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RÉSUMÉ 

Radiolyse de l'eau induite par les ions de recul de la réaction nucléaire 10B(n,α)7Li: 

calcul des rendements des espèces primaires jusqu'à 350 °C et génération in situ de 

pics d’acidité ultra-rapides transitoires le long des trajectoires de rayonnement 

Muhammad Mainul ISLAM 

Département de médecine nucléaire et radiobiologie 

Mémoire présenté à la Faculté de médecine et des sciences de la santé en vue de l’obtention du 

diplôme de maître ès sciences (M.Sc.) en "sciences des radiations et imagerie biomédicale", Faculté 

de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada 

J1H 5N4 

La réaction nucléaire 10B(n,α)7Li de capture de neutrons par le bore est très importante pour 

l'industrie nucléaire ainsi que pour la radiobiologie, car la thérapie par capture neutronique par le 

bore est utilisée dans des radiothérapies biochimiques ciblées pour plusieurs traitements 

anticancéreux. L'acide borique enrichi en 10B est utilisé dans les réacteurs nucléaires pour contrôler 

le flux de neutrons et la réactivité dans le cœur. Cependant, les noyaux de recul (particules α de 

1,47 MeV et ions 7Li3+ de 0,84 MeV) résultant de la réaction 10B(n,α)7Li agissent comme sources 

de rayonnement à transfert d'énergie linéaire élevé (TEL) compliquant ainsi le processus 

radiolytique à l'intérieur du réacteur. La simulation Monte-Carlo est utilisée dans ce travail pour 

prédire les rendements (valeurs G) des radicaux et des produits moléculaires dus à la radiolyse de 

l'eau par la réaction 10B(n,α)7Li en fonction de la température de 25 à 350 °C. Nos calculs montrent 

des rendements plus bas en radicaux libres et plus élevés en produits moléculaires en comparaison 

avec un rayonnement de faible TEL (e.g., rayons γ de 60Co). Les résultats de nos simulations 

concordent bien avec les estimations expérimentales existantes à 20 et 289 °C. Cependant, 

l'inflexion prédite par certains auteurs dans les rendements moléculaires H2 et H2O2 au-dessus de 

~150 °C ne peut être confirmée dans la mesure où l’on adopte la constante de vitesse de la réaction 

(e−aq + e−aq) en solution neutre ou légèrement acide. De plus, dans cette étude, nous avons 

également calculé la concentration de H3O+ formé in situ le long des trajectoires du rayonnement en 

considérant un « modèle de trajectoire cylindrique » pour un rayonnement à fort TEL. Pour ces 

ions, le pH le long des trajectoires est proche de 0 jusqu'à ~100 ps, puis revient progressivement à 

un pH neutre (7) à ~0,1 ms. Cependant, dans l'eau cellulaire, le "pic d'acidité" demeure plus 

longtemps à cause de la faible mobilité du proton dans ce milieu, ce qui soulève plusieurs questions 

en relation avec la boroneutrothérapie et, plus généralement, l’hadronthérapie. 

Mots-clés: Radiolyse de l'eau, réaction de capture de neutrons par le bore, ions hélium et lithium  

de recul, transfert d'énergie linéaire (TEL), température, simulations Monte-Carlo, rendements 

radicalaires et moléculaires, pH, effet de pic acide dans les trajectoires en fonction du temps, 

réacteurs nucléaires, boroneutrothérapie, hadronthérapie. 
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ABSTRACT 

Radiolysis of water induced by the recoil ions of the 10B(n,)7Li nuclear reaction: 

Calculation of the yields of primary species up to 350 °C and in situ generation of 

ultrafast transient “acid spikes” along the radiation tracks 

Muhammad Mainul ISLAM 

Département de médecine nucléaire et radiobiologie 

Thesis presented at the Faculty of Medicine and Health Sciences in order to obtain the Master of 

Sciences (M.Sc.) degree in “Radiation Sciences and Biomedical Imaging”, Faculty of Medicine and 

Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4 

 

The 10B(n,α)7Li nuclear reaction is very important for the nuclear industry as well as in 

radiobiology, as boron neutron capture therapy (BNCT) is used in biochemically targeted 

radiotherapies for several malignant cancer treatments. Boric acid enriched with 10B is used 

in nuclear reactors to control the neutron flux and the reactivity in the core. However, 

recoil nuclei (1.47 MeV -particles and 0.84 MeV 7Li3+ ions) resulting from this reaction 

act as sources of high linear energy transfer (LET) radiation, thereby complicating the 

radiolytic processes inside the reactor. Monte Carlo simulations are used to predict the 

yields (G-values) of the radicals and molecular products due to the radiolysis of water by 

the 10B(n,)7Li recoil ions as a function of temperature from 25 to 350 °C. Our computed 

yields show lower yields of free radicals and higher yields of molecular products in 

comparison with low-LET radiation (60Co γ-rays). Our simulation results agree well with 

existing experimental estimates at 20 and 289 °C. However, the non-monotonic downward 

inflection of the yields of molecular H2 and H2O2 above ~150 °C can be confirmed if we 

could get the rate constant of the (e−aq + e−aq) reaction measured under neutral or slightly 

acidic conditions. Moreover, in this study, we also calculated the in situ concentrations of 

H3O
+ and the corresponding pH values along the radiation tracks using a “cylindrical track 

model” characteristic of high-LET radiation. For both considered recoil ions, the pH along 

the tracks is near zero up to ~100 ps, after which it progressively returns to neutrality at 

~0.1 ms. However, in cellular water, this “acid spike” retains for a longer period of time 

due to the slower diffusion of free protons in this medium, a result that may have several 

implications in BNCT and, more generally, in the overall field of hadrontherapy. 

Keywords: Water radiolysis, boron neutron capture reaction, He and Li recoil ions, linear energy 

transfer (LET), temperature, Monte Carlo simulations, radical and molecular yields, pH, “acid 

spike” effect along the radiation tracks as a function of time, nuclear reactors, BNCT, 

hadrontherapy. 
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1. INTRODUCTION 

Radiation chemistry is a comprehensive field of study including many areas of 

research. The absorption of ionizing radiation in matter causes chemical changes in the 

matter, which is known as radiation chemistry. Radiation chemistry has been originated 

with the discovery of X-ray in 1895. In the following year, Becquerel discovered the 

radioactivity of uranium. Pierre Curie and Marie Curie conducted their research on 

different mineral salts to investigate the ‘radioactivity’ of the materials. However, the term 

‘radioactivity’ had been used by them first. They discovered polonium and radium, which 

are also highly radioactive materials (see, for example: FERRADINI and BENSASSON, 

1989; SPINKS and WOODS, 1990; ZIMBRICK, 2002). In 1901, Curie and Debierne 

observed the evolution of hydrogen and oxygen from water and from the solution of 

radium salts (CURIE and DEBIERNE, 1901; DEBIERNE, 1914). This study was the first 

trigger on the radiolysis of water by ionizing radiation. Sir William Ramsay and Frederick 

Soddy did a quantitative study of some simple radon-induced reactions (RAMSAY and 

SODDY, 1903). BRAGG (1907) analyzed the data obtained from Ramsay and Soddy and 

reported that the number of the water molecules decomposed was nearly equal to the 

number of ions produced in air by the radon employed. In 1912, Samuel Lind modeled 

several studies to determine the relation between the number of ion-pair formed by α-rays 

in a gas and the number of chemicals subjected to chemical changes (LIND, 1912, 1921).  

By the 1930’s, the advent of powerful X-ray equipment for medical and industrial 

purposes instigated the research in this field. X-ray is more penetrating and better suited to 

the irradiation of bulk liquid and solid samples. The development of X-ray equipment and 

use of radiation in the medical field also increased the interest of research in the effect of 

X-rays and other types of radiation on aqueous solution including biological materials. 

Hugo Fricke, another true pioneer in the field of radiation chemistry, published several 

systematic studies on the effect of radiation on aqueous solutions. A solution of ferrous 

ions in 0.4 M sulfuric acid at this time has now become a routine chemical means to 

measure the energy absorption in irradiated systems, constituting the so-called “Fricke 

dosimeter” (SPINKS and WOODS, 1990; FRICKE and HART, 1966). 
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A great impetus on research in radiochemistry occurred in 1942 with the advent of 

nuclear energy. The research asserts on the two important practical problems, namely, the 

study and prevention of undesired radiation effects or radiation damage, and the utilization 

of the tremendous amounts of radiation energy for beneficial purposes. The former 

includes the study of the damage of materials due to the radiation used in reactor 

construction and in the processing of radioactive fuels as well as the development of 

radiation resistant materials. Another extremely important area of research is the effect of 

radiation on living systems and utilization of radiation for medical treatment. To use the 

radiation energy for humans, it is very important to understand physical and chemical 

processes of the ionizing radiation in a material. Though the fundamental ionization 

processes are similar in all system, the properties of the medium such as phase, polarity, 

and composition can greatly affect the chemistry. In all systems, it is very important to 

understand what chemical species are formed, what the internal energies are, how they are 

dispersed spatially, and what reactions can occur (JONAH, 1995). The understanding of 

the simpler chemical systems is necessary for unraveling the complexity of events incurred 

by irradiation of living systems. 

A large fraction of the radiation chemistry studies has been concerned with the 

studies of water and aqueous solutions because of the unique importance of water in 

biological systems. Moreover, it also has a large number of practical applications, for 

instance, radiotherapy and diagnostic radiology, environmental management of radioactive 

waste materials, nuclear power generation and radiation effect in space (LAVERNE, 2004; 

MEESUNGNOEN and JAY-GERIN, 2011). 

All biological systems are very sensitive to ionizing radiation. Since living cells and 

tissue consist mainly of water (~70-80% by weight), the knowledge of the radiation 

chemistry of aqueous solutions is very critical to our understanding of the early stages in 

the complicated chain of radiobiological events that follows the passage of radiation. 

Therefore, we have to understand and clearly model the interaction of ionizing radiation 

with water and aqueous solutions and analyze the subsequent effect of the species produced 

due to ionizing radiation. Not only for biological aspect analysis but also to understand the 
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corrosion of materials and safety of the nuclear power reactors, such kind of studies are 

very relevant. 

The absorption of ionizing radiation by living cells can cause damage of different 

molecular structures of biological relevance, can disrupt the biochemical processes in the 

cell and can produce new reactive chemical species that may damage nucleic acids, 

proteins and lipids. The biological cell damage by ionizing radiation can be done by 

‘direct’ or ‘indirect’ effect. In case of the direct effect, the biological species absorb the 

energy from the ionizing radiation directly, which disrupts their initial constituents and 

functions. In the indirect effect, however, the water molecules in the cell absorb the 

ionizing radiation and produce several radiolytic products such e−aq, H•, •OH, HO2
•/O2

•−, 

H2, H2O2, O2, etc., which subsequently might act as triggers of signalling or other 

damaging effects (AZZAM et al., 2012; MUROYA et al., 2006; NATHAN, 2003; 

FORMAN et al., 2004; VEAL et al., 2007). 

Deoxyribonucleic acid (DNA) is a large molecule with a double helix structure 

which carries the genetic instructions and biological information of the living cells. DNA is 

a highly charged poly-anion that is hydrated with water molecules. Exposure to ionizing 

radiation causes a plethora of DNA damage, which is responsible for genomic instability, 

potential tumorigenesis, mutagenicity and finally, cell death. Different types of DNA 

damages and repair mechanisms have been reported and studied over the years. The main 

types of DNA damages are base damage, apyrimidinic/apurinic (AP) site, single-strand 

break (SSB), double-strand break (DSB), tandem lesions and various clustered lesions (von 

SONNTAG, 2006).  It is considered that the complex lesions or multiply damaged sites 

(MDS) composed of more than one lesion (base damage, base loss or strand break) within 

one or two helical turns of DNA, have significant biological effects, including mutation 

and cytotoxicity (CHAPMAN, 1980; NIKJOO et al., 1997; GOODHEAD, 1994; WARD, 

1994). The complexity and nature of DNA damages induced by ionizing radiation largely 

depend on the cellular phenotype, type of ionizing radiation, radiation quality or “linear 

energy transfer” (LET) (i.e., stopping power, -dE/dx), dose, and dose rate. For example, 

exposure to high-LET radiations (e.g., -particles, highly charged and high energy 

particles), the yield of locally multiply damaged (LMDS) sites in DNA is greatly increased 
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(KRYSTON, 2011; WARD, 1985; GEORGAKILAS, 2011). Moreover, radiation-induced 

generation of reactive oxygen (ROS) and nitrogen species (RNS) may spread from targeted 

cells to non-targeted bystander cells through intercellular communication mechanism. 

More importantly, mitochondria are the richest source of ROS. The premature leakage of 

electrons reduces O2 to produce superoxide radicals (O2
•). Radiation-induced ROS/RNS 

production by mitochondria plays multiple roles in signaling cascades, mediates apoptosis, 

mutation of mitochondrial DNA, autophagy and propagation of non-targeted responses 

(PETKAU, 1987; HEI et al., 2011, PRISE, 2009; WERNER and WERB, 2002; 

MALAKHOVA et al., 2005; AZZAM et al., 2012). The research in radiobiology is very 

important to improve treatment and imaging procedures. The research in this domain also 

opens a new horizon to early detect cancer cells and specifically treat them. 

 

 

 

 

 

 

 

Fig. 1.1:  Simplest representation of the mode of action (direct and indirect) of 

radiation on a cell. Absorption of ionizing radiation may damage the cell 

directly attacking the DNA or producing the radiolysis products of water or 

perturbing the function of the mitochondria. From AZZAM et al. (2012). 

Boron-10 is one of the stable isotopes of boron with a natural abundance of ~20%. 

It is known to exhibit a high propensity to absorb thermal neutrons with a neutron-capture 

cross-section of 3835 barns (1 barn = 10-28 m2), which is about six times greater than that 

of uranium-235 and three orders of magnitude greater than that of the nuclei of living 

tissues. When boron-10 (10B) captures slow neutrons, a fission reaction takes place which 

produces α-particles (He) and excited lithium ions (Li) with energy of 1.47 MeV and 0.84 
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MeV, respectively. The excited lithium ion returns to the ground stage with the emission of 

a low energy gamma (γ)-ray. Though α-particles and excited lithium ions produce high-

LET tracks, the path length of those ions is limited (e.g., 5-8 µm) (ISLAM et al., 2017). A 

schematic boron neutron capture nuclear reaction is shown in Fig. 1.2. 

478 keV

10B1nthermal

˂ 0.5 eV 

7Li*
0.84 MeV

5 
µ

m
8 

µ
m

γ-rays

1.47 MeV
α-rays (4He)
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Fig. 1.2:  Scheme of the nuclear reaction resulting from the low-energy (< 0.5 eV) 

thermal neutron capture by a 10B atom. After absorption, 94% of the 

reactions leave the 7Li ion in its first excited state (7Li*) which rapidly de-

excites to the ground state by releasing a 478-keV γ-ray. For the remaining 

6% of the reactions, the 7Li ion is left directly in its ground state resulting in 

the emission of a 1.78 MeV α-particle and a 1.02 MeV 7Li ion. Note that the 
4He and 7Li recoil ions are in opposite directions (i.e., at a 180° angle), away 

from the site of the compound nucleus, and hence they form one straight 

track. 

The Boron Neutron Capture nuclear reaction 10B(n,α)7Li has been used in clinical 

studies of biochemically targeted radiotherapies for cancer treatment known as “boron 

neutron capture therapy” (BNCT) (SAUERWEIN, 2012; HOSMANE, 2012). The 

10B(n,)7Li nuclear reaction is also a very important reaction in the nuclear industry. In the 

nuclear industry, boron carbide (B4C) rods are used to control the reaction by absorbing 

neutrons inside the reactor in the Boiling Water Reactor (BWR). Moreover, boric acid 

(H3BO3) is generally added as a water-soluble neutron poison in the primary coolant of 

pressurized water reactors (PWRs) to control the neutron flux and the reactivity in the core 

(PUCHEAULT, 1952; KOIKE et al., 1969; COHEN, 1980). The 10B(n,)7Li nuclear 

reaction inside the nuclear reactor produces several oxidizing species that contribute to the 

corrosion of the reactor and piping materials. Understanding the radiation chemistry inside 
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the reactor is very important to maintain the proper chemical environment and minimize 

the corrosion of the materials. 

Monte Carlo computer simulations are now a standard tool in scientific fields such 

as condensed matter physics, including surface-physics and applied physics problems, 

chemical physics, including studies of solutions, chemical reactions, polymer statistics. 

Monte Carlo simulations, as well as other simulation methods, are used to investigate and 

answer subtle theoretical questions that arise in a complex system. Monte Carlo simulation 

methods are well suited to take into account the stochastic nature of the complex sequence 

of events that are generated in aqueous systems following the absorption of ionizing 

radiation. Simulations allow the reconstruction of the intricate action of radiation. The 

relationship between initial radiation track structure, the ensuing chemical processes, and 

the stable products formed in the radiolysis of both pure water and different solutions have 

been studied using this simulation tool. Stochastic simulation codes employing Monte 

Carlo procedures have been used with success by a number of investigators to model the 

entire water radiolysis process as a function of time, LET of the radiation, pH, presence or 

absence of oxygen, temperature, etc. (for reviews, see, for example: BALLARINI et al., 

2000; UEHARA and NIKJOO, 2006; KREIPL et al., 2009; MEESUNGNOEN and JAY-

GERIN, 2011). Those theoretical modeling and calculations for water radiolysis process 

provide a realistic description of the early physical aspect of the radiation track structure 

and spatio-temporal development of the track. It also depicts the diffusion of different 

water radiolysis products and the reactions with one another or the milieu (MUROYA et 

al., 2006; MEESUNGNOEN and JAY-GERIN, 2011). 

In such perspective, we used the Monte Carlo track chemistry simulations to predict 

the yields (G-values) of all primary radical and molecular species produced in the 

radiolysis of pure, neutral water and 0.4 M sulfuric acid aqueous solutions by the recoil 

ions of the 10B(n,α)7Li nuclear reaction as a function of temperature from 25 to 350 °C. The 

calculations were performed individually for 1.47- MeV α-particles and 0.84 MeV lithium 

nuclei with “dose-average” linear energy transfer (LET) values of ~196 and 225 eV/nm at 

25 °C, respectively (ISLAM et al., 2017). We also analyzed the change of pH along the 

track structure region produced due to the passage of ionizing radiation through pure, de-



7 
 

aerated water during and shortly after the irradiation. The concentrations of hydronium ions 

(H3O
+) generated in situ in water induced by the recoil ions (α-particles and lithium nuclei) 

released from the 10B(n,α)7Li nuclear reaction  were obtained from our calculated yields (or 

G-values) of H3O
+ as a function of time (in the interval of ~1 ps to 1 μs). We observed that 

for these two high linear energy transfer (LET) irradiating ions, the pH remains near 0 on a 

time scale of ~100 ps after which the system gradually returns to neutral pH at ~1 ms. In 

bulk cell water, these initial conditions of high acidity persist over a much longer period of 

time due to the much lower value of the intracellular diffusion coefficient of the free 

proton. Apparently, this ultrafast transient “acid spike” effect has never been explored in 

water or in a cellular environment exposed to high-LET (densely ionizing) radiations. In 

this regard, the present work raises the question as to the implications of this effect in 

“Boron Neutron Capture Therapy” (BNCT), a therapeutic modality that is used for treating 

locally malignant tumors, or other high-LET radiations therapeutic modality such as 

‘Carbon therapy’. Moreover, this present study also prompts a number of important 

questions about the effect of the change of acidity due to radiation inside the nuclear 

reactor in terms of the material corrosion and damage.  

1.1  Energy deposition events and interaction of ionizing radiation 

Ionizing radiations are defined as those types of energetic particles and 

electromagnetic radiations that, either directly or indirectly, cause ionization of a medium, 

i.e., the removal of a bound orbital electron from an atom or a molecule and thereby, the 

production of a residual positive ion radical. Some molecules, instead of being ionized, 

may also be excited to upper electronic states (e.g., see: EVANS, 1955; ANDERSON, 

1984; IAEA, 1995; MOZUMDER, 1999; TOBUREN, 2004). Directly ionizing radiations 

are fast moving charged particles (e.g., electrons, protons, α-particles, stripped nuclei, or 

fission fragments) that produce ionizations through direct Coulomb interactions. In this 

case, note that particle-particle contact is not necessary since the Coulomb force between 

the incoming particle and the molecular electrons acts at a distance. Indirectly ionizing 

radiations are energetic electromagnetic radiations (like X- or γ-ray photons) or neutrons 

that can also liberate bound orbital electrons, but secondarily to a preliminary interaction. 

For photons, this interaction is predominantly via production of Compton electrons and 
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photoelectrons (and, if the incident photon energy is greater than 1.02 MeV, then there is 

the production of electron-positron pairs). The final common result in all modes of 

absorption of ionizing radiation depends on the formation of tracks of physical energy-loss 

events in the form of ionization and excitation processes and in a geometrical pattern that 

depends on the type of radiation involved. 

