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SOMMAIRE

À l’origine, ce sont des difficultés en biologie évolutive qui ont motivé cette thèse. Après des
décennies à tenter de trouver une théorie basée sur la sélection capable de prédire la diversité
génomique, les théoriciens n’ont pas trouvé d’alternatives pratiques à la théorie neutre. Après
avoir étudié la relation entre la spéciation et la diversité (Annexes A, B, C), j’ai conclu que
l’approche traditionnelle pour construire des théories serait difficile à appliquer au problème
de la biodiversité. Prenons par exemple le problème de la diversité génomique, la difficulté
n’est pas que l’on ignore les mécanismes impliqués, mais qu’on ne réussit pas à construire
de théories capable d’intégrer ces mécanismes. Les techniques en intelligence artificielle, à
l’inverse, réussissent souvent à construire des modèles prédictifs efficaces justement là où les
théories traditionnelles échouent. Malheureusement, les modèles bâtis par les intelligences arti-
ficielles ne sont pas clairs. Un réseau de neurones peut avoir jusqu’à un milliard de paramètres.
L’objectif principal de ma thèse est d’étudier des algorithmes capable de réviser les théories
écologiques. L’intégration d’idées venant de différentes branches de l’écologie est une tâche
difficile. Le premier défi de ma thèse est de trouver sous quelle représentation formelle les
théories écologiques doivent être encodées. Contrairement aux mathématiques, nos théories
sont rarement exactes. Il y a à la fois de l’incertitude dans les données que l’on collecte, et un
flou dans nos théories (on ne s’attend pas à que la théorie de niche fonctionne 100% du temps).
Contrairement à la physique, où un petit nombre de forces dominent la théorie, l’écologie a un
très grand nombre de théories. Le deuxième défi est de trouver comment ces théories peuvent
être révisées automatiquement. Ici, le but est d’avoir la clarté des théories traditionnelles et la
capacité des algorithmes en intelligence artificielle de trouver de puissants modèles prédictifs
à partir de données. Les tests sont faits sur des données d’interactions d’espèces.

Mots-clés : Intelligence Artificielle ; apprentissage automatique ; écologie théorique ; intérac-
tion des espèces.
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CHAPITRE 1

INTRODUCTION GÉNÉRALE

1.1 La grande obsession

Au début du vingtième siècle, Sewall Wright, Ronald Fisher, et J.B.S. Haldane développent une
théorie de l’évolution, la synthèse moderne, basée principalement sur la sélection naturelle, la
dérive génétique, et les mutations (Provine, 2001). Suite au progrès en génétique moléculaire,
il devient enfin possible dans les années 60 de mesurer la diversité génétique de façon précise
(Lewontin et Hubby, 1966). Les résultats sont problématiques pour les théoriciens : il y a
beaucoup plus de diversités qu’on s’y attendait (Provine, 2001). La réponse, la théorie neutre,
veut que la sélection soit un phénomène marginal (Kimura, 1968 ; King et Jukes, 1969 ; Kimura,
1983). Cette théorie a le mérite d’être simple à paramétriser mais des découvertes modernes
en génomique des populations montrent que la sélection est commune (Gillespie, 2004 ; Begun
et al., 2007). Malheureusement, nous avons peu d’alternatives théoriques viables au modèle
neutre (Hahn, 2008).

Pourquoi la biodiversité est-elle si complexe d’un point de vue théorique? Il y a plusieurs
raisons, tant au niveau du génome qu’au niveau des populations. L’effet d’une mutation varie
énormément d’un endroit à l’autre. Sur le même gène, une mutation peut grandement influencer
la fonction du gène alors qu’une mutation à proximité aura peu d’influence. Cette complexité
complique l’analyse des mutations, qui est souvent réduite à comparer les mutations où le nu-
cléotide d’un codon est changé à celle qui ne change pas le nucléotide (mutations silencieuses)
(Hahn, 2008). Cette simplification ignore la majorité des facteurs qui influencent l’effet d’une
mutation sur le phénotype (Wilke, 2012).

Au niveau des populations, la sélection varie dans l’espace et le temps alors que l’environne-
ment biotique et abiotique change. Loin d’être une force constante qui pousse certaines muta-
tions vers la fixation ou l’extinction, la sélection change constamment en fonction de l’environ-
nement. Une population a des proies, des compétiteurs, des prédateurs différents d’un endroit
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à l’autre, ce qui a pour effet de créer des pressions sélectives différentes dans chaque commu-
nauté. Ces pressions changent aussi avec le temps alors que la composition de la communauté
se transforme (Bell, 2010).

Aux deux facteurs précédents doit s’ajouter le déséquilibre de liaison (Lynch, 2007), qui est de
plus en plus considéré comme un facteur important pour comprendre la diversité du génome
(Begun et al., 2007). Une mutation positive qui se trouve localisée près d’une mutation désa-
vantageuse va favoriser la progression de cette dernière dans la population. Bref, non seulement
la pression sélective sur les traits (et donc les gènes) varie dans le temps et l’espace, mais cette
pression a des conséquences sur les loci rapprochés sur le chromosome. L’intégration du dés-
équilibre de la liaison dans une théorie de la biodiversité moléculaire est une priorité pour les
théoriciens mais elle demeure difficile sans l’ajout de plusieurs paramètres (Hahn, 2008).

Dernièrement, la spéciation a une structure spatiale complexe (Gravilets, 2004). La majorité
des évènements de spéciation surviennent lorsqu’une population est partiellement ou complè-
tement isolée du reste de l’espèce. C’est la spéciation allopatrique. Rarement, des populations
au même endroit deviennent isolées au niveau de la reproduction (spéciation sympatrique)
(Coyne et Orr, 2004). J’ai consacré mes premiers articles à développer une version de la théo-
rie neutre de la biodiversité qui intègre la notion d’isolation géographique (Annexes A, B, C).
Ultimement, les nouvelles espèces peuvent occuper des niches différentes. La spéciation a donc
un rôle important pour comprendre la biodiversité au niveau des communautés.

En bref, la biodiversité est difficile sur le plan théorique parce qu’elle implique beaucoup de
facteurs et que nous avons rarement assez d’informations pour paramétriser des modèles plus
sophistiqués que des théories neutres. Il est donc difficile de capturer l’essence de la biodiver-
sité avec des modèles théoriques suffisamment simples. Hahn (2008) note : the consequence

of this is that we have tied ourselves into philosophical knots by using null models no one

believes but are easily parameterized. Si l’ambition des théoriciens de découvrir une grande
théorie de la biodiversité est vaine, il faut explorer des alternatives. Une avenue possible se-
rait d’utiliser des techniques en intelligence artificielle pour combiner, à l’intérieur d’une base
de connaissance unifiée, plusieurs théories. Au lieu de chercher une théorie de la biodiver-
sité, notre rôle serait alors de trouver comment combiner plusieurs théories. Pour cette thèse,
je vais explorer diverses représentations de la connaissance et leur potentiel pour la synthèse
d’idées en écologie, et comment exploiter ces représentations par des techniques d’apprentis-
sages automatiques. J’utiliserai des données sur les interactions entre les espèces pour tester
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ces techniques.

1.2 Interaction des espèces

Toutes les données utilisées pour cette thèse se rapportent à l’interaction des espèces (Pimm,
1982) (Figure 1.1). Ce problème a été choisi pour deux raisons. Primo, l’interaction des espèces
est une des raisons expliquant pourquoi la biodiversité est si difficile à modéliser (Bartomeus
et al., 2016). Une théorie générale de la biodiversité devrait inclure de solides prédictions sur
les interactions pour comprendre quelles forces influencent les populations. Secondo, plusieurs
membres du laboratoire étudient les interactions, ce qui me donne accès à la fois à des données
de qualité mais aussi à des gens capables de les interpréter.

Les données utilisées pour cette thèse proviennent de trois ensembles de données :

— Le premier, assemblé par Idaline Laigle, contient plus de 30 000 interactions obser-
vées parmi près de 900 espèces. Pour chaque espèce, nous avons les informations sur
28 traits (la taille, si l’espèce est sous la terre, sa taxonomie, etc.). Ces données sont
détaillées à la sous-section 3.4.1 et à la table 3.2.

— Le second, utilisé dans les chapitres 4 et 5, couvre les interactions entre pollinisateurs
et plantes. Il contient plus de 700 observations ainsi que plusieurs traits pour les polli-
nisateurs et les plantes. Il est décrit en détail aux sous-sections 4.3.1 et 5.4.1 ainsi qu’à
la table 5.1.

— Le dernier a été assemblé par notre laboratoire et ses collaborateurs, il contient un
réseau d’interactions tritrophiques avec des interactions entre parasites et insectes, et
des interactions entre ces insectes et des saules. Il a été collecté sur plusieurs sites en
Europe et contient des informations sur les précipitations et la température moyenne
sur chacun de ces sites. Il est décrit à la section 6.7, la table 6.3, ainsi que dans l’article
de Kopelke et al. (2017).

Le problème est intéressant d’un point de vue théorique dans le sens où il peut être approché
de plusieurs façons. On peut vouloir prédire une interaction à partir des traits des espèces, en
se basant sur les interactions d’une espèce similaire. On peut considérer les pairs d’espèces qui
n’ont pas d’interactions comme une absence d’évidence (approche par recommandation) ou

3



Figure 1.1 – Le metaweb et la représentation des interactions

Le metaweb (à droite) et des réseaux d’interactions locaux (à gauche). Les espèces sont représentées
par des formes de couleurs différentes. Deux espèces peuvent interagir dans une communauté locale et
non dans une autre, comme par exemple le cercle blanc et le carré blanc, qui ont une interaction dans
la communauté 3 mais pas dans la 1. Le metaweb est la collection de toutes les interactions locales. Il
est souvent présumé que si une espèce interagit avec une autre dans une communauté, elle le fera aussi
dans toutes les autres communautés, mais ce n’est pas le cas. La figure provient de Poisot et al. (2012).

une évidence d’absence (complétion de matrice). Ces données ont cependant des limites. Les
interactions sont bivalentes, soit deux espèces ont une interaction, soit elles n’en n’ont pas. Les
données ignorent aussi les interactions qui pourraient impliquer plus d’une espèce.

1.3 Deux questions

Ma thèse s’attaque à deux questions : quelle représentation des connaissances permet de repré-
senter les théories en écologie? Comment réviser automatiquement des théories écologiques
formulées avec cette représentation?

4



Ces deux questions mènent à deux branches de l’intelligence artificielle : la représentation des
connaissances et l’apprentissage automatique (machine learning).

Pour être clair, la question ici n’est pas de savoir comment représenter les données écologiques,
mais bien de représenter les théories. Par exemple, on voudrait pouvoir représenter des théories
comme l’équation de Lotka-Volterra, le modèle de niche (Williams et Martinez, 2000) ou des
théories probabilistiques comme la théorie neutre de Hubbell (2001).

1.4 Représentation des connaissances

Les théories en écologie se distinguent des modèles mathématiques par leur flexibilité : per-
sonne ne s’attend à ce qu’un modèle qui prédit la population d’une espèce soit exact, alors que
les modèles en physique et les bases de théorèmes mathématiques s’accomodent facilement de
la bivalence (tout est soit vrai, soit faux, sans nuance). Le chapitre 2 explique en détails en quoi
la représentation des théories écologiques est un sujet difficile (Russell et Norvig, 2009).

1.5 Apprentissage automatique

Le second ingrédient est l’apprenttisage automatique : la capacité de bâtir des modèles (ou
de réviser des modèles existants) automatiquement à partir de données. Il existe deux grandes
branches : l’apprentissage supervisé (Figure 1.2) et l’apprentissage non supervisé (Figure 1.3).
Ces deux approches seront utilisées lors de la thèse. Selon l’approche supervisée, les données
D sont formées d’un vecteur de features x et d’une sortie y (ce qu’on veut prédire) :

D = {(xi, yi)}
|D|−1
i=0 . (1.1)

Si y est un nombre entier, on a un problème de classification et si c’est un nombre réel, on a un
problème de régression. La régression n’est pas explorée lors de cette thèse, mais les chapitres
3 et 5 traitent du problème d’interaction des espèces comme un problème de classification.
x représente les traits de deux espèces et y dénote si ces espèces interagissent. Le chapitre
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3 utilise plusieurs méthodes standards en apprentissage supervisé comme les decision trees,
les support vector machines et les random forests (Murphy, 2012). Le chapitre 5 utilise une
méthode que j’ai développé pour apprendre des règles simples en logique floue pour prédire si
un pollinisateur et une plante interagissent.

L’approche non supervisée est plus difficile à décrire formellement. Elle implique de trouver
des structures intéressantes à l’intérieur des données :

D = {(xi)}
|D|−1
i=0 . (1.2)

Plusieurs méthodes non supervisées sont utilisées. On peut voir le problème des interactions
comme un problème de complétion de matrice (chapitres 3 et 4) : la matrice représente les
interactions, les trous dans la matrice représentent des paires d’espèces, et l’objectif est de
remplir ces trous soit par une interaction ou une non-interaction. On peut aussi voir le pro-
blème comme un système de recommandations (chapitre 3), ou chaque espèce a un groupe de
proies et on tente de suggérer à cette espèce des proies éventuelles, à la manière dont Netflix
ou Amazon tente de prédire les items qui peuvent vous intéresser en se basant sur des uti-
lisateurs qui vous ressemblent ou des items qui ressemblent à celui qui vous intéresse. Cette
approche a l’avantage de considérer seulement les évidences positives et d’ignorer les absences
d’interactions. Étant donné qu’il est difficile en pratique de confirmer que deux espèces n’ont
pas d’interactions, cette méthode est particulièrement appropriée pour étudier les interactions.
Finalement, le chapitre 6 explore l’apprentissage de règles relationelles, une autre branche de
l’apprentissage non supervisé (Richardson et Domingos, 2006). Les approches relationelles
sont expliquées brièvement au chapitre 2, et plus en détails au chapitre 6.
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Figure 1.2 – Apprentissage supervisé

L’approche supervisée consiste à prédire un label y à partir des features x. Figure de Murphy (2012).

Figure 1.3 – Apprentissage non supervisé

L’approche non supervisée est plus difficile à définir, elle consiste à découvrir des structures intéres-
santes dans les données. Ici, on voit l’exemple de complétion de matrice, ici une image avec un trou.
L’objectif est de trouver de bonnes valeurs pour remplir ce trou. Figure de Murphy (2012).
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1.6 Le plan de la thèse

La thèse se sépare en sept chapitres : l’introduction, cinq articles, et une conclusion générale.
Le chapitre 2 explore la relation entre l’intelligence artificielle et les théories scientifiques, en
mettant l’emphase sur les théories en écologie et le besoin d’étudier des représentations plus
flexibles que celles adoptées par les mathématiciens. Les chapitres 3 et 4 appliquent des algo-
rithmes standards en intelligence artificielle au problème d’interactions des espèces. Bien que
ces deux chapitres ne touchent pas directement à la question de révision des théories scienti-
fiques, les leçons apprises lors de ces recherches m’ont servi lors de mes travaux sur la révision
automatique. Le chapitre 5 étudie une nouvelle approche pour apprendre des règles avec la lo-
gique floue. Appliquée à des interactions pollinisateurs-plantes, cette technique nous permet de
réviser une théorie de base simple pour arriver à un modèle à la fois plus clair et plus efficace
que les techniques standards en intelligence artificielle. Le chapitre 6 explore la logique de
Markov. Cette technique n’a pas bien fonctionnée, mais elle donne d’importantes pistes pour
l’étude d’approches capables d’intégrer des théories mathématiques et la révision automatique.
Ce chapitre termine avec une discussion sur les prochaines étapes pour progresser sur la ques-
tion de révision automatique de théories écologiques. La conclusion générale boucle la thèse
en retournant sur les deux questions posées dans cette introduction.
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CHAPITRE 2

ECOLOGICAL SYNTHESIS AND ARTIFICIAL INTELLIGENCE

2.1 Description de l’article et contribution

Avant de pouvoir réviser des théories écologiques avec des techniques d’intelligence artifi-
cielle, il faut choisir une représentation de la connaissance pour les théories écologiques. Dans
cette contribution, nous explorons diverses représentations de la connaissance et comment
celles-ci peuvent servir à encoder les théories écologiques. Les mathématiciens ont depuis plu-
sieurs décennies assemblé de larges bases de connaissances en utilisant une forme de logique
(predicate logic). Malheureusement, cette forme de logique est trop inflexible pour l’écologie.
On ne s’attend pas, contrairement aux mathématiciens et aux physiciens, à ce que nos théo-
ries soient toujours exactes. La complexité des écosystèmes nous force à accepter des théories
imparfaites, mais utiles. Combiner ces théories dans un tout est d’autant plus complexe que
relativement peu de travail a été fait pour assembler les théories inexactes. Cet article discute
de différents systèmes de raisonnement allant des probabilités à la logique pure, ainsi que la
logique floue. Nous expliquons pourquoi l’intégration de théories écologiques et la révision de
celles-ci requièrent que l’on réfléchisse à la structure des connaissances écologiques.

J’ai conçu et fait la recherche de cet article de perspective. Dominique Gravel et Timothée
Poisot m’ont assisté pour la révision. L’article a été publié sur bioRxiv. Cet article servira
de base pour une revue de littérature sur l’union de l’intelligence artificielle et des théories
écologiques qui sera soumis à un numéro spécial de Frontiers in Ecology and Evolution.
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2.2 Ecological Synthesis

Artificial Intelligence presents an important paradigm shift for science. Science is traditionally
founded on theories and models, most often formalized with mathematical formulas handcraf-
ted by theoretical scientists and refined through experiments. Machine learning, an important
branch of modern Artificial Intelligence, focuses on learning from data. This leads to a fun-
damentally different approach to model-building : we step back and focus on the design of
algorithms capable of building models from data, but the models themselves are not desi-
gned by humans. This is even more true with deep learning, which requires little engineering
by hand and is responsible for many of Artificial Intelligence’s spectacular successes (LeCun
et al., 2015). In contrast to logic systems, knowledge from a deep learning model is difficult
to understand, reuse, and may involve up to a billion parameters (Coates et al., 2013). On the
other hand, probabilistic machine learning techniques such as deep learning offer an opportu-
nity to tackle large complex problems that are out of the reach of traditional theory-making.
It is possible that the more intuition-like (LeCun et al., 2015) reasoning performed by deep
learning systems is mostly incompatible with the logic formalism of mathematics. Yet recent
studies have shown that deep learning can be useful to logic systems and vice versa. Success
at unifying different paradigms of Artificial Intelligence from logic to probability theory offers
unique opportunities to combine data-driven approaches with traditional theories. These ad-
vancements are susceptible to impact significantly theoretical work on ecology and evolution,
allowing for the integration of data and theories in unified knowledge bases.

Ever since molecular biology allowed for precise measurements of molecular diversity, theo-
reticians have struggled to explain why populations are so diverse (Lewontin et Hubby, 1966 ;
Gillespie, 2004 ; Hahn, 2008). Integrating selection proved hard enough for neutral theories
to dominate in practice since few solid alternatives are easy enough to parameterize (Hahn,
2008). Theoretical ecology has had a similar struggle with similar consequences, Hubbell’s
neutral theory of biodiversity is almost exactly the same as Kimura’s neutral theory of mole-
cular evolution, with alleles being different species and point mutation being replaced by point
speciation (Kimura, 1983 ; Hubbell, 2001).

Recent work in population genomics show the importance of linkage Begun et al. (2007) and
point to a world where selection is a constant presence in the genome, not as a simple force
pushing mutations toward extinction or fixation, but as a stochastic mechanism varying in time

10



and space Bell (2010). In Toward a Selection Theory of Molecular Evolution, Matthew Hahn
noted how population geneticists became dependant on neutral theories and have effectively
“tied [themselves] into philosophical knots by using null models no one believes but are easily
parameterized” Hahn (2008). Thus, interestingly, the reason a truly unified theory of biodiver-
sity has proven elusive is not because we do not know the basic mechanisms involved, it is
because we do not how to effectively build a theory simple enough to be usable.

Our thesis is that biodiversity is unlikely to simplify to a single elegant equation. In that case,
we could turn to and tools from A.I. to help us integrate various ecological and evolutionary
ideas into a single unified knowledge base. Instead of looking for a single theory, we would
grow knowledge, similarly to how mathematicians have build large knowledge bases of theo-
rems (Kaliszyk et Urban, 2015). However, ecology and evolution are not pure mathematics, we
do not expect our ideas to be as precise as theorems. Thus, the question becomes : what is the
correct knowledge representation for ideas in ecology and evolution?

2.3 A.I. and knowledge representation

Science would greatly benefit from a unification of Artificial Intelligence with traditional ma-
thematical theories. Modern research at the intersection of logic, probability theory, and fuz-
ziness yielded rich representations increasingly capable of formalizing scientific knowledge.
Such formal corpus could both include hand-crafted theories from Einstein’s e = mc2 to the
Breeder’s equation (Rice, 2004), but also harness modern A.I. algorithms for testing and lear-
ning. Comprehensive synthesis is difficult in fields like biology, which have not been reduced
to a small set of formulas. For example, while we have a good idea of the underlying forces dri-
ving evolution, we struggle to build effective predictive models of molecular evolution (Hahn,
2008). This is likely because selection changes in time and space (Bell, 2010), which brings
population, community, and ecosystem ecology into the mix. Ecology also has a porous fron-
tier with evolution : speciation is a common theme in community ecology theory (Desjardins-
Proulx et Gravel, 2012).

From a theoretical perspective, work to formalize scientific theories would reveal much about
the nature of our theories. Surely, scientific theories require more flexibility than mathematical
corpora of knowledge, which are based on pure logic. From a practical standpoint, a formal
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representation both offers ways to test large corpora of knowledge and extend it with A.I. tech-
niques. This is arguably the killer feature of a formal representation of scientific knowledge :
allowing A.I. algorithms to search for revisions, extensions, and discover new rules. This is
not a new ambition. Generic techniques for rule discovery were well-established in the 1990s
(Muggleton et de Raedt, 1994). Unfortunately, these techniques were based on pure logic, and
purely probabilistic approaches to revision cannot handle mathematical theories. Recent expe-
riences in linguistics has shown that building a knowledge base capable of handling several
problems at the same time yielded better results than attacking the problem in isolation be-
cause of the problems’ interconnectedness (Yoshikawa et al., 2009). Biology, as a complex
field made of more-or-less arbitrary subfields, could gain important insights from unified ap-
proach to knowledge combining A.I. techniques with traditional mathematical theories.

2.4 A quick tour of knowledge representations

Deep learning is arguably the dominant approach in probabilistic machine learning, a branch of
A.I. focused on learning models from data (Goodfellow et al., 2016). The idea of deep learning
is to learn multiple levels of compositions. If we want to learn to classify images for instance,
the first layer of the deep learning network will read the input, the next layer will capture lines,
the next layer will capture contours based on lines, and then more complex shapes based on
contours, and so on (Goodfellow et al., 2016). In short, the layers of the network begin with
simple concepts, and then compose more complicated concepts from simpler ones (Bengio
et al., 2013). Deep learning has been used to solve complex computer science problems like
playing Go at the expert level (Silver et al., 2016), but it is also used for more traditional
scientific problems like finding good candidate molecules for drugs, predicting how changes in
the genotype affect the phenotype (Leung et al., 2016), or just recently to solving the quantum
many-body problem (Carleo et Troyer, 2017).

In contrast, traditional scientific theories and models are mathematical, or logic-based. Ein-
stein’s e = mc2 established a logical relationship between energy e, mass m, and the speed of
light c. This mathematical knowledge can be reused : in any equation with energy, we could
replace e with mc2. This ability of mathematical theories to establish precise relationships bet-
ween concepts, which can then be used as foundations for other theories, is fundamental to how
science grows and forms an interconnected corpus of knowledge. Furthermore, these theories
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Figure 2.1 – McCarthy’s “Program with Common Sense” established the importance of separa-
ting knowledge from reasoning.

Knowledge
base

Inference
engine Conclusion

Evidence
In his 1959’s “Programs with Common Sense”, McCarthy established the importance of separating
knowledge and reasoning (McCarthy, 1959). The knowledge base stores knowledge, while the infe-
rence engine exploits it, along with evidence, to reach conclusions. McCarthy believed the knowledge
base should store rules in some form of predicate logic, but the idea of separation of knowledge and
reasoning holds with other representations as well (Bayesian networks, detailed in figure 2.2, are proba-
bilistic knowledge bases (Darwiche, 2009)). The dotted line represents automatic theory revision, where
evidence is used not to a answer query but to discover new knowledge or revise existing theories.

are compact and follow science’s tradition of preferring theories as simple as possible. There
are many different foundations for logic systems. Predicate logic is a good starting point : it is
based on predicates, which are functions of terms to a truth value. For example, the predicate
PreyOn could take two species, a location, and return true if the first species preys on the se-
cond at that location, like PreyOn(Wolverine, Squirrel, Quebec). Terms are either constants

such as 1, π, or Wolverine, variables that range over constants, such as x or species, or func-

tions that map terms to terms, such as additions, multiplication, integration, differentiation. In
e = mc2, the equal sign = is the predicate, e and m are variables, c and 2 are constants, and
there are two functions : the multiplication of m by c2 and the the exponentiation of c by 2. The
key point is that such formalism lets us describe compact theories and understand precisely
how different concepts are related. Complex logic formulas are built by combining predicates
with connectives such as negation ¬, “and” ∧, “or” ∨, “implication”⇒. We could have a rule
to say that predation is asymmetrical sx ̸= sy ∧ PreyOn(sx, sy, l) ⇒ ¬PreyOn(sy, sx, l), or
define the classical Lotka-Volterra :

dx
dt

= αx− βxy ∧ dy
dt

= δxy− γy, (2.1)
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where x and y are the population sizes of the prey and the predator, respectively, α, β, δ, γ are
constants, and the time differential d/dt, multiplication and subtraction are functions. Equality
(=) is the sole predicate in this formula. Both predicates are connected via ∧ (“and”). Not
all logic formulas have mathematical functions. Simple logic rules such as Smoking(p) ⇒
Cancer(p) (“smoking causes cancer”) are common in expert systems.

Artificial Intelligence researchers have long being interested in logic systems capable of scien-
tific discoveries, or simply capable of storing scientific and medical knowledge in a single
coherent system (Figure 2.1). DENDRAL, arguably the first expert system, could form hypo-
theses to help identify new molecules using its knowledge of chemistry (Lindsay et al., 1993).
In the 1980s, MYCIN was used to diagnose blood infections (and did so more accurately than
professionals) (Buchanan et Shortliffe, 1984). Both systems were based on logic, with MYCIN
adding a “confidence factor” to its rules to model uncertainty. Other expert systems were based
on probabilistic graphical models (Koller et Friedman, 2009), a field that unites graph theory
with probability theory to model the conditional dependence structure of random variables
(Koller et Friedman, 2009 ; Barber, 2012). For example, Munin had a network of more than
1000 nodes to analyze electromyographic data (et al., 1996), while PathFinder assisted medi-
cal professional for the diagnostic of lymph-node pathologies (Heckerman et Nathwani, 1992)
(Figure 2.2). While these systems performed well, they are both too simple to store generic
scientific knowledge and too static to truly unify Artificial Intelligence with scientific research.
The ultimate goal is to have a representation rich enough to encode both logic-mathematical
and probabilistic scientific knowledge.
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Figure 2.2 – Reasoning in Bayesian networks.

