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AbstrACt

Objectives The amyotrophic lateral sclerosis (ALS) 

research community was one of the irst to adopt 

methodology guidelines to improve preclinical research 

reproducibility. We here present the results of a 

systematic review to investigate how the standards in 

this ield changed over the 10-year period during which 

the guidelines were irst published (2007) and updated 

(2010).

Methods We searched for papers reporting ALS research 

on SOD1 (superoxide dismutase 1) mice published 

between 2005 and 2015 on the ISI Web of Science 

database, resulting in a sample of 569 papers to review, 

after triage. Two scores—one for methodological 

quality, one for regulatory compliance—were built from 

weighted sums of separate sets of items, and subjected 

to multivariable regression analysis, to assess how these 

related to publication year, type of study, country of origin 

and journal.

results Reporting standards improved over time. Of 

papers published after the irst ALS guidelines were made 

public, fewer than 9% referred speciically to these. Of 

key research parameters, only three (genetic background, 

number of transgenes and group size) were reported in 

>50% of the papers. Information on housing conditions, 

randomisation and blinding was absent in over two-thirds 

of the papers. Group size was among the best reported 

parameters, but the majority reported using fewer than the 

recommended sample size and only two studies clearly 

justiied group size.

Conclusions General methodological standards improved 

gradually over a period of 8–10 years, but remained 

generally comparable with related ields with no speciic 

guidelines, except with regard to severity. Only 11% of 

ALS studies were classiied in the highest severity level 

(animals allowed to reach death or moribund stages), 

substantially below the proportion in studies of comparable 

neurodegenerative diseases such as Huntington’s. The 

existence of ield-speciic guidelines, although a welcome 

indication of concern, seems insuficient to ensure 

adherence to high methodological standards. Other 

mechanisms may be required to improve methodological 

and welfare standards.

IntrOduCtIOn

Amyotrophic lateral sclerosis (ALS) is a 
rapidly progressing neurodegenerative 
disease typically resulting in death 2–5 years 
after the onset of symptoms. There is no 
known cure, and the most widely used treat-
ment—riluzole—extends survival by just 
2 months.1 ALS research using animal models 
focuses primarily on two main interconnected 
goals: understanding the underlying mech-
anisms involved in motor neuron death in 
the brain and spinal cord, and development 
and testing of potential drug therapies.2 This 
research relies substantially on genetically 
modified animals, particularly transgenic 
mice expressing mutant forms of the human 
superoxide dismutase 1 (SOD1) gene, which 
manifest several important characteristics of 
the human disease.3 4

strengths and limitations of this study

 Ź The approach for this systematic review is unique in 

covering methodological quality, regulatory compli-

ance and severity or animal welfare.

 Ź We built two comprehensive scores (for method-

ological standards and for regulatory compliance) 

which were subjected to multivariable regression 

analysis to investigate how these scores were re-

lated to publication year, type of study, country of 

origin and journal, simultaneously accounting for all 

these factors.

 Ź Our large sample (N=569 papers) included half the 

total population of published papers between 2005 

and 2015.

 Ź While more models of amyotrophic lateral sclerosis 

are now available, only studies using the SOD1 (su-

peroxide dismutase 1) mouse were included.

 Ź The protocol was deined prior to data collection but 

was not registered prior to the study.

 Ź Information retrieval and assessment were  not 

blinded.
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While the use of animal models is relevant for advancing 
knowledge and considered essential for testing putative 
treatments, it also presents ethical challenges and thus 
may be a reason for public concern. As a result, a common 
legal requirement in many countries is that animal 
research projects undergo an evaluation process intended 
to ensure that protocols are designed and carried out in 
compliance with the 3Rs principle: replacement of animal 
use by non-animal methods, reduction of animal numbers 
needed to achieve the scientific objectives, and refinement 
of procedures to reduce or prevent harm to animals and 
improve their well-being. Systematic reviews of animal use 
in both neuroscience5 and infection6 research indicate 
that self-reported regulatory compliance, including of 
ethical approval of protocols, has steadily increased over 
the last decade, but that significant progress could still 
be made to minimise and prevent avoidable suffering of 
laboratory animals. One key measure for accomplishing 
this is the termination of experiments during less severe 
stages of disease development where it is scientifically 
valid to do so. Endpoints based on early obtainable and 
scientifically sound indicators of phenotype progression 
can improve the ethical acceptability of animal studies 
and prevent the confounding influence of secondary 
factors; in the case of animal models of neurodegenera-
tive diseases, starvation and dehydration arising from diffi-
culties in eating and drinking due to progressive motor 
impairment can affect the phenotype and the read-out 
of survival studies.7–9 Simple refinements, such as adding 
mashed food and longer bottle spouts, can however help 
reduce the influence of such factors.10–12

Of related concern are reports that a number of 
published animal studies fail to uphold basic standards 
regarding experimental design—for example, random 
assignment of animals to treatment groups, blinding of 
observers—or use too few animals, often leading to irre-
producible results of limited translational value.13–18 This 
also holds true for neuroscience,19–22 with concerns over 
the overall quality and reproducibility of published results 
being raised for several neuroscience subfields, including 
multiple sclerosis,23 stroke,24 spinal cord injury,25 
Alzheimer’s,26 Parkinson’s,27 Huntington’s12 and ALS28 
research. This has led major science funders, including 
the National Institutes of Health29 and Research Coun-
cils UK,30 to demand that future grant proposals attest to 
the likelihood of providing reliable results, by including 
details of experimental design and adequate justification 
of sample sizes. Reproducibility is further hindered by 
insufficient provision of information on methodology 
in published research,31 including failure to account 
for key variables such as sex, genotype, age and weight 
of animals, anaesthetics used, or methods of euthanasia. 
Omitting information also makes it impossible to eval-
uate the study quality, and there is evidence that papers 
that do not report randomisation or blinding exaggerate 
biological effects.32–34

Broadly, the public conditionally approves of animal 
studies on the assumption that the harm caused is offset 

by the benefits achieved and that scientists strive to 
minimise the former and optimise the latter.35 36 Doing 
so requires scientists to critically revise their methods 
to maximise translational relevance.18 37 Scientists are 
rightly concerned and, within the self-correcting process 
of science, must rely on themselves to both identify the 
main obstacles hindering its progress and find adequate 
solutions. To address the issue of methodological stan-
dards and quality of reporting of basic and applied ALS 
studies, the ALS research community held two meetings 
in 2006 and 2009, resulting in the publication of guide-
lines for animal studies in this field.2 38 These guidelines 
aim to improve and standardise research methodology, 
and encourage authors and journals to publish nega-
tive results in order to avoid publication bias. The actual 
impact of such guidelines on how the ALS community 
carries out and reports research has however not been 
assessed.