Generally, the electrons ejected in the ionization events may themselves have 

sufficient energy to ionize one or more other molecules of the medium. In this way, the 

primary high-energy electron can produce a large number (~ 4 × 104 for a 1 MeV particle) 

of secondary or higher-order generation electrons (it is customary to refer to all electrons 

that are not primary as “secondary”) along its track as it gradually slows down (ICRU 

REPORT 31, 1979). From atomic physics, it is known that most energy-loss events by fast 

electrons involve small transfers of energy. In fact, the probability of a given energy 

transfer, Q, varies inversely with the square of that energy loss (EVANS, 1955). “Distant” 

or “soft” collisions, in which the energy loss is small, are therefore strongly favored over 

“close” or “hard” collisions, in which the energy loss is large (MOZUMDER, 1999). The 

vast majority of these secondary electrons have low initial kinetic energies with a 

distribution that lies essentially below 100 eV and a most probable energy below 10 eV 

(LAVERNE and PIMBLOTT, 1995; SANCHE, 2002; AUTSAVAPROMPORN, 2006). In 

most cases, they lose all their excess energy by multiple quasi-elastic (i.e., elastic plus 

vibrational excitations) and inelastic interactions with their environment, including 

ionizations and/or excitations of electronic, intramolecular vibrational or rotational modes 

of the target molecules (MICHAUD et al., 2003) and quickly reach thermal equilibrium 

(i.e., they are “thermalized”). Determining exactly which of these competing interaction 

types will take place is a complex function of the target medium and the energy range of 

the incident electron. By definition, a measure of the probability that any particular one of 

these interactions will occur is called the “cross section” (expressed in units of area) for 

that particular interaction type (see, for example, JOACHAIN, 1975). The total interaction 

cross section σ, summed over all considered individual processes i, is used to determine the 

distance to the next interaction, and the relative contributions σi to σ are used to determine 

the type of interaction. Actually, the mean distance between two consecutive interactions 

or “mean free path” λ is defined by 
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 λ = 1
𝑁σ⁄          (1.1) 

where N is the number of atoms or molecules per unit volume, and 

σ = ∑ σi𝑖           (1.2) 
 

In a dilute aqueous environment, thermalized electrons undergo trapping and 

hydration in quick succession (within ~10 ps) as a result of the water electric dipoles 

rotating under the influence of the negative charge (BERNAS et al., 1996). Some electrons 

that have kinetic energies lower than the first electronic excitation threshold of the 

medium, the so-called “subexcitation” electrons (PLATZMAN, 1955), may also undergo, 

prior to thermalization, prompt geminate ion recombination (FREEMAN, 1987) or induce 

the production of energetic (~1-5 eV) anion fragments via formation of dissociative 

negative ion states (resonances) (i.e., dissociative electron attachment, or DEA) 

(CHRISTOPHOROU et al., 1984; BASS and SANCHE, 2003). As a consequence of the 

energy gained by the medium, a sequence of very fast reactions and molecular 

rearrangements lead to the formation of new, highly non-homogeneously distributed 5 

chemical species in the system, such as charged and/or neutral molecular fragments, 

reactive free radicals, and other excited chemical intermediates. The trail of the initial 

physical events, along with the chemical species, is generally referred to as the track of a 

charged particle and its overall detailed spatial distribution, including contributions from 

secondary electrons, is commonly known as “track structure” (see, for example 

PARETZKE, 1987; MAGEE and CHATTERJEE, 1987; KRAFT and KRÄMER, 1993; 

PARETZKE et al., 1995; MOZUMDER, 1999; LAVERNE, 2000, 2004). 

 

1.1.1 Linear energy transfer (LET) and interaction cross sections for heavy 

charged particles 

 

Different experiments have been done to determine the radiation-chemical effects in 

liquid water, where we observed that the yields of different radiolytic products depended 

on the types of the radiation. The total energy deposition and the spatial distribution of this 

energy are the determining elements for the quantitative yields of the species. The “Linear 

Energy Transfer”, or LET, is the measure of the energy deposition along and within the 
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track of a penetrating charged particle. This value is also termed as “stopping power” in 

radiation physics. The quantity of the energy deposition or LET value of a particular type 

of radiation is very important to evaluate the overall chemical effect. It is defined as  

𝐿𝐸𝑇 = −
𝑑𝐸

𝑑𝑥
         (1.3) 

where dE is the average energy locally (i.e., in the vicinity of the particle track) imparted to 

the medium by the particle in traversing a distance dx (ICRU REPORT 16, 1970). Usually, 

LET values are in the units of keV per micron (keV/μm) (the conversion into SI unit is: 1 

keV/μm ≈ 1.602 × 1019 J/nm). 

 The Bethe theory of stopping power describes the average energy loss due to the 

electromagnetic interactions between fast charged particles and the electrons in absorber 

atoms (see, for example: FANO, 1963). For kinetic energies of ions that are small 

compared to their rest-mass energy, the non-relativistic stopping power formula of Bethe 

(BETHE, 1930; BETHE and ASKIN, 1953) is given by (in SI units): 

 −
𝑑𝐸

𝑑𝑥
= (

1

4𝜇𝜀
)

2 4𝜋𝑍2 𝑒4

𝑚0𝑉2  N 𝑙𝑛 (
2𝑚0𝑉2

𝐼
)                                               (1.4) 

where Ze is the charge of on the incident ion, V is the ion velocity, mo is the mass of 

electron, N is the number of electron per cubic meter of the absorbing medium, and I is the 

mean of all the ionization and excitation potentials of the bound electrons in the absorber. 

For liquid water, I = 79.7 ± 0.5 eV (BICHSEL and HIRAOKA, 1992). 

We can observe that the LET value of an incident particle depends on the velocity 

of the particle. The velocity term in the numerator of the logarithm term and in the 

dominator of the pre-logarithmic term gives rise to the familiar Bragg peak, i.e., with 

decreasing velocity of the incident particle the LET increases to a maximum and then 

decreases to lower velocities (LAVERNE, 2000, 2004) (Fig. 1.3). 

We also can see from the equation (1) that the LET value is also proportional to the 

square of the projectile charge number Z2. This Z2 is very important for providing the cross 

section for the intrinsic scattering by fully ionized or stripped (in another word “bare”) ion 

projectiles. On average the net positive (or effective) charge on an incident ion decreases 
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when the speed decreases (IAEA, 1995; ICRU REPORT 55, 1996; LAVERNE, 2004; 

MEESUNGNOEN, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3: LET of some heavy ions as a function of energy in liquid water using SRIM 

program (WATT, 1996). 

 

1.2 Radiolysis of water 

The term radiolysis refers to any chemical changes induced by ionizing radiation, 

and includes synthesis as well as degradation. Water radiolysis of water is defined as the 

chemical decomposition of the water molecules due to the action of the ionizing radiation. 

A large fraction of radiation chemistry studies has been concerned with the studies of water 

and aqueous solutions because of the unique importance of the water in biological system 

and in different industrial purpose. Moreover, water or aqueous solutions are used in 

different industries where radiation is involved, for instance, nuclear power industry uses 

water to cool down the reactor and control the reactions in the reactor and the 

environmental management of the radioactive materials or waste. Since a large portion of 

living cells and tissue is water (~70-85% by weight), the knowledge of water radiolysis is 

very important in case of radiotherapy and diagnostic radiology (LAVERNE, 2004; 

GARRETT et al., 2005; MEDIN, 2006). The radiolysis of water depends on the absorbed 

dose and the quality of the radiation. Due to the influence of ionizing radiation, radiolysis 
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of water takes place and produces different radicals such as e−aq, H
•, •OH, and HO2

•/O2
•−, 

and also the molecular products such as H2, H2O2, and O2. 

1.2.1 Track structure in radiation chemistry of water 

The distribution of the track structure is mainly defined by the distribution of the 

physical energy deposition events and their geometrical dispositions. Interestingly, the 

track structure is known as “LET effects” as most of the early studies used this parameter 

to characterize the different radiation chemical yields for various radiation-induced ions in 

liquid water. Furthermore, the radiation track structure is an important concept in 

identifying the precise spatial location of the radiolytic species and free-radical 

intermediates generated in the tracks, and their subsequent radiobiological action at the 

molecular and cellular levels. However, the tracks are not static. As a function of time, the 

tracks are constantly expanding due to the diffusion of different reactive species. It can be 

noted that the diffusion co-efficient of different species in the liquid water medium is 

different (FRONGILLO et al., 1998). Overall, the scientific community agrees that 

different qualities of radiation must be analyzed in terms of track structure (CHATTERJEE 

and HOLLEY, 1993; MUROYA et al., 2006). 

 

1.2.1.1  Low-LET radiation and track structure 

  

In case of low-LET radiation, the deposition of energy along the track is 

comparatively lower. The energy loss of a fast-moving charged particle in a medium takes 

place due to the electromagnetic interactions and collisions between the fast-moving 

charged particles and the absorber atom. The LET value for high energy ionizing radiation 

such as fast electrons generated from X- or γ-ray beams is very low. For example, the 

average LET of a 1-MeV Compton electron in water is ~0.3 keV/μm. The track-averaged 

mean energy loss per collision event by such an electron is in the region ~47-57 eV 

(COBUT, 1993; LAVERNE and PIMBLOTT, 1995; COBUT et al., 1998; 

AUTSAVAPROMPORN, 2006; KOHAN et al., 2013). This means that the energy-loss 

events are, on the average, separated by distances of ~200 nm. This non-homogeneous 

distribution of energy deposition events in space gives rise to the “spur” theory for low-

LET track structure (ALLEN, 1948; MAGEE, 1953; MOZUMDER and MAGEE, 
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1966a,b), according to which the entire track is to be viewed as a random succession of 

(more or less spherical) spurs, or spatially localized energy-loss events. The few tens of 

electron-volts deposited in a spur cause a secondary electron to be ejected from a molecule. 

As the ejected electron moves away, it undergoes collisions with surrounding water 

molecules, loses its excess energy, and becomes thermalized (~0.025 eV at 25 °C) within 

~8-12 nm of its geminate positive ion (GOULET et al., 1990, 1996; PIMBLOTT and 

MOZUMDER, 2004; MEESUNGNOEN and JAY-GERIN, 2005a; UEHARA and 

NIKJOO, 2006). This average “electron thermalization distance” or “penetration range” 

(rth) can be viewed as an estimate of the spur’s initial radius, prior to spur expansion. Thus, 

the individual spurs produced by low-LET radiation are so far apart along the track that 

they are not initially overlapping (but they will overlap somewhat later as they develop in 

time). 

To model the radiation-chemical consequences of different energy-loss processes, 

MOZUMDER and MAGEE (1966a,b) considered, somewhat arbitrarily, a low-LET track 

as composed of a random sequence of three types of essentially non-overlapping entities: 

“spurs, blobs, and short tracks” (Fig. 1.4). The spur category contains all track entities 

created by the energy losses between the lowest excitation energy of water and 100 eV; in 

most cases, there are one to three ion pairs in such isolated spatial areas and about the same 

number of excited molecules (PIMBLOTT and MOZUMDER, 1991). Blobs were defined 

as track entities with energy transfers between 100-500 eV, and short tracks as those with 

energy transfers between 500 eV and 5 keV. Secondary electrons produced in energy 

transfers above 5 keV were considered as “branch tracks”. Short and branch tracks are, 

collectively, described as δ-rays. This old concept of track entities proved to be very 

helpful in greatly facilitating the visualization of track processes and in modeling radiation-

chemical kinetics. It is still a useful approach for the classification of track structures, since 

it takes into account the spatial arrangements of initial species, which affect their 

subsequent reactions. 
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Fig. 1.4: Track structure entities classified as spurs (spherical entities, up to 100 eV), 

blobs (spherical or ellipsoidal, 100-500 eV) and short tracks (cylindrical, 500 

eV-5 keV) for a primary high energy electron (not to scale) (BURTON, 

1969). 

The partition between the three entities strongly depends on the incident particle 

energy (PIMBLOTT et al., 1990). In case of low LET radiation, the tracks are formed 

initially by well-separated “spurs” (spherical in shape). With the increase of LET, the 

distance between the spurs decreases and the isolated spur structure changes to a situation 

in which the spurs overlap and form a dense continuous column. For instance, when α- 

particles (4He2+) with 0.84 MeV energy passes through liquid water, it produces a 

cylindrical track with high concentration of water radiolytic products (ISLAM et al., 2017). 

However, we observe several distinct “spur” in water when it is irradiated by 300 MeV 

protons (LET ~ 0.3 keV/µm) (KANIKE et al., 2015a). 
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Fig. 1.5: Monte Carlo track simulation of 300 MeV protons (a) and 150 keV protons 

(b) (LET~ 0.3 and 70 keV/µm) incident on liquid water at 25 °C (KANIKA, 

2015a). 

 

1.2.1.2 High-LET radiation and track structure 

 

High-LET tracks produced by the heavy particles consist initially of a cylindrical 

“core” and a surrounding region traversed by the emergent, comparatively low-LET 

secondary electrons, called the “penumbra” (MOZUMDER et al., 1968; CHATTERJEE 

and SCHAEFER, 1976; FERRADINI, 1979; MAGEE and CHATTERJEE, 1980, 1987; 

MOZUMDER, 1999; LAVERNE, 2000, 2004). 

 

 

 

 

 

 

 

 

 

Fig. 1.6:  Primary energy-loss events in high-LET radiation tracks (FERRADINI, 

1979). 
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Fig. 1.7:  Projections over the XY-plane of track segments calculated (at ~10-13 s) for 

(a) H+ (0.15 MeV), (b) 4He2+ (1.75 MeV/nucleon), (c) 12C6+ (25.5 

MeV/nucleon), and (d) 20Ne10+ (97.5 MeV/nucleon) impacting ions. Ions are 

generated at the origin and along the Y axis in liquid water under identical 

LET conditions (~70 keV/μm). Dots represent the energy deposited at points 

where an interaction occurred. From MUROYA et al. (2006), with 

permission. 

Figure 1.7 illustrates typical two-dimensional representations of short (1-5 μm) 

track segments of H+, 4He2+, 12C6+, and 20Ne10+ ions. The Monte Carlo simulation code 

IONLYS developed in our laboratory was used to calculate the track segment under the 

same LET conditions (~70 keV/μm). We can observe that these tracks can be considered as 

straight lines with the ejected high-energy secondary electrons traveling to a greater 

average distance away from the track core as the velocity of the incident ion increases, 

from protons to neon ions. In other words, even though all those particles are depositing the 

same amount of energy per unit path length, that energy is lost in a volume that increases in 

the order H+ < 4He2+ < 12C6+ < 20Ne10+, indicating that the higher-Z particle (where Z is the 

ion charge number) has the lower mean density of reactive species (MUROYA et al., 2006; 

MEESUNGNOEN and JAY-GERIN, 2011). The fact that tracks of different ions with the 

same LET have different radial distributions of energy deposited by δ-rays is in accord 

with Bethe’s theory of stopping power (BETHE, 1930; BETHE and ASHKIN, 1953) and 
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indicates that LET is not a unique descriptor of the radiation chemical effects within heavy-

charged particle tracks (SCHULER and ALLEN, 1957; SAUER et al., 1977; LAVERNE 

and SCHULER, 1987; KAPLAN and MITEREV, 1987; FERRADINI, 1990; FERRADINI 

and JAY-GERIN, 1999; LAVERNE, 2000, 2004). 

 

1.2.2 Time scale of events and formation of primary products (free radicals 

and molecules) in neutral water radiolysis 

The bombardment of the water molecule with high-energy radiation commences the 

overall chemical change of the water. Depending on the quality of the radiation, the 

radiation may cause direct ionization or indirect ionization of water. Electromagnetic 

radiations (X- and - rays) and neutral particles (neutrons) are indirectly ionizing; on the 

other hand, heavy charged particles such -rays or 7Li3+ or 12C6+ cause direct ionization of 

the water. Indirectly ionizing radiations are always more penetrating than directly ionizing 

particulate radiations. The overall chemical change of water terminates with re-establishing 

the chemical equilibrium. 

 The complex events that accompany the absorption of high energy photons or the 

passage of fast charged particles in liquid water can be divided in three consecutive, 

temporal stages: physical, physico-chemical, chemical stages (PLATZMAN, 1958; 

KUPPERMANN, 1959). These stages correspond with the initial dissipation of energy in 

the system, the establishment of thermal equilibrium, and the establishment of chemical 

equilibrium, respectively (Fig. 1.8) (MEESUNGNOEN and JAY-GERIN, 2011). However, 

in a physiologic system, there follows a biological stage in which the products produced in 

the physical, physico-chemical, chemical stages interact with the bio-molecules present in 

the cells (AZZAM et al., 2012). 

(i) The physical stage 

(ii) The physico-chemical stage 

(iii) The chemical stage 

(iv) The biological stage 
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(i) The “physical” stage 

 

The duration of the physical stage is approximately 10-16 s, when the transfer of the 

energy from the incident high-energy radiation to the water takes place. Such absorption of 

the energy by the water molecules, along with the path of the radiation, produces a large 

amount of ionized and electronically excited water molecules, which are denoted as H2O•+ 

and H2O
*
elec, respectively.   

 

Fig. 1.8: Time scale of events that occur in the low-LET radiolysis of neutral, 

deaerated water (MEESUNGNOEN, 2007; MEESUNGNOEN and JAY-

GERIN, 2010).  As a guide to the eyes, we use different colors in the figure in 

order to contrast the individual processes occurring during the radiolysis of 

water. 
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H2O         H2O•+ + e (ionization)       (1.5)  

H2O         H2O*
elec (excitation)       (1.6) 

Note that H2O
*
elec represents here many excited states, including the so-called 

“superexcited” states (PLATZMAN, 1962a) and the excitations of collective electronic 

oscillations of the “plasmon” type (HELLER et al., 1974; KAPLAN and MITEREV, 1987; 

LAVERNE and MOZUMDER, 1993; WILSON et al., 2001). 

Generally, the electron ejected (which is called a “secondary” electron) in the 

ionization event has sufficient energy either to ionize or excite one or more other water 

molecules in the vicinity, and this leads to the formation of “spurs” or “cylindrical track” 

that contain the products of the events. 

 

(ii) The “physicochemical” stage    

The physicochemical stage consists of the processes which lead to the establishment 

of the thermal equilibrium in the system. The duration of this stage is about 10-12 s. During 

this stage, the ions and excited water dissipate their excess energy by bond rupture, 

luminescence, energy transfer to neighboring molecules, etc. 

The secondary (“dry”) electron produced from ionized water molecules undergoes 

scattering as it moves away from its parent ion. The secondary electrons transfer energy 

due to collision with other water molecules and eventually, it reaches at thermal 

equilibrium with the water. However, PLATZMAN (1955) stated that the secondary 

electrons form subexcitation electrons (esub) before it thermalized (eth). Once it is 

thermalized (eth) (after ~10-40 fs at 25 °C; see (GOULET et al., 1990, 1996; 

MEESUNGNOEN et al., 2002a), it can get localized or “trapped” (etr) in a pre-existing 

potential energy well of appropriate depth in the liquid (then forming the so-called “wet” 

electron whose exact physicochemical nature is still the subject of investigation) before 

reaching a fully relaxed, hydrated state (eaq) as the dipoles of the surrounding molecules 

orient in response to the negative charge of the electron. In liquid water at room 

temperature, thermalization, trapping, and hydration can then follow in quick succession 

(on the time scale of ~240 fs-1 ps, as revealed from time-resolved femtosecond laser 
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spectroscopic studies) (MOZUMDER, 1999; JAY-GERIN et al., 2008; MEESUNGNOEN 

and JAY-GERIN, 2011): 

e  → eth → etr → eaq       (1.7) 

The ejected electron that escapes process (1.7), after reaching the final stage of the energy 

degradation, can also be temporarily captured by a water molecule to produce a transient 

water molecule anion. This anion is unstable and undergoes dissociation mainly into H 

and •OH: 

  e + H2O → H2O• → H  + •OH      (1.8) 

The hydride ion produced in this reaction reacts with another water molecule through a fast 

proton transfer: 

H  + H2O  → H2 + OH       (1.9) 

 

Reactions (1.7)-(1.9) correspond to the so-called “dissociative electron attachment” or 

DEA process, which has been observed in amorphous solid water at ~20 K for electron 

energies between about 5 and 12 eV (ROWNTREE et al., 1991). It has been suggested that 

DEA to water was responsible, at least in part, for the yield of “nonscavengeable” 

molecular hydrogen observed experimentally in the radiolysis of liquid water at early times 

(PLATZMAN, 1962b; FARAGGI and DÉSALOS, 1969; GOULET and JAY-GERIN, 

1989; KIMMEL et al., 1994; COBUT et al., 1996; MEESUNGNOEN et al., 2015). 

Experimental works have sustained this proposed mechanism, by showing that the 

previously accepted “nonscavengeable” yield of H2 is due to precursors of eaq and it can 

be lowered with appropriate dry electron scavengers at high concentrations (PASTINA et 

al., 1999). 

In the course of their thermalization, “dry” electrons can be recaptured by their 

parent ions due to the Coulomb attraction of the latter which tends to draw them back 

together to undergo electron-cation “geminate” recombination: 

 H2O•+ + e → H2O
*
vib        (1.10) 

As the electron is recaptured, the parent ion is transformed into a (vibrationally) excited neutral 

molecule. 
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The positive ion H2O•+, produced in the physical stage of radiation, decomposes to 

form an •OH radical by transferring a proton to a neighbouring water molecule:  

   H2O•+ + H2O → H3O
+ + •OH       (1.11) 

where H3O
+ (or equivalently, H+

aq) represents the hydrated proton. However, OGURA and 

HAMILL (1973) pointed out that H3O
+ may randomly migrate during its very short life 

time (<10 fs) by means of a sequence of resonant electron transfers from neighboring water 

molecules to the H2O•+ hole (or electron-loss center). The ranges of a migrating hole are a 

few molecular diameters (COBUT et al., 1998). 

