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Sherbrooke, Québec, Canada, March 8, 2018



Le 8 mars 2018
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Sommaire

La tolérance aux fautes est une propriété indispensable à satisfaire dans la compo-

sition de services, mais atteindre un haut de niveau de tolérance aux fautes représente

un défi majeur. Dans l’ère de l’informatique ubiquitaire, la composition de services

est inévitable lorsque qu’une requête ne peut être réalisée par un seul service, mais

par la combinaison de plusieurs services. Ce mémoire étudie la tolérance aux fautes

dans le contexte d’un cadre général de composition de comportements (behavior com-

position framework en anglais). Cette approche soulève, tout d’abord, le problème

de la synthèse de contrôleurs (ou compositions) de façon à coordonner un ensemble

de services disponibles afin de réaliser un nouveau service, le service cible et, ensuite,

celui de l’exploitation de l’ensemble des compositions afin de rendre le nouveau service

tolérant aux fautes. Bien qu’une solution ait été proposée par les auteurs de ce cadre

de composition, elle est incomplète et elle n’a pas été évaluée expérimentalement

ou in situ. Ce mémoire apporte deux contributions à ce problème. D’une part, il

considère le cas dans lequel le service visé par le contrôleur est temporairement ou

définitivement non disponible en exploitant des techniques de reprise afin d’identifier

un état cohérent du système à partir duquel il peut progresser en utilisant d’autres

services ou de le laisser dans un état cohérent lorsqu’aucun service, parmi ceux dispo-

nibles, ne permet plus de progression. D’autre part, il évalue plusieurs solutions de

reprise, chacune utile dans des situations particulières de pannes, à l’aide d’une étude

de cas implémentée en Akka, un outil qui permet aisément de mettre en oeuvre des

systèmes réactifs, concurrents et répartis.
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Abstract

Fault tolerance is an essential property to be satisfied in the composition of ser-

vices, but reaching a high level of fault tolerance remains a challenge. In the area

of ubiquitous computing, the composition of services is inevitable when a request

cannot be carried out by a single service, but by a combination of several services.

This thesis studies fault tolerance in the context of a general behavior composition

framework. This approach raises, first, the problem of the synthesis of controllers

(or compositions) in order to coordinate a set of available services to achieve a new

service, the target service and, second, the exploitation of all compositions to make

the new service fault tolerant. Although a solution has been proposed by the authors

of the behavior composition framework, it is incomplete and has not been evaluated

experimentally or in situ. This thesis brings two contributions to this problem. On

one hand, it considers the case in which the service selected by the controller is tem-

porarily or permanently unavailable by exploiting recovery techniques to identify a

consistent state of the system from which it may progress using other services or leave

it in a coherent state when none of the available services no longer allows progression.

On the other hand, it evaluates several recovery solutions, each useful in services

malfunction situations, using a case study implemented with the aid of Akka, a tool

that facilitates the development of reactive, concurrent and distributed systems.
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Introduction

Fault tolerance is the ability of a system to function correctly despite the oc-

currence of faults in software or hardware. It is highly needed in most enterprise

organizations especially when life-critical systems must continue to provide services

in the case of system faults. Faults caused by errors (or bugs) are systematic and can

be reproduced in the right conditions. Of course, it is not possible to tolerate every

fault but, fault-tolerant programs are required for applications where it is essential

that faults do not cause a program to have unpredictable execution behavior. The

importance of implementing a fault-tolerant system is about service continuity or

maintaining functionality in the case of system failures. The current software engi-

neering practices tend to capture only normal behavior, assuming that all faults can

be removed during development, but they do not guarantee the absence of errors.

Formal methods can be used to address the problem of errors in program behaviors

and provide means of making a rigorous, additional check.

It is assumed that failures do not arise from design faults in the program. Design

faults occur when a designer (programmer), either misunderstands a specification or

simply makes a mistake. So, the current work deals with service-level faults (i.e.,

faults due to unsuccessful operations in services and fault occurrences in service com-

munication and functionality which can be captured by fault handlers of processes).

It is important to note that normal behavior does not mean perfect behavior. For

instance, after a time-out occurs, if the communication channel repeatedly sends the

same message, the retransmission of a message by a sender is normal, but it may result

in two copies of the same message reaching its destination and causes a catastrophic

failure.

Context

Writing correct and fault-tolerant applications from scratch is too hard. For this

purpose several ad-hoc frameworks and applications, such as Akka [23] which is
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a resilient elastic 1 distributed real-time transaction processing toolkit, have been

introduced to prevent applications from trying to perform an action that is doomed

to fail. Akka uses supervisor hierarchies with let-it-crash semantics. It detects

failures and encapsulates logic for preventing a failure to reoccur constantly. It stops

cascading failures and improves the system’s overall resiliency and fault tolerance in

complex distributed systems where failures are inevitable. Although, it is one of the

most popular toolkits to implement concepts related to fault tolerance, different test

scenarios are needed to verify the final system functionality. It is possible to verify

system’s properties or potential failures in a more thorough fashion than empirical

testing by using formal methods. While current studies on fault tolerance have mostly

focused — from the technical viewpoint — on standards, protocols and different

ad-hoc tools, formal methods can greatly increase our understanding of a system

by revealing inconsistencies, ambiguities and incompletenesses that might otherwise

go undetected [15]. Formal methods use mathematical tools as a complement to

system testing in order to ensure correct behavior. Model checkers take as input

a formal model of the system, typically described by means of state machines or

transition systems, and verify if it satisfies temporal logic properties [14]. Model

checking techniques are supported by tools, which facilitate their application. In

case the model checker detects a violation of a desired property, a counterexample is

produced to show how the system reaches the erroneous state. As systems become

more complicated, and safety becomes a more important issue, a formal approach

to system design offers another level of quality. Formal methods differ from other

design systems through the use of formal verification schemes or interactive provers

to establish the correctness of systems before they are accepted [9].

In recent years, the topic of composing behaviors has been proposed in the areas

of web service [7], verification [28] and even multi-agent systems [34, 35]. Among

recent studies that can either be used in service oriented computing, different formal

methods, most of them with a semantics based on transition systems (e.g., automata,

Petri nets, process algebras), have been used to guarantee correct behavior and service

1. Elasticity adapts to both the “workload increase” as well as “workload decrease” by “provi-
sioning and deprovisioning” resources in an “autonomic” manner, unlike scalability, which adapts
only to the “workload increase” by “provisioning” the resources in an “incremental” manner.
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composition [18, 2, 29]. One promising synthesis-based model, that acts as a formal

tool for service composition, is the behavior composition framework [19], which is quite

significant, as the authors have extensively investigated the problem of behavior com-

position. It generally synthesizes a controller to delegate actions to suitable available

behaviors. However, the behavior composition framework also raises a number of

challenges in presence of failures, which is discussed in the next section.

Problem

Service composition viewed as cohesive and loosely coupled services, which should

interact with each other to accomplish a specific task, makes easier modification and

addition of functions and qualities to a system anytime [39]. The ability to compose

services to create new services is an essential part in real world applications. However,

this ability introduces not only advantages but also new challenges, most importantly

in presence of failures. Indeed, a runtime failure or unavailability of a service may

result in a failed execution of a composite service.

In the context of the behavior composition framework, service composition consists

in combining a set of available behaviors (e.g, services) to achieve a target behavior

(composite service). The overall aim of the system is to perform the actions (e.g,

operations) sequentially to realize the target. The behavior composition framework

includes a solution to cope with the composition problem, which consists in auto-

matically generating compositions (or generated controllers) from an environment,

available behaviors and a target behavior. This phase is a planning phase. It is based

on the notion of simulation. First, a system is defined as a collection of available

behaviors that operate on a common environment. Second, the enacted system be-

havior and enacted target behavior are made. The enacted system behavior results

from the synchronous product of the environment and asynchronous product of avail-

able behaviors. Likewise, the enacted target behavior describes the evolution of the

target behavior acting on the environment. Third, a simulation-based approach is

exploited to generate compositions. The latter are at the end of a synthesis process,

which starts with the calculation of the largest nondeterministic (ND) simulation of

the enacted target behavior by the enacted system behavior. Having constructed such
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elements, a generated controller is introduced to select, at each step of execution, a

suitable behavior, which will carry out the current required action. Several problems

may, however occur due to the failure of a behavior. A behavior may temporarily

stop responding or unexpectedly change its current state. The environment may un-

expectedly change its current state. A behavior may become permanently unavailable

and unexpectedly resume its operation after starting in a certain state.

Currently, some efforts have been made to solve the aforementioned problems.

Instead of re-planning from scratch for a whole behavior or service [30, 24], an alter-

native approach was proposed in which behaviors are iteratively removed or added

at run–time. If during an iteration no suitable choices are possible, then the con-

troller should wait for the behavior to come back. Roughly speaking, this alternative

approach exploits all compositions at runtime and deals with unexpected failures by

suitably refining the solution on the fly, thus avoiding full re-planning [18]. This ap-

proach may improve the system resiliency, but there is still an obstacle to provide

consistency in the system. If the behavior never comes back, a composite service may

terminate in an inconsistent state and the reliability and availability of the system is

violated.

So, in order to construct highly available, robust and reliable system, it is a

necessity to evaluate and extend different recovery techniques and algorithms in the

context of the behavior composition framework.

Objectives

This proposal investigates on the following items, especially for behavior composi-

tion in many situations and domains in which assuming full reliability and availability

of behaviors is not adequate to guarantee the correct functionality of a system.

• Evaluate recovery techniques in the context of the behavior composition frame-

work.

Recovery techniques, namely forward and backward recovery techniques, are

fault-tolerant execution control mechanisms based on colored Petri nets, which

include a replacement and a compensation process respectively [13]. In this

approach, a transactional property of each node allows to recover the system
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in case of failures during the execution. In a fault-tolerant service composition,

each set of related services may form a transaction for which the atomicity

property is a must and by failing one of them, others have to be rolled-back.

However, for some services, the roll-back operation may not be available or only

available partially. Therefore, failing a service may cause the whole composition

ended up in an inconsistent execution due to the violation of atomicity property

and results in an unreliable system.

• Evaluate the Akka fault tolerance strategies appropriate for the behavior com-

position framework.

Only relatively recently actor frameworks have became mature enough to be

adopted as a mainstream ad–hoc technology for building complex distributed

systems and handle failures, an example being the Akka framework [23]. Com-

pared to traditional distributed system architectures, actor frameworks present

a considerably different approach to concurrency, state persistence and fault

tolerance. So, using the Akka fault tolerance strategies in the context of the

behavior composition framework gives the ability to activate, stop, restart and

resume any of available behaviors and to instruct them to execute an operation

with respect to their current state. Moreover, Akka has a supervisor strategy

with full observability on available actors which can keep track (at runtime) of

their current states.

• Integrate a formal solution based on colored Petri nets and supervisor strategy

into the behavior composition framework.

The intentions are twofold. First, propose an approach to fault tolerance in the

behavior composition framework which is based on state transition systems. Second,

implement a case study in Akka using built–in strategies, behavior composition with

the largest ND-simulation algorithm and recovery techniques.

Methodology

In the literature, fault-tolerant behavior composition, multiple recovery techniques

and the actor model [25] with many implementations in different programming lan-

guages have been proposed to cope with some of the challenges discussed earlier.
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In this work, particular attention is put on supervision and recovery techniques

that exploit functions already present in the system in a different than usual way to

achieve reliability with little or no intervention at the application or syntax levels.

In general, to make a system more reliable, it is important to always view a

behavior as part of a supervision hierarchy. At this point it is vital to understand

that supervision is about forming a recursive fault handling structure. If there is too

much to do in the behavior, it will become hard to make it robust and fault tolerant,

hence the recommended way in this case is to add a level of supervision. A supervisor

gives the ability to activate, stop, restart and resume a behavior. In the case of the

behavior composition framework, it should be noted that the supervision hierarchy

has only one level.

A behavior is a container for state and actions. The supervisor has full observabil-

ity on the available behaviors, that is, it can keep track (at runtime) of their current

states. The supervisor must respond to subordinate failure. When a subordinate

detects a failure (i.e., throws an exception), it suspends itself and all its subordinates

(if any), and sends a message to its supervisor, signaling failure. Depending on the

nature of the work to be supervised and the nature of the failure, the supervisor has

a choice of the following four options:

• resume the subordinate, keeping its accumulated internal state;

• restart the subordinate, clearing out its accumulated internal state;

• stop the subordinate permanently;

• escalate the failure, thereby failing itself.

Each supervisor is configured with a function translating all possible failure causes

(i.e., exceptions) into one of the four choices given above.

As mentioned earlier, there is a formal approach to deal with unexpected failures

in the behavior composition framework, so by adding a level of supervision and in-

tegrating backward recovery into the framework, there is a capability to overcome

drawbacks of the behavior composition framework and thus improve the reliability of

composite services. More specifically, backward recovery is summarised in restoring

the state that the system has at the beginning of the transaction. So, all the success-

fully executed actions, before the failure, must be compensated to undo their pro-
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duced effects. Therefore, the expected recovery approach should have two techniques

to cope with service failures. The forward recovery technique proposes an algorithm

to find a substitution for a failed service in order to continue the execution and the

backward recovery technique which is aimed to rollback all system transactions and

leaves the system in a consistent state.

A fault-tolerant service composition is the one that ends up the whole transaction

in a safe state upon a service failure, where the related services are also rolled-back

appropriately.

Expected Results

In order to practically validate our research, the proposed methodology is adopted

and illustrated with a case study. There are three service behaviors and one target

behavior in the case study and each behavior includes of several actions.

Several failure cases are anticipated and the behaviors are expected to tolerate

these cases, namely:

A behavior temporarily freezes, that is, it stops responding and remains

still, then eventually resumes in the same state it was in. As a result,

while frozen, the controller cannot delegate actions to it.

A behavior that was temporarily freezes unexpectedly resumes operation

starting in a certain state. The controller can exploit such an opportunity

and start delegating actions to it again.

A behavior dies, that is, it becomes permanently unavailable. The con-

troller has to completely stop delegating actions to it.

A behavior throw an exception. The controller has to stop, resume or

restart the behavior depending on the type of exception.

An interactive command line interface is provided to test the functionality of

the system. Killing and freezing the behavior permanently result in removing the

behavior and related transitions from the controller generator and stop delegating

actions to the failed behavior. Afterwards, the controller generator is adjusted. So,

for any further requests if there is no choice in the available behaviors, instead of

7



waiting for a failed behavior to comes back, the backward recovery will be started

and all executed actions will be rolled back to leave the system in a consistent state.

Notably, in the case of unfreezing the behaviors in any state, the controller gener-

ator is altered again and a joined behavior is considered again for action delegations.

Moreover, a separate supervisor is assigned to each behavior and it is expected to

handle the behavior internal exceptions. If a behavior throws an exception, the su-

pervisor depending on the nature of the work to be supervised and the nature of the

exception, has a choice of the following four options:

resume the subordinate, keeping its accumulated internal state;

restart the subordinate, clearing out its accumulated internal state;

stop the subordinate permanently;

escalate the failure, thereby failing itself.

Organization

The remainder of this thesis is structured as follows. Chapter 1 introduces a set of

preliminaries that are necessary to understand the behavior composition framework

and fault tolerance. Chapter 2 provides a review of fault tolerance terminologies

and technologies with a set of fault-tolerant libraries and the Akka toolkit. These

two chapters cover work in the field of formalisms for composition of web services and

different approaches to fault tolerance found in the literature. Chapter 3 describes the

integration of backward recovery into the behavior composition framework to leave

the system in a consistent state after a failure. A case study is introduced to illustrate

this approach. Chapter 4 details an implementation and provides an illustration with

the case study.
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Chapter 1

Preliminaries

In order to understand the proposed approach, which is based on some theoretical

formalisms, it is necessary to introduce some basics about transition systems and

behaviors. Thus, some mathematical definitions specific to behavior composition,

some concepts and techniques related to fault tolerance and an introduction of a

toolkit, called Akka, are presented hereafter.

Formally, a transition system is a pair 〈S,→〉 where S is a set of states and → is

a set of state transitions (i.e., a subset of S × S). The fact that there is a transition

from state p to state q (i.e., 〈p, q〉 ∈ →), is written as p→ q.

A labelled transition system is a tuple 〈S,∇,→〉, where S is a set of states, ∇ is

a set of labels and→ is a set of labelled transitions (i.e., a subset of S×∇×S). The

fact that 〈p, α, q〉 ∈ → is written as p
α→ q. This represents the fact that there is a

transition from state p to state q with label α. If, for any given p and α, there exists

at most one tuple 〈p, α, q〉 ∈ →, then the transition system is deterministic.

A behavior β is a tuple 〈B,A, b0, η〉 where:

• B is the finite set of behavior’s states;

• A is a set of actions;

• b0 ∈ B is the initial state;

• η ⊆ B × A × B is the transition relation, where 〈b, a, b′〉 ∈ η , or b
a→ b′ in β,

denotes that action a executed in state b may lead the behavior to successor

state b′.

As a finite-state transition system, a behavior stands for the operational model

of a system or a device. For example, in a flight reservation scenario, behaviors can

represent different flight agencies providing a set of applicable actions such as hotel,

taxi, meal and flight ticket reservations. The behavior involves two different types.

The first is called partially controllable behavior, which is non-deterministic, without

any knowledge about the next state after the execution of an action. The second one
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Figure 1.1: Main elements of the behavior composition framework

is called fully controllable behavior, which satisfies the following constraint. There is

no state b ∈ B and action a ∈ A for which there exist two transitions b
a→ b′ and

b
a→ b′′ in β with b′ 6= b′′.

1.1 Behavior Composition Framework

The behavior composition framework is used as a formal tool with the aim of

composing behaviors [19]. A general view of the behavior composition framework is

illustrated in Figure 1.1. The description of the framework is borrowed from [6].

The main elements of the framework are an environment, available behaviors,

a target behavior, a controller generator and generated controllers. In this frame-

work, each behavior is an abstract model of an agent, device or software component

operating on an environment, which is a shared space where actions are defined.

Definition 1.1.1. An environment, which is generally nondeterministic, is a tuple

10



E = 〈A,E, e0, ρ〉, where A is a finite set of shared actions, E is the finite set of

environment states, e0 ∈ E is the environment initial state and ρ ⊆ E×A×E is the

environment transition relation.

Definition 1.1.2. An available behavior, which is generally nondeterministic, is a

tuple Bi=〈Bi, δi, bi0, Gi, Fi〉, where Bi is the finite set of behavior states, δi ⊆ Bi ×
Gi × A × Bi is the behavior transition relation, bi0 ∈ Bi is the behavior initial state,

Gi is a set of guards on an environment E with a set of shared actions A and Fi ⊆ Bi

is the set of behavior final states.

Similar to Definition 1.1.2, a target behavior Bt is a tuple 〈Bt, δt, bt0, Gt, Ft〉,
whereas, on the contrary to an available behavior, Bt is deterministic. A target

behavior indicates the fully controllable desired behavior to be reached.

It should be noted that, a guard over E is a Boolean function g : E 7→ {>,⊥}.
This means that the behaviors evolve with respect to the current state of E .

Given the available behaviors and an environment, a system S = 〈B1, . . . ,Bn, E〉
is defined as the interleaving (composition) of all available behaviors being able to

operate over the shared environment.

In the case that behaviors cannot function in a standalone way, their real capabil-

ities depend on both themselves and the environment operating on them. So, from

this point, the notion of enacted behavior is defined.

Definition 1.1.3. Given a behavior B = 〈B, δ, b0, G, F 〉 and an environment E =

〈A,E, e0, ρ〉, the enacted behavior of B on E is the tuple TB = 〈SB, A, δB, sB0 , FB〉,
where SB = B×E is the (finite) set of states, A is the same set of actions as defined

in E, δB ⊆ SB × A × SB is the transition relation, sB0 = 〈b0, e0〉 ∈ SB is the initial

state and FB = F × E is the set of final states. The transition 〈〈b, e〉, a, 〈b′, e′〉〉 ∈ δB
if and only if:

— 〈e, a, e′〉 ∈ ρ;

— 〈b, g, a, b′〉 ∈ δ and g(e) = >.

It means that B and E synchronize on all actions.

Given a state b = 〈b, e〉 ∈ SB, b and e are denoted by beh(b) and env(b), respec-

tively. As depicted in Figure 1.1, the notion of enacted target behavior is defined

from the target behavior on the environment.
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Definition 1.1.4. The enacted target behavior TBt is the tuple 〈SBt , A, δBt , sBt0 , FBt〉
such that TBt is the enacted behavior of Bt on E.