The present systematic review of animal studies of ALS 
uniquely aimed to assess, over an extended period, the 
attention given to relevant methodological parameters 
(as a proxy for the likely reliability of the study) and to 
examine how the principles of refinement and reduction 
(measures to minimise animal harm) were considered. 
Both proof-of-concept and preclinical studies were 
included in order to assess the influence of the type of 
study.

MethOds

Database search
An advanced search was conducted on the ISI Web of 

Science database with the query TS = ((mice OR mouse) 

SAME (ALS OR ‘amyotrophic lateral sclerosis’)). The database 
choice followed the protocol established for our previous 
reviews,5 6 based on considerations of access, search func-
tion and wide coverage of life sciences research. Results 
were refined to include only original research articles 
written in English and published in 2005, 2007, 2009, 
2011, 2013 and 2015. Years of publication were selected 
to include papers reporting research planned and carried 
out prior to and after the publication of guidelines for 
ALS research in 200738 and 2010,2 resulting from two 
international meetings held in 2006 and 2009, respec-
tively (figure 1).

The choice to focus on SOD1 mice was based on the 
predominant role of this model in animal-based research 
into ALS (see figure 2).

The search was performed in February 2013 for scien-
tific articles from 2009 and 2011 (after the first and 
second conferences, respectively), in August 2013 for 
scientific articles from 2005 (before the two conferences), 
in September 2014 for scientific articles from 2013, in 
November 2016 for scientific articles from 2015, and in 
February 2017 for scientific articles from 2007. After the 
triage process, illustrated in figure 3, 569 full-text articles 
remained for analysis: 77 from 2005, 81 from 2007, 84 
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from 2009, 106 from 2011, 115 from 2013, and 106 from 
2015 figure 4.

data collection

Each published study was categorised as either a 
‘preclinical’ (ie, carried out ‘to evaluate a drug for use 
in humans’) or ‘proof-of-concept’ (ie, aiming ‘to eluci-
date the mechanism of the disease’), according to the 
suggested classification for animal studies on ALS.2 38 
Thus, papers reporting outcomes of drug tests in animal 
models to inform of their therapeutic value for humans 
were classified as ‘preclinical’, whereas those reporting 
studies with the primary goal of deciphering a mecha-
nism of the disease without an immediate application to 
therapeutic approaches in humans—regardless of using a 

drug as an investigational tool—were classified as ‘proof-

of-concept’. Table 1 describes the information retrieved 

regarding regulatory compliance, animal models, exper-

imental design and animal welfare. This information was 

retrieved through careful reading of the full papers and 

logged into a spreadsheet.

The review protocol was defined prior to data collec-

tion. No modifications to data collection methods were 

made during the research, but the period to be covered 

was extended to include publication year 2015. Data 

extraction was carried out by JGF, with support from 

NHF, AJG and IASO for disambiguation. Blinding was not 

possible as access to the full paper was required in order 

to retrieve information.

Figure 1 Timeline of relevant events. The bottom arrows signal the years for which papers in our sample were retrieved, 

and the top arrows indicate the years when workshops on best practice in ALS animal research were held, as well as when 

guidelines stemming from these were published. The grey bar illustrates the period of 1–4 years over which ALS animal studies 

reported in 2005 were likely to have been designed and carried out, an estimation that can also be applied for the other years 

reviewed (2007, 2009, 2011, 2013 and 2015). ALS, amyotrophic lateral sclerosis.

Figure 2 Trends in animal model chosen in ALS research, based on the number of hits from a Clarivate Analytics Web of 

Science advanced search applying the search queries: (1) TS = ((‘ALS’ OR ‘amyotrophic lateral sclerosis’) AND ‘SOD1’ AND 

(‘mouse’ OR ‘mice’)); (2) TS = ((‘ALS’ OR ‘amyotrophic lateral sclerosis’) AND ‘TDP-43’ AND (‘mouse’ OR ‘mice’)); and (3) 

TS = ((‘ALS’ OR ‘amyotrophic lateral sclerosis’) AND ‘FUS’ AND (‘mouse’ OR ‘mice’)). ALS, amyotrophic lateral sclerosis; SOD1, 

superoxide dismutase 1;TDP-43, Transactive response DNA binding protein; FUSF,Used in Sarcoma. 
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For severity assessment, a scale was devised based 
on the specific characteristics of the ALS models and 
their progressive disease phenotype (table 2). The ALS 
models used in the reviewed studies express diverse 
mutant forms of the SOD1 gene. The onset of disease 
for these models is generally characterised by weakness 
and tremors of the hind limbs, together with a mild loss 
of body weight. Disease progression leads to paralysis 
of the hind limbs, followed by complete paralysis (eg, 
figure 3 in ref 39), accompanied by increased difficulty 
in eating, drinking and swallowing.40 41 Mice die of respi-
ratory failure due to paralysis of the diaphragm.8 Age of 
onset and death, as well as the interval between them, 
vary depending on the mutation of the amino acid and 
codon, for example in ref 42, number of copies of trans-
gene, for example in ref 43, and genetic background.4 
For instance, the overexpressing SOD1G93A Line Gur 
1H (B6SJL hybrid) presents with an early onset of overt 
motor symptoms (3–4 months) and moderate rate of 
progression (3 weeks from onset to death),44 whereas 
the highly expressing SOD1G85R Line 148 presents with 
later onset (7.5 months) and faster disease progression 
(2 weeks from onset to death).45 Also, factors such as the 
animal supplier (eg, refs 46 47), inhouse breeding48 and 
crosses with other non-SOD1 models (eg, SOD1 mice 
crossed with gene-specific knockout mice49) are further 
sources of variability.