 Excited water molecules may be produced directly in an initial act [(reaction (1.6)] 

or by neutralization of an ion [reaction (1.10)]. Very little is known about the decay 

channels for an excited water molecule in the liquid phase and the branching ratios 

associated with each of them. Fortunately, the contribution of the water excited states to the 

primary radical and molecular products in water radiolysis is of relatively minor 

importance in comparison with that of the ionization processes, so that the lack of 

information about their decomposition has only limited consequences. Hence, the 

competing de-excitation mechanisms of H2O
* are generally assumed to be essentially the 

same as those reported for an isolated water molecule namely (for example, see: 

SWIATLA-WOJCIK and BUXTON, 1995; COBUT et al., 1998; MEESUNGNOEN and 

JAY-GERIN, 2005a; SANGUANMITH et al., 2011a; KANIKE et al., 2015b) 

H2O
*  →   H•  + •OH        (1.12) 

H2O
*   →   H2 + O(1D)       (1.13)  

H2O
*   →   2H• + •O•(3P)       (1.14) 

H2O
*   →   H2O + release of thermal energy     (1.15) 

where O(1D) and •O•(3P) represent the oxygen atom in its singlet 1D first excited state and 

triplet 3P ground state, respectively (Fig. 1.7). Note that the dissociation of the excited 

water molecules via reaction (1.12) is the main source of the initial yield of hydrogen 

atoms. As for the values of the branching ratios (or decay probabilities) used for the 

different decay channels (1.12)-(1.15), they are chosen in order to consistently match the 
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observed picosecond G-values of the various spur species (MUROYA et al., 2002; 

MEESUNGNOEN and JAY-GERIN, 2005a). The O(1D) atoms produced in reaction (13) 

react very efficiently with water to form H2O2 or possibility also 2•OH (TAUBE, 1957; 

BIEDENKAPP et al., 1970). In contrast, ground-state oxygen atoms •O•(3P) in aqueous 

solution are rather inert to water but react with most additives (AMICHAI and TREININ, 

1969). 

By ~1 ps following the passage of the radiation, the various initial radiolysis 

products are eaq, H•, H2, •OH, H2O2, H
+ (or H3O

+), OH, O2
• (or HO2

•, depending on the 

pH), •O•(3P), etc. At this time, these species begin to diffuse away from the position where 

they were originally produced. The result is that a fraction of them react together within the 

spurs/tracks as they develop in time while the remainders escape into the bulk solution in 

the chemical stage. 

(iii) The “chemical” stage  

The third or chemical stage consists of diffusion and reactions of the reactive 

species present at the end of the physicochemical stage and initially distributed 

nonhomogeneously with high concentrations in the center of spurs or along the axis of 

tracks. These species diffuse according to the microscopic diffusion law. This stage is 

usually divided into two parts. The first part corresponds to the stage of “nonhomogeneous 

chemistry”, which consists of the period after ~10-12 s, during which spurs or tracks 

develop in time. A number of radicals will combine to form the molecular products H2 and 

H2O2 and to re-form H2O, while the remainder will diffuse out into the bulk solution. At 25 

°C, the spur/track expansion is essentially complete by ~10-7-10-6 s (for example, see: 

BUXTON et al., 1987; SANGUANMITH et al., 2012). At this time, the species that have 

escaped from spur or track reactions become homogeneously distributed throughout the 

bulk solution (i.e., the system at large) (PLANTE et al., 2005; MUROYA et al., 2006). 

Beyond a few microseconds, the reactions which occur in the bulk solution can usually be 

described with conventional homogeneous chemistry methods. This is the second part of 

the chemical stage, the so-called stage of “homogeneous chemistry”. The radical and 

molecular products which emerge from the spurs/tracks are then available for reaction with 
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homogeneously distributed solutes (if any) present (in low or moderate concentrations) at 

the time of irradiation.  

 

(iv) The “biological” stage  

 

When the irradiation of the water in a biological system takes place, in that case, the 

biological stage is the final stage in a physiologic system. In this stage, the biomolecules 

interact with radiolytic products, produced due to radiolysis of the water molecules. The 

cells responding to the damage resulting from the products formed in the preceding stages. 

During this stage (~10-3 s or longer, depending very much upon the medium), the 

biological responses affecting the long-term consequences of radiation exposure are 

induced. In a biological system (cells), there are several macromolecules such as proteins, 

lipids, carbohydrates as well as ions, for instance, Na+, K+, Ca2+, and Cl−. The diffusions 

(or mobilities) of the radiolytic products are different than in pure water (NEGENDANK 

and EDELMANN, 1988; SWIETACH and VAUGHAN-JONES, 2005). In biological 

systems, ionizing radiation can also stimulate inducible nitric oxide synthase (iNOS) 

activity in hit cells (MIKKELSEN and WARDMAN, 2003), thereby generating large 

amounts of nitric oxide •NO (officially called nitrogen monoxide). Although •NO is 

chemically inert toward most cellular constituents (except for heme), it reacts quickly with 

O2
• to form the peroxynitrite anion (ONOO) with a rate constant (1.9 × 1010 M-1 s-1) that 

is larger than that for the copper/zinc-superoxide dismutase (SOD)-catalyzed 

disproportionation of O2
• (4 × 109 M-1 s-1) (KOPPENOL, 1998; JAY-GERIN and 

FERRADINI, 2000). Like •OH radicals, ONOO and its conjugate acid, peroxynitrous acid 

ONOOH (pKa = 6.8 at 37 °C) (PRYOR and SQUADRITO, 1995), are powerful oxidizing 

agents. They are capable of attacking a wide range of cellular targets, including lipids, 

thiols, proteins, and DNA bases (for example, see: HALLIWELL and GUTTERIDGE, 

2015). 
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1.3  Boron neutron capture nuclear reaction 

Boron-10 is a non-radioactive material. It has high propensity to capture thermal 

neutron with the neutron capture cross section of 3835 barns (1 barn = 10-28 m2), which is 6 

times higher than uranium-235 and three orders of magnitude higher than nuclei of living 

tissue (SAUERWEIN, 2012). Boron-10 becomes a boron-11 nuclide upon absorbing a 

thermal neutron and undergoes the fission reaction, which produces an α-particle (4He2+) 

and a lithium ion (7Li3+). These low energy recoil heavy ions have very short penetration 

lengths (~5-9 μm) in water and high-LET characteristics (BARTH, 2003). Because of the 

unique properties of boron-10, it has been extensively used in the field of nuclear industry. 

Moreover, the 10B(n,α)7Li nuclear reaction has been used in clinical studies of 

biochemically targeted radiotherapies for cancer treatment known as “boron neutron 

capture therapy” or BNCT (HOSMANE et al., 2012). 

1.3.1   Boron neutron capture nuclear reaction in nuclear industry 

Water is used as a coolant and a neutron moderator in light water reactors (LWRs), 

which is one of the abundant commercial type nuclear reactors at present. LWRs are 

categorized into two types: boiling water reactors (BWRs) and pressurized water reactor 

(PWRs), based on the coolant flow structure, phase of water, and operating condition.  

 Water is inevitably exposed to the extreme conditions of high temperature, high 

pressure (~285 °C, 7.2 MPa), as well as intense flux of ionizing radiation (mostly fast 

neutrons and γ-rays) when it passes through the core of the nuclear reactors for BWRs 

(BUXTON, 2003). Boron carbide (B4C), enriched in 10B, is used as a control-rod material 

(neutron absorber) in BWRs. In addition, boron as boric acid (H3BO3) is generally added as 

a water-soluble neutron poison in the primary coolant of PWRs to control the neutron flux 

and the reactivity in the core (PUCHEAULT, 1961; KOIKE et al., 1969; COHEN, 1980). 

Therefore, the recoil ions arising from 10B(n,α)7Li reaction act as a source of high-LET 

radiation in the primary coolant of the PWRs, thereby leading to the formation of different 

types of chemical species such as e−aq, H
•, •OH, and HO2

•/O2
•−, H2, H2O2, and O2, etc., due 

to the radiolysis of water. The presence of H2O2 and O2 from water radiolysis is widely 

known to create an oxidizing environment in the water coolant (WADA et al., 2001; 
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SATOH et al., 2004). Understanding the radiation chemistry of the coolant water in 

reactors is important for maintaining the proper chemical environment that will minimize 

the degradation of materials. Unfortunately, there is not enough experimental data available 

on the formation of the primary species and their yields (G-values) for 10B(n,)7Li recoil 

irradiation of neutral water or water at nuclear reactor conditions (COHEN, 1980; 

CHRISTENSEN, 2006). The yields of the different species due to ionizing radiation in the 

nuclear reactor are very important to control the corrosion of the reactor and to maintain a 

proper chemical environment inside it. 

1.3.2 Boron neutron capture nuclear reaction in cancer treatment 

BNCT is another very important use of the 10B(n,α)7Li nuclear reaction for cancer 

treatment. BNCT is a technique that selectively aims tumor cells while sparing healthy 

cells using boron compounds. In 1936, Gordon LOCHER proposed the principle of this 

method, where he hypothesized that boron compounds could be selectively accumulated in 

tumor cells. This is followed by irradiation with thermal or epithermal neutrons. A non-

radioactive boron-10 atom absorbs a low energy neutron and subsequently produces two 

ionizing recoil ions, namely, a α-particle (4He2+) and a lithium ion (7Li3+) with high-LET 

characteristics; the LET values are ~196 and 210 keV/µm, respectively. However, the 

ranges of these ionizing radiations are very short (~5-9 µm), which is approximately the 

same as the diameter of biological cells. Hence, their energy deposition is almost limited to 

the diameter of a single cell (LOCHER, 1936; ISLAM et al., 2017). 

Figure 1.9 represents the basic principle of BNCT. 
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Fig. 1.9:  Graphical representation of the Boron Neutron Capture Therapy. 

1.4   Effect of temperature on water radiolysis due to the 10B(n,α)7Li nuclear 

reaction  

The effect of temperature on water radiolysis is practically applicable in nuclear 

reactor, since it is operated at high temperature ~275-375 °C. The cooling water is 

subjected to an intense mixed radiation field such as low-LET γ-radiation and also fast 

neutrons. Boron carbide (B4C) rods and boric acid (H3BO3) are used as neutron poisons in 

the primary coolant of BWRs and PWRs, respectively, to control the neutron flux and the 

reactivity in the core (PUCHEAULT, 1952; KOIKE et al., 1969; COHEN, 1980).  Upon 

capturing a thermal neutron, the boron neutron capture nuclear fission reaction takes place 

inside the reactor producing short-range, high-LET radiations, which interact with water 

molecules to produce several unwanted radiolytic oxidizing species, such as •OH, H2O2, 

O2, and O2
• (or HO2

•, depending on the pH). These oxidizing species are highly reactive 

with most metal alloys and can significantly increase the corrosion and degradation of 

reactor components. It is necessary to select optimum conditions in the reactor in order to 

suppress formation of oxidizing species, which can furthermore cause deleterious 

corrosion, hydriding, and cracking processes both in the core and in the associated piping 
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components (BURNS and MOORE, 1976; COHEN, 1980; HICKEL, 1991; ELLIOT, 

1994; ELLIOT et al., 1996a; McCRACKEN et al., 1998; BUXTON, 2001; STUART et al., 

2002; KATSUMURA, 2004; CHRISTENSEN, 2006; EDWARDS et al., 2007). This can 

be achieved most efficiently when the radiation chemistry of water under reactor operation 

conditions is understood. However, direct measurement of the chemistry in and around 

reactor cores is extremely difficult, due to the conditions of high temperature, pressure, and 

mixed neutron/gamma radiation fields. For these reasons, theoretical calculations and 

chemical models using computer simulation methods are very powerful tools to predict the 

detailed radiation chemistry in the core of nuclear reactor and the consequences for 

materials. 

To predict the effect of radiation at elevated temperatures in particular or in reactor 

conditions in general, it is necessary to know the temperature dependence of the chemical 

yields of oxidizing (•OH and H2O2) and reducing (eaq, H
•, and H2) radiolytic species for 

the 10B(n,α)7Li recoil ions as well as the temperature dependence of the rate constants for 

the various reactions taking place in spurs and tracks that result in these primary yields. In 

this study, we computed the yields of these primary species as a function of temperature. 

We observed that the computed values for yields of free radicals are lower than the yields 

of the molecular products. This general trend is a reflection of the high-LET character of 

the 10B(n,α)7Li recoils. Overall, the simulation results agreed very well with existing 

estimates at 20 and 289 °C from COHEN (1980) and CHRISTENSEN (2006), 

respectively. For deaerated 0.4 M H2SO4 solutions, reasonable agreement between 

experiment and simulation was also found at room temperature. Nevertheless, more 

experimental data for both neutral and acidic solutions would be needed to better describe 

the dependence of radiolytic yields on temperature and to test our modeling calculations 

more thoroughly. We also observed the non-monotonic inflection in the yields of H2 and 

H2O2 around 150 °C. The bimolecular self-reaction of the hydrated electrons is known to 

play a very important role in the formation of molecular hydrogen: 

e−aq + e−aq    H2 + 2OH       (1.16) 

However, the reaction is believed to be two-step reaction (MARIN et al., 2007) with 

formation of the dielectron: 



28 
 

 e−aq + e−aq    e2
2−

aq        (1.17) 

  e2
2−

aq    H2 + 2OH        (1.18) 

Moreover, the experimental values of the rate constant of the bimolecular self-

reaction of the hydrated electron in neutral or slightly acidic water are required to 

accurately determine the yields of H2 and H2O2 above ~150 °C. 

1.5  Formation of H3O+ in spurs or tracks 

In the physical stage, the water molecules along the radiation path absorb energy 

from the ionizing radiation which causes the ionization of the water molecule (H2O
•+) by 

ejecting an electron. The formation of H3O
+ takes place via a proton transfer reaction, 

therefore rendering the spur or track more acidic than the surroundings (SPINKS and 

WOODS, 1990). Hydrolysis of the aqueous solution of 1,1-diethoxyethane 

[CH3CH(OC2H5)2] buffered at pH 7 was observed when irradiated with 40 kVp X-rays. In 

neutral condition, the hydrolysis of 1,1-diethoxyethane does not occur. The pH of the spur 

would need to be ~1.4 to account for the observed hydrolysis (SMITH and STEVENS, 

1963). Another experiment indicative of an acid spur was the observation of a transient 

absorption attributed to Cl2
• in the pulse radiolysis of neutral aqueous sodium chloride 

solutions at Cl concentrations of 0.1 M or greater (ANBAR and THOMAS, 1964). An 

acidic medium is the pre-requisite for the production of Cl2
•. Radiation-induced •OH 

radicals react with chloride ions to produce chloride radicals (Cl•) according to reaction 

(1.19). However, this reaction is pH-dependent, which represents the importance of the 

acidity in the irradiated solution (MATSUYAMA and NAMIKI, 1965): 

Cl + •OH + H3O
+

 → Cl• + 2H2O       (1.19) 

Cl• + Cl → Cl2•        (1.20) 

Apart from these experiments, there are virtually no other demonstrations of this transient 

acidic pH effect in irradiated water although its potential biological impact has already 

been discussed by some authors (BYAKOV and STEPANOV, 2006). Using Monte Carlo 

simulations, KANIKA et al. (2016) estimated that the pH inside a spur, produced by low-

LET radiation such as cobalt-60, fast electrons or 300-MeV protons (LET ~ 0.3 keV/m), 
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is about 3.3 up to nanoseconds (10-9 s). In case of 10B(n,)7Li fission reaction in aqueous or 

other media, it produces high-LET -rays and 7Li3+ recoil ions which produce tracks in 

opposite directions. In this study, we have calculated the concentration of H+ and 

subsequently the pH value along the tracks produced in water by the 10B(n,)7Li reaction. 

The concentration of H+ is calculated using equation (1.21) and the pH is calculated using 

equation (1.22): 

C = ρ D G                    (1.21) 

 

where C is the concentration of the considered species, ρ is the density of the solution (1 

g/cm3 for liquid water at 25 °C), D is the radiation dose, and G is the chemical yield (for 

example, see: HUMMEL, 1995). Note that with C in mol/dm3, D in J/kg (or Gy), and G in 

mol/J, the density is to be expressed in kg/dm3 in order to have a consistent set of units. 

Acidity of a system is described by its pH, defined as the negative logarithm (base 10) of 

the concentration of H3O
+ ions: 

 

pH(t) =         log{[H3O
+](t)}       (1.22) 

 

For high-LET radiation, we consider the track as being an axially homogeneous 

cylinder, of length L = 1 μm and initial radius rc equal to the radius of the physical track 

“core” (which corresponds to the tiny radial region within the first few nanometers around 

the impacting ion trajectory). In this region, the density of energy deposition is very high 

(CHATTERJEE and HOLLEY, 1993; MEESUNGNOEN and JAY-GERIN, 2011; 

MOZUMDER, 1999; MAGEE and CHATTERJEE, 1980, 1987). We first used our Monte 

Carlo simulation code to calculate G(H3O
+) and then the concentration of H+ along the 

radiation track is obtained using equation (23): 

[H3O
+] = G(H3O

+)(t) × (
𝐿𝐸𝑇

𝜋 𝑟(𝑡)2)      (1.23) 

 

where 

 

r(t)2 = rc
2 + 4 D t .        (1.24) 
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r(t) represents the change with time of rc due to the three-dimensional diffusive expansion 

of the track. Here, rc was estimated directly from our simulations (ISLAM et al., 2017). 

The diffusion (mobility) of the proton in intracellular water in ~100-1000 times lower than 

in free water (NEGENDANK and EDELMANN, 1988; SWIETACH and VAUGHAN-

JONES, 2005). It is thus considered that the slow diffusion of the proton in the cellular 

water may cause an intense, much longer acidity effect on the cell (ISLAM et al., 2017). 
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1.7 Research objective 

The goal of this research is to better understand the radiation chemistry and the 

mechanisms involved in the radiolysis of water by the 10B(n,α)7Li nuclear reaction recoils 

as a function of temperature in the range of 25-350 °C. In this research work, we have 

reported the yields of the various radiolytic products as a function of temperature and our 

simulation results agree well with the existing experimental results. Our calculated yields 

of H2 and H2O2 above ~150 °C show a non-monotonic behavior. However, to confirm this 

result, more experimental data of the (e−aq + e−aq) reaction rate constant in near-neutral 

water or slightly acidic solution are needed. 

We use here Monte Carlo track chemistry simulations to calculate, at 25 °C, the 

time evolution of the yields of H3O
+ produced in the radiolysis of pure, deaerated water 

from ~1 ps to 1 µs due to the 10B(n,)7Li nuclear reaction. The concentrations of H3O
+ and 

the corresponding pH values for each recoil ion considered are then obtained from our 

calculated yields of H3O
+ along the ionizing radiation track. Such estimation of the acidic 

pH might play an important role for the corrosion safety assessment of the reactor in 

nuclear power plants. Moreover, the primary biological response of living organisms to the 

passage of the ionizing radiation is traditionally considered to be dominated by the 

chemical reactions of the radiolytic products of the radiolysis of the cellular water (•OH, 

H•, eaq, O2
•, H2, H2O2, etc.). However, in bulk cell water, the initial conditions of high 

acidity persist over a much longer period of time (about 2-3 orders of magnitude) due to 

the much lower value of the intracellular diffusion coefficient of the free proton. This 

research work indicates that hydronium ions or protonated water molecules might play a 

very significant role in the biological action of ionizing radiations as it is well known that 

biological systems are very sensitive to variations in acidity. 
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2. MONTE CARLO SIMULATIONS  

The complex sequence of events that are generated in liquid water and dilute 

aqueous solutions after the absorption of ionizing radiation can be modelled using Monte-

Carlo simulation techniques. Such a procedure is well adapted to account for the stochastic 

nature of the phenomena, provided the realistic probabilities and the cross sections for all 

possible events. The simulation then allows one to reconstruct the complicated action of 

the radiation. It also offers a powerful tool for estimating the validity of different 

assumptions, for making a critical examination of proposed reaction mechanisms, and for 

estimating some unknown parameters. The accuracy of these calculations is best 

determined by comparing their predictions with experimental data on well-characterized 

chemical systems that have been examined with a wide variety of incident radiation 

particles and energies. 

TURNER and his coworkers (1981,1983,1988b) at the Oak Ridge National 

Laboratory (Oak Ridge, Tennessee, U.S.A.) jointly with MAGEE and CHATTERJEE at 

Lawrence Berkeley Laboratory (Berkeley, California, U.S.A.) were the first to use Monte-

Carlo calculations to derive computer-plot representations of the chemical evolution of a 

few keV electron tracks in liquid water at times between ~10-12 and 10-7 s. ZAIDER and 

BRENNER (1984) also described such an approach, and their calculated time-dependent 

yields of eaq and •OH radicals were somewhat similar to values measured or derived in 

pulse-radiolysis studies of pure water. Following these pioneering works, stochastic 

simulation codes employing Monte Carlo procedures were used with success by a number 

of researchers to study the relationship between the track structure and the following 

chemical processes that occur in the radiolysis of both pure water and water containing 

solutes (for a comprehensive list and reviews, see, for example: BALLARINI et al., 2000; 

UEHARA and NIKJOO, 2006). Two main approaches have been widely used: (1) the 

“step-by-step” (or random flights Monte Carlo simulation) method, in which the 

trajectories of the diffusing species of the system are modeled by time-discretized random 

flights and in which reaction occurs when reactants undergo pair wise encounters, and (2) 

the “independent reaction times” (IRT) method (CLIFFORD et al., 1986; PIMBLOTT et 

al., 1991; PIMBLOTT and GREEN, 1995), which allows the calculation of reaction times 
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without having to follow the trajectories of the diffusing species. Among the stochastic 

approaches, the most reliable is certainly the full random flights simulation, which is 

generally considered as a measure of reality. However, this method can be exceedingly 

consuming in computer time when large systems (such as complete radiation tracks or 

track segments) are studied. The IRT method, a computer efficient stochastic simulation 

technique, has been devised to achieve much faster realisation than are possible with the 

full Monte-Carlo model. In essence, it relies on the approximation that the distances 

between pairs of reactants evolve independently of each other, and therefore the reaction 

times of the various potentially reactive pairs are independent of the presence of other 

reactants in the system. 