All available behaviors in a system operate in the shared environment in an inter-

leaved fashion, called the enacted system behavior.

Definition 1.1.5. Given a system S = 〈B1, . . . ,Bn, E〉, the enacted system behavior

of S is the tuple TS = 〈SS , A, In, δS , sS0, FS〉, where SS = B1 × . . . × Bn × E, In =

{1, . . . , n} is the set of behavior indexes, δS ⊆ SS × A × In × SS is the transition

relation, sS0 = 〈b10, . . . , bn0, e0〉 is the initial state and FS = {s ∈ SS | behi(s) ∈
Fi for all i ∈ In} is the set of final states. The transition:

〈〈b1, . . . , bi, . . . , bn, e〉, 〈a, i〉, 〈b1, . . . , b′i, . . . , bn, e′〉〉 ∈ δS

if and only if:

— 〈e, a, e′〉 ∈ ρ;

— 〈bi, gi, a, b′i〉 ∈ δi and gi(e) = >, i ∈ In.

It means that the environment synchronizes with behavior Bi on action a independently

of the other behaviors.

When there is no environment, the actions that belong to A are given out to

available behaviors, that is, Bi = 〈Bi, Ai, δi, bi0, Fi〉, where guards are eliminated and

elements are defined as in Definition 1.1.2, but with δi ⊆ Bi × Ai × Bi. In the same

way Bt = 〈Bt, At, δt, bt0, Ft〉, where elements are defined as in Definition 1.1.2, but

with δt ⊆ Bt × At × Bt and At ⊆ ∪iAi. In that case, the notions of enacted system

behavior and enacted target behavior are unnecessary. There are only the system

S = 〈B1, . . . ,Bn〉 and the target behavior Bt. The system behavior, also denoted

by S is the tuple S = 〈S,A, In, δ, s0, F 〉, where S = B1 × . . . × Bn, A = ∪iAi,
s0 = 〈b10, . . . , bn0〉, F = F1× . . .×Fn and δ ⊆ S×A× In×S is the system transition

relation. The transition 〈〈b1, . . . , bi, . . . , bn〉, 〈a, i〉, 〈b1, . . . , b′i, . . . , bn〉〉 ∈ δ if and only

if 〈bi, a, b′i〉 ∈ δi, i ∈ In.

1.1.1 Behavior Composition Problem

A typical behavior composition problem consists in the synthesis of a controller

in order to realize a desired target behavior by coordinating a set of available be-
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haviors. This problem was proposed through a framework, called automatic behavior

composition [19].

1.1.2 Controller Synthesis

In the behavior composition framework, there are two ways for synthesizing a

controller generator. One way is based on an algorithm, which calculates the largest

ND-simulation. The other concerns the calculation of a winning strategy of a corre-

sponding two-player safety game by using the model checker TLV/SMV.

1.1.3 Synthesis Based on an ND-simulation Relation

Definition 1.1.6. Let t ∈ SBt and s ∈ SS , an ND-simulation relation of TBt by TS
is a relation R ⊆ SBt × SS , such that 〈t, s〉 ∈ R implies:

1. env(t ) = env(s);

2. if t ∈ FBt, then s ∈ FS ;

3. for all actions a ∈ A, there is a k ∈ In such that for all transitions 〈t, a, t′〉 ∈ δBt:

— there is a transition 〈s, 〈a, k〉, s′〉 ∈ δS with env(t′) = env(s′);

— for all transitions 〈s, 〈a, k〉, s′〉 ∈ δS with env(t′) = env(s′), it is the case

that 〈t′, s′〉 ∈ R.

The symbol “�” is used to denote that a state t ∈ SBt is ND-simulated by a state

s ∈ SS , (t � s), that is, there exists an ND-simulation relation R of TBt by TS such

that 〈t, s〉 ∈ R.

There exists an algorithm that computes the largest ND-simulation relation [19].

The theorem 1 in [19] proves that a controller of Bt on S exists if and only if sBt0 � sS0.

From the largest ND-simulation relation, a finite state machine, called controller

generator, can be derived. It is formally defined as follows.

Definition 1.1.7. A controller generator is the tuple CG = 〈Σ, A, In, ξ, ω〉, where

Σ = {〈t, s〉 ∈ SBt × SS | t � s} is the set of CG states. Given a state σ = 〈t, s〉 ∈ Σ,

t and s are denoted by comBt(σ) and comS(σ), respectively, and ξ ⊆ Σ×A× In ×Σ

is the CG transition relation. The transition 〈σ, 〈a, k〉, σ′〉 ∈ ξ if and only if:

— 〈comBt(σ), a, comBt(σ
′)〉 ∈ δBt;
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— 〈comS(σ), 〈a, k〉, comS(σ′)〉 ∈ δS ;

— for all 〈comS(σ), 〈a, k〉, s′〉 ∈ δS , 〈comBt(σ′), s′〉 ∈ Σ.

The function ω : Σ× A→ 2In is an output function defined as:

ω(σ, a) = {k | ∃σ′ ∈ Σ such that 〈σ, 〈a, k〉, σ′〉 ∈ ξ}.

Given an action and the current state of system, the output of CG is the set

of available behaviors that may execute the action while preserving the largest ND-

simulation relation. Notice that, computing CG from the largest ND-simulation

relation just involves checking local conditions [17].

A family of generated controllers, called also compositions of Bt on S, can be

extracted from the controller generator. Notice that, in some cases, the number of

generated controllers can be infinite [19].

1.1.4 Fault Tolerance in the Behavior Composition Frame-
work

As an example, the behavior composition framework is used to illustrate forward

recovery implemented in service composition.

The behavior composition framework [19] through the planning phase calculates

the largest ND-simulation of the target behavior by the system (the product of all

available behaviors).

The largest ND-simulation has enough information to find all possible composi-

tions. Such compositions are not sufficiently robust to deal with failures in behavior

functionality, availability or communication over network. For instance, a service for

online payments as a complex and stateful behavior that guarantees the correctness

of transactions might not expect to leave a transaction in an inconsistent state or wait

for a long period of time to handle a request in presence of failures in any services.

Five core forms of these failures are as follows as described in [18].

A behavior temporarily freezes, that is, it stops responding and remains

still, then eventually resumes in the same state it was in. As a result,

while frozen, the controller cannot delegate actions to it.
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A behavior unexpectedly and arbitrarily (i.e., without respecting its tran-

sition relation) changes its current state. The controller can in principle

keep delegating actions to it, but it must take into account the behavior’s

new state.

The environment unexpectedly and arbitrarily (i.e., without respecting its

transition relation) changes its current state. The controller has to take

into account that this affects both the target and the available behaviors.

A behavior dies, that is, it becomes permanently unavailable. The con-

troller has to completely stop delegating actions to it.

A behavior that was assumed dead unexpectedly resumes operation start-

ing in a certain state. The controller can exploit this opportunity by

delegating actions to the resumed behavior, again.

In another work [20], it is assumed that the controller generator always deal with

fully reliable services and does not address the above cases. As a consequence, upon

any of the above failures, the only option is “re-planning” from scratch for a whole

new controller. Planning is finding an appropriate combination of behaviors so that

requested actions and certain goals can be achieved [8]. To avoid re-planning from

scratch upon any of above failures, the aforementioned simulation-based approach in-

cludes a solution that reactively (on-the-fly) or parsimoniously adjusts to failures [18]

in a more robust fashion. “Just-in-time” controller generator, as a reactive solution,

can delay choosing the next operation according to criteria and available information

until run-time, so that the ND-simulation relation is preserved. With respect to the

failure cases mentioned above, for the first case, when the behavior freezes, the con-

troller generator just avoid to select the frozen behavior and try to find another one to

delegate operations. Corresponding to second and third cases, in the case of any un-

expected changes in the internal state, the same solution can be applied to deal with

failures. For the last two cases, however, a reactive approach is not adequate as the

behaviors stop working permanently and not resume eventually. Indeed, the difference

between temporary and permanent unavailability of behaviors is in the possibility of

operation delegation in controller generator. In the permanent unavailability, the be-

havior and all dependent compositions, need to be discarded and removed, but the
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temporary unavailability has a cost in execution delay and the controller generator is

able to delegate operations to it as it will be resume eventually. Lastly, when a new

behavior becomes available, re-computation of the largest-ND simulation is necessary,

as there are more possibilities to generate a controller through a controller generator.

1.2 Fault Tolerance

A general agreement on fault tolerance definition and understanding that how it

can help to guarantee availability and reliability of systems is one of the main problems

in designing systems 1. Availability and reliability terms are described in more details

later, but in nutshell, the reliability measures how long the system can operate before

malfunctioning, even in the presence of faulty components. The availability measures

the mean proportion of time that the system is available for use. Normally, fault-

tolerant systems are evaluated with respect to these two criteria.

Fault tolerance is the ability of a system to perform its functions correctly even in

the presence of faults and continue normal operating without interruption [21]. The

purpose of fault tolerance is to increase the dependability of a system. Dependability

is the possibility to depend on a system behavior in an appropriate manner, both

during normal circumstances and when some forms of fault have occurred, either in

the software or hardware. The notion of dependability may also include that the

system behaves appropriately even under workloads exceeding the largest workload

the system can handle, perhaps with downgraded performance.

Indeed, fault tolerance ensures that the fault does not cause the overall system

to malfunction, but there is also a good chance that performance will start to de-

grade until the busted component is replaced. Dependability is identified by several

attributes.

1.2.1 Dependability Attributes

Fault tolerance is needed in many systems to ensure overall system dependabil-

ity [36] because the consequences of a malfunction are more expensive than the cost

1. A design is a description of how the components interact with each other.
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of preventing it. For a system to be fault tolerant, it must to provide three main

dependability attributes in distributed systems [16, 4]:

1) Reliability which is the probability of a service to produce correct outputs

and provide successful execution of a program up to some given time t. A reliable

system does not continue to deliver results that include uncorrected corrupted data.

Reliability can be characterized in terms of Mean Time Between Failure (MTBF),

but the more exact term is Mean Time To Failure (MTTF):

Reliability = MTTF =
t

MTBF
. (1.1)

2) Availability which is probability of a service to be operational as expected

without failing. When a failure occurs, the amount of time until service is restored is

the Mean Time To Repair (MTTR). It depends on MTTF (reliability). Taking the

ratio of the average time that a system is available to the total time it is expected to

be operational gives the formula for this attribute:

Availability =
MTTF

MTTF +MTTR
. (1.2)

Availability is typically given as a percentage of the time that a system is expected

to be available, e.g., 99.999 percent (five nines).

The distinction between reliability and availability is notable: reliability is the

system ability to function correctly without data corruption, whereas availability

measures how often the system is available for use, even though it may not be func-

tioning correctly. For instance, a server may run forever and so has ideal availability,

but may be unreliable with frequent data corruption. For instance, in passenger

transportation systems, it is important that the system be continuously available and

also not corrupt data when a failure occurs.

3) Safety which prevents any unauthorized access.

Moreover, integrity and maintainability are also dependability attributes.

In recent years, a gradual development from large monolithic systems 2 to sys-

tems, consisting of smaller and decoupled independent services that provide a single

functionality and communicate with each other using synchronous or asynchronous

2. Single-server systems.
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techniques, has been observed. Figures 1.2 and 1.3 illustrate the differences in these

architectures. So, dealing with various dependability-related concerns, such as faults,

errors and failures, are still in the core of researches [4, 43]. Moreover, to ensure the

overall system dependability, exception handling mechanisms during the entire life

cycle have been advocated as one of the main approaches [36].

1.2.2 Dependability Concerns

A failure occurs when an actual running system deviates from the specified be-

havior. The cause of a failure is called an error. An error represents an invalid system

state, one that is not allowed by the system behavior specification. The error itself is

the result of a defect in the system or fault. In other words, a fault is the root cause

of a failure. It means that an error is merely the symptom of a fault. A fault may

not necessarily result in an error, but the same fault may result in multiple errors.

Similarly, a single error may lead to multiple failures [4].

According to these concerns and the main goal for achieving fault-tolerant systems,

it is required to avoid potential faults. Four approaches to reach this goal are [4]: fault

prevention, fault removal, fault forecasting and fault tolerance.
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• Fault prevention means to prevent faults from being present in the system. The

aim of fault prevention is ensuring that all possible faults are removed from

the system before deployment. It is used in modelling, design, verification and

validation methodologies and code inspections to avoid fault occurrences.

• Fault removal measures the number of faults in the system in order to remove

and reduce them. The range of techniques used for fault removal includes unit

testing, integration testing, regression testing and back-to-back testing.

• Fault forecasting copes with the future system faults that may cause a failure.

• Fault tolerance prevents system to be failed overally in the presence of faults.

A system built with fault tolerance capabilities will manage to keep operating

when a failure happens, but at a degraded level. For a system to be fault

tolerant, it must be able to detect, diagnose, confine, mask, compensate and

recover from faults.

From these definitions, the aim of fault prevention and fault tolerance is to pro-

vide reliability while fault removal and fault forecasting focus on providing availabil-

ity. They are, however, complementary and must be taken in all phases of system
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development to increase dependability. For instance, fault prevention techniques are

used in design phase, fault removal and forecasting in implementation phase and fault

tolerance in execution phase.

1.2.3 Fault and Failure Classifications

Faults can be classified as transient, intermittent and permanent [22, 43]. A tran-

sient fault will eventually disappear by software restarting or message retransmission,

whereas a permanent one, such as power breakdowns, disrupts a system functionality

as desired and will remain unless it is removed. While it may seem that permanent

faults are more severe, from an engineering perspective, they are much easier to di-

agnose and handle. A particularly problematic type of fault is an intermittent fault

that recurs, often unpredictably.

Failures, can also be classified into the following categories during computation

on system resources:

• Response failure—the component fails to response.

• Crash failure—the component either completely stops operating or never returns

to a valid state.

• Omission failure—the component completely fails to perform its service.

• Timing failure—the component does not complete its service on time.

• Byzantine failure—it is defined as arbitrary deviations of a process from its

assumed behavior it is supposed to be running.

1.2.4 Fault Tolerance Techniques

The characteristic of fault tolerance is not complete. It is obvious that there is not

any system to tolerate every possible faults and there are always some combinations

of events and failures that lead to the disruption of the system. However, based on

fault tolerance policies, different techniques are introduced. Figure 1.4 shows these

techniques and a brief definition of each is given below [5, 22].

Reactive fault tolerance is aimed to reduce the effect of a failure after it is occurred

by bring it back to a latest state or if possible before occurrence of a failure. Based

on this policy various techniques exists:
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• Check Pointing/restart—In the event of a failure, system is restored to a pre-

viously stored check-point rather than starting it from the beginning.

• Replication—The main idea is to create multiple copies of data or services and

storing them at multiple servers and coordinating client interactions with server

replicas. If one of them failed, the other ones are accessible so that performance

in not affected. Data consistency is one of the replication limitations. Based on

deterministic or non-deterministic processes, it is divided to active and passive

replication.

— Active replication, as illustrated in Figure 1.5, can be used only for deter-

ministic processes. The request is processed by all replicated servers and,
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in order to make all the servers receive the same sequence of operations,

an atomic broadcast protocol must be used. An atomic broadcast protocol

guarantees that either all the servers receive a message or none, plus that

they all receive messages in the same order.

— Passive replication, as shown in Figure 1.6, can be used for nondetermin-

istic processes. There is only one server that processes client’s request

known as primary server and the other servers act as back up servers. Af-

ter processing a request, the primary server updates the state on the other

(backup) servers and sends back the response to the client. If the primary

server fails, one of the backup servers takes its place. Response time is

high as there is only one server which process many client’s request.

• Job migration—In the case of failure on a particular machine while executing

an operation, it can be migrated to another machine.

• S-guard—It is based on rollback recovery which is one of backward recovery

approaches introduced in Chapter 1.

• Retry—It is the simplest technique as the operation is resubmitted to the same

machine again and again.

• Task resubmission—Resubmitting a failed operation on the same machine or

another one.
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• User defined exception handling—The user predefines a specific treatment in

the case of failure.

• Rescue workflow—It allows to continue the steps in the workflow until it be-

comes impossible to move forward.

Proactive fault tolerance proactively detects the faults in a component and intro-

duces a replacement in order to avoid recovery from faults, errors and failures:

• Software rejuvenation—It is a helper approach to prevent performance degra-

dation and other associated failures related to software aging. A typical method

is the hardware or software reboot to restart the system from scratch.

• Self-healing—Automatically handle a failure in each individual instance.

• Preemptive migration—It is based on a feedback-loop control mechanism, which

continually monitors and analyzes a system.

Fault tolerance can be specified quantitatively or qualitatively [37]. A quantitative

approach is usually introduces as the maximum allowed failure-rate. For instance,

9–10 failures per hour. A qualitative approach includes several characteristics as

follows:

• Fail-safe—When the number of system faults increases and reaches a specified

threshold, it fails in a safe mode. For instance, railway signalling systems are

designed to fail-safe, so that all trains stop.
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• Fail-op—When a system suffers a specified number of faults, it still provides a

subset of its specified behaviors.

• No single point of failure—The no single point of failure design simply asserts

that no single part of a system can stop the entire from working. Instead, the

failed component can be replaced or repaired before another failure occurs.

• Consistency—All information delivered by the system is equivalent to the in-

formation that would be delivered by an instance of a non-faulty system.

In addition, various replication and software diversity techniques including recov-

ery blocks, conversations and N-version programming have been developed and widely

used in industry. Although redundancy is also identified as one of the principles for

designing fault-tolerant systems, there is a misconception about the difference be-

tween redundancy and fault tolerance. Redundancy means having several instances

of one service, so, if a part of a system fails, there is an “extra or spare” that can

operate in place of the failed component such that the system operation is uninter-

rupted. For instance, having two disks on the same system that are regularly backed

up makes them redundant, since if one fails the other can pick up. If the entire system

fails, however, both disks are useless. This is the role of fault tolerance to keep the

system as a whole operational even if portions of the system fail. Fault tolerance is a

requirement, not a feature.
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Chapter 2

Review of Fault Tolerance
Terminologies and Technologies

Clearly, when it comes to build a robust and reliable composition, such as a service

or behavior composition, the concept of failure is considered as a central importance,

as failures are inevitable. In the following, we report some approaches to handle

failures, present in the literature, that are relevant to our work.

There are various techniques available to provide fault tolerance in the context of

service composition. In the industrial world, there are a variety of tools and libraries,

which are not usually based on formal theories. Apache Ignite 1, Failsafe 2,

Hystrix 3, JRugged 4 and Resilience4j 5 are the most popular fault tolerance

libraries in the context of informal (ad-hoc) technologies [26]. Beside these, in litera-

ture, there exists some recent research work related to fault tolerance in service and be-

havior composition, each corresponding to a different perspective and all equally rea-

sonable with some weaknesses to provide reliability [31, 20, 18, 45, 33, 41, 42, 27, 13].

In the next section, different stability patterns in the context of service com-

position are described. In the following descriptions, the term “system” refers to

a software system, which consists of an orchestrator and several services to realize

a target behavior. The orchestrator selects services based on a specific policy and

delegates each requested operation to a single service at a time.

2.1 Stability Patterns in Fault Tolerance

The stability patterns are designed to protect systems against common failures

in services communication and collaboration. Several stability patterns have been

1. https://ignite.apache.org/
2. https://github.com/jhalterman/failsafe
3. https://github.com/Netflix/Hystrix
4. https://github.com/Comcast/jrugged
5. https://github.com/resilience4j/resilience4j
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created to minimize the impact of failures. In this section, the most important ones

in regard to service composition are described. By such definitions, it will be much

easier to explain related fault tolerance libraries and their functionalities. It should

be noted that these patterns can be used together or separately according to the

problem domain.

2.1.1 Circuit Breaker

It is common in a system to delegate operations to other services running in differ-

ent processes, probably on different machines across a network to fulfill the incoming

requests, but there can be situations where a service can fail due to unanticipated

events. These faults can range in severity from a partial loss of connectivity to the

complete failure of a service. In these cases it might be pointless to continually retry

an operation that is unlikely to succeed, and instead, the orchestrator should quickly

accept that the operation has failed and handle this failure accordingly.

Additionally, if a service is very busy, failure might lead to cascading failures.

