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Sommaire

Controler des systémes quantiques avec une précision arbitraire semble étre un défi insur-
montable en raison de l'influence de I'environnement se manifestant sous forme d’erreurs
dans les algorithmes quantiques. Cependant, il existe des protocoles de tolérance aux fautes
qui résolvent ce probleme en stockant I'information quantique de maniere redondante dans
un état a plusieurs qubits. Il est crucial d’optimiser ces protocoles, en les adaptant aux proces-
sus de génération du bruit, dans le but de minimiser 1’ajout d’espace et de temps aux calculs
quantiques. Les méthodes actuelles se basent sur un cycle d’optimisation comprenant la

caractérisation du matériel, la modélisation du bruit et des simulations numériques.

Pour la majorité des études sur la tolérance aux fautes, le bruit est modélisé comme
I'application stochastique de matrices de Pauli. Cette approche, communément appelé le
modele d’erreurs de Pauli est I'exemple typique de décohérence induite par 1’environnement.
Les probabilités associées a chacune des matrices de Pauli définissent le taux d’erreurs.
Méme si ce modele d’erreurs est utilisé pour réaliser des preuves analytiques et effectuer des
simulations classiques, le niveau de précision de ce dernier dépend de la nature quantique
de la source d’erreurs. Toutefois, un dispositif quantique réaliste est affecté par un processus
bruyant qui n’est pas trés bien approximé par le modéle d’erreurs de Pauli. Un exemple
extréme étant les erreurs cohérentes causées par rotation excessive d'un qubit. De plus,
un modele général de bruit quantique illustre beaucoup plus de caractéristiques que le
modeéle simplifié de Pauli. La notion de taux d’erreurs est alors moins bien définie dans ces
cas. Ainsi, nous avons besoin d"une mesure appropriée pour quantifier I'effet du bruit qui
s’intégre bien aux preuves de tolérance aux fautes. Pour ce faire, il existe plusieurs options

dont la fidélité et la norme diamant.

Les simulations numériques ont été centrales au développement des protocoles de
tolérance aux fautes. Généralement, des simulations impliquant des modeles de bruits
spécifiques sont utilisées pour évaluer 1'efficacité de ces méthodes. Dans le cas du modéle

simplifié d’erreurs de Pauli, la source du bruit est simulée par un algorithme classique
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appliquant une matrice de Pauli tirée selon une distribution prédéterminée. Cependant, il
n’est généralement pas nécessaire d’assumer que le bruit est généré de fagon stochastique.
Par exemple, il est possible de décrire le bruit comme une évolution temporelle du systéme.
Malgré cela, il existe des techniques pour mesurer numériquement la performance d'un

protocole de tolérance aux fautes.

Dans la présente theése, nous faisons une étude critique des méthodes actuelles d’optimisation
des protocoles de tolérances aux fautes et nous appuyons nos analyses sur des observa-
tions provenant de simulations numériques. D’abord, nous montrons que les protocoles
de tolérance aux fautes sont sensibles a certains détails du modele bruits qui ne sont pas
bien décrits pas les métriques standards. Alors que la valeur d’une métrique peut étre
la méme pour deux processus bruyants, nous observons que la performance d'un pro-
tocole de tolérance aux fautes peut différer grandement pour ces deux processus. Ainsi,
nous avons défini de nouvelles métriques ne reposant pas sur les méthodes standards. Ces
métriques s’appuient plutdt sur des méthodes d’apprentissage automatique qui considerent
les propriétés importantes des processus bruyants et qui permettent de prédire avec plus de

précision la performance d’un protocole de tolérance aux fautes.

Par la suite, nous argumentons que la présence d’événements rares détériore la précision
des simulations numériques. En d’autres termes, les événements bruyants qui affectent
significativement la performance d'un protocole de tolérances aux fautes sont rarement
observés, ce qui engendre une grande erreur statistique dans les estimations numériques.
Pour pallier partiellement a ce probleme, nous présentons des méthodes d’échantillonnages

préférentielles. Toutefois, la recherche de meilleures méthodes demeure ouverte.

Finalement, la mauvaise qualité des précisions des métriques et la difficulté des simula-
tions numériques nous aménent a conclure que la portée des méthodes actuelles d"optimisation
des protocoles de tolérances aux fautes est trés limitée. Nous supposons qu’une caractéri-
sation expérimentale d"un tel protocole sur un ordinateur quantique de taille modeste
permettrait de surmonter ces difficultés. Cela pourrait paver le chemin a la réalisation d'un

ordinateur quantique tolérant les fautes.



Summary

Controlling quantum systems to arbitrary precision appears to be unobtainable due to
environmental influences that manifest themselves as errors in a quantum algorithm. Fault
tolerance schemes that exist to address this problem redundantly store quantum information
in multi-qubit states. It is crucial to optimize fault tolerance schemes by tailoring them
to the prevalent noise processes, to minimize the space and time overhead for quantum
computation. Current methods envision an optimization cycle comprised of hardware

characterization, noise modelling and numerical simulations.

Most studies in fault tolerance model noise by a probabilistic action of Pauli matrices,
which are archetypal examples of environment-induced decoherence. These are commonly
known as Pauli error models and the probabilities associated with the Pauli matrices specify
an error rate. While Pauli error models are convenient for analytical proofs and classical
simulation, the level of accuracy of such a model depends on the quantum mechanical
nature of the error source. A realistic quantum device is often affected by a noise process
that is poorly approximated by a Pauli error model, an extreme example being coherent
errors which are caused by miscalibration. Furthermore, a generic quantum noise process
possesses many more features than the simplified Pauli error model. The notion of an error
rate is less clear for such processes. Hence, we need appropriate metrics to quantify the
strength of noise which integrate well into fault tolerance proofs. There are many candidate

metrics, for instance, the fidelity and the diamond norm.

Numerical simulations have been at the heart of fault tolerance studies. The efficacy
of a scheme is often tested by numerically simulating the scheme under a specified noise
process. In the simplified Pauli error model, the error-source is simulated by applying a Pauli
matrix, sampled according to a predetermined distribution. However, generic quantum noise
processes need not assume a probabilistic description, for instance, they can be described by
a time-evolution. Despite this, there exist techniques to numerically measure the success of

a fault tolerance scheme.



Vi

In this thesis, we provide a critical analysis of the current methods in optimizing fault
tolerance schemes. We supplement our analysis by observations from numerical simulations.
Firstly, we show that fault-tolerance schemes are sensitive to the details of the noise model
that are not effectively captured by the standard error-metrics. While a metric can be the
same for two physical noise processes, we observe that the success of a quantum error
correction scheme can differ drastically between the two cases. Going beyond the realm of
standard error-metrics, we show how machine learning techniques can be used to define
new measures of noise strength that capture key properties of the noise process and provide
a more accurate prediction of the success of a fault tolerant scheme.

Secondly, we argue that numerical simulations of fault tolerance schemes are plagued
by the problem of characterizing rare events. In other words, malignant noise processes
that significantly degrade the success of a fault tolerant scheme are observed rarely. This
entails a large statistical error in the numerical simulation estimates. We present importance
sampling methods that take steps towards addressing this issue, although the problem

remains largely open.

The poor predictive power of error-metrics on the success of a fault-tolerant scheme and
the difficulty of numerical simulations of fault-tolerant protocols lead us to the conclusion
that the current methods of optimizing fault tolerance schemes are of very limited scope.
We speculate that an experimental characterization of a fault-tolerant scheme on a small
quantum computer would bypass most of the challenges, and could provide a bootstrapping

path to full-scale fault-tolerant quantum computation.
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Introduction

While we know that a quantum computer can in principle solve certain problems exponen-
tially faster than the best known classical algorithms, a very large quantum computer is
likely to be required to beat classical computers on a problem of intrinsic interest (as opposed
to a made-up problem conceived to demonstrate a quantum advantage, e.g., [/, 8]). There
are basically two reasons for this. First, classical computers are extremely large and fast. The
world’s fastest supercomputers operate at nearly 100 quadrillion (i.e. 10'7) floating-point
operations per second with a memory of nearly a quadrillion bytes. While this is largely
achieved by parallelization, even the CPU on day-to-day computers can do a few billion
operations per second on a memory of a few tens of billions of bytes. In contrast, the typical
clock rate of solid-state quantum computers enables a few million operations per second,
and in near-term we imagine an early generation of devices containing on the order of a

thousand qubits.

While the clock rates and memories sizes for near-term quantum computers may appear
reasonably large, we must not forget that quantum systems are highly susceptible to noise,
which bring us to the second reason. Arbitrary precision control of quantum systems appears
to be a lofty goal, and as far as we know, quantum algorithms need to be designed accounting
for faulty quantum devices to provide reliable answers. The field of quantum error correction
and more generally, fault tolerance! addresses this issue. The broad idea in quantum error
correction is the use of redundancy in representing quantum information. As a consequence,
each logical qubit of the algorithm must be encoded in some quantum error-correcting code
using several (hundreds of) physical qubits, and each logical gate in the quantum algorithm
is implemented using several (thousands of) elementary gates on the physical hardware
[11]. Although the degree to which faults can be tolerated have become impressively high,

the large overhead in redundancy means that the noisy quantum computer described in

'The idea of fault tolerance was developed for classical computing [9, 10] and it still lurks in classical
communication. However, with the advent of current precision technologies, several computing devices today
can afford to forgo this effort.



the previous paragraph might at best produce a reliable result, performing a thousand

operations per second on a dozen qubits.

One important research area in quantum information science is aimed at lowering fault-
tolerance overheads, i.e. finding better codes and fault-tolerant protocols which require fewer
qubits, fewer gates, and achieve a better error suppression. For recent developments, see
the works of [12, 13, 14, 15] and the review in [16]. At the heart of these studies, is the fault
tolerant accuracy threshold theorem [17, 18] that guarantees reliable quantum computations
in the presence of noise, provided the “noise strength” on the physical devices is lower than
some constant, referred to as the threshold. On the one hand, the goal of a threshold theorem
is to set a standard for engineering the physical components of a quantum computer, on
the other, much of the studies in this area are focused on a simple but “featureless” noise
model known as depolarizing noise. Such models are convenient for analytical calculations
and numerical simulations [19, 20] but the accuracy of such models is severely impacted
by the quantumness of the noise source. An extreme example being that of coherent errors
which are caused by calibration faults [21]. This has inspired recent studies which show that
substantial gains can be achieved by taking into account specific details of the hardware
in the protocol design [22, 23, 14, 24, 25]. At the moment, this is done at a rather coarse
level: the foremost example2 is biased noise models, where it is assumed that errors caused
by Pauli— X matrices (bit flip) are much less likely than those caused by Pauli—Z matrices
(phase flip). This biased noise model is motivated by qubits built from non-degenerate
energy levels where a bit flip requires an energy exchange with the bath, so it is typically®
much slower than phase flips, which only require an entropy exchange.

A noise bias is just one of the features that colour a noise model, whereas fault tolerant
protocols can be tailored to other features. This research program thus naturally suggests
an optimization cycle which combines

(i) Experimental noise characterization of device [30, 31, 32, 33].
(ii) Noise modeling [34].
(iii) Fault tolerant protocol design tailored to model [35, 36].

(iv) Numerical benchmark of protocol [37, 3].

2 Another popularly used noise model in studying qubit implementation schemes is the generalized damping
channel, which combines the effect of an amplitude damping channel with the Pauli model of dephasing noise.
However, this just adds one feature to the dephasing noise model, like in the case of biased Pauli noise.

3While that assumption is made with spin qubits in mind, there are implementation schemes [22, 26, 27, 28, 29]
that sharply contrast this assumption wherein the frequency of bit flip errors are much higher that those of
phase flips.



The evolution of a single qubit is specified by 12 real parameters and that number grows
exponentially with the number of qubits, due to the effects of correlations, owing to a high
dimensional noise manifold. Thereafter, the presence of temporal correlations and non-
Markovian effects further increase the dimensionality of the noise manifold. Thus, it is
technically impossible to fully characterize the noise affecting more than say 3 qubits [38, 39].
Techniques have been developed over the past decade to extract coarse information about
the noise inflicting a quantum system [40, 41, 42, 43, 44]. The simplest of these techniques
describe the noise by a single parameter 0 < p < 1, which gives some indication of its
“strength”, and more elaborate schemes will provide more parameters [45]. These parameters
define hypersurfaces in the high-dimensional noise manifold, leaving many noise parameters
unspecified. One is left to wonder if knowledge about these few parameters can be of any

help in designing noise-tailored fault-tolerant protocols.

The contribution of this thesis is to argue that the optimization cycle described by steps
(i)—(iv) is not viable in general, especially when the noise model is outside the Pauli paradigm.
Firstly, we question the steps (i) and (ii). Using numerical simulations to corroborate our
claims, we show that the response of a quantum error correction scheme depends strongly
on the parameters of the physical noise process which are not traditionally measured in
step (i) and are not typically incorporated in (ii). There appears to be very little to be gained
from such coarse information. This does not conflict with what we wrote above, about how
knowledge of the noise bias has led to improved tailored protocols. In those examples, the
hidden assumption was that the noise is biased but otherwise featureless. There exist other
biased noise models exhibiting other types of correlations for which the tailored protocols
fail. In other words, fixing just one, while letting the other parameters fluctuate will result

in vastly different noise models that react wildly differently to fault-tolerant protocols.

These results lead us to ask what are the critical parameters which most strongly affect
the response of a fault-tolerant scheme. To investigate this question, we used machine
learning techniques to relate the response of a fault-tolerance scheme to the parameters
of the noise model - starting with searching for an appropriate definition for p. We have
tried a few different machine learning algorithms and the critical parameters we found were
more informative than standard noise strength measures, such as average infidelity or the
diamond norm. Despite these relative improvements, the accuracy of the predictions from
machine learning algorithms remain poor. This provides further evidence that a universal
definition of p to predict — and eventually optimize — the response of a fault tolerant scheme,
is unlikely to exist. On the other hand, the possibility of including more than one parameter
to define the noise strength seems promising.

So much for the noise characterization, coming from steps (i) and (ii). Step (iv) on the



other hand, is crucial to estimate the response of a fault tolerant protocol, serving as a
quality assessment for the protocol developed in (iii). The second contribution of this thesis
is to assess the numerical difficulty of classically simulating a quantum error correction
protocol. While several problems related to classical and quantum error correction — such
as designing an optimal recovery — are notoriously hard computational problems [46, 47],
the characterization of quantum protocols poses an extra computational challenge with no
classical counterpart. This difficulty stems from the computational hardness of simulating
quantum mechanics. In essence, faults cannot be associated with probabilities. Subsequently,
conventional numerical simulation techniques for evaluating the performance of quantum
error correcting codes that rely on sampling errors given by a probability distribution, are
no longer valid in the quantum setting. Therefore one is left with the cumbersome task of
sampling outcomes of syndrome measurements. For most quantum codes, even computing
the probability of an individual syndrome is numerically intensive. Despite the existence
of efficient algorithms to estimate the probability of a syndrome for some quantum error
correcting codes, we highlight yet another fundamental problem that numerical simulations
must overcome. This is caused by the presence of rare syndromes that significantly impact
the average performance of a quantum error correcting code. Thus, understanding and
characterizing such faults that give rise to the rare, yet important, syndromes requires an
extremely large number of simulations. While techniques have been developed to address
this issue for classical error correction [48, 49, 50] and also for simple (Pauli) noise models
[51, 52] in the quantum case, the problem remains largely open otherwise. For small codes,
we present our attempts at developing importance sampling methods tailored to quantum
processes. While we obtain some improvements over direct simulations, the number of
simulations required for practical quantum computing applications remains prohibitively

large.

From that perspective, it is rather surprising that numerical simulations can be of any use

to simulate large quantum error-correcting schemes, but the Gottesman-Knill theorem [19,
] provides a means to efficiently simulate simple noise models. However, the assumptions
of the Gottesman-Knill theorem pose severe limitations on the noise models which can be
efficiently simulated, thus rendering numerical simulations rather useless for the design of

fault tolerant schemes tailored to physical noise models.

We conclude that, given access to a small quantum computer, steps (i) to (iv) could
be combined into a single step called experimental characterization of fault tolerant protocols —
wherein the inherently quantum problems like syndrome sampling that are hard to simulate

classically, could be solved using a quantum computer. The work in [35] is similar in spirit.

This is not to say that efforts of studying and optimizing fault tolerant protocols for



featureless noise cannot be of practical relevance. These studies provide good proofs of
concepts and worst case estimates for several protocols. In fact, most efficient decoding
techniques including those used in our numerical simulations, have been developed for Pauli
errors, for which they are also optimal. Nevertheless, they can be applied to correct generic
types of noise processes as well. In several occasions of this thesis, we will use heuristic

methods for generic noise processes from an intuition for the case of Pauli channels.

Despite an efficient optimal quantum error correction strategy, the class of codes studied
in [1]* has some serious drawbacks for experimental realizations. In contrast, a wide category
of codes known as Surface codes [55, 56, 57, 11] have become increasingly attractive for
physical realizations [58, 59, 60, 61, 62], owing to the planar architecture of the constituent
physical qubits and geometrical locality in the structure of stabilizer generators. These play
a major role in reducing the ancillary overhead in fault tolerant protocols.

One of the limitations of surface codes is the strict tradeoff between the distance d — the
smallest number of qubits that support a logical operation — and the number of encoded
qubits k. In particular, it was shown in [63] that k d* e O(n), which entails that a 2D surface
code with d € o(y/n) can at most encode a constant number of logical qubits, irrespective
of its size. Although that presents a major challenge for large scale quantum computers,
for near terms devices that support about a 100 qubits, a major improvement in overhead
can be achieved by optimizing the precise values of k and d by appropriately choosing 2D
geometries. The work presented in appendix D of this thesis describes two related works on
surface codes [2, 3]. In [2], we proposed an extension to the class of surface codes, generalized
surface codes wherein codes can be defined over lattices with different local geometries, both
in the bulk as well as at the boundary. For specific geometries, we show that in fact k 4> = nin
the asymptotic limit. In sec. D.1 we show some lattice geometries that have a better tradeoff
for k and d than in the regular 2D planar square lattice.

It is important to appreciate that even for a pedagogical model of Pauli errors, a low
distance does not entail poor error correction capabilities, on average. While the distance
certainly qualifies the smallest uncorrectable error, it does not immediately tell us about the
average number uncorrectable errors [64]. Since errors are probabilistic events, assuming that
any set of d errors is malignant is pessimistic. Lower bounds on the performance of a code
based on the code’s distance often tend to be loose [65, 66]. A numerical benchmark of a fault

tolerant protocol is crucial in such cases. This inspires the second work [3] where we propose

4Gimilar studies, of non Pauli noise models have been done recently in [53, 54] with surface codes, wherein
an optimal decoding technique has been proposed with the use of Tensor networks. This technique turns out to
be far better than previously known brute force density matrix simulations. Hence Fault tolerant simulations of
up to a hundred qubits can be studied numerically.



a linear time benchmarking strategy for the generalized surfaces codes, mentioned in the
previous paragraph. To showcase its efficiency, we have shown numerical benchmark tests
of codes involving up to 120,000 physical qubits. Our presentation in the appendix chapter D
omits rigorous mathematical details of the generalized surface codes. We present numerical
results highlighting the performance of these codes with a variety of planar geometries.
Lastly, we use these benchmarking techniques to study more complicated models of errors

that involve spatial correlations.



Chapter 1

Background

In this chapter, we present an introduction to various concepts that are necessary for dis-
cussing the results in the later chapters, in particular in [1]. It is organized as follows. First, in
sec. 1.1 we will introduce various models to study the effect of noise processes in quantum
information science. While doing this we shall set some terminologies and notations. Fol-
lowing this, in sec. 1.2, we will discuss popular means of quantifying the strength of noise
in various quantum processes. Here we will discuss some of the commonly heard notions
such as fidelity and so on. Then we will move on to a review of quantum error correction in
sec. 1.3 mentioning the standard techniques used to address errors on a system of qubits.
Towards the end of this chapter in sec. 1.4, we will focus our discussion on a particular type
of quantum error correcting codes known as concatenated codes. These topics will set the

stage for the chapters to follow that discuss new results in the field.

1.1 Noise processes in quantum information

On the one hand, quantum computation is the science of controlling the evolution of quan-
tum systems to solve computational problems, on the other, arbitrary precision control of
quantum systems is hard to achieve due to several technological roadblocks. Quantum sys-
tems inevitably interact with their environment and in this section, we introduce a framework

in which noise processes are studied.

Let us develop an intuitive characterization of noise processes affecting a qubit, in state

p. Suppose we want to control this qubit, by applying a meaningful operation, say p — ZpZ.

By the law of quantum mechanics, this evolution can realized by a unitary operation e it



after sufficiently long time, in fact when t ~ 1. However, it is unreasonable to demand that
the controlled evolution has been carried out exactly for t = 7. In general t = 7w + § where
¢ is unknown and random. This manifests as noise in the resulting quantum state where
the noise is specified by the unitary dynamics U(8) = e’ °. Although U(¢) is an accurate
description of the noise, it is only true for a particular instance. Though it is not realistic to
fix 6, there is often a confidence interval, —A < § < A. In this case, the result of the noise
can be described as a mixed state by taking a mixture of the outputs corresponding to every

possible value of § in the confidence interval. This gives a state p’ described as

A . .
p/ — /_A eﬂ&ZpeléZ (11)
A A : _ A
= cos? 8dé + ZpZ sin? 6dd + M sin(20)dé
Y P
“A A 2 “A
= —po+pZpZ (1.2)
where we set
A
p= / cos? 6dé (1.3)
—A

and used the common identity ¢®* = cos @I + isin § Z. The above expression says that the
underlying noise process can effectively be characterized as a probabilistic application of
Z with probability p. We could have replaced Z by any hermitian operator that squares
to one, in the above analysis and we would end up with a similar interpretation. In this

interpretation, note that the resulting error processes is not always a unitary evolution of p.

While that already describes many possible noise processes in quantum information,
the analysis above is not completely generic. This is because the quantum system of interest
is never by itself in the universe. There is always the possibility that the quantum system
described by |¢) was entangled to another system whose evolution we have not tracked in
the analysis. Let us call everything that is not in the system to be the environment. For instance,
the environment can be any unknown stray magnetic fields in an experimental setup. That
being said, it is now safe to assume that the system plus its environment together form a
closed quantum system which evolves under unitary dynamics in a larger Hilbert space,
governed by the laws of quantum mechanics. Let us assume the environment to be initialized
in some state |eg) (ep| that is decoupled from the system. The result of unitarily evolving
the closed quantum system can be described by U [o ® |eo) (eo|] UT, where p = |) (y|. Since
there is no way of measuring the environment, we can imagine that the information stored
in the environment is simply discarded after evolving. This can potentially lead to loosing

information stored in p, but that is quite similar to eq. 1.1 where the missing knowledge of &



introduces decoherence. Mathematically, this corresponds to a unitary evolution followed
by a partial trace over the environment’s subsystem, giving us the final state of the system,
denoted by £(p), expressed as

E(p) = Tre (Ulp® leo) {eol L") (1.4)

Let {|7) } and {|ex) } be orthonormal bases for the system and its environment, respectively.
We can rewrite the above expression as

(IE()|j) = Y Y (i, exlUlm, eo)omn el U], ex)

k mmn
=) [EkPEZ] Ny
k bl
where
Ek = (EHU|€0> . (15)

Therefore, the effect of interactions between a quantum computer and its environment can
be specified by a set of operators { Ex } such that

E(p) = ;EkPE; : (1.6)

The above expression is quite similar to eq. 1.6 but now it includes a wider category of noise
processes. The allowed noise processes on a single qubit are described by &, that is a linear
map on the space of density matrices. Such maps are called superoperators. In addition, the
requirement that £(p) be a valid quantum state imposes two fundamental requirements.
First, £ must be a completely positive map, i.e, the action of £ on any subsystem of a positive
operator must yield a positive operator. In other words,

Eext(p) =0V p, (1.7)

where the input system p can be of arbitrary dimension and e acts as £ on an arbitrary
subsystem of p, while it acts as an identity on the complementary subsystem. Second, £
must be trace preserving: Tr(E(p)) = 1, which translates to

Y EfE,=1. (1.8)
k
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Due to these two conditions, &€ is often referred to as a Completely Positive Trace Preserving’
or a CPTP map [71, 72, 73]. The decomposition for £ as eq. 1.6 was first proposed by Karl
Krauss in [74], showing that any CPTP map admits such a decomposition. As a consequence
of this, eq. 1.6 is popularly known as a Krauss representation and {Ey } as Krauss operators.

Much like the interpretation in eq. 1.2, the effect of £ in eq. 1.6 can be pictured as replacing
the quantum state p by E;pE; with a probability given by its normalization. This analogy is
reminiscent of classical noise modelled by a channel that takes a message sequence to one of
the possible output sequences, each with a probability [75]. The list of these probabilities
is used to specify the underlying classical channel. As a result of this, £ is often called a
quantum channel. Although the word channel might have a stochastic connotation to it, as in
the classical word, in this thesis we would like to emphasize that quantum noise processes
need not have any association to probabilistic operations. We will reserve? the attribute
“stochastic” to a quantum channel wherein the final state can always be expressed as a sum of
quantum states with different probabilities. We will shortly see some examples of stochastic

and non-stochastic quantum channels.

The simplest example of quantum channels are unitary operations themselves. These
have only one Krauss operator that is the unitary matrix itself. In the beginning of this
section, we moved away from the time evolution operator arguing that the parameter is
essentially unknown. However, unitary channels occur in cases where the noise is systematic
— the rotation angle (or the time for which a quantum system evolves) is fixed. Such errors are
typically known as calibration errors in experimental settings. We will often use a coherent
rotation channel that describes a systematic rotation of a qubit about the z—axis of the Bloch
sphere, given by the CPTP map £7(0) where

E2(0)(p) = e 0 %pel?7. (1.9)
Pauli matrices are at the heart of quantum mechanics and quantum information. The

special structure of Pauli matrices makes their analysis as errors in a quantum algorithm

very easy. The quantum channel with the four single qubit Pauli matrices I, X, Y, Z as its

n the interesting article [67] the authors argue why Complete Positivity and Trace Preserving should not
be regarded as serious limitations for valid operations in quantum mechanics. Certain noise processes such as
dissipation and more generally, non-Markovian noise processes [68, 69] are modelled using evolutions that are
not CPTP. These are often modelled as perturbations to the Hamiltonian of the qubit system, cf. [70].

2Note that in [73, 76], a stochastic channel is termed to be a quantum channel for which one of the Krauss
operators is proportional to the identity. However, in those cases, the stochastic channel does not necessarily
provide a probability distribution for the different types of error processes that are described by the channel.
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Krauss operators can be expressed as

Ep(pr, px, Py, pz) () = p1o + pxXoX + pyYpY + pzZpZ (1.10)

and is popularly referred to as a Pauli channel. We will often use this channel in later chapters

while discussing quantum error correction. Trace preserving nature of £p ensures that

p[—|—px—|—py+pZ:1. (111)

Furthermore, the quantities which completely specify £p, represent probabilities of applying
the corresponding Pauli operators or errors. There are two popular special cases of Pauli
channels. First, when px = py = 0. In this case, we recover the channel in eq. 1.2 and it is
known as a dephasing channel, denoted by £7. The timescale associated to this channel, by
eq. 1.3, is commonly referred to as T for a qubit [77, 78]. In the case px = py = pz = p/3,
the Pauli channel can be written as Epp given by

eor(p)e) = (1- ) o+ ¥ 3 (1.12)

and gets the name depolarizing channel. The worst case quantum channel is modelled as a
completely depolarizing channel — that destroys the coherent parts of the density matrix, thereby
yielding an even mixture of all states in the Bloch sphere, for any input state. This is simply

when p = 4 ascan be easily seen from eq. 1.12,

Epr(p)(p) = 5 - (1.13)

In vast majority of implementation schemes [79, 80, 81], a qubit is characterized by two
energy levels of a quantum system. When such a quantum system couples to a thermal bath,
the loss in energy causes the system to spontaneously relaxe to its ground state [52, 51, 83].
This is modelled as a relaxation noise, otherwise called an amplitude damping channel [54, 85]
and denoted by £4p. Assuming that the higher energy state is |1) which relaxes to the
lower energy state |0), the amplitude damping channel is defined by two Krauss operators,

parameterized by a number, A:

2
Eap(M)(p) = }_Ei(A) p EF(A),

i=1

1 0 VA

where E; = and E; = . (1.14)

0 vV1—-A 0 0

=)
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The parameter A is what measures the strength of the relaxation noise process, much like p
in eq. 1.2. Like A eq. 1.3, A can indeed be related to a experimentally relevant time scale,
for which the qubit evolves, commonly referred in literature as T;. Unlike eq. 1.10, this
fundamental noise process is not equivalent to probabilistic application of Pauli errors.
Furthermore, due to its asymmetric action on the |0) and |1) states, it turns out that £(I) # 1.
Such quantum channels are called non-unital. The amplitude damping channel is not a
stochastic map since we cannot interpret it as probabilistic application of errors, unlike Pauli
channels.

The composition of an amplitude damping channel in eq. 1.14 and a dephasing channel
in eq. 1.12 (with px = py = 0), is commonly known as the generalized damping channel, see
chapter 8 of [73] and [86]. This noise model can also be defined in terms of the two associated
timescales T; and T, such as in [87], thereby providing a better intuitive understanding of
the underlying qubit’s lifetime.

1.1.1 Multi qubit channels

The formulations of a physical noise process as a CPTP map in eqgs. 1.4-1.6 is also true
when the dimension of p is larger than two. Hence we can use a similar analysis to model
physical noise processes that affect a system of n qubits. However, these noise processes can
not only involve independent effects on each of the n constituent qubits, they can also be
used to describe correlations. The size of the Krauss operators for such a CPTP map will
scale exponentially with the number of qubits. With a loss of generality, for the most part of
this thesis we will assume that noise processes do not create correlations amongst qubits.
Hence the n—qubit Krauss operators of the n—qubit CPTP map £ will have a tensor product
structure. We will succinctly denote this by

E=6R65R...08&,, (1.15)

meaning that the qubit i undergoes &;. This simplification has many advantages. First, the
n—qubit CPTP maps can be described compactly. Second, there is no relative time ordering in
the application of the noise processes; they can be applied in any order since no two of them
affect the same qubit. Majority of the theoretical derivations make an additional assumption
that &; are all identical. In this case, all the degrees of freedom of the n—qubit channel are
essentially those in the single qubit channel. Such quantum channels are independent and
identically distributed (i.i.d) quantum channels.