In a program begun in the early 1990’s, our group has also developed and 

progressively refined with very high levels of detail several Fortran-based Monte Carlo 

codes that simulate the track structure of ionizing particles in water, the production of the 

various ionized and excited species, and the subsequent reactions of these species in time 

with one another or with available solutes (COBUT et al., 1994, 1998; FRONGILLO et al., 

1996, 1998; HERVÉ DU PENHOAT et al., 2000; MEESUNGNOEN et al., 2001, 2003, 

2013, 2015; MEESUNGNOEN and JAY-GERIN, 2005a,b; MUROYA et al., 2002, 2006). 

A most recent version of the codes, called IONLYS-IRT (MEESUNGNOEN and JAY-

GERIN, 2005a,b), has been used in the present work. Briefly, the IONLYS step-by-step 

simulation program models all events of the physical and physicochemical stages in the 

track development. The third and final nonhomogeneous chemical stage is covered by the 

program IRT, which employs the IRT method (CLIFFORD et al., 1986; GREEN et al., 

1990; PIMBLOTT et al., 1991) to model the chemical development that occurs during this 

stage and to simulate the formation of measurable yields of chemical products. The 

detailed description and implementation of the IONLYS-IRT has already been given 

(MEESUNGNOEN and JAY-GERIN, 2005a,b, and references therein), and will not be 

reproduced here, only a brief overview of the most essential features of the simulation 

methodology and reaction scheme, pertinent to the current calculations, is given below. 
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2.1 The IONLYS code 

The IONLYS simulation code is used to cover the early “physical” and 

“physicochemical” stages of radiation action up to ~10-12 s. It is actually composed of two 

codes, one (named TRACPRO) for transporting the investigated incident charged particle 

(proton or any other heavy ion projectile) and another one (named TRACELE) for 

transporting all of the energetic electrons (collectively named “secondary electrons”) that 

result from the passage of ionizing particle in liquid water. The code models, event by 

event, all the basic physical interactions (energy deposition) and the subsequent 

establishment of thermal equilibrium in the system (conversion of the physical products 

created locally after completion of the physical stage into the various “initial” chemical 

species of the radiolysis).  

In particular, IONLYS provides the detailed distribution of coordinates of all 

physical events, including ionization, electronic and vibrational excitation of single water 

molecules, and excitation of plasmon-type collective modes, that occur locally during the 

slowing-down of the irradiating charged particle and of all the secondary electrons that it 

has generated. The particle will interact with water based on the probability per unit 

distance of each particle’s energy or cross section. The code begins by selecting a 

particular distance to the first interaction site for the incident particle. The calculation 

continues with the random choice of the type of interaction (ionization, excitation of 

electronic, vibrational and rotational levels of single water molecules, excitation of 

plasmon-type collective modes, and elastic scattering) that occurs. This cross section 

entered as input data in the code, based on direct measurement or on theoretical 

estimations. These collisions cross sections are needed to follow the history of the charged 

particle. If an inelastic collision is ionization, the particle’s energy is reduced by the energy 

loss selected. The secondary electron produced is given a kinetic energy equal to this 

energy loss minus the binding energy (or ionization energy) of the target electron. The 

energy-dependent cross sections for the elastic and inelastic processes occurred, angular 

distributions, are entered as input data as well. Delta rays are produced at sites of high 

energy loss. Each time a secondary electron is produced, the code proceeds by transporting 

it until its energy falls below the threshold for electronic excitations, equal to ~7.3 eV for 
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liquid water (MICHAUD et al., 1991) (these electrons are denoted as “subexcitation” 

electrons). If a collision is elastic, an angle of scattering is selected and the flight distance 

for the next collision site is chosen. The probabilities or cross sections for all of the 

individual molecular processes and their alternatives are entered as input data in Monte-

Carlo code, based on direct measurements (where available, cross section data in the case 

of liquid water are scarce) or on the theoretical estimations (COBUT et al., 1998; 

MEESUNGNOEN and JAY-GERIN, 2005a). These collision cross sections are needed to 

follow the history of an energetic charged particle and its products, covering all ranges of 

energy transferred in individual collisions. Most importantly, they provide the mean free 

path used to determine the distance to the next interaction, the type of interaction at each 

event, energy loss, and the angle of emission of the scattered particle (for example, see: 

DINGFELDER and FRIEDLAND, 2001; NIKJOO et al., 2006; DINGFELDER et al., 

2008). The computer simulation thus provides complete information on the spatial 

distribution of ionized and excited water, H2O
•+ and H2O

*, and subexcitation electrons, e-
sub 

(energy < 7.3 eV), produced along the incident charged particle trajectory during the 

physical stage of the radiation action. This stage is concluded in ~10-15 s. Full details of the 

cross-section database used in the IONLYS code can be found in the references cited 

(COBUT, 1993; COBUT et al., 1998; MEESUNGNOEN and JAY-GERIN, 2005a). It is 

worth mentioning that this code, which uses protons or heavy ions as the primary particles, 

is particularly well adapted to the study of the fast-neutron radiolysis of water, since the 

ionizing particles involved in this case are proton and oxygen ion recoils. Interestingly, the 

choice of proton impact in the Sherbrooke code was originally adopted owing to the fact 

that protons represent, by far, the most comprehensive database of cross sections for bare 

ion collisions (not only on water but also on a number of different target atoms or 

molecules; e.g., see RUDD, 1990; RUDD et al., 1992; IAEA-TECDOC-799, 1995; 

DINGFELDER et al., 2000), and also because they constitute a valuable tool for studying 

LET effects on radiolytic yields (COBUT et al., 1998). Another great advantage of the 

code is that, while it was devised for protons, it can also be used for heavier ion projectiles 

by assuming that the interaction cross sections scale as Z2, where Z is the projectile charge 

number. In this scaling procedure, based on the lowest-order (or first Born) approximation 

of perturbation theories, the cross sections for bare ion impact are approximately Z2 times 
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the cross sections for proton impact at the same velocity. This simple Z2 scaling rule, which 

holds at sufficiently high impact energies (say above ~1 MeV/nucleon) where the 

interactions are not too strong, is particularly useful for providing cross sections for 

ionization and excitation by ion projectiles, especially as there are only limited 

experimental data available involving ions heavier than proton or helium in collision with 

water molecules (MEESUNGNOEN and JAY-GERIN, 2005; MEESUNGNOEN, 2007; 

MEESUNGNOEN and JAY-GERIN, 2010; INOKUTI, 1971). In practice, the stochastic 

selection of the scattering events is done with various sampling techniques (direct 

inversion, etc.; e.g., see KNUTH, 1998; DEGROOT and SCHERVISH, 2002) in 

accordance to the appropriate scattering cross sections for each process induced by the 

considered charged particle. All these techniques use pseudo-random numbers uniformly 

distributed on the interval between 0 and 1. 

The simulations performed with IONLYS consist in the generation of short high-

energy proton (ion) track segments in water. The primary particle is simulated until it has 

penetrated the chosen length of the track segment into the medium. Note that, due to its 

large mass, the proton (or the impacting heavy ion) is almost not deflected by collisions 

with the target electrons. In the present simulations, these deflections are simply neglected. 

The use of small path segments is particularly useful as the instantaneous LET of the 

incident particle is nearly constant over such segments and can be varied simply by 

changing its energy. All of the produced energetic (dry) secondary electrons are explicitly 

transported spatially from their initial energies until they reach the subexcitation energy 

region below ~7.3 eV, the threshold assumed for electronic excitation in liquid.1 The 

location, type of collision, specific quantum transition, and energy transferred are 

determined by the IONLYS code, event by event. All physical details about the various 

elastic and energy-loss processes involved and the corresponding scattering cross sections 

employed by IONLYS for the simulation can be found in COBUT (1993), COBUT et al. 

(1998), and MEESUNGNOEN and JAY-GERIN (2005a). 

1
 Recall here that most energy-loss events by the fast primary charged particle involve small 

transfers of energy. In fact, Monte-Carlo simulations have shown that the most probable energy loss for liquid 

water is 15-20 eV, while the track-averaged mean energy loss is around 50-60 eV, depending on the authors 

(LAVERNE and PIMBLOTT, 1995; COBUT et al., 1998; AUTSAVAPROMPORN, 2006). COBUT et al. 

(1998) also calculated that, if we sum all the electrons ejected directly by the primary particle and by the 

successive generations of secondary electrons, 88% of them have kinetic energies less than 20 eV. 
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The time that a secondary electron takes to reach a subexcitation energy is <10-15 s. 

The thermalization of subexcitation electrons is treated by IONLYS using the distribution 

of thermalization distances obtained from Monte Carlo track-structure calculations 

(GOULET and JAY-GERIN, 1989; GOULET et al., 1990, 1996; MEESUNGNOEN et al., 

2002b) based on experimental scattering cross sections of slow (~1-100 eV) electrons in 

amorphous ice films at 14 K (MICHAUD et al., 2003) with corrections to account for the 

liquid phase. Given the initial position of the subexcitation electron, its position is simply 

displaced in a randomly selected, isotropic direction by the corresponding, energy-

dependent mean penetration distance. 

At this new position, the electron is regarded as thermalized and subsequently 

trapped and hydrated. However, an approximation likely to be valid in a highly polar 

medium such as liquid water in which very low energy (e.g., “sub-vibrational”) electrons 

have a strong tendency – due to the presence of a large density of possible electron 

trapping sites – to get instantly trapped prior to thermalization (MOZUMDER, 1999). As 

mentioned before, the time scale of thermalization, trapping, and hydration of a 

subexcitation electron in liquid water at 25 °C is less than ~10-12 s. Finally, it is worth 

recalling here that a certain proportion of subexcitation electrons actually never get 

thermalized, but instead undergo prompt recombination2 with their positive parent ion 

H2O•+ or dissociative attachment (DEA) onto a surrounding H2O molecule (see Figure 1.2). 

All details about the various parameters intervening in the IONLYS code to describe this 

competition between thermalization, geminate recombination, and dissociative attachment, 

as well as the values of the branching ratios used in the code for the different dissociative 

decay channels of the electronically and vibrationally excited H2O molecules, can be found 

in SANGUANMITH et al. (2011a). 

 

2
About 25.5% of the subexcitation electrons are found to initially recombine with H2O•+ (MEESUNGNOEN 

and JAY-GERIN, 2005a), with an average recombination time as short as a few femtoseconds (GOULET et al., 1990). 

This average recombination time shows that the recombination process mainly occurs on the water cation and not on 

H3O+, that is, before the proton transfer reaction H2O•+ + H2O  H3O+ + •OH takes place (~10 fs) (which would change 

the nature of the cation and therefore affect the values of the recombination cross section). In other words, the 

subexcitation electron recombines quickly (in the first steps of its random walk) on H2O•+. If it does not recombine 

quickly, it will never recombine, and will thus become thermalized (unless, of course, it makes a dissociative attachment 

on a water molecule) (~56 fs), trapped (~50-300 fs), and hydrated (~240 fs-1 ps) (MEESUNGNOEN and JAY-GERIN, 

2005a; JAY-GERIN et al., 2008 and references therein). 
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2.2 The IRT code 

 

The complex spatial distribution of reactants at the end of the physicochemical 

stage (~1 ps; we assume that this time also marks the beginning of diffusion), which is 

provided as an output of the IONLYS program, is then used directly as the starting point 

for the subsequent nonhomogeneous chemical stage. This third and final stage, during 

which the individual reactive species diffuse randomly at rates determined by their 

diffusion coefficients and react with one another (or with any added solutes present at the 

time of irradiation) until all spur or track processes are complete, is covered by the IRT 

program (CLIFFORD et al., 1986; GREEN et al., 1990; PIMBLOTT et al., 1991). IRT is a 

computer efficient stochastic simulation technique that is used to simulate reaction times 

without following the trajectories of the diffusing species. This method is based on the 

approximation that the distances between pairs of reactants evolve independently of each 

other, and therefore the reaction times of the various potentially reactive pairs are 

independent of the presence of other reactants in the system. In essence, the simulation 

begins by considering the initial, or “zero-time”, spatial distribution of the reactants (given 

by the IONLYS program). The separations between all the pairs of reactants are first 

calculated. Overlapping pairs (i.e., pairs formed in a reactive configuration) are assumed to 

combine immediately. For each remaining pair, a reaction time is stochastically sampled 

according to the reaction time probability distribution function (GREEN et al., 1990; 

GOULET and JAY-GERIN, 1992; FRONGILLO et al., 1998) that is appropriate for the 

type of reaction considered. This function depends upon the initial distance separating the 

species, their diffusion coefficients, their Coulomb interaction (for reactions between ionic 

species), their encounter distance (derived from the Smoluchowski equation), and the 

probability of reaction during one of their encounters. The competition between the various 

reactions is taken into account by realizing them in the ascending order of sampled reaction 

times. 

When a reaction occurs, the reactants become unavailable for the competing 

reactions that are sampled to occur at longer times but one must then consider the possible 

reactions of the newly formed products with the species that have survived up to that point. 
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The minimum of the new ensemble of reaction times is the next reaction time. The 

simulation proceeds in this manner until a pre-defined cut-off time is reached or all the 

potentially reactive pairs have reacted. Since the IRT method is solely based on a 

comparison of reaction times, it does not follow the trajectories of the diffusing species. 

Therefore, a special procedure must be devised to sample the positions of the 

reaction products and of the species with which newly formed species can, in turn, react 

(CLIFFORD et al., 1986). The inclusion of a scavenger in the system does not affect the 

general simulation technique. In fact, the IRT program allows one to incorporate in a 

simple way pseudo first-order reactions of the radiolytic products with various scavengers 

that are homogeneously distributed in the solution, such as H+, OH, and H2O itself, or 

more generally any solute for which the relevant reaction rates are known. Similarly, the 

truly first-order fragmentations of the species are easily simulated. Finally, the IRT method 

is very well suited for the description of reactions that are only partially diffusion-

controlled (most reactions that occur in irradiated water are not diffusion-controlled even at 

room temperature), an adequate description of the activation processes that are involved in 

those reactions is a prerequisite for the modeling of the effects of high temperature on 

water radiolysis), in which the species do not react instantaneously on encounter but 

experience, on the average, many encounters and separations before they actually react 

with each other. The ability of the IRT method to give accurate time-dependent chemical 

yields under different irradiation conditions has been well validated by comparison with full 

random flights (or “step-by-step”) Monte-Carlo simulations, which do follow the particle 

trajectories in detail (PIMBLOTT et al., 1991; GOULET et al., 1998; PLANTE, 2009). 

An approximate dependence of the diffusion coefficient on temperature in liquids 

can often be found using the Stokes–Einstein equation, which predicts that (ELLIOT, 

1994) 

D / T = constant = 6.657 × 10-15 kg m s-2 K-1 ,    (2.1) 

where D is the diffusion coefficient of the species (m2/s),  is the dynamic viscosity of the 

solvent (kg m-1 s-1), and T is the absolute temperature (K). Compared to the original version 

of our IRT program some diffusion coefficients of reactive species and the temperature 
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dependence of reaction rate constants have been updated. Figure 2.1 shows the diffusion 

coefficients of various species as a function of temperature that are used in our Monte-

Carlo simulations. The list of the main track chemical reactions and the values of reaction 

rate constants considered in our simulations of the radiolysis of pure liquid water as a 

function of temperature is taken, for a large part, from the recent report compiled by 

ELLIOT and BARTELS (2009). For reference, this list is given, at 25 °C, in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1: Diffusion coefficients (D) for various track species involved in our 

simulations (ELLIOT and BARTELS, 2009). 

 

Finally, in the present study, all our calculations were performed by simulating 

short (typically, ~1-5 μm) track segments of the two He and Li ions emitted from the 

10B(n,)7Li nuclear reaction, over which the energy and LET of each ion are well defined 

and remain nearly constant. Such model calculations thus gave “track segment” yields 

(LAVERNE, 2004) at a well-defined LET. The number of individual ion “histories” 

(usually ~2-10) was chosen so as to ensure only small statistical fluctuations in the 

computed averages of chemical yields, while keeping acceptable computer time limits. 
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Table 1:  Main track reaction scheme and rate constants (k) for the radiolysis of pure liquid 

water at 25 °C (MEESUNGNOEN, 2007). Some values of k have been updated 

by using the most recently available data of ELLIOT and BARTELS (2009). For 

first-order reactions, the value of k is given in s-1. 
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3.   STOPPING AND RANGE OF IONS IN MATTER (SRIM) 

The “Stopping and Range of Ions in Matter” (SRIM) is a group of computer 

programs which calculate the interactions of energetic ions penetrating into matter; the core 

of SRIM originated as a DOS-based program named “Transport of Ions in 

Matter” (TRIM). The programs were developed by James F. Ziegler and Jochen P. 

Biersack around 1983 and are being continuously upgraded with the major changes 

occurring approximately every six years (ZIEGLER et al., 1985, 2008, 2010, 2015; 

BIERSACK and HAGGMARK, 1980). SRIM is based on a Monte Carlo simulation 

method, namely, the binary collision approximation with a random selection of the impact 

parameter of the next colliding ion. 

Using SRIM, the energy loss, range and straggling distribution of ions in matter can 

be calculated. More elaborate calculations include targets with complex multi-layer 

configurations.  Ion beams are used to modify samples by injecting atoms to change the 

chemical and electronic properties of the target. The ion beam also causes damage to solid 

targets by atom displacement. 

The most recent version of SRIM uses the “Core and Bond” (CAB) approach to 

predict the stopping power of compounds. Previously, the stopping power of a compound 

was estimated only by Bragg’s rule (BRAGG and KLEEMAN, 1905), that is, by 

considering the linear combination of the stopping powers of its individual elements. SRIM 

uses the CAB approach to generate corrections between Bragg’s rule and compounds 

containing the common elements in compounds: H, C, N, O, F, S, and Cl. These light 

atoms have the largest bonding effect on stopping powers. SRIM correctly predicts the 

stopping of H and He ions in compounds with an accuracy of better than 2% at the peak of 

their stopping power curve (ZIEGLER et al., 2010, 2015). As for the stopping power of 

high-energy heavy ions (Z > 3), the charge state of the projectile ion is also an important 

parameter to consider. The Brandt-Kitagawa (BK) dielectric-response approximation 

(BRANDT and KITAGAWA, 1982) is a very useful tool to derive the effective charge of 

heavy ions. BK improved an earlier theory suggesting that an energetic heavy ion would 

lose any of its electrons whose classical velocity was slower than the ion’s velocity. These 

authors showed that one should consider instead the loss of any electrons whose velocity 

https://en.wikipedia.org/wiki/Stopping_power_(particle_radiation)
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Binary_collision_approximation
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was slower than the relative velocity of the projectile ion to the target medium. This 

lowered the charge state of heavy ions since the relative velocity of the ion was always 

lower than its absolute velocity. BK then presented a simple method of calculating this 

relative velocity based on considering the target to be a perfect Fermi conductor. This 

significantly improved the calculation of stopping powers (ZIEGLER et al., 1985). 

SRIM uses several different stopping theories to evaluate the accuracy of 

experimental stopping powers. Specifically, calculations are made for all ions in individual 

targets (which eliminates common difficulties with target dependent quantities such as 

shell corrections and mean ionization potentials). If the experimental values are within 

reasonable agreement with these theoretical calculations, then the experimental values are 

weighted with the theoretical values to obtain final values. 

In the current study, we used SRIM program to observe the trajectories of the Li 

and He recoil ions through liquid water. 
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4.  ARTICLE no. 1 

Monte Carlo track chemistry simulations of the radiolysis of water induced by the 

recoil ions of the 10B(n,α)7Li nuclear reaction. 1. Calculation of the yields of primary 

species up to 350 °C. 

Authors: Muhammad Mainul Islam, Phantira Lertnaisat, Jintana Meesungnoen, 

Sunuchakan Sanguanmith, Jean-Paul Jay-Gerin, Yosuke Katsumura, Satoru Mukai, Ryuji 

Umehara, Yuichi Shimizu and Masashi Suzuki 

Status: Published in Royal Society of Chemistry Advances, 2017, vol.: 7 (issue: 18), pages: 

10782-10790 (DOI: 10.1039/c6ra28586d). Impact factor: 3.108. 

Forward: This work focuses on the calculation of the yields of all primary species 

produced in the radiolysis of pure neutral liquid water and 0.4 M H2SO4 aqueous solutions 

by the  and Li recoils of the 10B(n,α)7Li nuclear reaction from 25 to 350 °C, using Monte 

Carlo track chemistry simulations. The yields are obtained at 10-7 s and 10-6 s and agree 

well with existing estimates. Our simulations show downward inflections in the yields of 

both H2 and H2O2 above 150 °C. Measurements of the (e−aq + e−aq) reaction rate constant in 

near-neutral water would help determine whether these predicted non-monotonic 

inflections are confirmed. This study is important for the nuclear industry where the 

radiolysis of water by high-LET radiation takes place under extreme operating conditions 

of high temperatures and pressures. 