P(M | C) = 0.21
P(M | ¬C) = 0.27

P(C) = 0.65

P(+ | L, C, M) = 0.50
P(+ | L, C, ¬M) = 0.38
P(+ | L, ¬C, M) = 0.42
P(+ | L, ¬C, ¬M) = 0.12
P(+ | ¬L, C, M) = 0.50
P(+ | ¬L, C, ¬M) = 0.38
P(+ | ¬L, ¬C, M) = 0.42
P(+ | ¬L, ¬C, ¬M) = 0.12

Med Lymph Cells

LLC Num

MLC Num

LLC+MLC > 50%

P(L) = 0.81

A Bayesian network with four binary variables and possible conditional probability tables. These four
nodes were taken from PathFinder, a Bayesian network with more than 1000 nodes used to help diag-
nose blood infections (Heckerman et Nathwani, 1992). The nodes represent four variables related to
blood cells and are denoted by a single character (in bold in the figure) : C, M, L,+. All variables
are binary, and negation is denoted with ¬. Since P(¬x|y) = 1 − P(x|y), we need only 2|Pa(x)|

parameters per nodes, with |Pa(x)| being the number of parents of node x. The structure of Baye-
sian networks both highlights the conditional independence assumptions of the distribution and re-
duces the number of parameters for learning and inference. Example query : P(L,¬C, M,¬+) =
P(L)P(¬C)P(M|¬C)P(¬ + |L,¬C, M) = 0.81 × (1 − 0.65) × 0.27 × (1 − 0.42) = 0.044. See
(Darwiche, 2009) for a detailed treatment of Bayesian networks and (Koller et Friedman, 2009) for a
more general reference on probabilistic graphical models.
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2.5 Beyond monolithic systems

In terms of representation, expert systems generally used a simple logic system, not power-
ful enough to handle uncertainty, or purely probabilistic approaches unable to handle complex
mathematical formulas. In terms of flexibility, the expert systems were hand-crafted by human
experts. After the experts established either the logic formulas (for logic systems like DEN-
DRAL) or probabilistic links (in the case of systems like Munin), the expert systems act as
static knowledge bases, capable of answering queries but unable of discovering new rules and
relationships. While no system has completely solved these problems yet, much energy has
been put in unifying logic-based systems with probabilistic approaches (Getoor et al., 2007).
Also, several algorithms have been developed to learn new logic rules (Muggleton et de Raedt,
1994), find the probabilistic structure in a domain with several variables (Yuan et Malone,
2013), and even transfer knowledge between tasks (Mihalkova et al., 2007). Together, these
discoveries bring us closer to the possibility of flexible knowledge bases contributed both by
human experts and Artificial Intelligence algorithms. This has been made possible in great part
by efforts to unify three distinct languages : probability theory, predicate logic, and fuzzy logic
(Figure 2.3).

The core idea behind unified logic/probabilistic languages is that formulas can be weighted,
with higher values meaning we have greater certainty in the formula. In pure logic, it is im-
possible to violate a single formula. With weighted formulas, an assignment of concrete values
to variables is only less likely if it violates formulas. The higher the weight of the formula
violated, the less likely the assignment is. It is conjectured that all perfect numbers are even
(∀x : Per f ect(x) ⇒ Even(x)), if we were to find a single odd perfect number, that formula
would be refuted. It makes sense for mathematics but for many disciplines, such as biology,
important principles are only expected to be true most of the times. To illustrate, in ecology,
predators generally have a larger body weight than their preys, which can expressed in predicate
logic as PreyOn(predator, prey) ⇒ M(predator) > M(prey), with M(x) being the body
mass of x. This is obviously false for some assignments, for example predator : greywol f
and prey : moose. However, it is useful knowledge that underpins many ecological theories
(Williams et Martinez, 2000). When our domain involves a great number of variables, we
should expect useful rules and formulas that are not always true.

The idea of weighted formulas is not new. Markov logic, invented a decade ago, allows for
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logic formulas to be weighted (Richardson et Domingos, 2006 ; Domingos et Lowd, 2009). It
supports algorithms to add weights to existing formulas given a data-set, learn new formulas
or revise existing ones, and answer probabilistic queries. For example, Yoshikawa et al. used
Markov logic to understand how events in a document were time-related (Yoshikawa et al.,
2009). Their research is a good case study of interaction between traditional theory-making and
artificial intelligence. The formulas they used as a starting point were well-established logic
rules to understand temporal expressions. From there, they used Markov logic to weight the
rules, adding enough flexibility to their system to beat the best approach of the time. Brouard et
al. (Brouard et al., 2013) used Markov logic to understand gene regulatory network, noting how
the resulting model provided clear insights, in contrast to more traditional machine learning
techniques. Expert systems can afford to make important sacrifices to flexibility in exchange
for a simple representation. Yet, a system capable of representing a large body of scientific
knowledge will require a great deal of flexibility to accommodate various theories. While a
step in the right direction, even Markov logic may not be powerful enough.

2.6 Case study : The niche model

To show some of the difficulties of representing scientific knowledge, we will build a small
knowledge base for an established ecological theory : the niche model of trophic interactions
(Williams et Martinez, 2000). The first iteration of the niche model posits that all species are
described by a niche position N (their body size for instance) in the [0, 1] interval, a diet D in
the [0, N] interval, and a range R such that a species preys on all species with a niche in the
[D− R/2, D + R/2] interval. We can represent these ideas with three formulas :

∀x, y : ¬PreyOn(x, y), (2.2a)

∀x : D(x) < N(x), (2.2b)

∀x, y : PreyOn(x, y)⇔ D(x)− R(x)/2 < N(y) ∧ N(y) < D(x) + R(x)/2, (2.2c)
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where ∀ reads for all and ⇔ is logical equivalence (it is true if and only if both sides of the
operator have the same truth value, so for example False⇔ False is true and True⇔ False is
false). As pure logic, this knowledge base makes little sense. Formula 2.2a is obviously not true
all the time. It is mostly true, since most pairs of species do not interact. We could also add that
cannibalism is rare ∀x : ¬PreyOn(x, x) and that predator-prey are generally asymmetrical
∀x, y : PreyOn(x, y) ⇒ ¬PreyOn(y, x). In hybrid probabilistic/logic approaches like Mar-
kov logic, these formulas would have a weight that essentially defines a marginal probability
(Domingos et Lowd, 2009 ; Jain, 2011). Formulas that are often wrong are assigned a lower
weight but can still provide useful information about the system. The second formula says that
the diet is smaller than the niche value. The last formula is the niche model : species x preys
on y if and only if species y’s niche is within the diet interval of x.

So far so good ! Using Markov logic networks and a data-set, we could learn a weight for
each formula in the knowledge base. This step alone is useful and provide insights into which
formulas hold best. With the resulting weighted knowledge base, we could make probabilis-
tic queries and even attempt to revise the theory automatically. We could find, for example,
that the second rule does not apply to parasites or some group and get a revised rule such as
∀x : ¬Parasite(x) ⇒ D(x) < N(x). However, Markov logic networks struggle when the
predicates cannot easily return a simple true-or-false truth values. For example, let’s say we
wanted to express the idea that when populations are small and have plenty of resources, they
grow exponentially (Kot, 2001).

∀x, l, t : SmallP(x, l, t) and Resources(x, l, t)⇒ P(x, l, t + 1) = G(x)× P(x, l, t), (2.3)

where P(x, l, t) is the population size of species x in location l at time t, G is the rate of
growth, SmallP is whether the species has a small population and Resources whether it has
resources available. The problem with hybrid probabilistic/logic approach is that predicates
do not capture the inherent vagueness well. We can establish an arbitrary cutoff for what a
small population is, for example by saying that if it is less than 10% the average population
size for the species, it is small. Similarly, resource availability is not a binary thing, there
is a world of grey between starvation and satiety. Perhaps worst of all, the prediction that
P(x, l, t + 1) = G(x)× P(x, l, t) is almost certainly never be exactly true. If we predict 94
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rabbits and observe 93, the formula is false. Weighted formulas help us understand how often

a rule is true, but in the end the formula has to give a binary truth value : true or false, there is
no place for vagueness.

Fuzzy sets and many-valued (“fuzzy”) logics were invented to handle vagueness (Zadeh, 1965 ;
Hájek, 1998 ; Bergmann, 2008 ; Behounek et al., 2011). In practice, it simply means that pre-
dicates can return any value in the [0, 1] closed interval instead of only true and false. It is used
in both probabilistic soft logic (Kimmig et al., 2012 ; Bach et al., 2015) and deep learning ap-
proaches to predicate logic (Zahavy et al., 2016 ; Hu et al., 2016). For our formula 2.3, SmallP
could be defined as 1− P(x, l, t)/Pmax(x), where Pmax(x) is the largest observed population
size for the species. Resources could take into account how many preys are available, and
P(x, l, t + 1) = G(x)× P(x, l, t) would return a truth value based on how close the observed
population size is the predicted population size. Fuzzy logic then defines how operators such
as and and⇒ behave with fuzzy values.

Both Markov logic networks and probabilistic soft logic define a probability distribution over
logic formulas, but what about the large number of probabilistic models ? For example, the
niche model has a probabilistic counter-part defined as (Williams et al., 2010) :

∀x, y : PPreyOn(x, y) = α× exp

[
−
(

N(y)− D(x)
R(x)/2

)2
]

, (2.4)

where PPreyOn(x, y) is the probability that x preys on y. Again, this formula is problematic
in Markov logic because we cannot easily force the equality into a binary true-or-false, but
fuzziness can help model the nuance of probabilistic predictions. There are no algorithms yet
to learn and revise rules in many-valued logic.
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Figure 2.3 – Various reasoning languages and their ability to model uncertainty, vagueness, and
relations.

Uncertainty

probabilistic graphical models
(e.g. bayesian networks)

deep learning

Relations

Vagueness

many-valued ("fuzzy") logics

fuzzy probabilities
type-2 fuzzy logic

type-2 fuzzy markov networks

markov logic networks

predicate logic
(e.g first-order logic)

type theory

probabilistic soft logic fuzzy predicate logic
fuzzy type theory

The size of the rectangles has no meaning. In the blue rectangle : languages capable of handling uncer-
tainty. Probabilistic graphical models combine probability theory with graph theory to represent com-
plex distributions (Koller et Friedman, 2009). Deep learning is, strictly speaking, more general than its
usual probabilistic interpretation, but it is arguably the most popular probabilistic Artificial Intelligence
approach at the moment (Goodfellow et al., 2016). Alternatives to probability theory for reasoning about
uncertainty include possibility theory and Dempster-Shafer belief functions, see (Halpern, 2003) for an
extended discussion. In the green rectangle : Fuzzy logic extends standard logic by allowing truth
values to be anywhere in the [0, 1] interval. Fuzziness models vagueness and is particularly popular in
linguistics, engineering, and bioinformatics, where complex concepts and measures tend to be vague by
nature. See (Kosko, 1990) for a detailed comparison of probability and fuzziness. In the purple rec-
tangle : relations, as in : mathematical relations between objects. Even simple mathematical ideas, such
as the notion that all natural numbers have a successor (∀x∃y : y = x + 1), requires relations. Predicate
and Relation are synonymous in this context. Alone, these reasoning languages are not powerful enough
to express scientific ideas. We must thus focus on what lies at their intersection. Type-2 Fuzzy Logic is
a fast-expanding (Sadeghian et al., 2014) extension to fuzzy logic, which, in a nutshell, models uncer-
tainty by considering the truth value itself to be fuzzy (Mendel et Bob John, 2002 ; Zeng et Liu, 2008).
Markov logic networks (Richardson et Domingos, 2006 ; Domingos et Lowd, 2009) extends predicate
logic with weights to unify probability theory with logic. Probabilistic soft logic (Kimmig et al., 2012 ;
Bach et al., 2015) also has formulas with weights, but allow the predicates to be fuzzy, i.e. have truth
values in the [0, 1] interval. Some recent deep learning studies also combine all three aspects (Garnelo
et al., 2016 ; Hu et al., 2016).
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2.7 Where’s our unreasonably effective paradigm?

Wigner’s Unreasonable Effectiveness of Mathematics in the Natural Sciences led to important
discussions about the relationship between physics and its main representation (Wigner, 1960 ;
Hamming, 1980). The Mizar Mathematical Library and the Coq library (The Coq development team,
2004) host tens of thousands of mathematical propositions to help build and test new proofs. In
complex domains with many variables, Halevy et al. argued for the Unreasonable Effectiveness

of Data (Halevy et al., 2009), noting that simple algorithms, when fed large amount of data,
would do wonder. High-dimensional problems like image imputation, where an algorithm has
to fill missing parts from an image, require hundred of thousands of training images to be effec-
tive. Goodfellow et al. noted that roughly 10 000 data-points per possible labels were necessary
to train deep neural networks (Goodfellow et al., 2016). These approaches are unsatisfactory
for fields like biology where theories and principles are seldom exact. We cannot afford the
pure logic-based knowledge representations favoured by mathematicians and physicists, and
fitting a model to data is a different task than building a corpus of interconnected knowledge.

Fortunately, we do not need to choose between mathematical theories, probabilistic models,
and learning. New inventions such as Markov logic networks and probabilistic soft logic are
moving Artificial Intelligence toward rich representations capable of formalizing and even ex-
tending scientific theories. This is a great opportunity for synthesis. There are still problems :
inference is often difficult in those rich representations. Recently, Garnelo et al. (Garnelo et al.,
2016) designed a prototype to extract logic formulas from a deep learning system, while Hu
et al. (Hu et al., 2016) created a framework to learn predicate logic rules using deep learning.
Both studies used flexible fuzzy predicates and weighted formulas while exploiting deep lear-
ning’ ability to model complex distributions via composition. The end result is a set of clear
and concise weighted formulas supported by deep learning for scalable inference. The poten-
tial for science is important. Not only these new researches allow for deep learning to interact
with traditional theories, but it opens many exciting possibilities, like the creation of large da-
tabases of scientific knowledge. The only thing stopping us from building a unified corpus of,
say, ecological knowledge, is that normal pure-logic systems are too inflexible. They do not
allow imperfect, partially-true theories, which are fundamental to many sciences. Recent de-
velopments in Artificial Intelligence make these corpora of scientific knowledge possible for
complex domains, allowing us to combine a traditional approach to theory with the power of
Artificial Intelligence.
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It is tempting to present deep learning as a threat to traditional theories. Yet, there is a real
possibility that the union of Artificial Intelligence techniques with mathematical theories is not
only possible, but would help the integration of knowledge across various disciplines. Other-
wise, short of discovering a small set of elegant theories, what is our plan to combine ideas
from ecosystem ecology, community ecology, population ecology, and evolution?
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CHAPITRE 3

ECOLOGICAL INTERACTIONS AND THE NETFLIX PROBLEM

3.1 Description de l’article et contribution

Cet article explore diverses techniques en apprentissage automatique (machine learning) appli-
quées au problème d’interaction des espèces. Deux approches sont étudiées. Dans la première,
nous tentons de prédire une interaction entre un prédateur X et une proie Y en allant chercher
les K espèces les plus similaires au prédateur X. La logique est que si les espèces similaires
au prédateur X s’intéressent à Y, alors X s’intéressera aussi à Y. C’est la technique qu’uti-
lise Netflix pour prédire quel contenu intéresse un utilisateur. Netflix tente d’aller chercher les
utilisateurs qui vous ressemblent le plus et s’inspire du contenu qui les intéresse pour vous
en proposer. Nous utilisons aussi une autre technique dite supervisée (supervised learning) où
nous entraînons un modèle à partir des traits des prédateurs et des proies pour prédire une
interactions.

Nos résultats montrent qu’il est possible de prédire efficacement les interactions à la fois avec
la méthode Netflix et avec les traits.

La conception de cet article a été faite avec Dominique Gravel. Les données ont été assemblées
par Idaline Laigle, et le manuscrit a été édité avec Idaline Laigle, Timothée Poisot et Dominique
Gravel. L’article a été accepté pour publication dans PeerJ en 2017.
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3.2 Abstract

Species interactions are a key component of ecosystems but we generally have an incomplete
picture of who-eats-whom in a given community. Different techniques have been devised to
predict species interactions using theoretical models or abundances. Here, we explore the K
nearest neighbour approach, with a special emphasis on recommendation, along with a su-
pervised machine learning technique. Recommenders are algorithms developed for companies
like Netflix to predict whether a customer will like a product given the preferences of similar
customers. These machine learning techniques are well-suited to study binary ecological inter-
actions since they focus on positive-only data. By removing a prey from a predator, we find
that recommenders can guess the missing prey around 50% of the times on the first try, with up
to 881 possibilities. Traits do not improve significantly the results for the K nearest neighbour,
although a simple test with a supervised learning approach (random forests) show we can pre-
dict interactions with high accuracy using only three traits per species. This result shows that
binary interactions can be predicted without regard to the ecological community given only
three variables : body mass and two variables for the species’ phylogeny. These techniques
are complementary, as recommenders can predict interactions in the absence of traits, using
only information about other species’ interactions, while supervised learning algorithms such
as random forests base their predictions on traits only but do not exploit other species’ inter-
actions. Further work should focus on developing custom similarity measures specialized for
ecology to improve the KNN algorithms and using richer data to capture indirect relationships
between species.

3.3 Introduction

Species form complex networks of interactions and understanding these interactions is a major
goal of ecology (Pimm, 1982). The problem of predicting whether two species will interact has
been approached from various perspectives (Bartomeus et al., 2016 ; Morales-Castilla et al.,
2015). Williams et Martinez (2000) for instance built a simple theoretical model capable of
generating binary food webs sharing important features with real food webs (Gravel et al.,
2013), while others have worked to predict interactions from species abundance data (Aderhold
et al., 2012 ; Canard et al., 2014) or exploiting food web topology (Cohen, 1978 ; Staniczenko
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et al., 2010). Being able to predict with high enough accuracy whether two species will interact
given simply two sets of attributes, or the preferences of similar species, would be of value
to conservation and invasion biology, allowing us to build food webs with partial information
about interactions and help us understand cascading effects caused by perturbations. However,
the problem is made difficult by the small number of interactions relative to non-interactions
and relationships that involve more than two species (Golubski et al., 2016).

In 2006, Netflix offered a prize to anyone who would improve their recommender system by
more than 10%. It took three years before a team could claim the prize, and the efforts greatly
helped advancing machine learning methods for recommenders (Murphy, 2012). Recommen-
der systems try to predict the rating a user would give to an item, recommending them items
they would like based on what similar users like (Aggarwal, 2016). Ecological interactions can
also be described this way : we want to know how much a species would “like” a prey. Interac-
tions are treated as binary variables, two species interact or they do not, but the same methods
could be applied to interaction matrices with preferences. There are two different ways to see
the problem of species interactions. In the positive-only case, a species has a set of preys, and
we want to predict what other preys they might be interested in. This approach has the benefit
of relying only on our most reliable information : positive (preferably observed) interactions.
The other approach is to see binary interactions as a matrix filled with interactions (1s) and
non-interactions (0s). Here, we want to predict the value of a specific missing entry (is species
xi consuming species xj ?). For this chapter, we focus on the positive-only approach, which
relies on a simple machine learning approach called the K nearest neighbour.

Statistical machine learning algorithms (Murphy, 2012) have proven to be reliable to build
effective predictive models for complex data (the “unreasonable effectiveness of data” (Halevy
et al., 2009)). The K nearest neighbour (KNN) algorithm is an effective and simple algorithm
for recommendation, in this case finding good preys to a species with positive-only information.
The technique is simple : for a given species, we find the K most similar species according to
some distance measure, and use these K species to base a prediction. If all the K most similar
species prey on species x, there is a good chance that our species has interest in x. In our
case, similarity is simply computed using traits and known interactions, but more advanced
techniques could be used with a larger set of networks. For example, it is possible to learn
similarity measures instead of using a fixed scheme (Bellet et al., 2015). For this study, we use
a data-set from Digel et al. (Digel et al., 2014), which contains 909 species, of which 881 are
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Table 3.1 – Summary of the two methods used to predict interactions : the KNN algorithm and
random forests.

Method Input Prediction
Recommender (KNN) Set of traits & preys for each species Recommend new preys
Supervised learning (RF) Traits (binary and real-valued) Interaction (1) or non-interaction (0)

The recommender uses the K nearest neighbour algorithm with the Tanimoto distance measure. The
Tanimoto KNN makes a recommendation, while supervised learning with random forests (RF) predict
either an interaction or a non-interaction.

involved in predator-prey relationships and 871 have at least one prey. The data comes from soil
food webs and includes invertebrates, plants, bacteria, and fungi. In total, the data-set has 34
193 interactions. The data was complemented with information on 25 binary attributes (traits)
for each species, plus their body mass and information on their phylogeny. We also compare our
approach to a supervised learning method, random forests, which is used to predict interactions
with only the species’ traits.

A summary of the two methods used can be found in table 3.1. The approaches are not directly
comparable. For example, the positive-only KNN recommends preys to a species. If we remove
a prey from a species, ask the algorithm to recommend a prey, and check whether the prey
will come up as the recommendation, there are up to 881 possibilities. On the other hand, the
random forest predicts either an interaction or a non-interaction, a 50% chance of success by
random. These approaches have different uses. Positive-only algorithms are interesting because
we are rarely certain that two species do not interact. Also, the KNN approach uses information
on what similar species do, while random forests only rely on traits.

We show the KNN is particularly effective at retrieving missing interactions in the positive-only
case, succeeding 50% of the times at recommending the right species among 881 possibilities.
With few traits, the random forests can achieve high accuracy (≈ 98% for both interactions
and non-interactions) without any information about other species in the community. Random
forests require only three traits to be effective : body mass and two traits based on the spe-
cies’ phylogeny. Our results show that, with either three traits per species or partial knowledge
of the interactions, it is possible to reconstruct a food web accurately. These approaches are
complementary, covering both the case where traits are readily available and when only partial
knowledge of the food web is known. Both techniques can be used to reconstruct a food web
with different types of information.
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3.4 Method

3.4.1 Data

The first data-set was obtained from the study of Digel et al. (Digel et al., 2014), who docu-
mented the presence and absence of interactions among 881 species from 48 forest soil food
webs, details of which are provided in the original publication. 34 193 unique interactions were
observed across the 48 food webs, and a total of 215 418 absence of interactions. In order to
improve representation of interactions involving low trophic levels species that were not identi-
fied at the species level in the first data-set, we compiled a second data-set from a review of the
literature. We selected all articles involving interactions of terrestrial invertebrate species for a
total of 126 studies, across these, a total of 1 439 interactions were recorded between 648 spe-
cies. Only 88 absences of interactions were found. We selected traits based on to their potential
role in consumption interactions (table 3.2). For each species or taxa, these traits were docu-
mented based on a literature review or from visual assessment of pictures. In addition to these
traits, we included two proxies for hard-to-measure traits : feeding guild and taxonomy. The
traits were chosen for their potential relevance for species interactions and their availability,
see (I Laigle et al., 2017) for greater details on the data-set.

3.4.2 K-nearest neighbour

Our recommender uses the K-nearest neighbour (KNN) algorithm (Murphy, 2012). The KNN
algorithm is an instance-based method, it does not build a general internal model of the data
but instead bases predictions on the K nearest (i.e. most similar) entries given some distance
metrics. In the case of recommendation, each species is described by a set of traits and a
set of preys, and the algorithm will recommend new preys to the species based on the preys
of its K nearest neighbours. For example, if K = 3, we take the set of preys of the three
most similar species to decide which prey to recommend. If species A is found twice and B
once in the set of preys of the most similar species, we will recommend A first (assuming, of
course, that the species does not already have this prey). See table 3.3 for a complete example
of recommendation. In the “Netflix” problem, this is equivalent to recommending new TV
series/movies to a user by searching for the users with the most similar taste and using what
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Table 3.2 – The 26 binary traits and the three continuous traits used for the supervised learning
algorithm.

Features Abbr. Description n
AboveGroud AG Whether the species live above the ground. 538
Annelida An For species of the annelida phylum. 34
Arthropoda Ar For species of the arthropoda phylum. 813
Bacteria Bc For species of the bacteria domain. 1
BelowGround BG For species living below the ground. 464
Carnivore Ca For species eating other animals. 481
Crawls Cr Whether the species crawls. 184
Cyanobacteria Cy Member of the cyanobacteria phylum. 1
Detritivore De For species eating detribus. 355
Detritus Ds Whether the species can be classifying as a detritus. 2
Fungivore Fg For species eating fungi. 111
Fungi Fu Member of the fungi kingdom. 2
HasShell HS Whether the species has a shell. 274
Herbivore He For species eating plants. 130
Immobile Im For immobile species. 85
IsHard IH Whether the species has a though exterior (but not a shell). 418
Jumps Ju Whether the species can jump. 30
LongLegs LL For species with long legs. 59
Mollusca Mo Member of the mollusca phylum. 45
Nematoda Ne Member of the nematoda phylum. 5
Plantae Pl Member of the plant kinggom. 3
Protozoa Pr Member of the protozoa kingdom. 3
ShortLegs SL For species with short legs. 538
UsePoison UP Whether the species uses poison. 177
WebBuilder WB Whether the species builds webs. 89
Body mass M Natural logarithm of the body mass in grams 881
Ph0 Ph0 Coordinate on the first axis of a PCA of phylogenetic distances 881
Ph1 Ph1 Coordinate on the second axis of a PCA of phylogenetic distances 881

All traits are binary except for body mass, Ph0, and Ph1. We use taxonomy as a proxy of latent traits
following (Mouquet et al., 2012). To do so, we used the R package ape to obtain taxonomic distances
between the species, perform classical multidimensional scaling (or principal coordinates analysis) (Cox
et Cox, 2001) on taxonomic distances, and use the scores of each species on the first two axes (Ph0 and
Ph1) as taxonomy-based traits. These three real-valued variables are scaled to be in the [0, 1) range. For
the Tanimoto similarity index, these three continuous variables have to be converted to binary features.
For each, we create four binary features of equal size (n = 881/4).
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they liked as recommendation. It is also possible to tackle the reverse problem : Amazon uses
item-based recommendations, in which case we are looking for similar items instead of similar
users to base our recommendations (Aggarwal, 2016).

Choosing the right value for K is tricky. Low values give high importance to the most similar
entries, while high values provide a larger set of examples. Fortunately, the most computatio-
nally intensive task is to compute the distances between all pairs, a step that is independent of
K. As a consequence, once the distances are computed, we can quickly run the algorithm with
different values of K.

Different distance measures can be used. We will use the Tanimoto coefficient for recommen-
dations. The Tanimoto (or Jaccard) similarity measure is defined as the size of the intersection
of two sets divided by their union, or :

tanimoto(x, y) =
|x ∩ y|
|x ∪ y| , (3.1)

Since it is a similarity measure in the [0, 1] range, we can transform it into a distance function
with 1− tanimoto(x, y). The distance function uses two types of information : the set of traits
of the species (see table 3.2) and their set of preys. We define the distance function with traits
as :

tanimotod(x, y, wt) = wt(1− tanimoto(xt, yt)) + (1− wt)(1− tanimoto(xi, yi)), (3.2)

where wt is the weight given to traits, xt and yt are the sets of traits for species x and y, and
xi, yi are their sets of preys. Thus, when wt = 0, only interactions are used to compute the
distance, and when wt = 1, only traits are used. See table 3.3 for an example.

The data is the set of preys and binary traits for each species (Table 3.2). To test the approach,
we randomly remove an interaction for each species and ask the algorithm to recommend up
to 10 preys for the species with the missing interaction. Interactions are removed one-at-a-
time and similarity is computed before the interaction is removed. The code for computing
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Table 3.3 – Fictional example to illustrate recommendations with K nearest neighbour using the
Tanimoto distance measure modified to include species traits.

Species ID Traits Preys Most similar Recommendations
0 {Ar, Ca} {6, 42, 47} {6, 28, 70} [812, 70, 72]
6 {Ar, Ca} {42, 47, 70, 72}
28 {Ar, Ca} {42, 47, 70, 812}
70 {Ca} {42, 47, 812}
. . . . . . . . .

We are trying to recommend a prey to species 0 given that the three most similar species are species
6, 28, and 70. For example, the distance from species 0 to species 70 would be wt0.5 + (1− wt)2/4.
To find recommendations, the set of preys found in the K = 3 most similar entries is computed, in this
case {812 = 2, 70 = 2, 72 = 1}, leading to the list of recommendations [812, 70, 72]. Because they are
found most often in the K most similar species, candidates 812 and 70 will be suggested before 72. To
test this approach, we remove a prey from a species and check whether the algorithm recommend the
missing prey. Especially with low K, it’s possible that no recommendations can be found, for example
if the most similar species has the exact same preys.

similarities after the interaction is removed is available in the code repository, but it has little
effect on the results while making the program much slower to run since the similarity matrix
must be computed for each trial. We count how many recommendations are required to retrieve
the missing interactions and compute the top1, top5, and top10 success rates, which are defined
as the probabilities to retrieve the missing interaction with 1, 5, or 10 recommendations. We
repeat this process 10 times for each species with at least 2 preys, totally 7200 attempts. We test
all odd values of K from 1 to 19, and wt = {0, 0.2, 0.4, 0.6, 0.8, 1}. We also divided species
in groups according to the number of preys they have to see if it is easier to find the missing
interaction for species with fewer preys.

3.4.3 Supervised learning

We also do a simple test with random forests to see if it is possible to predict interactions in
this data-set using only the traits (Breiman, 2001). In this case, the random forests perform
supervised learning : we are trying to predict y (interaction) from the vector of traits x by first
learning a model on the training set, and testing the learned model on a testing set. We keep 5%
of the data for testing. We perform grid search to find the optimal parameters for the random
forests.
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For our predictions, we count the number of true positives (tp), true negatives (tn), false
positives (fp) and false negatives (fn). The score for predicting interactions (Scorey), non-
interactions (Score¬y) and the accuracy are defined as

Scorey =
tp

tp + f p
, (3.3)

Score¬y =
tn

tn + f n
, (3.4)

Accuracy =
Scorey34193 + Score¬y741968

8812 , (3.5)

with 34193 and 741968 being the number of observed interactions and non-interactions in the
881 by 881 matrix. We then use the True Skill Statistics (TSS) to measure how accurate the
random forest is, defined a

TSS =
(tp× tn)− ( f p× f n)
(tp + f n)( f p + tn)

. (3.6)

The TSS ranges from -1 to 1.