Maximum estimated severity was classified according to 
a five-level scale (table 2). Scoring was based on the esti-
mated clinical state of animals at the most advanced stage 
of disease progression they were allowed to reach. Studies 

in which information was insufficient to draw conclu-
sions about the level of severity were classified as ‘unde-
termined’. This severity scale was developed building on 
previous work from members of this team (NHF, IASO), 
developed for classifying studies on mouse models of 
Huntington’s disease (table 2 in ref 5), together with 
our own (AJG) experience with mutant SOD1 mouse 
models and literature. For purposes of statistical analysis, 
the severity scale was reduced to a binary scale (‘low’=se-
verity up to level 4; ‘high’=level 5 severity). The choice for 
above level 4 severity as a cut-off point was based on its 
status as a ‘standard endpoint’ in published ALS guide-
lines,2 38 whereas full paralysis or spontaneous death 
exceeds this standard endpoint, as well as the legally 
recommended endpoints in many countries, including 
the European Union Member States.

Methodological standards reporting and regulatory 

Compliance reporting scores

For each reviewed publication, data were collected on a 
number of items which all contributed with information 
about the reporting quality of the paper. For the analysis, 
we brought these items together into two scores, hence 
generating for each paper two comprehensive measures 
for reporting quality, one on methodological standards 
and one on regulatory compliance. We then used regres-
sion analysis to investigate how the two scores (dependent 
variables) were related to publication year, type of study, 
country of origin and journal (explanatory or predictor 
variables), as outlined in detail in the following. Based 
on the regression models, it is possible to predict how the 

Figure 3 Triage process. The irst triage step involved reading each of the 1993 abstracts and excluding all papers that were 

not related to ALS. The second triage step excluded all papers that did not report original research with SOD1 models of the 

disease. ALS, amyotrophic lateral sclerosis; SOD1, superoxide dismutase 1; TDP-43,Transactive response DNA binding protein 

P
rotected by copyright.

 on D
ecem

ber 6, 2019 at S
heffield U

ni C
onsortia.

http://openscience.bm
j.com

/
B

M
J O

pen S
cience: first published as 10.1136/bm

jos-2018-000016 on 2 A
ugust 2019. D

ow
nloaded from

 

http://openscience.bmj.com/


 5Fernandes JG, et al. BMJ Open Science 2019;3:e000016. doi:10.1136/bmjos-2018-000016

Open access

dependent variables would have changed with changes 
in the explanatory variables. In contrast to, for example, 
correlation, the regression analysis takes into account 
all the explanatory variables that were included in the 
models, that is, the estimated association between a score 
and one of the explanatory variables is independent of 
the values of the other explanatory variables considered. 
In that way, spurious associations caused by the relation-
ships between the explanatory variables in the data can 
be avoided.

The two scores were formed as weighted sums of 
separate sets of items. The Methodological Standards 
Reporting (MSR) score was constructed as the weighted 
sum of the items sampsize, climate, cagesize, nmice, sex, copies 
and genetic (which refer to important research parame-
ters in animal experimentation and in ALS research in 

particular) and the items random, blinded, control, sibsplit 
and exclus (associated with general good practices in the 
design of animal experiments and published recom-
mendations for ALS studies). Greater weight (1.5 vs 1) 
was attributed to items which are also part of the ALS 
guidelines. Table 3 describes these items, their attributed 
weight in the MSR score and the absolute number and 
percentage of papers reporting this information, divided 
by the type of study.

The Regulatory Compliance Reporting (RCR) score 
was originally constructed from the items comply, protocol, 
severity (turned into a binary classification) and refine. For 
purposes of statistical modelling, the final version of this 
score (RCRb) included comply, protocol and refine and was 
coded as 1 when the sum of these was 2–3, and as 0 when 
the sum was 0–1.

Figure 4 Flow diagram. From Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.

pmed1000097.
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MSR and RCRb were modelled statistically to estimate 
the effects of publication year (2005, 2007, 2009, 2011, 
2013 or 2015), study type (preclinical or proof-of-concept), 
country of origin (15 categories), journal (17 categories) 
and severity (low or high), simultaneously accounting 
for all the explanatory variables in the models. Coun-
tries contributing with less than 12 papers and journals 
contributing with less than 6 papers were combined into 
separate categories, denoted ‘Other’. MSR was modelled 
using linear regression and RCRb by logistic regression. 
Logistic regression is appropriate for binary dependent 
variables (assuming a linear relationship of the log-odds 
of the dependent variable with the explanatory variables). 
The results of a logistic regression can be expressed as 
the odds of a positive value of the dependent variable at 
one level of a categorical explanatory variable relative to 
the odds at another level (the ORs), or the probability 
of a positive dependent variable at any given level of the 
explanatory variables. All first-order interaction effects 
(combined effects of two explanatory variables at a time) 
were tested and included if significant.

Predictive marginal means were calculated, showing 
predicted values of MSR and probabilities of RCR being 
above 1 for different publication years, study types and 
countries of origin. In each case, the marginal means 
assumed remaining variables in the models to have 

their observed values. Both models were checked using 
the Pregibon link test50 and by examining standardised 
residuals, looking for model misspecification and 
extreme values. The MSR model was also checked with 
the Breusch-Pagan/Cook-Weisberg test for heteroscedas-
ticity51 (variability differing between parts of the data), 
the Ramsey regression specification error test for omitted 
variables,52 and the RCRb model by examining delta-
betas to identify particularly influential observations. The 
proportion of the total variation in MSR and RCRb that 
could be explained by differences between countries or 
journals was determined by running empty mixed models 
with country and journal, respectively, as a random effect, 
and calculating the intraclass correlation coefficients. 
The justification for weighting the items composing MSR 
was checked by modelling an alternative score formed 
without weighting. The differences between years and 
countries remained virtually unchanged, although the 
unweighted score values were generally lower.