Résumé : Dans ce travail, nous calculons les rendements des espèces primaires de la 

radiolyse de l'eau pure et de solutions aqueuses H2SO4 0,4 M par les ions de recul de la 

réaction nucléaire 10B(n,α)7Li en fonction de la température entre 25 et 350 °C, en utilisant 

des simulations Monte Carlo. Les rendements, obtenus à 10-7 et 10-6 s, sont en bon accord 

avec l’expérience. Nos résultats montrent des inflexions dans les courbes de G(H2) et de 

G(H2O2) au-dessus de 150 °C. Des mesures de la constante de vitesse de la réaction bi-

moléculaire des électrons hydratés (e−aq + e−aq) en solution neutre ou faiblement acide 

permettraient de déterminer si l’existence de ces inflexions est confirmée. Cette étude est 

importante pour l'industrie nucléaire où la radiolyse de l'eau se fait par des rayonnements 

de TEL élevé, dans des conditions extrêmes de haute température et pression. 
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ABSTRACT 

Monte Carlo track chemistry simulations were carried out to predict the yields (G-values) 

of all primary radical and molecular species produced in the radiolysis of pure, neutral 

water and 0.4 M sulfuric acid aqueous solutions by the recoil ions of the 10B(n,α)7Li 

nuclear reaction as a function of temperature from 25 to 350 °C. The calculations were 

performed individually for 1.47 MeV -particles and 0.84 MeV lithium nuclei with “dose-

average” linear energy transfer (LET) values of ~196 and ~225 eV nm-1 at 25 °C, 

respectively. The overall yields were calculated by summing the G-values for each recoil 

ion weighted by its fraction of the total energy absorbed. In the calculations, the actual 

effective charges carried by the two helium and lithium ions (due to charge exchange 

effects) were taken into account and the (small) contribution of the 0.478 MeV -ray, also 

released from the 10B(n,α)7Li reaction, was neglected. Compared with data obtained for 

low-LET radiation (60Co γ-rays or fast electrons), our computed yields for the 10B(n,α)7Li 

radiolysis of neutral deaerated water showed essentially similar temperature dependence 

over the range of temperatures studied, but with lower values for yields of free radicals and 

higher values for molecular yields. This general trend is a reflection of the high-LET 

character of the 10B(n,α)7Li recoil ions. Overall, the simulation results agreed well with 

existing estimates at 20 and 289 °C. For deaerated 0.4 M H2SO4 solutions, reasonable 

agreement between experiment and simulation was also found at room temperature. 

Nevertheless, more experimental data for both neutral and acidic solutions would be 

needed to better describe the dependence of radiolytic yields on temperature and to test our 

modeling calculations more thoroughly. Moreover, measurements of the (e−aq + e−aq) 

reaction rate constant in near-neutral water would help us determine whether the predicted 

non-monotonic inflections above ~150 °C in G(H2) and G(H2O2) are confirmed. 
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1.  Introduction 

Boron-10 is one of the stable isotopes of boron with a natural abundance of ~20%. 

It is known to exhibit a high propensity to absorb thermal neutrons with a neutron-capture 

cross-section of 3835 barns (1 barn = 10-28 m2), which is about six times greater than that 

of uranium-235 and three orders of magnitude greater than that of the nuclei of living 

tissues.1 On absorption of a slow neutron, a fission reaction occurs with the release of two 

energetic heavy ions: an α-particle (1.47 MeV) and, in ~94% of all reactions, a 7Li3+ 

nucleus in its first excited state (0.84 MeV) which quickly returns to its ground state (half-

life of ~10-13 s) by releasing a low-energy γ-ray (478 keV).2 These heavy charged particles 

have path lengths in the range of ~5-8 m in water or biological tissues and exhibit high 

linear energy transfer (LET, or energy loss per unit path length -dE/dx, in units of eV nm-1) 

characteristics, as shown in Fig. 1.3,4 Because of this high energy deposition to the 

surrounding environment and the  and Li recoils' short travel distances, which are 

typically of the order of a cell diameter, the 10B(n,α)7Li nuclear reaction has been used in 

clinical studies of biochemically targeted radiotherapies for cancer treatment known as 

“boron neutron capture therapy” (BNCT).1,5  

BNCT is a potentially ideal radiotherapy modality for glioblastoma, which is a type 

of brain tumor that is rarely removed surgically. When a cancer cell is allowed to take up 

preferentially a sufficient concentration of 10B, it can be selectively irradiated by the very 

densely ionizing ion recoils from the 10B(n,α)7Li reaction without damaging the 

surrounding normal tissue. This basic idea was first proposed by Locher in 1936,6 shortly 

after the discovery of the neutron by Chadwick.7 Interest in BNCT was spurred by Kruger's 

study in 1940, who reported a low transplantation efficiency for tumors treated by BNCT in 

vitro and subsequently implanted in mice.8,9 Although the full clinical application of BNCT 

presents several difficulties, including the inadequate selectivity and toxicity of 10B 

delivery agents and the poor distribution of neutron flux, clinical trials of BNCT are still 

under way and new neutron irradiation facilities continue to be developed in Japan, the 

United States, Finland, and several other countries.1,5,10–12  

Apart from BNCT, the unique properties of boron-10 have also been extensively 

applied in the field of nuclear industry. For example, boron carbide (B4C), enriched in 10B, 

is used as a control-rod material (neutron absorber) in boiling water reactors (BWRs). In 
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addition, boron as boric acid (H3BO3) is generally added as a water-soluble neutron poison 

in the primary coolant of pressurized water reactors (PWRs) to control the neutron flux and 

the reactivity in the core.13–16 However, recoil ions arising from the 10B(n,α)7Li reaction act 

as sources of high-LET radiation in the primary coolant of PWRs, thereby leading to the 

formation of oxidizing species, such as hydrogen peroxide and oxygen, due to the 

radiolysis of water.17,18  

The radiolysis of water is closely linked to the corrosion of structural materials. 

Water, which is used as the neutron moderator and the reactor coolant, is unavoidably 

exposed to extreme conditions of high temperature (~275-325 °C), pressure (~7-15 MPa), 

and intense mixed neutron and β-γ radiation fields (which have characteristically different 

LET values). Under these conditions, the radiolysis of water results in the formation of free 

radical (e−aq, 
•OH, •H, and HO2

•/O2
•−) and molecular (H2,H2O2, and O2) species which alter 

the chemical environment of the coolant.18–20 The presence of the oxidizing species H2O2 

and O2 can significantly increase the corrosion potential of coolant water in BWRs.16,21,22 

In PWRs, the presence of boron-10 results in high-LET recoil ions and complicates the 

radiolytic process. Although 10B has been widely studied both in nuclear technology and 

clinical research, little attention has been devoted to 10B-induced reactions. In particular, 

data on the formation of primary products and their yields (G-values) for 10B(n,α)7Li recoil 

irradiation of neutral water are scarce and uncertain.15,19 In fact, the only reported 

measurements at room temperature were made in acid (0.4 M H2SO4) solution.23–25 

Similarly, the G-values at reactor temperatures are not well known. To the best of our 

knowledge, there is only one report19 that estimated a complete set of water decomposition 

yields induced by the 10B(n,α)7Li reaction at 289 °C. 

Understanding the radiation chemistry of the coolant water in reactors is important 

for maintaining the proper chemical environment that will minimize the degradation of 

materials. Recently, computer simulations have played a substantial role in evaluating the 

concentrations of oxidizing species produced from coolant-water radiolysis, which is 

difficult to observe directly because of the extreme operating conditions involved. In this 

current work, Monte Carlo track chemistry simulations were undertaken to predict the G-

values for the various primary radical and molecular products formed from the radiolysis of 

pure, neutral water and 0.4 M H2SO4 aqueous solutions by the 10B(n,α)7Li reaction as a 
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function of temperature from 25 to 350 °C. The paper is organized as follows. The main 

features of our simulation approach are given in the next section. Sections 3 and 4 present, 

respectively, the results of our simulations of the 10B(n,α)7Li radiolysis of water at neutral 

pH and of 0.4 M H2SO4 aqueous solutions at 25 °C and as a function of temperature up to 

350 °C, and their discussion. Conclusions are drawn in the final section. 

A brief preliminary report of this work has been presented elsewhere.26 

 

 

 

 

 

 

 

Fig. 1 Scheme of the nuclear reaction resulting from the low-energy (< 0.5 eV) thermal 

neutron capture by a 10B atom. After absorption, 94% of the reactions leave the 7Li ion in 

its first excited state (7Li*) which rapidly de-excites to the ground state by releasing a 478 

keV γ-ray. For the remaining 6% of the reactions, the 7Li ion is left directly in its ground 

state resulting in the emission of a 1.78 MeV α-particle and a 1.02 MeV 7Li ion. Note that 

the 4He and 7Li recoil ions are in opposite directions (i.e., at a 180° angle), away from the 

site of the compound nucleus, and hence they form one straight track. 

2.  Monte Carlo track chemistry simulations 

The entire sequence of events generated in the radiolysis of liquid water by 

10B(n,)7Li recoil ions was modeled using our Monte Carlo track chemistry simulation 

code called IONLYS-IRT. This computer program simulates, in a 3D geometrical 

environment, the highly nonhomogeneous distribution of reactive species initially 

produced by the absorption of incident radiation and all of the energetic secondary 

electrons, as well as the subsequent diffusion and chemical reactions of these species. A 

detailed description of the current version of the code at both ambient and elevated 



50 
 

temperatures and under low- and high-LET irradiation conditions has been reported 

previously.27–30 In brief, the IONLYS step-by-step simulation program models all of the 

events of the early “physical” and “physicochemical” stages31 of radiation action up to ~1 

ps in the track development. The complex, highly nonhomogeneous spatial distribution of 

reactants formed at the end of the physicochemical stage [e−aq, H
+, OH−, H•, •OH, H2, H2O2, 

HO2
•/ O2

•-, •O• (3P), O(1D), O2,...], which is provided as an output of the IONLYS program, 

is then used directly as the starting point for the subsequent “nonhomogeneous chemical” 

stage31 (typically, from ~1 ps to the s time scale at 25 °C). This third stage, during which 

the different radiolytic species diffuse randomly at rates determined by their diffusion 

coefficients and react with one another (or with dissolved solutes, if any) until all track 

processes are complete, is covered by our IRT program. This program employs the 

“independent reaction times” (IRT) method,32–34 a computationally efficient stochastic 

simulation technique that is used to simulate reaction times without having to follow the 

trajectories of the diffusing species. The IRT method relies on the approximation that the 

reaction time of each pair of reactants is independent of the presence of other reactants in 

the system. Its ability to give accurate time dependent chemical yields under different 

irradiation conditions has been well validated by comparison with full random flights (or 

step-by-step) Monte Carlo simulations, which do follow the reactant trajectories in 

detail.35,36 This IRT program can also be used to efficiently describe the reactions that 

occur in the bulk solution during the “homogeneous chemical” stage,31 i.e., in the time 

domain beyond a few microseconds. The model assumptions and procedures employed to 

carry out the Monte Carlo simulations of the radiolysis of aqueous 0.4 M H2SO4 solutions 

(pH ~ 0.46) with IONLYS-IRT have already been given.37,38 In the current version of 

IONLYS-IRT, we used the self consistent radiolysis database, including rate constants and 

diffusion coefficients, recently compiled by Elliot and Bartels.20 This new database 

provides recommendations for the best values to use in high-temperature modeling of 

water radiolysis over the range of 20-350 °C. 

Pre-simulations were performed using the SRIM simulation program39 to calculate 

1000 tracks of 1.47 MeV -particles and 0.84 MeV lithium nuclei emitted from the 

10B(n,α)7Li reaction, and the energies and LET values of the 2 recoil ions as a function of 

penetration depth in water (Fig. 2). As shown, the initial LETs of helium and lithium ions 



51 
 

were ~193 and 304 eV nm-1, respectively. The LET of 1.47 MeV 4He2+ ions calculated 

using our Monte Carlo simulations agreed very well with the SRIM simulation results. 

Since the SRIM program incorporates the change of charge state of the moving ion as it 

goes into and through the target (due to the effects of electron capture and loss by the ion), 

this agreement indicates that the helium ion, when it travels with this energy, is fully 

stripped of its electrons. However, for 0.84 MeV 7Li3+ ions, our calculations gave a LET 

which is more than twice the expected value. This difference was explained as being 

caused by a change in the charge state of the lithium ion, which always acts to reduce its 

LET relative to the LET of the bare nucleus. Our Monte Carlo simulations were used to 

calculate the “effective charge” (Z*) of a 0.84 MeV lithium ion in water that was required 

to reproduce the SRIM LET value of 304 eV nm-1. A value very close to +2 (instead of +3) 

was actually obtained, clearly indicating a partial neutralization of the lithium ion at this 

energy. 

The above results confirm the importance of making charge state calculations for 

each recoil ion in this study. In this work, however, to avoid complexity arising from 

energy-dependent charge exchange processes, simulations were performed under the 

simplifying approximation that the energies of the two recoil ions remained constant when 

passing through the water medium. These constant average energy values 
HeE  and 

LiE  

were chosen according to the following procedure: (1) Watt's compilation of quantities for 

radiation dosimetry in liquid water3 was first used to determine the “dose-average” LET 

values for both 1.47 MeV helium and 0.84 MeV lithium ions. The values thus obtained 

were ~196 and 225 eV nm-1, respectively; (2) using Fig. 2(c), these two LET values were 

then related to the corresponding penetration depths of the two recoil ions in water, 

namely, ~5.5 and 1.5 m, respectively; and (3) 
HeE  and 

LiE  were finally deduced from Fig. 

2(b) as being equal to the energies of the two ions at these penetration depths, namely, ~0.3 

and 0.4 MeV, respectively. Once these two energies are known, the actual effective charges 

carried by the two helium and lithium ions having these energies were determined as 

described above by using our Monte Carlo simulations and by adjusting Z* so as to 

reproduce the expected LET values. Z*
He and Z*

Li were found to be about +1.6 and +1.7, 

respectively. 
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Fig. 2 SRIM simulation of the penetration of the recoil helium and lithium ions of the 
10B(n,α)7Li reaction into liquid water at room temperature: (a) simulated ion trajectories; 

(b) and (c) variations of the energy and LET of the two ions as a function of penetration 

depth, respectively (the points selected in this study are indicated by arrows). Total ions 

calculated: 1000. 



53 
 

All calculations were performed by simulating short (typically, ~1-5 m) ion track 

segments, over which the energy and LET of the ion are well defined and remain nearly 

constant. Such model calculations thus gave “track segment” yields40 at a well defined 

LET. The number of individual ion “histories” (usually ~2-100, depending on the 

irradiating ion and energy) was chosen to ensure only small statistical fluctuations in the 

computed averages of chemical yields while keeping acceptable computer time limits. 

Finally, the yields of primary free radical or molecular products of water radiolysis induced 

by the recoil ions of the nuclear reaction 10B(n,α)7Li were calculated by summing the G-

values for each recoil ion (obtained from our Monte Carlo simulations) weighted by its 

fraction of the total energy absorbed according to38,41 

𝐺(𝑋i) =
𝐺(𝑋i)He 𝐸He+𝐺(𝑋i)Li 𝐸Li

 𝐸T
 ,        (1) 

where G(Xi)He and G(Xi)Li are the yields of species Xi associated with the recoil helium and 

lithium ions, respectively, and ET = EHe + ELi is the sum of the initial energies of the ion 

products of the reaction (i.e., 2.31 MeV). 

Absorption of the accompanying 0.478 MeV -ray in the aqueous solution (see Fig. 

1) is small in our area of interest. Indeed, the range of an electron of this energy is ~1 mm 

in liquid water at 25 °C;42 this is more than 100 times larger than the penetration ranges of 

the He and Li ions, which are only 5–8 m. Thus, its contribution to the overall chemical 

reaction was neglected in this study. 

Throughout this paper, G-values are quoted in units of molecules formed or 

consumed per 100 eV of radiation energy absorbed. For conversion into SI units, 1 

molecule/100 eV = 0.10364 mol J-1. 

3.  Results and discussion 

The temperature dependences of our computed yields of e−aq, H
•, •OH, H2 and H2O2 

in pure, deaerated liquid water irradiated by the 10B(n,)7Li recoil ions from ambient up to 

350 °C are shown in Fig. 3 along with estimated G-values at 20 °C (ref. 15) and 289 °C.19 

For the sake of comparison, our G-values were calculated at two different times, namely 

10-7 and 10-6 s after energy deposition at all temperatures (solid, blue and red lines shown 
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in Fig. 3, respectively). Compared with the data obtained for low-LET radiation (γ-rays 

from 60Co or fast electrons), our computed yields for 10B(n,)7Li recoil irradiation show 

essentially similar temperature dependences over the range of temperatures studied, but 

with much lower values for yields of free radicals and higher values for molecular yields. 

This is particularly true for the yields of e−aq and H• atoms, which remain extremely small 

at the microsecond time scale even at high temperatures [Fig. 3(a) and (c)]. This general 

trend is a result of the high-LET character of the 10B(n,)7Li recoil ions. Indeed, upon 

increasing the LET of the radiation, there is an increased intervention of radical–radical 

reactions as the local concentrations of radicals along the radiation tracks are high and 

many radical interactions occur before the products can escape into the bulk solution. This 

allows fewer radicals to escape combination and recombination reactions during the 

expansion of tracks and in turn leads to the formation of more molecular products.28  

A striking feature of our simulated results is the marked downward inflection that is 

observed above ~150 °C in the yields of H2 and H2O2. This is in contrast to the 

corresponding estimates of Christensen19 at 289 °C, which seem to indicate a rather 

monotonic variation of G(H2) [Fig. 3(e)] and G(H2O2) [Fig. 3(d)] with temperature. Similar 

non-monotonic behavior in the temperature dependence of the yields of primary products 

in low-29,45,46 and high-47,48 LET irradiated water has already been predicted, and is due to 

the fact that the rate constant for the bimolecular self-reaction of the hydrated electron (k2): 

e−aq + e−aq  (+2H2O)  H2 +2OH−      (2) 

drops sharply between ~150 and 200 °C.20 This non-Arrhenius behavior of reaction (2) 

above ~150 °C readily explains the sharp decrease in H2 yields in Fig. 3(e). Moreover, as a 

consequence of the drop in k2, more and more e−aq are available as the temperature 

increases to either react in other intra-track reactions, such that20  

e−aq + •OH  OH−  (k3 = 3.34 × 1010 M-1 s-1, 20 °C),    (3)  

or escape into the bulk solution. As hydrogen peroxide is formed predominantly by the 

reaction20 
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Fig. 3  G-values (in molecule per 100 eV) for the 10B(n,α)7Li radiolysis of pure, deaerated 

liquid water as a function of temperature in the range of 25-350 °C: (a) G(e−aq); (b) 

G(•OH); (c) G(•H); (d) G(H2O2); and (e) G(H2). Our simulated results, obtained at 10-7 and 

10-6 s, are shown as solid, blue and red lines, respectively. Symbols are the water 

decomposition yields induced by the 10B(n,α)7Li reaction estimated by Cohen (ref. 15) at 

20 °C (based on the approximate relationship between LET and G-values given in Fig. 5.3 

of Allen (ref. 43), using an average initial LET of 240 eV nm-1) () and by Christensen (ref. 
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19) at 289 °C (). The primary (or “escape”) yields for the low-LET (~0.3 eV nm-1) 

radiolysis of water (ref. 29) obtained using our previously calculated spur lifetimes 

between 25-350 °C (ref. 44) are also given (black dashed lines) for comparison purposes. 

Note that all yield curves shown in this figure were obtained under exactly the same 

conditions as in ref. 29 as far as the temperature dependences of the different parameters 

intervening in the early physicochemical stage (e.g., the electron thermalization distance 

called rth in ref. 29) and in the subsequent chemical stage [e.g., the (e−aq + e−aq) reaction rate 

constant, represented by the non-Arrhenius black dashed line k = ka in Fig. 4(a)] of the 

radiolysis are concerned. 

 

•OH + •OH  H2O2  (k4 = 4.54 × 109 M-1 s-1, 20 °C),    (4)  

the increased occurrence of reaction (3) above 150 °C also leads to a downward inflection 

in G(H2O2), as shown in Fig. 3(d). 

In connection with these predicted non-monotonic variations of G(H2) and 

G(H2O2), we should briefly mention here the current controversy concerning the 

temperature dependence of k2 (Fig. 4). In this work, we adopted the values of k2, including 

the drop between 150 and 200 °C, recommended by Elliot and Bartels20 as the “best values 

to use to model water radiolysis at temperatures up to 350 °C” [represented by the black 

dashed line, denoted ka, in Fig. 4(a)]. However, this drop in k2 has been measured only 

under alkaline conditions. Its applicability to neutral or slightly acidic (as the pH of water 

at 150-200 °C is about 5.7-6)15 solution remains uncertain because it could be a function of 

the pH of the solution.50  

Until recently, most computer modelers of the radiolysis of water at elevated 

temperatures have employed, in neutral solution, an Arrhenius extrapolation of the values 

of k2 below 150 °C to 200-350 °C, as proposed previously by Elliot50 and Stuart et al.,51 

and recently by Hatomoto et al.52 This approach assumes that such an abrupt change in k2 

does not occur and that reaction (2) is diffusion controlled at temperatures greater than 150 

°C. This assumption was originally justified by the good agreement between models and 

experiments.45,46 
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Fig. 4 (a) Rate constant for the self-reaction of two hydrated electrons as a function of 

temperature (ref. 49). The black dashed line (denoted ka) shows the (e−aq + e−aq) reaction 

rate constant measured under alkaline conditions (ref. 20). The symbols (■) are 

experimental data. The red solid line (denoted kb) shows the (e−aq + e−aq) reaction rate 

constant obtained by using an Arrhenius extrapolation procedure above ~150 °C (ref. 50-

52). (b) and (c) The red solid lines show our Monte Carlo simulation results for G(H2) and 

G(H2O2) (in molecule per 100 eV), at 10-6 s, as a function of temperature, when kb was 

used. A comparison is made with the corresponding yields of H2 and H2O2 obtained when 

ka was used [represented here by the black dashed lines, which are the same as the red solid 

lines in Fig. 3(e) and (d)]. The symbols () (ref.15) and () (ref.19) are the same as in Fig. 