3.4.4 Code and Data

Since several machine learning algorithms depends on computing distances (or similarities) for
all pairs, many data structures have been designed to compute them efficiently from kd-trees
discovered more than thirty years ago (Friedman et al., 1977) to ball trees, metric skip lists,
navigating nets (Izbicki et Shelton, 2015), and cover trees (Beygelzimer et al., 2006 ; Izbicki et
Shelton, 2015). We use an exact but naive approach that works well with small data-sets. Since
distance(x, y) = 0 if x = y and distance(x, y) = distance(y, x), our C++ implementation
stores the distances in a lower triangular matrix without the diagonal, yielding n(n − 1)/2
distances to compute. A linear scan is then used to find the most similar species. Computing
the distance matrix and testing the predictions 7000 times for a set of parameters takes less
than a second. We used Scikit for random forests (Pedregosa et al., 2011). The C++11 code
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for the KNN algorithm, Python scripts for random forests, and all data-sets used are available
at https://github.com/PhDP/EcoInter (also stored on zenodo with a DOI : (Desjardins-Proulx,
2016)).

3.5 Results

3.5.1 Recommendation

While matrix imputation has a 50% change of success by random, the Tanimoto KNN needs to
pick the right prey among up to 881 possibilities. Yet, it succeeds on its first recommendation
around 50% of the times. When the first recommendation fails, the next 9 recommendations
only retrieve the right species around 15% of the times so the top5 and top10 success rates
are fairly close to the top1 success rate (see figure 3.1). The Tanimoto measure is particularly
effective for species with fewer preys, achieving more than 80% success rate for species with
10 or fewer preys (Figure 3.2).

The highest first-try success rates (the probability to pick the missing interaction on the first
recommendation) are found with K = 7 and no weights to traits, and with K = 17 and a small
weight of 0.2 to traits (Table 3.4). Overall, the value of K had little effect on predictive ability.

3.5.2 Supervised learning

Random forests predict correctly 99.55% of the non-interactions and 96.81% of the interac-
tions, for a TSS of 0.96. Much of this accuracy is due to the three real-valued traits (body mass,
Ph0, Ph1). Without them, too many entries have the same feature vector x, making it impos-
sible for the algorithm to classify them correctly. Removing the binary traits has little effect on
the model. With only body mass, Ph0, Ph1, the TSS of the random forests is 0.94.
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Figure 3.1 – Finding the missing interaction with KNN/Tanimoto approach.
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After removing a prey from a predator, we ask the KNN algorithms with Tanimoto measure to make 10
recommendations (from best to worst). The figure shows how many recommendations are required to
retrieve the missing interaction. Most retrieved interactions are found with the first attempt. This data
was generated with K = 7 and wt = 0.
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Figure 3.2 – Success on first guess with Tanimoto similarity as a function of the number of prey.
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The KNN algorithm with Tanimoto similarity is more effective at predicting missing preys when the
number of preys is small. This is probably in good part because there are more information available
to the algorithm, since 473 species have 10 or fewer preys, 295 have between 10 and 100, 103 species
have more than 100 preys.

38



Table 3.4 – Top1 success rates for the KNN/Tanimoto algorithm with various K and weights to
traits.

41.4 41 40.8 40.5 40.3 22.4

48.8 48.8 49.2 48.5 48.3 32.6

54 52.7 52.5 51.1 50.4 39.3

55.5 55.4 53.4 52 50.8 40.3
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When wt = 0.0, the algorithm will only use interactions to compute similarity between species. When
wt = 1, the algorithm will only consider the species’ traits (see table 3.2). The value is the probability
to retrieve the correct missing interaction with the first recommendation. For each entry, n = 871 (the
number of species minus 10, the number of species with no preys). The best result is achieved with
K = 17 and w = 0.2, although the results for most values of K and w = [0.0, 0.2] are all fairly close.
The success rate increases with K when only traits are considered (w = 1).
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3.6 Discussion

We applied different machine learning techniques to the problem of predicting binary species
interactions. Recommendation is arguably a better fit for binary species interactions, since it
is essentially the same problem commercial recommenders such as Netflix face : given that a
user like item i, what is the best way to select other items the user would like? In this case,
users are species, and the items are their preys, but the problem is the same. In both cases, we
can have solid positive evidence (observed or implied interactions), but rarely have proofs of
non-interactions. The approach yields strong results, with a top1 success rate above 50% in a
food web with up to 881 possibilities. The approach could be used, for example, to reconstruct
entire food webs using global database of interactions (Poelen et al., 2014). The method’s
effectiveness rely on nestedness : how much species cluster around the same set of preys in a
food web (Guimaraes et Guimaraes, 2006). Thus, it should be less effective in food webs with
more unique predators.

The KNN algorithm falls into the realm of unsupervised learning, where the goal is to find
patterns in data (Murphy, 2012). The other class of machine learning algorithms, supervised
learning, have the clearer goal of predicting a value y from a vector of features x. For example,
in supervised learning, we would try to predict an interaction y from the vector of traits x,
while a unsupervised approach can fill entries from an incomplete matrix regardless of what
the entry is (interaction or trait). With a larger set of food webs, it may be possible to use an
unsupervised algorithm, for example a neural network, to train a model for matrix imputa-
tion. Instead of recommending new preys, imputation would simply fill missing entries from a
matrix (interaction or non-interactions).

Our random forests achieve a TSS of 0.96 using the binary traits, body mass, and the coordi-
nates of the multidimensional scaling. This is consistent with previous research that has shown
that ecological networks have relatively few dimensions (Eklof et al., 2013). A random forest
can build effective predictive models by creating complex rules based on the traits, while the
KNN algorithm relies on a simplistic distance metrics. However, the KNN approach has some
advantages over supervised learning, namely the capacity to recommend preys using only the
information from the other species’ interactions. The solution to improve the KNN approach
in ecology is likely to learn distance metrics (Bellet et al., 2015) instead of using a fixed for-
mula. This would allow complex rules while maintaining the KNN’s ability to exploit partial
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food web structures. Learning distance metrics is a promising avenue to improve our results.
Much efforts on the Netflix prize focused on improving similarity measures (Toscher et Jahrer,
2008 ; Hong et Tsamis, 2006), and custom similarity metrics can be used to improve unsu-
pervised classification algorithms (Bellet et al., 2015) by exploiting complex domain-specific
rules. Maybe species with many preys, apex predators, or specialists behave differently enough
to need different similarity measures. Learning distance metrics from data is a common way to
improve methods based on a nearest neighbour search (Xing et al., 2003 ; Bellet et al., 2015),
allowing the measure itself to be optimized. We only used the K nearest neighbour algorithm
for unsupervised learning, but several other algorithms can be used to solve the “Netflix pro-
blem”. For example : techniques based on linear programming, such as recent exact methods
for matrix completion based on convex optimization (Candès et Recht, 2009) or low-rank ma-
trix factorization. The latter method reduces a matrix to a multiplication between two smaller
matrices, which can be used both to predict missing entries and to compress large matrices
into small, more manageable matrices (Vanderbei, 2013). Given enough data, deep learning
methods such as deep Boltzmann machines could also be used (Zhang, 2011). Deep learning
revolutionized machine learning with neural networks made of layers capable of learning in-
creasingly detailed representations of complex data (Hinton et al., 2006). Many of the most
spectacular successes of machine learning use deep learning (Mnih et al., 2013). However,
learning several neural layers to form a deep networks would require larger data-sets.

The low sensitivity to K in recommendations is interesting and makes the approach easier to
use. This is caused by the fact that, as K grows, the set of species includes more and more
unrelated species with widely different set of preys. If we increase K from k to k + δ for a
recommendation, the species in δ range are not only less similar, but they are less likely to
share preys among themselves. Since recommendations are based on how many times a prey is
found in the K nearest species, the species in the δ range are unlikely to have as much weight as
the first k species. Our KNN recommender is particularly easy to parametrize since it is neither
sensible to the weight given to traits nor to the choice of K.

Our results have two limitations. It is possible that our food web was exceptionally simple, and
that a food web with distinct structural properties would behave differently, especially if it has
lower nestedness. The success of the KNN algorithms depends on local structure : how much
can we learn from similar species. If each species has a unique set of preys, the KNN will
struggle more. Also, a deeper issue is that real food webs are not binary structures. Species,
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populations, and individuals have different densities, prey more strongly on some resources
than others, and have preferences. In a binary matrix, we can predict if two species will interact
while completely ignoring the rest of the network, but real food webs involve complex indirect
relationships (Wootton, 1994). It is unclear how much we can learn about ecosystems and
species interactions from binary matrices, and our results show that binary interactions can be
predicted without direct knowledge of the community, since we are able to effectively predict
if two species interact given only three traits. Species interactions are better represented with
a weighted hypergraph (Gao et al., 2012), which is well-suited to model relations with an
arbitrary number of participants. The hyperedge would allow for complex indirect relationships
to be included. Understanding these hypergraphs is outside the scope of the KNN algorithm but
could be understood with modern techniques such as Markov logic (Richardson et Domingos,
2006).

Recommendation (KNN algorithm with Tanimoto distance) and supervised learning (random
forests) are complementary techniques. Supervised learning is more useful when we have traits
and no information about interactions, but it is useless without the traits. On the other hand,
the recommender performs well without traits but requires at least partial information about
interactions, although it might be possible to use the interactions from different food webs.
We suggest more research could be done on developing better distance metrics for ecological
interactions or learning these metrics from data.
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CHAPITRE 4

THE K NEAREST NEIGHBOUR ALGORITHM WITH THRESHOLD TO PREDICT
ECOLOGICAL INTERACTIONS

4.1 Description de l’article et contribution

Le KNN est une approche simple et efficace pour prédire les interactions sans traits. Cependant,
cet algorithme tend à sous-prédire des interactions. Pour cette contribution, nous étudions une
variante du KNN qui permet d’améliorer des prédictions sur les interactions. Nous testons notre
approche sur des données d’interactions entre pollinisateurs et plantes. Notre approche réussit
à bien prédire à la fois les interactions et les non-interactions pour ce jeu de données.

J’ai conçu cette recherche. Les données ont été assemblées par Nacho. Le manuscrit a été révisé
par Nacho, Timothée Poisot et Dominique Gravel. L’article sera soumis sous sa forme actuelle
à un journal généraliste.

Abstract

We present a variant to a popular machine learning method, the K nearest neighbour (KNN)
algorithm, and use it to predict whether two species interact. The algorithm has several advan-
tages over other methods : it requires no species traits and is simple to understand, implement,
and interpret. Because ecological interactions tend to be rare relative to non-interactions, it
is common to use measures of success like the true skill statistic (TSS) that will give equal
weights to the predictions of interactions and non-interactions. These measure penalize more
false negatives than false positives, which makes sense given the ecological significance of in-
teractions. In this context, we add a threshold to the KNN algorithm to improve the prediction
of interactions. We test our algorithm on a data-set of plant-pollinator interactions and found
the method to achieve better TSS with low thresholds.
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4.2 Introduction

A major goal of ecology is to understand how species interact (Pimm, 1982 ; Poisot et al.,
2016b). Strong predictive models could help us understand how interaction networks evolve
and transform with biotic and abiotic changes. Different methods have been devised to predict
these interactions, from simple theoretical models (Williams et Martinez, 2000) to inference
methods based on abundance data (Aderhold et al., 2012 ; Canard et al., 2014) and machine
learning techniques (Desjardins-Proulx et al., 2017).

Here, we study a variant of a well-established method, the KNN algorithm (Cover et Hart,
1967). In a nutshell, the KNN algorithm works by finding the K most similar elements in a set
and using them to generate a prediction, with K being an odd integer. If we want to know whe-
ther species x interacts with a, we must first find the K species most similar to x (in terms of
number of interactions shared) and generate a prediction based on how many of these species
interact with K. The standard method works by majority vote, so the prediction for a will be the
most common value among the K nearest. For example, if three out of the five species most si-
milar to x have an interaction with a, we will predict an interaction with a. The rationale of the
methods is rooted in simple ecological theory, because plant-pollinator interaction networks
are typically nested, a measure of how much species form clusters with similar interactions
(Guimaraes et Guimaraes, 2006). The effectiveness of the KNN may also stands from the hy-
pothesis that traits are ultimately constraining ecological interactions (Bartomeus et al., 2016),
but that often they can’t be measured. Because many traits involved in ecological interactions
take times to evolve, it happens that often species sharing a given set of interactions will also
be likely to share another set.

For this study, we test a variant of the KNN with an arbitrary threshold, allowing for the al-
gorithm to predict an interaction even if fewer than half of the K nearest neighbours have the
interaction. The idea of imposing a threshold for KNN can be counter-intuitive. For example,
if only one of the three closest species have an interaction, we will predict an interaction if our
threshold is of 1/3 or less. However, it means an interaction would also be erroneously pre-
dicted for those two species without an interaction. The logic behind the threshold is that we
care more about predicting interactions than their relative occurrences. In nature, most pairs of
species do not interact (i.e. mean connectance values for plant-pollinator networks is low (Váz-
quez et al., 2009)). Thus, a predictive model that would always predict non-interactions would
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have high accuracy. On the other hand, the standard statistics to compare presence/absence of
interactions, like the True Skill Statistic, tend to give equal weights to predictions of presence
and absence, despite the latter being a lot more common (Allouche et al., 2006). With these
measures, it makes sense to risk more false positives to correctly capture more interactions.

We test our variant using detailed data from plant-pollinator interactions collected in a Medi-
terranean shrubland. We show that the KNN provides strong fit, with high accuracy for both
predicting interactions and non-interactions. A lower threshold, where interactions are predic-
ted when only one of the K nearest has the interaction, is more effective than the standard
majority rule approach using the TSS as measure of performance. Our results show how a
small twist on a well-known algorithm can help it perform better at predicting rare events.

4.3 Methods

4.3.1 Data

Plant-pollinator interactions were collected across 16 sites in the southwest of the Iberian pe-
ninsula (Huelva and Seville) from March to June 2015. All sites are dominated by Mediterra-
nean open forests with a flowery understory including Cistus sp., Lavandula sp., Rosmarinus

officinalis. Sampling was conducted on seven rounds per site along the season and each round
consisted in three types of censuses. (i) A linear transect, in which all seen interactions were
recorded along a 100 m transect during 30 minutes, (ii) focal 5 minutes census on the domi-
nant plants were all visitors were recorded and (iii) opportunistic sampling of non previously
recorded interactions. Those species that were unable to be identified in the field were collec-
ted and identified by professional taxonomists in the lab. There are 270 species of pollinators
and 65 species of plants for a total of 14 580 possible interactions. Interaction between 739
pollinator-plant pairs have been observed (4.2% of all possible combinations).
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4.3.2 Imputation with the K nearest neighbour algorithm

The KNN algorithm has two steps. In the first step, for all pairs of species, we compute a
similarity index ∈ [0, 1]. We use the Jaccard similarity coefficient, which measures similarity
as the size of intersection divided by the size of the union of two sets :

jaccard(x, y) =
|x ∩ y|
|x ∪ y| . (4.1)

Here, we use the set of plants for each pollinator to compute their similarity. For example, if a
species x pollinates plants {A, B, C} and species y pollinates plants {A, C, D, E, F}, then :

jaccard(x, y) =
|{A, B, C} ∩ {A, C, D, E, F}|
|{A, B, C} ∪ {A, C, D, E, F}| (4.2)

=
|{A, C}|

|{A, B, C, D, E, F}| =
2
6

. (4.3)

This or other similarity indexes can be calculated over other values, for example on species
traits (Desjardins-Proulx et al., 2017). Alternatively, measures learned from data can be also
used (Bellet et al., 2015).

The resulting similarity matrix is used to find the K most similar species, with K normally being
an odd integer. More advanced techniques such as cover trees can be used to find the K nearest
species faster than a matrix (Beygelzimer et al., 2006 ; Izbicki et Shelton, 2015) but the small
size of our data-set allowed us to simply scan all species to find all the K nearest neighbours.
Since there are many species with the same similarity we sometime have to randomly pick in a
set of species with the same similarity to get exactly K neighbours. This random aspect create
small variations in the results. We tested all odd values of K in the [1, 11] range.

To predict whether pollinator x interacts with plant a, we count how many of the K species
most similar to x have an interaction with a, divide that number by K to normalize, and predict
an interaction if that number is higher than a threshold t. If the ratio is lower or equal to the
threshold we predict a non-interaction. This is a deviation from the standard KNN algorithm,
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which relies on a majority vote approach : the prediction is based on the most common value
found in the K nearest elements, which in this case would be equivalent to a threshold value of
0.5 (i.e. we predict an interaction only if more than 50% of the K closest species also have the
interaction). Allowing the threshold to take other values than 0.5 means we can, for example,
predict an interaction if only one of the five nearest species have the interaction. We tested all
threshold in the [0.0, 0.9] range (with 0.1 increments). Since we require the KNN ratio to be
higher than the threshold to predict an interaction, a threshold of 0.0 means we require only
one interaction in the K nearest to predict one. We do not test a threshold of 1 since it would
require more than 100% of the K nearest to have an interaction.

4.3.3 Scoring

We use the true skill score (TSS) to compare results. It is defined as

TSS =
(tp× tn)− ( f p× f n)
(tp + f n)( f p + tn)

, (4.4)

where tp, tn, f p, f n are the true positives, true negatives, false positives, and false negaties,
respectively. The TSS ranges from -1 to 1.

4.4 Results

4.4.1 KNN

The KNN algorithm is capable of predicting most interactions and non-interactions, with a peak
TSS just above 0.80 for K = 3 and thresholds in the [0.0, 0.3] range. The standard threshold
of 0.5 yields good but significantly worse results than lower thresholds, with TSS generally
below 0.70 except for K = 1 (since there is only one species in the set of nearest neighbours,
the threshold has no effect) and K = 3 (Figure 4.1).
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Figure 4.1 – TSS scores for the KNN algorithm with K ranging from from 1 to 11 (odd integers
only) and thresholds from 0 to 0.9.
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Results with a threshold of 0.5 represents the standard KNN majority vote approach, where the pre-
diction is based on the most common values found in the K nearest elements. The usual majority vote
(threshold of 0.5) yields good results, but lower thresholds always give better predictions.

The ability to correctly predict an interaction is one of the trickiest problem given most species
do not interact, making it difficult for algorithms to handle positive cases (Figure 4.3). However,
the threshold does predictably worse on predicting non-interactions (Figure 4.4) and, since
95.6% of pollinator-pairs do not interact, the (Figure 4.2). Table 4.1 shows the full confusion
matrices for K = 3 and thresholds of 0.0 and 0.5.
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Figure 4.2 – Accuracy for the KNN algorithm with various values K and threshold, defined as the
number of correct predictions divided by the total number of predictions.
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Table 4.1 – Full confusion matrix for KNN algorithm with K = 3 and threshold of 0.0 and 0.5
(majority vote).

Threshold = 0 Threshold = 0.5
True pos. False pos. True pos. False pos.

662 952 533 144
False neg. True neg. False neg. True neg.

77 12889 206 13697
Full confusion matrix for K = 3 and threshold of 0.0 and 0.5 (majority vote). With the threshold of 0,
witnessing a single interaction among the 3 nearest pollinators is enough to predict an interaction, while
2/3 interactions must be present for the majority vote approach to predict an interaction. We see how the
lower threshold makes fewer good predictions (13 551 vs 14 230) but they are better distributed between
true positives and true negatives. The confusion matrix on the left has a lower accuracy but a better TSS
score than the majority vote on the right (0.815 vs 0.708). There are 270 species of pollinators and 65
species of plants for a total of 14 580 predictions.
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Figure 4.3 – Heatmap for the true positive rate (also called recall or sensitivity) of the KNN with
threshold.
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True positive rate (also called recall or sensitivity) defined as true positives/(true positives +
f alse negatives). We can see the deleterious effect of higher thresholds on the ability to predict in-
teractions.
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Figure 4.4 – Heatmap for the true negative rate (also called recall or sensitivity) of the KNN with
threshold.
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True negative rate (or specificity) defined as true negatives/(true negatives + f alse positives).

55



4.5 Discussion

We showed how a simple algorithm can, without using species traits, predict species interac-
tions effectively. Eschewing the standard majority rule for KNN was beneficial, as the best
results were found with K = 3 and threshold values in the [0, 0.3] range. Interaction similarity
among species may encapsulate latent information difficult to measure from traits and phylo-
genetic constraints. An alternative to the KNN would be to use supervised learning algorithms,
such as random forests, to predict interactions from traits. Our results show clearly how the
KNN approach can offer a solid alternative to supervised learning when traits are either una-
vailable or not informative enough (Desjardins-Proulx et al., 2017). The KNN’s effectiveness
depends on nestedness : how much species cluster around the same set of preys in a food web
(Guimaraes et Guimaraes, 2006). It may also relate to ecosystem stability. Recent research
suggests that clustering of species helps stabilize food webs (Johnson et al., 2016).

The KNN approach combined with large assemblage of species interactions extracted from
mangal.io (Poisot et al., 2016a) or globi (Poelen et al., 2014) can be used to predict local rea-
lizations of interactions. This approach has been used to reconstruct food webs in a data-poor
environment (Beauchesne et al., 2017). Further research on the use of KNN for predicting in-
teractions should (i) study different measures of similarity, and (ii) look at probabilistic variants
of the KNN. For this study we focused on the Jaccard similarity coefficient, but it is possible
to use other similarity indexes or even to use to learn distance metrics. Metric learning is a
growing branch of machine learning interested in how good similarity/distance measures can
be learned from data (Bellet et al., 2015). For this chapter we used a measure based on interac-
tions but we could imagine how more sophisticated measures could integrate traits, phylogeny,
and interactions to estimate similarity. Such measure can be learned from data instead of being
hand-crafted. As for probabilistic variants, Holmes and Adams (Holmes et Adams, 2002) pro-
posed a probabilistic nearest neighbour algorithm (PNN). The PNN is both more flexible thanks
to predictions being proper probabilities, but has also no parameters, with K being replaced by
a smooth decrease of influence as similarity decreases.
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CHAPITRE 5

COMBINING ECOLOGICAL THEORIES WITH MACHINE LEARNING USING
FUZZY LOGIC

5.1 Description de l’article et contribution

Dans cet article, nous créons une nouvelle approche basée sur la logique floue pour réviser
une théorie écologique. Notre approche prend des règles simples et les révise en ajoutant de
nouvelles règles en logique floue. Ces règles sont claires et ont une interprétation écologique
facilement compréhensible. Notre approche performe mieux pour prédire les interactions entre
pollinisateurs et plantes que les meilleures approches en apprentissage supervisé (RF). De plus,
contrairement à ces approches qui résultent en des modèles incompréhensibles, notre algo-
rithme de révision aboutit à de simples règles.

J’ai conçu la méthode et programmer l’algorithme. Nacho a assemblé les données. Nacho,
Timothée Poisot et Dominique Gravel m’ont aidé à éditer l’article. Cet article sera soumis sous
sa forme actuelle à PLOS Computational Biology.
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5.2 Abstract

We design an approach based on fuzzy logic to revise ecological theories with new rules lear-
ned from data. Our initial hypothesis has two simple rules to predict an interaction between
a pollinator and a plant : if similar pollinators have an interaction with the plant, predict an
interaction, otherwise we predict a non-interaction. Using an algorithm to revise this hypothe-
sis, we find new rules to improve our model. Unlike most machine learning algorithms, the
rules we discover have clear ecological interpretations. For example, our algorithm discovers
that plants with small flower width interact more with pollinator with small tongues. Using the
True Skill Statistic (TSS) to measure success, we find that our initial model before revision did
worse than supervised learning techniques such as random forests (TSS of 0.689 vs 0.795), but
that our revised theory improved the initial model enough to surpass random forests (TSS of
0.885). Our approach shows that it is possible to revise ecological theories and hypotheses with
clear rules. True unification of machine learning with traditional ecological theories could help
build large databases of ecological knowledge capable of both storing rules in a clear format,
and automatically discover new rules from data.

5.3 Introduction

Biodiversity proved a difficult subject for traditional mathematical theories. After trying to de-
vise an effective theory of molecular evolution for more than half a century, a consensus has
emerged that established mathematical theories fail to correctly predict the level of genomic
diversity witnessed in nature (Begun et al., 2007 ; Hahn, 2008). The issue is often not lack of
understanding of basic mechanisms but the difficulty to integrate them into a coherent theory.
In particular, much of the difficulties in both ecology and evolution have their origin in the com-
plexity of selection (Bell, 2010). Selection, far from being a fixed value, then to show complex
spatio-temporal variations. Selection has both complex abiotic (the environment changes) and
biotic roots (species interactions), making it difficult to model in a single theory. The tempta-
tion, in both evolution and ecology, has been to dodge this complexity and rely on neutral theo-
ries (Kimura, 1983 ; Hubbell, 2001). However, both suffer from predictable issues : selection
is both widespread and complex, ignoring it lead to unreliable theories (Hahn, 2008 ; McGill
et al., 2006 ; 2007 ; Desjardins-Proulx et Gravel, 2012). At the same time, machine learning
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has achieved impressive results in a great of number of domains by learning model from data
(the “unreasonable effectiveness of data” (Halevy et al., 2009 ; Murphy, 2012)). Unfortunately,
machine learning models tend to be difficult, if not impossible, to interpret. We suggest that,
to solve ecology’s struggle with the complexity of ecosystems, we need techniques capable of
combining hand-crafted ecological theories and hypotheses with machine learning to benefit
from the clarity of the former and the ability of the latter to handle the complexity of data.

Machine learning is a branch of Artificial Intelligence interested in the study of algorithms
capable of learning models from data (Russell et Norvig, 2009). In supervised learning, the
algorithm is fed a set of data-points with the correct answer, use them to learn a model, and
then has its accuracy tested on new data points. A canonical example of supervised learning
is random forests (Breiman, 2001), an ensemble approach that will learn a number of decision
trees and use the mode of their predictions. For this study, we designed an approach based on
fuzzy logic to revise ecological theories, adding rules to an initial knowledge base given a data-
set. The ultimate goal is to be able to build large knowledge bases of ecological theories, revise
them automatically, test them as new data become available, while maintaining the ability to
represent our knowledge with clear rules. Our approach is based on fuzzy logic, an extension
of standard logic. Standard logic is bivalent : a statement is either true or false. Fuzzy logic
breaks that mold by allowing truth values to be anything from 0 (false) to 1 (true). Fuzzy
logic can often be confused with probability theory since they both involve values in the [0, 1]
range. Probability deals with the uncertainty of events, while fuzziness deals with ambiguity.
One can sometime simulate the other (Murphy, 2012), but they are fundamentally different
concepts. See (Kosko, 1990) for an extended discussion of fuzziness versus probabilities. For
example, we can say in fuzzy logic that a viroid is neither a living organism not inanimate,
since it shares many but not all features of living organisms. More concretely, it allows us
to use clear logic formulas with standard logic connectives (conjunction “and” denoted ∧,
disjunction “or” denoted ∨) but with truth values in the [0, 1] range. We use fuzzy logic to
build fuzzy knowledge bases, which are series of I f X then Y rules.

To test our algorithm, we use a data-set of 739 pollinator-plant interactions and 739 non-
interactionns. To test our algorithm’s ability to revise theory, we use the K nearest neighbour
as starting point (KNN). In a nutshell, to predict whether a pollinator interacts with a plant,
the KNN algorithm picks the K most similar pollinators and count how many interact with the
plant. Divided by K, this ratio should predict interactions. We start with an initial knowledge
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base with two rules : if the KNN ratio is high, there is an interaction, if the KNN ratio is low,
there is no interaction. Then, we use an algorithm to revise this theory, adding new rules and
modifying them to improve their ability to predict interactions. We find our approach capable
of improving the theory from an initial TSS of 0.69 on the testing data-set to a revised theory
with a TSS of 0.885, well above the scores of standard supervised learning methods (random
forests and support vector machines). The rules added automatically to the knowledge bases
have clear ecological interpretations. Our results show that techniques based on fuzzy logic can
help combine ecological theories with machine learning techniques to achieve both clarity and
predictive effectiveness.

