline{U}_{u}

Fig. B.32 Courbe degré de tassement moyen versus degré de dissipation moyen d'argile de Saint-Léon

234

• De 4.25 à 7 kPa

▼ De 21 à 26.6 kPa

■ De 37.9 à 43.50 kPa

DEGRE DE DISSIPATION MOYEN, \overline{U}_{11}

• De 15.5 à 21 kPa

▼ De 38.9 à 43.5 kPa.

APPENDICE C

- 1

Echantillon:Broadback (B6) Profondeur: Essai no: $\sigma'_{vc} = 60.$ kPa

Echantillon:Broadback (B6) Profondeur: Essai no: $\sigma_{vc}^{!}$ = 92.5 kPa

Fig. C.2

Fig. C.3

Echantillon: Saint-Léon Essai no:

Profondeur: $\sigma'_{VC} = 7 \text{ kPa}$

Fig. C.4

Echantillon: Saint-Léon Essai no: Profondeur: o' = 60 kPa 241.

Déformation angulaire $\gamma = \frac{\Delta \varepsilon_h}{H} %$

Déformation angulaire $\gamma = \frac{\Delta \varepsilon_1}{H} \%$

Fig. C.6

Déformation angulaire
$$\gamma = -\frac{1}{1}$$

Fig. C.7

Déformation angulaire $\gamma = \frac{\Delta \varepsilon_{11}}{H} \%$

Fig. C.8

Echantillon: Broadback (B2)Profondeur: Essai no: $\sigma'_{vc} = 35 \text{ kPa}$

Déformation angulaire $\gamma = \frac{\Delta \epsilon}{H} \%$

Fig. C.9

Fig. C.10 Cheminements-vecteurs. Essais de cisaillement simple à volume constant. Résistance au cisaillement avec la pression de consolidation. Ech. Broadback (B6)

the profi

Fig. C.ll Cheminements-vecteurs. Essais de cisaillement simple à volume constant. Résistance au cisaillement avec la pression de consolidation. Ech. Saint-Léon

MINT

BIBLIOGRAPHIE

- Altschaeffl, A.G., Wahls, H.E. and Godoy, N.S. (1965), "Interpretation of the Consolidation Test", Journal of the Soil Mechanics and Foundation Division ASCE, V. 91, SM3, 146-152.
- Azzouz, A.S., Krizek, R.J. and Corotis, R.B. (1976), "Regression Analysis of Soil Compressibility", Soils and Foundations, V. 16, N^o 2, 19-29.
- 3. Barden, L. and Perry, P.L. (1965), "Consolidation of Normally Consolidated Clay", Journal of the Soil Mechanics and Foundation Division, ASCE, V. 91, SM5, 15-35.
- 4. Barden, L. (1965), "Compressibility of Clay", Discussion in the Journal of the Soil Mechanics and Foundation Division, ASCE, V. 91, SM3, 144-145.
- Been, K. and Sills, G.C. (1981), "Self-Weight Consolidation of Soft Soils: an Experimental and Theoritical Study", Geotechnique 31, No 4, 519-535.
- Berre, T. and Iversen (1972), "Oedometer Tests With Different Specimen Heights on a Clay Exhibiting Large Secondary Compression", Geotechnique 22, N^O 1, 53-70.
- 7. Bowles, J.E. (1979), "Physical and Geotechnical Properties of Soils", 299-344.
- 8. Bjerrum, L. (1954), "Geotechnical Properties of Norvegian Marine Clays", Geotechnique, V. 4, 49-69.

9. Bjerrum, L. and Rosenquist, Th. (1956), "Some Experiments with Artificially Sedimented Clays" Geotechnique, V. 6, 124-136.