The association between MSR and RCR scores was esti-
mated using Spearman rank correlation, which is suitable 
for non-normally distributed data. A total of 490 observa-
tions could be used. Overall MSR mean±SD was 5.69±2.39. 
RCR assumed the values of 0 (n=48), 1 (n=103), 2 (n=309) 
or 3 (n=30), resulting in 69% of the observations having 
values above 1. The number of observations per level of 

Table 1 Data retrieved 

Category Items Description/Observations

Regulatory 

compliance

Ethical approval Studies explicitly reported to be approved by a committee/authority.

Guideline compliance Articles that did not report having experimental protocols ethically 

approved by an institution or national entity, but reported that some 

kind of guidelines for use and care of laboratory animals was followed.

Animal models Genetic background When available.

Sex Four options: male, female, both or not reported. For both, information 

on whether studies were balanced for gender was retrieved.

Number of transgene copies When available.

Experimental 

design

Group size Mean group size, based on the available information.

Randomisation Studies explicitly reporting assigning animals to groups randomly.

Blinding Studies explicitly reporting blinding of observers to experimental 

groups.

Non-transgenic littermate control Studies explicitly reporting the use of non-transgenic littermates as 

control.

Splitting littermates into groups Studies explicitly reporting that littermates were split into groups.

Housing and husbandry conditions Reporting information regarding temperature, humidity, light of the 

room where animals were kept, and cage size and number of animals 

per cage.

Animal welfare/

procedures
Severity Described in table 2.

Reinement Relevant reinements to minimise suffering and distress, such as 

housing adaptations.

Euthanasia method Euthanasia methods were divided into the following categories: ‘Under 

anaesthesia’ (including anaesthetic overdose), ‘CO
2
 asphyxiation’, 

‘Other’, ‘Not reported’ and ‘Not performed’.

A description of the information collected from revised papers is presented for each item

CO2, carbon dioxide. 
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year, study type, country, journal and severity is shown in 
table 4.

The data were analysed in Stata/IC V.13.1 and IBM SPSS 
V.23.0. Each article was regarded as the experimental unit 
and the level of significance for all tests was 0.05.

results

Quality of research and reporting
The quality of methodological standards and of reporting 
is crucial to avoid bias and achieve reliable, repeatable and 
translatable research results. We measured this through 
the MSR score and also looked at specific research param-
eters individually.

MSR score
The 12 items that comprise the MSR score represent 
7 relevant experimental variables and 5 measures for 
reducing bias in animal experiments. Higher scores mean 
better reporting and implementation of good practices in 
the design of ALS animal studies.

MSR was significantly affected by year and study 
type (joint F-test p=0.0015 and p<0.0001, respectively). 
Compared with 2005, the logistic regression model 
predicted a lower MSR for 2007. However, the subsequent 
years (2009, 2011, 2013 and 2015) were all predicted to 
be higher than 2007, with a consistent and unbroken 
increasing trend until 2013 (figure 5). In 2013, MSR was 
predicted to be 1.5 units higher than in 2007 (p<0.0001). 
The model also predicted a higher MSR for preclinical 
studies than for proof-of-concept studies (marginal mean 

of 7.28 and 5.26, respectively). Model diagnostics showed 
that linear regression was justified and the model fit was 
excellent. Table 5 shows the complete MSR model results.

Reporting of relevant research parameters

Some research parameters were very seldom reported, for 
example, numbers of animals per cage (7.2%, 41/569), 
cage size (0.5%, 3/569) and exclusion of animals (1.4%, 
8/569). Measures in guideline recommendations to 
reduce bias in ALS research were mostly not reported, 
including splitting littermates to treatment groups 
(10.4%, 59/569), use of non-transgenic littermates as 
controls (33.2%, 189/569), as well as measures of broader 
application, such as random assignment of animals to 
treatments (13.2%, 75/569) or blinding of observers 
(25.7%, 146/569). By contrast, numbers of transgene 
copies and genetic backgrounds of animals were reported 
in the majority of papers.

Of papers reporting sex (n=297), 54.2% (161/297) 
described studies using mice of both sexes, while 29.0% 
(86/297) used only males and 16.8% (50/297) used only 
females. Reporting of sex rose steadily from 2005 (39.0%, 
30/77) to 2015 (69.8%, 74/106).

Regarding the chosen genetic background of animals 
used for preclinical studies (n=108), 76% (70/92) of 
those reporting this parameter generated experimental 
animals using a cross between mice hemizygous for the 
SOD1 mutant gene and C57/SJL outbred strains.

Only 10 studies (6 proof-of-concept studies and 4 
preclinical studies) from 2007, 2009, 2011, 2013 and 2015 

Table 2 Severity scale for ALS studies on transgenic mice with a mutant SOD1 gene

Severity Description Welfare issues during this stage

Level 1 Animals euthanised prior to disease onset, 

which is characterised by progressive weight 

loss or hind limb tremors.

No overt motor dysfunction. Phenotype is subclinical. Loss of 

motor function can be detected using rotarod or running wheels, 

but does not interfere with normal behaviour.

Level 2 Studies terminated at an early stage of disease: 

animals present trembling and weakness in 

hind limbs (by approximately  75 days) and mild 

body weight loss.

Minor. Loss of motor function can be detected using rotarod or 

running wheels, but has little interference with normal behaviour.

Level 3 Experiments terminated when animals are 

no longer able to reach food hopper or bottle 

spout. This occurs when animals reach a 

moderate (gait abnormalities and weakness) 

to severe (hind limb paralysis) stage of motor 

impairment (usually at 120–125 days).

Medium. Loss of motor function and body weight can be 

detected by monitoring (eg, by a clinical score sheet) and by 

checking self-righting ability. Reinement measures to address 

these welfare issues include provision of softer bedding material 

(eg, sawdust), elongated bottle spouts and mashed food on the 

cage loor.

Level 4 Animals euthanised after losing the ability to 

right themselves within 10–30 s after being laid 

on either side (one or both) or when percentage 

of weight loss reaches 15%–20% of peak body 

weight (usually at 130–140 days).

Major. Animals show severe locomotor impairment. Reinement 

as described for level 3.

Level 5 Animals are euthanised when reaching a 

moribund stage (complete paralysis) or allowed 

to die spontaneously.