3(e) and (d). 

To show the sensitivity of G(H2) and G(H2O2) to k2, our simulations were carried 

out for the temperature dependence of k2 obtained by using an Arrhenius extrapolation 

procedure above ~150 °C (ref. 49-52) [represented by the red solid line, denoted kb, in Fig. 

4(a)]. The red solid lines in Fig. 4(b) and (c) display our calculated H2 and H2O2 yields at 

10-6 s after the ionizing event over the temperature range of 25-350 °C. A comparison with 
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our results obtained using the temperature dependence of k2 measured in alkaline water (ka) 

[black dashed lines in Fig. 4(b) and (c)] clearly indicates that G(H2) and G(H2O2) are 

strongly affected by the choice of k2. In particular, the sharp downward inflections 

predicted for G(H2) and G(H2O2) above ~150 °C no longer appear. Considering the 

importance of the self-reaction of e−aq in high-temperature water radiolysis, further 

measurements of its rate constant in near-neutral water are obviously highly desirable. 

Turning now to the 10B(n,α)7Li radiolysis of deaerated 0.4 M sulfuric acid aqueous 

solutions, we present in Fig. 5 the results of our Monte Carlo simulations showing the 

variations of the G-values for H• (considering the conversion of e−aq to H• in the tracks in 

acidic solution),55 •OH, H2O2, and H2 (at 10-6 s) as a function of temperature over the range 

of 25-350 °C. As can be seen, the simulations agree reasonably well with the experimental 

data of Barr and Schuler23 at 25 °C, which are also shown in the figure for the sake of 

comparison. Compared with the primary (or “escape”) yield data obtained for low-LET 

radiation (60Co γ-rays or fast electrons) (shown as dashed lines in Fig. 5), it is seen that, as 

in neutral water, our computed G-values for the 10B(n,α)7Li  radiolysis of deaerated 0.4 M 

H2SO4 aqueous solutions show essentially similar temperature dependences over the 25-

350 °C temperature range studied. The same general trend is observed, but with much 

lower values for yields of radical species and higher values for molecular yields, reflecting 

again the high-LET character of the 10B(n,)7Li recoil ions. 
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Fig. 5 G-values (in molecule per 100 eV) for the 10B(n,α)7Li radiolysis of deaerated 0.4 M 

H2SO4 aqueous solutions (pH 0.46 at 25 °C) as a function of temperature in the range of 

25-350 °C. Note that, at this high concentration of H2SO4, the H+ ions very rapidly (<10-9 

s) scavenge most, if not all, of the e−aq radicals in the tracks to form H• atoms (ref. 37). 

Note also that, in our simulations, the direct action of ionizing radiation on the sulfuric acid 

anions (mainly HSO4
−) has been neglected. The solid curves represent the results of our 

Monte Carlo simulations for (a) G(H•), (b) G(•OH), (c) G(H2), and (d) G(H2O2) at 10-6 s 

after the initial energy deposition. The yields of primary species induced by the 10B(n,α)7Li 

reaction measured by Barr and Schuler (ref. 23) in acidic solutions at 25 °C are given by 

(). The primary (or “escape”) yields for the low-LET (~0.3 eV nm-1) radiolysis of 0.4 M 

H2SO4 aqueous solutions (ref. 53) obtained from our previously calculated spur lifetimes 

between 25-350 °C (ref. 44) are also shown (dashed lines) for the sake of comparison. 

Finally, in all calculations, the reaction of the H• atom with water: H• +H2O  H2 + •OH 

was assumed to follow an Arrhenius temperature dependence over the 25-350 °C range 

studied, with a rate constant of 4.6 × 10-5 M-1s-1 at 25 °C and 104 M-1 s-1 at 300 °C, in 

agreement with recent muon spin spectroscopy experiments using muon as an analogue of 

a hydrogen atom (ref. 54). 
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Fig. 6 Yields of H2 (panel a) and H2O2 (panel b) (in molecule per 100 eV) formed during 

the 10B(n,α)7Li radiolysis of deaerated 0.4 M H2SO4 aqueous solutions as a function of 

temperature over the range of 25-350 °C. The black dashed lines show our Monte Carlo 

simulation results for G(H2) and G(H2O2) at 10-6 s when the (e−aq + e−aq) reaction rate 

constant k2 = ka [see Fig. 4(a)] was used [note that these curves are the same as the lines in 

Fig. 5(c) and (d)]. A comparison is made with the corresponding yields of H2 and H2O2 

obtained when k2 = kb [see Fig. 4(a)] was used (represented by the red solid lines). 

For the sake of completeness, we show in Fig. 6 the sensitivity of G(H2) and 

G(H2O2) to the temperature dependence for the (e−aq + e−aq) reaction rate constant k2 chosen 

in the simulations. Compared to the results obtained in near-neutral water and shown in 

Fig. 4(b) and (c), the choice of k2 [namely, ka or kb in Fig. 4(a)] in acidic solution is 

relatively unimportant. Indeed, as can be seen from Fig. 6(a) and (b), the H2 and H2O2 yield 

(red solid) curves obtained using k2 = ka differ only slightly from the corresponding (black 

dashed) curves calculated for k2 = kb and the downward inflections predicted for G(H2) and 

G(H2O2) above ~150 °C are practically no longer apparent. This is easily understandable 

since in 0.4 M H2SO4 solutions, hydrated electrons are very rapidly (<10-9 s) transformed 

into H● atoms in the tracks,37 thereby making reaction (2) quickly inoperative in 

contributing to these yields whatever the temperature. Removal of this reaction thus 

prevents the possibility of observing any clear difference in the temperature dependence of 

G(H2) and G(H2O2) above ~150 °C when either ka or kb is used for the (e−aq + e−aq) reaction 

rate constant. 
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4.  Conclusion 

In this work, Monte Carlo simulations were used to calculate the G-values for the 

primary species of the radiolysis of neutral liquid water and 0.4 M H2SO4 aqueous 

solutions by the recoil ions of the 10B(n,)7Li nuclear reaction at temperatures between 25 

and 350 °C. Overall, the simulation results for neutral deaerated water agreed well with 

existing estimates at 20 and 289 °C. For 0.4 M H2SO4 solutions, reasonable agreement 

between experiment and simulation was also found at room temperature. Compared with 

the data obtained for low-LET radiation, our computed yields showed essentially similar 

temperature dependences over the range of temperatures studied, but with lower values for 

yields of free radicals and higher values for molecular yields, which reflect the high-LET 

character of the densely ionizing 10B(n,α)7Li recoil ions. More experimental data are 

required for both neutral and acidic solutions to better describe the dependence of 

radiolytic yields on temperature and to test our modeling calculations more thoroughly. 

Moreover, measurements of the (e−aq + e−aq) reaction rate constant in near-neutral water 

would help us to determine whether the predicted non-monotonic inflections above ~150 

°C in G(H2) and G(H2O2) are confirmed. 
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Forward: The in situ formation of H3O
+ by the 10B(n,)7Li radiolysis of water 

renders the trajectories of the two helium and lithium recoiling ions temporarily very 

acidic. Using both Monte Carlo track chemistry simulations and an axially 

homogeneous cylindrical track model, characteristic of high linear energy transfer 

radiation (LET), we find that the pH remains near 0 at times less than ~100 ps after 

which it gradually returns to neutrality at ~0.1 ms. In a cellular environment, which 

contains a large amount of water, these initial conditions of high acidity are about 

two orders of magnitude longer than in free water due to the much slower 

intracellular mobility of the free proton. The implications of this “acid spike” effect 

in boron neutron capture therapy (BNCT) and, more generally, in hadrontherapy, is 

discussed briefly. 

Résumé : La formation in situ de H3O
+ lors de la radiolyse de l'eau par les ions de recul 

(particules  et ions lithium) de la réaction nucléaire 10B(n,)7Li rend les régions autour 

des trajectoires natives du rayonnement temporairement très acides. En utilisant à la fois 

les simulations Monte Carlo et un modèle de trajectoire cylindrique caractéristique des 

rayonnements à haut transfert d’énergie linéaire (TEL), nous avons observé que le pH le 

long de ces trajectoires est proche de 0 jusqu’à ~100 ps puis revient graduellement à la 

neutralité à ~0,1 ms. En milieu cellulaire, qui contient une grande quantité d'eau, le pic 

d’acidité s’étend sur une plus longue période de temps (environ deux ordres de grandeur) à 

cause de la faible mobilité du proton dans ce milieu, ce qui soulève plusieurs questions en 

relation avec la boroneutrothérapie et, plus généralement, l’hadronthérapie. 
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Abstract 

Monte Carlo track chemistry simulations of the 10B(n,)7Li radiolysis of water show 

that the in situ formation of H3O
+ by the two He and Li recoiling ions renders the 

native track regions temporarily very acidic. For these irradiating ions, the pH 

remains near 0 at times less than ~100 ps after which the system gradually returns to 

neutral pH at ~0.1 ms. These “acid spikes” have never been invoked in water or in a 

cellular environment exposed to densely ionizing radiations. The question of their 

implications in boron neutron capture therapy and, more generally, in 

hadrontherapy, is discussed briefly. 
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1.  Introduction 

All biological systems are damaged by ionizing radiation. While fundamental 

biological processes are numerous and complex, they are triggered in aqueous 

environments as living cells consist mainly of water (~70-85% by weight). As a result, a 

thorough knowledge of the radiation chemistry of water is critical to our understanding of 

the early stages in the chain of radiobiological events that follow the absorption of 

radiation. Indeed, reactive chemical species generated by water radiolysis may damage all 

biomolecules, including nuclear acids, proteins and membrane lipids. DNA and its 

associated water molecules of hydration are considered to be the most critical target in 

defining the radiobiological response. Lesions randomly induced in cellular DNA by 

ionizing radiation can be repaired or can result in cytotoxic and mutagenic effects and 

chromosomal instability, all of which can contribute to tumorigenesis [1-7]. 

The nuclear reaction produced when boron-10 (a stable isotope) is bombarded 

with thermal or epithermal neutrons, represented by 10B(n,)7Li, is one of the most 

favorable ones for use in targeted chemo-radiotherapies for cancer treatment known 

as “boron neutron capture therapy” (abbreviated BNCT) [8,9]. BNCT utilizes boron-

10 that is attached to a suitable tumor-seeking drug. It is an ideal treatment to kill 

cancer cells selectively without harming healthy cells nearby. This is because the 

capture cross-section for slow neutrons by 10B (3835 barns, 1 barn = 10-28 m2) is 

about three orders of magnitude greater than that of the nuclei of living tissues. The 

high linear energy transfer (LET) -particles (4He) and recoiling lithium-7 (7Li) 

nuclei emitted during the neutron capture reaction (Fig. 1) have path lengths in the 

range of ~5-8 m in water or biological tissue (approximately the diameter of a 

mammalian cell) and deposit most of their energy within the boron-containing cells. 

Thus, if sufficient amounts of 10B can be preferentially delivered to a cancer cell, 

and bombarded with slow neutrons, cell damage would be confined to that particular 
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cell as a result of the 10B(n,)7Li capture reaction, with the concomitant sparing of 

adjacent healthy cells. This is the basis of BNCT as a clinical treatment modality. 

It is customary to separate the complex succession of the events that follow 

the irradiation of water into five consecutive, temporal stages [11-13]. Briefly, the 

first or “physical” stage consists of the phenomena by which energy is transferred 

from the incident radiation to the water. The duration of this stage is around 10-16 s 

or less. This energy deposition gives rise, along and around the “native” radiation 

tracks, to a large number of ionized (H2O•+) and excited (H2O*) water molecules 

distributed in a specific, highly non-homogeneous “track structure” which depends 

on the type and energy of the radiation used. On average, secondary electrons 

generated in the ionization events have kinetic energies of less than ~100 eV [14-

18]. They therefore have sufficient energy to ionize or excite one or more other 

water molecules in close proximity, creating copious quantities of low-energy 

electrons with mean energy below 10 eV. The second or “physicochemical” stage 

consists of the re-establishment of thermal equilibrium in the bulk medium with 

reactions and reorganization of initial products to give new chemical species such as 

stable molecules and water free radicals. It lasts ~10-12 s. During this stage, 

secondary electrons slow down to subexcitation (e-
sub, < 7.3 eV) and then thermal (e-

th) energies, and, following thermalization, they become trapped (e-
tr) and finally 

hydrated (e-
aq) [16,19]. 

From ~10-16 to 10-12 s after the initial energy deposition, the radiolysis of 

water can simply be described by the following reactions [20]: 

   2 2H O H O e ionization• Î        (1) 

 
   22 H O excitaO onH tiÎ         (2) 

 
  

2 2 3H O H O H O OH•  •          (3) 

(proton transfer reaction, ~200 fs; 
3H O represents the hydrated proton) 



70 
 

   2 2e + H O H O electron-cation geminate recombination •     (4) 

  e-  e-
sub  e-

th  e-
tr  e-

aq (~240 fs to 1 ps)    (5) 

   2 2e H O H O H OH •  •           (6) 

(resonant “dissociative electron attachment”, or DEA, process) 

followed by the reaction of H  with water 

H + H2O  H2 + OH        (7) 

   H2O*  e
aq + H2O•+ (threshold at ~6.5 eV)     (8) 

     H• + •OH         (9) 

     H2 + O(1D) (oxygen atom in its singlet 1D first excited state) 

         followed by 

         O(1D) + H2O  H2O2 (or possibly also 2 
•OH)           (10) 

     H• + H• + •O•(3P) (oxygen atom in its triplet 3P ground state, 

         rather inert to water but reacts with most additives)          (11) 

     H2O (non-radiative decay back to ground-state water)          (12) 

By ~1 ps, the “initial” radiolysis products are eaq, H•, •OH, H3O
+, OH, H2, 

H2O2, 2O•  or its protonated form HO2
•;  a 2 2p HO O 4.8K • •   in water at 25 °C, 

O(1D), •O•(3P), etc. In the third stage of “nonhomogeneous chemistry”, the different 

radiolytic species diffuse away from the site where they originally formed. The 

result is that a fraction of them reacts with one another within the tracks as they 

develop in time while the remainder escape into the bulk solution. At 25 °C, all 

tracks have essentially dissipated on the microsecond time scale. The species that 

have escaped from track reactions become homogeneously distributed throughout 

the bulk of the solution [21,22]. There follows a stage of “homogeneous chemistry” 

and finally, in a physiologic system, a “biological” stage (~10-3 s or longer, 

depending very much upon the medium) [7] in which the cells respond to the 

damage resulting from the products formed in the preceding stages. 
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The yields (or G-values) of all the radiolytic species and their initial 

geometric distributions along the tracks are strongly dependent on the radiation type 

and energy, a measure of which is given by the LET. For low-LET radiation, such as 

fast electrons or -rays from 60Co (LET ~ 0.3 eV/nm), tracks are formed initially by 

well-separated clusters of reactive species, commonly known as “spurs” (spherical 

in shape), that develop independently in time [23-25]. In this case, the predominant 

effect of radiolysis is radical production. However, with increasing LET, the isolated 

spur structure changes to a situation in which the spurs eventually overlap and form 

(initially) a dense continuous column (cylindrical in shape) of species [16,26-29]. 

This leads to an increased amount of intra-track chemistry, favoring radical-radical 

reactions in the diffusing tracks. Under these conditions, the free-radical yields 

diminish as the LET increases, whereas the molecular yields increase. 

 Most interestingly, the in situ formation of H3O
+ in reaction (3) during the 

primary radiolysis processes in water irradiated with low/high-LET radiation renders 

the “native” spur/track regions temporarily very acidic. Such a transient acid pH 

response to the ionizing radiation during and shortly after irradiation was recently 

quantified by our group [20], using both Monte Carlo track chemistry simulations and 

simple, LET-dependent, space-time track models. In this work, we extend our previous 

calculations [10,20] to determine the yields of H3O
+ produced by the 10B(n,)7Li 

radiolysis of water as a function of time. As expected, an abrupt “acid spike” effect 

is observed at early times around the trajectories of the two recoiling ions. In a 

cellular environment, this acidic pH, even local and transitory, could have important 

biological consequences. However, to the best of our knowledge, it has never been 

mentioned so far in the context of the BNCT nor other forms of hadrontherapy 

(recall here that when the irradiating beams are made of protons or other ions, such 

as carbon, radiotherapy is called “hadrontherapy”). 
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2.  Monte Carlo track chemistry simulations 

The stochastic modeling of the radiolysis of liquid water at ambient temperature by 

both 1.47 MeV α-particles and 0.84 MeV lithium nuclei emitted from the neutron-boron 

nuclear reaction was performed using our Monte Carlo track chemistry simulation code 

IONLYS-IRT [15,19,30-33]. This code first models, in a 3D geometrical environment, the 

initial, highly nonhomogeneous radiation track structure (“IONLYS” program), and then 

the ensuing diffusion and chemical reactions of the various radical and molecular products 

formed by radiolysis (“IRT” program). A detailed description of the current version of the 

code under high-LET irradiation conditions is given in [10]. Briefly, the IONLYS program 

is used to model the early physical and physicochemical stages of radiation action up to ~1 

ps in track development. It actually models, event by event, all the basic physical 

interactions (energy deposition) and the subsequent conversion of the physical products 

created locally into the various initial radical and molecular products of the radiolysis [see 

reactions (1)-(12)]. The complex, highly nonhomogeneous spatial distribution of reactants 

at the end of the physicochemical stage, which is provided as an output of the IONLYS 

program, is then used directly as the starting point for the subsequent nonhomogeneous 

chemical stage (typically from ~1 ps to the µs time scale at 25 °C). This third stage, during 

which the different radiolytic species diffuse randomly at rates determined by their 

diffusion coefficients and react with one another until all track processes are complete, is 

covered by our IRT program. This program employs the “independent reaction times” 

(IRT) method [30,34], a computationally efficient stochastic simulation technique that is 

used to simulate reaction times without having to follow the trajectories of the diffusive 

species. Its ability to give accurate time-dependent chemical yields under different 

irradiation conditions has been well validated by comparison with full random flights (or 

“step-by-step”) Monte Carlo simulations, which do follow the reactant trajectories in detail 

[35]. This IRT program can obviously also be used efficiently to describe the reactions that 
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occur in the bulk solution in the homogeneous chemical stage (i.e., in the time domain 

beyond a few microseconds). 

The SRIM software [36] was used to calculate the trajectories of 1.47-MeV 

-particles and 0.84-MeV lithium nuclei emitted from the 10B(n,)7Li reaction (Fig. 

2), as well as the energies and LET values of the two recoil ions as a function of 

penetration depth in water. The details of these calculations have been presented 

previously [10]. Three major findings may be summarized as follows: 

1. Using Watt’s compilation of quantities for radiation dosimetry in liquid 

water [37], the “dose-average” LET values for both He (1.47 MeV) and 

Li (0.84 MeV) recoils were determined to be ~196 and 216 eV/nm, 

respectively. 

2. To avoid complexity arising from energy-dependent charge exchange 

processes, our Monte Carlo simulations were performed under the 

simplifying approximation that the energies of the two recoil ions 

remained constant when passing through the water medium. Using SRIM 

simulation results, these constant average energy values 
HeE  and 

LiE  were 

found to be ~0.3 and 0.4 MeV, respectively. 

3. The actual effective charges carried by the two helium and lithium ions 

having these average energies were adjusted to the values Zeff = 1.6 and 

1.7, respectively, so as to reproduce the expected LET values. 

All our calculations were performed by simulating short (typically, ~1-5 m) 

ion track segments, over which the energy and LET of the ion are well defined and 

remain nearly constant. Such model calculations thus gave “track segment” yields 

[29] at a well-defined LET. The number of individual ion “histories” (usually ~2-10) 

was chosen to ensure only small statistical fluctuations in the computed averages of 

chemical yields, while keeping acceptable computer time limits. 
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Finally, the yields of primary free radical or molecular products due to the 

radiolysis of water induced by the 10B(n,)7Li reaction were calculated by summing 

the G-values for each recoil ion (obtained from our Monte Carlo simulations) 

weighted by its fraction of the total energy absorbed according to [38,39] 

i He He i Li Li
i

T

(X ) + (X )  
(X )

G E G E
G

E
 ,              (13) 

where G(Xi)He and G(Xi)Li are the yields of species Xi associated with the recoil helium and 

lithium ions, respectively, and T He LiE E E   is the sum of the initial energies of the ion 

products of the reaction (i.e., 2.31 MeV). 