These blocked delegations might hold critical system resources such as memory,

threads, database connections and so on. Consequently, these resources could be-

come exhausted, causing a failure of other possibly unrelated parts of the system

that need to use the same resources. In these situations, it would be preferable for

the operation to fail immediately, and only attempt to invoke the service if it is likely

to succeed. The circuit breaker pattern can prevent an orchestrator from repeatedly

trying to delegate an operation to a service that is likely to fail and allows it to con-

tinue without waiting for the fault to be fixed. The circuit breaker pattern also is

able to detect whether the fault has been resolved. Figure 2.1 shows the behavior

of a circuit breaker described by a finite state machine with the states that mimic

the functionality of an electrical circuit breaker, namely Closed, Open and Half-open.

The basic idea behind the circuit breaker is very simple. Normally a circuit is closed

and delegations are executed as usual. When a failure occurs in a service component

and exceeds a certain threshold, the circuit breaker trips and all further calls will

fail immediately without reaching the service. After some time a few requests are let

through to the faulty service to test if it is up again. If they succeed, the circuit is

closed and all requests are executed as before. Otherwise, the circuit remains open
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Figure 2.1: Circuit breaker behavior

and the same check is done again after some time. A circuit breaker acts as a proxy

for operations that might fail. The proxy should monitor the number of recent failures

that have occurred and use this information to decide whether to allow the operation

to proceed, or simply return an exception immediately.

2.1.2 Bulkheads

In general, the goal of the bulkhead pattern is to avoid faults in one part of a

system to take the entire system down. The term comes from ships, where a ship is

divided into separate watertight compartments to avoid a single hull breach to flood

the entire ship; it will only flood one bulkhead.

Similar technique can be used in software systems. By partitioning a system, it

is possible to confine errors to one area as opposed to taking the entire system down.

These partitions can be hardware redundant, binding certain processes to certain

CPUs, segmenting different services to different servers or partitioning threads into

different thread groups for different functionalities.

Having system split into several independent components ensures that the critical

ones will keep running when a failure occurs in one of the less important components.

One implementation of bulkheads is using separate thread pools for each service

provider.
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The diagrams in Figures 2.2 and 2.3 show a single thread pool shared between

all services and bulkhead structured thread pools assigned to individual services,

respectively. In order to show the difference between them, let a multithreaded-based

request, which uses three different services: A, B and C. It is assumed that there are

thirty request handling threads in the thread pool. Figure 2.2 shows such a system

with a shared thread pool. If requests to component C start to hang, as long as all

services use the same thread pool, eventually all request handling threads will hang on

waiting for an answer from C. This would make the system entirely non-responsive.

If the load is high enough, all requests to C are handled slowly and we have a similar

problem. Bulkhead pattern limits the number of concurrent calls to a component

and would have kept the system safe in this case. Figure 2.3 shows the same system

implemented by using the bulkhead pattern. By dividing a thread pool into three

pools and assigning each to an individual service, in the case of any failure in C, as
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Figure 2.3: Bulkhead structured thread pool

the thread pool is isolated, at most ten request handling threads overwhelm and the

other twenty threads can still handle requests in services A and B.

2.1.3 Fail Fast

The fail fast pattern refers to a lightweight form of fault tolerance, whereby a

system service terminates itself immediately upon encountering an error. This is

done upon encountering a serious error such that it is possible to change the service

state to corrupt or inconsistent, and immediate exit is the best way to ensure that no

(more) damage is done.

Services should be able to detect a potential failure before requests are sent to

them for execution and fail fast. Fail-fast service component is designed to report

at the first point of failure, rather than to receive a request and report the failure

eventually. This allows easier diagnosis of the underlying problem, and may prevent
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improper behavior like long running operations in a broken service. This improves

stability of the system by avoiding slow responses and helps to keep resources like

CPU or memory while the system is under heavy load. Before starting the execution,

the system must check the services availability and the service itself needs to try to

get all necessary resources and verify their state. It should check all conditions and

if a condition is not met, it can fail fast and save valuable time.

2.2 Libraries and a Toolkit for Fault Tolerance Ap-
plications

The stability patterns described in the previous section are implemented by various

libraries. In the following paragraphs, the most popular fault tolerance libraries are

introduced.

2.2.1 Apache Ignite

Apache Ignite is a high-performance, integrated (as shown in Figure 2.4) and

distributed in-memory platform for computing and transacting on large-scale data

sets in real-time [38].

The Apache Ignite service grid provides users with complete control over ser-

vices being deployed on the cluster. It allows users to control how many instances

of their services should be deployed on each cluster node, ensuring proper deploy-

ment and fault tolerance. The service grid guarantees continuous availability of all

deployed services in case of node failures. Apache Ignite supports automatic opera-

tion failover. In case of a node crash, service operations are automatically transferred

to other available nodes for re-execution. There are many conditions that may result

in a failure within the node or service and a failover can be triggered. Moreover,

there is an ability to choose to which node an operation should be failed over to, as it

could be different for different nodes or different computations within the same node.

Apache Ignite comes with a number of built-in customizable failover implementa-

tions as follows:

• At Least Once Guarantee, as long as there is at least one node standing, no

operation will ever be lost. As illustrated in Figure 2.5, whenever a primary
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node stops or crashes, there is a node as a secondary which guarantees that the

operation is not re-mapped to the same node it had failed on.

• Closure Failover, which creates an instance of the node with a no-failover flag

set on it and triggered if a remote node either crashes or rejects execution.

Figure 2.6 shows such a system failover behavior.

• AlwaysFailOverSpi, which always reroutes a failed operation to another node.

The first attempt will be made to reroute the failed operation to a node not yet

involved in any operation of the transaction. If no such nodes are available, then

an attempt will be made to reroute the failed operation to one of the nodes that

were involved before in the transaction. If none of the above attempts succeeds,

then null will be returned. None of the stability patterns is used in this library.
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2.2.2 Failsafe

Failsafe is a lightweight, zero-dependency library for handling failures. It pro-

vides various fault tolerance mechanisms such as circuit breakers, fallbacks and re-

tries. Failsafe is very similar to Resilience4j (see Section 2.2.5) but lacks some

of its features such as rate limiter or caching. In comparison with Hystrix (see Sec-

tion 2.2.3), Failsafe supports retries, user-supplied thread pools and configurable

success thresholds. The biggest advantage of Failsafe in comparison with other

fault tolerance libraries is that, it does not have any external dependencies while

providing a decent set of fault tolerance mechanisms. For instance, Resilience4j

uses Vavr 6 as an external library and Hystrix has many more external library

dependencies such as Guava 7 and Apache Commons 8.

6. http://www.vavr.io/
7. https://github.com/google/guava
8. https://commons.apache.org/
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2.2.3 Hystrix

Hystrix, is a latency and fault tolerance library from Netflix 9. It isolates

integration points, stops cascading failures between services, facilitates usage of fall-

backs and provides useful runtime metrics. It is designed to isolate points of access to

remote systems, services and third party libraries, stop cascading failures and enable

resilience in complex distributed systems where failures are inevitable. Figure 2.7

shows a part of a complex distributed architecture with many dependencies, which

is not isolated from dependency failures. The system itself is at risk of being taken

down.

On a high volume website, a single back-end dependency becoming latent can

cause all system resources to become saturated in a matter of seconds. Hystrix

helps by providing protection and control over latency and failure from dependencies,

most commonly those accessed over network. It helps stop cascading failures and

allows to fail fast and rapidly recover, or fallback and gracefully degrade. One of

the cornerstones of Hystrix is the implementation of the circuit breaker pattern.

The HystrixCommand class can be configured with three properties, which affect the

9. https://www.netflix.com/
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behavior of circuit breakers: request volume threshold, error threshold percentage and

sleep window. When a command is run for the first time, the circuit is closed and

the encapsulated business logic is executed. However, if the request volume reaches

the given threshold and at the same time error percentage exceeds the threshold,

the circuit is switched to open state. In this state, no business logic is executed and

the command either immediately throws an exception or executes a fallback if it is

specified. Such behavior lasts during the sleep window and once it is over, the circuit

breaker is switched to half-open state and a single request is let through. If the

request fails, the circuit breaker returns to the open state for the duration of another

sleep window. Otherwise, it is switched to closed state and continues to execute the

business logic. Hystrix also implements the bulkheads pattern by providing a way

to configure different thread pools for different dependencies, so, latency and other

problems will only saturate the threads on the same pool and do not affect other

dependencies. All Hystrix commands are by default executed in a new thread in

order to isolate the calling side from its dependencies which may misbehave. Running

commands in separate threads also allows parallel execution and higher throughput.
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When Hystrix is used to wrap each underlying dependency, the architecture as

shown in Figure 2.7 changes to resemble the one in Figure 2.8.

Although using separate threads for command execution has several advantages,

there is also one significant drawback, computational overhead. Queuing, scheduling

and context switching, when running a command in its own thread, have some im-

pact on the performance of the system. This is usually acceptable in exchange for the

benefits it brings. The overhead might, however, be too high for low-latency requests

and that is why Hystrix provides another similar mechanism, semaphores. In this

case, all requests are executed directly in calling threads and semaphores are used

to limit the number of concurrent calls to any given dependency. But semaphores

are not able to deal with timeouts and when a dependency becomes latent, the par-
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ent thread remains blocked until the connection timeouts. Hystrix also provides

two mechanisms to effectively deal with a large number of requests – collapsing and

caching. If request collapsing is used, the requests to a single dependency are not ex-

ecuted immediately but are collected during a short period of time and sent at once

in a single request. This leads to better utilization of both network connections and

thread pools since only a single thread is used for a collapsed request. On the other

hand, request caching allows to execute only the first request from a number of the

same ones and return the value from the cache for all the subsequent requests. The

biggest advantage of using Hystrix is that it provides a large set of configuration

options. It is also quite generic and very well-designed so it can be easily integrated

into other libraries or frameworks. However, this is also a little disadvantage since

it is more complicated to use Hystrix directly in a project with respect to other

libraries.

2.2.4 JRugged

JRugged is a library that provides simple circuit breaker implementation to-

gether with some monitoring capabilities. It makes use of the decorator design pat-

tern to wrap potentially dangerous method calls. The decorator pattern is a design

pattern that allows behavior to be added to an individual object, either statically

or dynamically, without affecting the behavior of other objects. JRugged provides

three mechanisms to make services more robust and easier to manage: initializers,

circuit breakers and performance monitors. Initializers provide a way to decouple ser-

vice construction from its initialization. This mechanism is useful for services which

do not have all needed resources available for initialization but will eventually get

them at some point in the future. Circuit breakers can be used to throttle traffic to

a failing service as described in Section 2.1.1. Performance monitors can be used to

monitor runtime behavior of a service and collect useful statistics such as latency or

throughput. Although, JRugged provides a simple circuit breaker implementation,

which is very easy to use, it lacks the fallback feature that is expected from a fault

tolerance library. Fallback is a feature to transfer an operation from a failed service

to another service.
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2.2.5 Resilience4j

The library Resilience4j is a lightweight fault tolerance library inspired by

Netflix Hystrix, but designed for Java 8 and functional programming. Various

resilience mechanisms are provided by this library: circuit breaker, fallback, retry,

rate limiter and caching. The library has a lot of parameters to configure, which

allows to have a great control over integration in services. Resilience4j works very

similarly to the one implemented in Hystrix but in a more abstract way, so there is

no need to create commands for different service methods and it does not have any

other external library dependencies. A retry mechanism allows to repeat a call until

it eventually succeeds or the maximum limit is reached. A rate limiter can be used

to restrict the calling rate of some method in order to be below a certain threshold.

2.2.6 Akka

Despite the algorithms and techniques which are used to build a fault-tolerant

system in the context of service composition, the selection of standard frameworks,

tools, programming languages and libraries in development phase to implement such

algorithms is a necessity. Different techniques and software libraries are discussed

above, but based on the requirements in the context of behavior composition like

transition systems and the logic between them, the actor model is one of the successful

choices to apply for implementation [25, 1].

Actor Model

The actor model is like a Turing machine which have a formal symbol alphabet,

states and transition-rules based description of how a computation in a theoretical

environment is done.

Actors in the actor model are defined as independent units of computation with

isolated state. These units have two core characteristics: they can send messages

asynchronously to one another and they have a mailbox which contains messages

that they have received. A mailbox allows messages to be received at any time

and then queued for processing. These messages are one-way and, there are no

guarantees that a message will ever be received in response. The actor model is so
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general because it places few restrictions on systems. Asynchrony and the absence of

message delivery guarantee enable modeling real distributed systems using the actor

model. For example, if message delivery was guaranteed, then the model would be

much less general, and only able to model systems which include complex message-

delivery protocols.

Akka [40] and Orleans [10] are primary frameworks, which obey the actor model.

The Ericsson company originally developed the first programming language, called

Erlang, which explicitly implements the actor model [3]. Erlang is used to program

large highly-reliable fault-tolerant telecommunications switching systems in Ericsson.

Akka is one of the most popular actor model frameworks that provides a complete

toolkit for designing and building highly concurrent, distributed and fault-tolerant

applications [40]. It is written in Scala, with language bindings provided for both

Scala and Java. Akka is one of the successful choices for composition, which is

based on the actor model and message passing. Actors can only be modified by the

exchange of messages to avoid locking and blocking [1].

In an actor-based system, everything is an actor, in much the same way that every-

thing is an object in object-oriented design. A key difference is that the actor model

was specifically designed and architected to serve as a concurrent model, whereas the

object-oriented model is not. The mechanism by which actors share information with

each other, is message passing. Although message passing and copying data would

be costly, fault tolerance is a more important concern than performance in this work.

Fault tolerance and recovery might be handled by some external libraries (e.g.,

Failsafe, JRugged, Resilience4j and so on), but Akka supports failure handling and

recovery via built-in supervision strategies. Akka is based on the actor model and

the comparison between them could not be adequate. However, it is worth to mention

different features in Akka.

Akka Features

A finite state machine in Akka is implemented as an FSM 10 actor. It can be

described as a relation of the form:

10. Finite state machine.
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Figure 2.9: Actor lifecycle

State(S) × Event(E) → Actions(A), State(S ′).

It is interpreted as follows. If an actor is in state S and the event E occurs,

an actor perform the actions A and make a transition to the state S ′. In a plain

Akka actor, any object can be sent to the actor as a message. An FSM actor is not

different, but the messages are wrapped in an instance of Event, which includes its

current state.

Figure 2.9 depicts an actor lifecycle. An actor is essentially nothing more than an

object that receives messages and takes actions to handle them. It is decoupled from

the source of the message and its only responsibility is to properly recognize the type

of message it has received and take action accordingly. Upon receiving a message, an

actor may take one or more of the following actions:

• execute some operations itself (such as performing calculations, persisting data,

calling an external service, and so on);

• forward the message or a derived message to another actor;

• instantiate a new actor and forward the message to it.

Alternatively, the actor may choose to ignore the message entirely (i.e., it may choose

inaction) if it deems it appropriate to do so.

Akka creates a layer between the actors and the underlying system such that ac-
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tors simply need to process messages. All the complexity of creating and scheduling

threads, receiving and dispatching messages and handling race conditions and syn-

chronization, is relegated to the framework to handle transparently. Akka includes

several modules to deal with the following common issues:

• fault tolerance via supervision hierarchies;

• persistence to store actor information or even take snapshots, recover after crash

or restart;

• cluster management to group and distribute actors across physical machines.

Supervisor hierarchies are the primary and straightforward mechanism for defining

the fault-tolerant behavior of the system. In an actor system, each actor is the

supervisor of its children. A supervisor reacts and handles exceptions in a way that

refers to a supervisor strategy. If an actor fails to handle a message, it suspends

itself along with all of its children and sends a message, usually in the form of an

exception, to its supervisor. A supervisor decides to apply the action just to the

failed actor or to its siblings and children as well. There are two strategies in this

case: OneForOneStrategy which applies the specified action to the failed child only

and AllForOneStrategy which applies the specified action to all of its children.

Consequently, when a message signifying a failure reaches a supervisor, it can take

one of the following actions 11:

• Resume the child (and its children), keeping its internal state. This strategy

can be applied when the child state was not corrupted by the error and it can

continue functioning correctly.

• Restart the child (and its children), clearing its internal state. This strategy

can be used in the opposite scenario of the one just described. If the child state

has been corrupted by the error, it is necessary the reset its state before it can

be used in the future.

• Stop the child (and its children) permanently. This strategy can be employed

in cases where the error condition is not believed to be rectifiable, but does not

jeopardize the rest of the operation being performed, which can be completed

in the absence of the failed child.

11. https://doc.akka.io/docs/akka/2.5.4/scala/general/supervision.html
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• Stop itself and escalate the error. Employed when the supervisor does not know

how to handle the failure and so it escalates it to its own supervisor.

Usage

In addition, Akka cluster provides a fault-tolerant decentralized peer-to-peer

based cluster membership service with no single point of failure or no single point

of bottleneck. It is implemented by using gossip protocols and an automatic failure

detector. A cluster is made up from collaborating actor systems called member nodes.

It does not matter whether the member nodes reside on the same host or on

different ones, as in a typical production setting one would most probably spread the

member nodes across multiple hosts to get scalability and resilience.

In a nutshell, nodes can join an existing cluster and existing member nodes can

leave deliberately or by failure. Figure 2.10 shows all the possible node states and

membership lifecycle.

The node begins with the joining state. Once all nodes have seen that the new

node is joining through a gossip protocol, the leader will set the node in up.

If a node is leaving the cluster in a safe and expected manner then it switches to

the leaving state. Once the leader sees the node in the leaving state, the leader will

then move it to exiting state. Once all nodes have seen the exiting state the leader

will remove the node from the cluster and mark it as removed.

If something abnormal happen on the node, it is set to unreachable. If a node is
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unreachable then gossip convergence is not possible and therefore any leader actions

are also not possible. So, the state of the unreachable node must be changed. It must

become reachable again or marked as down. The cluster can, through the leader, also

auto-down a node after a configured time of unreachability.

When reviewing different frameworks it is also worth to know where Akka is

used in the industry and distributed systems. It gives insight into which features of

actor systems are actually useful, and the trends that exist throughout these systems.

Akka is using in different companies, including Gilt, Huffington Post, Hootsuite,

LinkedIn, Ticketfly, Walmart and WhitePages.

2.3 Approaches for Fault Tolerance Applications

Fault tolerance can be managed by forward and backward recovery techniques.

Most of the recovery techniques usually refer to web services. In our proposal, the no-

tion of service in general is, however, considered. In fact, rather than their underlying

technologies, frameworks and programming languages, which are used for service im-

plementation and communication, their main concepts for services and composition

are considered.

2.3.1 Forward Recovery

In this technique, based on the availability of the other services, by suitably

finding a good substitution the operation can be delegated to another candidate.

QoS 12-aware fault tolerant is a QoS-aware fault-tolerant middleware [45]. The

middleware obtains nonfunctional QoS information of all service providers and find

an optimal fault tolerance strategy for both stateless and stateful services through

an algorithm, called FT-BABHEU. In this technique, the following fault tolerance

strategies for service composition are identified: retry, recovery block, n-version pro-

gramming and active. Regularly, the middleware records all information from the

available services and exchange them with the responsible modules to replace the

older information with new nonfunctional QoS performance information and apply

them to realize the next coming requests.

12. Quality of service.
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2.3.2 Backward Recovery

In order to implements backward recovery, different concepts and formalisms have

been proposed in the literature which are discussed here.

In distributed and decentralized execution model, continuation-passing messaging

also deals with fault tolerance [42]. The proposed architecture is composed by different

nodes communicating each other by message exchange. So, execution of services

depends on the result of the message interpretation without any communication with

an orchestrator or central node. In contrast with a centralized approach, where all

of the information must be stored in a central node, in this approach all information

about the execution order and service states are carried in messages to react to their

failures. In order to handle faults and backward recovery in a bulkhead fashion,

nodes are defined in separate scopes. Each scope is responsible to catch the failures

from the surrounded nodes and reverse the effect of the completed operations in that

particular scope. Interestingly, the compensation execution is also encapsulated in

the messages, which are exchanged between nodes.

As an example of a centralized solution, FACTS uses a combination of forward

and backward recovery. More precisely, it combines exception handling strategies

and a service transfer based termination protocol, called EXTRA, to improve the

reliability of composite services [27]. Eight high-level exception handling strategies

engage to repair the faulty service in this framework. EXTRA applies a new concept

named vitality degree and a new taxonomy of transactional web services in order

to cope with failures. Finally, if the fault has been fixed, the execution continues,

otherwise it brings the TWS 13 back to a consistent termination state with minimum

compensation cost according to the termination protocol.