5.4 Method

5.4.1 Data

Plant-pollinator interactions were collected across 16 sites in the southwest of the iberian pe-
ninsula (Huelva and Seville) from March to June 2015. All sites are dominated by Mediterra-
nean open forests with a flowery understory including Cistus sp., Lavandula sp., Rosmarinus

officinalis. Sampling was conducted on seven rounds per site along the season and each round
consisted in three types of censuses. (i) A linear transect, in which all seen interactions were
recorded along a 100 m transect during 30 minutes, (ii) focal 5 minutes census on the domi-
nant plants were all visitors were recorded and (iii) opportunistic sampling of non previously
recorded interactions. Those species that were unable to be identified in the field were collec-
ted and identified by professional taxonomists in the lab. Plant and pollinator traits relating
to morphological trait matching (Bartomeus et al., 2016) were measured in the lab. Those are
flower width, and nectar tube depth and diameter for plants and intertegular span (a proxy of
body size) and tongue length for pollinators (Cariveau et al., 2016).

The data-set has 277 species of pollinators, 65 species of plants. Most pollinator-plant in-
teractions were observed more than once but we are only interested in whether two species
interact. The data-set has observations for 739 pairs of pollinator-plant. We randomly pick 739
pollinator-plant pairs that are not interacting to build a data-set of 1478 entries, half of inter-
actions, half of non-interactions. 90% of the entries are used for training and 10% is held for
testing. Seven real-valued features are defined for each entry : plant’s nectar tube dimension,
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Table 5.1 – The input variables along with their abbreviation and range. All ranges are in milli-
metres except generalism and the KNN ratio.

Variable Abbreviation Range
Plant’s nectar tube dimension TubeDim [0, 20]
Plant’s nectar tube depth TubeDepth [0, 17.7]
Plant’s flower width FlowerWidth [1.73, 65]
Pollinator’s body size PollBodySize [0.29, 75.5]
Pollinator’s tongue length TongueLength [0, 45.2]
Pollinator generalism PollGen [1, 8]
K nearest neighbour ratio KNN [0, 1]

plant’s nectar tube depth, plant’s flower width, an estimate of the pollinator’s body size, the
pollinator’s tongue length, the number of families the pollinator is interacting with (a rough
specialism-generalism scale), and lastly the KNN ratio (Table 5.1). The KNN ratio is the ra-
tio of the number of the K nearest pollinator interacting with the plant, divided by K. To find
the K most similar species, we use the Tanimoto (or Jaccard) similarity measure on the set of
plants each pollinator is interacting with. The Tanimoto measure is defined as the size of the
intersection divided by the size of the union :

tanimoto(x, y) =
|x ∩ y|
|x ∪ y| . (5.1)

For example, if a species x pollinates plants {A, B, C} and species y pollinates plants {A, C, D, E, F},
then :

tanimoto(x, y) =
|{A, B, C} ∩ {A, C, D, E, F}|
|{A, B, C} ∪ {A, C, D, E, F}| (5.2)

=
|{A, C}|

|{A, B, C, D, E, F}| =
2
6

. (5.3)

The KNN algorithm yields better results with K = 5 (Desjardins-Proulx et al., 2017a).
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5.4.2 Measure of success

We use the true skill score (TSS) to compare algorithms (Allouche et al., 2006). It is defined
as

TSS =
(tp× tn)− ( f p× f n)
(tp + f n)( f p + tn)

, (5.4)

where tp, tn, f p, f n are the number of true positives, true negatives, false positives, and false
negatives, respectively. The TSS ranges from -1 to 1. The TSS is used to train and test super-
vised learning algorithms (e.g. random forests) and our fuzzy knowledge base.

5.4.3 Supervised learning

We test three supervised learning algorithms available in the scikit-learn Python package :
decision trees, support vector machines, and random forests (Pedregosa et al., 2011). Grid-
search was used to find the optimal parameters for random forests. These algorithms use the
same data as our fuzzy logic method, with 90% of the data being used for training and 10%
held for testing.

5.4.4 Fuzzy knowledge base

A knowledge base is a set of rules K = {R0, R1, ..., R|K|−1} of the form

If Antecedants then Consequents. (5.5)

Here the consequent is either I− for a non-interaction or I+ for an interaction. The antecedents
are fuzzy variables of the form

InputVariable is LinguisticVariable (5.6)
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Figure 5.1 – Example of fuzzy sets.
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An input (plant’s flower width) and its five linguistic variables. The flower width ranges from 0 to 65. If
a plant has a flower width of 22.6mm, then the truth value of FlowerWidth is verysmall would be 0.0,
FlowerWidth is small = 0.65, FlowerWidth is average = 0.35, and FlowerWidth is high = 0.0.
Triangles are popular in fuzzy logic because, for every input value, the sum of the fuzzy sets equals 1.
There is no upper limits on the number of linguistic variables but all our tests were done with 2, 3, 5, or
7 per input variables.

and are joined together by conjunction (“and”, ∧). For example, the rule

If KNN is high ∧ PollGeneralism is low then I+ (5.7)

has two variables in the antecedent, KNN and PollGeneralism, respectively associated with
the linguistic variables high and low. See figure 5.1 for an explanation of how input and lin-
guistic variables map to truth values. Conjunction ∧ can take different definitions in fuzzy logic
depending on the T − norm used, see table 5.2.

We predict an interaction for a given input if the disjunction of the antecedents (∨, see table
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5.2 for definitions) for the rules with the I+ consequent is higher than the disjunction of the
antecedents with the I− consequent. For example, given the three rules :

If KNN is high ∧ PollGen is low then I+

If FlowerWidth is small ∧ TongueLength is small then I+

If KNN is low then I−

and input KNN : 0.4, PollGeneralism : 1, FlowerWidth : 22.6, TongueLength : 9, we get :

If 0.4∧ 0.5 then I+

If 0.65∧ 0.8 then I+

If 0.6 then I−

We predict an interaction if the disjunction of the antecedents for the I+ rules is higher than
the disjunction of the antecedents for the I− rules, in this case :

(0.4∧ 0.5) ∨ (0.65∧ 0.8) > 0.6. (5.8)

The result is close enough for the choice of norm to influence the result. The left-side of the
inequality evaluates to 0.65 with the Gödel-Dummett norm, 0.616 with the Product norm, but
only 0.54 with the Łukasiewicz norm. Thus, an interaction would be predict under the first two
norms but not the last (table 5.2).
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Table 5.2 – Definitions of conjunction (“and”, ∧) and disjunction (“or”, ∨) following different
norms.

Name x ∧ y (T − norm) x ∨ y (S− norm)

Gödel-Dummett min(x, y) max(x, y)
Product xy x + y− xy
Łukasiewicz max(0, x + y− 1) min(1, x + y)

There are different ways to define fuzzy connectives so that they will evaluate to the same values as
standard logic connectives when truth values are restricted to 0s and 1s. The results may only differ if
there are truth values in the (0, 1) range. For example, the simple formula (x ∧ y) ∨ (a ∧ b) with the
truth values {x : 0.9, y : 0.7, a : 0.5, b : 0.8} evaluates to 0.7 with the Gödel-Dummett norms, 0.778
with the product norms, and 0.9 under the Łukasiewicz norms. However, the same formula with truth
values {x : 1, y : 1, a : 0, b : 1} evaluates to 1 (true) for all norms. The S− norm can be derived from
the T − norm. By De Morgan’s laws we have x ∨ y = ¬(¬x ∧ ¬y). Negation in fuzzy logic can be
defined as ¬x = 1− x. If we wanted to derive the S− norm from the product T − norm we would
get 1− ((1− x)× (1− y)) = x + y− xy (also called the probabilistic sum). These are three of the
most common T − norms used in fuzzy logic but there are others. All three norms were tested for all
our experiments.

Data: Fuzzy knowledge base k, dataset d, time steps tmax
Result: Fuzzy knowledge base
tss← tss(k, d);
t← 0;
while t < tmax do

candidate← generateRandomRule();
k← k ∪ {candidate};
newtss← tss(k, d);
if newtss− tss > threshold(t) then

tss← newtss;
else

k← k− {candidate};
end
t← t + 1;

end
Algorithm 1: Algorithm to learn new rules.
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5.4.5 Revising theories

We begin with the initial theory that if the KNN ratio is high, then an interaction will occur,
and if is low, the no interactions will occur. Our initial knowledge base is thus :

If KNN is high then I+.

If KNN is low then I−.

Then we apply an elementary algorithm to revise the theory. For 4000 time steps, we either
generate a rule randomly, remove a rule, or try to modify an existing rule. The rules are kept
in the knowledge base if they improve the TSS score on the training set above some threshold
value that decreases with time :

threshold(t) = 0.15αt. (5.9)

We test α ∈ {0.95, 0.99, 0.995, 0.999, 0.9995, 0.9999}. With 0.95, the threshold decreases qui-
ckly so rules with small improvements are accepted early, while with 0.9999, the threshold
decreases almost linearly. We start with a high threshold of 0.15, see algorithm 1.

It is possible to divide the range of the input variables in an arbitrary number of fuzzy sets (see
figure 5.1 for an example with five fuzzy sets). We run the tests with 3, 5, 7, 9, and 11 fuzzy
sets per input variables. In theory, more fuzzy sets could improve the performance by allowing
more precision in the rules, but at the risk of overfitting and loss of clarity. The KNN input
variable is always divided in two fuzzy sets (low, high) so the initial model remains the same
across all simulations.

All tests are made with the three types of fuzzy logics described in table 5.2 : Gödel-Dummett,
Product and Łukasiewicz.
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5.5 Code

The C++ code also, along with the formatted data, is available in the examples folder of the
ConjunctAI project (https://github.com/PhDP/ConjunctAI). The code is released under the per-
missive Apache 2 license and the data under the Creative-Commons CC-BY 4.0 license.

5.6 Results

Table 5.4 shows the TSS scores for the supervised learning algorithms, the initial fuzzy know-
ledge base, and the revised knowledge base. The initial KNN theory performs better than
support vector machines but worse than decision trees and random forests. The revised fuzzy
knowledge base beats all approaches and improves on the initial theory by roughly 0.2 on the
TSS score. These results used the product norms for fuzzy logic.

Figure 5.2 shows how different norms performed with different number of fuzzy sets per input
variable. Overall, the algorithm is highly resilient to changes in the T− norm, threshold func-
tion, in the probability of adding versus modifying rules, and in the number of fuzzy sets per
input variables. The average TSS for all combinations of parameters remained in the [0.8, 0.9]
range, above the established supervised learning algorithms. The best results were achieved
with only three fuzzy sets per input variables, and a small but noticable decrease in perfor-
mance is seen with more fuzzy sets per variables (Fig. 5.2). More fuzzy sets make the resulting
rules more difficult to interpret and may lead to overspecific rules.

Table 5.5 shows a knowledge base after revision. Most of the rules have clear ecological expla-
nations. Pollinators with small bodies can more easily enter inside the flower tubes and have
fewer barriers. Plant flower width, a good proxy of flower size, may capture more generally
how difficult it is to land in the flower and exploit it. Thus the rule that an interaction occurs
for pollinators with a small tongue and flowers with a small flower width.

Half the generated rules had the interaction consequent (I+) and half had the non-interaction
(I−). Despite this, all the new rules that made it into the knowledge base were for interaction.
This is because the KNN theory under-predicts interactions and thus the algorithm has to
compensate. The KNN model predicts correctly 98% of non-interactions but only 71% of
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Table 5.3 – Full confusion matrix before and after theory revision with our fuzzy algorithm using
the product norm.

Before revision After revision
True pos. False pos. True pos. False pos.

32% 1% 45% 3%
False neg. True neg. False neg. True neg.

15% 52% 2% 50%
Confusion matrix for a single run with the Product T-norm. The original model struggles to predict
interactions and much of the gain in the TSS score is due to the revised model’s ability to fix this
weakness of the original model, which explains why almost all new rules cover interactions.

Table 5.4 – TSS scores for our fuzzy logic approach along with standard supervised learning
algorithms.

Method TSS
Support Vector Machine 0.564
Fuzzy logic initial model 0.659
Decision Tree 0.723
Random Forest 0.795
Fuzzy logic after revision 0.885

TSS scores for supervised learning algorithms, the initial fuzzy logic knowledge, and the knowledge
base after theory revision. These results used the average of the three T − norm, three fuzzy sets per
input variables, α = 0.95 for the threshold function and no rule modification (Pa(t) = 1).

interactions. Table 5.3 shows the full confusion matrices before and after revision (Product
norm).

Table 5.6 shows the 20 most frequent rules after revision.

The algorithm is also highly efficient. Our C++ implementation can process 5.7 million time
steps under 2 minutes 20 seconds with an Intel Core i5-6600 CPU (four cores, 2015).
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Figure 5.2 – Mean TSS on the testing data for the three T − norm tested studied and 3, 5, 7, 9, or
11 fuzzy sets per input variables.
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Table 5.5 – Example of a knowledge base after the theory revision algorithm revised the initial
theory.

Rules
If NectarTubeDepth is average then I+.
If PollBodySize is small then I+.
If KNN is high then I+.
If PollGen is small and NectarTubeDim is small then I+.
If FlowerWidth is average then I+.
If FlowerWidth is small and TongueLength is small then I+.
If KNN is low then I−.
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Table 5.6 – Rules with the highest improvements in TSS when added to the initial knowledge base.

∆ Rules
0.13 If BodySize is small then I+

0.10 If TongueLength is small then I+

0.10 If NectarTubeDim is small then I+

0.09 If NectarTubeDepth is small then I+

0.09 If BodySize is small and TongueLength is small then I+

0.08 If TubeDim is small and BodySize is small then I+

0.08 If TubeDepth is small and BodySize is small then I+

0.08 If FlowerWidth is average then I+.

5.7 Discussion

The K nearest neighbour provides a simple hypothesis for species interactions : if the species
most similar to a species x interact with some species y, then x probably interact with y.
However, this theory tend to underpredict interactions. Our fuzzy approach was able to fix this
issue by finding rules specifically tailored to predict interactions. The algorithm was able to
improve predictive abilities by adding rules with clear ecological interpretations, unlike state-
of-the-art supervised learning algorithms such as random forests, which are highly effective
but difficult to interpret. Furthermore, our algorithm is resilient to change in parameters and
perform best with a small number of fuzzy sets per variable, making the rules easy to read and
interpret. While our algorithm was able to even beat random forests for this particular problem,
it is unlikely to be generally true. Random forests are well-established and tend to outperform
most other machine learning techniques. The aim is to approach the performance of state-
of-the-art algorithms while maintaining clarity and the ability to revise existing theories and
hypotheses.

This study has two major limitations. First, it uses a rather naive theory to revision. While the
KNN is often quite effective (Desjardins-Proulx et al., 2017b) it would be better to revise more
established ecological theories such as the niche model (Williams et Martinez, 2000), selection
theories of evolution (Gillespie, 1991), some form of the Lotka-Volterra equation, or even the
neutral theory of biodiversity (Hubbell, 2001). A theory revision algorithm in a sufficiently rich
representation should work with any ecological theory. Which leads to the second, and more
subtle, limitation of our approach. Our algorithm is not relational, the input given to the fuzzy
knowledge base is a vector. A data point is a point in a multidimensional space. However, rich
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mathematical representations such as predicate logic, which are used by mathematicians to
store lemmas (“helping theorems” used to prove theorems), are relational. Data is represented
in tables (the relations) with formulas defining the relationships between those tables. Theory
revision of ecological theories should be explored in relational representations such as Markov
logic (Richardson et Domingos, 2006), probabilistic soft logic (Kimmig et al., 2012 ; Bach
et al., 2015), or fuzzy logics (Hájek, 1998).

There is a trend in machine learning toward methods capable of learning complex patterns
at the cost of clarity. A recent deep learning network with a billion parameters is the perfect
poster-child of this trend (Coates et al., 2013). While there are sometimes few alternative to
these methods, for example for image and sound classification, we should work toward inte-
gration of scientific theories with machine learning to ensure that our methods remain clear
to understand. This requires two steps : a deep reflection of the type of knowledge knowledge
needed for ecological and evolutionary theories, and the design of algorithms to revise these
theories. Ecology and evolution are fundamentally different than mathematics and physics.
The former is happy with strict binary rules, which are expected to always hold true. The latter
has a relatively small set of core mathematical equations which are, again, expected to always
hold true. Uncertainty and ambiguity are everywhere in ecology. It offers a great opportunity
for theoretical ecologists and machine learning specialists to develop representations and al-
gorithms to handle ecosystem’s complex rules, and combine fragmented theories into unifying
knowledge bases.
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CHAPITRE 6

RELATIONAL APPROACHES TO ECOLOGICAL THEORIES

6.1 Description de l’article et contribution

Ce chapitre décrit une approche, la logique de Markov, qui permet d’unifier les probabilités
avec le predicate logic, une forme avancée de la logique qui permet de représenter des équa-
tions mathématiques. Appliquée à un système tritrophique parasite -> insecte -> arbre, cette
technique ne réussit pas à trouver de bonnes révisions. En fait, après plusieurs semaines de
calcul, une seule nouvelle règle est découverte, et elle n’a pas vraiment de sens. Ce chapitre
explique pourquoi la logique de Markov n’est probablement pas une bonne approche pour
intégrer les théories en écologie et, s’inspirant du succès avec la logique floue, j’explore com-
ment une approche relationnelle (basée sur le predicate logic) et floue pourrait résoudre les
problèmes de la logique de Markov.

J’ai conçu cette recherche et fait les analyses sur les données. Timothée Poisot et Dominique
m’ont aidé à éditer l’article.
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6.2 Synthesis

Ecological theories are often formalized with mathematical equations using languages like pre-
dicate logic. When they are not, they can still be described more formally in some form of logic,
especially if the logic is flexible (a major theme of this discussion). In the context of this chap-
ter : logic, relational, and mathematics are mostly interchangeable. Relational refers to the fact
that advanced logic systems like predicate logic organize data in tables, which are then linked
together by relations. The concept will be more formally explainnated in the introduction to
predicate logic. Formal representations offer quite a few advantages. They allow the combina-
tion of different theories into a single base, to rapidly check if a new idea conflicts with existing
ones, to see if a data-set fits the theories, and to automatically revise the theories with machine
learning algorithms. Traditional mathematical models tend to struggle in domains where ma-
chine learning thrives. Peter Norvig, director of research at Google, urge us to stop expecting

to find a simple theory, and instead embrace complexity, and use as much data as well as we

can to help define (or estimate) the complex models we need for these complex domains. Ma-
chine learning can build effective models in complex domains (Halevy et al., 2009 ; Murphy,
2012) but the resulting models are difficult, if not impossible, to interpret. Furthermore, they
are generally incompatible with traditional mathematical theories. We’d like a relational re-
presentation capable of storing ecological theories and allowing us to automatically revise the
theories given data. In short, we both want the clarity of mathematical theories along with the
ability of machine learning algorithms to build solid predictive models from data.

To be clear, we are not looking for a representation for ecology itself. The debate is not about
the nature of ecological data, but about the nature of ecological theories. Even if a probabilistic
/ statistical perspective would be enough to understand and analyze most ecological data-sets,
it does not help us to represent mathematical ideas. That is : a relational representation is ne-
cessary to extract a more mechanistic understanding of data. Each knowledge representation
has its limits (Table 6.1) and this is where things get complicated (and fascinating) for eco-
logy. Mathematicians have built knowledge bases with millions of helper theorems to assist
the discovery of new ideas (Kaliszyk et Urban, 2015). The Mizar Mathematical Library is a
growing library of theorems, which are added after new candidate theorems are approved by
the proof checker and peer-reviewed for style. Such library helps mathematicians deal with a
growing body of knowledge and offers a concrete answer to the issue of knowledge synthesis.
Mizar uses a language powerful enough to describe ecological theories, however, they cannot
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handle any form of ambiguity or uncertainty. In these pure logic representations, a statement is
either true or false. Ecological theories require more flexibility. We do not expect our theories
to be exactly true all the time, and some conflicts between theories is to be expected. At the
same time, we do want the ability to represent mathematical ideas. Integration in ecology and
evolution is difficult. Arguably the major roadblock for a selection theory of molecular evolu-
tion is our inability to handle the complex spatio-temporal variations of selection (Hahn, 2008 ;
Bell, 2010). These spatio-temporal variations are caused by a number of abiotic and biotic
changes in the environment, bringing ecology right into the equation for molecular evolution.
Yet, efforts toward synthesis in ecology and evolution are on a case-by-case basis, we have no
equivalent to Mizar, nor do even know how to represent ecological knowledge at scale.

In this chapter, we provide an introduction to relational languages such as predicate logic and
discuss extensions based on probability theory and fuzzy logic. This text assumes basic no-
tions of probability theory but no prior knowledge of predicate logic. We emphasize both the
importance of thinking about representation as the first step toward integration of handcraf-
ted theories and machine learning techniques. This is not the first time a relational approach
to species interaction is being attempted. Bohan et al. (2011) and Tamaddoni-Nezhad et al.
(2013) used a pure-logic approach to hypothesize species interactions given an initial hand-
crafted rule. Here, we focus on how to revise a theory in the context of ecological interactions
and discuss issues with the approach along with possible solutions. Our research showns that
fuzziness is important to theory revision (Desjardins-Proulx et al., 2017a) in ecology and we
discuss how relational languages could be extended to include fuzziness.
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Table 6.1 – Different languages can be distinguished by their ontological and epistemological com-
mitments.

Language Ontological commitment Epistemological commitments
Propositional logic Facts {True, False}

Relational / Predicate logic Facts, Objects, Relations {True, False}
Probability theory Facts Belief ∈ [0, 1]

Fuzzy logic Facts with degree of truth Interval value
The ontological commitment tells us what kind of objects exists within the language. The languages
of propositional logic and probability theory only recognize facts (also called events), while relational
languages (e.g. predicate logic) have objects and relations between them. The epistemological commit-
ment tells us the kind of knowledge is allowed. Logic systems traditionally live in a binary true-or-false
world, while probability theory allows a degree of truth for facts. There are several languages at the
intersection of the basic languages here. For example, Markov logic unites predicate logic with probabi-
lity theory (Richardson et Domingos, 2006), probabilistic soft logic unites fuzziness, probability theory,
and predicate logic (Bach et al., 2015), while predicate fuzzy logic unites predicate logic with fuzziness
(Hájek, 1998). Table adapted from Russel and Norvig (Russell et Norvig, 2009).

6.3 Relational thinking with predicate logic

In mathematics, a function f maps terms X (its domain) to other terms Y (its codomain) f :
X → Y. The number of arguments of a function, |X|, is called its arity. A predicate is simply
a function that maps 0 or more terms to a truth value : true or false, often denoted 0 and
1. A predicate is thus defined as p : X → {True, False}. Terms are either variables than
range over a domain such as x or city, constants such as 42, Manila, π, or functions. By
convention, variables always start with a lowercase letter. Variables have to be quantified either
universally with ∀ (forall) or existentially with ∃ (exists). ∀x : f (x) means f (x) must hold
true for all possible values of x, while ∃x : f (x) means it must hold for at least one value of
x. Quantifiers are often ignored and variables assumed to be universally quantified by default,
such that ∀x : x + 1 > x is simply written x + 1 > x. The type of predicate logic used in this
text is called first-order logic, which allows only quantification over variables. Higher-order
logics are needed to quantify over higher structures (e.g. sets, predicates).

Predicate logic builds formulas (or rules) by linking predicates using the unary connective ¬
(negation) or binary connectives (see table 5.2). For example, PreyOn(sx, sy) is a predicate
that maps two species to a truth value, in this case whether the first species preys on the second
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Table 6.2 – List of common binary connectives and their truth table with T standing for True and
F for False.

Truth table
Name Common Symbols T x T T x F F x T F x F

Conjunction and ∧ T F F F
Disjunction or ∨ T T T F
Implication implies ⇒ T F T T

Material equivalence iff ⇔ T F F T
Exclusive disjunction xor ⊻ F T T F

iff is read if and only if. Implication is one of the most common connective and may have sur-
prising behavior. It will always return true when the left side is false. For example we may say
NonNegative(x) ⇒

√
x2 = x, and this formula holds for all real numbers, including negative ones.

For example with x = −1, NonNegative(−1) is False and F ⇒ F returns True.

species. We could build more complex formulas from there, for example :

∀sx : ¬PreyOn(sx, sx). (6.1a)

∀sx, sy : PreyOn(sx, sy)⇒ Larger(sx, sy). (6.1b)

∀sx, sy : PreyOn(sx, sy) ∧ ¬IsParasite(sx)⇒ Larger(sx, sy). (6.1c)

A set of formulas like the one formed by the equations in 6.1 is called a knowledge base. The
first formula says that species don’t prey on themselves. The second says that predators are
larger than their preys. The third refines the second formula by adding that predators are larger
than their preys unless the predator is a parasite. None of these rules are expected to the true
all the time, and we will cover ways to introduce uncertainty into logic, but for now we focus
on pure logic.

Predicate logic is almost synonymous with mathematics and all databases of mathematical
knowledge rely on it (or a form of type theory) for theorem proving. Thus, it is expressive
enough to represent and manipulate all the mathematical theories in ecology and evolution.
For example, an important axiom of real numbers is that, for every real number x, there is a
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real number y such that y = x + 1 :

∀x : Real(x)⇒ ∃y : Real(y) ∧ y = x + 1. (6.2)

Let’s dissect this formula.

— We have four terms. x and y are variables ranging over numbers, 1 is a constant, and
the function + maps two numbers to a number.

— We have two predicates : Real and =. Real is a predicate with arity 1, it returns true for
real numbers. = has two arguments (left and right-hand sides), and returns true if both
sides have the same value.

— We have two connectives, ∧ (“and”) and⇒ (“implies”).
— We have two quantifiers. The first, ∀, tells us the entire formula should be true for all

values of x. The second, ∃, tells us there is one value of y that satisfied Real(y) ∧ y =

x + 1.

For an ecological twist, we could say that if species sx is a predator found in location l, then
there is a species sy such that PreyOnAt(sx, sy, l) is true :

∀sx, l : Predator(sx) ∧ Presence(sx, l)⇒ ∃sy : PreyOnAt(sx, sy, l). (6.3)

Everything from the axioms of probability to the Lotka-Volterra equation can be expressed
with predicate logic formulas :

ẋ = αx− βxy ∧ ẏ = δxy− γy. (6.4)

Here equality = is the only predicate, the time differential ẋ and multiplications are functions,
x and y are variables, and lastly α, β, δ, γ are constants.

Like mathematics, we need to replace variables with actual values to get a value. PreyOn(sx, sy)

can be neither true nor false until we assign constants to the variables sx and sy. The process of
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replacing variables with constants is called grounding, and we talk of ground terms / predicates
/ formulas when no variables are present. Given the set of species {Manticore, ApisFlorea, Kirin},
we have 32 groundings for the predicate PreyOn(sx, sy) :

PreyOn(Manticore, Manticore)

PreyOn(Manticore, Kirin)

PreyOn(Manticore, ApisFlorea)

PreyOn(ApisFlorea, Manticore)

PreyOn(ApisFlorea, Kirin)

PreyOn(ApisFlorea, ApisFlorea)

PreyOn(Kirin, Manticore)

PreyOn(Kirin, Kirin)

PreyOn(Kirin, ApisFlorea)

(6.5)

The explosion in the number of ground predicates and formulas is a major computational issue
in logic. One strength of logic is its ability to connect several ideas with clear formulas. Let’s
use a simple knowledge base to see how inference works in logic :

IsHuman⇒ IsMammal. (6.6a)

IsMammal ⇒ IsVertebrate. (6.6b)

This knowledge base has three predicates : IsMammal, IsVertebrate, and IsHuman, all wi-
thout arguments. Since they have no variables, they are ground predicates. A possible world is
a truth assignment to all ground predicates. For example,

{IsMammal, IsVertebrate,¬IsHuman} (6.7)

is a possible world. To simplify, we only write the name of the predicate in the possible world
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to say it is true and use ¬ to denote it is false, so the previous possible world could also be
written more explicitely

{IsMammal : True, IsVertebrate : True, IsHuman : False}. (6.8)

We say a possible world satisfies a formula (or a knowledge base) if the formula is true with its
assignments. {IsMammal, IsVertebrate,¬IsHuman} satisfies the knowledge base 6.6 since
the two formulas are true with this assignment (F ⇒ T and T ⇒ T are both true, see table for
clarifications on implication it this is unclear).

The most basic inference problem is to determine whether a knowledge base KB entails a
formula f , or KB |= f . We want to know if the knowledge base 6.6 entails the formula

IsHuman⇒ IsVertebrate. (6.9)

or

IsVertebrate⇒ IsHuman. (6.10)

Formally, the entailment KB |= f means that for all possible worlds in which KB is true, f is
true. More intuitively, it can be read as the formula following from the knowledge base. It can be
verified with a brute approach by checking the 2n possible worlds (n being the number of predi-
cates). In this case, it can be verified that our knowledge base does entail formula 6.9 but not for-
mula 6.10. It does not entail the latter since the possible world {IsVertebrate,¬IsHuman, IsMammal}
satisfies the knowledge base but not formula 6.10. Entailment ensures new formulas are consistent
with an existent body of knowledge.