It is worth to point out that the restriction to i.i.d noise yields a very contrived case
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of a realistic noise process [19]. In particular, the individual qubits of a multi qubit state
p are seldom perfectly isolated from each other. Experimentalists refer to these unwanted
correlations as “cross-talk”. It is natural to expect that entanglement between the qubits of p
and the environment implicitly correlates errors across the qubits of p. For instance, in case
of ion trap architectures the qubits are coupled to motional modes of ions [88, 89, 90] and
in quantum dots the qubits are coupled to a common phonon bath [Y1, 92, 93, 94]. While
implementing two-qubit gates on semiconductor qubits, correlated errors are characterized
to be predominant sources of errors [95]. In appendix D.4.1 we analyze an error correction
protocol for a physically motivated models of correlated noise, see also [96, 54].

1.1.2 Representations of quantum channels

The Krauss representation in eq. 1.6 provides one way of specifying the action of a CPTP
map on quantum states. We will discuss three other representations of quantum channels
which we will use later to study properties of quantum channels and simplify the analysis
of quantum error correction protocols. Furthermore, in app. A we provide a list of different
channels representations and methods to convert from one to the other.

1.1.2.1 Chi Matrix

Since any 2 x 2 complex matrix can be described as a linear combination of the four Pauli

matrices: {I, X, Y, Z}, the Krauss operators specifying £ in eq. 1.5, can be expressed as

E = Tr(Ex - P;)P;

Il
—

NI~ Nl
0= L7-

vk,ipi (116)

Il
—

where P; are Pauli matrices and vy = Tr(Ey - P;). Hence the Krauss representation in eq. 1.6
takes the form

1 4 4 .
g(p) = 1 X;ka,ivk,j PlpP]

1 4 4
=5 ZZ[X(‘S)L’,J‘ Pi-p- Py, (1.17)
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where the 4 x 4 complex matrix x (&), given by
1
X))y =5 Y Tr(E- P)Tr(EL - By, (1.18)
k

is called the Chi matrix of £ [97]. The CPTP conditions in eqs. 1.7, 1.8 imply x (&) = 0 and
Tr(x) = 1 respectively. The entries of x can be complex, hence they do not have a nice
interpretation. However the diagonal entries are all real, positive and add to one, just like a

probability distribution. Furthermore, a diagonal x(€) implies that £ a Pauli channel.

The chi-matrix for a Pauli channel is simply a diagonal matrix whose entries are the
probabilities of Pauli errors. In the case of non-Pauli error models, it is a common practice
to simplify the analysis of quantum error correction protocols by dropping the off-diagonal

terms in x (&), see [98, 99]. Such a transformation on x (&),

4
X(&) = x(T(€)) := Z; (X (&) - 1) il (1.19)
=
is formally known as Twirling and it has many applications in noise characterization [100,

, ]. Twirling is one of the few methods of approximating a CPTP map with a Pauli
channel [103, , ]. Often, error correction properties of £ are studied by examining
those for the simpler noise model® T (&) [106,87,107,37,108]. Although quite useful, the
X matrix has a few drawbacks [109]. For instance, the transformation described by the x
matrix does not have a geometrical meaning for quantum states. There is no straightforward
formulation of the )y matrix corresponding to the composition of two channels & o & [110],
or the tensor product of two channels & ® &.

A popular example of a quantum channel that significantly differs from its twirled
version is a coherent channel, such as £7(0) described in eq. 1.9 that performs a rotation
about the Z—axis. The chi-matrix of £z () has off-diagonal terms that are large in magnitude
compared to the diagonal terms:

(cos8)> 0 0 isinf

0 00 0
x(Ez(0)) = : (1.20)
0 00 0

(e)

—isin® 0 (sin9)?

3However, it has been shown that the twirled channel grossly underestimates the noise of the original CPTP

map T (€), cf. [53].
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1.1.2.2  Choi-Jamiotkowski representation

The uninitiated way of expressing the Choi-Jamiotkowski isomorphism is simply as an

equivalence between matrices and vectors, in its simplest form,
u) (o] = [u) @ [o) . (1.21)

This basic building block can blindly be applied to eq. 1.6, thereby replacing Ey and E; by
ket and bra vectors, finally arriving at a 4 x 4 matrix corresponding to £(p). This is the
isomorphism between channels and states. However, let us introduce this concept from a
physically motivated argument.

Unlike a unitary transformation, the effect of £ is non deterministic in nature because
the information stored in the environment is lost (modelled by a partial trace). A natural
question that arises is, can we derive £ if we have access to its output on some quantum
state p along with its environment? The answer is yes and to understand this we will borrow
an idea from a technique called gate teleportation. Here, one wants to apply a quantum gate
G on a state p, which for some reason is hard to apply directly. However, in order to obtain
the final state GoG", one can do the following. First, prepare a maximally entangled state
| D) (P| where

_ 1

V2

and apply G to one of its qubits. Second, teleport p using state (I ® G)|®)(®|(I® G') as the
entangled resource. In this procedure one can replace G with any linear map &, as depicted

| D) (]00) + |11)) (1.22)

in fig. 1.1. In other words, having access to the map & is the same as having access to the
resource state (id ® £)|®) (®|. Formalizing this notion, we note that there is an isomorphism
between single qubit linear maps and 4 x 4 matrices. This isomorphism was discovered by
Pillis [111] and Jamiotkowski [112] in a slightly different form. In this thesis, we will study
the Choi-Jamiotkowski isomorphism, which was discovered by Choi [113] where a linear

map & is mapped to a 4 x 4 matrix J (&) given by
J(E)=(d®&)|P)(P|. (1.23)

The resulting 4 x 4 matrix J¢ is often referred to as the Choi matrix of the resulting linear map
&. The above duality between channels and states can be used to study various properties of
quantum channels. In particular, Choi demonstrated that £ is a CPTP map if and only if J¢
is a positive operator with unit trace, i.e, the Choi matrix corresponding to a CPTP map is a
bipartite quantum state.
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(100) + 111)) ({00] + {11])
2

Figure 1.1 The Choi matrix of a linear map &, denoted by 7 (€) is the quantum state describing
the result of applying £ to the first half of the bell state.

In order to see how the reverse transformation, one from J¢ to £, works, let us consider

the following representation of |®) (P|.
1 N \
=5 LIl @il (1.24)
Ly

where |i) are the computational basis vectors. Hence, assuming a Krauss representation of
& given by eq. 1.6, we have

Js—ZZ\ (jl ® Exli) (j|E}.

Using the notation M’ to denote the i-th column of a matrix M, we can rewrite the above
expression as

ZZZk) i) @ Exli)) ({jl @ (j1E¢)
Z; i) © [ED)((j] ® (E})

; <Z| ® |E}) ) <Z<J|®<E]!>
Y IEe)) ((Exl (1.25)
X

where |[M)) denotes the (column) vectorized form of M, obtained using. eq. 1.21. What
we have achieved in the above expression is a spectral decomposition of Jr where the
eigenvectors are the vectorized forms of the Krauss operators. Hence to retrieve a quantum
channel from its Choi matrix, we simply perform the spectral decomposition of the given Choi

matrix. An interesting consequence of this isomorphism is a fact that four Krauss operators
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suffice to describe any single qubit CPTP map [71, 114]. In other words, to construct a generic
single qubit CPTP map, starting from unitary dynamics on a larger system following eq. 1.4,

it suffices to consider an environment with two qubits.

Using the recipe in eq. 1.23, we can quickly construct the Choi matrices corresponding
to the CPTP maps for the amplitude damping channel £4p in eq. 1.14 and the Pauli channel
in eq. 1.10.

1 00 Vi—a
1l o A0 o

J(Eap(A)) = 5 (1.26)
0 00 0

vi-A 0 0 1-A

p1+pz 0 0 p1—pz

1 0 px + Py Px— Py 0
J(Ep(pLrx, Py, Pz)) = = (1.27)

2
0 pPx — Py Px+py 0

pP1— Pz 0 0 p1+pz

Unlike the x matrix discussed in the previous subsection, the Choi matrix of a tensor
product of two CPTP maps £ and D is simply the tensor product of the maps’ respective

Choi matrices,
J(ED)=J(E)2TJ (D). (1.28)
To show this property, we note that

JE) =Y Ui @i, (1.29)
L]

where {|7), |j) } are the computational basis states. The quantum state represented by 7 (£ ®
D) is the result of applying £ and D independently to the second and fourth qubits of the
tensor product of two bell states. Using eq. 1.29, we can represent the output as

J(E®@D) =My ), (E@D)(|ii2){fij2]) @ (liriz) (jaf2l) , (1.30)

i1iaf1]2

where {[i1), |i2),[j1),]j2) } are computation basis states and ), g is the swap operator [73]
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that describes the exchange of qubits indexed a and B. The expression in eq. 1.30 can be
simplified as

JE@D) =My ) (i) (i) @ D(|j1){j2]) @ lin){i2| @ |j1) (1ol
12
= ¥ E(in)(ia]) @ lin) (2] @ D(lja) (2]) @ ) 2|
nizj1j2

=J(E)@ I (D). (1.31)

However, the Choi matrix for the composition of two CPTP maps has no straightforward

form in terms of the Choi matrices of the respective maps.

1.1.2.3 Pauli Liouville representation

In this section we will discuss another useful representation, which is also based on vector-
ization of operators. Equation 1.21, describes an instance of a wide type of representations
where a d x d matrix M can be mapped to a vector of length d2, represented by (v1 v2 ... vp)
given by

0; = TF(M : 61',]') ’ (1.32)

where {|e; ;} form an orthogonal basis for d x d matrices. Such representations are Liouville
representations [115]. In eq. 1.21 we have implicitly assumed ¢;; = |i) (j|. Another popular
choice of basis is the set of Pauli matrices, which yields the Pauli Liouville representation
for matrices [115, , , ], which has several advantages over the Choi-Jamiotkowski

representation discussed in the previous subsection.

Since any two qubit density matrix can be constructed by convex linear combination
of pure states, it suffices to specify the action of a quantum channel on a pure states. Fur-
thermore, single qubit pure states can be represented as vectors on the surface of a Bloch
sphere [73]. Denote by 7, = (rx, 1y, 7z), a vector on the Bloch sphere corresponding to the

quantum state p, where

1
pF=5 (I+rxX+ryY+rz2). (1.33)

Now, the Bloch vector corresponding to £(p) is simply

E(p) =5 (I+rxX+rY+1,27)

N| =
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Tr(EMX) Tr(EMY) Tr(EM)Z)
THEX)X) TH(EX)Y) TH(EX)Z)
where (0 . =11 rv v 1"
<X Y Z> ( o Z) THE(Y)X) THENY)Y) Tr(E(Y)Z)
THEZ)X) THEZ)Y) Tr(E(2)Z)
(134)

The above matrix now completely specifies the action of the CPTP map £. This inspires the

Pauli Liouville representation [109, 119] (or equivalently the Fano representation [120, 121, 122])

for a quantum channel £, given by the 4 x 4 matrix I'¢ specified as

T(E);j = Tr(E(P) - P}, where P, € {I,X,Y,Z}. (1.35)

Consequently, I'(£) is also called the Pauli Liouville matrix corresponding to £. Note that
I'(£) contains the entries of the matrix in eq. 1.34, with an additional column equal to

100 0) . This follows from the trace preserving nature of £,in eq. 1.6. Firstly, Tr(£(I)) =
Tr(I) = 1,50, (€)oo = 1. Second, Tr(E(P;)) = Tr(P;) = 0 for P; € {X, Y, Z}. Furthermore,

I' can be expressed as

r= . (1.36)

While f is given by the first row, M is the 3 x 3 formed by the last three rows, of the matrix

describing linear transformation of a Bloch sphere vector in eq. 1.34.

The Pauli Liouville representation is widely used in experimental noise characterization,

where I'(£) is essentially reconstructed using Randomized Benchmarking [123, 110].

The Pauli Liouville representation of a CPTP map posses several nice properties. It is

worthwhile to highlight a few of them here.

1. The entries of I'(€) are all real. The best way to see this is by using the transformation
in eq. A.8 which relates the entries of I'(£) to J(€) defined in eq. 1.23. Using this

relation, we have

E) - (P @P])")
=Tr(T7(E) - (P ® Pa))

=
—~
™
N—

2
s
*

|
-
~—~
N
—~
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=Tr(T(E) - (P,@P)) =T(E)w , (1.37)

where we have used the simple property of Pauli matrices: P, = P} for all P, €
{I,X,Z} whereas Y* = YT,

. For two CPTP maps £ and D the Pauli Liouville matrix for the composition of two
maps & o D is simply the product of their respective Pauli Liouville matrices. This can
be derived from eq. 1.35,

[[(€0D)];; =Tr(E(D(P)) - )
=) Tr(E(P)P)Tr(D(P) ) (1.38)
K
= ; [r(g)]kj [T D)]ik
= [['(€) - T(D));; (1.39)

where in eq. 1.38 above we have simply assumed a decomposition of the matrix D(P)
in the Pauli operator basis { P, }. Alternatively one can also derive this property using
the fact that I'(€) describes an affine transformation on quantum states represented
by vectors on the Bloch sphere as given by eq. 1.36. This property sets aside the Pauli
Liouville representation from other representations of quantum channels. Hence, it is
convenient to characterize noisy components in fault tolerant circuits by depicting each

one as a composition of a perfect component followed by a noise channel [21, 110, 109].

. The Pauli Liouville matrix of the tensor product of two CPTP maps is just the tensor
product of their respective Pauli Liouville matrices,

T(E®D)=T()®I(D). (1.40)

The above property immediately follows from eq. 1.35 and it is natural to expect given

that I' describes an affine transformation, in eq. 1.36. As an interesting consequence,

note that the Pauli Liouville matrix of an i.i.d channel £%" is simply [['(£)]*".
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1.2 Measures of noise strength on quantum channels

A very coarse description of a noise model £ would be a single number specifying its “noise
level", or “strength”, with strength 0 corresponding to a noiseless channel (the identity map).
For the simple case of Pauli channels in eq. 1.10, a measure of noise strength is: 1 — p;. That
is precisely the probability of preserving the input quantum state under the noise process.
A different case is relaxation errors, in eq. 1.14, where A is a good error metric even though
it does not directly relate to the probability of preserving the concerned quantum state. This
does not however mean that the parameter used to specify the error process is always a
good error metric. Let us turn to example of coherent (systematic) errors, in eq. 1.9. Here, the
probability of preserving the quantum state is neither quantified by 6 nor monotonic with 6.
In the case of a generic CPTDP, there are 12 independent parameters and it is not apriori clear
which one of them or what function of them is best for quantifying the distance between the
input and output states of the respective CPTP map.

1.2.1 Gold standard

Let us refer to a generic error metric as NV, so the noise strength of £ is simply N(€). There
are several inequivalent definitions for NV. Let us first discuss what are some of the desirable
properties for /. Clearly we require N (€) > 0 for any CPTP map &, an extreme case being
N (id) = 0 where id is the identity map, i.e, id(p) = p for all p.

Heuristically speaking, we would like the fault-tolerant accuracy threshold theorem
[124,125,126,127] to guarantee reliable quantum computation, provided the noise strength
N () of the physical channel is less than a certain threshold value. Such a requirement can
be traced to two important mathematical properties on \V. The first property rests on the idea
that fault tolerance analysis should circumvent the necessity for a full process tomography
of the quantum computer. The analysis can be greatly simplified by breaking the quantum
computation into simple constituents. However, a conservative analysis must ensure that
when two faulty components are combined, the errors can potentially add up. That is to say
N should be increasing under compositions. Concretely, if £ and D are two CPTP maps,
then the composition of £ and D, defined as: Eo D : p — E£(D(p)) must have an error
strength that is at most the sum of the noise strengths of the individual channels, i.e,

N(EoD) < N(E) + N (D). (1.41)

The above is quite similar to the multiplicativity property of matrix norms [125].
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The second requirement, is a refinement of the first. It is natural to expect that the
strength of noise in a quantum computer cannot increase by adding noiseless components
that do not interact with the rest of the computer. In other words the errors coming from
non-interacting noisy devices should simply exactly add,

N(E®D)=N(E)+N(D). (1.42)

The above property is referred to as stability under tensor products and is very useful in
providing reasonable scaling arguments.

Besides the abovementioned mathematical concerns, there are two others which are
crucial from an operational point of view. First, the definition of A" must be easy to compute.
Much of the definitions for N/ (€) as we will see will be efficiently computable but only a few
of them are presented by closed form expressions of £. Second, a physical quantity should
be directly associated to . This will serve two purposes: (i) Allow for the experimental
measurement of (&) and (ii) understand the physics of the noise source itself. In what
follows, we will discuss some candidates for N and argue why they are important.

1.2.2 Trace norm

The trace distance between two quantum states p and ¢, denoted by ||p — o||; is defined as

the matrix 1-norm of the difference (p — o), i.e., [129]

lo— ol = 5 T/ (0 — ) (o — ). (143)

The trace distance between quantum states has a nice physical interpretation — it is the max-
imum probability with which any measurement technique* can succeed in distinguishing
between p and . Hence if ||p — ¢||1 = 0, it means that p and ¢ are identical under any
measurement. On the other hand, if ||p — ¢||1 = 2, p and ¢ are orthogonal with respect to the
Hilbert Schmidt inner product, so, there exists a physical measurement that can distinguish

between p and ¢.

There is a systematic procedure [130] to extend the definition of a distance between
quantum state to a definition of distance between super-operators £, D, namely by maxi-

mizing the distance between the output states of £ and D. In this case of the trace-distance

%A set of general measurements is modelled as a Positive Operator Valued Measure (POVM).
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metric, we have [129, , ]
1€ =Dl = max{[£(p) — D(p)|h- (1.44)
Hence, the error strength of £ can be quantified by
N(E) =€ —id|]; . (1.45)

The above distance metric now signifies the maximum probability of distinguishing between
the two noise processes represented by £ and D. However, unlike the trace distance for
quantum states, the induced trace distance for quantum channels fails to provide a clear
physical picture. We saw in eq. 1.23 that using entangled states as inputs to the quantum
channel, we can distinguish quantum channels as well as quantum states. Similar results
have been observed in [133, 134], suggesting that

1€ =Dl < ||€®id—D@id||;. (1.46)

The above expression tells us that the trace distance metric does not have the desired stability
property under tensor product, as mentioned in eq. 1.42. This deficiency disqualifies the

trace distance as a potential metric for use in fault tolerance proofs.

As an aside, note that the matrix norms on quantum states can also be extended to
quantum channels by defining the corresponding norm on the respective Choi matrices
[135], defined in eq. 1.23. For instance, the trace distance between the bell state in eq. 1.22
and J (&) serves as an error metric for &,

N(&) =117 (&) =T (id)[] . (1.47)

1.2.3 Diamond distance

In [126], Kitaev proposed an extension of the trace distance metric that does not suffer from
the inequality in eq. 1.46. The idea is to define a metric in such a way that it is maximized
over all ancillary systems irrespective of their dimensions. This brings us to the definition of
the diamond distance [126, , , , ] expressed as

I = Dlly = ymax|[(€ 2 id)(p) ~ (D (o), (1.4)
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where the maximization is over all density operators on a Hilbert space whose dimension
isn’t fixed. When the dimension of p is larger than that of the input space of £, we denote by
(£ ®id)(p) the effect of applying £ to any subsystem of p. Defined this way, the diamond
distance between £ and D is the larger of all other metrics [139]. However it turns out that
for single qubit CPTP maps, it suffices to consider the above optimization over all two qubit
pure states [122] p. Just like the trace distance the diamond distance satisfies the properties
of additivity under composition and stability under tensor product, in egs. 1.41 and 1.42

respectively.

H5®id—D®idH<>:H€—DH<>, (1.49)
1€ D)~ idllo < 1€~ dll + D —idl]o (150

As a consequence of its nice mathematical properties, the existence of a fault tolerance
accuracy threshold has been demonstrated [124, , ] for generic CPTP noise processes
using the Diamond distance in place of N, see also [142, 133, 143, 124, 144, 40].

The physical meaning associated to the Diamond distance is similar to that for the trace
distance [145] — it characterizes the probability of distinguishing between £ and D, for the
input that maximally distinguishes the respective maps. The key difference is that the input
can be however large, while £ and D acting on only a subsystem of the input.

In this thesis, we will often use the diamond distance of a quantum channel £ from the
(noiseless) identity map

N(E) = 1€ —id||¢ , (1.51)

to quantify the strength of noise in £ and refer to it as the diamond norm error metric. Unlike
other metrics, there is no closed form expression for the quantity in eq. 1.51 for arbitrary
CPTP maps. A few algorithms have been developed [137, 122] to compute the diamond
distance between two CPTP maps. However, we will discuss closed form expressions for two
simple cases of quantum channels. First, it can be shown that for a Pauli channel, see eq. 1.10,
Ep specified by the Pauli probabilities py, px, py, pz, the quantity in eq. 1.48 is maximized
when p is the maximally entangled states, in eq. 1.22. Hence, ||€ — id||¢, is simply [122]

|€p —id|[o = px + py + pz. (1.52)

Second, for a coherent error process & that describes a systematic over rotation of all qubits
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by a fixed angle 6 about the Z—axis, see eq. 1.1, the quantity in eq. 1.51 is [146, ]
[|Eo — id||¢, = |sin b . (1.53)

In app. C we discuss one of the widely used techniques of computing the diamond distance
between two CPTP maps by solving an appropriately defined semidefinite program [147],
which was proposed in [148, 132].

1.2.4 Fidelity

Fidelity is one of the oldest proposed measures, possibly originating from [149], for quanti-
fying the “closeness" of quantum states. The fidelity between two pure states |i) and |¢) is
simply their overlap: F(|), ¢)) = (¥|¢). In general, the fidelity between two states p and o
is given by

F(o,0) = Te(y/v/oo ) (1.54)

and it was shown in [150, 151] to be equal to the maximum overlap between all purifications
of p and o with an ancillary subsystem. Furthermore, it is symmetric under p and o, a fact

that is less apparent from the definition in eq. 1.54.

Unlike trace distance and other error metrics, the fidelity of two quantum states increases
as they become less distinguishable and decreases as they become orthogonal. Hence while
extending the measure from states to channels, we define the fidelity of a quantum operation

& with respect to another quantum operation D [152, 153, 40] as
F(£,D) = minF(£(p), Dlp), (1.55)

the minimum fidelity between &€ (p) and D(p), over all input pure states p. The fidelity in the
above expression can be computed using a semi-definite program, however, we shall shift our
focus towards experiments. Let us take consider the case where D is the noiseless operation:
id. Although we cannot assume knowledge of the input state of a quantum channel, there
are two questions of primary interest. First, how well does the quantum channel £ preserve
the input state, on average? To precisely answer this, one requires the knowledge of the
underlying distribution of input states. However, without any given distribution, we assume
that inputs are distributed according to the Haar distribution [154], yielding the following
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expression for the average Fidelity.

(F) = [ dlg) FEAw) D, 8}y, (1.56)

where |¢p) is some initial state before the occurrence of noise. The above quantity can be
readily estimated using experimental techniques known as randomized benchmarking

[ 4 4 7 ]'

The second question, intrinsic to the quantum mechanics, is, how well does the quantum
channel preserve entanglement between the system and its environment? This is quantified
by the entanglement fidelity F,, defined as

Fe = Tr (Pvenn - € @ id(oben) ), (1.57)

where pp is the maximally entangled state defined in eq. 1.22. The above expression is
simply telling us that the entanglement fidelity is the overlap of the maximally entangled state
with the Choi matrix of the corresponding quantum channel defined in 1.23. Throughout
this thesis we use the above definition of fidelity and sometimes refer to it simply by F.

Furthermore, it was shown in [156] (see also [157, ; ; ]) that for quantum
channels operating on d—dimensional input states, the average fidelity of eq. 1.56 and the
entanglement fidelity of eq. 1.57 are related by

(F) = i1 (1.58)
In this thesis, we will refer to the infidelity of a quantum channel by
N(E):=1-F, (1.59)

to quantify the error strength.

The fidelity measure as defined in eq. 1.57 has several advantages over the Diamond
distance. First, it has a simple, linear closed form expression in terms of the channel’s
Choi matrix. Second, unlike computing the diamond distance which requires the complete
knowledge of the Choi matrix (the need of a full process tomography), computing the fidelity
requires far lesser parameters to be known about the channel. Expressing the elements of
the Choi matrix J (&) as {[J (£)];}, it is easy to see that eq. 1.57 is equivalent to

Fo=5 T+ [T E)]ia+ [T (E)]ar+ [T (E)]sa) - (1.60)

1
2
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Using eq. A.8, we can derive a simple expression for F, in terms of its Pauli Liouville matrix,

Fo=Te(I) (161

Let us consider the additivity and stability criteria in egs. 1.41 and 1.42 respectively.
Firstly, stability under tensor products is a direct consequence of eq. 1.28 which states that the
Choi matrix of a tensor product of channels is the tensor product of the respective channel’s
Choi matrices. On the other hand, the additivity under composition and mathematical
properties satisfied by distance-based metrics do not hold for the infidelity measure. In this
sense it has been argued in [135] that fidelity is not technically a metric. However, there are
several tweaks to the definition of eq. 1.59 that make it satisfy the properties of a matrix
norm, see [160]. We shall not consider those alternatives because they do not carry a nice

physical interpretation and neither can they be measured directly.

Let us examine the fidelity for some popular quantum channels, discussed in sec. 1.1.
First, for a Pauli channel in eq. 1.10, the fidelity is simply the probability of the identity Pauli

error py.

Fe(Ep(pL px, Py, P2)) =PI, (1.62)

which is exactly the same as the Diamond distance in eq. 1.52. On the other hand, for a
coherent channel in eq. 1.9,

1— F.(£2(8)) = sin6, (1.63)
which is drastically different from the Diamond distance in eq. 1.53. Furthermore, note that
-Fe(g) :Fe(T(g)) ’ (164)

indicating that the fidelity measure does not depend on the non-Pauli contributions to £, i.e.,
the off-diagonal terms in x (&) in eq. 1.17. The quantity in eq. 1.59 can be normalized by the
dimension of the quantum system, thus resulting in a number between 0 and 1. Furthermore,

we can also define the fidelity with respect to any unitary operation, i.e,
1
F.(UpU', o) := ETr(Up ut-o), (1.65)

where d is the dimension of the quantum systems p and ¢. When the unitary operations is
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the set of all d—qubit Pauli matrices P;, we have

Y Fe(PpP',o)=Tr (o- Y. Ppp> (1.66)

PePy; PePy
=1, (1.67)

where we have identified the sum in eq. 1.66 with the completely depolarizing channel of
eq. 1.13. In other words, we can regard the fidelities with respect to Pauli operations as a
discrete probability distribution. This fact will be useful in our discussion of the quantum
error correction protocol in sec. 2.3.

1.25 2—norm

The 2—norm distance, also known as the Frobenius distance, between two quantum states p

and o denoted by ||p — o||2 is specified by

o —oll2 = 4/Tr((c = p)?) . (1.68)

The above definition can be extended for superoperators using a prescription similar to eq.
1.44. Unlike the trace distance, computation of the Frobenius norm of a matrix does not
require diagonalization. As it satisfies the additivity and stability properties of eqgs. 1.41
and 1.42, it has been used as a measure of noise strength in fault tolerance proofs with
non-Markovian noise models, cf. [69] and chapter 5 of [161] .

There is an alternative to the super-operator induced 2—norm distance: the 2—norm

distance between the Choi matrices of the respective quantum channels. In particular,
N(E) = |T(E) = Tiall2, (1.69)

where || - ||2 is given by eq. 1.68. The above-mentioned error metric is easy to compute and
it can be used to upper-bound the average probability of distinguishing the output from the
input of £ [135]. Whereas, the stability property in eq. 1.42 is not satisfied.
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1.2.6 Adversarial error rate

A notion of adversarially quantifying the noise strength, denoted by ps was defined in [18]
as

max x
subjectto: 0 <x <1

(J - (1—=x)Tia) =0,

where the last constraint indicates that (J — (1 — p)Jiq) must be CPTP map. Given any
input to the quantum channel p, pg can be understood as the minimum value of g such that
E(p) can be expressed as: £(p) = (1 —q) p + g p’, where p’ is any quantum state. Unlike the
previously discussed metrics, it is unclear if p¢ satisfies the additivity and stability properties
in egs. 1.41, 1.42. Furthermore, like the Diamond distance, p¢ can be computed efficiently

using a semidefinite program however, it is hard to access experimentally.

1.2.7 Channel Entropy

The Von Neumann entropy of a quantum state p, denoted by S(p), is given as

S(p) = —Tr(plnp) . (1.70)

S(p) has an important property that helps us distinguish mixed states from pure states
- S(p) = 0if and only if p is a pure state. When this idea is combined with the Choi-
Jamiotkowski isomorphism which we discussed in eq. 1.23, we can make interesting conclu-
sions for the underlying quantum channel. The Choi matrix 7 (£) is a pure state if and only if
& applies a unitary operation. Else, the output of £ is mixed and consequently S(7(£)) > 0.
Therefore, the Von Neumann entropy of a quantum channel [162, 163], given by S(J (€)) is
a measure of the decoherence caused by £ [164] and we have

N(E) = S(T(€)). (1.71)

Due to eq. 1.28, it is easy to see that S(J(€)) satisfies the stability property in eq. 1.42.
Whereas, it is not clear if the additivity property in eq. 1.41 holds for this noise metric.
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1.2.8 Unitarity

Recall that £ can describe a non-unitary evolution of the qubit. As a result, if the qubit is
in a pure state |i) (| prior to the action of £, we might observe that £(|¢) (y|) is not pure,
ie, Tr (E(|y)(y[)*) < 1, with equality only in the case of coherent noise processes. While
that is true for CPTP channels &, there is a technical detail® explained in [165]. This leads
to a natural measure of how much coherence is preserved by £, introduced in [165] as unitarity.

The unitarity of £, denoted by (&) is given by

u(€) = [ ayTr (E(p)p)?) (172
Using the Pauli Liouville matrix of the quantum channel I'(€), it follows that [165]
u(&) = %Tr(M*M), (1.73)

where M is the 3 x 3 sub-matrix of I'(£) when expressed in the form eq. 1.36.

The unitarity-metric serves as a counterpart to the channel entropy S(J (£)): the uni-
tarity u#(€) is one for unitary noise processes while it is zero for the maximally depolarizing
channel £pp(1/3). Rather than being a measure of noise strength by itself, we will see in the

following subsection that it plays a greater role in obtaining relations between noise metrics.

1.2.9 Pauliness

The archetypal model for decoherence is provided by Pauli channels. Pauli channels have a
special stature in quantum error correction for many reasons. We already remarked that the
Gottesman Knill theorem enables efficient simulations of Pauli operations. We will later see
that quantum error correction schemes are optimized for Pauli errors. Hence it is useful to
quantify® the amount of “Pauli-like” features in a quantum channel & or decoherence caused
by £. We will name this quantity, as the “Pauliness of £”. Note that Pauli channels can be
characterized by a diagonal x (&) matrix. The matrix elements x;;(€) for i # j are solely due
to non-Pauli Krauss operators in the description of &, eq. 1.6. Furthermore, the magnitude

5 Although we did not discuss it in this thesis, quantum operations can sometimes be non trace preserving.
For example, measurement and state preparation processes. In [165], the authors ensure that the unitarity of a
non trace preserving quantum channel £ is zero and apply the definition in eq. 1.72 to an extension of £ that is
trace-preserving. In our discussion we will simply ignore this detail.