A number of compensation mechanisms of web services based on Petri net formal-

ism have been proposed in the recent literature [33, 41].

Compensation is elimination of the effects of any operation in the case of failure

or cancellation by rollback all executed operations in the former services which par-

ticipated to realize the request. Based on this definition, various recovery techniques

on services such as compensation, re-execution of service operations and substitution

13. Transactional web service.
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of services have been introduced.

In these works, Petri nets are deterministic and need to be constructed manually.

The compensation process is, however, dynamic. The compensation process, repre-

sented by paired Petri nets, requires that all services to be compensatable. Reachabil-

ity, deadlock-free and liveness of compensation are highlighted in this technique. Upon

any failure in services, compensation handler is triggered to execute the backward re-

covery. Four different compensation patterns are presented as follows: sequence com-

position compensation pattern, parallel composition compensation pattern, selection

composition compensation pattern and iteration composition compensation pattern.

Another approach, introduces more properties on services rather than only com-

pensatability [13]. Considering these properties, the faulty service can be replaced

with another service before backward recovery is executed. Indeed, this approach

combines the forward and backward recovery and maximizes the QoS. If finding an

equivalent service is not possible, backward recovery based on an unfolding process

over a colored Petri net will be executed in order to leave the system in a consistent

state. Unlike the previous model, the Petri nets are generated automatically and it

can be applied in distributed or share memory systems.

Based on logical programming, an orchestrator is computed by exploiting a re-

duction to satisfiability in a well known logic of programs [20]. The propositional

dynamic logics (PDL) consists of a sequence of logics for representing the evolution

of states and events of dynamic systems over time. PDL models are Kripke struc-

tures, where transitions between states or events are “labeled” by names of atomic

programs. Notably, as it is shown in Figure 2.11, there is a description logic for each

PDL logic which are tightly coupled, so there is a necessity for satisfiability checkers.

FACT, Pellet and RacerPro are different highly optimized satisfiability checkers for

this purpose. Moreover, a technique for linear time temporal logic (LTL) synthe-

sis [31], based on model checking of game structures, called safety games [32], is dealt

with it recently. Unfortunately, this approach has three major drawbacks:

• Only finite-state orchestrators are returned.

• The obtained solution is not flexible, that is, if a solution has been built, which

relies on an available service and such service becomes unavailable at runtime,

then the solution is no longer valid and the best one can do, with this approach,
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is to re-compute a new solution.

• On the practical side, due to implemented description logic reasoners’ limita-

tions, there is a possibility to synthesize a model only for some particular inputs,

though it is complete with respect to checking for the existence of a model.

2.4 Conclusion

Different methods and approaches for fault tolerance have been introduced in this

section. All of them have their own advantages and disadvantages. Our contribution

consists in applying a supervisory strategy supported by Akka to handle internal

exceptions during abnormal behavior executions and then take actions to trigger a

forward or a backward recovery strategy.
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Chapter 3

Proposed Approach: Integration of
Backward Recovery into the
Behavior Composition Framework

The behavior composition framework has been described in Section 1.1. One of

the problems in the behavior composition framework, in the context of fault toler-

ance, is the long wait of a controller generator in order to choose a desired behavior

if there is not any available behaviors to realize a target. Although, the behavior

composition framework deals with unexpected failures mentioned in Section 1.1.4, by

suitably refining the solution at hand, either on-the-fly or parsimoniously, the problem

still exists. If a behavior fails and no other choices are possible, then the controller

generator shall wait for the behavior to come back.

In order to eliminate these limitations and gain more reliability in behavior com-

position framework, an extendable approach for combining formal methods written

in similar formal languages is proposed.

3.1 Colored Petri Net and Compensation Flow

Integrating another approach into the behavior composition framework, in order

to solve the aforementioned problem in the framework, represents a great challenge. A

general overview on different libraries and approaches in the context of fault tolerance

is provided in Sections 2.2 and 2.3. The libraries are industrial-strength implementa-

tions, which typically have not been designed with respect to some formalisms. Here-

after, the aim is to apply a backward recovery technique mainly developed by using a

formal approach. The technique mentioned in section 2.3.2 is the most suitable candi-

date for the proposed integration. In this technique, the control flow and the order of

services execution, are generally represented in a Colored Petri Net (CPN) structure.

As it is known, Petri nets are the main formal models used to describe static vision
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of a concurrent system and dynamic behavior of processes. Petri nets are also well

suited to model internal operations of services and interactions among them as well

as to model the processes in all phases of the service composition process [11]. The

service composition process (executed by a Composer [11]) automatically discovers

the services and their control flow, satisfying transactional properties that provide

reliable executions. In related literature [12, 44], different transactional properties

to recover the system in case of failures have been defined. The most used are the

following. Let s be a service: s is pivot (p), if it fails it has no effect at all and allows

backward recovery; s is compensatable (c), if it exists another service s′, which can

semantically undo the execution of s, then it allows semantic recovery; s is retriable

(r), if s guarantees a successfully termination after a finite number of invocations,

allowing forward recovery. The retriable property can be combined with properties

p and c defining pivot retriable (pr) service, which allows backward and forward re-

covery and compensatable retriable (cr) service, which allows backward, forward and

semantic recovery. Other properties are derived from the previous properties [11].

One of them according to the proposed integration is called atomic. A transactional

composite web service is atomic (
→
a), if once all its web services component complete

successfully, they cannot be undone, if one of them does not complete successfully,

then backward recovery has to be done.

In the proposed integration, the notion of services in general is considered, how-

ever, it is usually refer to web services in the backward recovery. The global trans-

actional property of a transactional composite web service (TCWS) allows recovery

processes if a web service fails during the execution process. The following actions

can be performed if a web service fails: retry the faulty web service, substitute the

faulty web service, or compensate the executed web services. In consequence, these

fault-tolerance mechanisms ensure the atomicity property of a TCWS with an all-or-

nothing endeavor.

The approach leverages on automatically generated compensation flow of corre-

sponding service composition at execution time in order to leave the system in a

consistent state in the case of failure totally transparent. So, besides the TCWS,

another CPN containing the compensation order for a backward recovery process

is also generated automatically. Such a composition implies to understand several
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definitions. A query Q is defined in terms of functional conditions, QoS constraints

and the required global transactional property as follows [13]. The ontology in the

definition is a representation of artifact whose purpose is the exhibition on entities,

defined classes and relations between them.

Definition 3.1.1. [13] Query. Let OntoA be the integrated ontology (many ontologies

could be used and integrated). A Query Q is a 4-tuple (IQ, OQ,WQ, TQ), where IQ =

{i | i ∈ OntoA is an input attribute}, OQ = {o | o ∈ OntoA is an output attribute

whose value has to be produced by the system}, WQ = {(wi, qi) | wi ∈ [0, 1] with

Σiwi = 1 and qi is a QoS criterion} and TQ is the required transactional property:

TQ ∈ {T0, T1}. If TQ = T0, the system guarantees that a semantic recovery can be done

by the user. If TQ = T1, the system does not guarantee the result can be compensated.

In both cases, if the execution is not successful, no result is reflected to the system,

i.e., nothing is changed on the system.

A TCWS, which answers and satisfies a user query Q, is represented by a CPN.

Formally it is defined as follows.

Definition 3.1.2. [13] CPN-TCWSQ. A CPN-TCWSQ is a 4-tuple (A, S, F, δ),

where:

— A is a finite non-empty set of places, corresponding to input and output at-

tributes of WSs in the TCWS such that A ⊂ OntoA;

— S is a finite set of transitions corresponding to the set of web services (WSs) in

the TCWS;

— F : (A × S) ∪ (S × A) → 0, 1 is a flow relation indicating the presence (1)

or the absence (0) of arcs between places and transitions defined as follows:

∀a ∈ A, (∃s ∈ S | F (a, s) = 1) ⇔ (a is an input place of s) and ∀s ∈ S, (∃a ∈
A | F (s, a) = 1)⇔ (a is an output place of s); this relation establishes the input

and output execution dependencies among WSs component.

— δ is a color function such that δ : S → ΣS and ΣS = {p, pr,→a,→ar, c, cr} repre-

sents the transactional property (TP ) of s ∈ S(TP (s)).

As an example of a CPN-TCWSQ, the reader can refer to Figure 3.1.

The global transaction property of CPN-TCWSQ ensures that if a web service,

whose transaction property does not allow forward recovery, fails, then all previous
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executed web services can be semantically recovered by a backward recovery of the

TCWS. For modeling TCWS backward and semantic recovery, another CPN associ-

ated to a CPN-TCWSQ is defined.

Definition 3.1.3. [13] BRCPN-TCWSQ. A BRCPN-TCWSQ, associated to a given

CPN-TCWSQ=(A, S, F, δ), is a 4-tuple (A′, S ′, F−1, ζ), where:

— A′ is a finite set of places corresponding to the CPN-TCWSQ places such that:

∀a′ ∈ A′ ∃a ∈ A associated to a′ and a′ has the same semantics as a.

— S ′ is a finite set of transitions corresponding to the set of compensation WSs in

CPN-TCWSQ such that: ∀s ∈ S, TP (s) ∈ {c, cr}, ∃s′ ∈ S ′ which compensates

s.

— F−1 : (A × S) ∪ (S × A) → {0, 1} is a flow relation establishing the restoring

order in a backward recovery defined as: ∀s′ ∈ S ′ associated to s ∈ S, ∃a′ ∈ A′

associated to a ∈ A | F−1(a′, s′) = 1 ↔ F (s, a) = 1 and ∀s′ ∈ S ′,∃a′ ∈
A′ | F−1(s′, a′) = 1↔ F (a, s) = 1.

— ζ is a color function such that ζ : S ′ → Σ′S and Σ′S = {I, R,E,C,A} represents

the execution state of s′ ∈ S ′ (I for initial, R for running, E for executed, C

for compensate and A for abandoned).

As an example of a BRCPN-TCWSQ, the reader can refer to Figure 3.2.

The marking of a CPN-TCWSQ or BRCPN-TCWSQ represents the current values

of attributes that can be used for some web services to be executed or control values

indicating the compensation flow, respectively. A marked CPN determines which

transitions could be fired.

Definition 3.1.4. [13] Marked CPN. A marked CPN=(A, S, F, δ) is a pair (CPN,M),

where M is a function which assigns tokens (values) to places such that ∀a ∈ A,M(a) ∈
N.

According to marked CPN notations, for each x ∈ (A ∪ S), (•x) = {y ∈ A ∪ S :

F (y, x) = 1} is the set of its predecessors, and (x•) = {y ∈ A ∪ S : F (x, y) = 1} is

the set of its successors.

Definition 3.1.5. [13] Fireable transition. A marking M enables a transition s iff

all its input places contain tokens such that ∀x ∈ (•s), M(x) ≥ card(•x).
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Figure 3.1: Marked CPN–TCWSQ when ws4 fails

Depending on the initial marking, a transition is fireable (its corresponding web

service can be invoked) only if all its predecessor transitions have been fired (see [13]

for more details).

To support backward recovery, it is necessary to keep the trace of the service

execution on the BRCPN-TCWSQ. In case of any service, let say s fails, if TP (s) ∈
{pr,→ar, cr}, s is re-invoked until it successfully finishes or tries to replace the faulty

service. Otherwise, a backward recovery is needed, i.e., all executed web services

must be compensated in the inverse order they were executed.

To illustrate the backward recovery execution control, a small example is provided.

Figure 3.1 shows the marked CPN-TCWSQ. The corresponding BRCPN-TCWSQ is

also shown in Figure 3.2. When ws4 fails (see the red transition in Figure 3.1), the

unfolding 1 of CPN-TCWSQ is halted and the initial marking on BRCPN-TCWSQ, as

it is given in Figure 3.3, is set to start the unfolding process, guided by Definition 3.1.6

and Definition 3.1.7. After ws′3 and ws′5 are fired and ws7 is abandoned, a new

marking is produced as presented in Figure 3.4.

1. Sequence of transitions.
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Figure 3.2: BRCPN–TCWSQ
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Figure 3.3: Initial marking of BRCPN–TCWSQ

Definition 3.1.6. [13] Fireable compensation transition. A marking M enables a

transition s′ iff all its input places contain tokens such that ∀a′ ∈ (•s′), M(a′) 6=
0 ∧ ζ(s′) /∈ {A,C}.

Definition 3.1.7. [13] BRCPN-TCWSQ Firing rules. The firing of a fireable com-

pensation transition (see Def 3.1.6) s′ for a marking M defines a new marking M ′,

such that:
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Figure 3.4: New marked BRCPN–TCWSQ

— if ζ(s′) = I, ζ(s′)← A (i.e., the corresponding s is abandoned before its execu-

tion);

— if ζ(s′) = R, ζ(s′) ← C (in this case s′ is executed after s finishes, then s is

compensated);

— if ζ(s′) = E, ζ(s′)← C (in this case s′ is executed, i.e., s is compensated);

— all tokens are deleted from its input places (∀x ∈ (•s′), M(x) = 0) and tokens

are added to its output places (∀x ∈ (s′•), M(x) = M(x) + 1).

The compensation process is managed by an Executer, which is a collection of

components called Execution Engine and Engine Threads. Figure 3.5 depicts

the overall architecture of the Executer. These components are completely de-

scribed by Cardinale and Rukoz in [13]. In brief, the TCWS execution and its collab-

oration with its peers are initiated, controlled and monitored by Execution Engine

and its Engine Threads. One Engine Thread is assigned to each web service

in the TCWS. Engine Thread is responsible to remotely invoke the web services

component and set the state of the corresponding transition in BRCPN-TCWSQ to

running (see definition 3.1.3). When a CPN-TCWSQ and the corresponding BRCPN-

TCWSQ are received by the Execution Engine, two dummy transitions are added

to CPN-TCWSQ:
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Figure 3.5: Executer architecture

— wsEEi , the first transition providing the inputs;

— wsEEf , the last transition consuming the outputs.

In the same manner, two transitions with inverse data flow relation (ws′EEi and

ws′EEf ) are added to BRCPN-TCWSQ.

The compensation process is carried out by both Execution Engine and Engine

Threads. Algorithm 1 describes the compensation protocol. In case of failure

during the execution of web service, the responsible Engine Thread informs the

Execution Engine and the Execution Engine marks the BRCPN-TCWSQ with

the initial marking (line 4). Then, the Execution Engine sends a compensate

message and control tokens to all Engine Threads (lines 6–7). When the Engine

Threads receive the compensate message, the firing rules in Definition 3.1.7 is ap-

plied (lines 13–41). So, according to the provided example in Figure 3.3, the Engine

Thread, which is responsible for ws′3, waits for the corresponding web service to fin-

ishes, then ws′3 fires and the corresponding execution state is set to C (lines 29–32),

as shown in Figure 3.4. A responsible Engine Thread for ws′5 fires ws′5 and its
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Algorithm 1 [13] Compensation Protocol
1: begin
2: Execution Engine:
3: begin
4: ∀a′ ∈ A′ | •a′ = ∅, M(a′) = 1 ∧ ∀a ∈ •s, M(a′) = 1;
5: /∗ Mark the BRCPN-TCWSQ with the Initial Marking∗/
6: Send compensate to all Engine Threads;
7: Send control values to •(•ws′EEf

);

8: Wait control values from ((ws′EEi
)•)•;

9: Return ERROR;
10: end
11:
12: Engine Threads:
13: begin
14: ws′ ← WS which compensate its WS;
15: if ζ(ws′) = A ∨ ζ(ws′) = C then
16: Send Control tokens to Successors ETWSws′

17: else
18: InputsNeeded ETWSws′ ← getInputs(WSDLws′ , OWLSws′);
19: repeat
20: Wait Control tokens from Predecessors ETWSws′ ;
21: Set Control tokens to InputsNeeded ETWSws′ ;
22: until
23: (∀a′ ∈ InputsNeeded ETWSws′ ,M(a′) 6= 0);
24: /∗ Wait its corresponding ws′ becomes fireable: a′

25: has a control value and all transition predecessors have finished ∗/
26: if ζ(ws′) = I then
27: ζ(ws′)← A
28: end if
29: if ζ(ws′) = R then
30: Wait ws finishes;
31: Invoke ws′;
32: ζ(ws′)← C;
33: end if
34: if ζ(ws′) = E then
35: Invoke ws′;
36: ζ(ws′)← C;
37: end if
38: Send Control tokens to Successors ETWSws′ ;
39: end if
40: Return /∗ Engine Threads finishes ∗/
41: end
42: end

execution state is set to C (lines 34–37) and lastly, the execution state of ws′7 is set

to A (lines 26–28). The compensation process finishes when ws′EEi becomes fireable.
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Figure 3.6: Target behavior βT

However, backward recovery means that users do not get the desired answer to

their queries, but it ensures system consistency and reliability.

3.2 A Case Study

With respect to the behavior composition framework, a real scenario is provided

as a case study, which simulates a police officer task in a traffic accident. Consider

a police officer who is responsible to prepare a report about an accident. The report

contains driver and car informations. The police officer may call for an ambulance

and tow trucks and finally issue a ticket for a driver violating a traffic law. There

are three service behaviors and one target behavior to perform these actions. The

actions are depicted in Figures 3.6 and 3.7: carInfo (ca) and driverInfo (di), to get

the car and driver information, respectively, trucks(tr) and ambulance(am) to call

tow trucks and an ambulance, respectively, and issueTicket(ti) to issue a ticket for a

driver.

Each behavior in the case study is running on a complete isolated linux server

with the aid of LXC 2. LXC is like a very lightweight virtualization, so lightweight

means that there is no virtualization at all, and therefore no performance penalty.

2. LXC is a userspace interface for the linux kernel containment features. Through a powerful
API and simple tools, it lets linux users easily create and manage system or application containers.
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Figure 3.7: Available behaviors β1, β2 and β3

Having considered such behaviors, a controller generator is shown in Figure 3.8.

The controller generator is adjusted in the case of any failure in the behaviors. For

instance, according to the controller generator given in Figure 3.8, if in the state

〈a1, b3, c1〉 a failure occurs in any of the behaviors β1, β2 or β3, the controller generator

is adjusted by filtering the failed behavior and based on the next action in target

behavior (see Figure 3.6), which is am, the following measures are expected.

• There is not any choices available to realize am, so instead of waiting for a

behavior to comes back, a backward recovery starts and β2 will rollback tr and

ca transitions.

• The controller generator is adjusted, as illustrated in Figure 3.9, and continues

to realize target requests without β2.

• The controller generator is adjusted, as shown in Figure 3.10, and continues to

realize target requests without β3.
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Figure 3.8: Controller generator for the case study

In the case study, Scala, as a general-purpose programming language, is used

along with Akka to simulate the system as several finite state machines. These state

machines interact with each other by message passing. A Akka cluster is also used

to emulate the real environment.

3.3 Contribution

The main idea for the backward recovery in the proposed approach advocated in

this thesis is inspired by the aforementioned backward recovery. In our approach the

role of the Execution Engine is given to an orchestrator to coordinate services.

Service threads start the backward execution by the compensate message, but back-
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Figure 3.9: Controller generator without β2

ward transitions are generated automatically at run time. So, in presence of failure,

forward recovery is applying first. If there is not any choices to delegate an action,

instead of waiting for the behavior to come back, with respect to the compensation

process mentioned above, the system will be leaved in a consistent state by executing

backward recovery.

In summary, this chapter makes the following contribution in the behavior com-

position framework:

— introduce a compensation flow to keep the trace of all transactions at run time

and rollback the executed actions in the absence of available behavior in forward

recovery;

— add a central node, called an orchestrator, to the framework to monitor trans-

actions.
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Chapter 4

Implementation of Forward and
Backward Recovery in the
Behavior Composition Framework

The implementation focuses on fault tolerance with respect to the behavior com-

position framework. In order to cope with failures and provide robust behavior com-

position, the forward recovery approach proposed in [18] is assessed, but to overcome

its drawback mentioned in Chapter 3, a backward recovery technique is articulated

and integrated into the behavior composition framework to provide a more adequate

solution.

To the best of our knowledge, it is the first time that an implementation of the un-

derlying interaction between components is provided with recovery techniques. The

implementation works only for a specific case study, but it could be generalized to

provide a commercial framework. The details about generalization is given in Sec-

tion 4.5.