- 10. Bjerrum, L. and Lo, K.Y. (1961), "Effect of Aging on the Shear-Strength Properties of a Normally Consolidation Clay Geotechnique, 13, 147-157.
- 11. Bjerrum, L. (1967), "Engin-ering Geology of Normally Consolidated Marine Clays as Related to the Settlements of Buildings", Geotechnique, V. 17, #?, 83-119.
- 12. Bjerrum, L. (1973), "Problems of Soil Mechanics and Construction on Soft Clays and Structurally Unstable Soils (Collapsile, Expansive and others)", State-of-the-Act Report, Session 4, Proc. 8th ICSMFE, Moscow, V. 3, 111-160.
- 13. Cadling, L. and Odenstad, S. (1950), "The Vane Borer", Royal Swedish Geot. Inst. Proceedings Nº 2.
- 14. Crawford, C.B. (1965), "Resistance of Soil Structure to Consolidation", Canadian Geotechnical Journal, V. II, #2, 90-115.
- 15. Da Silveira, I. (1965), "Methods of Estimating Settlement", Discussion in the Journal of the Soil Mechanics and Foundation Division, ASCE, V. 91, SM3, 159-160.

16. Delage, P. (1982), Communication personnelle.

- 17. Duncan, J.M. and Dunlop, P. (1969), "Behavior of Soils in Simple Shear Tests", Seventh International Conference on Soil Mechanics and Foundation Engineering, Mexico City.
- 18. Escario, V. and Uriel, S. (1961), "Determining the Coefficient of Consolidation and Horizontal Permeability by Radial Drainage", Fifth International Conference on Soil Mechanics and Foundation Engineering, V. 1, 83-87, Paris.

- 19. Garlanger, J.E. (1972), "The Consolidation of Soils Exhibiting Creep Under Constant Effective Stress", Geotechnique, V. XXII, #1, 71-72.
- 20. Garneau, R. and Lebihan, J.P. (1977), "Estimation of Some Properties of Champlain Clays with the Swedish Fall Cone", Canadian Geotechnical Journal, V. 14, #4, 571-581.
- 21. Gervais, R. (1980), "Comportement des silos construits sur l'argile sensible", Mémoire de maîtrise (M.Sc.A.) Université de Sherbrooke.
- 22. Gibson, R.E., England, G.L. and Hussey, M.J.L. (1967), "The Theory of One-Dimensional Consolidation of Satured Clays", Geotechnique, V. 17, 261-273.
- 23. Gibson, R.E., Schiffman, R.L. and Cargill, K.W. (1981), "The Theory of One-Dimensional Consolidation of Satured Clays. II Finite Nonlinear Consolidation of Thick Homogeneous Layers", Canadian Geotechnique Journal, V. 18, 280-293.
- 24. Grondin, G. (1978), "Etude de la susceptibilité aux coulées d'argile", Mémoire de maîtrise de Sciences Appliquées, Université de Sherbrooke.
- 25. Hansbo, S. (1957), "A New Approach to the Determination of the Shear Strength of Clay by Fall-Cone Test", Royal Swedish Geotechnical Institute, Proceedings, #14.
- 26. Hansen, J.B. (1969), "Tests and Formulas Concerning Secondary Compression", Seventh International Conference on Soil Mechanics and Foundation Engineering, V. 1, 45-53, Mexico City.
- 27. Henkel, D.J. (1959), "The Relationships Between the Strength, Pore-Water Pressure, and Volume - Change Characteristics of Satured Clays", Geotechnique, V. -, #3, 119-135.