6 A measure of “non-Pauliness" for a quantum channel £ can also be quantified by the ratio between the
fidelity and the Diamond distance of &, i.e, (1 — F(J(£)))/||€ — id||¢ . This definition is motivated from the
fact that these metrics are alike for Pauli channels, while they strongly differ for coherent channels. However,
the one in eq. 1.74 is such that it is maximized for unitary noise and zero for Pauli channels.
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of these terms is bounded by their diagonal counterparts - x;; and x; ;. Hence, we define the
“non-Pauliness” of a quantum channel, denoted by W (&), simply as the relative strength of

the off-diagonal elements, as compared to the diagonal ones,

W(E) = Xl
7 il 11
i#j

(1.74)

Clearly, the non-Pauliness for a Pauli channel is 0; that for a coherent channel in eq. 1.9 can

be computed using its chi matrix shown in eq. 1.20, which gives W(Ez(6)) = 2.

1.2.10 Comparing metrics

So far, we have seen how noise is modelled in quantum information as CPTP maps and
different methods to measure the strength of noise. While the fidelity had many advantages
such as measurable using experimental methods, computable with a fewer parameters, and
so on; distance based metrics like the Diamond distance are ideal for fault tolerance proofs.
One is left to wonder if the value of some metric can be used to obtain bounds on the others,
in particular if one can measure the fidelity and relate its value accurately to the Diamond

norm. The answer, unfortunately, is no.

In (chapter 3 of) [132], it is shown that the trace norm of a quantum state, defined in eq.
1.43, can be expressed as the maximum fidelity, defined in eq. 1.54, over all quantum states,

ie,
||A|l; = max{Tr(A'B): B€ Cy, ||B|l. =1}, (1.75)

immediately implying that the trace distance metric in eq. 1.45 is a worst case measure.

The best known types of bounds on the Diamond distance in eq. 1.51 using the Infidelity
in eq. 1.59 are known as the Fuchs van-der-Graff inequalities, presented in [166] (see also

[165, 1), where
1-F(ITE) <|IE—=id||l¢ <A/1=F(T(E)). (1.76)

The above upper and lower bounds are not very informative: in the sense that for low noise
strengths, the Diamond distance can potentially differ from infidelity by several orders of
magnitude. For example, if the infidelity of a quantum channel is 10~*, then its Diamond
norm can be anywhere between 1072 to 10~%. On the one hand, the lower bound is saturated
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for Pauli channels in eqgs. 1.52 and 1.62, on the other, the upper bound is saturated for
coherent channels such as £7(6) in egs. 1.53 and 1.63. This motivated the authors of [165] to
formulate the unitarity metric, eq. 1.72, which improved the relation in eq. 1.76. Metrics other
than fidelity require the complete description of the underlying CPTP map, i.e, full process
tomography of 7 (£). Hence, it is hard to measure them accurately using experiments. But,
their values can be estimated using indirect means. In the case of the Diamond norm, an

upper bound on ||€ —id||, from [132], is worth mentioning:

1
1€ —idllo < [[T(&) = T ()|l < [I€ —id][o , (1.77)

where d is the dimension of the Hilbert space on which £ acts; here d = 2. Table 1.1 shows

the merits and demerits of all of the measures of noise strength discussed so far.
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1.3 Theory of quantum error correction

In this section, we will turn to the study of reliable storage of quantum information. As
mentioned in the introduction, quantum error correcting schemes have been invented
to ensure that quantum information can be protected for long times so that meaningful
operations can be realized. These schemes are most easily understood for Pauli error models.
In the next chapter, we will apply these schemes to non-Pauli channels.

This section is organized as follows. In sec. 1.3.1, we will review some general termi-
nologies for a widely studied type of quantum error correcting codes called stabilizer codes.
Our presentation of stabilizer codes is compact, for a detailed discourse on this topic, see
[19,73,161]. We will then present the quantum error correction protocol used to correct Pauli
errors, while introducing some terminology in parallel. These concepts will be useful when
we study quantum error correction for non-Pauli channels in sec. 2.3. Lastly, in sec. 1.4 we
will present a class of stabilizer codes called concatenated codes and analyze their properties,
which will be used to present our main results.

1.3.1 Quantum error correcting codes

Following the discussions in sec. 1.1, it is evident that quantum information is vulnerable to
noise processes due to the interactions with the environment. Peter Shor [165] and Andrew
Steane [169] proposed a way of protecting quantum information against decoherence. The
underlying philosophy of quantum error correction is to store quantum information in a
collective state of many quantum system in such a manner that the underlying information
is robust against noise processes affecting the individual quantum systems. More concretely,
to reliably store k logical qubits, we choose a 2% dimensional subspace of a n—qubit Hilbert
space denoted by Q, for some sufficiently large n. A linear transformation is applied to map
each k—qubit state |¢) an n—qubit state |¢), also called the encoded version of |i) or simply
the encoded state. The subspace Q is called a quantum error correcting code, parameterized
by [n, k| where n is the number of physical qubits and k is the number of logical qubits. A
unitary transformation that maps a k—qubit state |i) to its encoded version |¢) € O, is
called an encoder denoted by 4, where

8 [p) ®(0)2 ) = (i) . (1.78)

The encoder 4l is often expressed as a quantum circuit known as the encoding circuit. Figure

1.2 shows a schematic presentation of an encoder.



35

Figure 1.2 Schematic presentation of an encoder 4 for a quantum error correcting code, that
transforms a k—qubit state |¢) to its encoded version, the n—qubit state |¢). To
ensure that [ is reversible, n — k ancillary qubits initialed in the state |0) are input
along with |¢), however, for clarity we will not explicitly draw these ancillary qubits.

An example with k = 1 and n = 7 was presented by Steane in [170], where the quantum
error correcting code is popularly known as the Steane code [170], spanned by the two encoded
states |0) and |1) where

1
0) = — (|0000000) -+ [1010101) + |0110011) -+ [1100110)
V8 (1.79a)
+]0001111) + [1011010) 4 [0111100) + |1101001)) ,
1) = L (|1111111) + 0101010) + |1001100) + [0011001)

=)

8 (1.79b)
1110000) + [0100101) + [1000011) + [0010110)) .

An encoding circuit for the Steane code can be found in [171, ].

Since the size of the n—qubit Hilbert space grows exponentially, the need for a compact
representation of the encoded states grows rapidly. In [173] Gottesman provided a framework
wherein certain types of quantum error correcting codes can be represented efficiently, in
fact, in size that is linear in n. The key is that n—qubit states can be expressed as eigenstates
of Pauli matrices and in many cases, an k—qubit subspace can be expressed as a common
eigenspace of a commuting set of n — k independent Pauli operators. Therefore, the set
of mutually commuting Pauli operators for which the encoded states are +1 eigenstates,
completely specifies the quantum error correcting code. A [1, k] quantum error correcting
code Q specified this way,

Q={|y):Sip)=I9), 1<i<n—Kk}, (1.80

where S; are n—qubit Pauli operators, is called a Stabilizer code. The Pauli operators Sy, ..., S,

which are tensor products of single Pauli matrices I, X, Y, Z, are called Stabilizer generators



36

and the group generated by them is called the Stabilizer group. Stabilizer codes are by far
the most studied in quantum error correction [174, 73, 19, ]. The Steane code is a classic

example of a stabilizer code whose stabilizer generators are given by

SI=X0X0X0X®I®I®I, (1.81a)
$H5=XRXRIQIX®X®I, (1.81b)
S3=XRIXQIX®I®X, (1.81¢)
S4=ZRZ9ZRZRIQIDI, (1.81d)
$5=20ZRIQIRZIQZRI, (1.81e)
Se=2RI0ZQIRZQIQZ. (1.81f)

Note that the choice of stabilizer generators is not unique — any S; can be replaced with
a product S; - S;. However, if there is a choice where none of the generators in its tensor
product form contain both Z and X matrices, the resulting stabilizer code is called a CSS
code [173], named after its inventors: Calderbank, Shor and Steane. The Steane code is an
example of a CSS code with three X —type stabilizer generators and three Z—type stabilizer
generators.

Using eq. 1.80, one can construct a projector for the code space, denoted by Iy, given by

o= ) )yl (1.82)
lp)eQ
LI+S;
= T (1.83)

i=1

Its action on any vector simply projects that vector on to the code space.

1.3.2  Structure of the stabilizer group

Let |ip) be some encoded state in Q whose stabilizer group is S. By definition, the action of all
stabilizers on |p) is trivial. From basic linear algebra, we know that the action of any operator
that commutes with all the stabilizer generators, on |i), must not alter its eigenvalue, i.e,
S;- N|¢) = N|¢) for every N such that [S;, N] = 0. In other words, N must take an element
of Q to another element of Q (not necessarily the same one). Mathematically, we denote
the set of all the Pauli operators which commute with every stabilizer generator, as the
normalizer” of the stabilizer subgroup in the Pauli group, denoted by N (S). Clearly, S C N (S)

“Strictly speaking, it must be called the Centralizer of the stabilizer subgroup in the Pauli group, denoted by
Z(S8). Due to the commutation anti commutation duality of Pauli errors, it turns out that Z(S) = N (S).
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because S is Abelian. Since S has n — k independent generators, the total number of Pauli
operators in /' (S) is simply 4" / 2"~k = 2"k Furthermore, N'(S) is also a subgroup of the
Pauli group which has n + k independent generators. One can derive a choice of generators
for N'(S) such that, of the n + k generators, n — k of them are stabilizer generators. We will
revisit this property shortly.

Hence a normalizer certainly leaves Q globally invariant, i.e, it simply performs a per-
mutation of encoded states (including the identity permutation), up to a global phase that is
in {1, £i}. An operator that performs a nontrivial permutation (i.e, a permutation that is
not equivalent to the identity permutation) of the encoded states can be multiplied with any
stabilizer, yet yielding the same nontrivial permutation. Therefore, we can identify a subset
of errors in NV (S), denoted by L, each of which perform distinct permutations of elements
in Q, so that every normalizer is simply a product of an error in £ with a stabilizer. Since
the elements of £ perform logical operations on the encoded states, they are called logical

errors. Mathematically, we can express
L~=N(S)/S. (1.84)

Since AV (S) has 2"** operators and S has 2"~ stabilizers, the quotient relation in (Eq. 1.84)

implies that £ has 2%

operators. Furthermore, £ can be described using 2 k generators, they
are called logical generators, denoted by {X;, Z;}*_,. For instance the logical generators for

the Steane code in eq. 1.79 are

Xi=X0XII®I®I® X, (1.85a)
Z1=1072R0ZQ1I7Z1x1. (1.85b)

Due to the commutation anti-commutation duality of the Pauli group, the logical generators

can be arranged into k mutually anti-commuting pairs:
{Xi,Zi}=0,1<i<k,. (1.86)

However, logical operations on different qubits commute, i.e, [X;, Z;|] = 0 whenever i # j,
as we would naturally expect that physical operations on distinct qubits must necessarily

commute. The generators of N'(S) are simply {S1,..., Sy, Z1, X1, ..., Zk, Xi }.

Besides the operators in N (S), there are those which do not commute with some
stabilizer generator. In other words, the action of such an operator on |), necessarily yields
a state that is not in Q. These errors are called pure errors [175, 161], denoted by the set 7.
Again, due to the commutation anti-commutation duality of Pauli errors, for every pure
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error T, there is at least one stabilizer generator S; such that S; - T|ip) = —|i). Furthermore,
action of the product of a pure error with any normalizer, on |), will still yield a state that is
not a valid encoded state. In other words, we can express every Pauli operator as a product
of a pure error with a normalizer. It can be shown that 7 consists of (mutually commuting)
Pauli operators, each of which anti-commute with a unique set of stabilizer generators. The
number of elements in 7 is 4" / 2"k = 2"k and we will denote the (1 — k) generators of

T by{Th,..., T, }. Furthermore, one can choose these generators such that

{8, T;} =0, [5,Tj] =0 (1.87)
for all i # j. For instance

T =IRIRIRZRIXIxI, (1.88a)
T=IIRIRIRI®ZXI, (1.88b)
G=I2Q0ZQIQZRZIZ, (1.88¢)
=XXX®RIXKIXxIXI, (1.88d)
H=XX®I®I®X®IXI, (1.88e)
Te=XRIXRIRXKIII. (1.88f)

are the pure error generators for the Steane code. It can be verified that they indeed take the
encoded states of the Steane code in eq. 1.79 to states outside, i.e., orthogonal to, the code.

Hence, we have seen that with reference to a stabilizer code, one can partition the
generators of the Pauli group into three disjoint sets: the stablhzer generators {S;} 1 ,
logical generators {X;, Z;}%_; and pure error generators {T;}/_F. Furthermore, these sets
satisfy the following commutation/anti-commutation relatlons.

[Si,5]]=0,1<ij<n—k (1.89a)
S,Z]=0,1<i<n—k,1<j<k (1.89b)
S, Xi]=0,1<i<n—k,1<j<k (1.89¢)
{X;,Z;} =0,1<i<k (1.89d)
(Xi,Zi]=0,1<i,j<k,i#]j (1.8%)
[T;, T;]=0,1<ij<n—k (1.89f)
{5, T} =0,1<i<n—k, (1.89g)
[T,Z]=0,1<i<n—-k,1<j<k (1.89h)
[T, X;]=0,1<i<n-—k,1<j<k (1.89i)
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We shall sometimes refer to the above set of relations as canonical commutation relations.
Conversely, any Pauli operator E can be written as a product of three operators: a stabilizer
S, alogical operator L and a pure error T, i.e.,

E=Tg-Lg-Sg,Se€S,Le L, TecT. (1.90)

1.3.3  Quantum error correction protocol

The theory of quantum error correction with stabilizer codes is best understood in Pauli error
model in eq. 1.10. Our account of the quantum error correction protocol in this subsection is
compact. For an in-depth discussion, refer to [173, 73, 161]. In what follows we will describe
the quantum error correction protocol for a simple scenario. Let |¢) be some k—qubit
state that carries quantum information. To account for the presence of noise, we encode
|) using a [n, k| stabilizer code Q whose stabilizer group is S, and obtain the resulting
n—qubit encoded state |i). The noise process affecting the state can be described as an
application® of an unknown Pauli error E, with some probability p(E). For eg., in the case
of an i.i.d depolarizing channel, we have p(E) = (p/3) Elg - p)"~El. The discussion of
this subsection however does not require an i.i.d Pauli channel. The goal of an optimal
quantum error correction scheme is to undo the effect of applying E on p. This scheme can

be understood in two steps, which we will describe below.

In our discussions, we use a compact notation to express Pauli errors, that omits the
“®” symbol. Instead of providing the tensor product form of a Pauli error, we will simply
denote the non-identity Pauli matrices in the tensor product, each Pauli matrix with a
subscript that indicates the qubit on which it is applied. For instance, the single qubit
error X®I®I®I®I®I® I is succinctly represented as X; and the two-qubit error
IRZRIRIRI®I® X as Z, X7, and so on.

1.3.3.1 Syndrome extraction

The first step in the quantum error correction protocol involves error detection. We are
interested in knowing if the encoded state has undergone any changes after the application
of the error E. Of course we cannot directly measure the n—qubit state E|¢p) since the state

would collapse on measurement. What we can measure are operators for which |¢) is an

8This simplified picture cannot be used for generic quantum noise processes since they need not assume a
stochastic description. Furthermore, they cannot be described by probabilistic application of unitary evolutions,
unlike in the Pauli case. Hence, we need to analyze the quantum error correction protocol in the density matrix
formalism. We introduce these concepts in the next chapter.
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eigenstate, these are the stabilizer generators Sy, ..., S,_. If measuring any of the stabilizer
generators S; yields the outcome —1 then we can conclude the state E|¢) is not an encoded
state. Furthermore, it turns out that E|¢) is orthogonal to all the encoded states. For example,
let us consider a single qubit error E = X; on the encoded state |) of a Steane code. It can
be verified that measuring each of the stabilizer generators Sy, S and S3 in eq. 1.81 on E|¢),
yields the outcome —1.

The outcomes of measuring all the stabilizer generators Sy, ..., S, is collectively rep-
resented by a binary sequence of (1 — k) bits, called the error syndrome denoted by s. Hence,
the i—th bit of 5 is 1 if the outcome of measuring S; on E|¢) is —1 and 0 otherwise’. Since s is
independent of the encoded state |), we sometimes refer to the syndrome as a function of
the error, s(E). Furthermore, since E is a Pauli operator, it either commutes or anti-commutes

with a stabilizer generator, implying a simple form for the error syndrome s(E):

‘ _ 0 if [E, Si] =0
si(E) = . (1.91)
1if {E, Si} =0

For example, the single qubit E = X; on an encoded state of Steane code has the error
syndrome s(E) = 000111.

Note that all errors in A/ (S) have a trivial syndrome, which means that they cannot be
detected. While these are logical operations that might be carried out as part of a quantum
algorithm, they can also be applied by the environment in which case they become unde-
tectable errors in a system. The smallest number of qubits affected by an uncorrectable error
is called the distance of the code, denoted by d. In other words, the distance of a code is the
least weight'” of an error in A/(S)\S. For eg. the distance of the Steane code in eq. 1.79 is 3
where one of the weight—3 undetectable errors are shown in eq. 1.85.

Although the error syndrome can be used to infer non-trivial properties of the error E,
it does not provide all the necessary information to design an optimal recovery operation.
For instance, can be multiple errors with the same error syndrome. For example, the single
qubit error X; and the two qubit error X, X7 on encoded state of the Steane code, both
have the error syndrome s = 000111. To understand this, let recall eq. 1.90, where any Pauli
operator E is expressed as E = Tg - Lg - Sg where Sg € S is an element of the stabilizer group
associated with the code to which p belongs, Lg € L is a logical operator and T € T isa

9Measurement of stabilizer generators is realized by coupling the qubits of the code to an ancillary system
and measuring the ancillary system. This is why our schematic diagram of the syndrome extraction step in fig.
2.1 contains ancillary qubits initialized to |0).
0The weight of a Pauli operator P is simply the number of non-identity Pauli matrices, when P is expressed
in a tensor product form.
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pure error. Since stabilizers and logical operators commute with every stabilizer generator,

we find that the error syndrome is simply a function of Tg:

0if [TE,Si] =0
1 if {TE,S,'} =0

Recall that the pure error Tr can be expressed as a product of the pure error generators
{1, Ty, ..., T,_x}. Furthermore, recall from the canonical commutation relations in egs.
1.89f — egs. 1.89i that T; uniquely anti-commutes with S; whereas it commutes with all
other stabilizer and logical generators. Hence, Tf is simply a product of those pure error
generators that anti commute with the same stabilizer generators as the error E. Since the
syndrome provides all of this information, it completely determines Tr. For this reason, we

will sometimes refer to Tr as Ts( E), given by [175,47]

n—k
Te = Typ = [ | T (1.92)

i=1
Recall the example of a single qubit error E = X; on the encoded state of the Steane code,
whose error syndrome is s(E) = 000111. The pure error corresponding to the syndrome is

Ty is the product of the pure error generators Ty, T5s and T¢ in eq. 1.88, so Ts) = Xa-

1.3.3.2 Decoding

To completely reconstruct the error E, we need to determine the logical component Lg and
the stabilizer component Sg. However, note that if two errors E and E’ only differ in their
stabilizer components, i.e., E E' € &, then E and E’ act identically on the individual
encoded states. For example, the errors E = X and E' = X, X3 X4 have the same effect on
any encoded state of the Steane code. Furthermore, we can apply E " to correct the erroneous
state E[¢). On the other hand if E and E’ differ in their logical components: Lg # Lg/, then
they have distinct action on the encoded states. In this case, applying E’ on the erroneous

state E|y), leaves a residual logical error Lg Lg on |).

All the errors consistent with a fixed error syndrome s can be partitioned into 2% equiv-
alence classes, one for each logical error in £. These are the cosets!! of the stabilizer group
with respect to the logical operators: Ts - L-S = {T;-L-S : S € S}. For example, the
errors consistent with s = 000111 for the Steane code, can be classified into four cosets:

HThe right and left cosets are identical since the logical operators commute with the stabilizers.
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T.-1-S,T,-X-S, T,-Y-Sand T, - Z - S, some of whose elements are listed below.

To-1-8 = {X1, XoX3Xy, XoX5Xe, V1227374, ...}

-8 = {Xo Xy, X1 X5X6X7, X1X2X3X5, Z1Y2Z374, ...}

T, Y-S = {X122Y3X4Z5X7, X1Z2Z3YsXe X7, X1 Y2 Y3Ys, Z1 X2 Z475X7, ...}
T,-Z-8 = {YaY3X4Zs, Y2Z5Y5Xe, ZoYsYsXy, 12475, ...},

o3
>

where we have ignored the phase factors such as £1, =+i.

Stochastically speaking, errors within a coset correspond to identical events whereas
errors in distinct cosets are distinct events. The probability of a coset is denoted by Pr(L | s)
which is the sum of probabilities of all the errors in that coset,

Pr(L|s)= ) Pr(Ts-L-S). (1.93)
ses
Furthermore, to undo the effect of an error E we can apply any error E' which belongs
to the same equivalence class as E. The task of identifying the appropriate equivalence
class L € L given the error syndrome s is commonly referred to as decoding. A maximum
likelihood decoder (MLD) takes as input the error syndrome s and outputs a logical operator
L, whose coset T - L, - S has the highest probability. In other words,

Pr(L = Pr(L|s),
r(L« | s) max r(L|s)

L, =argmax; <, Pr(L|s). (1.94)

Succinctly, we denote L, = MLD(E). The abovementioned decoding strategy is argued to
4 4 ]'

be optimal in [47] and is sometimes referred to as a coset decoder'?, cf. [

1.3.3.3 Analysis of the quantum error correction protocol

The maximum likelihood decoding is said to fail whenever its output, L, in eq. 1.94, is distinct
from the logical component of the actual error: L, # Lg. This results in a residual logical
error on the encoded state |¢). The probability of decoding failure is therefore 1 — Pr(L, | s),
which is the probability of an error that lies outside the coset T; - L, - S. The maximum

likelihood decoder minimizes the probability of a residual logical error.

120n the other hand, there are minimum weight decoding algorithms wherein the maximization in eq. 1.94 for
the probability of any error consistent with the syndrome s, so the maximization is performed over all the
normalizers. The results of this thesis are not actually associated to any one type of decoding method.
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It is easy to verify that single qubit errors for the Steane code have distinct error syn-
dromes. In the case where the noise is an i.i.d Depolarizing channel, it can be seen that the
maximum likelihood decoder corrects all single qubit errors. However, the case of two-qubit
errors is different. While the maximum likelihood decoder is successful in correcting some
of the two-qubit errors, it fails for the others. For instance, consider the error E = X; X5 on
the encoded state |i) of the Steane code which results in the error syndrome s(E) = 000001.
The pure error corresponding to this error syndrome is T; = X; X3 X5. Amongst the four
cosets Ty - I-S, T, - X-S, Ts- Y-S, T, - Z - S, for low depolarizing rate p, the maximum
likelihood decoder outputs'® T. This differs from the logical component of the error: L = X,
thereby resulting in a decoding failure. As a result, the quantum error correction protocol

applies Ts - I to correct the error E, leaving behind a residual logical error:

where S; is the stabilizer generator in eq. 1.81a.

More generally, for a distance d code under the i.i.d Depolarizing channel, the maximum
likelihood decoder can correct all errors of weight up to t = | (d — 1) /2], see [73] for more

1), we know

details. Since the probability of an error of weight greater than t is O(p
that the error in the encoded state i) is O(p'™). What we are interested in is a complete
characterization of the error on the encoded state. To compute this, we introduce some tools
in the next chapter. For now, it must be noted that the error on the encoded state can be
mitigated by choosing a code of a higher distance. In the next subsection, we introduce a

method of defining a family of quantum error correcting codes of increasing distances.

Note that our outline of the quantum error correction protocol for Pauli errors —syndrome
extraction in eq. 1.92 and maximum likelihood decoding in 1.94 — is independent of |) (it is
only mentioned to remind us of the context for quantum error correction). What we see here
is the essence of the Gottesman Knill theorem. It states that the evolution of Pauli operators
through Clifford circuits can be tracked efficiently despite the exponentially growing size of
the Hilbert space containing the encoded n—qubit states such as |¢). We will see that this

luxury is not long lived, especially when we move away from the Pauli paradigm.

3For low depolarizing rate p, we can approximate the probability of the coset by the probability of the
minimum weight error in that coset. Note that the lowest weight error (which is Ts - I - S where S; is the

stabilizer generator in eq. 1.81a) belongs to the coset T - I - S.
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1.4 Concatenated codes

The goal of quantum error correcting codes is to mitigate the effect of physical noise processes
on the logical information. However, the message in sec. 1.3.3.3 appears to be that the gain
from quantum error correcting codes is severely limited by the distance of the code. An
efficient quantum error correction protocol should be able to provide different levels of
suppression of the error on logical information, as required by the specific application.
It is therefore useful to have a method by which quantum error correcting codes can be
generalized to codes with increasing distances. There is a classical counterpart to this issue,
which was addressed by a method of recursive encoding, called code-concatenation proposed
by Fourney in [178]. When applied to quantum codes [179, 180, 151], the simple idea is to
use the logical qubits of a quantum error correcting code Q; as the physical qubits of another
error correcting code Q. The resulting code is called a concatenated code with two levels. In

this subsection, we will discuss properties of concatenated quantum error correcting codes.

In general, a concatenated code with £ levels is realized by recursively encoding the
physical qubits of a code Q, using the logical qubits of a code Q;_1,for1 < ¢ < £.1f Qyisa
[[ne, k¢, dg]] quantum code, the resulting concatenated code will be a [[n, k, d]] where

£ £ £
n:Hng,k:Hkg and d:Hdg. (195)
(=1 (=1 (=1

The encoding circuit for the concatenated code, when k;, = 1 for all /, is shown in fig. 1.3.
We will refer to the image of every encoding circuit as a code block and denote by Qy ;, the j—th
code block at level . Furthermore, by Q,, we will denote the concatenated code with ¢ levels.
Hence, for the highestlevel ¢ = £, the corresponding code Q¢ describes the full concatenated
code, while Qg ; are simply the physical qubits. There are n¢_y X ng_y_1 X ...ng_1 code
blocks at level £. With a loss of generality, we will make two assumptions, valid for the rest
of this thesis. First, k; = 1 for all £. Second, to save notation, we will confine our discussions
to the case where the codes blocks Q ; are all identical.

1.4.1 Stabilizer formalism for concatenated codes

Let us illustrate the stabilizer formalism for concatenated codes with a simple example, where
Q1 is the Steane code and it is concatenated with itself, so £ = 2. Furthermore, let us denote
the generators of the stabilizer, logical and pure error groups by {S; }/=F, {X;, Z; Y5 {T:} 1=,
respectively, which satisfy the canonical commutation relations discussed in egs. 1.89a-1.89f.
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Figure 1.3 Schematic encoding circuit for a concatenated code. Each grey box represents an
encoder for some quantum error correcting code, referred to as a code block. The
ancillary qubits initialled to |0) are hidden as in fig. 1.2 while the solid lines denote
encoded qubits. Each vertical layer, labelled by ¢ is identified with a concatenation
level and the encoding circuits in that level are those for the error correcting code Q.
The corresponding code blocks at level £ are labelled as Q, ;. Level 0 corresponds
to the physical qubits while level £, to the encoded logical qubit. The logical qubits
of the code blocks at level £ — 1 are physical qubits for the code blocks at level /.
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Following the prescription of concatenation, we can describe the encoded states of O, to
have a similar structure as the encoded states of Q; (see eq. 1.79 for the explicit form) but
now, replacing |0) and |1) with |0) and |1) given exactly by eq. 1.79. The resultis a [[49, 1,9]]
quantum code, which can also be derived using the formula for n, k, d of a concatenated
code, mentioned in eq. 1.95. The encoding circuit for Q, is a special case of that mentioned
in fig. 1.3 where there are 7 code blocks Q1 at level £ = 1, each of which contain a logical

qubit encoded in the Steane code.

Let us first derive the stabilizer generators of Q,. Clearly, a Pauli operator whose action
on any code block is S;, preserves every encoded state in Q,. There are 7 x 6 independent
Pauli operators of this sort — each described by the action of S; on Q1 and I on all other
code blocks; so, the elements in

{$;21%, I®S;®...0L ..., 19°® 5% (1.96)

are part of the Stabilizer generators for Q,. Additionally, the 6 operators derived from
replacing the physical Pauli matrices in S; (for 1 < i < 6) by the logical operators of the
Steane code, explicitly stated in eq. 1.85, also preserve the encoded states. For example, the
following 49 —qubit operator is a stabilizer generator for Q5.

X XX@XQI®IxI (1.97)
— X®2®I®4®X®3®I®4®X®3®I®4®X®3®I®4®X®I®21

Note that the above stabilizer generator is obtained by replacing the X Pauli matrices in S;
defined in eq. 1.81a with its corresponding logical version X in eq. 1.85. In total there are
6 + 7 x 6 = 48 stabilizer generators for Q.

Just like the Steane code, there are only two logical generators for Q. These have the
same structure as the logical operators of the Steane code where the physical Pauli matrices

are replaced by their logical versions. In other words, the logical generators for O, are
XXQIQIQII®X =X2?2QI%4 X®3I® Xl X®?2xI1%4 g X,

(1.98)
IRZRZRAIRZRIRTI=1°3QZ%°2IRZQI®*RZ%’2QIQ ZR

1®10®Z®2®1®Z®I®16 (1.99)

For the lack of better notation, we simply remark that while the operator in eq. 1.98 performs
the Pauli— X operation on the encoded states of Q,, the operator in eq. 1.99 performs the
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Pauli—Z operation.

The pure error generators for 9, follow an identical structure to that of the Stabilizer

generators, which contain the elements of
(T;@I%, IT®...00L ..., 1®°®T1% (1.100)

as well as those formed by replacing each of the physical Pauli matrices in T; (for 1 <i < 6)
by logical operators of the Steane code. The number of possible syndromes (see eq. 1.91) for
this concatenated code is 2%.

Generalizing to £ levels, we can summarize the structure of stabilizers, logicals and
pure errors as follows. A set of stabilizer generators and pure errors is associated to every
code block Q;; where the operators have the same action as S; and T; respectively, when
restricted to that code block. Furthermore, a set of stabilizer generators and pure errors
for Qy ; can be derived by replacing the physical operators in S; and T; respectively, by the
logical operators of Q,_;. Finally, the logical operators of Q¢ have the same structure as
X, Z; with the physical operators replaced by the logical operators for Q¢ _1. Refer to [182]
for a detailed discussion.