Severe. At this stage, animals are unable to move, eat or 

drink. Animals which are not euthanised will die as a result of 

respiratory failure.

Each severity level exempliied from the most commonly used B6.Cg-TgN-(SOD1G93A) G1H mouse. Classiication was based on the most 

severe endpoint used in each publication. 

ALS, amyotrophic lateral sclerosis; SOD1, superoxide dismutase 1.
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justified the number of animals used per group. However, 
of these, only six gave clear justifications (five justified the 
group size by a power analysis and the other by the size 
of groups proposed in ALS guidelines).2 38 On the other 
hand, group size was reported in 83.3% (474/569) of ALS 
papers, and more so in the preclinical studies subsample 
(figure 6).

Of the 569 papers reviewed, 38% (214/569) did not 
report the method for killing animals despite the fact 
that in 91% (195/214) of these terminal procedures 
requiring anaesthesia for ethical and practical reasons 
were identified (eg, transcardial perfusion fixation). The 
most commonly used euthanasia method—of the papers 
reporting this information—was anaesthetic overdose 
or the use of another method under anaesthesia (86%, 
317/367), while other methods such as carbon dioxide 
asphyxiation (7%, 26/367) or others such as decapita-
tion or cervical dislocation (7%, 24/367) were seldom 
used. Very few studies (15/569) were identified as not 
performing euthanasia of any kind. The remaining 21 
articles were deemed ‘inconclusive’, for neither reporting 
euthanising animals at any point nor reporting deaths.

regulatory compliance and estimated severity

For public confidence in research, it is important that 
research with animals is carried out according to stand-
ards set by legislation and in line with the principles of 
the 3Rs. We measured such compliance through the RCR 
score and also looked at specific research parameters 
individually.

RCR score

The RCR score, which measures to what extent compli-
ance with legislation and approval of animal experi-
ments are reported in published papers, shows an overall 
improvement in the reporting over the time period 
under study (joint χ

2 p<0.001; figure 7). The estimated 
odds of RCR >1 was 7.1 times higher in 2015 than in 2005 
(p<0.0001). RCR did not differ between journals or 
between proof-of-concept and preclinical studies, but 
was affected by country (figure 7). Studies with high 
severity seemed to have higher odds of high RCR values 
(p=0.027). Model diagnostics showed that logistic regres-
sion was justified. Table 6 shows the RCR model results.

Table 3 List of items integrated in the MSR and RCR scores for preclinical (n=108) and proof-of-concept (n=461) animal 

studies on ALS reporting this information

Reported information

MSR score

‘Proof-of-Concept’ 

(n=461)

‘Preclinical’ 

(n=108)

Score item

Score 

weight

Absolute 

number %

Absolute 

number %

Relevant animal research variables

  Group size sampsize 1.5 368 79.8 106 98.1

  Environment: light, temperature, humidity (fully or partially 

reported)

climate 1 123 26.7 42 38.9

  Cage size cagesize 1 1 0.2 2 1.9

  Mice per cage nmice 1 26 5.6 15 13.9

  Sex of the animals sex 1.5 223 48.4 71 65.7

  Number of transgene copies copies 1.5 286 62.0 80 74.1

  Genetic background genetic 1.5 349 75.7 92 85.2

Measures to reduce ‘noise’ and bias in experiments

  Animals randomised to treatment groups random 1 28 6.1 47 43.5

  Observers blinded to treatment blinded 1.5 94 20.4 52 48.1

  Non-transgenic littermate controls used control 1 150 32.5 39 36.1

  Splitting littermates into groups sibsplit 1 28 6.1 31 28.7

  Reason for exclusion of animals is reported exclus 1 2 0.4 6 5.6

RCR score

‘Proof-of-Concept’ 

(n=461)

‘Preclinical’ 

(n=108)

Self-reported compliance with laws and regulations comply 1 98 21.3 28 25.9

Project approval reported protocol 1 315 68.3 66 61.1

Reinement measures (eg, to aid, feed and hydrate) reine 1 29 6.3 14 13

The score for each variable is provided (MSR score ranging from 0 to 12.5, and RCR score ranging from 0 to 3). Greater weight (1.5 vs 1) 

was attributed to items which are also part of the ALS guidelines. For purposes of statistical modelling, RCR (only including items comply, 

protocol and reine) was later simpliied to a binary variable RCRb, coded as 1 for RCR values 2–3 and as 0 for RCR values 0–1.

ALS, amyotrophic lateral sclerosis; MSR, Methodological Standards Reporting; RCR, Regulatory Compliance Reporting.
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Over the entire period, most papers (67.0%, 381/569) 
reported that studies had been appraised and approved by 
a third party (eg, ethics committee, competent authority), 
with only 10.9% (62/569) not reporting any kind of regu-
latory compliance. By 2015, all papers were found to have 
some type of statement on regulatory compliance, most 
of which (83%) referring to prior ethical approval of 
research protocols.

The correlation between MSR and RCR was weak but 
highly significant (Spearman r=0.21, p<0.0001), indi-
cating that papers with high scores for methodological 
standards were somewhat more likely to also score highly 
for regulatory standards.

Severity and reinement measures

We have found in previous systematic reviews5 6 53 that 
self-reported compliance with regulations may not 
necessarily affect the severity of the experiments being 
conducted. To test whether actual experimental prac-
tice has changed over the study period, we classified 
the severity of each study according to the criteria in 
table 2. The majority of publications (60.7%, 346/569) 
included experiments at level 4 severity (figure 8A). Of 
the 64 studies classified as level 5 (allowing animals to 
die of disease progression or to reach complete paral-
ysis), 89% reported regulatory compliance (70% ethical 
approval from a national authority or institutional ethics 
committee and 19% compliance with relevant legisla-
tion or animal use guidelines). However, between those 
studies that reported regulatory compliance and those 
that did not, there was no difference in the proportion 
that were level 5 (χ

2 (5 df)=2.855, p=0.722) (figure 8B).
On the other hand, we did observe a difference between 

preclinical and proof-of-concept studies: preclinical 
studies included a higher proportion of studies within 
the highest severity categories (77.9% (81/104) classified 
as level 4 and 19.2% (20/104) as level 5) than did proof-
of-concept studies (68.7% (265/386) classified as level 
4 and 11.4% (44/386) as level 5). Moreover, no preclin-
ical studies were given a level 1 or level 2 severity (χ

2 (5 
df)=19.593, p=0.001) (figure 8C).