As a case study, the car accident scenario has been successfully implemented

and the proposed approach has been adopted. The models used in this scenario

are depicted in Figures 3.6 and 3.7. In Figure 3.6, βT describes the deterministic

behavior of a target. Observe that in state t2, getting information about a driver is

optional and depends on an internal choice in the target behavior. Figure 3.7 shows

all nondeterministic behaviors: β1 (with states a1 and a2) is able to get information

about a driver, call an ambulance and issue a ticket; β2 (with states b1, b2, b3 and

b4) is able to perform all actions except calling an ambulance; and β3 (with states c1

and c2) can get information about a car, call tow trucks and issue a ticket. In this

example, it is assumed that all states are final.
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4.1 Assumption

In this chapter, it is assumed that the actions are compensatable (reversible), so,

when the unfolding process in the backward recovery is triggered, the actions are

compensated eventually.
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4.2 Overall Architecture

Before going into details, it is worth to introduce the overall architecture. A

number of peer-to-peer Akka nodes is shown in Figure 4.1 as an overall architec-

ture which comprise a target, an orchestrator and several service behaviors. Each

node is deployed on a separate LXC container. The target node is assumed to be

fully deterministic and stands for the behavior that the system as a whole needs to

realize. An orchestrator coordinates services by exchanging messages and suitably

controlling their activities and states. The service behavior nodes are partially con-

trollable behaviors with a sort of nondeterministic transition systems. Each behavior

is supervised and monitored by a separate actor in the same node, called supervi-

sor. A supervisor is responsible for dealing with the failures that may arise in the

corresponding behavior. All components are written in Scala and Akka is used as

an underlying framework for message passing, supervision, cluster management and

component interaction. The messages are passing between the nodes through the

Akka mailbox. In Akka, the mailbox is a queue that holds the messages for an

actor. As illustrated in Figure 4.2, there is usually a mailbox per actor. Though in

some cases, where routing gets involved, there may only be one mailbox between a
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Figure 4.3: The sequence diagram for the service composition

number of actors. A mailbox is designed for communication in a peer-to-peer fashion.

Akka has several built–in routing strategies (e.g., RoundRobinRoutingLogic, Small-

estMailboxRoutingLogic, ScatterGatherFirstCompletedRoutingLogic) to support this

interaction automatically. In order to manage the relationships between components,

an Akka cluster is used. A cluster is made up of a set of member nodes. These nodes

are logical members of a cluster. The identifier for each node is a “hostname:port:uid”

tuple. The nodes interact with each other through an asynchronous message pass-

ing protocol using predefined communication channels. A cluster consists of a set of

loosely or tightly connected nodes that work together so that, in many respects, they

can be viewed as a single system. To keep the example simple, no environment (see

Definition 1.1.1) is provided and it is assumed that the underlying network is reliable.

The Akka cluster provides a fault-tolerant decentralized peer-to-peer based clus-

ter membership service with no single point of failure or single point of bottleneck.

It does this using gossip protocols and an automatic failure detector.

Figure 4.3 represents the sequences of interactions between components. Consid-

ering a target behavior that must be realized in accordance with a user requirements.

When the target sends a request, an orchestrator creates a new handler and assigns
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it specifically to the target. Such an assignment causes all target requests forwarded

to the same handler afterwards. The handler is an actor which has access to the

controller generator and it is connected to one of each available behavior at a time.

Whenever a behavior is connected to the handler, it is flagged as an engaged behavior

in the list of behaviors in the orchestrator. This flag guarantees that each behavior is

assigned to at most one handler. Then, the handler delegates the requested action to

the behavior which is selected from the generated controller. The selected behavior

performs the action and sends a response to the handler. At the same time, the

behavior notifies the orchestrator about the state changes.

Subsequently, an orchestrator informs the handler about the changes. The handler

collects information while maintaining the ability of backtrack. Finally, the response

is sent to the target. Every behavior needs to subscribe to cluster changes, resubscribe

and unsubscribe when the behavior starts, restarts and stops respectively.

Moreover, Akka introduces a feature to persist the behavior state, so that it can

be recovered in order to resume the behavior after a failure. The technique is the most

widely used in workflow persistence and recovery, i.e., periodic saving of a complete

snapshot of the workflow’s state.

4.3 Details about Different Phases in the Imple-
mentation

It is assumed that a controller generator has been synthesized and given as a

transition system. A visual representation of a controller generator is shown in Fig-

ure 3.8. In brief, TLV/SMV, a model checker based on SMV, is invoked to synthesize

a controller generator. Two input files are needed in such a tool: a SMV file which

contains the SMV representation of behavior transitions and a proof script file. In

this case study, the SMV file, called car-accident.smv, and a proof file, called

car-accident.pf, is used to generate such a controller generator. The files and

results of the model checking are provided in Appendix A. Notably, the result is con-

verted to a JSON file for further usage in the system. The JSON file which is called

transition.json, is also included in Appendix A.

According to the aforementioned message passing protocol, a common base trait
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(an alternative to interface in Java) for the messages is created. The messages must

be immutable to avoid sharing mutable state. Start (see line 2) is used to start

sending a request from the target to the orchestrator. Other messages (lines 3–7) are

sent by the target during execution and flow in the system to be performed by the

available behaviors.

1 sealed trait BCFMessage
2 case object Start extends BCFMessage
3 case object CarInfo extends BCFMessage
4 case object DriverInfo extends BCFMessage
5 case object Trucks extends BCFMessage
6 case object Ambulance extends BCFMessage
7 case object TicketIssue extends BCFMessage

With respect to the sequence diagram provided in Figure 4.3, the actual imple-

mentation is divided in three phases: startup, delegation and recovery.

4.3.1 The Startup Phase

In Akka all sensible configuration values are defined in a file, called applica-

tion.conf, located in the resources directory. Typical examples of the configuration

are:

— log level and logger backend;

— enable remoting;

— message serializers;

— definition of routers;

— tuning of dispatchers.

This means roughly that the default to start a system is to parse all properties in

application.conf. For instance, the following configuration is used to enable the Akka

cluster and join the orchestrator to the cluster. Line 2 declares the preferred log

level. Lines 7–12 define hostname and port numbers for remote access and lines

14–20 subscribe an orchestrator to the cluster membership events. The last is done

automatically by Akka.
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1 akka {
2 loglevel = "INFO"
3 actor {
4 provider = "akka.cluster.ClusterActorRefProvider"
5 warn-about-java-serializer-usage = false
6 }
7 remote {
8 log-remote-lifecycle-events=off
9 netty.tcp {

10 hostname = "10.44.102.25"
11 port = 2551
12 }
13 }
14 cluster {
15 roles = ["orchestrator"]
16 seed-nodes = [
17 "akka.tcp://ClusterSystem@10.44.102.25:2551"
18 ]
19 log-info = off
20 }
21 }

While constructing an actor system, it is possible to either pass these parameters

in a Config object or use ConfigFactory.load() to overrides given properties.

The latter is used in this example for creating the behaviors. For instance, a behavior,

called BehaviorA, is initiated as follows. Lines 1 and 2 contain the input arguments

which override a defined parameters in application.conf and lines 3–10 show how they

are used in the actor initialization.

1 def initiate(name: String, port: Int, logLevel: String
2 , property: Property = Retriable, initialState: State = A1)= {
3 val conf = ConfigFactory.parseString(s"""
4 akka {
5 remote.netty.tcp.port=$port
6 loglevel = $logLevel
7 }""").withFallback(ConfigFactory.load().getConfig("BehaviorA"))
8

9 val system = ActorSystem("ClusterSystem", conf)
10 system.actorOf(Props(new BehaviorA(property, initialState)), name)
11 }

An orchestrator is started by running an object, called AppRunner. As it is

shown below in line 1, AppRunner extends the App trait in Scala, which means that

it is able to run directly from the command line. Line 4 creates an ActorSystem

and this is the Akka container which contains all actors. An example of how to

create actors in the container is the system.actorOf(...) in line 5. Notably,

to create an actor inside other actors (actor context), context.actorOf(...) is

used instead.
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1 object AppRunner extends App {
2 val recoveryStack: mutable.Stack[RecoveryObject] = mutable.Stack();
3 val config = ConfigFactory.load().getConfig("Orchestrator")
4 val system = ActorSystem("ClusterSystem", config)
5 val orchestrator = system.actorOf(Props(classOf[Orchestrator]
6 , recoveryStack)
7 , UniqueNames.DISPATCHER)
8 println(" -----> What is the preferred interval between the requests:")
9 val interval:Long = scala.io.StdIn.readLine().toLong

10

11 val target = system.actorOf(Target.props(dispatcher, interval), UniqueNames.TARGET)
12 target ! Start
13 }

So, by running the above code from the command line, a preferred time interval

between the requests is prompted in the console (see lines 8–9). A user entry is

used by the target in order to send the requests in specific time intervals. Then, the

Target is created in line 11 and the Start message is sent to the target (see line

12).

An orchestrator is created by extending Actor, ActorLogging and Stash

traits.

1 class Orchestrator extends Actor with ActorLogging with Stash {
2 ...
3 }

The ActorLogging is used for logging and the Stash trait enables an actor to

temporarily stash away messages that cannot or should not be handled in the current

actor’s behavior.

The Actor trait defines a receive method as a message handler. It is expected to

handle several messages which are listed below, using standard Scala pattern match-

ing. A complete implementation of each case is provided in Appendix C.

1 case ActorCompensated => ...
2 case Terminated => ...
3 case BehaviorRegistration => ...
4 case ScheduleCompensation => ...
5 case TargetRequest => ...
6 case CurrentState => ...
7 case Transition => ...

The behaviors are also started by running an object which extends the App trait,

i.e., BehaviorARunner, BehaviorBRunner and BehaviorCRunner. In such

objects, the number of instances, the behavior name, a preferred port number and
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a log level (i.e., debug, error, info or warn) are used to start the behaviors. The

behaviors join the cluster and subscribe to cluster membership events through a

similar aforementioned configuration file with different parameters values and an extra

supervisory actor which is given below in line 5. With respect to the supervisory

strategy, when a behavior detects a failure (i.e., throws an exception), it suspends

itself and sends a message to its supervisor, signaling failure. Depending on the

nature of the work to be supervised and the nature of the failure, the supervisor has

a choice to stop, resume, restart and escalate the failure. For instance, the following

configuration file is used for the behaviorA.

1 akka {
2 loglevel = "INFO"
3 actor {
4 provider = "akka.cluster.ClusterActorRefProvider"
5 guardian-supervisor-strategy= "ca.sherbrooke.actor.Supervisor"
6 warn-about-java-serializer-usage = false
7 }
8 remote {
9 log-remote-lifecycle-events=off

10 netty.tcp {
11 hostname = "10.0.3.119"
12 port = 0
13 }
14 }
15 cluster {
16 roles = ["behaviorA"]
17 seed-nodes = [
18 "akka.tcp://ClusterSystem@10.44.102.25:2551"
19 ]
20 log-info = off
21 }
22 }

All behaviors are created by mixing the following traits: FSM, ActorLogging,

Stash and Registration.

1 abstract class BehaviorA extends FSM[State, Data]
2 with Stash
3 with ActorLogging
4 with Registration{}

The FSM trait specifies possible states and data values. The following states

are defined in this case study and is provided in Appendix B. A1 and A2 is used

in behaviorA; B1, B2, B3 and B4 is used in behaviorB; C1, C2 is used in

behaviorC. The states of the Target are also defined as: T1, T2, T3, T4 and

T5.
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The Registration trait as given below is used in the behavior subscription

along with the behavior name and its initial state (see lines 2 and 3), which are

required in an orchestrator. A BehaviorRegistration message, in line 11, is

sent to an orchestrator for subscription through a register method in the behavior

(see lines 6–14).

1 trait Registration {
2 def getBehaviorName(): String
3 def getInitialState(): Constants.State
4 }
5

6 def register(member: Member) = {
7 if (member.hasRole(UniqueNames.DISPATCHER_ROLE)) {
8 log.info(SendRegistrationRequest.msg, self.path.name)
9 context.actorSelection(RootActorPath(member.address)

10 / "user" / UniqueNames.DISPATCHER) !
11 BehaviorRegistration(getBehaviorName()
12 , stateName, getInitialState())
13 }
14 }

When an orchestrator receives a BehaviorRegistration message, it stores the

behavior’s name, current state and initial state (see lines 11–12 in the above code)

in a memory. Then, with the following methods, an orchestrator starts watching the

behavior and subscribes to the behavior transition callback.

1 context.watch(actor)
2 actor ! SubscribeTransitionCallBack(self)

4.3.2 The Delegation Phase

Whenever an orchestrator receives a TargetRequest, a following case statement

in receive method in an orchestrator is triggered.

The effect of this method call is the creation of a new handler to forward a re-

quest to it, or just forwarding a request to the handler which is already created. So,

first of all, the existence of the handler in a predefined ConcurrentHashMap, called

targetHandlerMap, is checked as shown in line 5 in the code on the given be-

low. If it exists, a log message is printed and a request is forwarded to it (lines

6–9). If the handler does not exist, a new handler is created and assigned to the

target. For such a purpose, an orchestrator changes its current internal behavior to

ReceiveHandlerActorMessage in order to stash (push in a stack) any further
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messages and temporarily stash away them while a new handler is creating (line 10).

Such a change in the internal behavior causes an orchestrator to handle concurrency.

The available registered behaviors are searched in lines 11–33. They are assigned to

the new handler in lines 34–41, if they are not already engaged and their current state

is equal with their initial state.

1 case TargetRequest(targetState: State, action: Action, restart) => {
2 val entry = targetHandlerMap.entrySet().stream()
3 .filter(entry => entry.getKey == sender())
4 .findAny()
5 if (entry.isPresent) {
6 log.info(ForwardMessage.msg, entry.get().getValue.path.name)
7 val actor = entry.get().getValue
8 actor forward Request(targetState, action, restart)
9 } else {

10 become(ReceiveHandlerActorMessage)
11 val behaviorAEntry = behaviorARoutees.entrySet()
12 .stream()
13 .filter(elem =>
14 elem.getValue
15 .currentState == elem.getValue.initialState)
16 .filter(elem =>
17 elem.getValue.isAvailable).findAny()
18 behaviorAEntry.ifPresent(e => e.getValue.isAvailable = false)
19 val behaviorBEntry = behaviorBRoutees.entrySet()
20 .stream()
21 .filter(elem =>
22 elem.getValue
23 .currentState == elem.getValue.initialState)
24 .filter(elem =>
25 elem.getValue.isAvailable).findAny()
26 behaviorBEntry.ifPresent(e => e.getValue.isAvailable = false)
27 val behaviorCEntry = behaviorCRoutees.entrySet()
28 .stream()
29 .filter(elem =>
30 elem.getValue
31 .currentState == elem.getValue.initialState)
32 .filter(elem => elem.getValue.isAvailable).findAny()
33 behaviorCEntry.ifPresent(e => e.getValue.isAvailable = false)
34 val handlerActor = system
35 .actorOf(HandlerActor.props(
36 if (behaviorAEntry.isPresent) Some(behaviorAEntry.get())
37 else None
38 , if (behaviorBEntry.isPresent) Some(behaviorBEntry.get())
39 else None
40 , if (behaviorCEntry.isPresent) Some(behaviorCEntry.get())
41 else None, self)
42 , sender().path.name + UniqueNames.HANDLER)
43 log.info(HandlerActorCreatedMessage.msg
44 , handlerActor.path.name)
45 context.watch(handlerActor)
46 targetHandlerMap.put(sender(), handlerActor)
47 behaviorAEntry
48 .ifPresent(e => e.getValue.handlerActor = Some(handlerActor))
49 behaviorBEntry
50 .ifPresent(e => e.getValue.handlerActor = Some(handlerActor))
51 behaviorCEntry
52 .ifPresent(e => e.getValue.handlerActor = Some(handlerActor))
53 handlerActor !
54 InitializeRequest(targetState, action, restart, sender())
55 }
56 }
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Then, an orchestrator starts watching the handler in line 45 and lastly sends a

InitializeRequest message to the handler. The handler sends back an acknowl-

edge message, called OK, as given below. As soon as the acknowledgement is received,

an orchestrator unstashs (pop from stack) the stash messages (see line 4) and prepends

them to the actors mailbox in the same order as they have been received originally.

1 def ReceiveHandlerActorMessage: Actor.Receive = {
2 case OK =>
3 log.info(HandlerActorMessage.msg)
4 unstashAll()
5 become(receive)
6 }

Next, once a request is forwarded to the handler, the handler extracts a controller

by traversing a controllerGenerator and filter the nodes as follows. Line 2

filters the nodes by the current state of a target. Lines 3 and 4 filter them by a

requested action and their activeness respectively. Finally, from lines 5 to 16, nodes

are filtered by the current state of the behaviors assigned to the handler.

1 controllerGenerator
2 .filter(node => node.targetState == targetState)
3 .filter(node => node.action == action)
4 .filter(node => node.isActive == true)
5 .filter(node => node.behaviorAState ==
6 (if (behaviorAEntry.isDefined)
7 behaviorAEntry.get.getValue.currentState
8 else node.behaviorAState))
9 .filter(node => node.behaviorBState ==

10 (if (behaviorBEntry.isDefined)
11 behaviorBEntry.get.getValue.currentState
12 else node.behaviorBState))
13 .filter(node => node.behaviorCState ==
14 (if (behaviorCEntry.isDefined)
15 behaviorCEntry.get.getValue.currentState
16 else node.behaviorCState))

The last step is delegating an action to the behavior asynchronously and returns

a Future 1, which represents a possible response from the behavior (see lines 1–2).

A response will be send asynchronously to the target (see line 4) and at the same

time an orchestrator is notified on behavior transition. The last is done implicitly

according to the subscription of an orchestrator to the cluster events.

1. A Future represents the result of an asynchronous computation. Methods are provided to
check if the computation is complete, to wait for its completion and to retrieve the result of the
computation.
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1 behaviorA ? AskRequest(action) map {
2 case Result(res) =>
3 log.info(BehaviorResult.msg, res, targetRef.path.name)
4 targetRef ! Constants.TargetResult
5 }

Upon the behavior transition, an orchestrator sends an object to the handler that

wraps the reference, old state and new state of the behavior. The object is pushed

to a recovery state holder, called recoveryStack, which is created in the handler

to keep track of all transitions. The recoveryStack will be changed by other

behaviors during execution and it is used for backward recovery in recovery phase.

1 recoveryStack.push(RecoveryObject(actor, oldState, newState))

The backward recovery is started by calling a compensate method in the han-

dler, when there is not any available behavior to realize the target request. The

compensation is explained in the next section.

1 def compensate: Unit = {
2 (...)
3 }

4.3.3 The Recovery Phase

The recovery phase is divided in two sub-phases, forward and backward recovery.

Traditionally, in case of any failure, the service center (orchestrator) needs to try

different providers until it finds an appropriate one and then call a service. Along

the lines of the concepts found in Section 1.1.4, forward recovery is applied implicitly

in the system. It is done automatically on the fly by unfolding an algorithm which

traverse a controller generator nodes and revise it into a more efficient version by

removing all unavailable nodes and related transitions. This is done by two case

statements of the receive method in the handler, called BehaviorTerminated

and BehaviorTransition. For instance, in the case of behavior termination in

the following statement, the behavior reference is extracted in line 2 and availability

property of any object in recoveryStack, which has reference to the terminated

behavior, changes to false. Afterwards, from lines 5–15, the terminated behavior

is also removed from the controller generator to stop any further assignments and

delegations.
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1 case BehaviorTerminated(ref) => {
2 val terminatedBehavior = ref.path.name
3 recoveryStack.filter(obj => obj.ref == ref)
4 .foreach(obj => obj.isAvailable = false)
5 terminatedBehavior match {
6 case name if name.startsWith(UniqueNames.BEHAVIOR_A) =>
7 controllerGenerator.filter(node => node.behavior == A)
8 .foreach(node => node.isActive = false)
9 case name if name.startsWith(UniqueNames.BEHAVIOR_B) =>

10 controllerGenerator.filter(node => node.behavior == B)
11 .foreach(node => node.isActive = false)
12 case name if name.startsWith(UniqueNames.BEHAVIOR_C) =>
13 controllerGenerator.filter(node => node.behavior == C)
14 .foreach(node => node.isActive = false)
15 }
16 }
17 case BehaviorTransition(actor:ActorRef, oldState: State, newState: State) => {
18 log.info(Transition.msg, actor.path.name, oldState, newState)
19 actor.path.name match {
20 case name if name.startsWith(UniqueNames.BEHAVIOR_A) =>
21 applyTransition(A, actor, oldState, newState)
22 case name if name.startsWith(UniqueNames.BEHAVIOR_B) =>
23 applyTransition(B, actor, oldState, newState)
24 case name if name.startsWith(UniqueNames.BEHAVIOR_C) =>
25 applyTransition(C, actor, oldState, newState)
26 }
27 sender() ! OK
28 }

Unlike the other recovery techniques presented in Section 2.3, which had deter-

ministic transitions and the corresponding backward transitions are generated before

the execution phase started, in the suggested approach the backward transitions are

generating at runtime with the aid of recoveryStack to support nondeterministic

transitions.