1.5 A note on fault tolerance

A complete study of fault-tolerant quantum computation must account not only for memory
errors on the qubits but also errors that arise from faulty components in a quantum circuit.
The circuit representing the quantum error correction process itself is no exception. The
various stages of quantum error correction, such as syndrome measurement and application
of a logical recovery operation are composed of single-qubit and two-qubit gates. A faulty
gate is often modelled by an ideal gate operation followed by a physical channel on the
respective qubits [39]. Indeed, a complete noise model would not only need to specified the
single qubit CPTP map &£ describing the noise suffered by an idle qubit, but would further
specify a noise model of each unitary gate, measurement process, and state preparation.
However, to simplify our task, we have assumed only memory errors, i.e., the gates used
to error-correct are taken to be noiseless. While this is not a realistic assumption, it very
significantly reduces the number of parameters of the noise model. Note that the spirit of
our study is to understand the intricacies in characterizing the noise process. Thus, we can
anticipate that characterizing a complete noise model will be much more challenging than
in the simplified model we adopt here, so our conclusions remain perfectly valid despite

this simplification.



48

1.6 Summary

We studied representations of quantum channels £ and measures of noise strength of £.

1. The Choi-Jamiotkowski isomorphism between quantum channels and quantum states.

& is mapped to a state called the Choi matrix of £: J (€ Z Z E(D) () @ i) (jl.
z 0j=

2. Two popular measures to quantify the strength of noise in a quantum channel £ are
(a) Diamond distance: ||€ —id||¢ = sup||(€ ®id)(p) — pl|1, ||Al]1 = Tr(VAtA).

P
This is the maximum trace distance || - ||; between the input and the output of £.

(b) Entanglement infidelity: 1 — F, (£, id) =1— = Z Z ii| J (£)|jj). This is the
1 0j=0
average infidelity between the input and the output states of £.

We reviewed the theory of quantum error correction using stabilizer codes for Pauli errors.
1. A [[n, k]] stabilizer code is the common eigenspace of 1 — k Pauli operators {S;}7—

(a) The group generated by {S;}"—F is called the Stabilizer group, denoted by S.
(b) Operators that commute with {S,-}i;1 but are in S are called logical operators L.
(c) Operators {T;}"f where {T;, S;} = 0 generate a group called Pure errors T .

2. Any Pauli operator E can be expressed as: E = Tg - Lg-Sg; Tp € T,Lg € L,Sg € S.
3. Quantum error correction protocol applied on an erroneous state E|¢) has two steps.

(a) Syndrome extraction: {S;}7— are measured on E|¢) and the outcomes are
denoted by a binary vector s( ) called the error syndrome. For a Pauli error E,
si(E) = 1if {E, S;} = 0 and 0 otherwise. T is completely determined by s.

(b) Decoding: Errors with the same syndrome s are classified into cosets of S with
respect to the logical operators. A maximum likelihood decoder outputs the logical

operator L, whose coset probability Pr(L|s) = ) _ Pr(Tg L, S) is maximum.
ses

4. Large codes can be built from small codes by concatenation. An encoded state of a
level —¢ concatenated code can be identified with an encoded state of some quantum
error correcting code where the physical states are replaced by the encoded states of a
level— (¢ — 1) concatenated code. The physical qubits of the code correspond to ¢ = 0.




Chapter 2

Simulation tools for quantum error correction

In the previous chapter, we introduced a quantum error correction protocol using stabilizer
codes, in the case of Pauli errors. Furthermore, we also saw one way of constructing larger
distance codes from small distance codes, using code concatenation. However, we saw
examples of different noise processes in quantum information that cannot be described by

the Pauli error model.

The goal of this chapter is to present a numerical platform that we have developed to
simulate quantum error correction protocols for concatenated codes under generic quantum
noise processes. The presentation will proceed in parallel — applying quantum error correc-
tion protocols discussed for Pauli error models to the case of general quantum channels and
explaining how it can be implemented efficiently in a numerical simulation. In particular,
the structure of this chapter is as follows. In sec. 2.1 we introduce an important numerical
tool known as the effective logical channel that helps us characterize the effect of applying
the quantum error correction protocol with an error model. Using this tool, we will show
how concatenated codes can be decoded efficiently in the presence of Pauli errors, in sec.
2.2. Then in sec. 2.3 we discuss the implications of applying the standard quantum error
correction protocol discussed in sec. 1.3.3, to general quantum channels. Finally in sec. 2.4

we discuss numerical techniques to approximate the effective logical channel.

49



50

2.1 Abstract analysis of a quantum error correction protocol

Recall that in sec. 1.3.3.3 we discussed the net effect of a quantum error correction protocol
on the logical qubits of a code, whose physical qubits experience a simple i.i.d Depolarizing
channel. While the error on the physical qubits is p, a quantum error correction protocol
mitigates the effect of noise to O(p'™) where t = | (d — 1) /2 |. Although that showcases
the advantage of quantum error correction for Pauli channels, we would like to accurately
characterize the effect of the noise and quantum error correction protocol on generic quantum
noise processes. In this section, we introduce a numerical tool that allows us to express
the net effect of a general quantum noise process followed by a quantum error correction

protocol as a quantum channel that acts directly on the logical qubit.

Recall that quantum noise processes can be non-unitary, i.e, the erroneous state need
not be pure. Hence, it is convenient to keep our discussions in the density matrix language.
The scenario for quantum error correction is similar to the case with pure-states. The state
of a k dimensional quantum system p is encoded in a [n, k] stabilizer code, resulting in p.

The encoding operation is achieved by the encoding circuit 4l shown in eq. 1.2, where
p=u(p yo><0\”*k) st 2.1)

Under an i.i.d! noise process, each of the n qubits of p are independently affected by the
CPTP map &, resulting in the state £%"(p). A quantum error correction protocol, identical
to the Pauli case, is now applied on the erroneous state £"(p), resulting in the final state ¢.
What we intend to characterize is the noisy process, say &, that takes the encoded state p
to the encoded state ¢: £(p) = ¢ and compare this to the physical channel £. However the
comparison cannot be done in a straightforward manner since £ is a k—qubit channel while
£ is an n—qubit channel. Hence, we include two additional operations in &: (i) an encoder
mentioned in eq. 2.1 and (ii) an unencoder " which takes the n—qubit encoded version p to

the k—qubit state p that was prior to encoding.

We can now view the compound operation — encoding, application of noise, quantum
error correction and unencoding — as one single quantum channel that acts directly on
the logical information, i.e, the k—qubit state p, resulting in ¢. It can be shown that the
compound operation is also a CPTP quantum channel and it is referred to as the effective
quantum channel in [151], denoted by & in fig. 2.1. The abstraction in the effective channel
helps us to compare directly its properties with those of the physical noise process &, see

also [37, 24, , , ]. We can then use the measures A/ developed in sec. 1.2 to compare

IThe ideas developed in this section can immediately be applied to non i.i.d noise processes as well.
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Figure 2.1 Schematic of the effective channel &7, that describes the noise process combined
into a quantum error correction scheme, is shown. This formalism was introduced
in [181] and it simplifies the comparison between two quantum error correction
schemes, including the case where one of the schemes is the unencoded qubit.

the error strength in the effective channel, which we refer to as the logical fault rate, to the
error strength in the physical channel. This comparison helps us gauge the performance of
the quantum error correcting scheme against the underlying noise process. In the rest of
this thesis, we will extensively use the concept of the effective channel. When it is necessary
to distinguish an effective logical channel from a physical noise process, we will resort to

using a subscript “0” for the physical noise process, i.e., &.

2.2 Decoding concatenated codes over Pauli channels

In what follows, we will discuss maximum likelihood decoding for concatenated codes
over Pauli channels. When the encoded state |i) undergoes an i.i.d Pauli channel, a Pauli

operator E is applied on the physical qubits, with probability dictated by eq. 1.10.

Recall that measuring the stabilizer generators of the concatenated code specifies an
error syndrome s(E), according to eq. 1.91. Due to the special structure of the code, shown

in fig. 1.3, s(E) can be broken down as

S(E) =S¢ _1S¢-2...81, (22)
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where s, is a binary sequence of length 2°~%(n — k) that contains the results of measuring
all the stabilizer generators on the 2°~* code blocks in level . In fact,

Sy = 8118¢2---Spoe—t (2.3)

where sy ; is the syndrome measured in the code block Q; ;. An obvious error correction
strategy is to independently design a Pauli recovery operation for Q, ; conditioned on s
by appropriately constructing a Pure error, using eq. 1.92 and a logical recovery using
maximum likelihood decoding, defined in 1.94. See [173] for details. Although each code
block is independently decoded using an optimal decoder, this strategy does not correspond
to a maximum likelihood decoder for the concatenated code and is therefore argued to be
suboptimal in [185].

We will now outline the optimal decoding strategy: maximum likelihood decoding for
concatenated codes, by reproducing relevant parts of the discussions in [185]. The general
idea can be described as follows. An optimal decoder utilizes the concatenated structure,
shown in fig. 1.3, to pass information from decoding the blocks at level £ — 1 code to the
decoder for the successive code block at level /. Deploying a maximum likelihood decoder
for Qy_1,; we can infer the probabilities of applying logical operations conditioned on the
syndrome s, _1 j, given by 1.93. These logical operations appear as physical errors on the
encoded states of Q, with a coarse-grained error model — described by the effective channels
after error correction on the Q1 ; blocks. This coarse-grained error model assigns to a Pauli
error P; on qubit j, a probability equal to that of the logical recovery P, 1 ; conditioned on
the syndrome s;_1 ;, which is computed by the maximum likelihood decoder, for Q; 1 ;. This
procedure can be repeated in an iterative fashion, starting from the physical noise model
specified for level ¢ = 0, until the probabilities of the logical operations on the encoded
qubit at level £ = £ are computed. Finally, the principle of maximum likelihood decoding
(see sec. 1.3.3) is applied to select a logical recovery whose probability is the maximum.

Now, we will discuss the precise formulation of the above described decoding strategy.
First, let us analyze the mathematical structure of the function that is to be computed by
the maximum likelihood decoder for some code block Q, ;: Pr(Ly;|s;;) where the syndrome
sy,i can be expressed as a collection of syndromes measured in code blocks Q,_1; as in egs.
2.2-2.3 and L, is some logical operation for Q;;. We find

Pr(Lyilsei) = ) Pr(LeilLe-1,50:) Pr(Le—1lse;) (24)
Ly

Pr(Le—1,5¢04)
= ) Pr(Lyi|Le—1,800) —5——~2
E ! ! Pr(Sg/,‘)
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Pr(S(,i|Lg,1,S(,1 e Sl) PI’(Lgfl,S/{,l e Sl)

=Y Pr(LeilLe—1,504)

Ly Pr(s,)
X Z Pr(Lg,i|Lg,1,Sg,i) Pr(Sg,i’Lg,l,Sg,1 e S1) Pr(Lg,1|Sg,1 cee Sl) ’ (25)
Les

where the constant of proportionality in eq. 2.5 can be fixed by normalizing the resulting
probability distribution over the logical operations {L;;}, cf. [185]. Examining the terms in
the above expression, we find the first term is identical to the definition of the maximum
likelihood decoder. So

Pr(Lei|Le-1,80i) = 6[L¢i = MLD(L¢—1,5¢,)] - (2.6)
Likewise, as the syndrome for Pauli errors is fixed by eq. 1.91, the second term is reduced to
Pr(seilLo—1,80-1-..51) = d[s¢; = M(Lg—1)] - (2.7)

The third term, Pr(Ly_1|sy—1 ...s1) can be simplified by assuming that the Pauli channel for
the code block is independent as discussed in sec. 1.1.1, i.e.,

n
Pr(Lg,1|Sg,1 e 51) = H Pr(Lg,1,]'|Sg,1 ce Sl) ’ (28)
j=1

where the product is over code blocks Q,_1,; whose logical qubits are encoded in Qy ;. See
tig. 1.3 for a schematic picture. Now, combining egs. 2.5-2.8, we find

n
Pr(Leilsei) = ) 0[Lei = MLD(Ly1,8¢,:)]0[s0; = M(Le-1)] T TPr(Le-njlse1--.51).
Lia j=1

(2.9)

The above expression states that the probability of a logical recovery operation, on a level ¢
code block Qy; (conditioned on a syndrome), can be factorized into a sum of products of
probabilities of logical recovery operations on the subsequent level £ — 1 code blocks Q1
whose qubits are encoded in Q, ;. Note that ¢ = 0 corresponds to the physical qubits, for
which the probability distribution of logical operations is simply given by the underlying
physical Pauli channel. Finally, the probabilities of logical operators for the concatenated
code with £ levels can be computed using an interactive procedure, following eq. 2.9. Recall
that the optimal decoding technique, MLD, simply selects the logical recovery operation
which has the highest probability. Algorithm 1 summarizes the recursive algorithm for
optimal decoding of concatenated codes for Pauli channels.
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Algorithm 1 Optimal decoding of concatenated codes over i.i.d Pauli channels
1: Function: MLDC
(i). Pauli channel {p;, px, py, pz}, see eq. 1.10.

2: Input: (ii). Syndrome, s decomposed as in egs. 2.2, 2.3.
(iii). Concatenation level /,for1 < /¢ < £

3: Output: {Pr(I;|s), Pr(X,|s), Pr(Y,|s), Pr(Z|s)}
4: if ¢ = 0 then return {p;, px, py, pz}-

5. fori € {1,2,...n} do

6:  {piLpix piy, piz} < MLDC({pr, px, py, pz},S¢-1,i, L — 1)
7. Compute {Pr(Py|s;) : P € {I,X,Y,Z}} using egs. 1.94 and 1.10.
8: return {Pr(I;|s,), Pr(Xy|s;), Pr(Y|s¢), Pr(Zs|sy)}.

This optimal decoding strategy can be visualized on a bipartite graph known as the factor
graph [156] whose structure is quite similar to that of the encoding circuit of the concatenated
code shown in fig. 1.3. The vertices of a factor graph can be partitioned into two sets V;
and V», denoted by circular and box nodes respectively in fig. 2.2. Each logical qubit in the
encoding circuit is identified to a vertex q,; € Vi, while each code block Qy; is identified to
avertex by; € V. An edge between g,_; 7 and b, ; exists whenever the qubit corresponding
to g1 is an input to the code block Q, ;. Likewise, an edge between b,; and q,; exists
whenever the logical qubit g, ; is the output of the code block Q, ;. Each vertex by; € V; is
also associated to the function 6[Ly; = MLD(Ly_1,54;)]0[s¢; = M(Ly—-1)], appearing in eq.
29.

The optimal decoding algorithm can now be described using a set of rules for passing
messages along the edges of the factor graph. A message passed from a vertex u to a vertex
v is denoted by m(u — v). We have

m(qe—1,i — by;i) = m(bp_1i — qo_1,7) (2.10)
m(bg; — q;) = 8[Lgi = MLD(Ly_1,50,)]8[s0; = M(Le—1)] ] m(qd — bei) . (211)
q'€B(by,;)

Note that each message is a vector of probabilities, each component representing the prob-
ability of a logical error on the corresponding code block. When ¢ = 0, the messages
m(qo, — by;) are initialized with the physical Pauli channel: (p;, px, py, pz), introduced in
eq. 1.10. The message received by q¢ is the probability distribution of the logical opera-
tions Pr(Lg|s) and the optimal decoding strategy is to select the logical operator L whose
probability is the maximum.



Figure 2.2 Factor graph for optimal decoding of a concatenated code with two levels. Edges

are drawn between a circle node that represents a qubit in the encoding circuit of fig.

1.3, to a box node that represents a code block, if the encoded qubit is either the input
or the output of the respective code block. Optimal decoding of concatenated codes
can be described as a sequence of message passing rules from the circle vertices
to the box vertices, along the direction of the arrows, i.e., from the bottom nodes
to the top. While the circle arrows communicate the physical channel (in the case
of Pauli errors, the probabilities pj, px, py, pz) experienced by the corresponding
qubit, the boxes perform quantum error correction on the input physical channels
and output the effective logical channel (in the case of Pauli errors, the probabilities
of the logical operators Pr(I|s), Pr(X|s), Pr(Y|s), Pr(Z|s).).
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2.3 Quantum error correction beyond the Pauli paradigm

So far we have seen how quantum error correction can help to protect quantum information
against Pauli errors. While Pauli error models are convenient to analyze, realistic noise
processes are often poorly approximated by the Pauli error model. However, not until
recently [37, 108, 24, 183, 184] have quantum error correction protocols been studied for
error models outside the Pauli paradigm. In this section, we introduce quantum error
correction protocols for generic quantum noise processes and discuss their applications
to concatenated codes. We intend to numerically simulate these protocols, so we show an
explicit method by which one can compute the effective logical channel described in sec. 2.1

for a quantum error correction protocol against a generic quantum noise process.

The quantum error correction protocol proceeds in two steps: (i) syndrome extraction
followed by (ii) decoding. In what follows we compute the intermediate quantum state at
each step, thereby arriving at an expression for the output of the quantum error correction

protocol in fig. 2.1, as a function of the inputs: p, £ and the code.

2.3.1 Syndrome extraction

Recall from sec. 1.3.3.1 that the error syndrome is the outcome of measuring the stabilizer
generators on £ (p)“". In other words, the syndrome outcome s indicates that the erroneous
state is a 41 eigenstate of all stabilizer generators S; where s; = 0 and a —1 eigenstate of the
others. Mathematically, such a state can be obtained by projecting £ (p)®" to the eigenspace
specified by s, which can be achieved by the projector I'l; given by

n—k _1\siQ.
I, = ]1 <]I+(21>S> . (2.12)

Furthermore, the probability of observing the syndrome Pr(s) is given by
Pr(s) = Tr(IL; £¥"(p)) . (2.13)

Note that for s = 0, the expression in eq. 2.12 is identical to the code projector. In the case of
Pauli errors, it turns out that Pr(s) = 1 when s is given by eq. 1.91 for the Pauli error E and
Pr(s) = 0 otherwise. In that sense, it is completely determined by the commutation relations
between the error E that occurred and the stabilizer generators of the underlying quantum
error correcting code. While E is probabilistically applied according to some Pauli channel,
there is no additional randomness in obtaining s(E). This is also a direct consequence of the
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commutation/anti-commutation duality for Pauli operators. This is not generically true for

non-Pauli errors.

To illustrate this, let us consider the example of a coherent rotation channel in eq. 1.9,
where each qubit undergoes a small rotation

e'% = cosOI +isinfZ . (2.14)

and a [[3, 1]] repetition code [173] whose stabilizer generators are

51 =XX®I, (2.15a)

S$H=IX®X (2.15b)
logical generators are

X=X®IxI, (2.16a)

Z=72QZQZ. (2.16b)
and the pure error generators are

' =ZI®I, (2.17a)

L=I®Ix7Z. (2.17b)

Starting in an arbitrary initial code state p and applying the error process will result in the
state

E20)P(0) = ¥ (—1) ™ (cos0)°1¥l(i sin6) ¥ (@7, 2%) p (8,2Y) . (218)

6
weZy

where Z3 is the set of all binary sequences with 3 bits and |w/| is the number of ones in the
sequence w. We have used eq. 2.14 to obtain the above expression. Unlike its Pauli channel
counterpart — the dephasing channel in eq. 1.2, the above erroneous state is a superposition
of states of all possible syndromes. Upon measuring the stabilizer generators in eq. 2.15, we

obtain the following syndromes with their respective probabilities.

B
—
—~
)
Il

00) = (cos6)® + (sin8)®, (2.19)
Pr(s = 01) = Pr(s = 10) = Pr(s = 11) (2.20)
= (cos 0)*(sinB)? + (cos 0)?(sin 0)*. (2.21)
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Thus, the syndrome value is not determined by the error (i.e, the value of ) — indicating that
repeating the measurement for a fixed error can potentially lead to different error syndromes.

Once a syndrome outcome s is obtained, the resulting state £°(p) can be expressed as

_ TI, E(p) 1T

s /=
&(p) Pr(s) (2.22)
where the syndrome probability Pr(s) is given by eq. 2.13. In the case of our toy example,

we can express the state after measuring each of the four possible syndromes as

£(p) = Prl(s) e T

where
To—oo=cos?0IRIR—isin’0ZRZ®Z, (2.23a)
To—o1 =icos’0sinf QIR Z—sin*0ZRZ31, (2.23b)
To—10=1icos’0sinfZR IR —sin0IRZRZ, (2.23c)
To—11 =icos?0sinfI®ZR]—sin0ZRIRZ. (2.23d)

Note that the probability of the syndromes Pr(s) are listed in egs. 2.19 and 2.21.

Note that we have simulated a syndrome measurement on € ®"(p) by projecting the
state on the subspace of n—qubit states, all of which have the measured syndrome s. The
projection itself is not a trace preserving map, the trace of the projected state is indeed the
probability of obtaining the syndrome s. However, the combined effect of projection using
IT; and normalizing with Pr(s) can be described using a CPTP map. We will refer to this
map as M, where

M (E7"(p)) = I1; £ (p) s . (2.24)

1
Pr(s)

2.3.1.1 Returning back to the code space

Recall that a syndrome that is different from s = 00.. .0 indicates that the respective state is
not in the code space. In eq. 1.92 we showed how to construct a Pauli operator that returns any
state with syndrome s, to the code space; it is the pure error T;. We follow this prescription
to map M (€ “"(p)) into the code space, resulting in the state T, M(€ ©"(p)) Ts. In our toy
example, the pure errors for the different syndromes are as follows.

Ts:()o = I® I X I (225a)
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To_o = I®RI®Z (2.25b)
TS:10 =/ZQRI®RI1 (225C)
Ton=102ZxI (2.25d)

When the pure error T; is applied on the output states M (€ “"(p)) states corresponding to
s = 0, listed in eqs. 2.23b—2.23d, we get

1

3 F i3
_ I®IRI- ZIRZRL
Pr(s = 00) (cos 0IRI® isin"0Z®Z® ) [y

(cos?IRI®I—isin’0Z®Z®Z), (2.26)

while for the error syndromes s = 01,s = 10 and s = 11, we the obtain

1
(s (icos?0sinfI®I®I— sin®0cos0 ZRZRZ) p

(—icos®0sinfI®I®I—sin0cosf ZRZRZ) . (227)

2.3.2 A note on decoding

Let us now turn to the problem of designing a logical recovery operation conditioned on the
syndrome outcome. Recall from sec. 1.3.3.2 that for Pauli error models the optimal choice of
the logical recovery operation is one whose equivalence class (defined in eq. 1.93) has the
highest probability. This choice is found by the maximum likelihood decoder, in eq. 1.94.
However, non-Pauli error models cannot be used to assign probabilities to Pauli operators.
Hence, the probability of an equivalence class of errors is ill-defined, thereby inhibiting a

straightforward application of the maximum likelihood decoder.

Ideally, we want to find a logical recovery operation L, that results in a quantum state as
close as possible to the input, p. The quantifier of closeness can be any metric for quantum
states A" some of which we discussed in sec. 1.2. After applying a logical operation L,

—~—

we will be left with the state L £5(p) L. Hence, the ideal logical recovery L, can be defined
such that it maximizes® N 5@%(p, L 5% L). There is an important distinction to be made
from the Pauli case. Unlike the probability distribution function Pr(-), a generic measure
such as N 5" can depend non-trivially on the input state p, which is essentially unknown
to a quantum error correction algorithm. How can we then prescribe a decoder for generic

noise models, in a manner that is independent of the input state ? Before answering this

ZRecall that all of the distance metrics and the fidelity measures are equal for the case of Pauli channels.
Subsequently, the above strategy reduces to maximum likelihood decoding defined in eq. 1.94 for Pauli channels.
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question, let us just assume that we have found a logical recovery operation L, in a manner
that is independent of the input state p, and analyze its effect on the efficacy of the quantum
error correcting scheme. We will revisit this problem in sec. 2.3.4 with the right optimization

framework for computing the logical recovery operation L.

2.3.3 Computing the effective channel

After applying the logical recovery L,, the state of the encoded system, denoted by ps, can
be expressed as

pS = L* TS MS @] g®n (p) TS L* . (2.28)

So far, we have described one cycle of quantum error correction, except for detailing
the optimal decoding strategy, which we will shortly. In order to model the error on the
logical information, initially encoded in the k—qubit state p, we can apply the unencoding
transformation that yields a final k—qubit (logical) state os. Hence, any residual logical errors
after the quantum error correction cycle will reflect as differences between the states p and o.
In general, one can apply the inverse of the encoding unitary circuit, on p; to resultin 7, i.e.,
o ® [0)(0]" % = 4 ps 4. However, an easy way to compute oy is by first expressing ps, of eq.
2.28, in the n—qubit encoded Pauli basis (like in the Pauli Liouville representation shown in

eq. 1.32) and then applying the unencoding transformation on the Pauli basis elements.
os =Y Tr(ps (TTo Py)) Py . (2.29)
a

Finally, we have obtained the output of the circuit in fig. 2.1, as a function of the input state
p, the physical channel £ and the error correcting code.

What we wanted to derive is an expression for an effective quantum channel &3, such
that & : p — 05 which is shown in fig. 2.1. In sec. 1.1.2.2, we discussed an important
isomorphism between channels and states — the Choi-Jamiotkowski isomorphism — that lets
us derive an expression for a CPTP map, in this case £, given the output of the application
of &7 to one half of a maximally entangled state. In other words, we need to construct the
Choi matrix of the effective logical channel 7 (£7), from which we can recover the CPTP map
corresponding to &7 using the explicit mapping in eq. 1.25. The state 7 (&7) is simply the
result of encoding $l, applying the noise process £°", followed by quantum error correction
L, o T; o M and finally unencoding U, on one half of a maximally entangled state; see fig.
2.3 for an illustration.
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s £ —— —

BE B a &l

g= = aatl B
(100) + |11))({00] + (11]) : . | J (&)
2 Effective channel £; : p+— ¢

................................................................

Figure 2.3 The Choi matrix of the effective logical channel £, which comprises of encoding 41,
syndrome measurement M followed by recovery operation Ts L, conditioned the
measured syndrome s; all applied to the first qubit of the maximally entangled state.
This idea combines the Choi-Jamiotkowski isomorphism for physical channels, in
fig. 1.1 with that of the effective logical channel, in fig. 2.1.

2.3.4 Revisiting the decoding problem for general quantum noise

To complete the description of obtaining an effective channel, we must now detail the optimal
decoding strategy — of computing the logical recovery operation L,. Recall that the goal of
quantum error correction is to mitigate the effect of noise on logical information. Ideally, we
want the effective channel £ to be as close as possible to the identity map id : p — p. This
requirement guides the decoding algorithm to choose an optimal logical recovery operation,
where the quantifier of closeness can be any metric \V, such as those discussed in sec. 1.2. In

other words, L, must minimize N'(£},id):

L, = argmin; o (N (&7, id)
= argmin, c (N (WU oLoTso Mg0E® o4, id) . (2.30)

In this thesis, we have used the entanglement fidelity measure F, defined in eq. 1.57 to

quantify the closeness of two quantum channels. Hence,

L, = argmin, c fFo(UT o Lo Ty 0 Ms0 £ o 4L, id)
Tr[|®){®|- LT 1L & (|®)(P|) IT; T]

oo o) , (2.31)

= argmax c o

where |®) is the result of encoding the first half of the maximally entangled bell state, defined
in eq. 1.22. The reason behind the choice of the fidelity measure is twofold. First, it can
be shown that the optimization in eq. 2.31 reduces to an average optimal recovery, over all
inputs. To see this, recall eq. 1.58 which says that the average fidelity of a quantum channel

is proportional to its entanglement fidelity. Therefore, L, found by eq. 2.31 minimizes the
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average fidelity of the final state of £§ with the input state, where the average is taken over
all input states p. In other words,

L, = argmaxg ¢ / dp [/\/’states(L 5L 5?(;7))] . 2.32)

The second reason for the choice of the fidelity measure is that it is linear function of the
channel £} and hence easy to compute, see sec. 1.2.4.

Table 2.1 shows the entanglement fidelity measure computed by the decoder formulated
in eq. 2.31, for the logical recovery operations in the toy example of the repetition code.
Note that for small values of the rotation angle 6, the optimal logical recovery is I, while for
0 ~ 71/2 the optimal logical recovery is Z.

L=1 L=Z

s =00 (cos6)® (sinf)®
s € {01,10,11} | (cos@)*(sinB)? | (cos@)?(sinB)*

Table 2.1 Table showing the entanglement fidelity function computed by the decoder:
Prr(L|s)Pr(s) defined using eq. 2.31, for the toy example of the repetition code
under a coherent rotation channel. Since the physical noise process causes rotations
about the Z axis, logical recoveries with X and Z need never be applied: the fidelity
associated with those recoveries are 0.

The recovered state in eq. 2.28, can be computed for the special case of our toy model.
When the logical recovery operation is I, this yields the state in eq. 2.26 for s = 00, up to a
normalization and the state in eq. 2.27 for s € {01, 10, 11}. Hence, unequal error syndromes
observed for a fixed error also lead to unequal final states. Furthermore, we see that the
final state is not exactly equal to the original state, nor is it orthogonal — in each case, a
residual effective channel &7 is applied. This is again in contrast to the Pauli case where
the combination of the error and the correction will either result in the logical identity or a
non-trivial logical gate. In a numerical simulation, using the knowledge of the actual Pauli
error that occurred, we can determine which one of the two cases occurred, however in
reality that is not possible since the actual error is unknown.

2.3.5 Summary of the quantum error correction protocol for general quantum noise

Let us summarize the technique for obtaining £. An input p, is prepared in k copies of the

maximally entangled state in eq. 1.22. The encoder, noise operation followed by the quantum
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error correction scheme and finally the unencoder are applied on the k—qubit subsystem of
p specified by selecting the first qubit from each of the k copies of the maximally entangled
state. Finally, using the Choi-Jamiotkowski isomorphism, we can construct an operator sum
representation of the effective logical channel &f. In app. B, we show efficient numerical
methods to evaluate £} using the Pauli Liouville representation of quantum channels, which

was discussed in sec. 1.1.2.3.

It must be noted that the decoding algorithm is not strictly optimal for generic physical
noise processes if we limit the recovery operations to any finite set, such as Pauli matrices.
However, one reason for doing restricting to Pauli logical recoveries is that all of them have a
tensor product structure, i.e., they can be realized using transversal gates [157, 155]: a feature
that is instrumental for fault tolerance. However, if certain non-Pauli logical operations are
known to have fault tolerant realizations for the underlying quantum error correcting code,
they can be considered as recoveries. See [24] for an instance where the optimization is done

over all Clifford logical operations®.