Another important question is whether there is a possible world to satisfy a given knowledge
base. This is the Propositional Satisfiability Problem, or just SAT, and is found everywhere from
theorem proving to resolving software dependencies (Russell et Norvig, 2009 ; Harrison, 2009).
The problem is difficult to solve since there are 2n possible worlds given a knowledge base with
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n predicates, but stochastic search algorithms like WalkSAT are fast enough in practice to find
the correct solution even with close to a million symbols. In a nutshell, WalkSAT starts with
a random truth assignment to the predicates (a possible world), picks an unsatisfied formula
in the knowledge base and flips randomly the value of one of its predicate. If it fails to find a
possible world that satisfies all formulas of the knowledge base after a given number of flips,
the algorithm starts again with a new random possible world. An important generalization, the
MaxSAT problem, tries to find the assignment that will satisfy the most, but not necessaily all,
formulas and is related to MAP inference in unified probabilistic predicate logic.

6.3.1 Relational?

A key word in the logic world is relational. The techniques we will explore to unify logic with
probability are often called statistical relational and the concept is important to distinguish ad-
vanced logic systems with simpler ones. The predicate PreyOn(speciesx, speciesy, location)
can be seen as a table with three columns (the predator, the prey, the location). Formulas with
several predicates, like Larger(speciesx, speciesy) ⇒ PreyOn(speciesx, speciesy, location),
link these tables together. This is quite different from statistics, where data is generally orga-
nized in a single table (see Table 6.1), and points are essentially reduced to a location in a
multidimensional space. By separating data by predicates, relational representations can scale
to large knowledge bases with thousands of different domains.

6.3.2 Clausal forms

Most, if not all, logic programs convert formulas into clauses for faster processing. It is im-
portant to understand this representation well since it is the most common way to write logic
formulas. A clause is in the form :

B0 ∧ B1 ∧ ...∧ B|B|−1 ⇒ H0 ∨ H1 ∨ ...∨ H|H|−1, (6.11)

where B is the set of predicates of the body and H is the set of predicates in the head. Is
it also common to write clauses in the form H ← B. Clauses can intuitively been read as
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“I f B then H” rules. All formulas can be converted into clauses without loss of genera-
lity, although some formulas will be converted to more than one clause (Harrison, 2009). For
example, X ⇔ Y will be converted to the two clauses X ⇒ Y and Y ⇒ X. Clauses are im-
plicitly joined by conjunctions (“and”, ∧). The technical term for this type of clause is CNF :
conjunctive normal form. Many programs, such as Alchemy2 for Markov logic (Domingos et
Lowd, 2009), will accept standard formulas as input but convert them to clauses for processing
and output.

Several logic languages such as Prolog only accept clauses with at most one element in the head
(|H| ≤ 1). It simplifies inference at the cost of expressiveness, since some formulas cannot be
converted to clauses with at most one element in the head.

6.4 Probabilistic graphical models

Probabilistic graphical models combine graph theory with probability theory to represent com-
plex probability distributions while exploiting independences (Koller et Friedman, 2009 ; Bar-
ber, 2012). There are primarily two motivations behind probabilistic graphical models. First,
even for binary random variables, we need to learn 2n − 1 parameters for a distribution of n
variables. This is unmanageable on many levels : it is computationally difficult to do inference
with so many parameters, it requires a large amount of memory, and makes it difficult to learn
parameters without an unreasonable volume of data (Koller et Friedman, 2009). Second, pro-
babilistic graphical models provide important information about independences and the overall
structure of the distribution.

For most probabilistic graphical models, the distribution is represented by a graph G = (V, A),
where V is a set of vertices (the random variables) and A a set of directed or undirected
edges (or arcs). Two important types of graphical models used for representation are Bayesian
networks and Markov networks. We will focus on binary variables with the convention that
x = 0 ≡ ¬x ≡ f alse and x = 1 ≡ x ≡ true. Context should make clear when x refers to the
variable or to x = 1.
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Bayesian networks are directed acyclic graphs that represent the joint probability for a set of
variables X as :

P(X) = x) = ∏
xi∈x

P(xi|Pa(xi)), (6.12)

where Pa(xi) is the set of parents of variable xi. Because no cycles are allowed, the set Pa(xi)

can only involve variables already seen on the left of xi, so P(a)P(b|a)p(c) is a valid Bayesian
networks but not P(a)P(b|c)P(c|b). See figure 6.1 for a detailed example. Bayesian network’s
inability to model cycles and symmetric relationship made them unpopular as a foundation for
unified probabilistic-logic approaches (but see (Jaeger, 1997)). An alternative is the undirected
Markov network, where the joint probability is defined as

P(X = x) =
1
Z ∏

i
ϕi(x), (6.13)

with the partition function Z being

Z = ∑
x∈X

∏
i

ϕi(x), (6.14)

with x ∈ X being all possible assignments to x. Markov networks are bit less intuitive to un-
derstand. Since the edges are not directed, they don’t represent simple conditional relationships
of the form P(x|y) like Bayesian networks. Instead, Markov networks have factors ϕ, in this
case one for each maximal clique in the network. In graph theory, a clique is a fully connected
subset of the graph, a maximal clique is a clique that is not part of a larger clique. Factors are
not probabilities, they capture affinities between variables. To extract a probability, we must
thus divide the product of the factors by Z, the sum of all possible products of factors. Figure
6.2 shows a complete example.

Most modern approaches to extend probabilistic graphical models with predicate logic rely
on Markov networks (Richardson et Domingos, 2006 ; Bach et al., 2015), and ofen using a
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Figure 6.1 – Inference in Bayesian networks.

x3x2

x1

x0

P(x3 | x1) = 0.13
P(x3 | ¬x1) = 0.92

P(x1 | x0) = 0.21
P(x1 | ¬x0) = 0.27

P(x0) = 0.65

P(x2 | x1, x0) = 0.50
P(x2 | x1, ¬x0) = 0.42
P(x2 | ¬x1, x0) = 0.38
P(x2 | ¬x1, ¬x0) = 0.48

A bayesian network with four binary variables. Bayesian networks are limited to directed acyclic
graphs. Thus, it would be impossible to have a bidirectional relationship or an edge from x3 to x0.
An example query : P(¬x0, x1,¬x2, x3) = P(¬x0)P(x1|¬x0)P(¬x2|¬x0, x1)P(x3|x1). In this case
P(¬x0, x1,¬x2, x3) = (1− 0.65)× 0.27× (1− 0.42)× 0.13 = 0.05.

log-linear (“maximum entropy”) model :

P(X = x) =
1
Z ∏

k
ϕk(x{k}) =

1
Z

exp

(
∑

i
wi fi(xi)

)
, (6.15)

where wi is the weight of factor i, xi is the subset of x in factor i, and fi is any real-valued
function of the state. Equation 6.15 defines a structured log-linear model. This approach to
Markov networks will be used for unifying probabilistic graphical models with predicate logic,
using logic formulas instead of maximal cliques to define factors.

Given a set of random variables W and evidence E ⊆ W, the most common queries for pro-
babilistic graphical models are the conditional probability and MAP queries. For conditional
probability, we have a set of query variables X ⊆ W and want to evaluate P(X = x|E = e).
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Figure 6.2 – An example of Markov logic networks.

x3x2

x1

x0

φ0

φ1

φ0(x0, x1, x2)
x0, x1, x2 = 5

x0, x1, ¬x2 = 1 
x0, ¬x1, x2 = 0.5 

x0, ¬x1, ¬x2 = 1.5 
¬x0, x1, x2 = 4

¬x0, x1, ¬x2 = 3
¬x0, ¬x1, x2 = 2

¬x0, ¬x1, ¬x2 = 6 

φ1(x1, x3)
x1, x3 = 3 

x1, ¬x3 = 5 
¬x1, x3 = 0.1

¬x1, ¬x3 = 0.2

A Markov networks with four binary variables. Unlike Bayesian networks, Markov networks can form
loops and the edges are undirected, but their interpretation is a bit trickier than Bayesian networks. A
popular variant of Markov network is the maximal-clique network seen here. A clique is a fully connec-
ted subgraph. This network has two maximal cliques : one for vertices x0, x1, x2 and one for x1, x3. In
red : the related factor graph, with the red square vertices representing the factors in the maximal cliques.
Here the partition function Z = 107, and thus P(¬x0, x1, x2,¬x3) = ϕ0(¬x0, x1, x2)ϕ1(x1,¬x3)/Z =
4× 5/107 = 0.1869.
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When |E| > 0 we have a conditional probability, otherwise we have a joint probability query
for |X| > 1 and a marginal probability with |X| = 1. MAP inference is the task of finding the
most probable joint probability given evidence, or :

MAP(w|e) = argmaxwP(w, e). (6.16)

MAP inference is arguably the most common inference task in practice since it provides an
assignment (and thus a prediction) for all variables. Another key function of probabilistic gra-
phical model is to serve as a foundation for learning. Early models were hand-crafted by ex-
perts but we can learn parameters from data, and modern algorithms can be used to learn the
graphical structure (or revise existing one) (Friedman et al., 1999 ; Yuan et Malone, 2013).

6.5 Markov logic : The union of predicate logic with probability theory

A pure logic knowledge base can be seen as a set of hard constraints. If we have a formula
saying ¬PreyOn(sx, sx), it means cannibalism is impossible. Any possible world with, say,
PreyOn(Human, Human) violates the formula and is thus false. We want a framework where
it is possible to define soft constraints such as a possible world that violates a formula would be
less likely but not necessarily impossible. We also want to be able to ask probabilistic queries
about our variables. Markov logic networks (Richardson et Domingos, 2006) do exactly this
using weighted formulas that serve as template for Markov networks.

In Markov logic, a knowledge base is a set of tuple KB = {( fi, wi)}N
i=1, with f being a formula

in first-order predicate logic and w a weight ∈ R associated with it. The intuition is : the higher
the weight associated with a formula, the greater the penalty for violating it (or alternatively :
the less likely a possible world is). Before delving into the internal mechanics of Markov logic,
let’s begin with a simple example :

¬PreyOn(sx, sx), 2.0. (6.17a)

90



sx ̸= sy ∧ PreyOn(sx, sy)⇒ ¬PreyOn(sy, sx), 2.7. (6.17b)

sx ̸= sy ∧ PreyOn(sx, sy) ∧ ¬IsParasite(sx)⇒ Larger(sx, sy), 1.1. (6.17c)

This Markov logic networks has three formulas. First : cannibalism is rare (with weight 2.0). In
pure logic, this formula would mean : cannibalism is impossible, but we simply say it is rare.
The second formula says if the species sx and sy are different (sx¬sy), predation is assymetric.
This formula has the highest weight. The last formula says that if species sx and sy are different,
if sx preys on sy, and if sx is not a parasite, then sx should be larger than sy. Implication (⇒)
is often use to define formulas that could roughly be translated as i f a, b, cthend. Implication is
also a bit counter-intuitive, remember that if the left-side is false, then the formula is true (e.g.
False ∧ True⇒ True is False, see table 5.2 for details).

Weights range from −∞ to ∞. in short they can be any real number. A formula with an infinite
weight cannot be unsatisfied without making the possible world impossible. Thus, “normal”
non-probabilistic logic is a subset of Markov logic where all formulas have a positive infinite
weight. Formulas with weights close to 0 have little effect on the probabilities, in short the cost
of violating them is small. A formula with a negative weight is expected to be false. For the
rest of this chapter, we will assume that all weights are positive real numbers (including zero),
with no loss of generality since ( f ,−w) ≡ (¬ f , w).

As in logic, we must ground the knowledge base with constants. Let’s say we have only two
species, the disgusting Snow Crab (represented by the letter C) and the gentle (but murderous)
Bearded Seal (represented by the letter S). A possible world with these constants could be :

{PreyOn(C, C),¬PreyOn(C, S), PreyOn(S, C),¬PreyOn(S, S),¬IsParasite(S),

¬IsParasite(C),¬Larger(C, C),¬Larger(C, S), Larger(S, C),¬Larger(S, S)}
(6.18)

We simply write p and ¬p to denote whether the ground predicate is true or false. Applied to
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our Markov logic networks, these ground predicates give the ground formulas :

¬PreyOn(C, C) : False. (6.19a)

¬PreyOn(S, S) : True. (6.19b)

C ̸= S ∧ PreyOn(C, S)⇒ ¬PreyOn(S, C) : True. (6.19c)

S ̸= C ∧ PreyOn(S, C)⇒ ¬PreyOn(C, S) : True. (6.19d)

C ̸= S ∧ PreyOn(C, S) ∧ ¬IsParasite(C)⇒ Larger(C, S) : True. (6.19e)

S ̸= C ∧ PreyOn(S, C) ∧ ¬IsParasite(S)⇒ Larger(S, C) : True. (6.19f)

The cost of a possible world is the sum of the weights of the unsatisfied formulas. Here, only
formula 6.19a is unsatisfied under possible world . Since this formula has a weight of 2 in
6.17, we say the cost of this possible world is 2. We omitted ground formulas that are false
because of the sx ̸= sy predicate in both the listing 6.5 and in figure 6.3, for example C ̸=
C ∧ PreyOn(C, C) ⇒ ¬PreyOn(C, C). These ground formulas have factors that are always
true regardless of the possible world.

A different possible world with a higher cost would be :

{PreyOn(C, C), PreyOn(C, S), PreyOn(S, C), PreyOn(S, S),¬IsParasite(S),

¬IsParasite(C),¬Larger(C, C),¬Larger(C, S),¬Larger(S, C),¬Larger(S, S)}.
(6.20)

would leave most formulas in unsatisfied for a cost of 11.6 (to verify as an exercise). The last
possible world also show something odd : we have both ¬Larger(C, S) and ¬Larger(S, S),
which is impossible. Since Markov logic does allow hard constraints in the form of formulas
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with infinite weight, we could add to our knowledge base :

¬Larger(sx, sx), ∞. (6.21a)

sx ̸= sy ∧ Larger(sx, sy)⇒ ¬Larger(sy, sx), ∞. (6.21b)

Finding the possible world with the highest joint probability (MAP inference) can be done by
looking for the possible world with the lowest cost. The algorithm for MAP inference in Mar-
kov logic is similar to the SAT problem encountered in section 6.3, and a variant of WalkSAT,
MaxWalkSAT, can be used. Roughly speaking : we start with a random possible world, com-
pute its cost, pick a random predicate from an unsatisfied formula and flip its value and keep
the new possible world if it has a lower cost. Random steps and restarts are used to prevent
being stuck in a local minimum.

Figure 6.3 shows the Markov network for a grounded knowledge base. Markov logic networks
act as template for log-linear Markov networks, but instead of having a factor for each maximal
clique, the network has a factor for each grounded formula. Predicates form the vertices and
are linked to other predicates if they are present in the same formula. The resulting network
defines a probability distribution with the same formula as the log-linear Markov network :

P(X = x) =
1
Z

exp

(
∑

i
wi fi(x)

)
, (6.22)

where wi is the weight of formula i and fi is the indicator function for formula i (it equals 0 if
the formula is false and 1 if it is true).
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Figure 6.3 – Inference in Markov logic networks.

¬Larger(S, S)

PreyOn(C, C)

¬PreyOn(C, S)

PreyOn(S, C)

¬PreyOn(S, S)

¬IsParasite(S)

¬IsParasite(C)

¬Larger(C, C)

¬Larger(C, S)

Larger(S, C)

A Markov logic network is a set of weighted formulas that serves as a template for a log-linear Markov
network. All predicates found in the same formula are connected with an edge, and each grounded
formula has a factor (square vertices). Unlike a maximal-clique Markov network, some factors are not
associated with a maximal clique. Here for example, the two factors from the formula ¬PreyOn(sx, sx)
are not maximal cliques. Factors are green if the formula evaluates to true given the possible world in 6.5
and red if it evaluates to false. The cost of a possible world in is the sum of the weights of the unsatisfied
formulas. Here, the cost would only be 2 (the weight of the only unsatisfied rule : ¬PreyOn(sx, sx)).
We are not showing formulas discarded by sx¬sy, i.e. C ̸= C ∧ PreyOn(C, C)⇒ ¬PreyOn(C, C).
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6.6 Learning weights and theory revision in Markov logic

The first step to theory revision in Markov logic is to learn the weights of the initial formulas.
Weights are learned by maximizing the weighted pseudo-log-likelihood of a database (our data-
set) in regard to weights (see (Domingos et Lowd, 2009) for details). Second-order algorithms
such as the L-BFGS (Nocedal et Wright, 2006) should converge quickly to optimal weights,
especially if they start close to a solution (Domingos et Lowd, 2009). Unfortunately, we have
very few guarantees that the weights are optimal both because the L-BFGS can only converge
to local optima but also, more fundamentally, because it is unclear how optimizing the weighted
pseudo-log-likelihood really approximate optimizing the log-likelihood. The log-likelihood is
the log of equation 6.22, but it is too computationally expansive to optimize and is biased
toward formulas with highest-arity predicates (those with many arguments).

Structure learning has been well-studied in Markov logic. Kok and Domingos’ 2005 (Kok et
Domingos, 2005) paper on structure learning Markov logic preceded the publication of the
first complete description of Markov logic (Richardson et Domingos, 2006). At its core, theory
revision in Markov logic involves generating a candidate formula, recomputing the weights,
and checking whether a weighted pseudo-log-likelihood measure of a database has improved
sufficiently to justify adding the formula to the knowledge base. Recent algorithms have im-
proved mostly by better selecting which candidate rules for revision (Mihalkova et Mooney,
2007 ; Kok et Domingos, 2009 ; 2010).

6.7 Markov logic meets the Salix data-set : initial model

We explore theory revision with Markov logic using the Salix data-set (Kopelke et al., 2017).
The Salix data-set has parasites, gallers (insects), and salix, forming a tritrophic ecological
network (Parasite → Galler → Salix). Furthermore, we have partial phylogenetic informa-
tion for the species, their presence/absence in a number of locations, interactions, and some
environmental information on the locations (Table 6.3).
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Table 6.3 – The 18 predicates of the Salix data-set with their two domains : species and location.

Predicate Domain Positives
PreyOn(x, y) species× species 1080
PreyOnAt(x, y, l) species× species× location 4342
PresenceAt(x, l) species× location 3906
IsParasite(x) species 126
IsGaller(x) species 96
IsSalix(x) species 52
CloselyRelated(x, y) species× species 27522
ModerateCooccurrence(x, y) species× species 508
HighCooccurrence(x, y) species× species 98
HigherPhyloValue(x, y) species× species 19366
HighTemperature(l) location 186
HighPrecipitation(l) location 186
HighSpeciesRichness(l) location 208
HighSalixRichness(l) location 374
HighGallsRichness(l) location 238
HighParasitoidRichess(l) location 187
HighLinkDensity(l) location 203
HighConnectance(l) location 175

There are 126 species of parasites interacting with 96 species of gallers, interacting with 52 species
of Salix. Phylogenetic values for the HigherPhyloValue were computed using the Ape R package.
Predicate starting with High are based on an arbitrary cutoff around the average value, for example
HighPrecipitation is true for all of the 641 location where the precipitations were above average. In
total there are 58 853 positive literals. We work under the the closed-world assumption that if a predicate
is not positive, then it is negative.
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We provide an initial model based on our understanding of the interactions and the variables
available :

¬PreyOn(x, x) (6.23a)

PreyOnAt(x, y, l)⇒ PreyOn(x, y) (6.23b)

IsGaller(x) ∧ PreyOn(x, y)⇒ IsSalix(y) (6.23c)

IsParasitoid(x) ∧ PreyOn(x, y)⇒ IsGaller(y) (6.23d)

IsSalix(x)⇒ ¬PreyOn(x, y) (6.23e)

CloselyRelated(x, y) ∧ PreyOn(x, z)⇒ PreyOn(y, z) (6.23f)

HigherPhyloValue(x, y)⇒ HighCooccurrence(x, y) (6.23g)

PreyOn(x, y)⇔ PreyOn(x, x) (6.23h)

PreyOn(x, y)⇔ HighCooccurrence(x, y) (6.23i)

HigherPhyloValue(x, y)⇒ PreyOn(x, y) (6.23j)
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6.8 Results

We ran the basic learning algorithm from Alchemy-2 (Richardson et Domingos, 2006). After
three weeks, the algorithm found no substantial revisions. The resulting knowledge base in
clausal form is :

PreyOnAt(x, y, z)⇒ PreyOn(x, y), 5.20. (6.24a)

HighCooccurrence(x, y)⇒ PreyOn(x, y), 4.22. (6.24b)

IsGaller(x) ∧ PreyOn(x, y)⇒ IsSalix(y), 4.15. (6.24c)

IsParasitoid(y) ∧ PreyOn(y, x)⇒ IsGaller(x), 3.49. (6.24d)

PreyOn(x, y)⇒ HighCooccurrence(x, y), 1.57. (6.24e)

PreyOn(x, y)⇒ PreyOn(x, x), 1.52. (6.24f)

HigherPhyloValue(x, y)⇒ PreyOn(x, y), 1.13. (6.24g)

HigherPhyloValue(x, y)⇒ HighCooccurrence(x, y),−0.59. (6.24h)

PreyOn(x, x)⇒ PreyOn(x, y), 0.45. (6.24i)

¬IsSalix(x) ∨ ¬PreyOn(x, y), 0.02. (6.24j)

CloselyRelated(x, y) ∧ PreyOn(x, z)⇒ PreyOn(y, z), 0.00. (6.24k)
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Markov logic adds rules for all 18 lone predicates, we do not show them here. None of the
rules or weights are particularly interesting. Formula 6.24a tells us that if species x interacts
with species y at some location, then the two species interact. This rule should have an infinite
weight as it is always true (and part of how the predicates were defined), but Markov logic
is prudent about infinite weights since violating a formula with an infinite weight yields a
probability of 0. Formulas 6.24b and 6.24e tell us that species that interact tend to co-occur
(which does make it easier for interaction).

The high weight of 6.24g shows that having a higher value in the phylogenetic clustering does
somewhat predict interaction. Formula 6.24k says that if x is closely related to y and x preys
on z, then we can predict that y will also prey on z. In short, closely related species should have
similar preys. This formula has a weight of 0, meaning it is neither true nor false.

Perhaps the most interesting rule is formula 6.24i, which was added by revision and makes little
sense. It says that if x is a cannibal (PreyOn(x, x)) then x preys on y. However, this formula
showcase an issue with the idea of defining a probability distribution over formulas and the
difficulty of knowledge engineering in this context (Jain, 2011). Our data-set has no cases of
cannibalism, however, remember that A⇒ B is true if A is false. So while this formula makes
little sense, it is true for all pairs of species x, y where x is not a cannibal. Pure logic algorithms
use measures such as information gain to judge if a formula should be added (Quinlan, 1990).
Information gain has been well studied in the context of learning decision trees (Quinlan, 1986)
and here, since this formula is only true because the left-side of the formula is always false,
the information gain is 0. However, it is easy for such formulas to creep in because of the
approximate nature of optimizing the weighted pseudo-log-likelihood.

6.9 Discussion

An interesting twist may be that, as much as probabilistic thinking is important to ecology, de-
fining a probabilistic distribution over formulas may not be. To understand why, let’s consider
the niche model (Williams et Martinez, 2000). The first iteration of the niche model posits that
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all species are described by a niche position N (their body size for instance) in the [0, 1] inter-
val, a diet D in the [0, N] interval, and a range R such that a species preys on all species with
a niche in the [D− R/2, D + R/2] interval. We can represent these ideas with two formulas :

∀x : D(x) < N(x), (6.25a)

∀x, y : PreyOn(x, y)⇔ D(x)− R(x)/2 < N(y) ∧ N(y) < D(x) + R(x)/2, (6.25b)

A probabilistic version of the theory (Williams et al., 2010) yields a probability that x preys on
y using a Gaussian distribution centered on the predator’s diet :

∀x, y : PPreyOn(x, y) = α× exp

[
−
(

N(y)− D(x)
R(x)/2

)2
]

, (6.26)

This is a probabilistic model, yet it is quite problematic in Markov logic. Since predicates in
Markov logic have to resolve to true or f alse, this formula would have to be exactly true (wha-
tever it means for a probabilistic model !). The same problem arise for deterministic equations
like the Lotka-Volterra : these formulas are seldom exactly correct, and we shoud not expect
them to be. By allowing predicates to take any value in the [0, 1] range with fuzzy logic, we
gain enough flexibility to handle probabilistic theories at the level of the predicate, but also
ambiguity in deterministic theories. It is important to emphasis where fuzzy logic and Markov
logic differ since both intend to relax the rigid nature of pure logic. In fuzzy logic, ambuigity
lies in the predicate themselves, which can take any value in the [0, 1] range. Also, evaluated
formulas resolve to a truth value in the [0, 1] range. As an example, imagine a formula that
says that species undergoe exponential growth N(x, t + 1) = G(x)× N(x, t) only when the
population is small (SmallN) and has resources :

SmallN(x) ∧ Resources(x)⇒ N(x, t + 1) = G(x)× N(x, t). (6.27)

In fuzzy logic, we can say SmallN is mostly true (say 0.8), the species has a lot of resources
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(0.9), and exponential growth predicts 95 rabbits when in reality there are 100 (truth value of
0.95). In fuzzy logic with the product T-norm, the left-side of the formula would resolve to
0.8× 0.9 = 0.72 and then, since implication x ⇒ y is defined as 1− x + xy with the product
T-norm, we would get a truth value of 0.964. In Markov logic, the formula would have a weight
to determine the probability of the formula to be true, but we would need to set arbitrary cutoffs
for when SmallN, Ressource, and exponential growth are true.

In Markov logic, we define a probability distribution over formulas, allowing those that are
violated to be “less probable”. However, both predicates and formulas resolve to true, f alse.
Not only the flexibility lies in different places but it has different consequences for theory
revision. Formulas in fuzzy logic are not weighted, they have the exact same form as standard
logic rules, except we allow the predicates to take truth values in the [0, 1] range. Adding a
formula in Markov logic triggers weight optimization for the entire knowledge base. Adding
formulas in fuzzy logic does not, and the new formulas could be evaluating using measures
such as information gain (which can then be used in Bayesian approach to theory revision
(Muggleton, 1994)).

It seems clear that we need fuzzy predicates to encode key nuances found in both ecological
data and theories. Whether we need probabilistic interpretation of the formulas themselves is
an open question, but it does seem difficult to scale such representation to a large number of
formulas, whereas there are no equivalent issues with fuzzy logic. Fuzzy logic can also be
extended to type-2 fuzzy logic to handle uncertainty (e.g. type-2 interval logic, see table 6.4).
In Markov logic, data is in the form of true/false predicates. With fuzzy logic, we allow any
values in the [0, 1] range. With type-2 fuzzy logic, additional uncertainty in the predicate’s
truth value can be modelled, which would make it easier to integrate probabilistic theories with
uncertainty.

Thanks to its ability to represent relations and mathematical models, Markov logic has the
potential to offer a more mechanistic understanding of the data than simple probabilistic dis-
tributions. Yet, the results here are not really impressive. To be fair, the data is larger (more
than 50k ground predicates) and more complex than most examples used in papers for theory
revision, and it is also possible that no revisions were found because the initial model is al-
ready good. However, the big issue is that evaluating a single candidate took hours, often tens
of hours for formulas with more than two predicates (the ones we’re interested in). While bet-
ter algorithms may improve the quality of the candidates, the core issue is that evaluating a
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Table 6.4 – How evaluation works in type-2 interval fuzzy logic.

Name Evaluation of Type-2 intervals (a, b)
Negation ¬(a, b) = (1− b, 1− a)

Conjunction (a, b) ∧ (a′, b′) = (a ∧ a′, b ∧ b′)
Disjunction (a, b) ∨ (a′, b′) = (a ∨ a′, b ∨ b′)

The interval approach is the simplest : the truth value is an interval from a to b (a ≤ b and a, b ∈ [0, 1]).
Type-2 interval fuzzy logic reduces to type-1 fuzzy logic (or just : fuzzy logic) when a = b. Type-2
interval fuzzy logic can be used to model uncertainty in the truth value. It could be useful to introduce
uncertainty in fuzzy predicates based on probabilistic models. This approach is increasingly popular in
engineering to model uncertainty in fuzzy rule-based systems (Mendel, 2017).

candidate takes a long time with no guarantees that the algorithm actually optimize the weights
correctly. In contrast, a simple Python script was able to evaluate one million candidates (and
successfully find revisions) using fuzzy logic on a different data-set (Desjardins-Proulx et al.,
2017a). If Markov logic struggles to evaluate candidates for a single data-set, it is unlikely to
realize the ambition of a unifying knowledge base for ecology. The core issue is that weights
have to be computed for each new candidate.