The backward recovery phase is the last option in the fault tolerance implemen-

tation. It is first carried out by the handler and if it is needed, an orchestrator will

be involved. If the handler could not find any behavior to delegate an action due to

the forward recovery process, a backward recovery is started by invoking a method,

called compensate.

So, in the piece of code given on the next page, first, in line 2, the recoveryStack

is checked. If it is not empty, the last object is popped up (see line 6). The popped

object contains a reference to the behavior which has performed an action. The be-

havior availability is checked by the handler in line 7. If the behavior is available,

after pattern matching, a Compensate message is sent to the behavior through the

lines 12, 18 and 24 to roll back the performed action. Otherwise, a message, called

ScheduleCompensation is sent to an orchestrator in line 38. An orchestrator
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starts a scheduler to send the same message to the behavior in specific intervals. Send-

ing in specific intervals improves consistency and establish the repeatability condition

which is required for proving the approach’s soundness.

1 def compensate: Unit = {
2 if (recoveryStack.isEmpty) {
3 log.info(SuccessfullyCompensated.msg, self.path.name)
4 orchestrator ! ActorCompensated
5 } else {
6 val obj = recoveryStack.pop()
7 if (obj.isAvailable) {
8 if(obj.to.property == Compensatable) {
9 log.info(CompensateMsg.msg, obj)

10 obj.to match {
11 case A1 | A2 => {
12 behaviorA ? Compensate(obj) map {
13 case CompensatedSuccessfully =>
14 compensate
15 }
16 }
17 case B1 | B2 | B3 | B4 => {
18 behaviorB ? Compensate(obj) map {
19 case CompensatedSuccessfully =>
20 compensate
21 }
22 }
23 case C1 | C2 => {
24 behaviorC ? Compensate(obj) map {
25 case CompensatedSuccessfully =>
26 compensate
27 }
28 }
29 case to =>
30 log.info(UnableToCompensateMsg.msg, to)
31 }
32 } else {
33 log.info(NotCompensatableMsg.msg, obj, obj.to.property)
34 }
35 } else {
36 log.info(CompensationOnScheduleMsg.msg, obj.ref.path.name)
37 recoveryStack.push(obj)
38 orchestrator ! ScheduleCompensation(recoveryStack)
39 }
40 }
41 }

4.4 Experiments

In order to validate the implementation and test a system reaction in a normal

situations and different failures (i.e., killing, freezing, unfreezing and throwing an ex-

ception), three LXC containers have been created and started. Running the following

command lists all containers created in a system.
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1 sudo lxc-ls --fancy
2

3 NAME STATE IPV4 IPV6 AUTOSTART
4 -----------------------------------------------------
5 node-behavior-A RUNNING 10.0.3.119 - NO
6 node-behavior-B RUNNING 10.0.3.242 - NO
7 node-behavior-C RUNNING 10.0.3.241 - NO

By default, log messages are printed to STDOUT in Akka. Logging is performed

asynchronously to ensure that logging has minimal performance impact. Logging

generally means IO and locks, which can slow down the operations of the code if it

was performed synchronously. Normally, Akka logs messages includes the following

lines, which are displayed in each log message. The first part in line 1 is a log level,

the second part is a date and time, line 2 is the default name assigned by Akka to

each actor and the last line is the identifier for each node. For simplicity, it is ignored

in the rest of log messages.

1 [INFO] [01/15/2018 16:00:40.787]
2 [ClusterSystem-akka.actor.default-dispatcher-16]
3 [akka.tcp://ClusterSystem@10.0.3.119:2553]

Akka has a few configuration options for very low level debugging. These make

more sense in development than in production. This config option exists in applica-

tion.conf file and four methods (i.e., ERROR, WARNING, INFO and DEBUG) could be

set as illustrated in the following box.

1 akka {
2 loglevel = "DEBUG"
3 }

The log message may contain argument placeholders, which will be substituted

if the log level is enabled. For instance, to log message about the current states,

a CurrentStates with three placeholders is defined as follows. The placeholders

could be substituted with accurate values in the code. In our case study, all log

messages are defined in the Common.scala file which is provided in Appendix D.

1 case object CurrentStates extends HandlerActorLogMessage {
2 override def content: String = "Current states are {}, {}, {}."
3 }
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Starting an Orchestrator on a main machine, a preferred time interval between

requests is prompted and then the following messages prints out.

1 Starting remoting
2 Remoting started; listening on addresses
3 :[akka.tcp://ClusterSystem@10.44.102.25:2551]
4 integration-dispatcher PreStart Hook....

Now, it is a time to start the behaviors on each node. Three behaviors, named

behaviorATest, behaviorBTest and behaviorCTest are created on the cre-

ated nodes on ports: 2553, 2554, 2555 respectively. For instance, running the

BehaviorARunner in the console prompts the following information: number of

instances, behavior name, port number and preferred log level. Then, it starts the

behavior, named behaviorATest.

1 [info] -----> How many Instances:
2 1
3 [info] -----> What is the 1th behavior name:
4 Test
5 [info] -----> Which port:
6 2553
7 [info] -----> What is the preferred Log level:
8 [info] -----> DEBUG > ERROR > INFO > WARN :
9 DEBUG

A success message as given below prints out in the console, afterwards. The same

output with different behavior name is expected on starting each behavior.

1 ---------------------------- START BEHAVIOR LOG ---------------
2 behaviorATest is going to send a registration request.
3 ---------------------------- END OF BEHAVIOR LOG ---------------

While the behaviors are starting, the registration message on orchestrator console

is printed.

1 --------------- START DISPATCHER LOG --------------------------
2 behaviorATest is Registered successfully in integration-dispatcher
3 --------------- END OF DISPATCHER LOG --------------------------
4

5 --------------- START DISPATCHER LOG --------------------------
6 behaviorATest is in state A1
7 --------------- END OF DISPATCHER LOG --------------------------

By giving 30 000 milliseconds for the time interval between the requests, a target

starts sending a request to an orchestrator.
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1 -- START TARGET LOG -------------------------------------------
2 T1 is sending a request for car information.
3 -- END OF TARGET LOG -------------------------------------------
4

5 --------------- START DISPATCHER LOG --------------------------
6 targethandlerActor is created to handle the request....
7 --------------- END OF DISPATCHER LOG --------------------------
8

9 ---------------------------------------- START HANDLER LOG ----
10 Current states are A1, B1, C1.
11 ---------------------------------------- END OF HANDLER LOG ----
12

13 ---------------------------------------- START HANDLER LOG ----
14 B is selected for CarInfo
15 ---------------------------------------- END OF HANDLER LOG ----
16

17 --------------- START DISPATCHER LOG --------------------------
18 Handler Actor created successfully.
19 --------------- END OF DISPATCHER LOG --------------------------
20

21 ---------------------------------------- START HANDLER LOG ----
22 Car information request has been done, states moving from B1 to B2
23 and result is sending to target
24 ---------------------------------------- END OF HANDLER LOG ----
25

26 ---------------------------- START BEHAVIOR LOG ---------------
27 behaviorBTest is going from B1 to B2.
28 ---------------------------- END OF BEHAVIOR LOG ---------------

Following, the execution prints related log messages which is provided in Appendix

E. In a nutshell, the following groups of messages are printing in the console by the

target, handler and behavior respectively, on each request.

1 T2 is sending a request for trucks.
2 Current states are A1, B2, C1.
3 B is selected for Trucks.
4 behaviorBTest is going from B2 to B3.
5

6 T4 is sending a request for ambulance.
7 Current states are A1, B3, C1.
8 A is selected for Ambulance.
9 behaviorATest is going from A1 to A1.

10

11 T5 is sending a request for issue the ticket.
12 Current states are A1, B3, C1.
13 B is selected for TicketIssue.
14 behaviorBTest is going from B3 to B1.

Testing system reaction to different failures required to create another object

which is also runnable through the command line, called CommandRunner. Running

this object prints out the following options to select and affect a normal behavior of

the system.
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1 -----> Please enter the commands number:
2 -----> 1- Kill
3 -----> 2- Freeze
4 -----> 3- Unfreeze
5 -----> 4- Throw Exception

Selecting any of the commands given above lists all available behaviors to be

affected. So, in our case study, it is as follows.

1 0- behaviorATest
2 1- behaviorBTest
3 2- behaviorCTest

The first command in the CommandRunner, named Kill, causes the behavior

to terminate and leave the cluster. To show the system reaction and log messages, it

is assumed that the controller generator is in state 〈a1, b3, c1〉 and the target is going

to send a it request. Killing the behaviorBTest results in removing it from the

controller generator and prints the following message.

1 ---------------------------- START BEHAVIOR LOG ---------------
2 behaviorBTest is terminated and controller generator is going to adjust.
3 ---------------------------- END OF BEHAVIOR LOG ---------------

So, according to the Figure 3.8, the request must be sent to the behaviorCTest

as an alternative. In this situation, the following output is expected.

1 T5 is sending a request for issue the ticket.
2 Current states are A1, B3, C1.
3 C is selected for TicketIssue.
4 Ticket issue request has been done,
5 states moving from C1 to C2 and result is sending to target.
6 behaviorCTest is going from C1 to C2.

Continuing this scenario, the next coming requests from the target would be ci, tr,

am and it. The first two requests are handled by behaviorCTest and the third one

is handled by behaviorATest. In such a state (〈a1, b3, c1〉), if the behaviorCTest

kills, no alternative behavior is available to fulfill the fourth request, so, due to the

lack of behaviors to delegate an action, the Compensation starts and a compensate

method is call. The following messages is printed afterwards, in the console.
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1 behaviorCTest is terminated and controller generator is going to adjust.
2

3 T5 is sending a request for issue the ticket.
4 Current states are A1, B3, C1.
5

6 There are no Candidate Controllers for TicketIssue
7 and the recovery stack is Stack(RecoveryObject(behaviorATest,A1,A1,true)
8 , RecoveryObject(behaviorCTest,C2,C1,false)
9 , RecoveryObject(behaviorCTest,C2,C2,false))

10

11 RecoveryObject(behaviorATest,A1,A1,true) is going to compensate.
12 behaviorATest is going from A1 to A1.
13 behaviorCTest is not available and compensation message is scheduled to send later.

Line 1 in the above log indicates that behaviorCTest is terminated and lines

6–9 show the objects on top of recoveryStack. The first object is popped up from

the stack and compensated as shown in line 11. Line 13 indicates that the second

object is popped up, but the behaviorCTest is not available and it is scheduled

to send the compensation message later.

The Freeze command effect is similar to the Kill command except the behavior

remains in the cluster environment and could be rejoin by the Unfreeze command.

The Unfreeze command gives a chance to declare the preferred state in the behavior

to resume.

A few well-known exception types has been chosen in order to demonstrate the

application of the fault handling directives described in supervision. Selecting the last

option from the listed commands after running CommandRunner prints out these

exception types.

1 ResumeException
2 StopException
3 RestartException
4 Other Exception

The supervisor is configured with a function, translating all possible failure causes

(i.e. exceptions) into one of the four choices given in lines 10, 16, 22 and 28. Resume,

Stop, Restart are well described in Section 2.2.6. Escalate is used if the defined

strategy does not cover the exception that was thrown.
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1 class Supervisor extends SupervisorStrategyConfigurator {
2

3 import scala.concurrent.duration._
4

5 val symbol: String = "SUPERVISOR"
6

7 override def create(): SupervisorStrategy =
8 OneForOneStrategy(maxNrOfRetries=2
9 , withinTimeRange = 1 second) {

10 case ResumeException => {
11 println(s"\n $symbol " +
12 s"\n The behavior is going to Resume. " +
13 s"\n $symbol")
14 Resume
15 }
16 case StopException => {
17 println(s"\n $symbol " +
18 s"\n The behavior is going to Stop. " +
19 s"\n $symbol")
20 Stop
21 }
22 case RestartException => {
23 println(s"\n $symbol " +
24 s"\n The behavior is going to Restart. " +
25 s"\n $symbol")
26 Restart
27 }
28 case _:Exception => {
29 println(s"\n $symbol " +
30 s"\n The behavior is going to Escalate the Exception. " +
31 s"\n $symbol")
32 Escalate
33 }
34 }
35 }

In the above code, maxNrOfRetries and withinTimeRange properties are

set to 2 and 1 respectively in lines 8–9, which means the strategy restarts a child

up to 2 restarts per second. The child actor is stopped if the restart count exceeds

maxNrOfRetries during the withinTimeRange duration.

Several test scenarios with respect to the case study have been done to check all

possible malfunctioning of behaviors and the corresponding recovery procedures. The

observed results are conformed to the expected reactions.

4.5 Generalization of the Implementation

The car accident scenario is an early sample of implementation in the context of

the behavior composition framework. It is a prototype to provide specifications for

a real, working system rather than a theoretical one and generally used to evaluate

a forward and backward recovery techniques. Although, the forward and backward

80



methods are implemented specifically for this example, it is possible to make code

more general by removal of special-case conditionals and excessive hard coded details.

In this example, the actors are created with constant states, actions and names.

For instance, the states of the target behavior have been defined within the object,

named Constants, in a Scala file, called commom.scala. In this file all actions, mes-

sages, names and states of the behaviors and the actors used in the example are hard

coded. The file is provided in Appendix B.

So by this definition, generalization could be achieved by apply the following

rules. One approach could use the ActorSystem.actorOf method that takes an

ActorSystem and some Props as constructor arguments to construct an actor in

startup phase. The method is used in starting up the behaviors in Section 4.3.1. But,

the main point is reading the arguments from an external file instead of aforemen-

tioned file with hard coded values for states, actions, messages and names. For such

a purpose as mentioned in Section 4.3.1, since sensible values are provided in appli-

cation.conf, the settings can be amended to change the default behavior or adapted

for specific runtime environments to be used in the code on demand.

For instance, the following properties could be appended to the default configura-

tion of the BehaviorA in application.conf. It is notable, providing values for these

properties depends on the project rules and protocols.

1 BehaviorA {
2 akka {
3 (...)
4 }
5 name {
6 default = behaviorA
7 }
8 states {
9 initial= A1

10 first= A1
11 second= A2
12 }
13 actions {
14 A1_1 = DriverInfo
15 A1_2 = Ambulance
16 A1_3 = TicketIssue
17 }
18 }

The next approach is more and less similar with the first one, but with respect

to the separation of concerns principle. Separate files, named “application.json” or
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“application.properties”, could be used in the root of the class path, as in Akka, the

default is to parse all files found from the root of the class path.

So, providing these properties in an external files and parsing them on application

startup or on demand makes the implementation more general for being used in other

scenarios and use cases.
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Conclusion

In this thesis, we have focused on the problem of fault tolerance in relation with

service composition in the context of the behavior composition framework. Different

formal and informal approaches and methods have been investigated with the aim

to define a formal strategy to overcome obstacles met by the behavior composition

framework in the case of failures in which the controller is compelled to wait for failed

services in order to continue to operate and realize a target behavior. In particular, an

integrated approach has been adopted with the capabilities of recovering the system

into a consistent state in order to increase system reliability. Hence, the integration

of backward recovery seems more appropriate in critical situations.

A prototype has been developed with the aid of Akka and an experiment has

been conducted from a case study to validate the proposed approach. With respect

to Akka, other development frameworks, such as JADE, do not provide all the

facilities (e.g., service cluster management, finite state machines, supervisory control

of services, automatic fault detection mechanisms) required in the prototyping of

fault-tolerant service applications based on a formal method for service composition.

This work can be seen as a starting point for a deeper investigation of several

aspects of system reliability and robustness in the behavior composition framework.

For instance, it should be evaluated in a multitude varieties of real situations that

involve web applications, which generally involve service composition.
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Appendix A

A.1 SMV Code for the Case Study

MODULE main
VAR
env: system Env(sys.index);
sys: system Sys;

DEFINE
good := (sys.initial & env.initial) | -- intial state is "good" by definition

!(env.failure); -- services are always required not to fail

MODULE Sys
VAR
index : 0..3; -- num of services, 0 used for init

INIT
index = 0

TRANS
case
index=0 : next(index)!=0;
index!=0 : next(index)!=0;

esac
DEFINE

initial := (index=0);

MODULE Env(index)
-- Represents the evolution of available services, seen as a whole
VAR
operation : {start_op,ca,di,tr,am,it};
target : Target(operation); -- "produces" operations
s1 : Service1(index,operation); -- "consumes" current index and operation
s2 : Service2(index,operation);
s3 : Service3(index,operation);

DEFINE
initial := (s1.initial & s2.initial & s3.initial & target.initial & operation=start_op);
failure := (s1.failure |s2.failure |s3.failure) |

(target.final & !(s1.final & s2.final & s3.final));

-- Target service-----------
MODULE Target(op) --op is an output parameter
VAR
state : {start_st,t1,t2,t3,t4,t5};

INIT
state = start_st & op = start_op

TRANS
case
state = start_st & op = start_op : next(state) = t1 & next(op) in {ca};
state = t1 & op = ca : next(state) = t2 & next(op) in {tr,di} ;
state = t2 & op = tr : next(state) = t4 & next(op) in {am};
state = t2 & op = di : next(state) = t3 & next(op) in {tr};
state = t3 & op = tr : next(state) = t4 & next(op) in {am};
state = t4 & op = am : next(state) = t5 & next(op) in {it};
state = t5 & op = it : next(state) = t1 & next(op) in {ca};

esac
DEFINE
initial := state=start_st & op=start_op;
final := state in {t1}; -- final state(s)

-- end of target service -----------

-- Available service #1 -----------
MODULE Service1(index,operation)
VAR
state : {start_st,a1,a2};

INIT
state=start_st

TRANS
case
state=start_st & operation=start_op & index=0: next(state)=a1;
(index != 1) : next(state) = state; -- if not selected, remain still
(state=a1 & operation = am) : next(state) in {a1};
(state=a1 & operation = it) : next(state) in {a1};
(state=a1 & operation = di) : next(state) in {a2};
(state=a2 & operation = am) : next(state) in {a1};
(state=a2 & operation = it) : next(state) in {a2};

esac
DEFINE
initial := state=start_st & operation=start_op & index = 0 ;
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failure := index = 1 & !((state = a1 & operation in {am,it,di}) | (state = a2 & operation in {it,am}));
final := state in {a1,a2};

-- end of available service #1 -----------

-- Available service #2 -----------
MODULE Service2(index,operation)
VAR
state : {start_st,b1,b2,b3,b4};

INIT
state=start_st

TRANS
case
state=start_st & operation=start_op & index=0: next(state)=b1;
(index != 2) : next(state) = state; -- if not selected, remain still
(state=b1 & operation = ca) : next(state) in {b2};
(state=b2 & operation = di) : next(state) in {b1};
(state=b2 & operation = tr) : next(state) in {b3,b1};
(state=b3 & operation = it) : next(state) in {b1};
(state=b3 & operation = ca) : next(state) in {b4};
(state=b4 & operation = di) : next(state) in {b3};

esac
DEFINE
initial := state=start_st & operation=start_op & index = 0 ;
failure :=index = 2 & !((state = b1 & operation in {ca}) |

(state = b2 & operation in {tr,di}) |
(state = b3 & operation in {it,ca}) |
(state = b4 & operation in {di}));

final := state in {b1,b2,b3,b4};
-- end of available service #2 -----------

-- Available service #3 -----------
MODULE Service3(index,operation)
VAR
state : {start_st,c1,c2};

INIT
state=start_st

TRANS
case
state=start_st & operation=start_op & index=0: next(state)=c1;
(index != 3) : next(state) = state; -- if not selected, remain still
(state=c1 & operation = it) : next(state) in {c2};
(state=c2 & operation = tr) : next(state) in {c1};
(state=c2 & operation = ca) : next(state) in {c2};

esac
DEFINE
initial := state=start_st & operation=start_op & index = 0 ;
failure :=index = 3 & !((state = c1 & operation in {it}) | (state = c2 & operation in {ca,tr}));
final := state in {c1,c2};

-- end of available service #3 -----------
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A.2 TLV Output—The Controller Generator
Check Realizability