Note that the effective channel £} is a function of the syndrome. We can define the
average effective channel £ as

E1=) Pr(s) &, (2.33)

where Pr(s) is given by eq. 2.13. The above definition of the average channel is quite different
from the case of Pauli errors where the average is performed over all errors. As for numerical
simulations, the Pauli channels case is analogous to classical error correction. In the quantum
setting, it is generically not possible to sample the error because of two reasons: (i) the
noise model isn't always stochastic in nature and (ii) the error syndrome is not completely
determined by the error. Both of these examples were illustrated by considering a toy model

— coherent rotation about the Z—axis of all qubits in a 3—qubit repetition code.

2.3.6 Decoding concatenated codes under general quantum noise

In this section, our goal is to establish a quantum error correction protocol for concatenated
codes under generic i.i.d quantum noise. We have already described the a general procedure
to correct errors on a stabilizer codes. What we intend to describe in this section is how

31n this case, an additional complication can arise with reference to slow measurement timescales as compared
to gate times. Pauli corrections need not actually be applied, they can simply be tracked interpreting the data
qubits to evolve in a Pauli frame [189, ]; the case for Clifford corrections is not straightforward, however
certain tricks can be applied to make this possible, see [4] for details.
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the decoding algorithm can be simplified in the special case of concatenated codes. Our
discussion is a simple generalization of the decoding technique for Pauli error models that

we saw in sec. 2.2.

Let us recap the maximum likelihood strategy for Pauli channels. The logical recovery
operation L, is the one whose probability Pr(L|s), given some syndrome s, is the maxi-
mum. The tree-like structure of the encoding circuit and the i.i.d nature of the noise model
together implied that the quantity of interest: Pr(L | s) for a level—/ logical operation, can
be factorized into probabilities associated to the level—¢ logical operation. Hence, Pr(L |s)
can be computed by a recursive algorithm, which is summarized in fig. 1.3.

For the case of generic quantum channels, recall from sec. 2.3.4 that a decoder can be
formulated using any of the standard metrics N (-), that quantify the distance between two
channels — the identity map id and the effective logical channel corresponding to a logical
operation, see eq. 2.30. In the case of a logical operation on a level -/ concatenated code: Ly,
we denote the corresponding effective channel by £} . Hence the correction L, proposed
by the decoder, is that which maximizes the relevant distance metric between the identity
channel id and the effective logical channel £} e,

L, = argmax;, ¢ N (id, &],) . (2.34)

Let us focus on a code block at level -/ in the encoding circuit of the concatenated code:
Qi, shown in fig. 1.3. The effective logical channel corresponding to this code block is a
function of the n inputs to the code block that are the effective channels of the level—(¢ — 1)

code blocks: {522:11’] }i=1- In other words,

£, = E(EL T E o (Bl ] (2.35)
where each level — (¢ — 1) effective logical channel SZi:]] is in turn a function of the n level-
(¢ — 2) effective logical channels that are input to the code block Q,_; ;. The expression in
eq. 2.35 is a generalization of the chain rule applied on the probability of a logical operation
for Pauli channels. Similar to its Pauli counterpart, the above formula indicates that the
effective logical channel can be computed using a recursive algorithm, that can be succinctly
expressed using a factor graph. The factor graph has exactly the same structure as for the
Pauli case, in fig. 2.2. The factor graph serves a twofold purpose. First, it describes the
decoding algorithm in the case where messages passed between the nodes of the factor
graph are logical corrections, just as in the Pauli case. Second, calculating the effective logical
channel of the concatenated code can also be described as a message-passing algorithm
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wherein the messages are complete descriptions of the effective channel at each code block.

2.3.6.1 A note on decoding complexity

Recall that in our toy model with the three-qubit repetition code in eq. 2.15, the syndrome
probabilities (egs. 2.19, 2.21) and the resulting effective channels (for eg. eqgs. 2.26, 2.27)
could be computed analytically, but for general quantum error correcting codes and noise
processes this is not be possible. For most codes and under generic single-qubit noise models,
simulating the syndrome measurement and evaluating the resulting logical error £ can
only be done by simulating an n-qubit density matrix, with memory requirement 4", where
n is the number of physical qubits. The algorithm of [185], similar to the one presented
above, uses the special structure of concatenated codes to circumvent this exponential cost,
resulting in a complexity that scales exponentially in the size of a code block (114, in this case)
but polynomially in the number of concatenation levels. Hence, the overall complexity of

the algorithm, O(n‘"12™), is still polynomial in the number of physical qubits which is 1°.

In another case, the algorithm of [53] uses the tensor-network structure of the surface
code to achieve complexity O(Sﬁ). It is not clear at all whether these simulations can be
realized using a memory of size less than 4" when we include more realistic noise models
where gates and measurements are also noisy. Furthermore, exactly computing £; requires
that we must compute & for all syndromes; recall from sec. 1.3.1 that there are 2" ¥ of them
for a [[n, k]| code. While this might be feasible for small codes, such as the Steane code in eq.

1.81, its complexity is exponential in general.

2.4 Approximating the effective logical channel

So far, we have seen how an effective channel £; can be constructed for a given syndrome
s, physical noise model £ and an error correcting code. Furthermore, in order to obtain an
average effective channel, we must compute &} for all syndromes s of the concatenated code.
We already noted in sec. 1.4 that even for a level-2 concatenated Steane code, there are 248

syndromes — far too many for an exact computation of &,.

An alternate strategy is to obtain a sampling estimate of £,, denoted by &, by sampling
syndromes according to their distribution Pr(s,). Using the breakup of the syndrome vector
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according to the code blocks of the concatenated code, as presented in eq. 2.2, we can rewrite
the exact expression for &, for £ = 2 as

=) Pr(sysy) &7 (2.36)
5251
= Z Pr(sl) Z PI’(SQ ‘ 51> 5252 °1 (237)
S1 S

= Eﬁ Pr(s1,i) ) Pr(s2|s1) &7, (2.38)
51 i=1 52
wherein we have used the fact that error correction can be performed independently across
blocks in the same concatenation layer. Each of the N samples denoted by $,5; can be
obtained as follows. Note that $; contains 1 sequences, each labelled by $; ;. Now, each of
these is sampled independently according to the distribution Pr(s; ;; £). Then, quantum error
correction is simulated with physical channels {& 2, 81§ "} resulting in 2" ¥ syndromes
distributed according to Pr(sy; {Efl'i, ey Efl'” }). Now, sampling this distribution yields a
syndrome 3,. Once again, simulation quantum error correction, conditioned on 3,, we obtain

5;2 i The sampling estimate £, can now be expressed as
& :125“1 (2.39)
2 1\] §1 2 . .

This sampling technique can easily be generalized to higher concatenation levels. For instance,
&3 can be estimated using N samples of 535,81 where each sample is derived from repeating
the above sampling technique to obtain n syndromes 3, ; that in turn can be used to sample
one third level syndrome §3. Algorithm 2 summarizes the estimation of £,. Here, SAMP(. . .)
is a function that is used to sample a discrete distribution, see. [191] for details.

Algorithm 2 Estimating the logical failure rate of a concatenated code
1: Function: CHAN
(i). A single-qubit CPTP channel €.

2: Input: (ii). Concatenation level /.

(iif). Number of Monte Carlo samples, N.
3 forie {1,...N} do
4 forge {1,...n} do
5: €1 « CHAN(E, [ —1, N).
6 (&5, Pr(s)}Y « QEC(EL &2,..., €M > See sec. 2.3.
7 &+ SAMP({Ef}ngk, {Pr(s) g:lk) > Sample &F according to a distribution Pr(s).
8: Return: &’
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2.4.1 Average logical error

In section sec. 2.4, we described a numerical procedure to sample logical channels £ corre-
sponding to any quantum error correcting code. This provides a means of computing the
logical noise strength conditioned on a syndrome, using one of metrics in sec. 1.2,i.e.,, N'(&}).
Finally, to know the average logical noise strength, we must average over the syndromes
with respect to their distribution in eq. 2.13. This closely resembles the definition of the
average effective channel in eq. 2.33.

In this manner, two natural definition for the average logical error rate emerge. First, as
the noise strength of the average channel [192]

N(E) =N (Z Pr(s)é:g> : (2.40)
S
Second, as the average of the noise strength over the different syndromes [37]
N (&) =) Pr(s)N(&)) . (2.41)
S

The two definitions coincide in some scenarios: when (i) AV is measured by the infidelity in

eq. 1.59 or any linear metric and (ii) £; are Pauli channels, in which case all the metrics are

alike. In general, they can result in different results and N (&;) > N (&,) for most distance-
based measures like the Diamond distance in eq. 1.51, the trace distance in eq. 1.45, 2—norm
distance in eq. 1.68 and so on, as these metrics they are convex functions.

The quantity /() is motivated by the fact that the syndrome is not completely deter-
mined by the error, as we discussed in sec. 2.3.1. In other words, repeating the error correction
procedure several times, over the same physical noise process can yield several effective
channels £%,&%",. .. with probabilities Pr(s'), Pr(s”), ... and so on. Therefore, the average
logical channel after error correction is a mixed state given by the state in the right side of
eq. 2.40. On the other hand, averaging over syndromes can lead to cancellation of coherent
errors which then cannot affect the logical error metric. However, the quantity AV(&;) in eq.
2.41 does not suffer from this problem and hence it provides a good characterization of the

average logical noise strength.

We used both definitions in our numerical simulations, and this choice has quantitative
but no qualitative effect on our conclusions. The results presented in the rest of this thesis
use the measure of eq. 2.41, however, we use the generic notation N to denote either of the
definitions. As for the case of channels, we use ]\7[ to denote the empirical estimate of /.
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For the rest of this thesis, we have used the infidelity metric in eq. 1.59 to quantify the
logical noise strength. This is primarily due to two reasons. First, it can be measured by
experiments such as logical randomized benchmarking and it reflects the average perfor-
mance of the code over all input states, see eq. 1.56. Second, it requires fewer parameters
to compute and it is given by a closed form expression unlike the distance based metrics
such as trace distance that involves diagonalizing the Choi matrix of the effective channel or

diamond distance that involves solving a semidefinite program.
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2.5 Summary

1. We introduced a tool called the effective logical channel: a quantum channel that
describes the compound effect of (i) physical noise operations, (ii) and quantum error
correction (syndrome extraction and decoding), on the logical quantum information.
It is in general a function of the error syndrome s and is denoted by &7.

2. The quantum error protocol applied for non-Pauli noise is identical to the Pauli case.

It proceeds in the following two steps, however, there are important subtleties.

(a) Syndrome extraction: Unlike for Pauli errors, a non-Pauli error process £ has
different error syndromes s, each observed with a probability Pr(s). Measuring

an error syndrome s is numerically simulated by projecting the erroneous state
. T+ (—1)%S; n—k -
with I'l; = q s where {S;}!"|" are stabilizer generators.
i=
(b) Decoding: Given an error syndrome, the optimal decoder is designed to output a
logical operation which results in an effective channel &} that is as close as
possible to a noiseless quantum channel: id. The quantifier of closeness can be

any metric, however we choose this to be the entanglement fidelity: F. (&7, id).

3. We compute the effective channel by constructing its Choi matrix 7 (£7). We prepare a

bell state and apply: encoding, noise and quantum error correction, on the first qubit.
4. The effective channel for a concatenated code is computed by a recursive technique.

(a) The effective logical channel at level ¢ = 0 is the physical error process &.

(b) For each level /, the effective logical channel &; is the result of composing (i) the
effective logical channels from the preceding level {£]_; } and (ii) a quantum

error correction protocol that regards {£;_,} as the physical channels.
5. We introduced the concept of an average logical channel, which is denoted by &,.
(a) &, is the result of averaging &; over all error syndromes: £, = ) | Pr(s) &/.
S

(b) For concatenated codes the number of syndromes grows doubly-exponentially.

Hence &, denotes the empirical estimate of £ computed using a Monte Carlo

> 1
technique. & = N Z £}, where N is the number of Monte Carlo samples of the
S

error syndrome s, each drawn by sampling the syndrome distribution Pr(s).




Chapter 3

Results and extensions

Quantum error correction schemes, studied in sec. 1.3 involve encoding quantum states in a
highly entangled states of a large quantum system and make clever use of the symmetries in
the encoded system to mitigate the effect of physical noise processes. In the previous chapter,
we studied a way of computing the average logical fault rate that quantifies the response of
a fault tolerance scheme to a physical noise process. As an application of the framework for
analyzing fault tolerant schemes, developed over the previous chapters, in this chapter we
will provide evidences to showcase the difficulties in achieving various stages of the fault

tolerance optimization cycle (see points i —iv).

This chapter is broadly divided into three parts. The first part presented in sec. 3.1
investigates whether the standard error metrics are good at predicting the average logical
fault rate of a quantum error correction scheme. Meanwhile, we will also comment on two
elements of a folklore in quantum error correction. The first, presented in sec. 3.1.2 on the
comparison of coherent vs. incoherent noise processes. The second, presented in sec. 3.1.3 is

about noise processes being mapped to Pauli channels after quantum error correction.

The second part in sec. 3.2.1 presents an application of machine learning techniques
to search for single parameter functions of the physical noise model which can accurately
predict the average logical fault rate. We also discuss techniques to compress the degrees of
freedom in a noise model, by keeping only those that are crucial in estimating the average
logical fault rate.

Finally, in the third part, in sec. 3.3, we raise an important concern for numerical simu-
lations — that it is plagued by the problem of sampling rare events, causing the resulting
estimates of the average logical fault rates to be riddled with statistical errors. We also

70
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provide alternate sampling methods in numerical simulations of quantum error correction

wherein the statistical errors can be lowered without incurring a high simulation cost.

3.1 Predicting the response of a fault tolerant scheme with error metrics

The fault-tolerance accuracy threshold theorem, guarantees that if the physical noise strength
N is below a threshold value then the logical noise strength N, decreases doubly exponen-
tially with £. Although one of the important theoretical tools for establishing the viability of
quantum computing, it is less useful in a practical situation, for a few reasons. First, as we saw
in sec. 1.1, there is a vast variety of noise models in quantum information and furthermore
sec. 1.2, outlines widely different notions for defining the noise strength Nj. The threshold
theorem can only apply directly to a small class of noise models and error metrics. Even
so, the derivation of the threshold theorem makes certain conservative assumptions about
the nature of the noise model that, at best, provides very loose upper bounds on ;. Upper
bounds are seldom useful optimizing fault-tolerant schemes, so we would like to develop a
better understanding of the behaviour of A, with a numerical simulation of the complete
description of the underlying noise process.

In this section we will address three topics with the help of numerical simulations. First,
in sec. 3.1.1, is the ability of the standard error metrics to predict the average logical fault
rate of the quantum error correcting scheme using the concatenated Steane code, that we
studied in the previous chapter. Here, we will consider the possibility of any i.i.d noise
model specified by single qubit CPTP channels.

The second topic that we will study using numerical simulations, in sec. 3.1.2, is compar-
isons between coherent and incoherent noise processes. It is believed in that decoherence is
the main source of noise in a quantum system. Decoherence is caused whenever a quantum
system couples to its environment. Coherent noise processes on the other hand, are described
by a unitary evolution of the isolated quantum system. Using numerical as well as analytical
arguments, we demonstrate that the comparison between coherent and incoherent errors is
strongly dependent on the choice of the metric with respect to which they are compared. In
sec. 3.1.2 we will show that while in for one choice of a metric, coherent errors correspond

seem malignant, in another, the scenario is reversed.

Lastly, in sec. 3.1.3, we comment on a commonly assumed feature of stabilizer quantum
error correction schemes, that the effective logical channel to approach a Pauli noise model,

for sufficiently large code distance. With the help of the non-Pauliness metric defined in sec.
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1.2.9, we argue that while stochastic noise processes evolve rapidly into effective Pauli error
models with increasing concatenation levels, the trend is less apparent for coherent errors.

3.1.1 Standard error metrics for arbitrary i.i.d channels

We would like to answer the following question for single qubit channels. Is there any
parameter of the CPTP map that can be used to provide an accurate estimate of the logical
fault rate of an error correction scheme ? A very coarse description of a noise model & would
be a single number specifying its “noise level", or “strength”, with strength 0 corresponding
to a noiseless channel (the identity map). The metrics which we encountered in sec. 1.2
are several inequivalent measures which are used to describe the strength, whose merits
and demerits are outlined in tab. 1.1. With reference to fault tolerance schemes, there is an
important feature that is desired of a metric — predicting the scaling of the logical error rate
with respect to a quantum code family with growing distance. In other words, we would like
the logical error rate to be approximately equal to a monotonous function of the physical
noise strength. We will refer to such a metric, or in general, a parameter of the physical
noise model, as a critical parameter. It is not known apriori if any of the metrics in sec. 1.2 are
critical parameters and it is what we intend to verify from numerical simulations. We will
study the correlations between each of the standard metrics and the corresponding logical
fault rate. If the correlations are poor, it is unlikely that the standard metrics are critical

parameters.

Let us devise a numerical experiment to explore these correlations. We will describe the
technique in overview. First, note that given a CPTP map &, we have the algorithm in alg.
2 to estimate the average logical noise strength N for any level / of a concatenated code.
This provides a means of comparing two quantities: the physical noise strength A vs. the
average logical noise strength N, We will repeat this procedure for a variety of different
physical channels & — single qubit CPTP maps generated randomly, we will have sufficient
data to observe variations in the average logical fault rates over the spectrum of physical
channels with fixed Nj. The strength of these correlations is a good indicator of the power
of N on accurately predicting the value of N,

In our analysis, we will restrict the type of n—qubit noise physical processes to uncorre-
lated action of single qubit CPTP maps on each of the n qubits. Recall that, we have assumed
only memory errors, i.e., the gates used to error-correct are taken to be noiseless. We believe
that including the description of a noise model for gates, measurement process and state
preparation will significantly increase the dimension of the noise manifold, thereby making

it further unlikely for the standard noise metrics to be critical parameters. Also for convenient
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analysis we will assume that memory noise is i.i.d", as in eq. 1.15. Although that excludes
possibly interesting models of correlated errors, we will allow &) to be a completely generic
CPTP map. We are interested in studying a wide range of physical noise models, so we
choose to generate random single-qubit CPTP maps &y. Note that there is no natural notion
of uniform distribution over the space of CPTP maps?. Recall from sec. 1.1 that a single qubit
CPTP channel can be modelled by unitary evolution of the qubit and an ancillary system,
stated precisely in egs. 1.5. Therefore, we can generate random single-qubit noise models £
using the equivalence to random three-qubit unitary matrices U. Specifically in this study,
we generate a three-qubit Hamiltonian H with complex entries drawn from the Gaussian
isH

distribution of unit-variance and construct the unitary matrix as U = ¢'°"" where J is a real

parameter providing us with some handle on the noise “strength”.

Let us now analyze the results of the numerical simulations using randomly generated
CPTP maps, showing correlations between the average logical fault rates and the physical
noise strength as measured by one of the standard metrics. Figures 3.1 and 3.2 show the
average logical noise strength as a function of the infidelity and Diamond distance metrics,
respectively, for a wide range of physical channels. What we observe is that the logical noise
strength varies wildly for a fixed physical noise strength, which implies that estimating the
logical noise strength given only the physical noise strength is doomed to yield extremely
inaccurate estimates. We have used several of these noise measures — infidelity, diamond
norm distance, 1-norm distance, 2-norm distance, entropy, and worst case error — which all
produced similar looking scatter plots®. Infidelity was the best metric we found in terms of

its ability to predict the behaviour of the logical channel, but not by a significant margin.

Focusing on the graphs of fig. 3.2 (a) and (b), we reach the conclusion that depolarizing
is amongst the worst noise model in the sense that most channels of equal strength result in

much less logical noise. This is appealing since the vast majority of numerical simulations to

1We can significantly improve efficiency by assuming that noise is uncorrelated. But requiring that it be
identical on all qubits does not affect the efficiency. This is because the effective channels at higher concatenation
levels are functions of the lower-level syndromes and will naturally differ across qubits in the same error
correction block.

2We choose a distribution which is unitarily invariant, but this leaves several parameters of the distribution
unspecified.

3In these scatter plots, there is a visible “gap” in the spread of logical fault rates between the random CPTP
channels and the coherent rotation channel (black solid line). It is important to note the gap neither changes
the conclusion on standard metrics not being critical parameters and is simply an artefact of our method of
generating random physical CPTP maps. For most cases, this procedure yields a channel whose Choi matrix has
full rank [193], meaning that it would have a Krauss decomposition, as eq. 1.6 with all four Krauss operators
being non-trivial. In other words, this is a stochastic map. On the other hand, recall that a coherent rotation
channel in eq. 1.9 has only one non-trivial Krauss operator, that is its Choi matrix has rank 1. The probability of
obtaining such a channel from our procedure of generating random channels, is vanishingly small. We have
indeed used other sampling methods and found that this void disappears.
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Figure 3.1 Average logical fault rate as a function of the infidelity of the physical channels
with respect to the identity channel. Each of the 12 x 10* points corresponds to a
randomly generated CPTP map. The X —coordinate of a point denotes the channel’s
infidelity, while the Y —coordinate denotes the average logical fault rate, estimated
using 10* syndrome samples. The points that lie on the blue solid line correspond
to the depolarizing channel while those on the black solid line correspond to the
coherent rotation channel, like the one in eq. 1.9. The logical noise strength N,
is measured for a level £ = 2 concatenated code in (a), and for a level £ = 3
concatenated code in (b). The plots have a large scatter — e.g., in (b) the logical error
rates vary by about six orders of magnitude across channels with fixed infidelity
~ 0.1 indicating that it is not possible to even crudely predict the average logical
noise strength given only fidelity of the physical channel.
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Figure 3.2 Average logical fault rate as a function of the Diamond distance of the physical
channels from the identity channel. The physical channels in the plot are the same
as those in studying the fluctuations of the logical fault rate with respect to infidelity,
in fig. 3.1. Being larger than the case of infidelity, we observe that the fluctuations
are around eight orders of magnitude, across physical channels with fixed diamond
distance form the identity, of about 0.1.
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date use the depolarizing channel and furthermore, many of the fault tolerance proofs use the
depolarizing channel along with the diamond norm, so from this point of view these studies
would provide a worst case scenario. However, using infidelity as our measure of noise
strength as in fig. 3.1 (a) and (b) yields the opposite conclusion: the depolarizing channel
is now amongst the best physical channels. This stresses the importance of choosing an
appropriate measure to report the accuracy of an experiment, and more generally motivates
the search of critical parameters which best correlate with the logical noise strength.

3.1.1.1 Quantifying the dispersion in scatter plots

The plots presented in figs. 3.1 and 3.2 show fluctuations of the logical fault rate with respect
to different physical channel parameters. These fluctuations are proportional to the amount
of scatter in the respective plots. While in some cases the “amount” of fluctuation can be
visually noted, we wish to have a quantitative comparison between them. For this purpose,
we will specify a quantifier for the amount of fluctuations in a scatter plot, using a two step
process. Note that each point p = (x,, ) in the plot corresponds to a physical channel £. Its
X—coordinate x;, corresponds to some parameter of £ and its Y —coordinate v, corresponds
to the logical fault rate. First, let us partition the range of values on the X —axis evenly on the
log-scale, into sets by, ... bg where each set: b; = [log10 xi,log;, X;41] is called a ‘bin”. Now, a
point p lies in the bin b; if log,, x; < log;, xp < log;, x;i;1. Now, let us use v(b;) to denote
the variance in the order of magnitudes of Y —coordinates of points in b;,

1
o(b;) = T 2 (loglo Yp — ,”i)z . (3.1)
|bJ th

where y; is the average of the order of magnitudes of Y —coordinates of points in b;,

1
Hi= T Z logyoyp - (3.2)
|1|p€h

Then, the “amount” of fluctuations, denoted by 4, is defined simply as the maximum variance
in a bin,

6= 11;1%)% v(b;) . (3.3)
In plain words, the value of § denotes the order of magnitudes over which the logical error
rate is spread over, for a fixed physical parameter. Suppose that a particular CPTP map £ has

a logical error rate of x. Another channel £’ that has the same value of a fixed parameter as
& can result in a logical fault rate anywhere between 10°x to 10~°x. For eg., § = 2 means that
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M & & 3
Infidelity (eq. 1.59) 0.162 | 0.631 | 1.892
Unitarity (eq. 1.73) 0.061 | 0.441 | 3.362
Entropy (eq. 1.70) 0.307 | 0.972 | 2.783
Diamond distance (eq. 1.51) 0.380 | 0.980 | 3.417
Trace distance (eq. 1.45) 0.404 | 1.015 | 3.637
2—norm (eq. 1.69) 0.435 | 1.094 | 3.884

Adversarial error rate (eq. 1.2.6) | 0.884 | 2.159 | 6.740

Table 3.1 Table showing the values of §;, quantifying the scatter of N, with respect to various
standard metrics, for £ = 1, 2, 3 levels of the concatenated Steane code. To compute
6¢ we have used eq. 3.3 with B = 10. According to this table, the logical fault rate
for the level -3 concatenated Steane code varies approximately by four orders of
magnitude across channels with fixed infidelity and over seven orders of magnitude
over channels with fixed Diamond distance. These large variations are in accordance
with the scatter plots in figs. 3.1 and 3.2.

the logical fault rates for £’ can be anywhere between a hundredth of x to a hundred times
x. Pertaining to our numerical studies, we may use the notation J; to denote the amount of
scatter for logical error rates of the level —¢ concatenated code. Table 3.1 provides 1, 6, J3

calculated for various physical noise metrics, for the channels used in figs. 3.1 and 3.2.

3.1.2 Coherent vs. Incoherent errors

There is a folklore in quantum error correction which says that decoherence is a larger
concern than coherent noise processes, for preserving quantum information. In fact, figs. 3.2
(a), (b) suggest that the logical fault rate is the largest for a depolarizing channel, compared to
all other channels of similar physical noise strength. While that is largely the assumption for
fault-tolerance proofs [17], we have observed that this belief is metric dependent — it strongly
depends on the choice of the physical noise metric. The results of figs. 3.1 (a), (b) are strong
evidence. An interesting illustration can be provided by comparing the dephasing channel
Ep(p) form eq. 1.2, with a coherent channel that performs a systematic over-rotation of all
physical qubits by a constant angle 6, £7(6) in eq. 1.9. Recall from eqs. 1.52 and 1.53 that
the Diamond distance of £p(p) and £7(0) from the identity map is given by p and sin 6
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respectively. In other words,
1Ep(p) —id|lo = [|Ez(sin~ p) —id][,, . (3.4)

Let us examine the logical fault rates corresponding to the two physical channels £p, £z for
a [[n, k, d]] stabilizer code Steane code. The case of &p is straightforward since it describes a
stochastic noise model. Using the definition of the distance, we note that the code cannot
correct more than | d —1/2] errors. When the errors each qubit occur independently, the
probability of having an uncorrectable error, is at least that of having an error of weight
larger than | d —1/2|. Hence, we find that the average logical fault rate N (Ep)is given by

N(&p) € O(p?/?). (3.5)

The case of the coherent rotation channel £7 is less straightforward. Let us focus only on
the diagonal entries of the resulting effective logical channel, since only these contribute
to the logical fidelity. The evolution of a state under £7 can be described by conjugating
the input with a linear superposition over all Pauli Z—operators where the coefficient of
the diagonal terms E p E is roughly (sin 0)2/El, similar to eq. 2.18. So, the coefficients for
the lowest weight uncorrectable errors are roughly (sin #)?. Hence, the logical fault rate as
measured by infidelity is given by [184]

N(E7) € O((sinh)?) . (3.6)

Now, we can compare the logical fault rates of the two noise processes of equal Diamond
distance strength, setting 6 = sin"! p due to eq. 3.4, and we find

N(&z) € O(p?) . (37)

Clearly, the logical fault rate of the depolarizing channel is larger than that of the coherent
channel by a factor of a square root. Let us now turn to the case the two physical noise

processes are taken to be of the same infidelity, given by eq. 1.59. Hence, we have

1—F(Ep(p)) =1~ F(Ez(sin" " \/p)) - (3.8)

While the logical fault rate for the depolarizing channel is given by eq. 3.5, that for the

coherent channel becomes [194]

N(&7) € O(p?/?) (3.9)
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where we have used 6 = sin~! ,/p due to eq. 3.8. Although the above equation implies that
the coherent channel and the depolarizing channel have roughly the same logical error rate,
a striking difference can be observed while computing the logical error strength exactly. This
is because the physical infidelity metric does not account for the off-diagonal terms in the
channel’s Pauli Liouville matrix, see eq. 1.64 while the logical error rate is indeed affected by
them. Figure 3.3 compares the exact analytic expressions for A for a Steane code (defined
in eq. 1.79), for the coherent rotation channel in eq. 1.9 and a dephasing channel in eq. 1.2.
It can be seen that when the two physical noise processes are held at constant Diamond
distance, the incoherent noise process has a larger logical error rate while when the noise
processes are held at fixed infidelity, the coherent channel results in a larger logical error
rate. In both cases, the logical error rate is measured by the average infidelity in eq. 2.33.

3.1.3 Pauliness induced by quantum error correction

In most cases, quantum error correction schemes are designed with the intuition of Pauli
channels. In fact, the decoding scheme outlined for generic CPTP noise is only strictly optimal
for the case of Pauli channels. Recall that all of the standard measures of noise strength
discussed in sec. 1.2 coincide for the case of Pauli channels. Furthermore since there are
only four independent parameters in a single qubit Pauli channel, compared to twelve (see
sec. 1.1) for a generic CPTP channel, one could expect that if the physical noise processes are
restricted to Pauli channels, the variations in the average logical fault rate would be lower
than that compared to the scatter plots of figs. 3.1 and 3.2. Interestingly, in [194], the authors
have proved that for a wide range of physical noise processes and quantum error correcting

schemes, the effective logical channel can be well approximated by a Pauli noise model.

In particular, the authors in [194] prove that the effective logical channel corresponding
to a concatenated code and an i.i.d physical channel, approaches a channel that causes
pure decoherence, in other words, is Pauli-like. This is established by proving that the ratio
between the off-diagonal entries to the diagonal entries, in the Pauli Liouville representation
of the effective channel, approach zero with increasing levels of concatenation. According

to the Pauliness metric developed in sec. 1.2.9, a channel £ that is “more Pauli-like” than
another channel £ if W(E) < W(E').

While the proof in [194] is accurate in the low noise regime (and when the physical
error model is close to a logical gate), the scaling argument neglects combinatorial factors

whose effect on the entries of the logical channel is prominent, in the high noise regime.