There are two main issues with Markov logic. The first is bivalence. Standard predicate logic
is bivalent : a predicate is either true or false. Markov logic allows probabilistic queries on
predicates and formulas, but the predicates themselves are restricted to true, f alse. There are
many ways in which this is limiting, and we will extend on this later on, but suffice to say that it
forced us to reduce rich real-valued variables such as temperature to binary values. There is also
evidence that real-valued traits, such as body size and phylogenetic distances, are particularly
important to predict interactions (Desjardins-Proulx et al., 2017b).

The second problem is computational. Learning-assisted theorem proving is now possible with
millions of lemmas (Kaliszyk et Urban, 2015). Here, it took hours to evaluate a single candidate
for a problem with two domains (species, location) and 18 predicates. Even if the optimization
algorithm could be made a hundred time faster to learn the weights of the formula, it is diffi-
cult to see how this could be used for a general ecological knowledge base spanning several
subfields. The key issue is that, by defining a probability distribution over all formulas, we are
forced to re-evaluate all the weights for every new formulas. It is also important to empha-
size that the second-order optimization algorithm used (L-BFGS (Nocedal et Wright, 2006))
should converge quickly when the weights are near the optimum, and the weights are near the
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optimum when we try to evaluate a new candidate.

In this chapter, we described relational approaches based on predicate logic, with an emphasis
on Markov logic. The test with Markov logic highlighted important issues with this framework
but gave us insights into how theory revision could work in the context of ecology. Markov
logic is an interesting extension of first-order logic, but our results were not impressive. For
one, the only new rule we were able to learn made no sense, and while the weights do provide
some interesting information, much simpler methods could have yielded the same insights
(e.g. simple counting how often the rules are true). The process also took weeks to evaluate a
few hundred candidate rules, whereas the fuzzy learning algorithm presented in the previous
chapter can evaluate millions of rules in minutes. While these approached are not strictly com-
parable, it is difficult to image how Markov logic could scale to large databases of ecological
knowledge.

More fundamentally, Markov logic fails to provide the type of flexibility we need to integrate
ecological theories. Our previous results show that theory revision with fuzzy logic is both fast
and effective (Desjardins-Proulx et al., 2017a). That particular fuzzy logic method was not re-
lational, it used a more primitive form of fuzzy logic incapable of representing mathematical
ideas. However, it shows that fuzzy logic has the key ingredients for effective theory revision
and it is trivial to extend this approach to predicate fuzzy logic. Ultimately, a scalable know-
ledge base capable of handling mathematical theories would require a relational representation
(or something similar). Further work should focus on type-1 or type-2 fuzzy predicate logic.
There is no known algorithms to revise such theories, but techniques from pure-logic theory
revision may be adapted (Muggleton et de Raedt, 1994).
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CHAPITRE 7

DISCUSSION ET CONCLUSION GÉNÉRALE

7.1 Introduction

Cette thèse a exploré diverses techniques pour prédire les interactions des espèces, en mettant
l’emphase sur l’apprentissage de règles claires et l’objectif à long terme d’assembler une base
de connaissances unifiées pour les théories écologiques. Cette discussion fera, dans un premier
temps, un bref retour sur les résultats principaux avant de revoir les deux questions posées dans
l’introduction (section 1.3). Je terminerai par une discussion sur la suite des choses, comment
progresser vers une base de connaissance unifiée en tenant compte des leçons apprises lors de
ces travaux.

7.2 Résultats en bref

7.2.1 Méthodes classiques

Plusieurs techniques classiques supervisées et non supervisées ont été explorées dans les cha-
pitres 3 et 4. Deux conclusions s’imposent. Primo, l’importance de traits aux valeurs continues
(∈ R), en particulier la taille et la taxonomie. À partir de ces trois traits, il fut possible d’entraî-
ner un random forest capable de prédire les interactions entre deux espèces avec grand succès.
Le TSS de ce modèle était de 0.94. Ajouter les 25 traits binaires n’augmente le TSS qu’à 0.96.

La deuxième leçon des méthodes classiques est que les réseaux d’interactions écologiques ont
un imbrication (nestedness) élévée. L’imbrication mesure à quel point des prédateurs tendent à
partager les mêmes proies. Cet imbrication permet au k-nearest neighbors (KNN) de prédire
avec succès les interactions d’une espèce en se basant seulement sur les proies de prédateurs
similaires. Contrairement aux random forests, le KNN est une méthode simple à comprendre,
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programmer, et interpréter. Le succès du KNN est directement lié à l’imbrication, et donc son
efficacité a une interprétation écologique simple.

7.2.2 La clarté par le flou

Le chapitre 5 explore un système simple que j’ai développé, basé sur la logique floue. Les
règles ont la forme : Si X0 est Y0 et X1 est Y1 . . . alors (interaction ou non-interaction) X
représente un trait, par exemple la taille du pollinisateur, et Y une variable linguistique (small,
average, high, ...). J’ai développé un algorithme pour apprendre ces règles à partir de données.
Contrairement aux méthodes classiques, ce modèle génère des règles simples, formulées en
langue courante et donc faciles à lire et interpréter.

Le résultat montre que cette méthode est non seulement plus facile à interpréter mais donne de
meilleures prédictions que les méthodes établies comment les random forests. En plus de leur
capacité à prédire les interactions entre les pollinisateurs et les plantes, des discussions avec
le Dr. Ignasi Bartomeus, le chercheur à l’origine de ces données, démontrent que les règles
découvertes par mon approche ont du sens sur plan écologique. Malgré que le Dr. Bartomeus
n’ait pas de formation en apprentissage automatique ou en informatique, il n’eut aucune diffi-
culté à comprendre les règles. C’est une grande force de cette approche par logique floue : le
résultat est clair.

Cette recherche confirme le potentiel de l’apprentissage de la logique floue en écologie et
confirme aussi que les interactions entre pollinisateurs et plantes peuvent être prédites avec
précision à partir de peu de traits reliés à la taille des pollinisateurs et à la forme des plantes.

7.2.3 Logique de Markov

Le chapitre 6 introduit la logique de Markov, une approche qui n’avait pas été explorée en éco-
logie. La force de la logique de Markov est d’unifier la théorie des probabilités avec une forme
de logique, la logique de premier ordre, capable d’intégrer des connaisances mathématiques
avancées. Cette capacité est importante si l’on désire construire des bases de connaissances qui
relient diverses théories écologiques, car plusieurs théories en écologie sont formulées avec
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des équations mathématiques (le modèle de Lotka-Volttera, la théorie de niche, etc). Aussi,
l’intégration de modèles mathématiques permet d’automatiquement relier les connaissances
écologiques. Par exemple, dans une base de connaissances de premier ordre, une formule ma-
thématique qui estime une variable écologique sera directement liée à toutes les formules avec
cette variable. Un exemple serait la théorie métabolique en écologie, qui prédit plusieurs va-
riables à partir de formules de la forme α× βγ (West et al., 1997).

Pour cette étude nous avons établi un modèle de base, défini par un certain nombre de formules
en logique de premier ordre, et nous avons testé un algorithme de révision sur ces formules
avec les données de parasites-insectes-saules. Malheureusement, l’algorithmne n’a pas réussi
à trouver des règles de bonne qualité. La cause semble être double. Dans un premier temps, il
n’existe qu’une seule implémentation complète de la logique de Markov, elle ne roule pas en
parallèle, et prend plusieurs douzaines d’heures pour évaluer des candidats. Dans un deuxième
temps, la logique de Markov ne semble pas assez flexible. Le succès de la logique floue tient
au fait que cette logique tolère des nuances, alors que la logique de Markov force les données
à être bivalentes (vrai ou faux). Plusieurs des prédicats auraient bénéficié de la flexibilité de la
logique floue (Figure 7.1). Ce résultat confirme la leçon apprise lors des chapitres précédents
qui affirme l’importance de traits aux valeurs réelles (∈ R) comme la taille ou la promixité
taxonomique.
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Figure 7.1 – Prédicats flous et logique de Markov

Liste des prédicats utilisés pour la logique de Markov au chapitre 6. La logique de Markov force les
prédicats à être bivalents (vrai ou faux), mais plusieurs prédicats auraient bénéficié de plus de flexibilité.
En vert, les prédicats qui fonctionnent bien en tant que prédicats bivalents. Une espèce est soit un parasite
ou elle ne l’est pas (en tout cas pour ces données il n’y avait pas de nuance nécessaire). En orange, le
prédit PreyOnAt fonctionne relativement bien en tant que prédicat bivalent mais aurait pu être flou,
par exemple en ayant comme valeur de vérité l’intensité des interactions à cette location. En rouge, les
prédicats qui auraient dû être flous. Forcé le prédicat sur la proximité taxonomique à être bivalent enlève
beaucoup de nuances importantes aux données.

110



7.3 Conclusion : retour sur les deux questions

Le nombre de représentations de connaissances est grand et malheureusement, peu de ces
représentations ont attiré l’intérêt des écologistes. Ma thèse montre l’importance de ces ap-
proches, et applique deux méthodes nouvelles (logique floue et logique de Markov) au pro-
blème de l’interaction des espèces. Lors de l’introduction, j’ai posé deux questions : quelle est
la représentation de la connaissance la mieux adaptée à la synthèse des théories écologiques,
et comment exploiter automatiquement ces représentations? La seconde question est, au final,
assez simple à répondre. Il existe plusieurs algorithmes simples qui permettent de raisonner à
partir d’une base de connaissances. De loin, la première question est la plus difficile : quelle
est la bonne représentation pour la synthèse d’idées écologiques? La thèse apporte une réponse
partielle : cette représentation doit être relationelle comme la logique de Markov pour permettre
l’intégration d’équations mathématiques, et permettre les prédicats flous pour accomoder les
nuances des données écologiques.

Sous sa forme actuelle, la logique floue explorée au chapitre 6 est imparfaite comme repré-
sentation pour l’écologie. Ces règles ne sont pas relationnelles comme la logique du premier
ordre (first-order logic). Par conséquent, elles ne peuvent exprimer des idées mathématiques
complexes, et donc elles ne peuvent réaliser l’ambition d’une base de connaissances unifiées.
Des recherches futures devraient par contre prendre la logique floue comme point de départ.
L’écologie a besoin des prédicats nuancés de la logique floue et il existe des extensions à la
logique de premier ordre, bien qu’il n’y ait pas d’algorithmes pour apprendre ces règles. Il y
a un clair intérêt en intelligence artificielle pour la logique floue relationelle et un besoin de
flexibilité pour l’intégration de connaissances dans les domaines complexes (Kimmig et al.,
2012 ; Bach et al., 2015 ; Garnelo et al., 2016 ; Hu et al., 2016).

Les représentations les plus prometteuses se trouvent donc à la frontière entre les méthodes
relationnelles capables de représenter des formules mathématiques, et la logique floue, capable
de capturer les nuances des données écologiques. La figure 7.2 met l’emphase sur ces ap-
proches. L’écologie est un domaine complexe, qui comprend énormément de théories allant de
modèles sur la dynamique des populations à des modèles sur le flot d’énergie dans les éco-
systèmes. L’intégration de ces théories dans un tout cohérent devrait être une priorité pour les
théoriciens, à la fois pour permettre un meilleur partage des connaisances et la cohérence des
théories développées.
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Figure 7.2 – Retour sur les représentations de la connaissance
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La région encerclée met l’emphase sur les représentations capables de représenter les idées mathéma-
tiques (méthodes relationelles) et d’accommoder les nuances des prédicats écologiques (logique floue).
Ces méthodes devraient être les prochaines à explorer pour la synthèse de théories écologiques.
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ANNEXE A

HOW LIKELY IS SPECIATION IN NEUTRAL ECOLOGY?

A.1 Abstract

Patterns of biodiversity predicted by the neutral theory rely on a simple phenomenological
model of speciation. To further investigate the effect of speciation on neutral biodiversity, we
analyze a spatially-explicit neutral model based on population genetics. We define the meta-
community as a system of populations exchanging migrants and we use this framework to
introduce speciation with little or no gene flow (allopatric and parapatric speciation). We find
that with realistic mutation rates, metacommunities driven only by neutral processes cannot
support more than a few species. Adding natural selection in the population genetics of specia-
tion increases the number of species in the metacommunities and generate patterns of species
distribution similar to those predicted by Hubbell’s neutral theory of biodiversity.
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A.2 Introduction

How patterns of biodiversity arise through ecological and evolutionary processes is a central
question in modern ecology (Johnson et Stinchcombe, 2007 ; Fussmann et al., 2007). Accor-
ding to Hubbell’s neutral theory of biodiversity (NTB), patterns of biodiversity such as species-
abundance distributions can be explainnated by the balance between speciation, dispersal and
random extinction (Hubbell, 2001). The neutral theory provides a good fit to species distribu-
tion curves (Hubbell, 2001), and it has been extended in several ways (Haegeman et Etienne,
2009 ; Volkov et al., 2005 ; Rosindell et al., 2010). The neutral theory has been shown to be
flexible enough to fit nearly any distribution (Chave et al., 2002), but it is often regarded as a
valid starting point and an interesting null hypothesis for community ecology (Alonso et al.,
2006).

While a lot has been said about the assumption of ecological equivalence (Abrams, 2001 ;
Purves et Turnbull, 2010), much less attention has been given to the speciation mode (Etienne
et al., 2007), which is sometime seen as the theory’s weakest point (Kopp, 2010). In recent
years, some studies improved the speciation model within neutral ecology (Etienne et al., 2007 ;
Haegeman et Etienne, 2009 ; Rosindell et al., 2010). However, nothing has been done to relate
the theory to population genetics and known models of speciation, despite the fact that, as
Etienne et al. noted (Etienne et al., 2007), such a mechanistic model could eventually force
us to reject neutrality. The neutral theory with point speciation has also been criticized for
predicting too many rare species, too many young species (Ricklefs, 2003), and for assuming
a direct relationship between abundance and speciation (Etienne et al., 2007).

In this article, we introduce a neutral theory of biodiversity with a speciation model derived
from population genetics. We emphasize the role of allopatric and parapatric speciation. Spe-
ciation modes are most often distinguished according to the level of gene flow between the
diverging populations. Allopatric speciation occurs when the new species originates from a
geographically isolated population. By contrast, sympatric speciation is often defined as spe-
ciation without geographical isolation, in short, when the diverging populations share the same
location. Lastly, parapatric speciation covers the middle ground between these two extremes
(Gavrilets, 2003).

In the original neutral theory’s formulation, Hubbell presented two models of speciation, point-

114



speciation and random-fission speciation (Hubbell, 2001). Both are phenomenological indivi-
dual based models. In the case of point-speciation, a newly recruited individual is selected at
random and undergoes speciation. In the case of random-fission, the whole species is divided in
two at random. The random-fission model is more realistic and does improve some predictions
related to speciation and the number of rare species, but the resulting species abundance curves
do not fit data as well as the point-speciation model (Etienne et Haegeman, 2011) In both cases,
the probability of speciation of a given species is directly proportional to abundance and inde-
pendent of dispersal. Hubbell associates the point-speciation model with sympatric speciation,
and the random fission model with allopatric speciation (Hubbell, 2001). Some rare forms of
sympatric speciation are indeed similar to the point speciation model, namely polyploid spe-
ciation, but most sympatric speciation events involve a population being divided in two by
non-geographical factors (Coyne et Orr, 2004). Also, as neither models take gene flow into
consideration, neither can distinguish sympatric and allopatric speciation events.

While theoretical models have shown sympatric speciation to be possible, empirical studies
have uncovered only a very few solid cases (Bolnick et Fitzpatrick, 2007) and much of the
theory is controversial (Spencer et Feldman, 2005 ; Barr et Wells, 2005 ; Gavrilets, 2004). Des-
pite the growing acceptance of sympatric speciation as a plausible cause of speciation, most
speciation events are still thought to occur with limited gene flow (Coyne et Orr, 2004 ; Ga-
vrilets et Vose, 2005 ; Bolnick et Fitzpatrick, 2007 ; Fitzpatrick et al., 2008). Allopatric and
parapatric speciation events are more common, but modelling them require some details about
the spatial structure of the metacommunity. We chose to base our model on the most common
forms of speciation despite the increased complexity of a spatially-explicit framework. We
find that with realistic parameters, metacommunities cannot support more than a few species
when the genetics of speciation is assumed to be neutral. We also considered a simple alter-
native pseudo-selection model by adding natural selection at the genetic level, but keeping the
ecological equivalence assumption at the individual level. This approach shows that the rates
of speciation typical of the NTB cannot be obtained without selection pushing mutations to
fixation.
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Figure A.1 – Allopatric speciation in a metacommunity. (a) The metacommunity as a graph of (lo-
cal) communities. Each community is connected by dispersal to one or more communities. (b) A me-
tacommunity with two communities connected by dispersal and 10 individuals per community (n = 2,
J = 10). The metacommunity has two species (white and gray). Individuals are represented by different
shapes to identify their haplotypes : triangles for ab, squares for Ab and circles for AB. (c) The two
individuals selected to die in (b) are replaced, both by local replacements. In the community on the left,
the empty spot is filled by a gray individual with ab. In the other community, the empty spot is filled
by a gray individual who mutates from ab to Ab. (d) Because all white individuals carry AB in the left
community, they speciate and are now identified by black triangles (ab).

A.3 Model

We model speciation with the Bateson-Dobzhansky-Muller model (BDM) in which reproduc-
tive isolation is the consequence of the accumulation of incompatible alleles (Bateson, 1909 ;
Dobzhansky, 1937 ; Muller, 1942 ; Orr., 1996 ; Orr et Turelli., 2001). While the BDM model is
simple, we have many empirical and theoretical reasons to think that speciation events often
follow a similar scheme (Coyne et Orr, 2004 ; Gavrilets, 2003). We use a two-loci and two-
alleles version of the model where sexual reproduction is ignored (Gavrilets, 2004, p. 131).
Each local population starts with the ab haplotype fixed. The allele at the first locus, a, mutates
to A, and the allele at the second locus, b, mutates to B. Both mutates at the same rate µ. We
follow Gavrilets and ignore back mutations (Gavrilets, 2004). Back mutations have been shown
to slow down speciation in this model, but not dramatically (Gavrilets, 2004, p. 131). Alleles a
and B are incompatible, so the path from ab and AB can be seen as a process with three states :

ab −→ Ab −→ AB (A.1)

Speciation occurs when all individuals in the local population carry the AB haplotype. Mi-
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gration bring new individuals, always with the ab haplotype, at rate m. To integrate Gavrilet’s
BDM model in a metacommunity, we’ll connect local communities composed of populations
of one or more species. We assume the two loci are distinct for each population. Speciation is a
complex process, but this simple model captures many important characteristics of speciation
events that are ignored in the NTB. First, it that takes time. Most often, speciation is the result
of a long process where a population diverge from the rest of the species to the point where
a reproductive barrier stops current and future gene flow between the diverging populations
(Coyne et Orr, 2004). Second, with a few exceptions, the starting population size of the new
species is likely to have more than a single individual. Third, gene flow (migration) has a strong
homogenizing effect that will inhibit speciation (Coyne et Orr, 2004 ; Gavrilets, 2004). Lastly,
speciation occurs as a population of a given species diverge, most often in well-defined geogra-
phic areas (Avise, 2000 ; Coyne et Orr, 2004). None of these characteristics are present in the
original neutral theory (Hubbell, 2001), although protracted speciation partially solve the first
two problems by adding a parameter to account for the waiting time to speciation (Rosindell
et al., 2010).

One of the difficulty with speciation in individual-based models is that it is often impossible to
distinguish populations, but speciation is a population-process. Speciation in the consequence
of divergences between populations. In the NTB and most of its variants, only two levels of
organization are recongnized ; the individual and the species. Because these individuals are not
grouped in populations, it is hard, if not impossible, to integrate speciation theory, which is
deeply rooted in the idea of diverging populations (Coyne et Orr, 2004). To integrate Gavrilets’
model in the NTB, we need a spatially-explicit model of the metacommunity that allows us to
distinguish populations within species. Several approaches have been used to model the spatial
structure of populations and local communities. Some are spatially-explicit at the level of the
individual. In these models, the location of each individual is known, generally by using a
grid (Rosindell et Cornell, 2007) or a graph (Lieberman et al., 2005). Another approach is to
consider the position of populations, but ignore the exact position of the individuals within the
populations. Again, this method has been used with grids (Gavrilets et Vose, 2005) and graphs
(Minor et Urban, 2007 ; Economo et Keitt, 2008 ; Dale et Fortin, 2010). Because speciation is a
population-process, we use the latter approach and model the metacommunity as a graph of n
local communities (hereafter simply referred to as communities), where each community x can
support a total of Jx individuals. Communities are connected together by dispersal (Leigh et al.,
2004) and composed of one or more species (Economo et Keitt, 2008 ; 2010) (Fig. 1a). This
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spatial representation allows us to distinguish three levels of organization : species, populations
(individuals of a given species in a given community), and individuals. Dispersal between two
communities will always be low enough to assume that the individuals in the two communities
can be defined as distinct populations (Berryman, 2002).

Each individual has a haplotype (either ab, Ab, AB) and we follow explicitly their dynamics in
each community. As these haplotypes represent a path toward speciation in their community,
it should be seen as a different pair of loci for each population. For example, if an individual
of species i migrates from community x to community y, it will carry the ab haplotype in its
new community, regardless of its haplotype in community x. In short, we assume the varia-
tion acquired in a given community has no effect on the mutations toward speciation in other
communities. This assumption is not realistic in all situations, as both mutational-order and
ecological speciation are know to be influenced by complex interactions between the diverging
populations (Mani et Clarke, 1990 ; Schluter, 2009 ; Nosil et Flaxman, 2011 ; Coyne et Orr,
2004 ; Gavrilets, 2004). Integrating the effect of these divergences would require many more
assumptions about the nature of speciation, and in most cases cannot be done without introdu-
cing the concept of niche (Schluter, 2000). We ignore much of the details of speciation in favor
of a simple model that captures many of the most fundamental characteristics of speciation as a
population-process. Because there is no niche differentiation, new mutations toward speciation
are always allowed to appear regardless of the ecological context. As soon as all the individuals
of a given species inside a local population carry the haplotype AB, they undergo speciation
(Fig. 1d).

Metacommunity dynamics follow Hubbell’s neutral model of biodiversity (Hubbell, 2001),
for each unit of time t a disturbance randomly kill D individuals from the metacommunity
(we considered D = 2%). After the disturbance the metacommunity is refilled using post-
disturbance abundance and a migration matrix m, according to the following equation (Gravel
et al., 2006) :

p(i, x) = ∑
y

m(y, x)
N(i, y)
Jp(y)

(A.2)

Where p(i, x) is the probability of picking an individual of species i to fill an empty spot on
community x. m(y, x) is the probability that an individual will be picked from community y to
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migrate to community x, if y ̸= x it is a migration event, and if y = x it is a local replacement
event. N(i, y) is the number of individual of species i in community y, i.e. : the population size.
Jp(y) is the post-disturbance size of community y (Jp(y) = Jy − Dy). This equation always
ignore the haplotype of the individual, which is decided after a species has been picked to refill
the empty spot. The rules for deciding the haplotype of the individual depends on the model
(neutral or pseudo-selection).

We considered three different metacommunity shapes ; star, circle and complete. In the circular
metacommunity, all communities are linked to two other communities to form a circle. In
the star, a single central communities forms a link to all outer communities, which have no
other links. In the complete metacommunity, all communities are linked to all the others. The
migration matrix is built with a single parameter ω, which is the strength of the links between
communities. To establish the strength of migration between communities we draw a number
in the uniform distribution between 0 and ω (mean : ω/2) for each link. After this number is
drawn, the migration rate between two linked communities is found by dividing the number by
the sum of all links plus one (for local replacement events). The probability that an individual
killed in community x will be replaced by migration is, on average :

mx =
cω/2

1 + cω/2
≈ cω/2 (A.3)

With c being the number of communities linked to x. The 1 in the denominator stands for
the weight given to local replacement events. Because the rate of migration is much smaller
than 1, the rate of migration is approximately ω times the number of linked communities.
The average migration rate for communities in circle metacommunities (c = 2) is roughly
ω. For stars, it is (n − 1)ω for the central community and ω/2 for the others. Lastly, for a
complete metacommunity the rate of migration is (n− 1)ω for all communities. In this model,
the strength of migration depends on the weight of the links between communities ω and the
number of linked communities.

Within this framework we explore two models. In the neutral model, new mutations will be
driven to extinction or fixation by drift and migration alone. We follow explicitly the number
of individuals with each haplotype in each local community (Fig. 1). When a species is picked
by equation A.2 for migration, it will carry the ab genotype. When a species is picked for a
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local replacement event the haplotype is selected according to the relative abundance of the
haplotypes, with a probability µ of mutation fronm ab to Ab and from Ab to AB. Because
even weak selection can dramatically reduce the time to speciation (Gavrilets, 2004), we also
considered a pseudo-selection model with within-population selection. For this variant, we use
a multiplicative fitness regime (Charlesworth et Charlesworth, 2011, p. 166), so the fitness
of an individual with haplotype ab, Ab or AB is, respectively, 1, 1 + s or (1 + s)2. One of
the basic tenets of the NTB is ecological equivalence, so to keep the pseudo-selection model
within the framework of neutral ecology, the probability to pick an individual from one species
will still follow equation A.2 regardless of its internal genetic composition. The haplotypes are
only considered after a species has been chosen. Then, the haplotype is chosen according to its
abundance and fitness. In reality, if a population has many individuals with haplotypes Ab and
AB, it should have an advantage over a population with only ab individuals, but this will break
the ecological equivalence assumption of neutral biodiversity so we ignore it.

We explored the model by simulations using an implementation in ANSI C99. For all simula-
tions, the number of local communities n is set to 10, and each community starts filled with a
single species so there are n species at the beginning. We compared simulations with J = 103

to 106 individuals and found similar results. We thus use J = 105 for all simulations. The mu-
tation rate µ for eukaryotes is generally between 10−4 and 10−6 (Drake et al., 1998 ; Gavrilets,
2004) and we set µ to the highest realistic value, µ = 10−4. The simulations ran for 2× 107

time steps, and we recorded the average local and regional species richness over the last 105

steps.

A.4 Results

We found that for our neutral metacommunity model with realistic parameter values, regardless
of its size, shape, and dispersal rate, the regional species richness never exceeds n, the number
of local communities. Increasing the migration rate reduces the number of species supported
by the metacommunity. For all values of ω, the number of species supported at equilibrium
is equal or below 10, the initial number of species. Unsurprisingly, we find that reducing the
average migration rate increases the speciation rate, but it also increases the number of extinc-
tions. For ω ≤ 10−5, the regional species richness remain at its original value of 10, while for
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ω ≥ 10−3, the entire metacommunity supports only a single species. We find a threshold mi-
gration rate around ω = 10−4 where the regional species richness increases suddenly. Around
this value, the number of species varies between 1 and 10. When ω ≤ 10−4, the communi-
ties are so isolated that they are dominated by a single species, often with a small number of
individuals from one or two other species.

We studied the effect of increasing the mutation rate beyond realistic values. Keeping J at 105

and ω = 10−3, we ran simulations for several mutation rates. Even a tenfold increase in the
mutation rate (µ = 10−3) has little effect on the equilibrium regional species richness. The
metacommunity sustains higher diversity around a mutation rate of µ = 10−2. This mutation
rate is well above the typical mutation rate (Drake et al., 1998 ; Gavrilets, 2004). This finding
lends credit to the theory that the NTB requires unrealistically high speciation rates (Ricklefs,
2003).
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Figure A.2 – The number of species at equilibrium in the pseudo-selection model increases non-
linearly with the selection rate. The number of species quickly increases, in part because selection
pushes the alleles toward speciation, but also because it reduces the fitness of migrants. Selection dimi-
nishes the inhibiting effect of gene flow on speciation.

Adding selection has an important impact on the equilibrium species richness. We find ap-
proximately 100 species at the regional scale (10/community) with s = 0.05 (Fig. 2). In both
metacommunities shaped like stars and circles, the regional species abundance distribution is
lognormal-like with negative skewness (a long left tail) (Fig. 3). This regional distribution is
similar to the NTB’s distribution for local communities (Hubbell, 2001). There are fewer rare
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species than the regional distribution seen in the NTB, supporting the criticism of Ricklefs (Ri-
cklefs, 2003), which argued that the NTB predicted too many rare species. In all simulations
with ω = 10−3, the metacommunities with the complete shape could only support one species
for the entire metacommunity.