Of studies classified between level 3 and level 5 severity 
(ie, from which it could be ascertained animals presented 
overt locomotor impairments), only 9.1% (42/456) 
described any refinement measures to alleviate suffering 
(eg, provision of mashed food and adaptation of bedding 
in later stages of disease progression), which occurred 
almost exclusively (39/42) in level 4 studies.

Differences in the regulatory landscape between coun-
tries imply that how animals are treated in biomedical 
research may depend on where these experiments are 
carried out. The proportion of high severity (level 5) 
studies differed significantly (χ

2 (13 df)=35 561, p=0.001) 
between the 14 most represented countries in our sample, 
ranging from 40% (8/20) and 41% (7/17) in South Korea 
and Israel, respectively, to 4% in Canada and China, and 
even none in Belgium (0/14) and the UK (0/23).

Table 4 Distribution of observations across levels of 

independent variables included in models of Methodological 

Standards Reporting and Regulatory Compliance Reporting 

indices in 490 amyotrophic lateral sclerosis studies

Variable Level n Percentage

Year 2005 77 13.58

2007 81 14.29

2009 83 14.64

2011 106 18.69

2013 115 20.28

2015 105 18.52

Study type Concept 460 81.13

Preclinical 107 18.87

Country Australia 14 2.47

Belgium 14 2.47

Canada 29 5.11

China 28 4.94

France 18 3.17

Germany 25 4.41

Israel 18 3.17

Italy 50 8.82

Japan 65 11.46

Other 43 7.58

South Korea 25 4.41

Spain 15 2.65

Sweden 12 2.12

UK 23 4.06

USA 188 33.16

Journal Brain 9 1.59

Brain Res 20 3.53

Eur J Neurosci 8 1.41

Exp Neurol 31 5.47

Front Cell Neurosci 12 2.12

Hum Mol Gen 24 4.23

J Biol Chem 19 3.35

J Neurochem 15 2.65

J Neuroinlamm 9 1.59

J Neurosci 20 3.53

J Neurosci Res 9 1.59

Mol Neurodegener 8 1.41

Neurobiol Dis 34 6.00

Neurosci 15 2.65

Other 271 47.80

PLOS One 45 7.94

Proc Natl Acad Sci USA 18 3.17

Severity 1 14 2.5

2 20 3.5

3 46 8.1

4 346 60.8

5 64 11.2

Inconclusive 79 13.9
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dIsCussIOn

Our analysis, the first of its kind to use specially devised 
scores encompassing both methodological standards and 
regulatory compliance reporting (MSR and RCR, respec-
tively) over a 10-year period, suggests three main find-
ings: The first is an overall improvement in both regu-
latory compliance and methodological and reporting 
quality across the period assessed. Also, and somewhat as 
expected, studies classified as ‘preclinical’ scored higher 
for methodological and reporting quality as compared 
with more ‘proof-of-concept’ studies. The third finding is 
that these scores varied widely according to the country in 
which the first author was based, but not according to the 
journal publishing the paper.

The improved reporting of regulatory compliance, as 
expressed in the increase in RCR score across time, is an 
indicator of widespread increase in reported adherence 
to animal welfare regulatory requirements. However, 
this was not reflected in any significant change in the 
proportion of highly severe (level 5 in our classification 
scheme) studies or the reporting of refinement measures 
(in studies where animals showed overt clinical signs). 
This is in agreement with results from previous system-
atic reviews of animal research on Huntington’s disease 
(papers published in 1997–2009)5 and tuberculosis 
(1997–2011).6 Also, while ‘preclinical’ studies were more 
likely to be classified in the higher severity categories, 
there was no relation between the level of severity and 
whether papers reported approval of protocols or compli-
ance with regulations, the latter also reflecting previous 
findings.5 53

Only 11.2% of ALS studies were classified at the highest 
severity level (level 5, ie, including experiments with 
spontaneous death or euthanasia at a near-death stage, 
ie, complete paralysis), which is much lower than that 
found in research using mouse models of Huntington’s 
disease (38%)5 and tuberculosis (66%).6 Moreover, 
most endpoints applied in ALS studies adhered to the 
same basic criterion for euthanising animals, namely the 

point at which animals are unable to resume their posi-
tion if laid recumbent within 10–30 s. This is the primary 
endpoint proposed in existing guidelines for preclin-
ical ALS2 38 and the ALS Treatment Development Insti-
tute’s recommendations28 (level 4 severity on our scale), 
suggesting researchers to a great extent act in accordance 
with published guidance in this respect. However, this 
endpoint was already broadly used before the publication 
of the guidelines, suggesting that these reflect common 
practice at the time of publication.

Applying predefined endpoints is important to prevent 
the loss of biological samples from animals found dead and 
for which time of death therefore cannot be defined,5 hence 
maintaining numbers of animals and avoiding loss of statis-
tical power and subsequent inconclusive results. However, 
from an animal welfare perspective, the current standard 
endpoint for ALS studies corresponds to an end stage where 
euthanasia may prevent deaths from respiratory failure, but 
since they seldom anticipate death by more than a day, or 
even just a few hours, late-stage endpoints only curtail a small 
part of animal suffering.7 Very late endpoints increase the 
likelihood that at least some animals will die unsupervised 
(eg, overnight), while the confounding effect of starvation 
and dehydration in survival data increases as animals become 
progressively less able to reach the bottle spout or the food 
hopper.54 At advanced clinical stages, refinements such 
as providing mashed food on the cage floor, long-spouted 
water bottles or fluid administration are therefore crucial to 
avoid unnecessary animal suffering and to improve validity 
by bringing the model closer to the clinical setting, where 
late-stage human patients are provided palliative care.55 
Defining endpoints also needs to take the research purpose 
into account. In ALS, the mechanisms operating at different 
stages of the disease are known to be different, principally 
affecting distal axons at the onset of symptoms, but devel-
oping an immune/inflammatory phenotype during the 
end stages.56 Therefore, endpoints relevant to the treat-
ment strategies must be used, particularly when targeting 
neuroinflammation.