. ®n
Consider the effect of a coherent channel <elez ) on the encoded state p of some error
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Figure 3.3 Figures showing comparing the logical error rates of the coherent rotation channel
£7(0) in eq. 1.9 and the incoherent dephasing channel £p(p) in eq. 1.2 for two
different scenarios. In (a) the two physical channels in comparison are considered
to be of the same fidelity (eq. 1.59). In this case, we observe that the “worse” of the
two is the coherent channel. While in (b), the Diamond the distance (eq. 1.51) two
physical channels is held fixed. Here we see that the logical fault rate is the largest
for the incoherent dephasing channel.
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correcting code. The noisy state can be expressed as a conjugation by a linear sum of all
Pauli—Z operators,

(02)° p (7Y [

) ¢ (cos 0)2—IED (sin9)2|E|E} 0
EecPy

[ T gr(cos6)21E) (sin @)1

EcPy
(3.10)

where Pz denotes the set of all Pauli—Z operators and ¢r € {£i, £1}. This expression
is simply a generalization of the example discussed in eq. 2.18. The effect of measuring a
syndrome s, is dropping the Pauli operators E in the linear sum whose syndrome s(E) is
not equal to s,. Hence, the state p;, after measuring a syndrome s is given by

ps.= | Y ¢r(cos)" El(isin®)EE| p | Y ¢r(cos®)" El(ising)FIE| . (3.11)
EePy EePy
s(E)=sx« s(E)=s4

Recall from eq. 1.90 that with respect to a stabilizer code, any Pauli operator E can be
decomposed into a product of three Pauli operators, one from each of the sets: stabilizers,
logical operators and pure errors, i.e., E = T - L - S. Furthermore, T is completely determined
by the syndrome, T = Tj,. In this notation we have

0s, = Y, XgE(cos 0)"1El(i sin0)2FIT, LSpSL T, +
LeL,SeS$

Y Y xep(cos0)" EFIE (i sing) EHIEIT, LSpS'L'T, . (3.12)
LL'S,S
The first sum that contains diagonal terms such as P p P for some Pauli error P is the deco-
herence part of the effective channel. The second sum contains the off diagonal terms whose
values signify the coherent part of the effective channel. These off diagonal terms contribute
to the non-Pauliness of the effective channel W;, where W is defined in sec. 1.2.9.

Indeed the low noise regime guarantees that two errors E = TLS,E' = TL'S/, that
have distinct logical effects, i.e., L # L' have weights that differ by at least d /2. In such
cases, effect of the off diagonal terms are suppressed, yielding an incoherent (Pauli-like)
effective channel: W; < 1. However, in the high noise regime, E and E’ can have weights
that only differ by a constant, independent of the code distance. Although each term in

the second sum is suppressed by a constant factor, the large number of off-diagonal terms,
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compared to the diagonal ones can then result in a significant departure from a decoherence
model for the effective logical channel. We have used numerical simulations to study the
average logical non-Pauliness corresponding to a coherent Z—rotation physical error, for
concatenated Steane codes, as a function of the levels of concatenation. The results shown
in fig. 3.4 (a) summarize the discussion above, wherein the non-Pauliness does not vanish
in the high noise regime — when the rotation angle is close to 7/2, the s' gate. Similar
observations were found in [37] for the level -1 Steane code where the logical fault rates

corresponding to £ and its Pauli twirl (see eq. 1.19) 7 (£) differed significantly.

The case of non-unitary channels £ is quite different. These channels output a mixed
state even when the input if pure, i.e., they cause decoherence. Although these channels
might be very different from a Pauli channel at the physical level, the non-Pauliness of the
logical channels vanishes quickly with increasing distance. Let us consider an example
of a non Pauli physical noise process, which does not describe a unitary evolution: the
amplitude damping channel £4p, defined in eq. 1.14. Using a similar discussion as in the
case of coherent errors, we can express the effect of £ followed by a measuring the syndrome
s, as in eq. 3.12. While it is indeed true that values of xr ¢ where E and E’ have different
logical actions, i.e., L # L' are suppressed by the code distance, the relative suppression
effect on the off-diagonal terms compared to the diagonal terms is even greater than the
case of coherent errors. This is because the y —matrix of the physical channel x(£4p) has
off-diagonal terms that are of the same order as the diagonal terms whereas for the case
of coherent errors, the off-diagonal terms were O (sin ) whereas the diagonal terms were
O((sin #)?). Figure 3.4 shows the average logical non-Pauliness of the amplitude damping
channel W, as a function of the concatenation levels (i.e., code distance) for the concatenated
Steane code. It is clear that the effective channel rapidly approaches a Pauli channel. Similar
observations were found in [37] where the amplitude damping channel and its Pauli twirl
had similar diagonal components.

Hence, while it is expected in most error models rapidly evolve into Pauli channels for

increasing concatenation levels, our observations show that coherent errors are an exception.
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Figure 3.4 Non-Pauliness of effective channels for two physical noise processes. In (a), the
physical noise process is the amplitude damping channel while in (b), it is coherent
rotation about the Z—axis, in 1.9. On the one hand, the non-Pauliness vanishes
rapidly with increasing concatenation levels for the amplitude damping channel in
(a), on the other, it reduces gradually for the coherent noise process in (b).
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3.2 Deriving new noise metrics

Our long standing question has been the following: What parameter of a physical noise
model can provide a good prediction of the response of a quantum error correction scheme
to the noise process ? The response we have gotten so far is that the standard error metrics, on
their own, cannot provide an accurate estimate of the response of a quantum error correction
scheme to the underlying noise model. In the case of quantum concatenated codes, we have
an efficient algorithm to compute the logical fault rate corresponding to a variety of different
physical noise processes. Furthermore, we have several instances of input random CPTP
physical noise processes and their output average logical fault rates with respect to different
quantum error correcting codes. We would like to use this data to learn how to predict the
logical fault rates from the parameters that describe the underlying physical noise process

and the quantum error correcting code.

The idea is to use machine learning techniques to construct single qubit parameteriza-
tions of the physical channel that provide a good prediction of the logical fault rate of a
quantum error correction scheme. Many techniques in the area of machine learning can be
regarded as sophisticated formulations of regression and curve-fitting. Refer to [195, 196] for
an introduction to basic machine learning tools. However, there are much richer techniques
which are special to machine learning, that we will use to explore correlations between
parameters of a physical noise process and its logical error rate with an error correction
scheme. Our application of machine learning here is different from its recent applications in
quantum error correction — to optimize fault tolerant schemes, see [197, , , 36].

In this section, we will describe two inference techniques to characterize the strength of
physical channels in a simulation database. First, in sec. 3.2.1, we will use deep learning to
find the best non linear function to fit the logical fault rates of a few quantum error correction
schemes. Second, in sec. 3.2.3, we will use a non-linear function on many variables to explore

beyond the limitations of a single parameter characterization of the physical noise rate.

3.2.1 Search for critical parameters using machine learning

Our use of machine learning algorithms can be outlined as follows. We consider two sets of
random physical channels, for which we have logical error data from numerical simulations.
One of them is the training set while the other serves as the testing set. The basic idea is to
find a “simple” function of the channel parameters f (&) which correlate strongly with the
logical noise strength ;. Of course, N is itself a function of &, but it is very difficult to
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compute it even for an oversimplified model.

A rudimentary inference on the training data is obtained by fitting the logical error rates
with a simple function of the features of the physical noise model, such as a polynomial*
function. While this could potentially lead to a new definition of the physical noise strength,
it would in general not only be a function of the physical channel, but also depend on the
details of the error correcting scheme. Instead, we would like to search for parameters that
are intrinsic to the physical channel, and are critical for predicting the response of any

quantum error correction scheme to the underlying noise process.

We would like to model the average logical fault rate N ofa quantum error correction
scheme with parameters {ay, ..., a,, } with the underlying physical noise process & with
parameters €1, . ..,€y,, as

N =fay....am, €1, €m) (3.13)

where f is some non-linear function of its parameters. If the above model is accurate in
describing the logical fault rates of a variety of physical noise models and quantum error
correction schemes, then {€1, ..., €y, } can be regarded are critical parameters of the under-
lying physical noise model. Our goal is to have an algorithm that can compute the critical
parameters of any physical channel &. To achieve this, we will outline a two-step process.
First, using general properties of stabilizer codes, we will arrive at an explicit functional
form for f, the ansatz. This will help us obtain the function parameters for physical channels
in our training set by fitting the training set data to the ansatz. Second, we will use machine
learning techniques to predict the fit-obtained parameters, directly from the description of
the physical channel. Finally we can test the efficacy of our two stage process by comparing
the fluctuation of the logical fault rates with respect the machine-learned noise parameters.

As usual let us start with an intuition informed by the Pauli channel. Consider the
performance of an error correcting code whose distance is d under the effect of a dephasing
channel of rate p, introduced in eq. 1.2. By definition, the code can correct all errors on any
of the | (d — 1) /2] qubits, implying that the logical error rate must scale as O(p! (d=1)/2]+1y
We have of course hidden important combinatorial factors; but combining their effect, one can
in general say that the logical error rate is, up to leading order in p, equal to C; pl @~ /2141
for some constant C;, independent of p. While all that is only strictly valid for a Pauli channel,

in similar spirit, we would like to choose an ansatz f(d, C4,€(&p)) for the logical fault rate of

4Since the parameters of the channel can be positive as well as negative, we can potentially loose sign
information upon restricting to a linear function.
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an arbitrary code of distance d, given by
f(Qu, €0) = Cae (&)1 D/2, (3.14)

where d, C; and « are positive constants which are specific to the error correcting scheme
and independent of the physical channel £, while €(&)) depends exclusively on the physical
model. Note that the above ansatz function is consistent with the general form we wanted
in eq. 3.13. Next, we will estimate the values of €(&), Cy, d for all the channels and error
correcting codes in the training set, by fitting the logical fault rates obtained from numerical
simulations, to the ansatz.

For a training set with N physical channels and logical fault rate data for D different
codes, we have in total ND different numerical estimates of logical fault rates. The total
number of parameters in the ansatz that need to be determined using the fit are N + D
since in the ansatz we have one variable €(&y) per physical channel and one variable C; per
quantum error correcting code. Hence, in order to avoid overfitting, we must ensure that
the training set contains logical fault rate data from several, D > 1, codes.

The standard approach to computing the fit-parameters of the ansatz is to minimize the
error function specified by

)3 (7\74 - Cdego(d_l)/ 2)2 : (3.15)

&od

The scatter plots of logical fault rates vs. standard metrics in figs. 3.1 and 3.2 suggest that the
logical fault rates decrease exponentially with the parameters of the physical channels. This is
true even for the ansatz in eq. 3.14. As a result, the error function in eq. 3.15 would essentially
reflect the quality of the ansatz in the regime of high logical fault rates. Furthermore, from a
practical point of view, we are only interested in obtaining an accurate order of magnitude
estimate of the logical fault rate using the ansatz. With these concerns, an appropriate error

function is simply the loss function in the log scale,

— 2
) <log10 Ny —log,, Cs — atlog,, 6(80)> . (3.16)
Eord

We have used the above loss function to fit a training set containing random CPTP maps
describing physical noise processes used to produce the scatter plots of figs. 3.1 and 3.2, along
with their estimates of average logical fault rates with six types of quantum error correcting
codes — 1, 2 and 3 fold concatenations of the Steane code and 1, 2 and 3 concatenations of the
(distance 3) five qubit code [200]. Recall from eq. 1.95 that the ¢ fold concatenated version of



87

No 51 | & | &
Infidelity (eq. 1.59) | 0.161 | 0.507 | 1.869
€ (eq. 3.16) 0.203 | 0.544 | 0.990

Table 3.2 Table showing the values of §; quantifying the scatter of N, with respect to the
infidelity metric, which was the best according to tab. 3.1, and the noise strength
obtained by fitting the ansatz in eq. 3.14 to the numerical simulation data, for ¢ =
1,2,3 levels of the concatenation. To compute J; we have used eq. 3.3 with B = 10.
We observe that in the low logical fault rate regime, ¢ = 3, the fit-obtained parameter
provides a better’6 predictive power than the standard error metrics.

the distance 3 code has distance equal to 3. By fitting to the above mentioned ansatz, we
recover a number €(&)) for every CPTP map describing a physical channel in the training
set. Fig. 3.5 compares the correlation between the logical fault rate of the Steane code N3
with the numerical values of €(&;). We can see that the correlations between €(&)) and N
are much stronger than those between the Diamond distance error metric ||& — id||¢, and
N. Table 3.2 compares the amount of correlations between the fit-obtained metric and the
logical fault rates with the correlations between the best standard error metric, infidelity,
and the logical fault rates, for the physical channels in the training set. These correlations are
quantified by the metric J; introduced in sec. 3.1.1.1 to measure the amount of dispersion in
scatter plots. Note that the database of physical channels used in the two abovementioned
tables are the same’. It can be seen that € has a much better® predictive power than all of the

standard measures introduced in sec. 1.2.

3.2.2  Computing the critical parameters

The fit-obtained channel parameter € provides a good prediction of the logical fault rate.
Recall that our goal is to obtain an algorithm that can compute €(&y), given the description
of &. For all of the physical channels in the training set, we already have the corresponding
tit obtained parameter. This provides a context for using machine learning techniques to
develop a model that relates & to €(&p ). Finally we can test the efficacy of the machine learnt

5However, the variance measure oy for the infidelity metric differ in the tables of tab. 3.1 and 3.2 for the
following reason. In the case of tab. 3.1, the variance is computed over a set D of random CPTP maps as well as
a set of coherent noise processes, whereas the variance in tab. 3.2 is computed only over the channels in D.

®0On the one hand the loss function in eq. 3.15 on the log scale results in a definition of €(&y) that leads to a
closer agreement between the ansatz and the actual logical fault rate in the low logical fault rate regime, on the
other, disagreements in the high logical fault rate regime are not penalized as severely. Evidently, in tab. 3.2, we
observe that the fit parameter € is not a good predictor in the high logical fault rate regime.
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model by evaluating the fit obtained parameters for physical channels in the testing set and
studying the fluctuations of average logical fault rates.

Let us describe how we will use a general machine learning technique. Let us first fix
a representation for a CPTP map &p: ¥(&). This is a m—dimensional vector that describes
the numerical features of a channel. One might include any the property of & in ¥(&p). We
have chosen® m = 12, where #(&) is the vectorization of the Pauli Liouville matrix of &,
ie., X(&) = |A(&))). We will call ¥(&y) a feature vector and denote by ¥;, the feature vector
corresponding to the i physical channel in the training set. Let N denote the number of
physical channels in the training set and X be a (N x m) matrix whose rows are ¥y, ..., ¥n.
Whenever X; describes a physical channel &, let y; = €(&)). The N—dimensional vector i is
called the target. Similar to X, the set of features of the N’ physical channels in the testing
set can be represented by a (N’ x m) matrix X'.

The tuple (X, i) describing the training set constitutes the input to a machine learning
algorithm. The task of a machine learning algorithm is to build a model that relates every
feature vector ¥; to its target y;. Finally, the model is applied to each feature vector in X’ which
yields the prediction jj. In our case, jj; denotes the prediction for the value of fit-obtained
parameter of the physical channel & described by the i row of X', which we will simply
refer to as the machine-learned parameter, denoted by €predicted(50)- To rate the quality of
the predictions, we studied the fluctuations in the average logical fault rates across physical
channels in the testing set with fixed value of the machine learnt parameter.

We have used several machine learning techniques such as kernel regression, k-nearest
neighbours (k-NN) [202] and multi layer perceptron (MLP) regression [203]. Of these, the best
results were observed using MLP regression that used a L2—regularized square loss function
and it was implemented using the scikit-learn package [204] in Python. Figure 3.6 shows the
average logical fault rates of the level -3 concatenated Steane code as a function of €predicted,
for physical channels in the testing set. Clearly, €predicted has a better predictive power than
all of the standard metrics, the comparison to the error metric based on Diamond distance
is shown in fig. 3.6. For instance, the diamond distance required to achieve a logical noise
rate below 10~® can sometime yield an average logical fault rate as low as 1072, In contrast,
the condition to achieve an average logical fault rate 10~® according to the machine-learned
parameter €predicted also restricts the logical noise to be above 10~'2. While this is a very
significant improvement, it remains too coarse to be of practical interest. Note moreover that
this advantage is much less pronounced when compared to the prediction obtained from
infidelity, as shown in tab. 3.2.

81t is important to note that every feature vector describe the same set of features and it is desirable to have
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Mo 31 1)) 43
Infidelity (eq. 1.59) | 0.149 | 0.549 | 1.847
0.181 | 0.592 | 1.573
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Table 3.3 Table showing the values of J, quantifying the scatter of N, with respect to the
infidelity metric, which was the best according to tab. 3.1, and the noise strength
obtained from machine learning with the training set shown in the scatter plot of fig.
3.5, for £ = 1,2,3 levels of the concatenation. As in all previous tables, to compute

6y we have used eq. 3.3 with B = 10.
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Figure 3.5 A function €(&)) was computed to fit the ansatz of Eq. 3.14 by minimizing the
quantity in eq. 3.16 over a training set of 12 x 10* channels, for ¢ = 1,2 and 3 levels
of concatenations. Here, we show the correlation €(&p) to the logical failure rate for
£ = 3. We see that the ansatz fitted function correlates more tightly with the logical

error rate compared to the diamond norm distance, shown for reference.
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Figure 3.6 We have trained a fully connected neural network of 100 nodes and 4 hidden layers
with a rectifier (ReLU) [205], to relate the numerically fitted function €(&p) shown
in Fig. 3.5, to the parameters of the respective the physical CPTP map & in the
training set. To test the efficacy of the trained neural network, we evaluated it on an
entirely new ensemble of 6 x 10* channels. Here, we show the logical failure rate
as a function of the machine learned function €predicted (£0) and compare it to the
diamond norm distance for reference. We see that the machine-learned function is
a more accurate predictor of the logical error than the diamond norm distance.

90
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3.2.3 Multidimensional critical parameter

While machine learning algorithms compute a critical parameter of the physical channel that
offers a better predictive power than the standard error metrics, the improvement is only
meagre; for instance, compared to the infidelity measure. Moreover, fig. 3.6 indicates that the
logical error rates can still vary up to five orders of magnitude for channels with the same
machine-learned metric. In so far, we have only searched over one-variable-parameterization
schemes for physical CPTP maps. Assuming that our numerical fit and machine learning
methods were implemented optimally, our observations suggest that more than one parame-
ter of the physical channel is necessary to predict the response of a quantum error correction
scheme. In this section we will show a method wherein including the possibility of a higher

number of critical parameters significantly increases the predictive power.

We know from sec. 1.1 that there are at most twelve parameters for a CPTP map. The
idea is to find a compression of these such that the predictive power of the reduced set of
features is not compromised. To formalize this idea, let us denote the features of a channel
&o as by the entries of the column vector |&). The logical error rate N is some complex
function of |&). Instead, we would like to accurately estimate N as a function of €|&)
where € is a rectangular matrix, with fewer rows than columns. If € is m x 12, it serves as
a compression tool on the set of features, resulting in €|&)) a description of & with only
m parameters. However, by means of compressing the feature space, we do not want to
loose useful information, so we have to impose that for “different" channels £} and &3, the
corresponding parameter sets €|&) and €|&;) to differ as well. While comparing channels &
and &1, our only distinction principle, for the moment, is based on their corresponding logical
error rates. While for vectors €|&)) and €|&;), the standard quantification their difference is
given by the 2—norm, of eq. 1.68. Hence, we will simply formulate the following objective
function whose minimum value is achieved by a definition of € that brings out the critical

features of |&p).

N (&) - N(&) -
= ‘ N (ENN (&) exp <— Ht’i(|5’>—\51>)H§) . (3.17)

‘ 2

The above objective function can be minimized using gradient descent [206]. However, since
the function is not manifestly convex, the optimization techniques are not guaranteed to

converge and thus we run the risk of finding local minima.

When a matrix ¢ that minimizes eq. 3.17 is found, we must evaluate the predictive power

features that are independent from each other [201].
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of the reduced set of features. It is important to note that we have not found any functional
form for the average logical fault rate; that would suggest an efficient way to optimally
decode the underlying quantum error correcting code, which is believed to be hard.

Since there are multiple parameters for a physical channel, we cannot visualize’ the
fluctuations in the average logical fault rate using a two-dimensional plot, unlike in the case
of the machine learning models in figs. 3.5 and 3.6. However, we can generalize the method
for quantifying variance (or dispersion) in the two-dimensional scatter plots, discussed in
sec. 3.1.1.1, to arbitrary dimensions. In essence, the method involves dividing the noise
parameter space into bins and reporting the maximum variance of logical fault rates in any
bin. In this case, the noise parameter space is m—dimensional. As a result, we classify the
logical fault rates of various channels in the numerical simulation data, into m—dimensional
bins. Essentially, we will divide the space of features into various m—dimensional bins
and compute the variance of logical error rates in each bin. Table 3.4 shows the amount of
scatter while keeping 3 critical parameters is significantly less than the amount of scatter for
standard error metrics.

Finally, note that for fair comparisons of the merits of two multidimensional choices of
noise-parameterizations, we must ensure that the total number of bins are the same in each
case. For instance, all the estimates of tab. 3.4 have been computed while partitioning the

parameter space into 27 bins, irrespective of the number of dimensions.

3.3 Difficulty of numerical simulations

Numerical simulations have played a central role in our development and optimization of
quantum error correcting schemes. Often, upper and lower bounds on the performance
of error correcting codes coming from analytical calculations are loose — either because
they assume an adversarial noise model or a worst case analysis of the underlying fault
tolerance scheme [207, 65, 17, ]. However, since errors are random processes that can be
better studied under a simulation rather than analytically, it is not abnormal for numerical
simulations to result in an estimate of the performance of a fault tolerance scheme that

differs from analytical bounds by a few orders of magnitude.

Our findings from figs. 3.1.1 indicate that the standard error metrics cannot be universally

good characterizations of the strength noise in any physical noise process, in such a way that

9For m = 2, one can still depict the logical error rates as a function of the critical parameters as a 3D plot, but
the correlations therein are hard to appreciate.



93

Metric 1 ) 03
Entropy (eq. 1.70) 0.301 | 0.780 | 2.778
Infidelity (eq. 1.59) 0.116 | 0.780 | 1.186
Adversarial error rate (eq. 1.2.6) | 0.255 | 0.474 | 0.989
2—norm (eq. 1.69) 0.234 | 0.595 | 2.139
Trace distance (eq. 1.45) 0.226 | 0.572 | 2.108
Diamond distance (eq. 1.51) 0.220 | 0.554 | 2.129
3 features 0.032 | 0.077 | 0.065

Table 3.4 Relative variance of the logical failure probability for £ = 1,2, 3 levels of concatena-
tion of Steane’s code. A 3—parameter characterization of the physical channel offers
a better prediction of the logical failure rate. As in the previous tables, to compute
6¢ we use the expression in eq. 3.3, where the parameter space is separated into bins
and the J denotes the maximum variance of logical fault rates in any bin. For the
above estimates, we have divided the parameter space into 27 bins.

it predicts the response of a fault tolerant scheme to the underlying noise model. However,
it must be noted that the reasons for the fluctuations in the logical error rate in figs. 3.1 and
3.2 are twofold: First, numerical estimates suffer from statistical errors and second, the poor
predictive power of the physical metrics as per our conclusion in sec. 3.1.1. In this section,
we will discuss difficulties in numerical simulations that become prevalent while estimating
low logical fault rates. First, in sec. 3.3.1 we will discuss about why rare syndrome outcomes
are important for estimating logical fault rates in quantum error correction. Then, we will
introduce a technique known as importance sampling in sec. 3.3.2 that deals with the theory
of sampling rare events. Finally, in sec. 3.3.2.1 we will outline the use of importance sampling

to accurately estimate the logical fault rate.

3.3.1 Importance of outlier syndrome events

We looked at how the response of a quantum error correction scheme can be gauged for
simple noise processes such as Pauli errors as well as generic noise processes. Our outstand-
ing conclusion from sec. 3.1.1 has been that the logical fault rate is sensitive to the details of
the underlying physical noise process that are not captured well by any one of the standard
measures, in sec. 1.2. This is reflected in the plots of figs. 3.1 and 3.2 that show fluctuations
in the average logical fault rate by several orders of magnitude, for physical channels taken
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at a constant value of the standard measures.

However, these fluctuations in the estimates of the logical fault rate, have two components
to them. First, the inherent fluctuations from the noise model. Second, statistical fluctuations
that arise from the Monte Carlo sampling technique used to estimate the average logical
fault rate. While for some simple cases, like in 1.10, numerical estimates of the logical fault
rate are computed by sampling errors, for others, syndrome outcomes need to be sampled.
In both cases, the natural question that arises is, how many samples must we consider for
obtaining an accurate estimate of the average logical fault rate?

Let us begin by estimating the logical error rate that we need to characterize. According
to [17], it takes ~ 34 gates to implement one level-k logical gate. Assuming the typical MHz
clock cycle of solid state qubits and two levels of concatenation results in a 1kHz logical gate
rate, so the logical circuit can reach a depth of nearly one billion in one day. Gates (including
identity) are applied in parallel, so for a 1000 logical qubit device, we get 10'? gates per day.
So if our goal is to protect a one-day quantum computation, we need to characterize the
logical noise down to accuracy 1012 assuming that it builds up linearly.!? Estimating such

a small number reliably is not a simple task.

Statistical fluctuations become crucial while probing the low noise regime — where the
estimated inverse logical fault rate is much larger than the number of Monte Carlo samples
[51]. Indeed, when the sample size is too small, we can miss some rare syndromes which
dominate the average failure rate. Our intuition is informed by the following argument,
applied to a stochastic channel, that causes an error with probability p, in the low noise
regime, i.e, for p < 1. Consider two extreme types of syndromes for a code whose distance
is d, summarized in table 3.5. On the one hand, the trivial syndrome occurs with probability
Pr(s = 0) ~ (1 —p)" € O(1). The optimal recovery in this case is the identity, and the
next most-likely error is a logical operator, whose probability is O(p?). Thus, the residual
logical error when the trivial syndrome is observed is V' (£°=°) € O(p?). On the other
hand, consider a syndrome s* which signals the presence of an error E of weight roughly
d /2. Such a syndrome has a much lower probability Pr(s*) € O(p?/?). But in that case,
there exist another inequivalent error E’ of weight roughly d /2 that is compatible with the
syndrome. This happens when the combination of the two errors E and E’ form a logical
operator, see sec. 1.3.3. So in this case, the probability of misdiagnosing the error is O(1)

because the two inequivalent alternative are roughly equiprobable. So the residual logical

0For incoherent noise, two folk results appear to contradict each other here. On the one hand, it is often said
that stochastic errors build up like a random walk, so that in the current example, a logical fault rate of 1070
would suffice. On the other hand, there is a widespread belief that after error correction, the logical channel is
Pauli. But clearly, a single logical Pauli error is enough to invalidate the whole computation, so we again require
a10712 target.
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Syndromes | s =0 | s=s"
Pr(s) o) | 0(p"?)
N(E) o) | o)

Table 3.5 Table showing the probability of syndromes and the failure probability of the optimal
decoder, conditioned on the respective syndromes.

error in the event of such an unlikely syndrome is V' (£°") € O(1). Taking the contributions

from the two types of syndromes to the total average logical error yields

N =Pr(s = )N (E50) + Pr(s )N (E) (3.18)
€ O(p' +pi/2) = 0(p?/?). (3.19)

We see that the average logical noise strength is totally dominated by syndromes which
occur with a much lower probability — the outliers. Alternatively, one can also examine the
variance A, given by

A = Pr(s = )N (£50)2 4+ Pr(s" N (E5)2 - N (3.20)

= 0(pi/?), (3.21)

where we have used the scaling functions in tab. 3.5 to compute the leading contribution to
A. The above expression for A states that it is comparable to the mean itself. If the outlier
syndromes are encountered at random by the sampling technique, this will show up as
large fluctuations on the logical error rate. The presence of the statistical fluctuations appear
clearly in the logical error rate of the depolarizing channel in fig. 3.2, which should otherwise
be a smooth function of the depolarization rate. On the other hand, we also see that these
statistical fluctuations are much less important than the intrinsic fluctuations, which enable
us to confirm that for a given physical noise rate, the logical failure rate fluctuates wildly
across different noise models.

What the above analysis neglects are combinatorial factors indicating how many errors
of each type exist. As in the above analysis, suppose we organize the syndromes into different
types 7, with each syndrome s of a given type 7 having similar probability of occurring
Pr(s) = Pry and result in the same residual logical noise strength N (£°) = N7. The exact
expression for the average logical noise strength is

Y C(T)PryN7, (3.22)

T etypes



96

where C(7') denotes the number of errors of a given type, and is related to the weight
enumerator of the code [47]. In order to estimate C(7"), we simply sample the syndromes of
the concatenated code according to a uniform distribution, i.e, as if every syndrome is equally
likely. For each sample, we bin the respective syndrome according to its true probability
and conditional logical fault rate. The size of each of the bins is now proportional to C(7).
Figure 3.7 shows the (normalized) combinatorial factor C(7) corresponding to quantum
error correction simulations with two physical noise processes — the depolarizing channel on
which our intuitive argument is based and a random CPTP map. There, we clearly see that
the overwhelming majority of syndromes lead to a high logical fault rate, but on the other
hand they have an exceedingly low probability of occurring. These constitute the outliers
described in the beginning of this section, and their presence is observed in our numerical
simulations. In particular, we have observed that Monte Carlo simulations using a small
number N of samples tends to underestimate the logical failure rate. The estimated failure
rate given by eq. 2.40 tends to make sudden positive jumps as a function of N, see figs. 3.8 (a)
and (b). This can be easily explained by the existence of outliers: the sample underestimates

the logical fault rate until an outlier is sampled, which occurs very infrequently.

So, formally the results shown on figs. 3.1 and 3.2 cannot be trusted below N <1074
because the Monte Carlo sample size was only 10* — the true fault rate could be much
larger but we simply haven’t sampled long enough to catch the outliers. To assess with high
confidence that a fault tolerant scheme produces a logical failure rate 10~ for a given noise
model, one should in principle collect 10'> Monte Carlo samples. Note that our goal in figs.
3.1 and 3.2 was not to get a precise estimate for any given channel, but instead grasp how
differently distinct channels behave. The fact that the depolarization and rotation channels
show statistical fluctuations which are much less than the difference between them makes
us confident that our conclusions regarding the variation of the logical fault rate for different
physical channels are essentially correct.