2 4 6 8 10 12 14

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

Abundance class (Octaves)

P
ro

p
o

rt
io

n
 o

f 
s
p

e
c
ie

s
Circle

Star

Figure A.3 – Regional species distribution in the pseudo-selection model. Both star and circle com-
munities share a similar distribution. Simulations with the complete metacommunities (all communities
linked together) ended with a single species because of the crushing effect of high migration rates.

A.5 Discussion

In this study, we developed a simple framework to study speciation as a population-process
within neutral ecology. In our models, the speciation rate is not assumed to take any particular
value, it is an emergent property of the system. It depends on selection, the mutation rate, and
migration, which in turn is influenced by the shape of the metacommunity. Also, we made no
assumptions about the relationship between abundance and speciation rate. Species with more
individuals are likely to occupy more communities, so they will have more opportunities to
speciate, but the relationship will depend on the shape of the metacommunity and the spatial
distribution of the populations. Our goal was to examine the relationship between neutral eco-
logy and a mechanistic model of speciation based on population genetics. Phenomenological
models are not inherently inferior (McGill et Nekola, 2010) but they should be confronted to
their mechanistic counterpart to determine if they can provide a good approximation of reality,
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under what conditions this approximation can hold, and what kind of assumptions are requi-
red to make it hold. Our assumptions deliberately made speciation easy to achieve. We used
the BDM model with only two steps required to reach speciation and we ignored back muta-
tions (Gavrilets, 2004). The mutation rate chosen was the highest plausible rate for eukaryotes
(Drake et al., 1998 ; Kumar et Subramanian, 2002). There was always a mutation toward spe-
ciation available, arguably the most unrealistic assumption as the conditions for speciation are
seldom common (Coyne et Orr, 2004). All these assumptions greatly favor speciation, yet the
model still failed to produce metacommunities with many species unless selection is added or
the mutation rate is set to impossible levels.

Adding selection to the NTB is not compatible with some key assumptions of neutral ecology,
or at least would require new assumptions to be made to explainnat how natural selection can
act at the genetic level but not at the ecological level. Speciation can be achieved easily if muta-
tions toward speciation are given some positive selection coefficient. But new species, being the
result of the accumulation of fitness-enhancing mutations, should have greater fitness, which
would violate the NTB’s ecological equivalence assumption. Zhou and Zhang’s nearly neutral
model showed that even small differences between species lead to markedly different species
distributions (Zhou et Zhang, 2008). There is little doubt that selection plays an important role
in speciation events (Coyne et Orr, 2004) and few neutral models of speciation have been de-
veloped (Nei et al., 1983). Speciation by drift alone is simply too slow (Turelli et al., 2001). A
possible solution to the dilemma would be to assume a constant flow of positive mutations. As
fitness would increase for all species, the effect of mutations toward speciation would be lost,
preserving ecological equivalence. This solution assumes a “Red Queen” scenario where indi-
viduals have to run to keep in the same place (Van Valen, 1973), and is similar to the view of
evolution defended by Ronald Fisher (Fisher, 1930). However, this assumption requires many
additional assumptions about adaptation and the rate of evolution.

When comparing models, one aspect to consider is their complexity. Theoretical populations
genetics is mostly based on mathematical models that are simple enough to be analytically
tractable, which has lead to a tendency to ignore spatial complexity (Epperson et al., 2010). As
allopatric and paratric speciation events rely on this spatial complexity, we have few theoretical
models to study the effect of these forms of speciation on diversity. We chose to base our
theory on the most common forms of speciation and introduced a simple method to model
allopatric and parapatric speciation in complex spatial structures. While using graphs add a
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layer of complexity to neutral ecology, our approach fixes some of the problems of the point-
speciation model without adding new parameters for speciation, as we replace the speciation
rate v with the mutation rate µ. More importantly, this approach allows us to divide a species
in populations, a fundamental unit in evolution. Ricklefs (Ricklefs, 2003) argued that new
species under the point-speciation model would not be recognized as species, because those
species have appeared instantaneously and are likely too similar. Rosindell et al. (Rosindell
et al., 2010) improved the speciation model with protracted speciation. In this model, a new
parameter is added to account for the waiting time to speciation. While this approach solves
the problem of instantaneous speciation, it requires two free parameters for speciation and still
offers no explanation for the speciation rate. One of the problems with a fixed speciation rate
v is that speciation is directly influenced by ecological factors such as isolation and habitats.
In particular, the effect of dispersal on speciation is ignored in most community models with
speciation (Hubbell, 2001 ; Etienne et al., 2007 ; Haegeman et Etienne, 2009 ; Volkov et al.,
2005 ; Rosindell et al., 2010), despite the fact that gene flow greatly reduces the probability of
speciation (Coyne et Orr, 2004).

A.6 References

Abrams, P. A. (2001). A world without competition. Nature 412, 858–859.

Alonso, D., Etienne, R. S., McKane, A. J. (2006). The merits of neutral theory. Trends in
Ecology and Evolution 21, 451–457.

Avise, J. C. (2000). Phylogeography. Harvard University Press.

Barr, M., Wells, C. (2005). Toposes, triples, and theories. Theory and Applications of Catego-
ries 1, 1–289.

Bateson, W. (1909). Heredity and variations in modern lights. In : Seward, A. C. (Ed.), Darwin
and Modern Science. Cambridge University Press, pp. 85–101.

Berryman, A. A. (2002). Population : a central concept for ecology? Oikos 97, 439–442.

Bolnick, D. I., Fitzpatrick, B. M. (2007). Sympatric speciation : models and empirical evidence.
Annual Review of Ecology, Evolution, and Systematics 38, 459–487.

124



Charlesworth, B., Charlesworth, D. (2011). Elements of evolutionary genetics. Roberts &
Company Publishers.

Chave, J., Muller-Landau, H. C., Levine, S. A. (2002). Comparing classical community mo-
dels : theoretical consequences for patterns of diversity. The American Naturalist 159, 1–23.

Coyne, J. A., Orr, H. A. (2004). Speciation. Sinauer Associates.

Dale, M. R. T., Fortin, M.-J. (2010). From graphs to spatial graphs. Annual Review of Ecology,
Evolution, and Systematics 41, 21–38.

Dobzhansky, T. G. (1937). Genetics and the origin of species. Columbia University Press.

Drake, J. W., Charlesworth, B., Charlesworth, D., Crow, J. F. (1998). Rates of spontaneous
mutation. Genetics 148, 1667–1686.

Economo, E. P., Keitt, T. H. (2008). Species diversity in neutral metacommunities : a network
approach. Ecology Letters 11, 52–62.

Economo, E. P., Keitt, T. H. (2010). Network isolation and local diversity in neutral metacom-
munities. Oikos 10, 1–9.

Epperson, B. K., McRae, B. H., Scribner, K., Cushman, S. A., Rosenberg, M. S., Fortin, M. J.,
James, P. M. A., Murphy, M., Manel, S., Legendre, P., Dale, M. R. T. (2010). Utility of
computer simulations in landscape genetics. Molecular Ecology 19, 3549–3564.

Etienne, R. S., Apol, M. E. F., Olf, H., Weissing, F. J. (2007). Modes of speciation and the
neutral theory of biodiversity. Oikos 116, 241–258.

Etienne, R. S., Haegeman, B. (2011). The neutral theory of biodiversity with random fission
speciation. Theoretical Ecology 4, 87–109.

Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Clarendon.

Fitzpatrick, B. M., Fordyce, J. A., Gavrilets, S. (2008). What, if anything, is sympatric specia-
tion? Journal of Evolutionary Biology 21, 1452–1459.

Fussmann, F. G., Loreau, M., Abrams, P. A. (2007). Eco-evolutionary dynamics of communi-
ties and ecosystems. Functional Ecology 21, 465–477.

125



Gavrilets, S. (2003). Perspective : models of speciation : what have we learned in 40 years?
Evolution 57, 2197–2215.

Gavrilets, S. (2004). Fitness Landscapes and the Origin of Species. Princeton University Press.

Gavrilets, S., Vose, A. (2005). Dynamic patterns of adaptive radiation. Proceedings of the Na-
tional Academy of Sciences of the United States of America 102, 18040–18045.

Gravel, D., Canham, C. D., Beaudet, M., Messier, C. (2006). Reconciling niche and neutrality :
The continuum hypothesis. Ecology Letters 9, 399–409.

Haegeman, B., Etienne, R. S. (2009). Neutral models with generalised speciation. Bulletin of
Mathematical Biology 71, 1507–1519.

Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Vol. 32
of Monographs in Population Biology. Princeton University Press.

Johnson, M. T. J., Stinchcombe, J. R. (2007). An emerging synthesis between community eco-
logy and evolutionary biology. Trends in Ecology and Evolution 22, 250–257.

Kopp, M. (2010). Speciation and the neutral theory of biodiversity : modes of speciation affect
patterns of biodiversity in neutral communities. Bioessays 32, 564–570.

Kumar, S., Subramanian, S. (2002). Mutation rates in mammalian genomes. Proceedings of the
National Academy of Sciences of the United States of America 99, 803–808.

Leigh, E. G., Davidar, P., Dick, C. W., Puyravaud, J.-P., Terborgh, J., Wright, S. J. (2004). Why
do some tropical forests have so many species of trees? Biotropica 36, 447–473.

Lieberman, E., Hauert, C., Nowak, M. A. (2005). Evolutionary dynamics on graphs. Nature
433, 312–316.

Mani, G. S., Clarke, B. (1990). Mutational order : a major stochastic process in evolution. Proc.
R. Soc. London B 240, 29–37.

McGill, B. J., Nekola, J. C. (2010). Mechanisms in macroecology : AWOL or purloined letter ?
towards a pragmatic view of mechanism. Oikos 119, 591–603.

Minor, E. S., Urban, D. L. (2007). Graph theory as a proxy for spatially explicit population
models in conservation planning. Ecological Applications 17, 1771–1782.

126



Muller, H. J. (1942). Isolating mechanisms, evolution and temperature. Biological Symposia
6, 71–125.

Nei, M., Maruyama, T., Wu, C.-I. (1983). Models of evolution of reproductive isolation. Gene-
tics 105, 557–579.

Nosil, P., Flaxman, S. M. (2011). Conditions for mutation-order speciation. Proc. R. Soc. Lon-
don B 278, 399–407.

Orr., H. A. (1996). Dobzhansky, Bateson and the genetics of speciation. Genetics 144, 1331–
1335.

Orr, H. A., Turelli., M. (2001). The evolution of post-zygotic isolation : accumulating
Dobzhansky-Muller incompatibilities. Evolution 55, 1085–1094.

Purves, D. W., Turnbull, L. A. (2010). Different but equal : the implausible assumption at the
heart of neutral theory. Journal of Animal Ecology 79, 1215–1225.

Ricklefs, R. E. (2003). A comment on hubbell’s zero-sum ecological drift model. Oikos 100,
185–192.

Rosindell, J. L., Cornell, S. J. (2007). Species-area relationships from a spatially explicit neutral
model in an infinite landscape. Ecology Letters 10, 586–595.

Rosindell, J. L., Cornell, S. J., Hubbell, S. P., Etienne, R. S. (2010). Protracted speciation
revitalizes the neutral theory of biodiversity. Ecology Letters 13, 716–727.

Schluter, D. (2000). The ecology of adaptive radiation. Oxford University Press.

Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science 323, 737–
741.

Spencer, H. G., Feldman, M. W. (2005). Adaptive dynamics, game theory and evolutionary
population genetics. Journal of Evolutionary Biology 18, 1191–1193.

Turelli, M., Barton, N. H., Coyne, J. A. (2001). Theory and speciation. Trends in Ecology and
Evolution 16, 330–343.

Van Valen, L. (1973). A new evolutionary law. Evol. Theory 1, 1–30.

127



Volkov, I., Banavar, J. R., He, F., Hubbell, S. P., Maritan, A. (2005). Density dependence ex-
plains tree species abundance and diversity in tropical forests. Nature 438, 658–661.

Zhou, S.-R., Zhang, D.-Y. (2008). A nearly neutral model of biodiversity. Ecology 89, 248–
258.

128



ANNEXE B

A COMPLEX SPECIATION-RICHNESS RELATIONSHIP IN A SIMPLE NEUTRAL
MODEL

B.1 Abstract

Speciation is the “elephant in the room” of community ecology. As the ultimate source of
biodiversity, its integration in ecology’s theoretical corpus is necessary to understand commu-
nity assembly. Yet, speciation is often completely ignored or stripped of its spatial dimension.
Recent approaches based on network theory have allowed ecologists to effectively model com-
plex landscapes. In this study, we use this framework to model allopatric and parapatric spe-
ciation in networks of communities and focus on the relationship between speciation, richness,
and the spatial structure of communities. We find a strong opposition between speciation and
local richness, with speciation being more common in isolated communities and local richness
being higher in more connected communities. Unlike previous models, we also find a transition
to a positive relationship between speciation and local richness when dispersal is low and the
number of communities is small. Also, we use several measures of centrality to characterize
the effect of network structure on diversity. The degree, the simplest measure of centrality, is
found to be the best predictor of local richness and speciation, although it loses some of its pre-
dictive power as connectivity grows. Our framework shows how a simple neutral model can be
combined with network theory to reveal complex relationships between speciation, richness,
and the spatial organization of populations.
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B.2 Introduction

For a long time speciation was not part of community ecology’s theoretical framework. Ma-
cArthur and Wilson’s seminal work on island biogeography does mention speciation but their
model and most of its inheritors ignored it completely (MacArthur et Wilson, 1967). This is sur-
prising given speciation’s central role : ultimately, all species appear through speciation events.
The importance of speciation to understand patterns of diversity was noted by Wallace in the
1850s (Wallace, 1855) and played a key role in the modern synthesis of evolutionary biology
(Mayr, 1942). Fortunately, ecologists are increasingly aware of the importance of speciation.
Recently Vellend argued that, while a great number of processes shape communities, they can
be grouped in four classes : drift, dispersal, selection, and speciation (Vellend et Orrock, 2009 ;
Vellend, 2010). Recent theoretical models, such as those based on Hubbell’s neutral theory
(Hubbell, 2001) or the Webworld (Caldarelli et al., 1998), have also made speciation an im-
portant part of community ecology (Drossel et al., 2001 ; Etienne et al., 2007 ; Kopp, 2010 ;
Rosindell et al., 2010 ; Melián et al., 2010 ; Rosindell et Phillimore, 2011 ; Etienne et Haege-
man, 2011). In particular, the neutral theory covers three of the four classes of processes des-
cribed by Vellend, leaving only selection untouched (Hubbell, 2001 ; Vellend, 2010) in favor
of a more phenomenological (some would say pragmatic) description of community dynamics
(Wennekes et al., 2012). However, whereas drift and dispersal are well integrated in the neutral
theory, the treatment of speciation remains dubious (Etienne et al., 2007 ; Desjardins-Proulx et
Gravel, 2012).

In community ecology, speciation is often reduced to a mutation leading instantaneously to a
new species with a single individual. We refer to this modeling approach as “speciation-as-
a-mutation”. This is the approach of both the neural theory (Hubbell, 2001) and Webworld
(Caldarelli et al., 1998). Because the processes determining the fate of mutations (gene flow,
selection, drift) have no effect on the mutation rate, population geneticists can simply obtain
an estimate from field data and plug the mutation rate in equations (Crow et Kimura, 1970 ;
Vellend, 2003). Speciation is different. The speciation rate is an emergent property of selec-
tion, drift, and dispersal processes (Coyne et Orr, 2004). To put it another way : a mutation
is a molecular phenomenon unaffected by allele dynamics so it can be treated independently.
Speciation on the other hand is a population process influenced by the structure and dynamics
of populations, so it cannot be treated as a fixed rate. In particular, as gene flow tends to in-
hibit divergence, the spatial organization of a species’ populations and their level of isolation
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will determine the likelihood of speciation (Coyne et Orr, 2004 ; Rice, 2009). In this study we
use networks of communities to move the neutral theory from “speciation-as-a-mutation” to
“speciation-as-a-population-process” (Fig. 1).

Spatial patterns of diversity are notoriously hard to study theoretically. Part of the problem
lies in the lack of effective analytical methods for nontrivial spatial models (Epperson et al.,
2010). Network theory provides tools to study patterns of connections and allows us to model
almost any kind of spatial structure (Dale et Fortin, 2010). Furthermore, theorists have deve-
loped algorithms to analyze various aspects of networks, making it an effective tool to extract
information from highly complex structures (Newman, 2010). A network is simply defined by
two sets : a set of vertices and a set of edges. In our case, the vertices represent local commu-
nities and the edges denote dispersal (Fig. B.1). The entire network forms the metacommunity.
A spatial network combines the combinatorial properties of a network with a topological space
in any number of dimensions (Kobayashi, 1994). They have been used, among other things,
to study networks on maps (Sedgewick, 2002 ; Penrose, 2003 ; Dale et Fortin, 2010) and the
three-dimensional structure of molecules (Shinjo et Taniyama, 2003).

Economo and Keitt pioneered the use of networks in theoretical community ecology (Economo
et Keitt, 2008 ; 2010). They extended Hubbell’s neutral theory to networks and studied how dif-
ferent topologies influence diversity. However, they kept the “speciation-as-a-mutation” model
and did not use the network to account for the influence of isolation and gene flow on specia-
tion (Economo et Keitt, 2008 ; 2010). To introduce speciation in a realistic matter, we have to
go beyond the “speciation-as-a-mutation” framework and treat it as a population-process inhi-
bited by gene flow (B.1). Speciation modes are most often distinguished by their biogeography
(Coyne et Orr, 2004). Allopatric speciation occurs when the new species originates from a
geographically isolated population, sympatric speciation is often defined as speciation without
geographical isolation, and finally, parapatric speciation covers the middle ground between
these two extremes (Coyne et Orr, 2004). The relative importance of gene flow to speciation
is still the subject of a hot debate (Nosil, 2008 ; Johannesson, 2010). Nonetheless, speciation
with little or no gene flow is still thought to be more common (Coyne et Orr, 2004 ; Fitzpa-
trick et al., 2008 ; Bolnick et Fitzpatrick, 2007). To study the effect of speciation on diversity,
we extended the framework of Economo and Keitt to a population-based speciation model
(Desjardins-Proulx et Gravel, 2012). We show that treating speciation as a population-process
inhibited by gene flow has profound consequences on the predicted patterns of diversity. We
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discover a complex relationship between speciation and local richness. When the number of
local communities is small, we find a strong positive relationship : communities with more
speciation events are also the ones with the highest richness. However, this relationship does
not hold as the number of communities increases. Finally, we compare the effectiveness of
different centrality measures as predictors of local richness and speciation.
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Figure B.1 – Four metacommunities represented by random geometric networks in the unit square
(x, y ∈ [0, 1]). We define the metacommunity as the entire network of communities. Here the local
communities (the vertices) are represented by black circles and the thick black lines (the edges) denote
links by dispersal. Each of the c vertices has a position in two-dimensional space and is linked to all
vertices within some threshold Euclidean distance q, which can be seen as the dispersal range of the
species. A community is a set of populations of different species. We define a population as the entire
set of individuals of a given species in a given vertex. As q increases, the number of links grow larger
and local communities are less isolated. Similarly, the number of links per community also increases
with c. While these networks are random, they exhibit locality, an important feature of real landscapes.
Networks are well suited to distinguish populations within a species and thus to model speciation as a
population process. Dispersal rates between connected communities are always low so we can assume
the individuals of a given species in a given local community is a population in the strict sense (Ber-
ryman, 2002). Within each local community, the populations of one or more species fluctuate by drift
and dispersal in the exact same way as Hubbell’s neutral model (Hubbell, 2001). Unlike the models by
Hubbell (Hubbell, 2001) and Economo (Economo et Keitt, 2008), we model speciation as a population
process (Desjardins-Proulx et Gravel, 2012). Populations diverge through mutations and within-species
selection and if a population accumulates enough divergence it undergoes speciation. In this model, each
local community offers a possibility of speciation, which is inhibited by the homogenizing effect of gene
flow. The rate of speciation is determined by the number of populations in the metacommunity and how
much inhibiting gene flow is present. Thus, speciation is an emergent property of the metacommunity.
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B.3 Methods

B.3.1 Metacommunity dynamics

Metacommunity dynamics is similar to Hubbell’s neutral model of biodiversity (Hubbell, 2001).
It can be described in three steps (Desjardins-Proulx et Gravel, 2012). 1 : For each time step
an individual is selected and killed in each community, with all individuals having the same
probability of being selected. 2 : The individuals selected in step 1 are replaced either by dis-
persal or by local replacement. The probability of dispersal from vertex x to vertex y is given
by the dispersal matrix m. In the case of dispersal from x to y (x ̸= y), the new individual
belong to species i with probability Nix/Jx, with Nix being the population size of species i
in community x and Jx the size of the local community. Each individual belongs to a species
and carry a genotype, either axbx, Axbx, or AxBx, with x being the community. We assume
that migrants carry no mutations at the focal loci for the population into which they move so
the haplotype is ignored and the new individual will always carry ayby. This assumption im-
plies that each population has its own unique path to speciation. For local replacement events,
the new individual will belong to species i with probability Nix/Jx. However, the fitness of
the haplotypes is used to determine the new individual’s haplotype. One of the basic tenets of
the neutral theory is ecological equivalence, so to introduce selection within the framework of
neutral ecology the probability to pick an individual from one species has to ignore the internal
genetic composition. After the species is selected, we select the haplotype using the fitness 1.0,
1+ s, (1+ s)2 for the three haplotypes respectively. When the haplotype is selected, axbx mu-
tates to Axbx and Axbx to AxBx with probability µ. 3 : Lastly, all populations with AxBx fixed
undergo speciation. The individuals of the new species will carry axbx and a new path toward
speciation is open. A detailed description of the model can be found in Desjardins-Proulx and
Gravel (Desjardins-Proulx et Gravel, 2012).

We study metacommunities with a varying number of vertices (local communities) c and thre-
shold values q. We generate the random geometric networks by randomly placing the vertices
in the unit square and connecting all vertices within some Euclidean distance q (Fig 1) (Sed-
gewick, 2002 ; Penrose, 2003). We generate random geometric networks until a connected one
is found. This method might introduce a bias as many networks will be rejected when q is
small but it is necessary because the presence of disconnected components makes the analysis
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of networks notoriously difficult (Newman, 2010). The number of communities c vary from
5 to 125 with a fixed metacommunity size of 100000 individuals (i.e. : we have 5 communi-
ties of 20 000 individuals, or 10 of 10 000, or 25 of 4 000, and so on). In a previous study
we found that global diversity was optimal around s = 0.15 and ω = 5e − 4 and we use
these values unless otherwise noted (Desjardins-Proulx et Gravel, 2012). ω is a parameter used
to create the dispersal matrix and can roughly be defined as the dispersal rate between two
vertices (Desjardins-Proulx et Gravel, 2012). We also tried different values of s to test the so-
lidly of our results (s = {0.05, 0.10, 0.20, 0.30, 0.40}). We set the mutation rate µ to 1e− 4,
a high but realistic value for eukaryotes (Drake et al., 1998 ; Gavrilets, 2004). See Desjardins-
Proulx and Gravel for details on the effect of selection, ω, and the mutation rate on diversity
(Desjardins-Proulx et Gravel, 2012). All simulations started with 20 species evenly distributed
in the metacommunity and ran for 100 000 generations. The simulations were written in ANSI
C99 and the code is available on github (https ://github.com/PhDP/origin).

B.3.2 Centrality measures

We explore the effect of five measures of centrality and importance on diversity (Newman,
2010). The first is the degree of the vertex, which is the number of edges starting from the
vertex plus the number of edges going into the vertex divided by two. The second measure is
eigen-centrality. It assigns scores to vertices so that connections to high-scoring nodes are more
important than connections to low-scoring vertices. Closeness centrality is the average geodesic
distance between the vertex and all other vertices. Unlike the degree, which is only affected by
the neighbors, closeness centrality depends on the global structure of the network. Betweenness
centrality is the number of shortest paths from all vertices to all others that pass through the
vertex. In short, if we compute the shortest paths for all pairs of vertices, how many times a
vertex is present in these paths determine its betweenness centrality. Lastly, communicability
centrality is the sum of closed walks of all lengths starting and ending at the vertex. We used the
Python library NetworkX to compute these centrality measures and the clustering coefficients
(Hagberg et al., 2008).
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B.4 Results

B.4.1 Local patterns of diversity

We first analyzed diversity on a vertex-by-vertex basis to understand the effect of network
structure on local diversity. For all vertices we counted the number of speciation events, local
richness at the end of the simulation, local and global extinctions events, and various measures
of centrality. We compared metacommunities with 100 000 individuals divided into c local
communities and used a threshold value of q to generate the random geometric network (see
Fig. B.1). Species richness and the number of speciation events show strong positive correla-
tions when c is small and strong negative correlations when c is large (Fig. B.2). An interesting
trade-off occurs : communities that are more connected (high c) can host more species, which
means more opportunities for speciation. On the other hand, they host more species because of
greater dispersal, and greater dispersal means greater inhibiting gene flow for speciation (Fig.
B.3). When c is fairly large, the communities with a greater number of links support more spe-
cies than isolated communities, but the effect of gene slow is so strong that speciation is very
difficult. Furthermore, because so many individuals come from migration events, it becomes
hard for local populations to diverge enough to speciate. This result is coherent with known pat-
terns of diversity and speciation (Diamond, 1972 ; Gavrilets et Losos, 2009). However, when
c is small the total number of links, even in well-connected communities, is also small. The
inhibiting effect of gene flow is still present but communities with more connections and more
species will still witness more speciation events (Fig.B.4).

Then we investigated the relationship between local community diversity and several properties
of the spatial network. In particular, we studied how different measures of centrality could be
used to predict local richness and speciation events. The degree of a vertex (local community)
is the crudest measure of centrality. While it gives information about how many communities
are linked to the community of interest, it says nothing about the influence of the network’s
structure. Still, for all metacommunity sizes and all values of q, the degree shows the highest
correlation with species richness and speciation (Fig. B.5). The correlation between the degree
and species richness is close to one in many cases and performs poorly only for very high c and
q, where the number of species in the metacommunity becomes small. Closeness centrality is a
measure of the average geodesic distance (the length of the shortest path in the network (Dijks-
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tra, 1959)) between a vertex and all other vertices. Closeness centrality’s ability to predict local
diversity is thus related to the metacommunity size and global structure. Closeness centrality
is a worse predictor than the degree and achieves better result for small c (Fig. B.1). Closeness
centrality is affected by all vertices, even those that are very far and unlikely to have any impact
on the vertex. This is why closeness centrality performs better for small metacommunities : all
communities are close so the measure cannot be biased by distant vertices. Eigen-centrality is
an interesting alternative to the degree and closeness centrality. Unlike the first, it is affected
by more than just neighbors but unlike the second far off vertices will have little effect on it.
Overall, eigen-centrality is very similar to the degree but perform a little worst on larger com-
munities, again showing the disproportionate effect of neighbors and the small effect of the
overall structure of the network (Fig. B.1). Unsurprisingly, betweenness centrality performs
rather poorly compared to the other measures (Table B.1). Local extinction is always strongly
correlated with diversity (r > 0.80) and global extinction is strongly correlated with speciation
(r > 0.80). Patterns of local and global extinctions closely follow the patterns of local richness
and speciation, with a strong positive relationship with small c and a transition to a negative
relationship as c increases.

B.4.2 Global patterns of diversity

We investigated the effect of the global network features such as the number of local communi-
ties c and the radius q used to generate the network(which determines the average number links
between communities). We find that global species richness is strongly affected by both c and q
(Fig. B.5). For low values of c, diversity increases slightly with q. However, q strongly reduces
diversity for communities with high c. Because the dynamics is neutral and local communities
with n = 125 can only support 800 individuals, a population is much less likely to stay long
enough in a local community to undergo speciation. For c = 5 the species richness is roughly
unaffected by q, increasing from 158 species with q = 0.25 to 182 with q = 0.75. This is
not surprising since the average number of links is about equal (3.2 for q = 0.25 and 4.2 for
q = 0.75). The effect become more pronounced as c grows larger. For c = 25 the average
number of links increases markedly from 5 (q = 0.25) to 20 (q = 0.75), and species richness
decreases from 186 to 125. The effect of q becomes evident at c = 125, where the average
number of links jump from 20 to 100, and diversity crashes from 100 to only 4 species. In
other words, in a neutral model with allopatric/parapatric speciation, the dispersal range will
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have a strong inhibiting effect on speciation especially if the metacommunities are divided into
a great number of communities can only support a few individuals. These results highlight the
complex role played by connectivity on diversity when the effect of gene flow on speciation
is considered. On one hand connectivity inhibits speciation by increasing gene flow. On the
other hand it promotes diversity by increasing dispersal. We show that an increase in connecti-
vity will increase diversity if the metacommunity is divided into a few large communities and
inhibit diversity as the number of communities increases.