Figure 5 Predictive marginal means (predicted score values) ±95% CI of publication year (A) and country (B) based on a model 

of an MSR score in 487 ALS studies. According to the linear regression model, MSR could be expected to be lower in 2007 

than in 2005, but higher in 2009, 2011, 2013 and 2015 than in 2007. No signiicant interactions were found (eg, between country 

and year). According to the R-square statistics, the model explained 25% of the total variation in MSR. ALS, amyotrophic lateral 

sclerosis; MSR, Methodological Standards Reporting. 
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Table 5 Model estimates of an MSR index, from the 487 ALS studies that could be used

Variable Level Coeficient SE P value 95% CI

Intercept – 6.96 0.572 <0.0001 5.83 to 8.08

Year 2005 0.981 0.387 0.011 0.222 to 1.74

2007 0 – 0.0015 –

2009 0.736 0.369 0.047 0.0110 to 1.46

2011 1.33 0.355 <0.0001 0.631 to 2.03

2013 1.49 0.375 <0.0001 0.748 to 2.22

2015 1.18 0.370 0.001 0.458 to 1.91

Study type Preclinical 0 – <0.0001 –

Proof-of-concept −2.02 0.249 <0.0001 −2.51 to −1.53

Country Australia 0.159 0.661 0.81 −1.14 to 1.46

Belgium 0.512 0.676 0.45 −0.817 to 1.84

Canada −0.188 0.479 0.70 −1.13 to 0.754

China 0.235 0.508 0.64 −0.764 to 1.23

France 0.245 0.607 0.69 −0.948 to 1.44

Germany 1.30 0.493 0.009 0.330 to 2.27

Israel −0.294 0.570 0.61 −1.41 to 0.827

Italy 1.34 0.377 <0.0001 0.598 to 2.08

Japan 0.365 0.343 0.29 −0.308 to 1.04

Other 0.474 0.402 0.24 −0.315 to 1.26

South Korea −0.307 0.529 0.56 −1.35 to 0.733

Spain 1.16 0.604 0.055 −0.0249 to 2.35

Sweden −0.798 0.756 0.29 −2.28 to 0.688

UK 0.668 0.514 0.19 −0.342 to 1.68

USA 0 – 0.025 –

Journal Brain −1.59 0.859 0.065 −3.27 to 0.100

Brain Res −1.45 0.641 0.024 −2.71 to −0.187

Eur J Neurosci −1.12 0.868 0.20 −2.83 to 0.581

Exp Neurol −0.993 0.573 0.084 −2.12 to 0.133

Front Cell Neurosci −0.251 0.904 0.78 −2.03 to 1.52

Hum Mol Gen −1.50 0.589 0.011 −2.66 to −0.343

J Biol Chem −1.88 0.662 −0.005 −3.19 to −0.583

J Neurochem −0.213 0.714 0.77 −1.62 to 1.19

J Neuroinlamm −1.37 0.886 0.12 −3.11 to 0.369

J Neurosci −1.05 0.617 0.090 −2.26 to 0.163

J Neurosci Res −1.14 0.897 0.20 −2.90 to 0.619

Mol Neurodegener 0.0040 0.909 0.99 −1.78 to 1.79

Neurobiol Dis −1.53 0.533 0.004 −2.58 to −0.481

Neurosci −0.479 0.668 0.47 −1.79 to 0.834

Other −1.11 0.385 0.004 −1.86 to −0.348

PLOS One 0 – 0.14 –

Proc Natl Acad Sci USA −1.88 0.672 0.005 −3.20 to −0.560

Severity Low 0 – 0.80 –

High −0.0767 0.306 0.80 −0.679 to 0.525

ALS, amyotrophic lateral sclerosis; MSR, Methodological Standards Reporting.
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MSR improved over the time period under study. 
Studies classified as ‘preclinical’ reported methodology 
in more detail than those deemed ‘proof-of-concept’, 
consistent with the view that a more rigorous design and 
execution should be demanded for preclinical studies.57 
Nevertheless, the checklist provided in the 2010 edition 
of the guidelines for ALS research sets high methodolog-
ical standards for both types of studies.2 Throughout the 
period under study, the MSR scores remain below 50% 
of the maximum score, showing that the overall level of 
reporting of methodological detail remains substantially 
below the recommendations in the guidelines.

Only three parameters (genetic background, number 
of transgene copies and group size) were reported in 
more than half of the sample, whereas other relevant 
information, such as housing conditions, randomisa-
tion of animals into treatment groups or blinding of 
researchers, was absent in well over two-thirds of the 
papers analysed, in line with previous reviews of animal 
research in the neurosciences.5 54 58 Other biological and 

methodological parameters such as sex (only reported in 
the majority of papers in the ‘preclinical studies’ subsa-
mple) and method of choice for euthanising animals 
were also largely under-reported. The method used for 
euthanising animals has both animal welfare implications 
and scientific relevance, as the method affects biological 
and histological parameters differently, which can impact 
the postmortem data collected.59 60 The increase in the 
proportion of articles in our sample reporting sex of the 
animals is positive, as sex differences4 61–63 in the pheno-
type or response to therapeutic drugs may influence 
results and be of clinical relevance. However, although 
ALS guidelines propose the use of both male and female 
mice, little over half of the studies providing this informa-
tion reported doing so. Overall, making these and other 
details on animals and protocol available is central to 
allowing an adequate interpretation of results and a crit-
ical evaluation of their validity, as well as allowing study 
replication and proper integration of results in systematic 
reviews and meta-analyses.31 64

Figure 6 Group size. Histogram of mean group size in 105 preclinical studies reporting this parameter (A) and for each of the 

years analysed (yearly mean±1 SD) (B).