3.3.2 Importance sampling
Importance sampling [209] was developed to speed-up the sampling of rare events. Suppose

we would like to sample independent events from a distribution {p1, p2, . .. pm} and estimate

the average value of some quantity m given by

M
(m) =Y pim; . (3.23)
i=1
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Figure 3.7 Density plots showing the fraction of syndromes with a given probability Pr(s)
and resulting in given logical noise strength A'(&7). In (a), these syndromes are
measured for a level 2 concatenated Steane code under a depolarizing channel
(eq. 1.12) with rate p = 0.01, while in (b) the physical noise process is randomly
generated following the prescription in sec. 3.1.1, with § = 0.02. The density in the
plots are proportional to C(7) in eq. 3.22. The majority of is syndromes result in a
high (~ 1 — 0.01) logical noise strength, but they cannot be observed in Monte Carlo
simulations with reasonable sample size (N ~ 10° — 10'°) because their probability
is too low (< 10729).
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A direct Monte Carlo sampling technique involves sampling the value i according to the
probability p;, resulting in the estimate (7i1) for the average, given by

() = o7

=

m; . (3.24)

N
Il
—_

The ability of the above expression to estimate (m) is poor in the case where the major
contribution to (m) comes from events whose probability is smaller than 1/M. While the
obvious strategy seems to have sufficiently large number of samples in the Monte Carlo
technique, Importance sampling, on the other hand is a method of getting around this problem
without significant increase in the number of samples. Instead of sampling from the true
distribution {p; : 1 <i < M}, we instead sample events from another distribution denoted
by {q; : 1 < i < M}, called the importance distribution. However, in order to ensure that
either sampling must yield the same value of (m) as in eq. 3.23, we replace m; with m;p; /q;,
which gives

1

<ﬁ1>:N MaD:

i’i (3.25)
= g

™=z

o
Il

While the value of the average estimated by sampling either of the distributions remains

unchanged, it is crucial to note that the variance A can be lowered by an appropriate choice
D

of the importance distribution. The most straightforward example is that of g; = —, where

q

1
the variance given by

1 X /m?p?
A= Z<é?—m&> (3.26)

i=1
is exactly 0. Of course that choice of g; is not realistic'! since it requires the knowledge of the
quantity (m) we seek to estimate. A few general prescriptions for choosing the importance
distribution are as follows.

1. g; should be non-zero whenever p; is non-zero.

2. The maxima of the true and importance distributions must coincide.

3. The density of sampled points {1,..., N} must be proportional to p;m;. This can
be refined to two considerations. First, the likelihood of rare events i for which the

111t can be shown that the variance for importance sampling is necessarily smaller than that of direct sampling

D
whenever q; = MiPi \where c is a normalization constant that ensures that the resulting numbers constitute a

probability distribution.
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corresponding value m; is large, must be increased: q; > p;. Second, for those rare
events which do not affect the average significantly, i.e., for which the corresponding
value of m; is small, should not be assigned a probability g; that is large compared to p;.
Neglecting this can lead to overdoing the importance sampling and hence increasing

the variance of the estimate [210].

Only the last property distinguishes the importance distribution from the true distribution.
It ensures that the rare events which presumably have a larger contribution to the average,
when the number of samples is low, are sampled more often. The quantity 1/w; = g;/p;
roughly tells us how many times a sample 7 is drawn by the importance sampler, for every
time it is drawn by the direct sampler. Ideally we would like this ratio to be proportional
to m;, as is the case for the zero-variance condition in eq. 3.26. When it is much larger than
m;, we run into the problem of overdoing the importance sampling for these events, while
if the ratio is much smaller than m;, we are essentially ignoring the effects of rare events
that significantly affect the average. The above mentioned conditions are generic and not
hard requirements on the importance distribution: the precise choice depends largely on
the application.

3.3.2.1 Importance sampling for quantum error correction

In the setting of classical error correction, importance sampling can be used by increasing
the probability of the outliers. Of course we do not know ahead of time what the outliers
are, but several techniques can be adopted to produce the desired effect. These techniques
are directly applicable to quantum error correction with Pauli noise models [51, ,52],
where we can reassign probabilities to the various Pauli errors. These methods however do
not carry over for non-stochastic noise models in a straightforward manner because there is

no probability associated to errors.

In sec. 2.4, we saw that the average logical fault rate of a quantum error correction
scheme, under any CPTP physical noise process, can be expressed as an average over syn-
drome measurement outcomes s, whose probabilities Pr(s) follow the Born rule of quantum
mechanics. But, the accuracy of an estimate of the logical fault rate using syndromes drawn
according to Pr(s) is plagued by the presence of rare syndromes. Particularly in the low noise
regime, while the syndrome probability distribution Pr(s) is sharply peaked at the trivial
syndrome s = 00.. .0, the logical fault rate conditioned on the trivial syndrome A/ (£5=%-9)
is insignificantly small. On the other hand, the logical fault rate conditioned on the rare
syndromes s = s* is large, see tab. 3.5. So, the average logical fault rate is largely determined
by the rare syndromes and therefore a large number of syndrome samples drawn according
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to Pr(s) are required to obtain an accurate estimate. Instead, we want a sampling technique
that encounters sufficiently many rare syndromes within a few samples, preferably in a
number of samples that does not scale with the inverse probability of the rare syndromes.

We would like to use the theory of importance sampling developed in the previous
section to estimate the logical fault rate, using syndromes drawn according to a new distribu-
tion where the probability of drawing a syndrome s is Q(s) such that rare syndromes s* are
assigned larger probabilities compared to their true likelihood, i.e., Q(s) > Pr(s*). We shall
refer to Q as the importance distribution and the corresponding sampling algorithm as the
importance sampler. Likewise Pr(s) is referred to as the true distribution and the corresponding

sampling algorithm as the direct sampler.

Since our goal is to increase the probability of the outliers, we choose a distribution
which limits the probability of the trivial syndrome in favour of the other syndromes. For

instance, we can set

Q(s) = (3.27)
for some power 0 < B < 1 and some normalization factor Z, where B is chosen such that
Q(0) = min (Pr(0),c¢), (3.28)

for some constant ¢ > 0. The idea in the above expression being that the trivial syndromes,
that contribute very little to the average logical fault rate are drawn at most a fraction c of
the total number of samples, while the rest of the drawn syndromes can potentially involve
outliers because their probabilities are boosted in Q, given by eq. 3.27. To see how the
variance can be lowered by the above choice of the importance distribution, let us resort to
computing the variance in the extreme case of two syndromes s = 0 and s = s* using the
definition of variance and mean in eqs. 3.20 and 3.21 respectively. In this case, Q(s = 0) = ¢
and Q(s = s*) = 1 — ¢, which results in the variance Ag given by

S=O)Pr(s = 2 =" )Pr(s = 5%)\
ro=ts = 0) (ML= s =) (MHE P =51)

cO(p?) . (3.29)

The above expression suggests that the variance Ag is much smaller that of the direct sampler,
Aineq. 3.21.

Let us discuss the straightforward generalization of the above importance sampling
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method for concatenated codes. In sec. 2.3.6 we discussed a recursive scheme for estimating
the average fault rate for concatenated codes. In essence, it involves sampling level —¢ syn-
dromes by assuming a physical noise process that is the result of quantum error correction
on the level— (¢ — 1) syndromes. See alg. 2 for details. First, let us rewrite the expression for
the average logical fault rate in eq. 2.38 introducing the importance distribution Q(s), in the

following manner that leaves the average logical error invariant.

Pr (s 2” !
F=Y Qse-1) A= 1) Z Pr(selse—1) fs, (3.30)
St-1 Q(
znfk
=Y Q(s1)W(s1) Y Q(sals1)W(sals1) ... Y Q(se—1lse—2)W(sr—1lsr—2) Y Pr(selse—1)fs,,
51 52 Se-1 sp=1
(3.31)
where we have used W(-) to denote the bias W(s) = Pr(s)/Q(s). The above expression

suggests that the recursive technique of estimating N in alg. 2 rnust be modified to draw
syndromes from the distribution Q(s) at every level intermediate and multiply W(s) to the
corresponding logical noise strength conditioned on s, i.e., N'(£°). The syndromes are now
drawn according to Q whereas the associated failure rate is multiplied by W in order to

preserve the average.

Figures 3.8 (a), (b) show comparisons of the average logical error rates for the level -2
concatenated Steane code, estimated by the direct and importance samplers for two different
physical noise processes, as a function of the sample size. First in (a), for a depolarizing
channel on which our intuition for the choice of importance distribution in eq. 3.27 is based.
Second in (b), for a randomly chosen generic CPTP noise process, following the prescription
described in sec. 3.1.1 with § = 0.01. In both cases, we have fixed the constant c in eq. 3.28
atc = 1/2. On the one hand, the estimate of the direct sampler is strongly affected by the
encounter of outlier syndromes as can be seen in the sudden positive jumps in the estimated
logical fault rate. When sufficiently many outliers are considered, the estimated average
seems to converge to a fixed value, when the sample size is approximately equal to 10°,
the inverse of the average logical fault rate. On the other hand, the importance sampler
converges to the true average, i.e, the same as the direct sampler for large sample sizes, even
at relatively small sample sizes. For that specific example, an importance sample of size

N ~ 5 x 10° yields the same statistical fluctuation as a direct sample of size N ~ 10°.

While this is a significant improvement, we cannot conclude that the importance distri-

bution we have chosen always provides an advantage. For instance, fig. 3.9 shows a much



104
103
S,
T 107®
I
=
~1077
= / ~-—o
I o~ .
) .(/ ‘ —— Importance sampling
B et : :
1078 1~ A~ - Direct sampling
é 1 p=237%x1072
:' B p=156x1072
107° ) @ p=103%x1077
¢ - p=6.83x1073
10t 102 103 10* 10° 106
N
(a)
107
-
\\\
—0-—,,
\//‘\.— \‘sa"\.ﬂl."\ 't.\
10 A e SN B N o
- 4 | W, T DS Mgy e et o i )
I\, Ve “ | 1 ] I ¥4 e TRun
1\ ¢ LR I “od Sy
I oaNe T, |
| Y T |
/ Nh
=" ’ +=
-7
10 /
|
|
|
/
————
—e— Direct sampling
—— Importance sampling
-8
10
102 10° 10* 10°
N
(b)

102

Figure 3.8 Average logical error as estimated by direct sampling (red) and importance sampling
(blue) as a function of the sample size for a random (fixed) physical channel &. In
(a) the logical error rate is calculated for a 49 qubit (level 2) concatenated Steane
code, while in (b) it is for a 343 qubit (level 3) concatenated Steane code. The direct
sampler underestimates the logical error rate with small samples, and makes sudden
positive jumps when an outlier is sampled. The importance sampler favours outliers
and thus converges to the right value using a smaller sample in (a).
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Figure 3.9 Average logical fault rates for the level -3 concatenated code, estimated by the

direct and importance samplers. Unlike the results for level -2 logical fault rates,

the advantage of importance sampling is less obvious in the case of level 3.
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less convincing advantage while using the same importance distribution on the same type
of physical channel as in the case of fig. 3.9 (b), for concatenation level ¢ = 3. This can be
attributed to the following fact. Our choice of the importance distribution relies on a heuris-
tic that all non-trivial syndromes contribute significantly to the average logical fault rate.
Hence any non-trivial syndrome is encountered a larger number of times by the importance
sampler as compared to the direct sampler. However, there are non-trivial syndromes whose
conditional logical fault rate is small. For instance, syndromes measured in the case of single
qubit errors. These are essentially the “unimportant" syndromes. Artificially increasing the
rate of encountering these unimportant syndromes s is against the spirit of point (iii), which
suggests Q(s)/Pr(s) < 1. Despite boosting the probability of unimportant syndromes,
the importance sampler estimates the average logical fault rate for level -2 concatenated
code, in a number of syndrome samples that is far lesser than that required by the direct
sampler. However, for higher concatenation levels, the effect of boosting the probability of
unimportant syndromes seriously impacts the convergence rates for higher concatenation
levels, as observed in fig. 3.9. And, unfortunately, the only way we can tell for sure that an
importance sampler converges more rapidly to the true average is to produce a much larger
direct sample to compare with. Thus, at this stage, importance sampling of quantum error

correction consist more of an art than a science.
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3.4 Summary

The results presented in this chapter can be broadly categorized into three parts.
1. Use of error metrics in predicting the residual error after quantum error correction.

(a) The residual error after correction depends strongly on the details of the
physical channel that are not captured by the simple notion of noise strength
measured by the conventional error metrics. We saw that the average logical

fault rate can vary over several orders of magnitude depending on those details.

(b) Whether decoherence increases or decreases the logical fault rate, depends

strongly on how the physical noise strength is quantified.

(c) While for most physical noise processes the residual error after correction closely

resembles a Pauli channel, coherent noise processes are exception to this trend.
2. Deriving new measures of noise strength that predict the average logical fault rate.

(a) We presented a two-step procedure to define a measure of noise strength. First,
we fit the logical fault rates from numerical simulation of different physical
channels to an ansatz containing a parameter that serves to quantify the noise
strength. Second, we used machine learning techniques to obtain a function of
the physical channel that closely approximates the fit-obtained parameter. The
machine learned definition of noise strength was better than the conventional

error metrics at predicting the average logical fault rate.

(b) We presented a technique of coarse-graining the details of a physical channel by
removing features that do not significantly affect the logical fault rate.

3. Addressing statistical errors in numerical estimates of the average logical fault rate.

(a) Numerical estimates of average logical fault rates are plagued by statistical errors.
These arise due to rare syndrome outcomes that significantly affect the average
logical fault rate. We also found that the number of rare syndrome outcomes are

more than the less-rare syndrome outcomes, by an exponential factor.

(b) We presented importance sampling methods which are designed to encounter
more rare syndrome outcomes that have a significant impact on the average
logical fault rate. Despite significant gains from this method for some cases, it

did not prove to be immediately useful for estimating very low logical fault rates.




Chapter 4

Conclusion

Building a quantum computer capable of outperforming classical supercomputers will re-
quire further developing and optimizing fault tolerant protocols. While simple optimizations
of featureless noise can be assessed by numerical simulations, we have argued in this thesis
that for realistic noise processes, reaching the level of accuracy of interest to optimize a
protocol for a modest quantum computer is far beyond the reach of current methods.

Recall the fault tolerant optimization cycle, described in the introduction chapter. The
cycle involves experimental characterization of the noise processes affecting a device, build-
ing a noise model and optimizing a fault tolerant protocol for the noise model. Implicitly, we
also require efficient analytical techniques or numerical simulation tools to benchmark the
fault tolerant protocol. We based our criticisms of the current optimization cycle for fault

tolerance protocols, on the following three issues.

(i) The difficulty of characterizing the noise in hardware.
(ii) The high sensitivity of fault-tolerant protocols to the parameters of the noise model.

(iii) The difficulty of numerically simulating fault-tolerant protocols.

In chapter 1, we reviewed some of the standard models of characterizing noise in quantum
hardware and ways of measuring the noise strength. These measures different wildly from
each other and had their own merits and demerits — while the fidelity was easily accessible by
experiments, the diamond norm on the other hand was challenging to probe experimentally
however it was readily usable in fault tolerance proofs. Hence, the possibility of a simple
characterization wherein a single parameter, such as one of the standard error metrics, is

used to model the underlying hardware, is unlikely. This reinstates point (i). In sec. 2.1 we
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reviewed standard methods of quantum error correction using stabilizer codes which was
later used to probe the logical error rate of a quantum error correcting scheme using the
concatenated Steane code. The results, essentially those summarized in figs. 3.1 and 3.2, are
evidence to point (ii). They show that the response of the quantum error correcting scheme
to an underlying noise model, which is quantified by the average logical fault rate, is highly
sensitive to the details of the noise model that are not captured by the standard measures of

physical noise strength.

The interesting question for noise characterization that still lingers — can the physical
noise strength be accurately quantified by a single parameter or a few parameters ? To ex-
plore this possibility we used machine learning techniques wherein the logical error rate is
approximated by a non linear function of a single parameter of the channel. Performing a fit
of the non-linear ansatz on the logical fault rates data, we recovered the single parameter
noise characterization of the underlying physical noise process. We then developed a ma-
chine learned model that can predict the extracted parameter directly from the complete
description of the physical channel. This resulted in a new measure of noise strength, shown
in fig. 3.6 which showed a better predictive power on the logical error rates. However, we
only managed to marginally beat the standard measures using the machine learned met-
ric; the logical error rates still varied over a few orders of magnitude across channels at a
fixed values of the newly found error metric. There is a lot of scope for improvement in the
machine learning approach of 3.2.1 that are worth exploring. For instance, one can impose
additional constraints on the learned model, which would provide a physical meaning and
desirable properties of sec. 1.2 to the resulting metric. Lastly, in sec. 3.2.3, we showed that by
allowing for more parameters in the description of the noise strength, one can have a better
prediction of the response of a fault tolerant scheme to the underlying error process.

Numerical simulations have been the holy grail of optimizing fault tolerance schemes,
widely studied to date for Pauli error models. These are identical to the classical case, in
that, the errors need to be sampled to produce an empirical estimate of the logical error
rate. On the other hand for the case of generic quantum noise models, we must resort to
sampling the syndrome distribution. This is intrinsically harder than the classical case since
the distribution of syndromes is not known apriori and computing it in general is not efficient.
On another note, we saw in sec. 3.3 that while probing the low logical error rate regime, one
where we would like a near term quantum computer to function, we face the problem of
characterizing rare events. Those syndromes that strongly affect the logical error strength are
actually rare, thereby demanding a large number of samples to produce a reliable estimate
of the logical error rate. While we partially addressed this issue for concatenated codes by

employing importance sampling techniques, our solution did not seem to be scalable to
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more than two levels of concatenation. These constitute our reasons for point (iii).

On the other hand, most of these difficulties disappear if we directly assess the quality
of a fault-tolerant protocol on a quantum computer. Concretely, this could be realized
by elevating the protocols used to characterize the noise strength of physical qubits to
characterizing the noise strength of logical qubits. For instance, we could perform logical
tomography [212, 213], or logical randomized benchmarking [192, 214], or logical gate set
tomography [39, 144, 215], etc. The feasibility of these protocols follows from the fact that
we are only interested in characterizing the validity of the gates to the extent that we are
going to use them. If our goal is to secure a one-day quantum computation to some constant

success probability, that a few days of logical characterization are sufficient to achieve it.

While it will certainly not replace the need for numerical simulations and experimental
noise characterization, we believe that the direct experimental characterization of fault-
tolerant scheme advocated here will at least be one important ingredient in the fault-tolerant
optimization toolkit. Experimental noise characterization has been critical for reducing
errors in physical devices because it provides insight about its physical origin, and there is
no doubt that this will continue play an important role. But fault-tolerant protocols are not
concerned with reducing errors in the hardware, their purpose is to cope with errors at the
software level, so do not benefit from a physical understanding of the noise mechanism.

Likewise, numerical simulations have been critical for developing new fault-tolerant
protocols and obtaining crude assessment of their performance. There is no doubt that
numerical simulation will continue to provide guidance into the theory of fault tolerance, but
compared to actual experiences they will be of very little use for the purpose of optimizing a
protocol to a given hardware. Numerical simulations have been extensively used to estimate
the logical fault rate A as a function of a physical noise parameters p of a simple noise
model. This has little bearing on the problem of estimating the logical fault rate for a realistic
noise models encompassing numerous fixed parameters. In particular, the protocol with the
best scaling as a function of p is not necessarily the optimal protocol for some set of fixed

noise parameters and for a fixed target logical fault rate.

Despite using an oversimplified noise model, the numerical simulations performed for
this thesis required 40 milliseconds per round for two concatenation layers of Steane’s code.
This is roughly 100 times slower than the anticipated time required by the hardware to
perform one error-correction round [216]. While this difference can easily be compensated
by performing simulations in parallel, the simulation of a full noise model — with noisy
gates and measurements and non-Pauli errors — will require far more resources. A recent

record shattering experiment used a supercomputer for two days in order to simulate a
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56-qubit circuit of depth 23, using up to 3 TB of memory [217]. This circuit is smaller than
the one required by two concatenation layers of Steane’s code. Moreover, it uses only pure
states, so in terms of memory and number of operations it is closer to a 23-qubit mixed state

simulation.

Just like the surface code simulation [53], this 56-qubit simulation used tensor networks
to achieve a computational speed-up, and surely other such tricks will be developed in
the future. But unless a numerical revolution occurs, it seems inconceivable that classical
simulations could be used to verify with confidence that a given fault-tolerant scheme
achieves the targeted logical fault rate 102 required to reliably run a modest-size quantum
computer for a day. But, by definition, this task could be accomplished in one day on a

modest quantum computer.

Perhaps the most powerful optimization tools will use a classical-quantum hybrid, where
the quantum computer is used as a sub-routine to the classical simulation. In fact, as we were
just finalizing the article [1], on which this the thesis is predominantly based, similar ideas
were proposed in a preprint [35] where a quantum computer is used as a subroutine in a
classical optimization procedure to numerically optimize a fault tolerant protocol to a noisy
device. The general task of working out a concrete optimization tool-chain is a challenging
problem which is left open for future research, as the needs develop.



Appendix A

Representations of quantum channels

In sec. 1.1.2, we saw that CPTP maps can be represented using (i) a unitary matrix on a
larger Hilbert space, otherwise called the Stinespring matrix (ii) Krauss operators (eq. 1.6),
(iii) Choi matrix (eq. 1.23), (iv) Pauli Liouville matrix (eq. 1.35) and the (v) Chi matrix (eq.
1.18). In this section, we will discuss the transformation rules to convert between these

representations. The below figure summarizes the transformation rules.

A.1 Converting between channel representations

The figure below various conversions between channel representations, each of which are

described in detail below.

1. Combining egs. 1.6 and 1.35, we find

r
=Y Tr(KePKEP)). (A1)
k=1

2. Using the action of £ in eq. 1.17 in the definition of I'(£) in eq. 1.35, we have

[T(E)];; = Y Tr(PPiPwPy) X1 - (A.2)

I,m

Define a 16 x 16 matrix O, such that Oy j4xi4m = Tr(PP;Py,P;). Then

IT(E))) = Qlx(&))), (A3)
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Choi matrix

sec. 1.1.2.2
eq. 1.25
eq. A.8
eq. 1.25 eq A7
Strinespring %' 15 Krauss Pauli Liouville matrix
eq. 1.4 operators ca. 1123
q-* eq. 1.6 eq. A4 i
Chi matrix
eq. 1.1.2.1 eq. A3

Figure A.1 Representations of quantum channels and rules to convert between them.

where |I')) and |x)) are the (column) vectorized forms of I'(€) and x (&) respectively,
such as in eq. 1.32.

3. Inverting the relation in eq. A.3, gives
X(€))) = Q7). (A4)
4. The two-qubit bell state in eq. 1.22 can be expressed as
P Y P,®P] (A.5)
g PP .
Combining this with eq. 1.35 gives

J(E) = iZE(Pﬂ@PMT, (A.6)

J(€) = Z [T(£));; P @ Pl (A7)
L]

5. Multiplying on either sides of eq. A.7 by P, ® P} and taking trace, we find

J-(Pa®P)) =Y T;PP®P'Pf
ij
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Tpe=Tr(J- (P @ Py)) . (A8)

We have not shown how one can recover the Krauss operators from £ in eq. 1.6, given
its Stinespring matrix U in eq. 1.4. This cannot be done deterministically since there is
information lost while constructing the Krauss operators, due to the partial trace in eq. 1.5.
However, one way of constructing a form for U is outlined in [73].



Appendix B

Speeding up numerical simulations

In this section, we will apply some simplifications to the functions to be computed while
decoding a stabilizer code over generic i.i.d channels, following the prescription of alg. 2.
Recall that there are essentially two functions that need to be computed.

(i) Probability of any given syndrome s, Pr(s) given by eq. 2.13.

(ii) Fidelity with respect to logical Pauli operations computed by the decoder in eq. 2.31.

(iii) The effective logical channel, £5; we choose to work in the Pauli Liouville representation
defined in eq. 1.35, so, we need to derive an expression for I'(&7).

B.1 Efficient numerical simulations of the quantum error correction protocol

In what follows, we will provide efficient formulas for each of the above three quantities
in terms of the physical channel’s Pauli Liouville Matrix I'(£y). We will use 1 to denote
the number of physical qubits in a code block and 7 to denote the total number of physical
qubits in a concatenated code. Recall from eq. 1.95 that for a concatenated code with ¢ levels,
n = O(n§). Although we will denote the number of encoded qubits of the concatenated
code by k, and the number of encoded qubits at each code block by k;, remember from our
discussion in sec. 1.4 that k, = 1 for all £ and as a consequence of eq. 1.95, k = 1.

Recall eq. A.8: in order to obtain I'(£7 ), we must compute the Choi matrix of the effective
channel 7 (&7). This in turn requires us to compute the result of applying the effective
channel to one half of a bell state in eq. 1.22. To obtain this state, we will follow the steps of

the quantum error correction protocol in sec. 2.3 applied on the bell state p.
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To start, we prepare a (19 + k) —qubit state po which consists of a maximally entangled
state between an encoded qubit in the Steane code and a reference qubit. The encoded bell
state p can be prepared by measuring the operators for which p is an eigenstate:

1 &
POIEZHOPuI—IO@PEI (B.1)
u=1

where I1j is the code projector defined in eq. 1.83 and P, are the Pauli matrices. While
applying the noise process, we must keep in mind that the reference qubit is noiseless while
the qubits of the Steane code undergo an 19—qubit i.i.d channel £ ®" whose Pauli Liouville

matrix is I. The result of applying the noise on pg in eq. B.1, is

_ 1 & -
Epo) = 45 3 €7 Py Tho) @ Py (B.2)
u=1

B.1.1 Simulating syndrome extraction

Now, the expression for the probability of the syndrome Pr(s), can be simplified as follows.

Pr(s) = Tr(E®™(po) I1s)

= 4 DTHE(ITy P, Thy) TIL) Te(P])
= e TH(€ 2 (ITy) TI,) (B3)

Let us now derive a simple expression for the projector I'l;. Expanding the product in eq.

2.12, we can write

=) ¢35, (B.4)
Ses
While each of the I, are 2" x 2™ matrices, their explicit forms need not be stored, instead
we only need to store the phases {¢;} where s labels a syndrome and j, a stabilizer element.
Hence, there is an exponential saving in memory. Applying this form to eq. B.3 yields

1 1 /
Pr(s) = 5F Tk S;S S/;$¢§/Tr(5®”°(5) S'). (B.5)
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The action of the channel on the stabilizer element can be expressed using Pauli Liouville
matrix in eq. 1.35, as

EBM(S) = Z [T'(€) ®”°]i].Pj
]
where i is simply the index of the stabilizer S, in the set of all np—qubit Pauli matrices and

Pj is a Pauli matrix. Employing the above formulation in eq. B.5 yields

Pro) = o s L L@ "] 9475 )

PeS

= oo Z Z [ ®n0]i]' 4’]51 (B.6)

PGSP GS

P

where in the last equation we have used the fact that Tr(P; S') is non-zero if and only if
P; = §',in which case, it is 2. Finally we obtained a simple expression for Pr(s), as required
in step (i). In our numerical simulations, the above expression for Pr(s) is computed by
simply slicing an array, which is efficient in the matrix implementations of the Numpy
software package [215].

B.1.2 Simulating the decoder

Recall that once a syndrome is sampled according to Pr(s), we must design a recovery
process that is conditioned on s. This is described in two steps. First, application of a pure
error in eq. 1.92. Second, computing the logical Pauli operation that maximizes the fidelity
in eq. 2.31, which can be expressed for the input state pg in eq. B.1 as

1 - P ( Iz T pT
Pre(L|s) = P ; ;Tr(L I P, 11y L T, T1s €™ (I1g Py, Io) 11, To) Tr(P) P)
(B.7)
1
= S Pie) u; Tr(LTIp P, L Ty IT €97 (I1g P, T1o) 115 Ty)
1 ®
= P ETr (L P, L E¥M (1T P,) IT;)
4 p—
W Y L T(LPLEW(R)IL) (B.8)

u=1

1
P,‘Eﬁus
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1 2 ; —

= T 21 Y L [N(€)¥™], Tr(L Py L B IL,)
u= 1 ]

i €Py S

el

1 ! s 1o
= 3 pr(s) Lo e, (B.9)

j
PPEPyS peLP, LS

ST

where in the last expression, we have used eq. B.4 to rewrite I'l;. Hence, similar to eq. B.6,
we now have an efficient method to compute the quantity in step (ii). The logical recovery
operation L, is computed by maximizing the fidelity function, see eq. 2.31.

B.1.3 Computing the effective channel

Let us now turn to the computation of the effective channel in eq. 2.29 when the input state
is po, In this case, note that the output state o, is simply 7 (£} ). Using eq. B.1 for p, it can be
expressed as

1 & & & - -
J(E) = & Yo Y Y Te(L. T 11 £9™ (1 Py) s Ty Lu g P,) Tr(P) Py) Pa ® Py
a=1 b=1 u=1
1 & 4 & - -
Y Y Y Tr(E®™(ITy Py) I Ly P, L) Tr(P} Py) Pa® P

4 a=1 b=1 u=1
1 & & - B
=i 1 L (-D)P (97 (1o Py) s L Py L) P @ Py, (B.10)
a=1 b=1
where &y is equal to 1 if b corresponds to the index of a Pauli matrix P where PT = —P and

0 otherwise. The coefficient of P, ® P, in the above sum can be simplified as follows.

_ _ 1 _
Tr(Le €70 Py) IL Lo Po) = g Y L [0(€)%™],, Tr(B 1L L, P, L)
P; Elﬁb S

k
:23—k L Y, ¢ [rE°m], . (Bl

1

]
PiePyS pel, P LS

Hence, the effective channel in eq. B.10 can be rewritten as

4k g4k
J<5f>=szgl;<—1>5b Y X ¢ [r©], (hen)

i ]
FiePyS pel,P,L.S
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Finally, we can use the formula in eq. A.8 to yield I'(£7), as required in step (iii), whose
entries are given by

M =g L 4 [0, B.12)

i ]
FiePiS peL,PyL.S

B.2 A note on time and space complexity

The n9—qubit process matrix [I'(€)“ 7} contains 4°™ elements, the expressions in eqs. B.6,
B.9 and B.12, only involve 4"** of them — these are the elements [T'(£) ®7] ;j such that the

Pauli operations P; and P; are in the normalizer A (S) of the underlying code.

The derivation of I'(£}) terminates one level of the simulation, that requires O(4™)
elementary operations. To obtain I'(£3 ), we need to repeat the above simulation the physical
channels constituting I'(£7) are the effective channels {Fil’j }721 from the code blocks at
level —1 where s1 ; are part of the syndrome s, expressed in egs. 2.2 and 2.3. Therefore, the
acquisition of an effective channel for ¢ concatenation level, £, requires ng_l error correction
steps at level 1, néfz error correction steps at level 2, and so on. Hence, the time complexity
of computing & is 4"n§, which is still a polynomial function of the total number of physical

qubits in the concatenated code, see eq. 1.95.



Appendix C

Computing the Diamond norm

In this appendix, we will outline the method used to compute the Diamond distance er-
ror metric ||€ — id||, discussed in sec. 1.2.3. In its entirety, the discussion here will be a
compilation of results that are rigorously proved in [148, 132].