- 28. Henkel, D.J. (1960), "The Shear Strength of Satured Remoulded Clays", Proceedings of the ASCE Research Conference on Shear Strenght of Cohesive Soils, Boulder, 533-554.
- 29. Holtz, D. et Kovacs W. (1981), "An Introduction to Geotechnical Engineering", Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- 30. Houlsbi, G.T. (1982), "Theoretical Analysis of the Fall Cone Test", Geotechnique 32, #2, 111-118.
- 31. Houston, W.N. and Mitchell, J.K. (1969), "Property Interrelationships in Sensitive Clays", Journal of the Soil Mechanics and Foundation Division, ASCE, V. 95, SM4, 1037-1062.
- 32. Janbu, N. (1963), "Soil Compressibility as Determined by Oedometer and Triaxial Tests", Proc. Europ. Conf. V. 1, Wiesbaden.
- 33. Janbu, N. (1965), "Consolidation of Clay Layers Based on Non-Linear Stress-Train", Sixth International Conference on Soil Mechanics and Foundation Engineering, V. II, 83-87, Montreal.
- 34. Janbu, N. (1967), "Settlement Calculations Based on the Tangent Modulus Concept", The Technical University of Norway Bulletin 2, SM, 1-57, Trondheim.
- 35. Janbu, N. (1969), "The Resistance Concept Applied to Deformation of Soils", Seventh International Conference on Soil Mechanics and Foundation Engineering, V. 1, 191-196, Mexico City.

36. Janbu, N. Tokheim, O. and Senneset, K. (1981), "Consolidation Tests with Continuous Loading", Stockhom, 645-654.

- 37. Karlsson, R. (1961), "Suggested Improvements in the Liquid Limit Test, with Reference to Flow Properties of Remoulded Clays", Proc. 5th ICSMFE, Paris, V. 1, 171-184.
- 38. Karlsson, R. (1977), In Cooperation with the Laboratory Committee of the Swedish Geotechnical Society, "A Manual for the Performance and Interpretation of Laboratory Investigations, Part 6".
- 39. Kopula, S.D. and Morgenstern, N.R. (1982), "On the Consolidation of Sedimenting Clays", Canadian Geotechnique Journal, V. 19, 260-268.
- 40. Kovacs, W.D. (1981), "An Introduction to Geotechnical Engineering".
- 41. Lambe, T.W. and Whitman, R.V. (1969), "Soils Mechanics", Massachussets of Technology, Chap 27, 406-422.
- 42. Larochelle, P. et Lefebvre, G. (1971), "Sampling Disturbance in Champlain Clays", ASTM, STP 483, 143-163.
- 43. Lebihan, J.P. et Leroueil (1980), "The Fall-Cone and the Behavior of Remoulded Clay", Rapport interne Terratech Ltée.
- 44. Lee, K. (1981), "Consolidation with Constant Rate of Deformation", Geotechnique 31, #2, 215-229.
- 45. Lefebvre, G. (1981), "Etude en laboratoire des argiles du site B-6, Complexe NBR," Rapport GEO-81-04, Université de Sherbrooke.

46. Lefebvre, G. (1982), "Etude en laboratoire des argiles du site B-2, Complexe NBR", Rapport GE()-82-02, Université de Sherbrooke.

- 47. Lefebvre, G. and Delage, P. (1982), "Study of the Structure of the B-2 and B-6 Clays", Report GEO-82-10, Université de Sherbrooke.
- 48. Lemieux, R. (1975), "Etude en laboratoire de la consolidation des argiles du lac Barlow-Ojibway", Mémoire de maîtrise de Sciences Appliquées, Université de Sherbrooke.
- 49. Leonards, G.A. and Girault, P. (1961), "A Study of the One-Dimensional Consolidation Test", Fifth International Conference on Soil Mechanics and Foundation Engineering, V. 1, 213-218, Paris.
- 50. Leonards, G.A. and Altschaeffl, A.G. (1964), "Compressibility of Clays", Journal of the Soil Mechanics and Foundation Division ASCE, V. 90, SM5, 133-155.
- 51. Leonards, G.A. (1968), "Les fondations", Dunod, Paris, 129-165.
- 52. Locat, J. (1982), "Etude de l'origine de la structuration des argiles sensibles", Thèse de doctorat Ph.D. Université de Sherbrooke, Sherbrooke, Canada.
- 53. Lowe, J., Jonas, E. and Obrician, V. (1969), "Controled Gradient Consolidation Test", Journal of the Soil Mechanics and Foundation Division ASCE, V. 95, SM1, 77-97.
- 54. Lowe, J. (1974), "New Concepts in Consolidation and Settlements Analysis", Journal of the Soil Mechanics and Foundation Division, ASCE, V. 100, GT6, 574-612.
- 55. Magnan, J.P. et Deroy, J.M. (1980), "Analyse graphique des courbes de consolidation oedométrique", Département des Sols et Fondations, Laboratoire Central, Paris.