Specification is realizable

Check that a symbolic strategy is correct

Transition relation is complete

All winning states satisfy invariant

Automaton States

State 1
env.operation = start_op env.target.state = start_st
env.s1.state = start_st env.s2.state = start_st
env.s3.state = start_st sys.index = 0

State 2
env.operation = ca env.target.state = t1 env.s1.state = a1
env.s2.state = b1 env.s3.state = c1 sys.index = 2

State 3
env.operation = tr env.target.state = t2 env.s1.state = a1
env.s2.state = b2 env.s3.state = c1 sys.index = 2

State 4
env.operation = di env.target.state = t2 env.s1.state = a1
env.s2.state = b2 env.s3.state = c1 sys.index = 1

State 5
env.operation = tr env.target.state = t3 env.s1.state = a2
env.s2.state = b2 env.s3.state = c1 sys.index = 2

State 6
env.operation = am env.target.state = t4 env.s1.state = a2
env.s2.state = b3 env.s3.state = c1 sys.index = 1

State 7
env.operation = am env.target.state = t4 env.s1.state = a2
env.s2.state = b1 env.s3.state = c1 sys.index = 1

State 8
env.operation = it env.target.state = t5 env.s1.state = a1
env.s2.state = b1 env.s3.state = c1 sys.index = 1

State 9
env.operation = it env.target.state = t5 env.s1.state = a1
env.s2.state = b1 env.s3.state = c1 sys.index = 3

State 10
env.operation = ca env.target.state = t1 env.s1.state = a1
env.s2.state = b1 env.s3.state = c2 sys.index = 2

State 11
env.operation = ca env.target.state = t1 env.s1.state = a1
env.s2.state = b1 env.s3.state = c2 sys.index = 3

State 12
env.operation = tr env.target.state = t2 env.s1.state = a1
env.s2.state = b1 env.s3.state = c2 sys.index = 3

State 13
env.operation = di env.target.state = t2 env.s1.state = a1
env.s2.state = b1 env.s3.state = c2 sys.index = 1
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State 14
env.operation = tr env.target.state = t3 env.s1.state = a2
env.s2.state = b1 env.s3.state = c2 sys.index = 3

State 15
env.operation = am env.target.state = t4 env.s1.state = a1
env.s2.state = b1 env.s3.state = c1 sys.index = 1

State 16
env.operation = tr env.target.state = t2 env.s1.state = a1
env.s2.state = b2 env.s3.state = c2 sys.index = 2

State 17
env.operation = tr env.target.state = t2 env.s1.state = a1
env.s2.state = b2 env.s3.state = c2 sys.index = 3

State 18
env.operation = di env.target.state = t2 env.s1.state = a1
env.s2.state = b2 env.s3.state = c2 sys.index = 2

State 19
env.operation = di env.target.state = t2 env.s1.state = a1
env.s2.state = b2 env.s3.state = c2 sys.index = 1

State 20
env.operation = tr env.target.state = t3 env.s1.state = a2
env.s2.state = b2 env.s3.state = c2 sys.index = 2

State 21
env.operation = tr env.target.state = t3 env.s1.state = a2
env.s2.state = b2 env.s3.state = c2 sys.index = 3

State 22
env.operation = am env.target.state = t4 env.s1.state = a2
env.s2.state = b2 env.s3.state = c1 sys.index = 1

State 23
env.operation = it env.target.state = t5 env.s1.state = a1
env.s2.state = b2 env.s3.state = c1 sys.index = 3

State 24
env.operation = ca env.target.state = t1 env.s1.state = a1
env.s2.state = b2 env.s3.state = c2 sys.index = 3

State 25
env.operation = am env.target.state = t4 env.s1.state = a2
env.s2.state = b3 env.s3.state = c2 sys.index = 1

State 26
env.operation = am env.target.state = t4 env.s1.state = a2
env.s2.state = b1 env.s3.state = c2 sys.index = 1

State 27
env.operation = it env.target.state = t5 env.s1.state = a1
env.s2.state = b1 env.s3.state = c2 sys.index = 1

State 28
env.operation = it env.target.state = t5 env.s1.state = a1
env.s2.state = b3 env.s3.state = c2 sys.index = 2

State 29
env.operation = it env.target.state = t5 env.s1.state = a1
env.s2.state = b3 env.s3.state = c2 sys.index = 1

State 30
env.operation = ca env.target.state = t1 env.s1.state = a1
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env.s2.state = b3 env.s3.state = c2 sys.index = 2

State 31
env.operation = ca env.target.state = t1 env.s1.state = a1
env.s2.state = b3 env.s3.state = c2 sys.index = 3

State 32
env.operation = tr env.target.state = t2 env.s1.state = a1
env.s2.state = b3 env.s3.state = c2 sys.index = 3

State 33
env.operation = di env.target.state = t2 env.s1.state = a1
env.s2.state = b3 env.s3.state = c2 sys.index = 1

State 34
env.operation = tr env.target.state = t3 env.s1.state = a2
env.s2.state = b3 env.s3.state = c2 sys.index = 3

State 35
env.operation = am env.target.state = t4 env.s1.state = a1
env.s2.state = b3 env.s3.state = c1 sys.index = 1

State 36
env.operation = it env.target.state = t5 env.s1.state = a1
env.s2.state = b3 env.s3.state = c1 sys.index = 2

State 37
env.operation = it env.target.state = t5 env.s1.state = a1
env.s2.state = b3 env.s3.state = c1 sys.index = 3

State 38
env.operation = tr env.target.state = t2 env.s1.state = a1
env.s2.state = b4 env.s3.state = c2 sys.index = 3

State 39
env.operation = di env.target.state = t2 env.s1.state = a1
env.s2.state = b4 env.s3.state = c2 sys.index = 2

State 40
env.operation = di env.target.state = t2 env.s1.state = a1
env.s2.state = b4 env.s3.state = c2 sys.index = 1

State 41
env.operation = tr env.target.state = t3 env.s1.state = a2
env.s2.state = b4 env.s3.state = c2 sys.index = 3

State 42
env.operation = am env.target.state = t4 env.s1.state = a2
env.s2.state = b4 env.s3.state = c1 sys.index = 1

State 43
env.operation = it env.target.state = t5 env.s1.state = a1
env.s2.state = b4 env.s3.state = c1 sys.index = 3

State 44
env.operation = ca env.target.state = t1 env.s1.state = a1
env.s2.state = b4 env.s3.state = c2 sys.index = 3

State 45
env.operation = tr env.target.state = t3 env.s1.state = a1
env.s2.state = b3 env.s3.state = c2 sys.index = 3

State 46
env.operation = am env.target.state = t4 env.s1.state = a1
env.s2.state = b4 env.s3.state = c1 sys.index = 1

State 47
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env.operation = tr env.target.state = t3 env.s1.state = a1
env.s2.state = b1 env.s3.state = c2 sys.index = 3

State 48
env.operation = am env.target.state = t4 env.s1.state = a1
env.s2.state = b2 env.s3.state = c1 sys.index = 1

State 49
env.operation = am env.target.state = t4 env.s1.state = a1
env.s2.state = b3 env.s3.state = c2 sys.index = 1

State 50
env.operation = am env.target.state = t4 env.s1.state = a1
env.s2.state = b1 env.s3.state = c2 sys.index = 1

Automaton Transitions

From 1 to 2
From 2 to 3 4
From 3 to 15 35
From 4 to 5
From 5 to 6 7
From 6 to 36 37
From 7 to 8 9
From 8 to 2
From 9 to 10 11
From 10 to 16 17 18 19
From 11 to 12 13
From 12 to 15
From 13 to 14
From 14 to 7
From 15 to 8 9
From 16 to 49 50
From 17 to 48
From 18 to 47
From 19 to 20 21
From 20 to 25 26
From 21 to 22
From 22 to 23
From 23 to 24
From 24 to 16 17 18 19
From 25 to 28 29
From 26 to 27
From 27 to 10 11
From 28 to 10 11
From 29 to 30 31
From 30 to 38 39 40
From 31 to 32 33
From 32 to 35
From 33 to 34
From 34 to 6
From 35 to 36 37
From 36 to 2
From 37 to 30 31
From 38 to 46
From 39 to 45
From 40 to 41
From 41 to 42
From 42 to 43
From 43 to 44
From 44 to 38 39 40
From 45 to 35
From 46 to 43
From 47 to 15
From 48 to 23
From 49 to 28 29
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From 50 to 27

Automaton has 50 states, and 79 transitions
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A.3 Transitions.json—The Controller Generator in
the JSON Format

[
{

"targetState": "T1",
"behaviorAState": "A1",
"behaviorBState": "B1",
"behaviorCState": "C1",
"action": "CarInfo",
"behavior": "B"

},
{

"targetState": "T5",
"behaviorAState": "A1",
"behaviorBState": "B1",
"behaviorCState": "C1",
"action": "TicketIssue",
"behavior": "C"

},
{

"targetState": "T5",
"behaviorAState": "A1",
"behaviorBState": "B1",
"behaviorCState": "C1",
"action": "TicketIssue",
"behavior": "A"

},
{

"targetState": "T4",
"behaviorAState": "A1",
"behaviorBState": "B1",
"behaviorCState": "C1",
"action": "Ambulance",
"behavior": "A"

},
{

"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B2",
"behaviorCState": "C1",
"action": "DriverInfo",
"behavior": "A"

},
{

"targetState": "T4",
"behaviorAState": "A1",
"behaviorBState": "B2",
"behaviorCState": "C1",
"action": "Ambulance",
"behavior": "A"

},
{

"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B2",
"behaviorCState": "C1",
"action": "Trucks",
"behavior": "B"

},
{

"targetState": "T5",
"behaviorAState": "A1",
"behaviorBState": "B2",
"behaviorCState": "C1",
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"action": "TicketIssue",
"behavior": "C"

},
{

"targetState": "T4",
"behaviorAState": "A2",
"behaviorBState": "B2",
"behaviorCState": "C1",
"action": "Ambulance",
"behavior": "A"

},
{

"targetState": "T3",
"behaviorAState": "A2",
"behaviorBState": "B2",
"behaviorCState": "C1",
"action": "Trucks",
"behavior": "B"

},
{

"targetState": "T4",
"behaviorAState": "A2",
"behaviorBState": "B1",
"behaviorCState": "C1",
"action": "Ambulance",
"behavior": "A"

},
{

"targetState": "T1",
"behaviorAState": "A1",
"behaviorBState": "B1",
"behaviorCState": "C2",
"action": "CarInfo",
"behavior": "B"

},
{

"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B1",
"behaviorCState": "C2",
"action": "DriverInfo",
"behavior": "A"

},
{

"targetState": "T4",
"behaviorAState": "A1",
"behaviorBState": "B1",
"behaviorCState": "C2",
"action": "Ambulance",
"behavior": "A"

},
{

"targetState": "T1",
"behaviorAState": "A1",
"behaviorBState": "B1",
"behaviorCState": "C2",
"action": "CarInfo",
"behavior": "C"

},
{

"targetState": "T5",
"behaviorAState": "A1",
"behaviorBState": "B1",
"behaviorCState": "C2",
"action": "TicketIssue",
"behavior": "A"

},
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{
"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B1",
"behaviorCState": "C2",
"action": "Trucks",
"behavior": "C"

},
{

"targetState": "T3",
"behaviorAState": "A1",
"behaviorBState": "B1",
"behaviorCState": "C2",
"action": "Trucks",
"behavior": "C"

},
{

"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B2",
"behaviorCState": "C2",
"action": "Trucks",
"behavior": "C"

},
{

"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B2",
"behaviorCState": "C2",
"action": "Trucks",
"behavior": "B"

},
{

"targetState": "T1",
"behaviorAState": "A1",
"behaviorBState": "B2",
"behaviorCState": "C2",
"action": "CarInfo",
"behavior": "C"

},
{

"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B2",
"behaviorCState": "C2",
"action": "DriverInfo",
"behavior": "A"

},
{

"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B2",
"behaviorCState": "C2",
"action": "DriverInfo",
"behavior": "B"

},
{

"targetState": "T3",
"behaviorAState": "A2",
"behaviorBState": "B2",
"behaviorCState": "C2",
"action": "Trucks",
"behavior": "B"

},
{

"targetState": "T3",
"behaviorAState": "A2",
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"behaviorBState": "B2",
"behaviorCState": "C2",
"action": "Trucks",
"behavior": "C"

},
{

"targetState": "T4",
"behaviorAState": "A2",
"behaviorBState": "B1",
"behaviorCState": "C2",
"action": "Ambulance",
"behavior": "A"

},
{

"targetState": "T3",
"behaviorAState": "A2",
"behaviorBState": "B1",
"behaviorCState": "C2",
"action": "Trucks",
"behavior": "C"

},
{

"targetState": "T4",
"behaviorAState": "A1",
"behaviorBState": "B3",
"behaviorCState": "C1",
"action": "Ambulance",
"behavior": "A"

},
{

"targetState": "T5",
"behaviorAState": "A1",
"behaviorBState": "B3",
"behaviorCState": "C1",
"action": "TicketIssue",
"behavior": "B"

},
{

"targetState": "T5",
"behaviorAState": "A1",
"behaviorBState": "B3",
"behaviorCState": "C1",
"action": "TicketIssue",
"behavior": "C"

},
{

"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B3",
"behaviorCState": "C2",
"action": "Trucks",
"behavior": "C"

},
{

"targetState": "T3",
"behaviorAState": "A1",
"behaviorBState": "B3",
"behaviorCState": "C2",
"action": "Trucks",
"behavior": "C"

},
{

"targetState": "T1",
"behaviorAState": "A1",
"behaviorBState": "B3",
"behaviorCState": "C2",
"action": "CarInfo",
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"behavior": "C"
},
{

"targetState": "T1",
"behaviorAState": "A1",
"behaviorBState": "B3",
"behaviorCState": "C2",
"action": "CarInfo",
"behavior": "B"

},
{

"targetState": "T5",
"behaviorAState": "A1",
"behaviorBState": "B3",
"behaviorCState": "C2",
"action": "TicketIssue",
"behavior": "A"

},
{

"targetState": "T5",
"behaviorAState": "A1",
"behaviorBState": "B3",
"behaviorCState": "C2",
"action": "TicketIssue",
"behavior": "B"

},
{

"targetState": "T4",
"behaviorAState": "A1",
"behaviorBState": "B3",
"behaviorCState": "C2",
"action": "Ambulance",
"behavior": "A"

},
{

"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B3",
"behaviorCState": "C2",
"action": "DriverInfo",
"behavior": "A"

},
{

"targetState": "T4",
"behaviorAState": "A2",
"behaviorBState": "B3",
"behaviorCState": "C2",
"action": "Ambulance",
"behavior": "A"

},
{

"targetState": "T3",
"behaviorAState": "A2",
"behaviorBState": "B3",
"behaviorCState": "C2",
"action": "Trucks",
"behavior": "C"

},
{

"targetState": "T4",
"behaviorAState": "A2",
"behaviorBState": "B3",
"behaviorCState": "C1",
"action": "Ambulance",
"behavior": "A"

},
{
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"targetState": "T1",
"behaviorAState": "A1",
"behaviorBState": "B4",
"behaviorCState": "C2",
"action": "CarInfo",
"behavior": "C"

},
{

"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B4",
"behaviorCState": "C2",
"action": "Trucks",
"behavior": "C"

},
{

"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B4",
"behaviorCState": "C2",
"action": "DriverInfo",
"behavior": "A"

},
{

"targetState": "T2",
"behaviorAState": "A1",
"behaviorBState": "B4",
"behaviorCState": "C2",
"action": "DriverInfo",
"behavior": "B"

},
{

"targetState": "T5",
"behaviorAState": "A1",
"behaviorBState": "B4",
"behaviorCState": "C1",
"action": "TicketIssue",
"behavior": "C"

},
{

"targetState": "T4",
"behaviorAState": "A1",
"behaviorBState": "B4",
"behaviorCState": "C1",
"action": "Ambulance",
"behavior": "A"

},
{

"targetState": "T3",
"behaviorAState": "A2",
"behaviorBState": "B4",
"behaviorCState": "C2",
"action": "Trucks",
"behavior": "C"

},
{

"targetState": "T4",
"behaviorAState": "A2",
"behaviorBState": "B4",
"behaviorCState": "C1",
"action": "Ambulance",
"behavior": "A"

}
]
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Appendix B

This appendix provides the Common.scala file, which containts a list of immutable

objects.

B.1 Constant Names
val HANDLER = "handlerActor"
val BEHAVIOR_A = "behaviorA"
val BEHAVIOR_B = "behaviorB"
val BEHAVIOR_C = "behaviorC"
val DISPATCHER = "integration-dispatcher"
val TARGET = "target"
val DISPATCHER_ROLE = "dispatcher"
val CONTROLLER_GENERATOR = "controllerGenerator"
val CAR_INFO = "car information"
val DRIVER_INFO = "driver information"
val TRUCKS = "trucks"
val AMBULANCE = "ambulance"
val TICKET_ISSUE = "issue the ticket"

B.2 Constant Actions
sealed trait Action
case object CarInfo extends Action
case object DriverInfo extends Action
case object Trucks extends Action
case object Ambulance extends Action
case object TicketIssue extends Action
case object Start extends Action
case object NoAction extends Action

B.3 Target and Behaviors States
sealed trait State {

val property: Property = NoProp
}
case object A1 extends State {

override val property = Compensatable
}
case object A2 extends State {

override val property = Compensatable
}
case object B1 extends State {

override val property = Compensatable
}
case object B2 extends State {

override val property = Compensatable
}
case object B3 extends State {

override val property = Compensatable
}
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case object B4 extends State {
override val property = Compensatable

}
case object C1 extends State {

override val property = Compensatable
}
case object C2 extends State {

override val property = Compensatable
}
case object Freeze extends State
case object NoState extends State

case object T1 extends State
case object T2 extends State
case object T3 extends State
case object T4 extends State
case object T5 extends State

B.4 Constant Behavior Names
sealed trait Behavior
case object A extends Behavior
case object B extends Behavior
case object C extends Behavior
case object NoBehavior extends Behavior

B.5 Constant Message Objects and Classes

object Constants {

case object GetResults
case object Failure
case object OK
case object RestartTarget
case object Ack
case object AskForAvailableBehaviors
case object CompensatedSuccessfully
case object ActorCompensated
case object RequestForHandler
case object ResumeException extends Exception
case object StopException extends Exception
case object RestartException extends Exception

case class BehaviorRegistration(behavior: String, currentState: State, initialState: State)
case class Recompute(terminatedBehaviorName : String, isRegistered: Boolean = true)
case class KillBehavior(behavior : ActorRef)
case class FreezeBehavior(behavior : ActorRef)
case class UnFreezeBehavior(behavior : ActorRef, state: State)
case class GotoException(behavior : ActorRef, exception: Exception = new RuntimeException)
case class TargetRequest(targetState: State, action: Action, restart: Boolean = false)
case class Request(targetState: State, action: Action, restart: Boolean = false)
case class InitializeRequest(targetState: State, action: Action, restart: Boolean = false

, target: ActorRef)
case class BehaviorTransition(actor:ActorRef, oldState: State, newState: State)
case class BehaviorTerminated(actor:ActorRef)
case class Handler(handler: ActorRef)
case class GenerateHandler(behAEntry: Optional[Entry[Option[ActorRef], BehaviorStatus]]

, behBEntry: Optional[Entry[Option[ActorRef], BehaviorStatus]]
, behCEntry: Optional[Entry[Option[ActorRef], BehaviorStatus]], sender: ActorRef, utiltiyActor: ActorRef)

case class SelectedControllers(list: List[Node], action: Action, sender: ActorRef)
case class Choose(targetState: State, action: Action, stateHolder: ConcurrentHashMap[ActorRef, BehaviorStatus]

, sender: ActorRef)
case class Compensate(recoveryObject: RecoveryObject)
case class ScheduleCompensation(stack: mutable.Stack[RecoveryObject])
case class AskRequest(action: Action)
case class Result(res: String)
case class TargetResult()
case class UnFreeze(state: State)

}
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Appendix C

C.1 The receive Method of an Orchestrator

def receive = {

case ActorCompensated =>
targetHandlerMap.entrySet().stream()

.filter(entry => entry.getValue == sender())

.findAny().ifPresent(entry => {
val target = entry.getKey
changeBehaviorAvailability(behaviorARoutees, entry.getValue, true)
changeBehaviorAvailability(behaviorBRoutees, entry.getValue, true)
changeBehaviorAvailability(behaviorCRoutees, entry.getValue, true)
targetHandlerMap.remove(target)