Absorption of the accompanying low-LET 0.478 MeV -ray in the aqueous solution 

(see Fig. 1) is small in our area of interest (indeed, the range of an incident electron of this 

energy is ~1 mm in liquid water at 25 °C [40]; this is more than 100 times larger than the 

penetration ranges of the He and Li ions, which are only ~5-8 µm). In this study, we 

neglected its contribution to the overall chemical reaction. 

Throughout this paper, G-values are quoted in units of molecules formed or 

consumed per 100 eV of radiation energy absorbed. For conversion into SI units, 1 

molecule/100 eV = 0.10364 µmol/J. 

3.  Results and discussion 

Figure 3 shows the time evolution of G(H3O
+) as obtained from our simulations of 

the 10B(n,)7Li  radiolysis of pure, deaerated liquid water at 25 °C, over the interval of ~1 

ps to 1 ms. For the sake of reference, the simulated time-dependent yields of eaq, •OH, H•, 

and OH are also shown in the figure. Quite obviously, the hydroxide ion OH, which is 

formed largely by the intra-track reaction [30,41] 

aqe OH OH •   , k14 = 3.5 × 1010 M-1 s-1             (14) 
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contributes to an alkaline track and consequently counteracts the acid spike effect 

discussed in this work. However, as we can see from Fig. 3, G(OH) remains much smaller 

than G(H3O
+) over the time range of interest. As a result, its effect only slightly modifies 

the quantitative features of the pH and can be ignored to a good approximation. 

Figure 4 shows the time dependence of the cumulative yield variations ∆G(H3O
+) 

for the different reactions that contribute to G(H3O
+), calculated from our Monte Carlo 

simulations in the time interval ~1 ps to 1 ms. As can be seen, the decrease of G(H3O
+) as a 

function of time is mainly due to H3O
+ reacting with OH and, to a lesser extent, with the 

hydrated electron, according to: 

3 2H O OH 2H O   , k15 = 1.18 × 1011 M-1 s-1             (15) 

3 aq 2H O e H H O  •   , k16 = 2.13 × 1010 M-1 s-1            (16) 

where k15 and k16 are the rate constants for the two individual reactions.  Other reactions, 

such as 

3 2 2 2 2H O HO H O H O    , k17 = 5 × 1010 M-1 s-1            (17) 

and 

3 2H O O OH + H O • •  , k18 = 5 × 1010 M-1 s-1,            (18) 

also contribute to the decay of G(H3O
+), but only relatively weakly. 

Next, to calculate the pH values prevailing in the He and Li recoil track 

regions, we estimated the concentrations of H3O
+ radiolytically generated in situ in 

these regions as a function of time using a cylindrical track model (characteristic of 

high-LET radiation) [20]. For both of these radiations, we assumed the ion’s track as 

being an axially homogeneous cylinder, of length L = 1 m and initial radius rc 

equal to the radius of the physical track “core” [16,27]. For the sake of illustration, 

Fig. 5 shows two-dimensional representations of 1 m track segments of, 

respectively, 0.3 MeV helium ion (Zeff = 1.6) and 0.4 MeV lithium ion (Zeff = 1.7) in 

liquid water at 25 °C. They were calculated (at ~10-13 s) with our IONLYS 
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simulation code. In this case, the track concentrations of radiolytically produced 

H3O
+ can be derived from [19,20] 

    
 

3 3 2radiolytic

LET
H O H O

π
t G t

r t

 
 

     
  

,              (19) 

where 

  22

c 4r t r Dt                   (20) 

represents the change with time of rc due to the (2D) diffusive expansion of the 

track. Here, t is time and D is the diffusion coefficient for the proton in pure water 

(D = 9.46 × 10-9 m2 s-1 at 25 °C) [30,41]. rc was estimated directly from our 

simulations. According to Fig. 5, we adopted rc = 2 nm for both He and Li ions. 

Finally, the total concentration of H3O
+ is the sum of [H3O

+]radiolytic given by 

Eqs. (19) and (20) and of the non-radiolytic, pre-irradiation concentration 

[H3O
+]autoprotolysis (10-7 M in the present study) that arises through water’s 

autoprotolysis: 

   3 3 3total radiolytic autoprotolysis
H O H O H Ot t              .            (21) 

The pH in the corresponding track regions is then simply given by the 

negative logarithm (to the base 10) of [H3O
+]total: 

    3
total

pH log H Ot t     ,               (22) 

The time evolution of the pH values calculated for the 10B(n,)7Li radiolysis 

of pure, deaerated liquid water at 25 °C using the G(H3O
+) values of Fig. 3 and the 

aforementioned cylindrical track geometry is shown in Fig. 6. As shown, there is an 

abrupt temporary acid pH effect at early times immediately after the initial energy 

release. For both He (LET ~ 196 eV/nm) and Li (LET ~ 216 eV/nm) ions, the 
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observed “acid-spike” effect is most intense for times shorter than ~100 ps. In this 

time range, the pH remains nearly constant, slightly below zero. Beyond ~100 ps, 

the pH increases gradually, ultimately reaching a value of 7 (pH of the body of the 

solution) at ~100 s (i.e., slightly longer than the beginning of homogeneous 

chemistry). 

To the best of our knowledge, the production of an early acid spike around charged 

particle tracks has so far been ignored in water or in aqueous environments such as living 

cells subject to high-LET (densely ionizing) radiation. In this regard and considering that 

many cellular processes depend on pH [42,43], the present work raises the question of 

whether this acidic pH response, which extends over spatial dimensions of the order of tens 

of nanometers, has biological significance in the context of BNCT and of course, more 

generally, of hadrontherapy. In particular, does the generation of an acidic pH spike be 

potentially toxic to cells, for example, by triggering molecular mechanisms (e.g., DNA 

breaks, defects in mitochondrial functions, modification of normal biochemical reactions, 

or yet triggering of different signaling cascades that respond to these stress conditions) that 

result in biological damage, “bystander” responses, or enhanced cell lethality [2,7,44]? 

Such a question becomes even more relevant when one considers that the diffusion of a 

proton in intracellular water is ~100-1000 times lower than in free water [45,46]. In this 

case, indeed, the decreased H+ ion mobility in bulk cell water leads to a marked increase in 

the period of time during which the strong acidity (pH ~ 0) around the He and Li recoil ion 

trajectories is observed (Fig. 7). 

4.  Conclusion 

In this work, we extended our previous calculations to determine the yields of H3O
+ 

produced by the 10B(n,α)7Li radiolysis of water as a function of time. The concentrations of 

H3O
+ and the corresponding pH values for both the helium and lithium recoil ions 

considered were then obtained from our calculated G(H3O
+) values using an axially 
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homogeneous “cylindrical” track model, characteristic of high-LET radiation. An abrupt 

“acid spike” effect is observed at early times around the trajectories of the two He and Li 

recoiling ions. Most interestingly, in a cellular environment, these initial conditions of high 

acidity are about two orders of magnitude longer than in free water due to the much lower 

value of the intracellular mobility of the free proton. This acidic pH, even local and 

transitory, could have important consequences as it may trigger molecular mechanisms that 

result in biological damages and cell lethality. To the best of our knowledge, the 

production of such acid spikes has never been mentioned before in BNCT in addition of the 

overall field of hadrontherapy. 
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Figure captions 

Figure 1: Schematic of the nuclear reaction resulting from the low-energy (< 0.5 eV) 

neutron capture by a 10B atom. After absorption, an excited 11B is formed that 

almost immediately (~10-12 s) undergoes a fission reaction producing, in 94% 

of the cases, two high-LET heavy ions, 4He2+ (-particle) and 7Li3+, and a low-

LET -ray (see [10]). Note that the 4He and 7Li recoil ions are emitted in 

opposite directions (i.e., at a 180° angle), away from the site of the compound 

nucleus, and hence they form one straight track. 

Figure 2: SRIM simulation of the penetration of 1000 recoil 1.47-MeV helium and 0.84-

MeV lithium nuclei of the 10B(n,)7Li reaction into liquid water at 25 °C. A 

major contribution to the observed straggling comes from the changes in the 

charge state of the respective ions as they go into and through the water. 

Figure 3: Time evolution of G(H3O
+) (in molecule/100 eV) for the radiolysis of pure, 

deaerated liquid water by the recoil of -particles and lithium ions (“dose 

average” LET of ~196 and 216 eV/nm, respectively) from the 10B(n,)7Li 

nuclear reaction at 25 °C from ~1 ps to 1ms. The red solid line shows the 

hydrogen ion yield values obtained from our Monte Carlo simulations (see 

text). Our computed yields of eaq, •OH, OH and H• are shown as blue, grey, 

red, and green dashed lines, respectively. 

Figure 4: Time dependence of the extents G(H3O
+) (in molecule per 100 eV) of the 

different reactions that are involved in the decay of H3O
+, calculated from our 

Monte Carlo simulations of the 10B(n,)7Li radiolysis of pure, deaerated water 

at 25 °C, in the interval of ~1 ps to 1 ms. 

Figure 5: Simulated track history (at ~10-13 s, projected into the XY plane of figure) of a 

0.3 MeV helium ion (LET ~ 196 eV/nm) (A) and of a 0.4 MeV lithium ion 
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(LET ~ 216 eV/nm) (B) traversing through liquid water at 25 °C. The 

irradiating ion is generated at the origin and starts traveling along the Y-axis. 

Dots represent the energy deposited at points where an interaction occurred. 

The tracks can be described as two coaxial cylindrical volumes centered on the 

path of the ions. The inner cylindrical volume (i.e., the region adjacent to the 

trajectory) is the track “core” with radius rc. Surrounding the core is a much 

larger region called the “penumbra” where all of the energy is deposited by 

energetic secondary electrons (-rays) created in knock-on collisions by the 

ion. 

Figure 6: Variation of pH with time calculated for pure, deaerated liquid water at 25 °C 

and in the interval of ~1 ps to 1 ms, for irradiating 0.3 MeV helium (Zeff = 1.6, 

LET ~ 196 eV/nm) and 0.4 MeV lithium (Zeff = 1.7, LET ~ 216 eV/nm) using 

the axially homogeneous cylindrical track model (characteristic of high-LET 

radiation) with rc = 2 nm for both ions (see text). The pH values reported here 

are simply the average of the pH obtained for the two ions. For the sake of 

comparison, the dashed line shows the time evolution of pH in an isolated 

(spherical) “spur” (characteristic of low-LET radiation) [20] as calculated 

previously for 300 MeV incident protons (which mimic 60Co /fast electron 

irradiation; LET ~ 0.3 eV/nm) using an initial spur radius of 11.7 nm (see Fig. 

4 of [20]). 

Figure 7 : Variation of pH with time calculated for deaerated bulk cellular water at 25 °C 

and in the interval of ~1 ps to 1 µs, under the same irradiation conditions as in 

Fig. 6, using the axially homogeneous cylindrical track model with rc = 2 nm 

for both He and Li ions (solid line). Simulations were performed using an 

intracellular proton mobility 100 times lower than that in free liquid water (note 

that, in the calculations, the diffusion coefficients of all other species were also 
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lowered by a factor of 100 relative to their liquid water values). Comparison is 

made with the pH values calculated for irradiated free liquid water (as shown in 

Fig. 6) (dashed line). 
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FIG. 1 

 
 

                   (1.78 MeV) + 7Li (1.02 MeV) 

                      6% 

                              10B + 1nth (< 0.5 eV)  11B* 

                       94% 

                          (1.47 MeV) + 7Li (0.84 MeV) +  (0.478 MeV) 
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FIG. 2 
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FIG. 3 
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FIG. 4 
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FIG. 5 
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FIG. 6 
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FIG. 7 
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6.  Discussion 

Boron neutron capture reaction is very important both for glioblastoma, melanoma, 

recurrent head and neck cancers and, at high temperatures, in the nuclear industry. To 

predict the effects of the 10B(n,)7Li nuclear reaction in radiobiology/medicine and in the 

nuclear industry, it is most important to estimate the yields of the various primary products 

of the radiolysis of water by the two He and Li recoiling ions emitted from the neutron 

capture reaction, namely, e−aq, H
•, •OH, and HO2

•/O2
•− (free radical products) and H2, H2O2, 

and O2 (molecular products). 

In our first article, we have calculated, and discussed, the yields of the free radicals 

and molecular species produced in the 10B(n,)7Li radiolysis of water as a function of 

temperature in the range from 25 to 350 °C. Computer simulations and chemical models of 

the radiation chemistry of the coolant water in reactors (i.e., at high temperatures) are 

crucial because direct experimental observations are difficult under the extreme operating 

conditions involved. This theoretical modeling is used for the prediction of corrosion.  In 

this respect, it contributes to maintain the proper chemical environment that will minimize 

the degradation/corrosion of structural materials, and in turn optimize the plant 

performance. 

6.1 Yield of H2 and importance of the bimolecular self-reaction of eaq 

Detailed quantitative understanding of the production of molecular hydrogen due to 

water radiolysis in a nuclear reactor is necessary in order to mitigate risk of corrosion. The 

radiolysis data obtained from ELLIOT and BARTELS (2009) have been used in our Monte 

Carlo track chemistry simulations. We observed a sharp downward inflection in the yield 

of H2 above ~150 °C (see Article no. 1). The non-Arrhenius behavior of the rate constant of 

the bimolecular self-reaction of eaq is responsible for such an abrupt inflection in the 

temperature dependence of G(H2) (SANGUANMITH et al., 2011). However, we observe 

that the yield of eaq is very low at both 0.1 and 1 µs (Fig. 6.1a). To better understand the 

importance of this reaction, we analyzed the kinetics of the hydrated electron. As we can 

see from Fig. 6.1b, the initial (at ~10-12 s) production yield of eaq is about 4 molecules/100 
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eV. As a function of time, eaq  reacts with several species, the main reactions contributing 

to its decay being: 

eaq + •OH  OH−,  k = 3.34 × 1010 M-1 s-1     (R1) 

eaq + H+  H•,  k = 2.1 × 1010 M-1 s-1     (R2) 

eaq + e−
aq (+2H2O)  H2 + 2OH−,  k = 7.3 × 109 M-1 s-1   (R3) 

 

At room temperature, these reactions are comparatively slower, that is why we 

observe a slower decay of eaq at 25 °C compared with its decay at 350 °C [see Appendix A 

of ELLIOT and BARTELS (2009) which gives the rate constants of these reactions as a 

function of temperature between 25 and 350 °C]. 

 

 

 

 

 

 

 

 

 

 

     

 

Fig. 6.1:  (a) Yields of e−
aq due to the 10B(n,α)7Li radiolysis of pure, deaerated water at 

10-6 and 10-7 s, shown as the red and blue solid lines, respectively. The 

dashed blue line shows the “escape” yield of e−
aq for low-LET irradiation (γ-

rays or fast electrons). (b) Comparison of the decay of e−
aq at 25 °C (black 

line) and 350 °C (red line) as a function of time. 
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 In pure water radiolysis, it is now well-known that the major part of the molecular 

hydrogen is produced on the sub-picosecond time scale (PASTINA et al., 1999) by the 

dissociation of the excited water molecules (H2O*) formed by the recombination of a 

subexcitation-energy electron with its parent cation H2O•+ (“geminate recombination”) and 

by the dissociative attachment of such a subexcitation electron to a water molecule 

(“dissociative electron attachment” or DEA) (COBUT et al., 1996; STERNICZUK and 

BARTELS, 2016). The rest of the formation of H2 is produced on the picosecond-

microsecond time scale in the three following combination reactions, with the first two 

dominating (COBUT et al., 1996; SPINKS and WOODS, 1990; FERRADINI and JAY-

GERIN, 1999; ELLIOT and BARTELS, 2009; STERNICZUK and BARTELS, 2016):  

eaq + eaq (+ 2H2O)  H2 + 2OH      (R3)  

  eaq + H• (+ H2O)  H2 + OH      (R4) 

H• + H•  H2         (R5)  

and (above ~200 °C) (SANGUANMITH et al., 2011)  

  H• + H2O  H2 + •OH       (R6) 

Reaction (R3) is assumed to be a two-step process with the formation of an 

intermediate dielectron (e2
2

aq) (CHRISTENSEN and SEHESTED, 1986; MARIN et al., 

2007): 

eaq + eaq ⇌ e2
2

aq  H2 + 2OH      (R7) 

Considering the non-Arrhenius behavior of the rate constant for the self-reaction of 

the hydrated electron, similar downward discontinuity at ~150 °C in the yield of H2 has 

also been found in the low-LET radiolysis of water (SANGUANMITH et al., 2011) as well 

as in the radiolysis of water by fast (2 MeV) neutrons (which produce high-LET recoil 

protons and oxygen ions) (BUTARBUTAR et al., 2013, 2014; BUTARBUTAR, 2014). 

Simulations further showed that the magnitude of this discontinuity increases as the LET 

increases. However, this simulated downward inflection in the H2 yield is not observed 

experimentally, not only for low-LET, but also for high-LET radiation. To obtain 
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acceptable fits of the calculated yields to the experimental data above 150 °C, 

SANGUANMITH et al. (2011) were led, for low-LET irradiation, to adjust the temperature 

dependence of certain parameters involved in the early (<10-12 s) physicochemical stage of 

the radiolysis, in particular the thermalization distance of subexcitation-energy electrons 

(rth). Indeed, to compensate for the decrease of the rate constant for the self-reaction of eaq, 

a sharp decrease of rth above 100-150 °C (invoking a change in the structure of water at 

~150 °C) had to be included in their simulations. Under these conditions, very good 

agreement was found between simulated and experimental yields, the sharp downward 

discontinuity predicted in G(H2) at 150 °C no longer appearing (SANGUANMITH et al., 

2011). 

Unfortunately, the modification of the temperature dependence of rth made at low 

LET by SANGUANMITH et al. (2011) turns out to be insufficient at high LET, as the 

abrupt downward inflection in G(H2) at ~150 °C reappears, not only in the radiolysis of 

water by fast (2 MeV) neutrons (BUTARBUTAR et al., 2013, 2014) but also in the 

radiolysis of water by the 10B(n,)7Li recoiling ions (Article no. 1). These findings are 

contrary to experiment (ELLIOT et al., 1996; CHRISTENSEN, 2006). 

BUTARBUTAR (2013) concluded that, under such high-LET conditions, it is 

rather difficult, if not impossible, to further modify the temperature dependence of rth (as it 

was done at low LET). Moreover, it is hardly conceivable that rth would be a function of 

the LET of the radiation. Therefore, based on previous and present studies, we tend to 

believe the argument that the drop in the (eaq + eaq) reaction rate constant observed at 150 

°C in alkaline water (CHRISTENSEN and SEHESTED, 1986; STERNICZUK and 

BARTELS, 2016) is a function of the pH of the solution (ELLIOT, 1994; STUART et al., 

2002). In strongly acidic medium such as 0.4 M H2SO4 acid solutions, the H+ ions very 

rapidly (<10-9 s) scavenge most, if not all, of the eaq radicals in the tracks to form H• atoms 

in the tracks (AUTSAVAPROMPORN et al., 2007), thereby making reaction (R3) quickly 

inoperative in contributing to G(H2) whatever the temperature. Removal of this reaction 

thus prevents the possibility of observing any clear evidence of a discontinuity in the 

temperature dependence of G(H2) above 150 °C. As further emphasized in Article no. 1, 

the applicability of the sudden drop in the (eaq + eaq) reaction rate constant observed at 
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150 °C in alkaline water to near-neutral water is questionable. Measurements of this rate 

constant in neutral or slightly acidic (as the pH of water at 150-200 °C is about 5.7-6) 

solution are highly desirable. 

6.2 Yield of H2O2 

Hydrogen peroxide is the other major molecular product of water radiolysis. Its 

production is due mainly to •OH radical combination reactions (LAVERNE, 2004): 

•OH + •OH  H2O2,  k = 4.54 × 109 M-1 s-1 at 20 °C   (R8) 

H2O2 is unstable in water at elevated temperature and decomposes to molecular 

oxygen according to: 

H2O2  ½O2 + H2O.        (R9) 

A wide variety of studies have shown that hydrogen peroxide and its decomposition 

product O2 are the major oxidants involved in corrosion and stress corrosion cracking 

processes associated with nuclear reactors and waste storage containers (COHEN, 1980; 

SATOH et al., 2004; GUZONAS et al., 2018). 

H2O2 is fairly reactive with all the radical species produced in water radiolysis. In 

particular, hydrated electrons react very fast with •OH radicals to form water: 

eaq + •OH  OH,  k = 3.34 × 1010 M-1 s-1 at 20 °C   (R1) 

Reaction (R1) is the main cause of the decay of eaq and •OH. Its rate constant is 

about ten times higher than that of reaction (R9) of dimerization of the •OH radicals. As a 

consequence, an increase in the number of hydrated electrons will lead to a decreased 

number of available hydroxyl radicals to produce H2O2. This is exactly what we observe 

between 150 and 200 °C when the abrupt drop in the rate constant for the self-reaction of 

eaq is included in our simulations. In fact, as a result of this drop, there are more available 

eaq to undergo reaction (R1), and therefore the yield of H2O2 is lowered. This explains the 

origin of the marked downward inflection observed in G(H2O2) above ~150 °C (Article no. 

1). We should note, however, that this result is in contrast to the estimated data reported by 
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CHRISTENSEN (2006) at 289 °C, which seem to indicate a rather monotonic variation of 

G(H2O2) with temperature. 