- 56. Magnan, J.P. et Deroy, J.M. (1980), "Analyse graphique des tassements observés sous les ouvrages", Département des Sols et Fondations, Laboratoire Central, Paris.
- 57. McCarthy, D.F. (1977), "Essentials of Soil Mechanics and Foundation", 179-211.
- 58. Mesri, G. and Rokhsar, A. (1974), "Theory of Consolidation for Clays", Journal of the Soil Mechanics and Foundation Division, ASCE V. 100, GT8, 889-904.
- 59. Mesri, G. (1973), "Coefficient of Secondary Compression", Journal of the Soils Mechanics and Foundation Division, ASCE, V. 99, SM1, 123-135.
- 60. Mesri, G., Rokhsar, A. and Bohor, B.F. (1975), "Composition and Compressibility of Typical Samples of Mexico City Clay", Geotechnique 25, #3, 527-554.
- 61. Mesri, G. and Godlewski, P.M. (1977), "Time and Stress-Compressibility Interrelationship", Journal of the Soil Mechanics and Foundation Division, ASCE, V. 103, GT5, 417-430.
- 62. Mitchell, J.K. (1960), "Fundamentals Aspects of Thixotropy in Soils", Journal of the Soil Mechanics and Foundation Division, ASCE, V. 86, SM3, 19-51.
- 63. Mitchell, J.K. and Houston, W.N. (1969), "Causes of Clay Sensitivity", Journal of the Soil, Mechanics and Foundation Division, ASCE, V. 95, SM3, 845-871.
- 64. Mitchell, J.K. (1976), "Fundamentals of Soil Behaviour", University of California, Berkeley, Chap. 9, 11, 12.

- 65. Morin, Jr (1977), "Etude du tassement des silos sur argile", Mémoire de maîtrise (M.Sc.A.) Université de Sherbrooke.
- 66. Morissette (1983), "Dégradation des talus de la région de Saint-Léon-Le-Grand", Mémoire de maîtrise (M.Sc.A.), Université de Sherbrooke.
- 67. Newland, P.L. and Allely, B.H. (1957), "A Study of the Sensitivity Resulting From Consolidation of a Remoulded Clays", Fourth International Conference on Soil Mechanics and Foundation Engineering, V. 1, 83-186.
- 68. Newland, F.L. and Allely, B.H. (1960), "A Study of the Consolidation Characteristics of a Clay", Geotechnique, V. 10, #1, 62-74.
- 69. Olson, R.E. and Mesri, G. (1970), "Mechanisms Controlling Compressibility of Clays", Journal of the Soil Mechanics and Foundation Division, ASCE, V. 96, SM6, 1863-1877.
- 70. Penner, E. (1965), "A Study of Sensitivity in Leda Clay", Canadian Journal of Earth Science, V. 2, #5, 425-441.
- 71. Perloff, W.H. and Barron, W. (1976), "Principles and Applications Soil Mechanics", 392-435.
- 72. Poskitt, T.J. (1969), "The Consolidation of Satured Clay with Variable Permeability and Compressibility", Geotechnique 19, #2, 234-252.
- 73. Quigley, R.M. (1980), "Geology, Geotechnique, Mineralogy and Geochemistry, Leda Clay from Deep Boreholes, Hawksbury, Ontario", Res. Report to Ont. Geol. Sury., 158 p.