We then took a closer look at the relationship between dispersal (threshold radius q) and diver-
sity when the number of communities c is held constant. q increases the number of links and
thus dispersal but its impact on the number of links depends on the number of communities
and the formation of clusters. We studied the effect of dispersal on diversity by comparing
metacommunities with the same number of communities c and generated with the same thre-
shold value q. Because the networks are randomly generated, the average number of links per
community will vary even if c and q are fixed. The correlation between the number of links
and global diversity varies greatly. For example, with n = 5 the correlation is very strong (r
= 0.85), regardless of the value of q : more links equals higher diversity. On the other hand
the correlation is almost nonexistent for c = 125. As the metacommunity grows larger, other
structural characteristics of networks play a greater role on diversity than the total number of
links. Lastly, we explored the effect of clustering on species richness. Clustering is a measure
of the tendency of vertices to form groups. High clustering will provide more opportunities of
dispersal but also decreases the number of isolated vertices. The correlation between the clus-
tering coefficient and species richness decreases with both c and q. The correlation is strongly
positive for c = 5 with r > 0.75 for all values of q. The correlation decreased sharply with q
for c = 10 : from 0.60 to 0.32 and -0.36. With c = 25 the correlation coefficient is -0.11, -0.30,
-0.58 for q = 0.25, 0.50, 0.75, respectively. It shows that, as c and q grows, clustering will tend
to inhibit speciation enough to have a negative effect on diversity.
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Figure B.2 – .
The relationship between degree centrality and local diversity/speciation events for local
communities in metacommunities with 5 vertices (a), 10 vertices (b), 25 vertices (c) and
50 vertices (d). Species richness, the number of speciation events, and the vertex degree are all
normalized. The points represent the vertices (local communities) at the end of the simulation
and shows how much local richness and how many speciation events were found according to
their degree centrality. The average degree is higher as the number of vertices in the metacom-
munity, denoted c, increases. In practice it means higher dispersal as c increases. When the
number of vertices is small, speciation and richness are positively correlated. With c = 10 we
observe the transition between a positive relationship to a negative one (b). It is the only plot
where communities with an intermediate degree have the most speciation events. For larger
metacommunities with higher dispersal (c & d), there is a clear negative relationship between
speciation and local diversity. The models of Hubbell and Economo (Hubbell, 2001 ; Economo
et Keitt, 2008) use a constant speciation rate per individual, so a similar plot would yield a flat
line for speciation events (i.e. : it is unrelated to richness or dispersal). Selection was fixed at
s = 0.15 and we used the threshold value q = 0.50 to generate the random networks. We ran
32 simulations for each figure, leading to 32× c data points per figure.
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Figure B.3 – Local richness and diversity in networks of communities for two simulations. On top :
a simulation with 5 communities and at the bottom : a simulation with 25 communities. On the left, com-
munities change from black to green as local richness increases and on the right, communities change
from black to blue as the number of speciation events increases. For the metacommunity composed of
5 communities, richness and speciation events are strongly correlated. The more connected communi-
ties support more species and more speciation events. With 25 communities the opposite is true. The
communities with the most speciation events are far from the geodesic center, where local richness is
higher.
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Figure B.4 – The relationship between speciation and diversity with an increasing number of local
communities (total number of individuals in the metacommunity fixed at 100 000). Between c = 3
and c = 8, there is a positive relationship between them. As c approaches 10, the correlation drops and
quickly becomes negative. It reaches a peak around c = 25, where the correlation starts to grow weaker.
This relationship shows the various forces at play in our model and is a direct consequence of the
“speciation-as-a-population-process” framework. Because the number of links per community is low
with c < 10, communities with more species simply have more opportunities for speciation without
being crushed by inhibiting gene flow. As c increases, a larger number of individuals are migrants.
They not only inhibit speciation because of the gene flow but also take precious space. Populations
fluctuate randomly and eventually become extinct. As the size of local communities grows smaller and
the number of migrants grow, the chance for a population to stay in the community and accumulate
diversity is severely reduced. These simulations used a within-species selection coefficient of s = 0.15
for the mutations leading to speciation. We tried different values s = {0.05, 0.10, 0.20, 0.30, 0.40} and
found similar patterns. With a purely neutral model (s = 0.0), the metacommunities could not support
more than a few species (Desjardins-Proulx et Gravel, 2012).
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Figure B.5 – Relationship between global species richness and number of vertices c for various
threshold distances q. Global diversity increases with higher connectivity and dispersal for 5 and 10
local communities. The effect of dispersal on global diversity changes with c. With 25 communities,
richness at q = 0.75 is only 60% of the diversity with q = 0.25. With 50 communities, it is 30%, and
with 125 communities : only 4%. Communities get smaller with increasing c and have more opportu-
nities to form links. Thus, a much larger proportion of individual are migrants, making speciation very
hard to achieve. Several metacommunities with c = 125 and q = 0.75 had a single species at the end of
simulations.
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Table B.1 – The relationship between different types of spatial centality and speciation/diversity
rates.

With q = 0.25 5 10 25 50 125
Degree-Speciation 0.87 0.64 -0.49 -0.97 -0.94
Degree-Local diversity 0.97 0.95 0.92 0.88 0.78
Eigen-Speciation 0.87 0.53 -0.52 -0.76 -0.73
Eigen-Local diversity 0.97 0.84 0.69 0.68 0.63
Closeness-Speciation 0.81 0.53 -0.28 -0.73 -0.82
Closeness-Local diversity 0.95 0.85 0.57 0.73 0.71
Comm.-Speciation 0.81 0.59 -0.56 -0.80 -0.65
Comm.-Local diversity 0.92 0.90 0.82 0.69 0.57
Between.-Speciation 0.68 0.38 -0.22 -0.40 -0.57
Between.-Local diversity 0.82 0.70 0.38 0.41 0.53
With q = 0.50 5 10 25 50 125
Degree-Speciation 0.85 -0.56 -0.98 -0.95 -0.95
Degree-Local diversity 0.96 0.96 0.90 0.82 0.60
Eigen-Speciation 0.88 -0.50 -0.93 -0.93 -0.94
Eigen-Local diversity 0.95 0.92 0.86 0.79 0.59
Closeness-Speciation 0.79 -0.56 -0.95 -0.93 -0.94
Closeness-Local diversity 0.93 0.93 0.88 0.81 0.59
Comm.-Speciation 0.86 -0.56 -0.91 -0.88 -0.90
Comm.-Local diversity 0.95 0.92 0.83 0.76 0.56
Between.-Speciation 0.54 -0.57 -0.67 -0.74 -0.79
Between.-Local diversity 0.74 0.68 0.62 0.66 0.49
With q = 0.75 5 10 25 50 125
Degree-Speciation 0.51 -0.93 -0.95 -0.92 -0.85
Degree-Local diversity 0.94 0.90 0.77 0.59 0.11
Eigen-Speciation 0.56 -0.90 -0.95 -0.92 -0.86
Eigen-Local diversity 0.93 0.89 0.76 0.55 0.11
Closeness-Speciation 0.47 -0.94 -0.93 -0.87 -0.82
Closeness-Local diversity 0.94 0.89 0.75 0.54 0.11
Comm.-Speciation 0.44 -0.91 -0.94 -0.90 -0.84
Comm.-Local diversity 0.75 0.89 0.75 0.54 0.10
Between.-Speciation 0.29 -0.81 -0.80 -0.81 -0.73
Between.-Local diversity 0.84 0.70 0.64 0.48 0.10

Correlations between centrality measures and patterns of local richness. Degree-centrality outperforms
closeness centrality for all combinations of q and c, degree-centrality outperforms eigen-centrality in
28 out of 30 cases, and eigen-centrality beats closeness centrality in about the same number of cases.
Betweenness centrality has the worst performance. The results for c = 125 and q = 0.75 might seem
puzzling but is actually simple to explainnat : at this point the metacommunity supports only a few
species, often only one, because of small local community size and the crushing effect of gene flow. In
short, the measures of centrality are bad at predicting diversity and speciation because there is very little
of either.
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B.5 Discussion

Community ecology is about drift, dispersal, speciation and selection (Vellend, 2010). Selec-
tion is a central component of community dynamics (Gravel et al., 2006) but if we want to un-
derstand its impact on spatial patterns of biodiversity we first need a solid reference template
(Rosindell et al., 2011). Neutral models reveal the spatial structure of biodiversity expected
from the combined effects of dispersal, drift, and speciation in the absence of selection. Des-
pite its simplicity, our model generates clear predictions on the relationship between richness
and speciation. It explainnats patterns of interest to both community ecologists and evolutio-
nary biologists by integrating speciation as a population process. Our model predicts that isola-
tion reduces diversity, a well-known pattern in biogeography (Diamond, 1972). It also predicts
that isolation will stimulate speciation, a well-known pattern in speciation theory (Gavrilets et
Losos, 2009). Rosindell and Phillimore used a very similar model and also found a negative re-
lationship between speciation and local richness (Rosindell et Phillimore, 2011). The twist, in
our model, is that this pattern is only true in some cases. When we model the metacommunity
as a network with only a few communities, the most connected communities are both more
diverse and witness more speciation events. In these cases, more diversity means more oppor-
tunities for speciation and the inhibiting effect of gene flow is not strong enough to counter
the greater number of opportunities. Our models reveals a complex relationship between local
richness, speciation, and isolation : one in which the spatial organization of communities and
the strength of dispersal have the power to influence the speciation-richness relationship.

The neutral theory is often seen as weak when it comes to predictions related to speciation
(Etienne et al., 2007 ; Etienne et Haegeman, 2011). In both Hubbell’s model (Hubbell, 2001)
and its spatially-explicit counterpart (Economo et Keitt, 2008 ; 2010), the rate of speciation is
directly related to the number of individuals. Thus, it is not affected in one way or another
by gene flow or the structure of the metacommunity. It is constant in a given community, re-
gardless of the number of species present or the strength of dispersal. Our framework solves
this problem by replacing the “speciation-as-a-mutation” approach with a speciation model
based on populations (Desjardins-Proulx et Gravel, 2012). Our model predicts a negative re-
lationship between diversity and speciation but it also predicts a positive relationship in some
cases : namely when dispersal is weak. The exact relationship between diversity and specia-
tion is complicated and not very well understood, especially from a mechanistic perspective.
Emerson and Kolm did found a positive relationship between diversity and endemism, which
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could be interpreted as a rough index of speciation (Emerson et Kolm, 2005). They argue that
diversity begets diversity : more species means more opportunities for other species to invade
or speciate (Erwin, 2005). Our model does predict a positive relationship in some cases but
for different reasons. Cadena et al. and Witt and Maliakal-Witt (Cadena et al., 2005 ; Witt et
Maliakal-Witt, 2007) suggest that species richness and endemism are positively correlated be-
cause of a mutual dependence on life spans (Cadena et al., 2005). This is very similar to our
model’s prediction. When the metacommunity is divided into a few communities of large size,
the gene flow is not strong enough to inhibit speciation and the greater local richness will offer
more opportunities for speciation. The interesting twist in our framework is that this relation-
ship will be reversed with greater gene flow and smaller communities. This prediction could be
tested by comparing patterns of speciation and diversity in sets of islands of various sizes and
connectivity.

The study’s main limitation is arguably the neutral assumption. Our previous work suggests
that neutral ecology is hard to reconcile with parapatric and allopatric speciation (Desjardins-
Proulx et Gravel, 2012), requiring an uncomfortable compromise in the form of ecological
equivalence at the species level and within-species selection. Some questions related to the re-
lationship between speciation and richness will require the integration of adaptation and niches.
For example, Emerson and Kolm’s hypothesis that diversity stimulates speciation can only be
tested in a trophic model (Gravel et al., 2011). Also, adaptive radiations and ecological spe-
ciation can easily define communities (Schluter, 2000 ; Gillespie, 2004) and, because of their
explosive nature, they might be more sensitive to the overall structure of the metacommunity.
Some network structures are known to inhibit selection while others will stimulate it (Nowak,
2006). In our model the degree is a better predictor of diversity and speciation than the more
sophisticated measures of centrality. The degree does not take into account the overall structure
of the metacommunity, it is only determined by the number of neighbors. The fact that it is a
better predictor than eigen-centrality and closeness centrality, which are both influenced by the
overall structure of the community, shows that the behavior of our model is mostly driven by
small scale patterns. It remains to be seen if this result is an artifact of ecological equivalence
or a feature of real communities.

Despite the limitations of neutrality, it provides a simple null hypothesis and could serve as a
point of comparison with more realistic models of speciation in space. Theoretical community
ecologists have mostly ignored the importance of space to model speciation. While recent
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developments have increased the visibility of speciation in community ecology, its treatment is
often disconnected from speciation theory, making it difficult to unify ecology and evolution.
Our approach to speciation is very simple but it captures many of the most important aspects
of speciation : it is a population process often inhibited by gene flow and it cannot be treated
as a simple mutation. We hope to have showed how network theory, a promising framework to
study patterns of diversity in space (Dale et Fortin, 2010), can be used to integrate speciation in
a more realistic matter and create a bridge between community ecology and speciation theory.

B.6 References

Berryman, A. A. (2002). Population : a central concept for ecology? Oikos 97, 439–442.

Bolnick, D. I., Fitzpatrick, B. M. (2007). Sympatric speciation : models and empirical evidence.
Annual Review of Ecology, Evolution, and Systematics 38, 459–487.

Cadena, C. D., Ricklefs, R. E., Jiménez, I., Bermingham, E. (2005). Is speciation driven by
species diversity? Nature 438, E1–E2.

Caldarelli, G., Higgs, P. G., McKane, A. J. (1998). Modelling coevolution in multispecies com-
munities. Journal of Theoretical Biology 193, 345–358.

Coyne, J. A., Orr, H. A. (2004). Speciation. Sinauer Associates.

Crow, J. F., Kimura, M. (1970). Introduction to Population Genetics Theory. Harper & Row
Publishers.

Dale, M. R. T., Fortin, M.-J. (2010). From graphs to spatial graphs. Annual Review of Ecology,
Evolution, and Systematics 41, 21–38.

Desjardins-Proulx, P., Gravel, D. (2012). How likely is speciation in neutral ecology? The
American Naturalist 179, 137–144.

Diamond, J. M. (1972). Biogeographic kinetics - estimation of relaxation-times for avifaunas
of southwest pacific islands. Proc. Natl. Acad. Sci. USA 69, 3199–3203.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numer. Math. 1,
269–271.

146



Drake, J. W., Charlesworth, B., Charlesworth, D., Crow, J. F. (1998). Rates of spontaneous
mutation. Genetics 148, 1667–1686.

Drossel, B., Higgs, P. G., McKane, A. J. (2001). The influence of predator-prey population
dynamics on the long-term evolution of food web structure. Journal of Theoretical Biology
208, 91–107.

Economo, E. P., Keitt, T. H. (2008). Species diversity in neutral metacommunities : a network
approach. Ecology Letters 11, 52–62.

Economo, E. P., Keitt, T. H. (2010). Network isolation and local diversity in neutral metacom-
munities. Oikos 10, 1–9.

Emerson, B. C., Kolm, N. (2005). Species diversity can drive speciation. Nature 434, 1015–
1017.

Epperson, B. K., McRae, B. H., Scribner, K., Cushman, S. A., Rosenberg, M. S., Fortin, M. J.,
James, P. M. A., Murphy, M., Manel, S., Legendre, P., Dale, M. R. T. (2010). Utility of
computer simulations in landscape genetics. Molecular Ecology 19, 3549–3564.

Erwin, D. (2005). Seeds of diversity. Science 308, 1752–1753.

Etienne, R. S., Apol, M. E. F., Olf, H., Weissing, F. J. (2007). Modes of speciation and the
neutral theory of biodiversity. Oikos 116, 241–258.

Etienne, R. S., Haegeman, B. (2011). The neutral theory of biodiversity with random fission
speciation. Theoretical Ecology 4, 87–109.

Fitzpatrick, B. M., Fordyce, J. A., Gavrilets, S. (2008). What, if anything, is sympatric specia-
tion? Journal of Evolutionary Biology 21, 1452–1459.

Gavrilets, S. (2004). Fitness Landscapes and the Origin of Species. Princeton University Press.

Gavrilets, S., Losos, J. B. (2009). Adaptive radiation : contrasting theory with data. Science
323, 732–737.

Gillespie, R. (2004). Community assembly through adaptive radiation in Hawaiian spiders.
Science 303, 356–359.

Gravel, D., Canham, C. D., Beaudet, M., Messier, C. (2006). Reconciling niche and neutrality :
The continuum hypothesis. Ecology Letters 9, 399–409.

147



Gravel, D., Massol, F., Canard, E., Mouillot, D., Mouquet, N. (2011). Trophic theory of island
biogeography. Ecology Letters 14, 1010–1016.

Hagberg, A., Schult, D., Swart, P. (2008). Exploring network structure, dynamics, and function
using NetworkX. In : Varoquaux, G., Vaught, T., Millman, J. (Eds.), Proceedings of the 7th
Python in Science Conference (SciPy2008). Pasadena, CA USA, pp. 11–15.

Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Vol. 32
of Monographs in Population Biology. Princeton University Press.

Johannesson, K. (2010). Are we analyzing speciation without prejudice? Ann. N.Y. Acad. Sci.
1206, 143–149.

Kobayashi, K. (1994). On the spatial graph. Kodai Mathematical Journal 17, 511–517.

Kopp, M. (2010). Speciation and the neutral theory of biodiversity : modes of speciation affect
patterns of biodiversity in neutral communities. Bioessays 32, 564–570.

MacArthur, R. H., Wilson, E. O. (1967). The theory of island biogeography. Princeton Univer-
sity Press.

Mayr, E. (1942). Systematics and the origin of species. Columbia University Press, New York.

Melián, C., Alonso, D., Vázquez, D. P., Regetz, J., Allesina, S. (2010). Frequency-dependent
selection predicts patterns of radiations and biodiversity. PLOS Computational Biology 6,
e1000892.

Newman, M. (2010). Networks : An Introduction. Oxford University Press.

Nosil, P. (2008). Speciation with gene flow could be common. Molecular Ecology 17, 2103–
2106.

Nowak, M. A. (2006). Evolutionary Dynamics. Harvard University Press.

Penrose, M. (2003). Random Geometric Graphs. Oxford University Press.

Rice, S. H. (2009). A stochastic version of the Price equation reveals the interplay of determi-
nistic and stochastic processes in evolution. BMC Evolutionary Biology 8, 262.

Rosindell, J. L., Cornell, S. J., Hubbell, S. P., Etienne, R. S. (2010). Protracted speciation
revitalizes the neutral theory of biodiversity. Ecology Letters 13, 716–727.

148



Rosindell, J. L., Hubbell, S. P., Etienne, R. S. (2011). The unified neutral theory of biodiversity
and biogeography at age ten. Trends in Ecology and Evolution 26, 340–348.

Rosindell, J. L., Phillimore, A. B. (2011). A unified model of island biogeography sheds light
on the zone of radiation. Ecology Letters 14, 552–560.

Schluter, D. (2000). The ecology of adaptive radiation. Oxford University Press.

Sedgewick, R. (2002). Algorithms in C Part 5 : Graph Algorithms. Addison-Wesley.

Shinjo, R., Taniyama, K. (2003). Homology classification of spatial graphs by linking numbers
and Simon invariants. Topology and its Applications 134, 53–67.

Vellend, M. (2003). Island biogeography of genes and species. The American Naturalist 162,
358–365.

Vellend, M. (2010). Conceptual synthesis in community ecology. The Quarterly Review of
Biology 8, 183–206.

Vellend, M., Orrock, J. L. (2009). Ecological and genetic models of diversity. In : Losos, J. B.,
Ricklefs, R. E. (Eds.), The Theory of Island Biogeography Revisited. Princeton University
Press, pp. 439–462.

Wallace, A. R. (1855). On the law which has regulated the introduction of new species. Ann.
Magazine Nat. Hist. Ser. 2 16, 184–196.

Wennekes, P. L., Rosindell, J. L., Etienne, R. S. (2012). The neutral – niche debate : A philo-
sophical perspective. Acta Biotheoretica .

Witt, C. C., Maliakal-Witt, S. (2007). Why are diversity and endemism linked on islands?
Ecography 30, 331–333.

149



150



ANNEXE C

A SIMPLE MODEL TO STUDY PHYLOGEOGRAPHIES AND SPECIATION
PATTERNS IN SPACE

Abstract

In this working paper, we present a simple theoretical framework based on network theory
to study how speciation, the process by which new species appear, shapes spatial patterns
of diversity. We show that this framework can be expanded to account for different types of
networks and interactions, and incorporates different modes of speciation.

C.1 Motivation

The peculiar spatial relationship between closely related species was among the first patterns
of diversity used to infer evolution. As early as the 1850s, Alfred Wallace noted that the closest
relatives were often observed in adjacent yet non-overlapping regions (Wallace, 1852 ; 1855).
Wagner and Jordan later relied on a similar observation to argue for the importance of geo-
graphy and isolation in the formation of new species (Coyne et Orr, 2004). And finally, Mayr
developed a theory of allopatric speciation, a cornerstone of the modern synthesis, again using
similar observations (Mayr, 1942 ; 1963). The relationship between phylogeny and geography
has shaped our understanding of the origin of species (Coyne et Orr, 2004 ; Losos, 2009). It is
also crucial to the development of a unified theory of community assembly (Rice, 2009 ; Mou-
quet et al., 2012). Yet, theory remains mostly silent about the subject. Few models can generate
phylogeographies, and none can be used to study the effect of complex spatial structures (Bar-
raclough et Vogler, 2000). This is surprising, not only because of the theoretical importance of
phylogeography, but also because several phylogenetic methods use geography to infer patterns
of speciation (Lynch, 1989 ; Barraclough et Vogler, 2000 ; Losos et Glor, 2003).
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Part of the problem lies in the limitations of traditional mathematical methods : analytical so-
lutions to spatially-explicit models are often only available for the most trivial cases (Epperson
et al., 2010). Thus, we are left with no theoretical framework to study the patterns noted by
Wallace, Wagner, and Mayr. In this document, we describe a very simple algorithm to gene-
rate phylogeographies in spatial networks. Our approach is inspired by metapopulation theory
(Levine, 1969 ; Hanski, 1999 ; 2009) although the spatio-temporal scale is different : we’re in-
terested in the dynamics of populations at the regional scale during long periods. The model
will be used to study phylogeographies in various spatial contexts and to develop better tools
to understand the relationship between phylogeny and geography.

We use the term “phylogeography” in the general sense : it is the union of phylogenetics with
geography. Our approach emphasizes how spatial patterns of speciation shape biodiversity. It
cannot be used to study within-species variations, a major focus of phylogeography (Freeland
et al., 2011). This is more consistent with the field known as comparative phylogeography.

C.2 Modeling the landscape

We model the landscape as a spatial network of communities. A network is a flexible mathe-
matical object defined as a set of vertices V and a set of edges E, which are used to connect
the vertices (Newman, 2010). Here, the vertices represent communities and the edges denote
migration (Economo et Keitt, 2008 ; 2010 ; Desjardins-Proulx et Gravel, 2012b ;a). Spatial net-
works are simply networks in which vertices are embedded in a known topological space (Ko-
bayashi, 1994), in our case a two-dimensional map. Thus, each community is represented by
a vertex in the network and to a position on a map. Networks are increasingly common in
ecology as they can be used to model complex structures and quantify the effect of clustering,
connectivity, and isolation (Minor et Urban, 2007 ; 2008 ; Urban et al., 2009 ; Dale et Fortin,
2010). In particular, isolation is the most important factor in many speciation events (Coyne et
Orr, 2004), making networks well-suited to study patterns of speciation in different contexts
(Desjardins-Proulx et Gravel, 2012b ;a). The spatial network can be built in two ways. First,
random geometric networks can be generated by randomly placing the vertices on a surface,
normally the unit square, and linking all communities within some threshold distance (Penrose,
2003). This technique is used to test network algorithms applied to maps (Sedgewick, 2001).
Second, a real map can be used as a template for a spatial network (Minor et Urban, 2007 ;
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Figure C.1 – How the Wagner model handles speciation in space. Top : a phylogeography with
four species (yellow, blue, green, pink). The populations are distributed in a spatial network, with each
community (circles) hosting populations from 0 or more species. Empty communities are white and
a gradient is used for communities with more than one species. The communities are connected by
migration (thin black lines). Bottom : a speciation event. The pink species is divided in three groups of
populations. Its leftmost group undergoes speciation and a connected subgroup now belongs to a new
species (in red).

Dale et Fortin, 2010). This method offers the opportunity to generate predictions specific to a
given spatial structure, and test the predictions of our algorithm against empirical data.
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C.3 The model

A species is divided in populations which are distributed in a network of communities. A
species is either present or absent in a community, we do not keep track of the number of
individuals. Occupancy thus follows the standard colonization/extinction dynamics of meta-
population theory (Hanski, 1999). For each time step, all populations have the opportunity to
colonize adjacent communities (the vertices connected by an edge in the network). The proba-
bility of a successful colonization of community x by species i is

c(i, x) = cmax exp

⎛⎝−ℵ ∑
j∈{Sx\i}

δ−1
ij

⎞⎠ , (C.1)

with {Sx\ i} being the set of populations present in community x minus i, δij is the time since
species i and j’s most recent common ancestor, cmax is the highest possible colonization rate
and ℵ a positive constant (with ℵ ≥ 0). ℵ describes the decline of the intensity of interactions
with phylogenetic divergence. In short, a higher ℵ makes it difficult for closely related species
to coexist. cix is a very simple function derived from exponential decay. It is based on an
old hypothesis by Darwin : closely related species are more likely to compete. It has recently
received experimental support (Jiang et al., 2010 ; Violle et al., 2005). A strong assumption of
trait conservatism underlies the model (Losos, 2008). At each time step, all populations have
the same probability e of extinction. Speciation occurs in groups of populations. We define a
group as a set of connected populations from the same species (Fig. C.1). Each group has a
probability v of undergoing speciation. When speciation occurs in a group, a random subset
of [1, n] connected populations will speciate, with n being the number of populations in the
original group (Fig. C.1).
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C.4 Variations

The basic model can easily be extended to account for various types of interactions. In this
section we briefly discuss a few extensions.

C.4.1 Allopatric speciation

Our model is mostly parapatric, with strictly allopatric speciation occurring only with proba-
bility 1/n, with n being the size of the group to speciate. An alternative is to always force
allopatric speciation by making the entire group speciate.

C.4.2 Sympatric speciation?

With few solid cases of sympatric speciation, and many of them involving important allopa-
tric/parapatric phases (Coyne et Orr, 2004 ; Bolnick et Fitzpatrick, 2007 ; Fitzpatrick et al.,
2008), it is hard to decide how to do a phenomenological sympatric speciation model. Further-
more, the assumption of strong niche conservatism would be hard to maintain, as niche overlap
between diverging populations is one of the hardest challenge for sympatric speciation. Never-
theless, if enough sympatric speciation events can be analyzed, our model could be modified
to allow sympatric, parapatric, and allopatric speciation.

C.4.3 Variable α

ℵ is fixed in the original model, but it could vary in time and space. For example, smaller
regions could have higher ℵ to account for a lower carrying capacity.

C.4.4 Variable extinction rates

The extinction rate could have the same form as the colonization rate and be affected by closely
related species.
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C.4.5 Variables v

The speciation rate could decrease with higher diversity (more niches are filled) or increase
(“diversity begets diversity”) (Erwin, 2005).

C.4.6 Growing food webs

The basic idea of using spatial networks and groups of connected populations for speciation
could be used to model how complex food webs grow with speciation events. This integra-
tion would, however, require many new assumptions and a more sophisticated model for the
colonization and extinction rates.

Integrating food web dynamics lead to some difficulties. For example, a trophic model would
involve very different species with potentially different rates of dispersal. The threshold value
r used to determine the realized links in the spatial network would have to be different for
each group of species. For example, group-specific threshold values could be linked to the
niche value (i.e. : smaller species have lower dispersal ranges). A connected random geometric
networks could then be generated with the lowest threshold value, ensuring that all networks
are fully connected.

C.4.7 Positive interactions

Positive interactions between closely related species are also possible, for example in plants.
This variation can be achieved by making cix increase when related species are present.

C.5 Implementation

An open-source implementation is available on github : https://github.com/PhDP/wagner.
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