6.3 Yields of radicals 

The boron neutron capture nuclear reaction in liquid water produces high-LET 4He 

and 7Li recoil ions (with “dose average” LETs at 25 °C of ~196 and 216 eV/nm, 

respectively). The radiolysis of water by these ions results in the formation of various free 

radicals, including eaq, •OH, and •H, and the molecular products H2 and H2O2. Figure 6.2 

shows the time evolution of the yields of the radical species so formed as calculated from 

our Monte Carlo simulations from ~1 ps to 1 ms (Article no. 2). As can be seen, these 

yields are very small at the microsecond time scale (i.e., after all the track reactions are 

complete). This is in contrast to the corresponding “escape” yield data obtained for low-

LET 60Co -ray or fast electron irradiation [~2.5, 2.6, and 0.6 molecule/100 eV, 

respectively) (Article no. 2). Such differences can readily be explained as reflecting the 

high-LET character of the densely ionizing 10B(n,)7Li recoil ions. Indeed, in the latter 

case, the intervention of radical-radical reactions is favored as the local concentrations of 

radicals along the “native” radiation tracks are high and many radical interactions occur 

before the products can escape into the bulk solution. In other words, this allows fewer 

radicals to escape combination and recombination reactions during the expansion of tracks 

and, concomitantly, leads to the formation of more molecular products (LAVERNE, 2004; 

MEESUNGNOEN and JAY-GERIN, 2011). 
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Figure 6.2 Yields of the different chemical species (in molecule/100 eV) for the 

radiolysis of pure, deaerated liquid water by the recoil of α-particles 

and lithium ions from the 10B(n,α)7Li nuclear reaction at 25 °C from ~1 

ps to 1ms. Our computed yields of e-
aq, •OH, and H• are shown as blue, 

grey, and green dashed lines, respectively. 

6.4  Local acidity inside of the regions encased by radiation tracks 

The biological response of living cells to ionizing radiation is mostly due to 

“indirect effects” (at least for low-LET radiation), i.e., via reactions of the cellular 

components (mainly DNA) with the chemical species produced by the radiolysis of the 

cellular water, especially with •OH radicals. This response is, most generally, potentially 

toxic to cells, for example, by producing a wide range of biochemical damage in DNA, 

including single- and double-strand breaks, base lesions, abasic sites, damaged sugars, 

tandem lesions, DNA-protein cross-links, and damage clusters (or multiply damaged sites). 

In particular, damage clusters are very devastating to cells as they cannot readily repair this 

type of damage (CADET et al., 1997; von SONNTAG, 2006; HALL and GIACCIA, 2006; 

LEHNERT, 2008; BECKER et al., 2011). Remarkably, these biochemical modifications 

may occur not only in the irradiated cells but also in the neighboring non-targeted 

“bystander” cells through intercellular communication mechanisms (AZZAM et al., 2003; 

MOTHERSILL and SEYMOUR, 2004; HEI et al., 2011).1 

In this work, we observed a strong local and transitory “acid spike” effect around 

the trajectories of the two He and Li recoiling ions produced by the 10B(n,)7Li radiolysis 

of water (Article no. 2). Even if the radiobiological damage in irradiated cells is usually 

explained through the intervention of the water radiolysis products (mostly free radicals) 

mentioned above, one may wonder whether this increase in acidity – expressed in terms of 

hydronium ions H3O
+ – along the radiation tracks would also not be a key factor in the 

biological action of ionizing radiation (BYAKOV and STEPANOV, 2006; KANIKE et al., 

2015; ISLAM et al., 2018). 

 

1Bystander effect: Ionizing radiation-induced bystander effects, commonly observed in cell populations 

exposed to low- and high-LET radiations, are initiated by damage to a cellular molecule, which then gives 

rise to a toxic signal exported to neighboring cells not directly hit by radiation. Cellular phenotype, radiation 

quality (or LET), and dose are likely modulators of molecular and biochemical signaling events involved. 
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Because many cellular processes critically depend on pH (e.g., synthesis of 

macromolecules and cell proliferation, activity of enzymes, and transport of metabolites 

and drugs (TANNOCK and ROTIN, 1989; KANIKE, 2016), the occurrence of such an 

abrupt highly acidic response (pH ~ 0) in a biological system could likely have important 

consequences in triggering molecular mechanisms, both biochemical and physical, that 

would result in biological damage and enhanced cell lethality. The present study in fact 

strongly suggests this intra-track acid spike effect, given its high intensity, could interfere 

with and affect the biological processes in the cell, even if cells have a well-known 

buffering capacity (i.e., cellular mechanisms that regulate pH when small amounts of acids 

– or bases – are added). 

According to the Brønsted-Lowry definition, an acid is a proton donor. Strong acids 

(e.g., H2SO4, HNO3, HCl) readily dissociate when they go into solution in water, whereas 

weak acids (e.g., CH3COOH, HCOOH, HO2
•) only partly dissociate to provide a proton in 

aqueous solutions. Most organic acids are weak in nature. The partial dissociation of a 

weak acid in water can be described by the following equilibrium equation: 

          Ka 

HA   ⇌   H+ + A  ,        (R10) 

where A   is the conjugate base of the weak acid HA. Ka is the equilibrium constant (also 

known as the “acid dissociation constant”), given by 

Ka = [H+][A  ] / [HA]        (R11) 

at equilibrium. By analogy to the definition of pH, namely, 

pH =  log10 ([H
+]) ,        (R12) 

where [H+] is the concentration of protons, we often use pKa as the negative logarithm 

(base 10) of Ka: 

pKa =  log10 (Ka) .        (R13) 

Rearranging the Ka equilibrium expression (R11), we can get the Henderson-Hasselbalch 

equation (HARRIS, 2013): 
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pH = pKa + log10 A  HA .      (R15) 

The Henderson-Hasselbalch equation is the central equation for buffers. 

Biochemists are interested in buffers because the functioning of biological systems depends 

critically on pH. Cells contain different buffers to control the pH within the physiological 

limit and to regulate the biochemical reactions. For instance, bicarbonate (H2CO3 ⇌ H+ + 

HCO3
, pKa = 6.04), (mono-/di-basic) phosphate (H2PO4

 ⇌ H+ + HPO4
2, pKa = 6.8), and 

some proteins such as hemoglobin, provide physiologically relevant buffering capacity 

(ENGELKING, 2015; KRIEG et al., 2015). 

Enzymes are highly selective biocatalysts, which catalyze very specific bio-

reactions in living organisms. In general, enzymes are proteins in nature with special 

conformations, where reactants (or “substrates”) bind to a specific region called the active 

site. Their role is to enhance reaction rates by decreasing the activation energy (or barrier) 

of the (uncatalyzed) bio-reaction without themselves being consumed in the process 

(FERSHT, 1985). Each enzyme shows its optimal activity under certain 

thermodynamically controlled conditions. Most importantly, the catalytic activity of an 

enzyme is pH sensitive as the intra- and intermolecular bonds that hold proteins in their 

structures are disrupted by changes in pH. It follows that most enzymes are active only 

within a narrow pH range, usually between ~5 and 9 (STRYER, 1995; PARK and ZIPP, 

2000). 

A change in cell pH can also lead to the formation of new radical products of 

biological and biomedical importance. For instance, in an aerobic cellular environment at 

physiological pH, molecular oxygen can be reduced by hydrated electrons and produce the 

superoxide radical anion (O2
•). This O2

• radical is poorly reactive (e.g., its rates of 

reaction with DNA, lipids, amino acids, and most other biomolecules are low) 

(HALLIWELL and GUTTERIDGE, 2015). However, O2
• is always in a pH-dependent 

equilibrium with its conjugated acid, the hydroperoxyl radical HO2
•: 

HO2
• ⇌ H+ + O2

•,        (R15) 

https://www.sciencedirect.com/science/article/pii/B9780123919090500852
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the pKa of the protonation/deprotonation equilibrium being approximately 4.8 in water at 

25 °C (BIELSKI et al., 1985). Although at the pH of most body tissues the ratio of 

O2
•]/HO2

•] is large 100/1 at pH 6.8, 1000/1 at pH 7.8, according to the Henderson-

Hasselbalch equation (R14), HO2
•, but not O2

•, can induce lipid peroxidation reactions in 

the inner membrane of mitochondria (KOWALD, 1999). The greater reactivity of HO2
• 

and because it is uncharged (which allows it to cross membranes more easily than the 

charged O2
•), suggest that it has the potential to cause damage and that it can also 

contribute to the propagation of signaling events from among cells (e.g., intercellular 

communication, bystander effects) (DE GREY, 2002; AZZAM et al., 2012; HALLIWELL 

and GUTTERIDGE, 2015). It is to be expected, therefore, that the conversion of the 

harmless O2
• into the harmful HO2

• in cells at low pH may consequently result in an 

increased growth of potentially toxic effects in vivo. 

By contrast, if O2
• is in general poorly reactive, it does react quickly with nitric 

oxide (•NO), an uncharged, relatively stable free radical implicated in multiple, important 

physiological processes. •NO reacts slowly, if at all, with most biological molecules 

(HALLIWELL and GUTTERIDGE, 2015). As a gas, it can cross membranes and diffuse 

readily between and within cells. A large part of the toxicity of •NO in vivo is due to its 

combination with superoxide to give a powerful (non-radical) oxidant, peroxynitrite 

(ONOO   ) (PRYOR and SQUADRITO, 1995; KOPPENOL, 1998; JAY-GERIN and 

FERRADINI, 2000; HALLIWELL and GUTTERIDGE, 2015): 

•NO + O2
• ONOO,  k = 1.9 × 1010 M-1 s-1.    (R16) 

The pKa of peroxynitrite is ~6.8 at 37 °C. It is protonated in acidic solution to form 

the neutral peroxynitrous acid ONOOH: 

ONOO + H+ ⇌ ONOOH.       (R17) 

For instance, at pH 6.2, about 75% of the peroxynitrite anions are protonated. Because the 

stability and reactivity of ONOO and ONOOH are quite different, the biochemistry of 

peroxynitrite in biological systems is highly pH-dependent. Peroxynitrite in its protonated 

(acid) form is much more reactive than ONOO. Although some controversy still exists as 
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to the mode of action of peroxynitrous acid, it has been proposed that ONOOH 

spontaneously decomposes to produce nitrogen dioxide (•NO2) and a highly reactive 

species with hydroxyl radical-like properties, each capable of oxidizing a large variety of 

biological molecules (CROW and BECKMAN, 1996; KOPPENOL et al., 2012; RADI, 

2013). 

In biological cells, acid pH may also have some other toxic effects, leading to DNA 

damage and causing carcinogenic activity. We should mention here, for instance, the loss 

of purines or pyrimidines by hydrolytic cleavage of the base-sugar (N-C glycosidic) bond 

in DNA, which is acid catalyzed and thus increases at low pH (SHEPPARD et al., 2000; 

von SONNTAG, 2006; GATES, 2009; KANIKE, 2016). In the reaction mechanism, the 

depurination is promoted by the protonation of the purine base, thus, weakening the N-C 

glycosidic bond and increasing the leaving ability of the base. Acid-catalyzed 

depyrimidination also proceeds in a similar mechanism as depurination.  Abasic sites are 

common DNA lesions. However, if unrepaired efficiently, they can inhibit DNA 

replication and transcription and contribute to cytotoxicity or mutagenesis (DEMPLE and 

HARRISON, 1994). 

From our present Monte Carlo simulation study of the 10B(n,)7Li radiolysis of 

pure liquid water at 25 °C (Article no. 2), we observed that the peak of acidity in the two 

He and Li recoiling ion track regions typically lasted ~1 ms after the initial energy release. 

In contrast, in the case of water in living cells, this acidity was found to persist over a much 

longer period of time (about two orders of magnitude) due to a much reduced mobility of 

the proton in cellular water (~100-1000 times lower than in free water) (NEGENDANK 

and EDELMANN, 1988; SWIETACH and VAUGHAN-JONES, 2005). Using an 

intracellular proton mobility 100 times lower than that in pure water, we observed at 1 µs 

the two recoil ion tracks are still very acidic (pH ~2.4) (ISLAM et al., 2018). 

Most interestingly, a qualitative physical picture of the origin of this acidity in the 

“native” track regions after the passage of an ionizing particle was developed just after 

World War II by LEA (1946) and later by MORRISON (1950). It is certainly important 

(and instructive) to show here (see Fig. 6.3) the scheme originally presented by 

MORRISON (1950) in a Symposium on radiobiology in Oberlin College in June 1950, 
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which shows the lateral distribution of the various radiolytic species formed after a heavy 

-particle has traversed water, about 10-6 s earlier. As we can see, there is a clear charge 

separation between the more concentrated positive-ion (mainly H3O
+ and •OH) core of the 

track and the negative ions (mainly OH and H•) in the surrounding medium somewhat 

distant from the track. As correctly explained by the author, this “charge separation is due 

to the faster motion of the secondary electrons which are captured some distance from the 

track” (MORRISON, 1950). 

Indeed, the numerous energetic (“dry”) secondary electrons, produced in the early 

stages of the radiolysis of water, have, on the average, an initial kinetic energy of ~40-50 

eV, depending on the authors (LAVERNE and PIMBLOTT, 1995; COBUT et al., 1998; 

AUTSAVAPROMPORN, 2006; MIRSALEH KOHAN et al., 2013). The range (or 

“penetration distance”, or yet “thermalization distance”) of such electrons in liquid water at 

25 °C is ~11.7 nm as calculated previously by MEESUNGNOEN and JAY-GERIN (2005) 

using Monte Carlo simulations. In other words, they travel a long distance while slowing 

down, fairly far away from the site where they were originally produced. These electrons 

eventually get hydrated, typically ~1 ps after the initial energy deposition (BERNAS et al., 

1996). 

The long penetration range of the dry secondary electrons greatly limits the 

production of H• radicals and OH, as the intra-track combination reactions of these 

electrons with H3O
+ and •OH – species that have comparatively a very low mobility – are 

not favored. As a result, the high initial H3O
+ concentration in the track core is directly 

responsible for the “acid spike” effect observed at early time.  As a function of time, it is 

easy to see that this local acidity will last until the diffusion of H3O
+ and •OH has brought 

these two species to the remote positions then occupied by the hydrated electrons. 

It is most remarkable that our present simulations fully agree with the qualitative 

physical picture of Fig. 6.3 developed by LEA (1946) and MORRISON (1950) some 70 

years ago (at a time when the hydrated electron had not yet been discovered). 
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Fig. 6.3: Qualitative representation of the lateral distribution of the radiolytic 

products formed after a heavy -particle has traversed water (right side of 

the figure). The separation of the positive (core of the track) and negative 

(at some distance from the track) charges is clearly visualized (LEA, 1946; 

MORRISON, 1950). 
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6. Conclusion 

In this work, Monte Carlo track chemistry simulations were used to calculate the G-

values for the primary species of the radiolysis of pure, neutral liquid water and 0.4 M 

H2SO4 aqueous solutions by the 10B(n,)7Li nuclear reaction recoil ions at temperatures 

between 25 and 350 °C. Overall, our simulation results agreed well with existing estimates 

at 20 and 289 °C. For deaerated 0.4 M H2SO4 solutions, reasonable agreement between 

experiment and simulation was also found at room temperature. Compared with the data 

obtained for low-LET radiation, our computed yields showed essentially similar 

temperature dependences over the range of temperatures studied, but with lower values for 

yields of free radicals and higher values for molecular yields, reflecting the high-LET 

character of the densely ionizing 10B(n,)7Li recoil ions. 

Moreover, considering the rate constant of the bimolecular self-reaction of the 

hydrated electron measured in alkaline conditions, our simulated results predicted a non-

monotonic downward inflection in the temperature dependence of G(H2) and G(H2O2) 

above ~150 °C, which is not confirmed by the existing experimental data. More 

experimental data would be required for both neutral and acidic solutions to better describe 

the dependence of radiolytic yields on temperature and to test our modeling calculations 

more thoroughly. Measurements of the (eaq + eaq) reaction rate constant in near-neutral 

water would help us to determine whether the predicted non-monotonic inflections above 

~150 °C in G(H2) and G(H2O2) are confirmed. 

Finally, we also extended our previous calculations to determine the yields of H3O
+ 

produced by the 10B(n,)7Li radiolysis of water as a function of time. The concentrations of 

H3O
+ and the corresponding pH values for both the high-LET helium and lithium recoil 

ions considered were then obtained from our calculated G(H3O
+) values using an axially 

homogeneous “cylindrical” track model. In pure deaerated liquid water at 25 °C, we 

observed an abrupt transient “acid spike” effect at early times around the trajectories of the 

two 4He and 7Li recoiling ions. Most interestingly, in a cellular environment, these initial 

conditions of very high acidity are about two orders of magnitude longer than in free water 

due to the much lower value of the intracellular diffusion coefficient of the free proton. 
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This acidic pH, even local and transitory, could have important consequences as it may 

trigger molecular mechanisms that result in biological damages and cell lethality. The 

transient acid pH effect that we have described in this study does not appear to have been 

considered in water or in a cellular environment subject to the action of densely ionizing 

radiation. In this regard, this work raises a number of provocative questions about the 

potential implications of this acid spike effect in boron neutron capture therapy (BNCT) 

and, more generally, in the overall field of hadrontherapy. 
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Abstract: The radiolysis of water is closely linked to the corrosion of structural materials 

in water-cooled nuclear reactors. Boric acid, enriched in 10B, is generally added as a 

neutron poison in the primary coolant water to control the neutron flux and the 

reactivity in the core. However, recoil nuclei (1.47 MeV -particles and 0.84 MeV 7Li3+ 

ions) resulting from the reaction 10B(n,)7Li act as sources of high linear energy transfer 

(LET) radiation, thereby complicating the radiolytic process. Unfortunately, little 

attention has been paid to water decomposition induced by this reaction, even at room 

temperature. In this work, Monte Carlo track chemistry simulations 1-4 were carried 

out to predict the yields (G-values) of all primary radical and molecular products formed 

from the radiolysis of pure, neutral water by the 10B(n,)7Li recoil ions as a function of 

temperature from 25 to 350 °C. The yields were calculated at 1 and 0.1 s after the 

ionization event by summing the G-values for each recoil ion weighted by its fraction of 

the total energy absorbed. In the calculations, the actual effective charges carried by the 

two helium and lithium ions (due to charge exchange effects) were taken into account 

and the (small) contribution of the 0.478 MeV  ray, also released from the 10B(n,)7Li 

reaction, was neglected. Compared with data obtained for low-LET radiation (60Co  rays 

or fast electrons), our computed yields for the 10B(n,)7Li radiolysis of water showed 

essentially similar temperature dependences over the range of temperatures studied, 

but with lower values for yields of free radicals and higher values for molecular yields. 

This general trend is a reflection of the high-LET character of the 10B(n,)7Li recoil ions. 
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Experimental data are needed to better describe the dependence of radiolytic yields on 

temperature and to test our modeling calculations more thoroughly. 

 

Key words: Radiolysis; Boron; Heavy ion; Primary yields; Computer simulation 
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Purpose/Objectives 

Since water is the major (~70-85% by weight) constituent of living cells and 

tissues, a thorough knowledge of the radiolysis of water is therefore critical to our 

understanding of the early stages in the complicated chain of radiobiological events that 

occurs during or shortly after the radiation exposure. Indeed, in a cellular environment, 

reactive chemical species generated by water radiolysis may damage all biomolecules, 

including nuclear acids, proteins and membrane lipids. The nuclear reaction produced 

when boron-10 is bombarded with slow neutrons, represented by 10B(n,)7Li, is one of the 

most favorable ones known for use in biochemically targeted radiotherapies for cancer 

treatment known as “boron neutron capture therapy” (BNCT). This reaction produces high 

linear energy transfer (LET) -particles (4He) and 7Li recoil ions in the opposite direction 

with path ranges of ~5-8 m in water or biological tissue (approximately the diameter of 

one cell). In this work, we carried out the simulation of the radiolysis of water induced by 

these two ions with a particular focus on the in situ formation of H3O
+ in the ‟native” 

radiation tracks. 
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Materials/Methods 

Simple space-time model calculations using Monte Carlo track chemistry 

simulations were performed to quantitatively determine the yields (G-values) of the 

primary species e-
aq, H•, •OH, H3O

+, OH-, H2, H2O2, O2
•- (or its protonated form HO2

•, 

depending on the pH), •O•(3P), etc. produced in the radiolysis of water by the recoil ions of 

the 10B(n,)7Li nuclear reaction. At ambient temperature, the calculations were carried out 

for 1.47 MeV α-particles and 0.84 MeV lithium nuclei with dose-average LET values of 

~196 and ~225 eV/nm, respectively. The overall yields were calculated by summing the G-

values for each recoil ion weighted by its fraction of the total energy absorbed. In the 

calculations, the actual effective charges carried by the two helium and lithium ions were 

taken into account. 

Results 

Track H3O
+ concentrations and the corresponding pH values were obtained as a 

function of time (in the interval of ~1 ps to 1 ms). A striking feature of our simulated 

results is that, for both -particles and lithium nuclei, an abrupt transient acid pH effect, 

which we call an “acid spike”, was observed immediately after the initial energy 

deposition. This effect was found to be greatest for times shorter that ~100 ps. In this time 

range, the pH in the track regions remained nearly constant at ~0.5. At longer times, the pH 

increased gradually, ultimately reaching a value of 7 (neutral pH) at ~0.1 ms. 

Conclusions 

The transient acid pH effect that we have described does not appear to have been 

considered in water or in a cellular environment subject to the action of densely ionizing 

radiation. In this regard, this work raises a number of questions about the potential 

implications of this acid spike effect in BNCT, and more generally in high-LET 

radiobiology. 
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