- 74. Raymond, G.P. (1966), "Laboratory Consolidation of Some Normally Consolidated Soils", Canadian Geotechnical Journal, V. III, #4, Novembre, 1966.
- 75. Roscoe, K.H. et Schofield, A.N. (1958), "Yielding of Clays in States Wetter than Critical", Geotechnique 8(1) 22-53.
- 76. Rowe, P.W. and Barden, L. (1966), "A New Consolidation Cell Geotechnique", V. 16, 162-169.
- 77. Saada, A.S. and Bianchini, G.F. (1975), "Strength of One Dimensionally Consolidated Clays", Journal of the Soil Mechanics and Foundation Division, ASCE, V. 101, GT 11, 1151-1164.
- 78. Sällfors, G. (1975), "Preconsolidation Pressure of Soft, High-Plastic Clay", Thèse de doctorat Ph.D., University of Technology Göteborg Sweden.
- 79. Samarasinghe, A.M., Huang, Y.H. and Drnevich, V.P. (1982), "Permeability and Consolidation of Normally Consolidated Soils", Journal of the Soil Mechanics and Foundation Engineering, ASCE, V. , GT6, 835-850.
- 80. Samarasinghe, A.M. and Huang, F. (1982), "Permeability and Consolidation of Normally Consolidated Soils", Journal of the Soils Mechanics and Foundation Division, ASCE, V. 107, GT6, 835-850.
- 81. Scherrer, H.U. (1961), "Determination of Liquid Limit by the Static Cone Penetration Test", Fifth International Conference on Soil Mechanics and Foundation Engineering, Paris.
- 82. Skempton, A.W. and Northey, R.D. (1952), "The Sensitivity of Clays", Geotechnique, V. III, #1.

- 83. Skempton, A.W. (1954), "Discussion of the Structure of Inorganic Soil", ASCE, V. 80, Separate #478, 19-22.
- 84. Skempton, A.W. (1961), "Effective Stress in Soils, Concrete and Rock", Butterworths, London, 4-16.
- 85. Smith, R.E. and Wahls, H.E. (1969), "Jonsolidation Under Constant Rates of Strain", Journal of the Soil Mechanics and Foundation Division, ASCE, V. 95, SM2, 519-539.
- 86. Sridharan and Rao, (1982), "Mechanisms Controlling the Secondary Compression of Clays", Geotechnique 32, #3, 249-260.
- 87. Stamatopoulos, A.C. and Kotzias, P.C. (1978), "Soil Compressibility as Measured in the Oedometer", Geotechnique 28, #4, 363-375.
- 88. Tavenas, F., Brucy, M., Magnan, J.P., Larochelle, P. et Roy, M. (1979), "Analyse critique de la théorie de consolidation unidimensionnelle de Terzaghi".

89. Terzaghi, K. (1956), "Theorical Soil Mechanics".

- 90. Thompson, W.J. and Victory, S.P. (1965), "Controled Water Tests to Preload Tank Foundations", Journal of the Soil Mechanics and Foundation Division, ASCE, V. 91, SM3, 154-158.
- 91. Torrance, K.J. (1976), "On the Role of Chemistry in the Development and Behavior of the Sensitive Marine Clays of Canada and Scandinavia", Canadian Geotechnical Journal, V. 12, #3, 326-335.

- 92. Wahls, H.E. (1962), "Analysis of Primary and Secondary Consolidation", Journal of the Soils Mechanics and Foundation Division ASCE, V. 88, SM6, 207-231.
- 93. Walker, L.K. and Raymond, G.P. (1968), "The Prediction of Consolidation Rates in a Cemented Clay", Canadian Geotechnical Journal, V. V, #4.
- 94. Wissa, A.E.Z., Christian, J.T., Davis, E.H. and Heiberg, S. (1971), "Consolidation and Constant Rate of Strain", Journal of the Soil Mechanics and Foundation Division, ASCE, V. 97, SM10, 1393-1413.
- 95. Wroth, C.P. and Wood, D.M. (1978), "The Correlation of Index Properties with Some Basic Engineering Properties of Soils", Canadian Geotechnical Journal, V. 15, #2.
- 96. Wu, T. and Resendiz, D. (1966), "Analysis of Consolidation by Rate Process Theory", Journal of the Soil Mechanics and Foundation Division, ASCE, V. 92, SM6, 229-247.