C.1 Semidefinite program to compute the Diamond distance

In eq. 1.48, we see that ||€ —id||¢, is defined as the maximum trace distance between the
inputs and outputs of £, where the input is allowed to have a dimension larger than that
on which £ in which case the action of £ can be on subset of qubits of the input state. The
first simplification to this definition for single qubit channels £ is that it suffices to consider
input states with at most two qubits. Even with that being said, the computation might
appear notoriously hard as it seems like a double maximization problem — the trace norm
distance is itself the result of a maximization problem, see eq. 1.75. However, it turns out
that the Diamond norm can be formulated as a semi-definite program — a class of optimization
problems wherein the constraints include positivity of matrices [147]. For a matrix A, by
A = 0 we mean that A is positive semi-definite, i.e, the eigenvalues of A are positive.

Let p be any quantum state, we have ||p||;. Any such unit trace norm state can be
expressed as a convex sum of rank-one matrices, expressed as |u) (v| for some vectors |u), |v)

obtained by a singular value decomposition of p, i.e.

o =Y (ulplv)|u) (o], (C.1)
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where (v|v) = (u|u) = 1 and (u|p|v) > 0 since p is a positive operator. Using the above
equation, the Diamond distance error metric in eq. 1.48 can be formulated as a maximization

over the vectors |u), [v),

1€ —id[lo = max[[(€ —id) )_(ulplo)|u) (@l|l

u,0

= max [[(€ —id)[u) (0[] - (C2)
Similar to eq. 1.21, we can interpret |#) and |v) as vectorized forms of some matrices, i.e,

u) = [A)), |v) = |B)), (C3)
(vlv) = [|All2 = Tand (ufu) = |[B|]> = 1. (C4)

The vectorized forms of matrices A and B can be expressed as
[A)) = @@ AT) Y ) @ i) (C.5)
i

((B] =) _(i| ® (i|(I® B*). (C.6)

1

Hence, eq. C.2 can be rewritten as
1€ —id]lo = max{[[(T@ AT)(€ —id) (L [} (jl © [ ()X @ BY)[l1 = [[All2 =1, [[B|2 =1}
i,j
= max{||(T® A")J (€ —id) (T B)|[1 : ||All2=1, |[B]l =1}, (C7)

where we have used eq. 1.23 to introduce J (€ — id), the Choi matrix corresponding to
the map £ — id. Now, using Polar decomposition [128], we can write A = cU where ¢ is
the positive square root of a positive operator, ¢ = ,/p1. In fact, p1 = VATA. Likewise
B = /p>U. Hence we have

1€ — idl[, = max{]| (@ UT/p1)T (€ ~id)(I® ypzU*)|ls : pr,p2 € PSD(2 x 2)}
— max{||(I® o) T (€ ~id)(A® vl : 12 € PSD(2x2)},  (CH)

wherein we refer to the set of 2 x 2 positive semidefinite matrices as PSD(2 x 2). Furthermore,
we have used the unitary invariance and the cyclic property of the trace. Finally, using the
formulation in eq. 1.75, we find

T ® v/p1)T (€ —id)(IT® /p2)] 1
= max{R(K, (I® /p1)T (£ —id)(T® {/p2)) : K& Cyxy, ||K||2 =1}
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= max{R((I® /p2) KL @ /p1), T (€ —id)) : K € Cyug, ||K||2 =1},
(C.9)

wherein R denotes the real part of the expression that follows it and C,,x, the set of m x n

matrices with complex entries. Combining the above with eq. C.9, we have

1€ —id||¢ = max{R(X, T (£ —id)) :
X € Cyns,p1,p2 € PSD(2 % 2), X = (1 /o)KW ® /p1))} . (C.10)

The last ingredient in the formulation of the semidefinite program is the expression of the
constraint,

X = (1@ /p2)KA® /07) (C.11)

as a positivity condition. For this, we will use a theorem from (theorem IX.5.9 of) [128], also
proved in [132], that states

I®pp X
=0 (C12)

X* H@pz

if and only if the condition in eq. C.11 holds. We can finally state the semidefinite program
for the calculation of ||€ — id||¢.

maximize : % (TH(T (€ —id) - X) + Tr(T (€ —id)* - X*)) (C.13)
I®p X
such that : =0
X* I® p2
p1,02 =0

Tr(p1) =1,Tr(p2) =1
X € Cyxyg .
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C.2  Numerical tools for computing the Diamond norm

There are several implementations of the above semi-definite program to compute the
Diamond distance between two CPTP maps. In [219, ], one can compute the diamond
distance between two CPTP maps &, F by providing the Choi matrix (see eq. 1.23) of the
difference between £ and F: J () — J (F). Others such as [5] are designed to compute the
diamond distance of a CPTP map £ from the identity map id.



Appendix D

Surface codes over erasure channels

In the main study of this thesis, particular from [1], we have not focused our attention' on a
particular type of quantum error correcting codes. While a general purpose optimal decoder
for a stabilizer code is not believed to exist, there are efficient> decoders for some families of
quantum codes. One such family is called Surface codes [55, 56, 57, 11].

Surface codes are a subclass of stabilizer codes, those discussed in sec. 1.3.1. The best
way to describe the stabilizer generators of a surface code is associate them to a tiling of a

surface, as shown in fig. D.1.

First, associate a qubit to every edge of a [ x I lattice. To every vertex v, associate a
stabilizer generator S, that acts as X on the qubits corresponding to edges incident on v
while as I on all other qubits. Likewise, to every face (plaquette) f we associate a stabilizer
generator Sy that acts as Z on the qubits corresponding to the edges of f while as I on other
qubits. Applying the definition in eq. 1.80, it can be shown that the code in fig. D.1 encodes
two logical qubits. In general, the tiling with (V, E, F) of a closed surface of genus g can
be used to define a surface code with parameters n = |E|,k = 2g,d = O(1/n); see chapter
19 of [161]. These codes have several favourable features with pertinence to fault tolerance

proofs [221, , 13, ], physical realizations [58, 59, 60, 61, 62] and classical simulations

[ 7 4 7 ]‘

While they are good for experiments, it has been proved in [63] that k and d are severely

IFor the numerical simulations, our choice for the concatenated Steane code is solely due to complexity
reasons. In general the numerical simulation of quantum error correction have exponentially growing runtime
and memory requirements, with n.

2Yet suboptimal, however, many families of quantum codes have decoders whose associated logical error
rates as very close to that of the optimal decoder.
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Figure D.1 Toric code (see chapter 19 of [161]) defined using a square lattice embedded on
a Torus. The above lattice has periodic boundary conditions. A qubit is uniquely
associated to every edge of the above lattice and a stabilizer generator to every face
p (plaquette), denoted by A, and to every vertex v, denoted by B,. While A has
non-trivial support on qubits corresponding to the edges in the face p, on which it
describes a Pauli Z operation, the operators B, on the other hand describe Pauli X
operations only on the qubits on edges incident on v. Note that the supports of A,
and B, always intersect on an even number of qubits, ensuring their commutativity.

limited by the relation
kd*=cn, (D.1)

for some constant ¢ > 0. Therefore the overhead — number of physical qubits per logical
qubits — is quite large, in particular, k is a constant independent of n. While that is indeed a
serious concern for building a quantum computer, for an experimentalist, the details are
still hidden in the constant. Considering the current day experimental challenges, surface

codes are still one of the best choices [224, 190] for demonstrating quantum error correction.

We would like the constant in eq. D.1 to be as small as possible. For the famous case of
the square lattice Toric code [225], ¢ = 1 in the limit n — co. It turns out that for finite sizes,
one can modify the properties of the underlying surface and its tiling to encode more qubits,
thereby modifying the value of c. We will describe the work in this direction with reference
to results obtained in [2, 3], while omitting the mathematical rigour. The results can be
divided into two parts. First in [2], we propose an extension to surface codes by including a
larger class of tilings. Then in [3], we propose an efficient, linear time decoding strategy, for

these generalized surface codes, over an error model known as the quantum erasure channel.
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D.1 Generalized surface codes

It is easy to check that imposing boundaries on the tiling in fig. D.1 gives a surface code that
does not encode any qubits. The general prescription for encoding is to remove geometries
that support stabilizer generators. The removal of a stabilizer generator can be understood
geometrically as puncturing the surface or removing a vertex or a face from a tiling. While
the deletion of a face appears as a smooth alteration to the boundary, the deletion of a vertex
leads to rough boundaries wherein the faces containing the deleted vertex are no more closed.
These are commonly known as rough and smooth boundaries in the literature [55, 226], while
we used a different nomenclature in [2] which we will explain now. We call an edge on the
boundary of the tiling to be “open” if it corresponds to removed qubit. Else it is “closed”.
Now, the vertices of an open edge are also called “open”, others are called “closed”. The
tiling in fig. D.2 contains 14 open boundary edges and 6 closed boundary edges represented
as dashed and solid lines respectively. Note that removing stabilizer generators leads to
closed boundary edges while removing qubits generates open boundaries. One can perform
any combination of these on a tiling, in general, it would produce a new tiling with open as

well as closed boundaries as in fig. D.2.

Let us introduce some notations for future discussions. The set of boundary edges is
denoted by JE, of these, edges that are open are denoted by dEp and those that are closed, by
oEc. Likewise, boundary vertices, closed vertices and open vertices are respectively denoted
by 0V, dVp and 0V. Furthermore, let x(G) be the number of connected components [227]
in G. Each connected component is simply a subgraph of G, denoted by G;. Let us denote by
ks(G), the number of connected components G; = (V;, E;, F;): (a) when S C E, E; C S and (b)
when S C V, V; C S. For example, K(-,O—V(G) denotes the number of connected components
with no open vertices and x5y denotes the number of connected components of G with no

closed edges.

Another useful notion for a tiling defining a surface code is its dual, cf. chapter 19 of
[161], denoted by G, = (V,, E,, F,). The tiling is defined as follows. For every interior face

o

f € F, we associate a unique vertex v¢ € V, and to every v € V, we associate a unique face
fo € Fi. Now, if e = (u,v) is in E, then (fy, fo) is the corresponding dual edge in E,. Hence,
there is a bijection between the edges in E and those in E,. Only the closed edges in the
boundary correspond to physical qubits, the open edges are only virtual locations, they
have no dual counterpart. Consider the closed edges e € dcE: these correspond to a qubit
that is checked by only one Z—type generator. Hence they are mapped to qubits that are
checked by only one X—type generator. Let f € F be the unique face that contains ¢, which
is identified with vf € V.. Now, e is identified with an open vertex v, € dpV, and a closed
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edge (v r v,) is introduced. If two closed edges e, ¢’ € E share a vertex v € 9V, then an open
edge (v, ve) is introduced. Hence the X —type stabilizer supported at v is identified to a
unique Z—type stabilizer supported on the (unique) face with the open edge (ve, v,).

The use of the word “dual” here is with reference to the duality between the supports of
X and Z type operators. Clearly, the Z—type stabilizer generators that are supported on faces
in F are supported on vertices in V, and X —type stabilizer generators that are supported
on the vertices in V are supported on the faces in F,. The dual-mapping at the boundaries
ensure that missing X —type stabilizer generators are necessarily mapped to missing Z—type
stabilizer generators and vice-versa. This dual mapping simplifies the analysis of surface
codes, particularly, of the structure of the logical operators as the support of Z—type logical
operators is obtained from the dual mapping of the support of the X —type logical operators;
and vice-versa.

D.1.1 Parameters of the surface code

Just as in sec. 1.3, a generalized surface code is parameterized by [[n, k, d]]. Clearly, n = |E|,
the number of edges in the graph. In order to compute k, we will build on three facts.

(i) The number of logical operators, that is the dimension of the quotient group N(S) /S
in eq. 1.84, is 2k.

(ii) Every operator in N (S), must be supported on a cycle of G.

(iii) Any product of stabilizer generators supported on faces in F, belongs to S.

Developing on point (i), we observe that for CSS codes such as the surface codes, there are
k logical operators of the Z—type and k of the X —type. Furthermore, the X —type logical
operators are supported on the dual components of the support of the Z—type logical
operators. These anti commute as given by eq. 1.86. Since the vertices in V' are associated to
X —type stabilizer generators, we will consider Z—type logical operators supported on a
subset of edges in E such that it commutes with all the X —type stabilizer generators. Hence,
to determine k, it suffices to count the number of independent generators for Z—type logicals.

Fact (ii) can be used to determine the number of independent generators for Z—type
operators in NV (S), denoted by dim(Nz(S)), which is the same as the dimension of the
cycle space of G, popularly known as the cyclomatic number v(G) of G [227], given by

v(G) = |E| — |V]|+x(G), (D.2)
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for closed graphs G. In the general case where G can have open vertices, it can be shown that

v(G) = |E| - |V

+15:7(G) - (D.3)

Refer to proposition 4.1 of [2] for a proof of eq. D.3 that reuses the result of eq. D.2 on the
double-cover of the open graph, which is closed.

Using fact (iii), we can determine the number of independent Z—type stabilizer gener-
ators, denoted by dimg, . Clearly, there are |F| stabilizer generators. Let G; be a connected
component of G with no closed edges. In this case, every edge in E; is shared by two exactly
faces in F;. Then for one of the faces, f € F;, the corresponding stabilizer generator can be
obtained as a product of the stabilizer generators corresponding to faces in F;\ f. Hence,
there is one face whose stabilizer generator is redundant. Note that this argument does not
hold when there is a closed edge in JE; because a closed edge is unique to some face. Hence,
the number of independent stabilizer generators, m;, supported on a connected component
G;is

F|—=1 if |0cEj| =0
m; = ‘ 1| 1 | C 1| . (D.4)
|Ei| otherwise
Adding m; from every connected component yields
dim(Sz) = |F| — x5£(G) - (D.5)

Equation D.3, gives us dim(Nz(S)) and eq. D.5 provides dim(Sz). Recalling (i), we
have the following expression for k in terms of the tiling elements (see theorem 3.2 of [2]),

(o}

k:‘E‘— V _|P’+K807V(G)+K8C7E(G) (D6)

Figure D.2 shows a surface code with square lattice architecture that encodes four logical

qubits.
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Figure D.2 The tiling in (a) and the dual tiling in (b) that describes a [[258, 4, 4]] surface code.
The solid lines in the boundary represent closed edges while dashes ones represent

the open edges.
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D.2 Error model

Before studying the quantum error correction properties of the above defined generalized
surface codes, let us briefly describe the underlying error model known as quantum erasures
[228, , ]. This is quite different from those considered in sec. 1.1. Quantum erasures
are referred to as leakage errors in experiments [231, , , ]. It a describes case when a
quantum whose two energy levels are used to encode a qubit, is found occupying an energy
level that is outside the encoding. Denoting by |e), all the states outside the qubit encoding,
quantum erasure can be described using a stochastic map &,, specified as [235]

Ep(p) = (1 =plo+ple) el (D.7)

Clearly, the above map is not trace preserving. However, it can be turned into a trace pre-
serving map by simply placing a fully depolarized qubit in place of the erased one, i.e, by
replacing |e) (e| in eq. D.7 by I/2. In other words, with a probability p, a random selection
of Pauli operators in {I, X, Y, Z} is applied. With that change, we refer to the noise model
as the quantum erasure channel. In fact, it is a special case of a Pauli noise model wherein
the support of the error is known. For the n—qubit case, let us assume an i.i.d application
of the quantum erasure channel. On the surface code tiling, the erasure induces a tiling
Te = (Vg, Eg, Fe) where (i) E¢ correspond to erased qubits, (ii) Ve to vertices all of whose
incident edges are erased and (iii) F¢ to faces all of whose incident edges are erased.

Although it is not critical to the decoding strategy we propose in the following section,
let us still assume that the action of the quantum erasure channel on n qubits is in an i.i.d
fashion, i.e. described by E(p)®" where E(p) is given by eq. D.7. In other words, the effect
of an erasure can be simulated as follows. For every qubit at edge e;, a random selection of
the four Pauli operations in {I, X, Y, Z} is applied with a probability p.

D.3 Decoding surface codes over erasures

D.3.1 The decoding problem

The task of the decoder is to identify the resulting Pauli error, up to a stabilizer, just as
described in sec. 1.3.3. The key difference is the knowledge of the erased locations — the
optimal decoder is supplied with the support of the error that occurred. In our discussion

for this section, we will denote the support of the error £. Note that £ is just a set of edge
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indices, so, the erased qubits, the erased edges, all refer to the same set: £. The decoder therefore
is supplied with £° and the measured syndrome, see eq. 1.91, s. The knowledge of £ implies
a serious dichotomy for the result of decoding [3], implying one the two following cases.

(i) Succeeds with probability 1: When no logical operator can be supported in &, any
error with syndrome s that is supported on £ is the optimal correction.

(ii) Fails with probability O(1): When there is at least one logical operator supported in
&. In this case, there is no method of determining if £(p)®" applied a non-identity
logical operator or not. So, decoding amounts to taking a random guess, that simply
fails with probability O(1).

In [3] we say that & is correctable when (i) is true, while it is uncorrectable when (ii) is true.

D.3.2 Benchmarking

Benchmarking a decoding scheme is then a method of determining its average success
(failure) probability. For stochastic noise models, the average is taken over the probability
distribution over errors. The standard* numerical method of benchmarking a quantum error
correction scheme is a Monte Carlo technique, where the following steps are repeated for a
large number (N) of times [51].

(i) Generate a random error E with probability p(E). In the i.i.d case where the noise is
EZ"(p): at every qubit, an erasure is performed with probability p.

(ii) Use the quantum error correction algorithm to propose a correction E’.

(iii) If the residual error is a logical operation in £, conclude failure. Else, conclude success.

Finally, the average failure rate is simply the total number of times the above steps result
in a failure, divider by N. For surface code and Pauli noise models, step (ii) is the most
time-consuming of all. Until recently, see [236, ], decoding algorithms for surface codes
ran in time that is, at best, quadratic in the size of the code [11, 223]. For large tilings, this
becomes infeasible [51, 238]. In the approach of [3] we implement a method of benchmarking

3This is quite special because it removes the important ambiguity in finding a recovery operation that can
potentially result in the application of a residual logical transformation. For Pauli errors, we can typically only
measure its syndrome. In other words, for surface codes, we only know the end-points of £, so optimal decoding
involves searching over all possible recoveries that are supported on edges that have the same end points as £.
*Non standard techniques using Green Sampling - recycling the random errors
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wherein step (ii) is entirely circumvented — we can directly classify £ into one of the two cases
discussed in sec. D.3.1. Furthermore, this can be achieved in linear time, thereby yielding a
benchmarking strategy that has O(n) time complexity.

In what follows, we will describe a formula to count the number of logical operators in
L that are supported in £. We denote this quantity by kg (G)°. The decoder will succeed if
and only if k¢ (G) and kg (G*) are both zero.

Let us introduce some notations. Denote by G¢ = (Vg, Eg, F¢ ), a subgraph of G, where
Ve=V,Ec=¢& (D.8)

and Fg is the set of faces formed by erased edges in E. In other words, a face f € Fisin F¢ is
all of its edges are in £. Now, (see theorem 4.4 of) [2]
v

Note that all of the terms in the above expression are compatible in linear time, using

standard graph algorithms [239].

In what follows, we will describe the idea used to derive eq. D.9. Our line of reasoning
will be analogous to that used for eq. D.6, now applied to G¢. First, note that using fact (i)
of sec. D.1.1, we note that an expression for k¢ (G) is the difference between the number of
independent generators of the groups Nz(S) and Sz that are supported in €. Then using
fact (ii) of sec. D.1.1 and eq. D.3, we remark that the number of independent generators of

Nz(8) supported in £ is simply

It only remains to count the independent generators of Sz supported in £ (see fact (iii) in
sec. D.1.1).

Any stabilizer that can be supported on the erased qubits must correspond to a sum of
faces, whose boundary edges are erased. Told differently, any face or a sum of faces that is
enclosed by the erasure pattern must be such that its boundary®. edges are erased, i.e, in
£. Told differently, if an edge is not in £, then it must appear as a boundary of either (i) no

faces in I or (ii) two faces in I. Edges not in £ are basically in €. Recall that there is a bijection

SFormally, the quantity represented by kg (G) is known as the homological dimension of the graph G. Refer to
[2, 3] and the references therein for details.
®Note that the boundary of a sum of faces is simply the sum of boundaries of the constituent faces.
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between the edges of G¢ and its dual G, whereas a set of faces I of G¢ are mapped to a set
of non-open vertices I* of G%. As a result, the edges in £ are incident to (i) no vertices of I*
or (ii) two vertices of I*.

If a stabilizer generator is covered by the erasure, the corresponding dual vertex, say
u,is in I*. Let v be another dual vertex such that the edge (u,v) is not erased, i.e, it is in E.
Then according to case (ii) v is in I*. Following this way, the entire connected component of

non-open vertices containing u is in I*.

Suppose there are m = x5 (G") such connected components: {If, ..., I; }. The stabiliz-
ers S; given by the product of generators corresponding to the dual vertices in I form a basis
to describe any stabilizer supported on I;. Lastly, as remarked in eq. D.5, those stabilizers
that are supported on connected components with no closed edges are redundant. Hence,
we find that the number of independent generators for Sz supported in & are

Now, taking the difference of the expressions in eqgs. D.10 and D.11 gives the quantity

representing kg (G) in eq. D.9.

D.4 Results

The benchmarking strategy discussed in the previous subsection can be used to evaluate
the performance of many surface code architectures over quantum erasure channels. To
showcase the advantage of a linear time strategy we have shown benchmarking results
for surface codes with up to n = 120000 qubits in fig. D.3. In these cases, if one were to
follow exactly the steps (i) to (iii) in sec. D.3.2, instead of using the formula in eq. D.9, the
quadratic run time cost would mean several single-CPU years in computing time. Note
that even for moderate sizes of surface codes, for eg. n ~ 200 qubits, a perfect matching
decoding technique such as the one used in [240] has been reported to have a runtime of
several hundreds of single-CPU hours [241, ]. Whereas, the codes in fig. D.3 are larger in
size by several orders of magnitude.

The set of codes depicted in this figure belong to a family known as hyperbolic codes
[242, 243, 244, 238]. They are a subclass of surface codes defined using a planar graph G
embedded in a hyperbolic surface. When such a graph is regular, it is classified as (I, m)
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Figure D.3 Benchmarking results for surface codes defined over regular planar graphs where
the degree of every vertex is 5 and length of every face is 6 on hyperbolic surfaces.
Note that the benchmarked codes have up to 120000 qubits and each estimate of
the failure probability is estimated using 10° Monte Carlo trials. For the largest
code, the longest time taken to estimate a decoding failure probability was 2 hours
on a single CPU. This figure can be found in [3].

where [ is the degree of the vertices [ and m, the length of its faces. In fig. D.3, the underlying
graph G belongs to the class’ (3,6).

D.4.1 Correlated erasures

The formula in eq. D.9 is at the heart of the efficient benchmarking strategy discussed in sec.
D.3.2. Since we make no assumptions on the error model, i.e., the probability of erasing a
subset £ of qubits, the benchmarking strategy invariantly applies even when noise is not
i.i.d. In particular, we would like to study an interesting regime of noise processes for which

"In such embeddings, we additionally impose periodic boundary conditions. See [243] for how this is done.
For I = m = 4, we have the square lattice embedded on a torus, known popularly as the Toric code
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Figure D.4 Benchmarking results for the surface code shown in fig. D.2, over the i.i.d erasure
channel of eq. D.7. The probability of decoding failure is estimated using 10°
iterations of the Monte Carlo procedure outlined in sec. D.3.2. The above plot shows
39 different values of p and all of the corresponding estimates were computed in
just 6 minutes and 46 seconds on a single CPU.
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most efficient decoding strategies, are not tailored: correlated errors®.

We studied two cases of spatially correlated noise on the square lattice Toric code. In the
tirst case, £ is constructed by erasing a ball of qubits, of some radius centered at a location
with probability g. Specially, noise process is simulated as follows.

(i) Every edge in e € E is labelled as a center with probability 4.
(ii) When e is labelled as a center, a Poisson random number / is generated with mean /.

(iii) Denote by By(e), the set of edges within a distance ¢ from e. The edges in 3, are erased:
E— EUDB,.

Such a noise model resembles the classically studied model of burst errors [245, 246, 247] and
{ plays the role of a mean correlation length. We cannot control the shape of the clusters By (e),
however, on average |B,(e)| ~ 7. Fora sufficiently large lattice where the edges in B(e) do
not overlap. Hence, we can coarse grain the lattice by shrinking each of its dimensions by a
factor of £ so that the erasure balls B;(e) behave effectively as independent erased qubits. In
this coarse grained formalism, we expect the benchmarking results of spatially correlated
errors on a L x L lattice to be similar to the benchmarking results of an i.i.d error model on

a L/Z X L/Zlattice.

What the coarse grained picture fails to take into account are the facts that (i) for small
lattices, the balls B,(e) have a greater probability of overlapping and (ii) the logical operators
for the square lattice Toric code are string-like. Hence, a ball of area s supports a logical
operator when its diameter 2 is roughly equal to the minimum distance d of the code. Since
the average diameter of the erasure balls in fig. D.5 does not increase as fast as the minimum
distance of the respective codes, the performance seems to improve for larger codes. In other
words, when a fixed fraction p of qubits are erased on a L x L square lattice, in an i.id model
the erasures can be randomly placed whereas in the correlated model, they must be confined
to balls of size 7. Hence, there roughly p L? / 7 (non-overlapping for sufficiently large L)
erasure balls. In the worst case, all the erasure balls line up end-to-end to support a logical
operator of weight d = L. This will occur when

26;:? <L

<L
P=ar-

8There have been decoding algorithms for surface codes which can be tailored for any CPTP noise process,
including correlations, see [53], however their run time scales exponentially.
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However, an average case corresponds to the case where only 4 /2p L? / 7 are lined up. In
this case, we observe that for p < 1/2, choosing a larger lattice yields a better performance.
Our reasoning coincides with the numerical simulations shown in fig. D.5 showing that we
can benchmark spatially correlated error models when p.

Another example of spatially correlated error model that was benchmarked is one where
the distribution of erasures on a lattice is given by the Gibbs distribution [248]. The Gibbs
distribution naturally features in the study of spin configurations of the 2D classical Ising
model, defined on a square lattice by the Hamiltonian

H=-]Y 85 -BY.S;. (D.12)
(i) i

The probability Pr(¢) of a spin configuration ¢ is then given by the Gibbs distribution

exp(— ky/p H)

Pr((_T') = 7 s

(D.13)

where kj, is the Boltzman constant and for future discussions, the inverse temperature §, will
be set to 1. We will now describe how an error model can be defined by the distribution in eq.
D.13. First, let us associate to a surface code on a graph G = (V, E, F), an Ising model with
|E| spins 71, ..., 0], such that 0; € {—1, +1} is associated uniquely to edge ;. Whenever
two edges e; and e; share a face in F or a vertex in V, an Ising type interaction of strength |
is introduced between spins ¢; and ¢;. Hence the resulting Ising interaction graph is simply
the line graph of G [249].

Finally, given the parameters |, B and 3, we construct an erasure error whose probability
is given by eq. D.13, in two steps.

(i) First, by sampling a configuration ¢ of the Ising model. This is achieved by using the
widely known Markov Chain Monte Carlo method [250, , ].

(i) Second, constructing an erasure error & givend,as& = {e; : 1 <i < |E|, 0; = —1}.

In other words, qubits corresponding to spins pointing down are erased.

We obtain benchmarking results for a wide range of values of the Ising coupling J. We
considered values on both, the positive, corresponding to ferromagnetic interactions, as
well as the negative scale, corresponding to anti-ferromagnetic interactions. To observe the
intrinsic effect of spatial correlations, we performed the above benchmarking studies while
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conserving the total fraction p of erased qubits’. Finally, we have repeated the benchmarking
studies for a few different values of p. Our results are summarized in fig. D.6. Firstly, we
observe that in the antiferromagnetic case | < 0, the decoder is benefitted from stronger
anti-correlations. This can be explained by noticing that the formation of spin domains
(and hence clusters of erased qubits) are hindered by the presence of antiferromagnetic
correlations. Since a logical operator can only be supported on a spin-domain that spans

one of the linear dimensions of the lattice, such an error is unlikely to occur.

The ferromagnetic case is less straightforward. In this case, we would have expected that
strong ferromagnetic correlations favour the formation of erasure clusters and following a
line of reasoning similar to the case of droplet erasure model, correlations should hinder the
occurrence of logical errors. However, the actual case is quite different and related to the
process of sampling a spin conference as explained in step (i) above. Performing Markov
chain Mote Carlo by rapidly changing | to a large value from 0, can be modelled as a rapid
decrease in T, a process that is commonly known as quenching. In such a process, percolation
like spin clusters were found to exist on the associated Ising model, even after a large number
of cooling steps, see [253] for further details. This explains the results of fig. D.6 wherein the

performance of decoding algorithm becomes worse while increasing J.

D.5 Conclusion

In this section, we reviewed a class of quantum error correcting codes that widely used
in several experimental quantum computing architectures, known as Surface codes and
presented a generalization of this class wherein significant gains in the encoding rate can
be observed without a large compensation on the logical error rate. Here, we employed a
stochastic noise model known as the quantum erasure channel, for which simple decoding
techniques can be found. Furthermore, we showed a linear time benchmarking strategy for
the class of generalized surface codes. This highly efficient benchmarking strategy can be
used to compute the logical error rates of codes up to a hundred thousand qubits, as shown
in fig. D.3, in about two hours on a single CPU. The high benchmarking strategy can be key
in exploring different surface code architectures that are optimal for quantum information
storage and error correction. In fact, we can imagine an automatized cost-based optimizer

for generalized surface codes where the underlying cost function is simply derived from the

9The fraction of erased qubits p = |E]| /|E|, is then related to the magnetization () of the corresponding
(1+m(7))

configuration as |&|/|E| = >
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Figure D.6 Variation in the logical error rate of the Toric code defined on a 32 x 32 square
lattice, as shown in fig. D.1, with respect to two parameters that define a correlated
noise model where the distribution of erasures is given by the Gibbs distribution
in eq. D.13. The parameters of the distribution are B and |, given by eq. D.12.
However, in he above figure, the X and Y axis represent the average number
of spin down configurations, p, (related to the average magnetization m) and |
respectively, while the intensive of the colour denotes the negative logarithm of
the logical error rate (i.e., the decoding failure probability). Note that while the
decoding failure probability increases with increases correlation strength | due to
a quenching effect, on the other hand, the decoding failure probability decreases
in the antiferromagnetic (] < 0) regime.
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output of the benchmarking algorithm. Such a procedure would be crucial to the current
experimental efforts using planar surface code architectures.

Unlike previous benchmarking strategies that are necessarily based on a decoding
algorithm, i.e, in addition to determining if an error is correctable or not, they can also provide
a recovery operation, our benchmarking strategy does not rely on a decoder. Furthermore,
in the simplified model of erasures, our benchmarking strategy is also oblivious to the error
model, i.e, the probability with which the qubits are erased. Using this fact to our advantage
we showed that we could benchmark the performance of surface codes under models of
correlated noise. Such techniques can be combined with physically motivated models for
correlation such as the one used in the results of fig. D.6, to uncover new physics of the
underlying system.
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