})

case DeadLetter(msg, from, to) =>
log.debug(DeadLetterMsg.msg, from, to, msg)

case Terminated(ref) => {
ref.path.name match {
case name if name.startsWith(UniqueNames.BEHAVIOR_A) =>
behaviorARoutees.entrySet().stream()
.filter(entry => entry.getKey == ref)
.findAny()
.ifPresent(entry => if (entry.getValue.handlerActor.isDefined)

entry.getValue.handlerActor.get ! BehaviorTerminated(ref))
behaviorARoutees.remove(ref)

case name if name.startsWith(UniqueNames.BEHAVIOR_B) =>
behaviorBRoutees.entrySet().stream()
.filter(entry => entry.getKey == ref)
.findAny()
.ifPresent(entry => if (entry.getValue.handlerActor.isDefined)

entry.getValue.handlerActor.get ! BehaviorTerminated(ref))
behaviorBRoutees.remove(ref)

case name if name.startsWith(UniqueNames.BEHAVIOR_C) =>
behaviorCRoutees.entrySet().stream()
.filter(entry => entry.getKey == ref)
.findAny()
.ifPresent(entry => if (entry.getValue.handlerActor.isDefined)

entry.getValue.handlerActor.get ! BehaviorTerminated(ref))
behaviorCRoutees.remove(ref)

}
}

case BehaviorRegistration(behavior, currentState, initialState) =>
behavior match {
case UniqueNames.BEHAVIOR_A =>
behaviorARoutees.put(sender(), BehaviorStatus(initialState, currentState))
log.info(Registration.msg, sender().path.name, self.path.name)
applyWatchAndSubscribe(sender())

case UniqueNames.BEHAVIOR_B =>
behaviorBRoutees.put(sender(), BehaviorStatus(initialState, currentState))
log.info(Registration.msg, sender().path.name, self.path.name)
applyWatchAndSubscribe(sender())

case UniqueNames.BEHAVIOR_C =>
behaviorCRoutees.put(sender(), BehaviorStatus(initialState, currentState))
log.info(Registration.msg, sender().path.name, self.path.name)
applyWatchAndSubscribe(sender())

}

case GotoException(behavior, exception) =>
behavior ! exception

case FreezeBehavior(behavior) =>
behavior ! Freeze

case UnFreezeBehavior(behavior, state) =>
behavior ! UnFreeze(state)

case AskForAvailableBehaviors =>
val listBuffer = new ListBuffer[ActorRef]
behaviorARoutees.entrySet().stream().forEach(elem => listBuffer += elem.getKey)
behaviorBRoutees.entrySet().stream().forEach(elem => listBuffer += elem.getKey)
behaviorCRoutees.entrySet().stream().forEach(elem => listBuffer += elem.getKey)
sender() ! listBuffer

case KillBehavior(behavior) =>
behavior ! PoisonPill
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case ScheduleCompensation(stack) =>
targetHandlerMap.entrySet()
.stream()
.filter(entry => entry.getValue == sender())
.findAny()
.ifPresent(entry => {
val target = entry.getKey
targetHandlerMap.remove(target)

})
lazy val cancellable:Cancellable = system

.scheduler

.schedule(10 seconds, 10 seconds){
compensate(stack, cancellable, sender())

}
cancellable

case TargetRequest(targetState: State, action: Action, restart) => {
val entry = targetHandlerMap.entrySet().stream()

.filter(entry => entry.getKey == sender())

.findAny()
if (entry.isPresent) {
log.info(ForwardMessage.msg, entry.get().getValue.path.name)
val actor = entry.get().getValue
actor forward Request(targetState, action, restart)

} else {
become(ReceiveHandlerActorMessage)
val behaviorAEntry = behaviorARoutees.entrySet().stream()
.filter(elem => elem.getValue.currentState == elem.getValue.initialState)
.filter(elem => elem.getValue.isAvailable).findAny()

behaviorAEntry.ifPresent(e => e.getValue.isAvailable = false)

val behaviorBEntry = behaviorBRoutees.entrySet().stream()
.filter(elem => elem.getValue.currentState == elem.getValue.initialState)
.filter(elem => elem.getValue.isAvailable).findAny()

behaviorBEntry.ifPresent(e => e.getValue.isAvailable = false)

val behaviorCEntry = behaviorCRoutees.entrySet().stream()
.filter(elem => elem.getValue.currentState == elem.getValue.initialState)
.filter(elem => elem.getValue.isAvailable).findAny()

behaviorCEntry.ifPresent(e => e.getValue.isAvailable = false)

val handlerActor = system.actorOf(HandlerActor.props(if (behaviorAEntry.isPresent)
Some(behaviorAEntry.get())
else None

, if (behaviorBEntry.isPresent) Some(behaviorBEntry.get()) else None
, if (behaviorCEntry.isPresent) Some(behaviorCEntry.get()) else None, self)
, sender().path.name + UniqueNames.HANDLER)

log.info(HandlerActorCreatedMessage.msg, handlerActor.path.name)
context.watch(handlerActor)
targetHandlerMap.put(sender(), handlerActor)
behaviorAEntry.ifPresent(e => e.getValue.handlerActor = Some(handlerActor))
behaviorBEntry.ifPresent(e => e.getValue.handlerActor = Some(handlerActor))
behaviorCEntry.ifPresent(e => e.getValue.handlerActor = Some(handlerActor))
handlerActor ! InitializeRequest(targetState, action, restart, sender())

}
}

case CurrentState(actor:ActorRef, state: State) =>
log.info(CurrentStateLog.msg, actor.path.name, state)
actor.path.name match {
case name if name.startsWith(UniqueNames.BEHAVIOR_A) =>
behaviorARoutees.entrySet().stream()

.filter(entry => entry.getKey == actor)

.findAny()

.ifPresent(entry => entry.getValue.currentState = state)
case name if name.startsWith(UniqueNames.BEHAVIOR_B) =>
behaviorBRoutees.entrySet().stream()

.filter(entry => entry.getKey == actor)

.findAny()

.ifPresent(entry => entry.getValue.currentState = state)
case name if name.startsWith(UniqueNames.BEHAVIOR_C) =>
behaviorCRoutees.entrySet().stream()

.filter(entry => entry.getKey == actor)

.findAny()

.ifPresent(entry => entry.getValue.currentState = state)
}

case Transition(actor:ActorRef, oldState: State, newState: State) =>
become(ReceiveSuccessTransition)
actor.path.name match {
case name if name.startsWith(UniqueNames.BEHAVIOR_A) =>
behaviorARoutees.entrySet().stream()

.filter(entry => entry.getKey == actor)

.findAny()

.ifPresent(entry => {
if (newState != Freeze) {
entry.getValue.currentState = newState

entry.getValue.isUp = true
} else if (newState == Freeze) {
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entry.getValue.isUp = false
}

if (entry.getValue.handlerActor.isDefined)
entry.getValue.handlerActor.get ! BehaviorTransition(actor, oldState, newState)

})
case name if name.startsWith(UniqueNames.BEHAVIOR_B) =>
behaviorBRoutees.entrySet().stream()

.filter(entry => entry.getKey == actor)

.findAny().ifPresent(entry => {
if (newState != Freeze) {
entry.getValue.currentState = newState
entry.getValue.isUp = true

} else if (newState == Freeze) {
entry.getValue.isUp = false

}
if (entry.getValue.handlerActor.isDefined)
entry.getValue.handlerActor.get ! BehaviorTransition(actor, oldState, newState)

})
case name if name.startsWith(UniqueNames.BEHAVIOR_C) =>
behaviorCRoutees.entrySet().stream()

.filter(entry => entry.getKey == actor)

.findAny().ifPresent(entry => {
if (newState != Freeze) {
entry.getValue.currentState = newState
entry.getValue.isUp = true

} else if (newState == Freeze) {
entry.getValue.isUp = false

}
if (entry.getValue.handlerActor.isDefined)
entry.getValue.handlerActor.get ! BehaviorTransition(actor, oldState, newState)

})
}

case event =>
stash()
log.debug(UnhandledEvent.msg, event)

}
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Appendix D

D.1 Log Messages
sealed trait LogMessage {

val msg: String
}
sealed trait TargetLogMessage {
def content() : String
val symbolStart: String = " -- START TARGET LOG -------------------------------------------"
val symbolEnd: String = " -- END OF TARGET LOG -------------------------------------------"
val msg: String = s"\n $symbolStart \n $content \n $symbolEnd"

}
sealed trait DispatcherLogMessage {
def content() : String
val symbolStart: String = " --------------- START DISPATCHER LOG --------------------------"
val symbolEnd: String = " --------------- END OF DISPATCHER LOG --------------------------"
val msg: String = s"\n $symbolStart \n $content \n $symbolEnd"

}
sealed trait BehaviorLogMessage {
def content() : String
val symbolStart: String = " ---------------------------- START BEHAVIOR LOG ---------------"
val symbolEnd: String = " ---------------------------- END OF BEHAVIOR LOG ---------------"
val msg: String = s"\n $symbolStart \n $content \n $symbolEnd"

}
sealed trait HandlerActorLogMessage {
def content() : String
val symbolStart: String = " ---------------------------------------- START HANDLER LOG ----"
val symbolEnd: String = " ---------------------------------------- END OF HANDLER LOG ----"
val msg: String = s"\n $symbolStart \n $content \n $symbolEnd"

}
sealed trait DebugLogMessage {
def content() : String
val symbolStart: String = " -- START DEBUG LOG --------------------------------------------"
val symbolEnd: String = " -- END OF DEBUG LOG --------------------------------------------"
val msg: String = s"\n $symbolStart \n $content \n $symbolEnd"

}

sealed trait Behavior
case object A extends Behavior
case object B extends Behavior
case object C extends Behavior
case object NoBehavior extends Behavior

trait Registration {
def getBehaviorName(): String
def getInitialState(): Constants.State

}
trait BehaviorInitialization {
def init(name: String, port: Int, logLevel: String = "INFO")

}

case object UnhandledEvent extends DebugLogMessage {
override def content: String = "Unhandled event received with content: {}."

}
case object DeadLetterMsg extends DebugLogMessage {
override def content: String = "Message from {} to {} does not deliver and the message is {}"

}

// Behavior Logging
case object CompensatedBehavior extends BehaviorLogMessage {
override def content: String = "{} in {} Compensated."

}
case object Transition extends BehaviorLogMessage {
override def content: String = "{} is going from {} to {}."

}
case object TerminatedMsg extends BehaviorLogMessage {
override def content: String = "{} is terminated and controller generator is going to adjust."

}
case object SendRegistrationRequest extends BehaviorLogMessage {
override def content: String = "{} is going to send a registration request."

}
case object FSMUnhandledEvent extends BehaviorLogMessage {
override def content: String = "Unhandled Event \’{}\’ received in state {} in {} FSMActor."

}
case object FreezeMsg extends BehaviorLogMessage {
override def content: String = "{} is going to freeze."

}
case object UnFreezeMsg extends BehaviorLogMessage {
override def content: String = "{} is going to Unfreeze."
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}
case object ExceptionMsg extends BehaviorLogMessage {
override def content: String = "{} thrown an exception \’{}\’ in state {}."

}
// End of Behavior Logging

// Behavior B Logging
case object B1CarInfoB2 extends LogMessage {
override val msg: String = "Car information request has been done, state moving from B1 to B2"

}
case object B2DriverInfoB1 extends LogMessage {
override val msg: String = "Driver information request has been done, state moving from B2 to B1"

}
case object B2TrucksB3 extends LogMessage {
override val msg: String = "Trucks request has been done, state moving from B2 to B3"

}
case object B2TrucksB1 extends LogMessage {
override val msg: String = "Trucks request has been done, state moving from B2 to B1"

}
case object B3CarInfoB4 extends LogMessage {
override val msg: String = "Car information request has been done, state moving from B3 to B4"

}
case object B3IssueTicketB1 extends LogMessage {
override val msg: String = "Ticket issue request has been done, state moving from B3 to B1"

}
case object B4DriverInfoB3 extends LogMessage {
override val msg: String = "Driver information request has been done, state moving from B4 to B3"

}
// End of Behavior B Logging

// Behavior A Logging
case object A1DriverInfoA2 extends LogMessage {
override val msg: String = "Driver information request has been done, state moving from A1 to A2"

}
case object A1AmbulanceA1 extends LogMessage {
override val msg: String = "Ambulance request has been done, state moving from A1 to A1"

}
case object A1IssueTicketA1 extends LogMessage {
override val msg: String = "Ticket issue request has been done, state moving from A1 to A1"

}
case object A2AmbulanceA1 extends LogMessage {
override val msg: String = "Ambulance request has been done, state moving from A2 to A1"

}
case object A2IssueTicketA2 extends LogMessage {
override val msg: String = "Ticket issue request has been done, state moving from A2 to A2"

}
// End of Behavior A Logging

// Behavior C Logging
case object C1IssueTicketC2 extends LogMessage {
override val msg: String = "Ticket issue request has been done, state moving from C1 to C2"

}
case object C2TrucksC1 extends LogMessage {
override val msg: String = "Trucks request has been done, state moving from C2 to C1"

}
case object C2CarInfoC2 extends LogMessage {
override val msg: String = "Car information request has been done, state moving from C2 to C2"

}
// End of Behavior C Logging

// Handler Logging
case object BehaviorResult extends HandlerActorLogMessage {
override def content: String = "{} and result is sending to {}"

}
case object SuccessfullyCompensated extends HandlerActorLogMessage {
override def content: String = "{} is Successfully Compensated."

}
case object UnableToCompensateMsg extends HandlerActorLogMessage {
override def content: String = "{} is unable to compensate please contact us to do it manually."

}
case object NotCompensatableMsg extends HandlerActorLogMessage {
override def content: String = "{} with {} property is not compensatable."

}
case object CompensationOnScheduleMsg extends HandlerActorLogMessage {
override def content: String = "{} is not available and compensation message is scheduled to send later."

}
case object CurrentStates extends HandlerActorLogMessage {
override def content: String = "Current states are {}, {}, {}."

}
case object EmptyCandidateControllers extends HandlerActorLogMessage {
override def content: String = "There are no Candidate Controllers for {} and the recovery stack is {}"

}
case object CandidateControllers extends HandlerActorLogMessage {
override def content: String = "Candidate Controllers for {} are {}"

}
case object SelectedBehavior extends HandlerActorLogMessage {
override def content: String = "{} is selected for {}"

}
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case object CompensateMsg extends HandlerActorLogMessage {
override def content: String = "{} is going to compensate."

}
// End of Handler Logging

// Dispatcher Logging
case object Registration extends DispatcherLogMessage {
override def content: String = "{} is Registered successfully in {}"

}
case object CompensationMsg extends DispatcherLogMessage {
override def content: String = "{} compensation message from {} to {} is going to send to {}."

}
case object RetryScheduledCompensation extends DispatcherLogMessage {
override def content: String = "{} Not found, retry later."

}
case object SucceedCompensationMsg extends DispatcherLogMessage {
override def content: String = "{} successfully compensated."

}
case object ForwardMessage extends DispatcherLogMessage {
override def content: String = "{} has been chosen to forward the request...."

}
case object HandlerActorCreatedMessage extends DispatcherLogMessage {
override def content: String = "{} is created to handle the request...."

}
case object CurrentStateLog extends DispatcherLogMessage {
override def content: String = "{} is in state {}"

}
case object HandleStashMessage extends DispatcherLogMessage {
override def content: String = "Received {} and stash it while waiting for a message from actor in {}."

}
case object HandlerActorMessage extends DispatcherLogMessage {
override def content: String = "Handler Actor created successfully."

}
// End of Dispatcher Logging

// Logging
case object PreStartMessage extends LogMessage {
override val msg: String = "{} preStart Hook...."

}
case object PostRestart extends LogMessage {
override val msg: String = "{} postRestart Hook...."

}
case object PreRestart extends LogMessage {
override val msg: String = "{} preRestart Hook.... due to {}"

}
case object PostStop extends LogMessage {
override val msg: String = "{} postStop Hook...."

}

// Target Logging
case object TargetRequest extends TargetLogMessage {
override def content: String = "{} is sending a request for {}."

}
case object TargetRegret extends TargetLogMessage {
override def content: String = "Unfortunately the request could not realized by behaviors, try again later..."

}
// End of Target Logging
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Appendix E

E.1 Log Messages for the Normal Execution

[info] -- START TARGET LOG -------------------------------------------
[info] T1 is sending a request for car information.
[info] -- END OF TARGET LOG -------------------------------------------

[info] --------------- START DISPATCHER LOG --------------------------
[info] targethandlerActor is created to handle the request....
[info] --------------- END OF DISPATCHER LOG --------------------------

[info] ---------------------------------------- START HANDLER LOG ----
[info] Current states are A1, B1, C1.
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------------------- START HANDLER LOG ----
[info] Candidate Controllers for CarInfo are List(Node(T1,A1,B1,C1,CarInfo,B,true,Compensatable))
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------------------- START HANDLER LOG ----
[info] B is selected for CarInfo
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] --------------- START DISPATCHER LOG --------------------------
[info] Handler Actor created successfully.
[info] --------------- END OF DISPATCHER LOG --------------------------

[info] ---------------------------------------- START HANDLER LOG ----
[info] Car information request has been done, states moving from B1 to B2 and result is sending to target
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------- START BEHAVIOR LOG ---------------
[info] behaviorBTest is going from B1 to B2.
[info] ---------------------------- END OF BEHAVIOR LOG ---------------

[info] -- START TARGET LOG -------------------------------------------
[info] T2 is sending a request for trucks.
[info] -- END OF TARGET LOG -------------------------------------------

[info] --------------- START DISPATCHER LOG --------------------------
[info] targethandlerActor has been chosen to forward the request....
[info] --------------- END OF DISPATCHER LOG --------------------------

[info] ---------------------------------------- START HANDLER LOG ----
[info] Current states are A1, B2, C1.
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------------------- START HANDLER LOG ----
[info] Candidate Controllers for Trucks are List(Node(T2,A1,B2,C1,Trucks,B,true,Compensatable))
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------------------- START HANDLER LOG ----
[info] B is selected for Trucks
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------------------- START HANDLER LOG ----
[info] Trucks request has been done, states moving from B2 to B3 and result is sending to target
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------- START BEHAVIOR LOG ---------------
[info] behaviorBTest is going from B2 to B3.
[info] ---------------------------- END OF BEHAVIOR LOG ---------------
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[info] -- START TARGET LOG -------------------------------------------
[info] T4 is sending a request for ambulance.
[info] -- END OF TARGET LOG -------------------------------------------

[info] --------------- START DISPATCHER LOG --------------------------
[info] targethandlerActor has been chosen to forward the request....
[info] --------------- END OF DISPATCHER LOG --------------------------

[info] ---------------------------------------- START HANDLER LOG ----
[info] Current states are A1, B3, C1.
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------------------- START HANDLER LOG ----
[info] Candidate Controllers for Ambulance are List(Node(T4,A1,B3,C1,Ambulance,A,true,Compensatable))
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------------------- START HANDLER LOG ----
[info] A is selected for Ambulance
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------------------- START HANDLER LOG ----
[info] Ambulance request has been done, states moving from A1 to A1 and result is sending to target
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------- START BEHAVIOR LOG ---------------
[info] behaviorATest is going from A1 to A1.
[info] ---------------------------- END OF BEHAVIOR LOG ---------------

[info] -- START TARGET LOG -------------------------------------------
[info] T5 is sending a request for issue the ticket.
[info] -- END OF TARGET LOG -------------------------------------------

[info] --------------- START DISPATCHER LOG --------------------------
[info] targethandlerActor has been chosen to forward the request....
[info] --------------- END OF DISPATCHER LOG --------------------------

[info] ---------------------------------------- START HANDLER LOG ----
[info] Current states are A1, B3, C1.
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------------------- START HANDLER LOG ----
[info] Candidate Controllers for TicketIssue are List(Node(T5,A1,B3,C1,TicketIssue,B,true,Compensatable)

, Node(T5,A1,B3,C1,TicketIssue,C,true,Compensatable))
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------------------- START HANDLER LOG ----
[info] B is selected for TicketIssue
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------------------- START HANDLER LOG ----
[info] Ticket issue request has been done, states moving from B3 to B1 and result is sending to target
[info] ---------------------------------------- END OF HANDLER LOG ----

[info] ---------------------------- START BEHAVIOR LOG ---------------
[info] behaviorBTest is going from B3 to B1.
[info] ---------------------------- END OF BEHAVIOR LOG ---------------
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