Figure 7 Predictive marginal means (predicted probabilities of values >1) ±95% CI of publication year (A) and country (B) 

based on a model of an RCR score in 490 ALS studies. The probability of an RCR score above 1 was higher in 2013 and 2015 

than in 2005. China, France, Italy and South Korea appeared to have comparatively low probabilities, while for example Spain, 

Belgium and Canada had somewhat high probabilities. No signiicant interactions were found. The pseudo R-square statistics 

indicated that the model explained 16% of the total variation in the data. ALS, amyotrophic lateral sclerosis; RCR, Regulatory 

Compliance Reporting. 
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Sample size was generally well reported, but of those 
reporting this parameter only a small minority used the 
24 per group recommended in the 2010 guidelines.2 
Furthermore, only three studies clearly justified group 

size, in agreement with previous reports that this is 
frequently overlooked, for example refs 31 65. Adequate 
sample size is paramount to ensure that animals, time and 
resources are not wasted as a result of underpowering 

Table 6 Model estimates of an RCR index in 490 ALS studies

Variable Level OR SE P value 95% CI

Intercept – 3.62 2.34 0.047 1.02 to 12.9

Year 2005 1 – 0.0001 –

2007 1.02 0.397 0.96 0.476 to 2.19

2009 1.33 0.502 0.46 0.631 to 2.79

2011 1.94 0.728 0.077 0.931 to 4.05

2013 3.43 1.41 0.003 1.53 to 7.67

2015 7.07 3.16 <0.0001 2.95 to 17.0

Study type Concept 1.37 0.369 0.24 0.812 to 2.32

Country Australia 1.31 1.11 0.75 0.250 to 6.85

Belgium 2.02 1.73 0.41 0.375 to 10.9

Canada 1.71 1.00 0.36 0.545 to 5.38

China 0.199 0.111 0.004 0.0671 to 0.592

France 0.171 0.109 0.006 0.0489 to 0.599

Germany 1.23 0.710 0.72 0.395 to 3.81

Israel 0.726 0.521 0.66 0.178 to 2.96

Italy 0.231 0.0916 0.000 0.106 to 0.503

Japan 0.763 0.282 0.47 0.369 to 1.58

Other 0.352 0.152 0.016 0.151 to 0.821

South Korea 0.241 0.134 0.010 0.0810 to 0.716

Spain 2.54 2.76 0.39 0.303 to 21.3

Sweden 0.960 0.843 0.96 0.172 to 5.36

UK 0.971 0.554 0.96 0.318 to 2.97

USA 1 – 0.010 –

Journal Brain 0.266 0.256 0.17 0.0406 to 1.75

Brain Res 0.206 0.153 0.033 0.0482 to 0.880

Eur J Neurosci 0.772 0.813 0.81 0.0979 to 6.09

Exp Neurol 0.316 0.226 0.11 0.0782 to 1.28

Front Cell Neurosci 0.134 0.150 0.072 0.0150 to 1.20

Hum Mol Gen 0.427 0.318 0.25 0.0992 to 1.84

J Biol Chem 0.257 0.199 0.079 0.0566 to 1.17

J Neurochem 0.196 0.158 0.044 0.0404 to 0.954

J Neuroinlamm 0.780 1.00 0.85 0.0632 to 9.63

J Neurosci 0.119 0.0879 0.004 0.0279 to 0.506

J Neurosci Res 0.302 0.314 0.25 0.0394 to 2.32

Mol Neurodegener 0.131 0.129 0.039 0.0189 to 0.903

Neurobiol Dis 0.250 0.170 0.041 0.0661 to 0.947

Neurosci 1.66 1.97 0.67 0.161 to 17.1

Other 0.368 0.204 0.071 0.125 to 1.09

PLOS One 1 – 0.41 –

Proc Natl Acad Sci USA 0.382 0.323 0.26 0.0730 to 2.00

Severity Low 0 – 0.027 –

High 2.21 0.790 0.027 1.10 to 4.45

ALS, amyotrophic lateral sclerosis; RCR, Regulatory Compliance Reporting. 
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experiments by using too few animals.66 67 Noise reduc-
tion by genetic standardisation could also help reduce the 
number of animals needed per study, as the reduced inter-
individual variability of isogenic strains allows increasing 
power without requiring more animals68 and is indeed 
mentioned in the 2007 guidelines as a way of reducing 
variability in drug testing.38 Mead and colleagues,69 for 
instance, have shown great consistency of results by using 
SOD1G93A transgenic mice on an inbred C57BL/6 
genetic background, with the added advantage of 
presenting early indicators of disease progress, allowing 
for faster and more humane drug screening. Only 11% 
of the preclinical studies reviewed, however, used a fully 
inbred background. The use of a single well-characterised 
model for initial studies can be supported further by inde-
pendent replication studies in a different disease model.

Most articles did not report random assignment of 
animals to groups or blinded outcome assessment. This 
reflects similar data from reviews on the methodolog-
ical quality of preclinical research on ALS28 58 70 and 
other fields.31 33 71–73 This lack of attention to measures 
to avoid noise and biases in animal experiments is cause 
for concern, given their role in improving the reliability 
of results, as well as the translational value of preclinical 
research.16 24 33 67 71 While it cannot be excluded that in 
some cases blinding and randomisation were applied but 
not reported, one might expect that researchers carrying 
out well thought out and planned experiments would 
state such measures, since this strengthens their results 
and conclusions. There is ample evidence for many 
areas32 33 73–75 that published studies which do not report 
measures to minimise bias (ie, blinding, randomisation 

Figure 8 Severity classiication of studies (n=569). (A) Percentage of studies, by year, classiied into each of the ive levels of 

our severity scale, as well as those of ‘undetermined’ severity due to insuficient information (n=77 in 2005; n=81 in 2007; n=84 in 

2009; n=106 in 2011; n=115 in 2013; n=106 in 2015). (B and C) Percentage of studies classiied into each of the ive levels, 

according to, respectively, reported regulatory compliance status (n=62, not reported; n=126, guidelines followed; n=381, 

protocol approval) and type of study (n=461, proof-of-concept studies; n=108, preclinical studies).
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and allocation concealment) tend to present an exagger-
ated estimate of the therapeutic effect of experimental 
drugs. This is particularly relevant in the light of the 
ongoing discussion of why promising preclinical results 
of candidate drugs for ALS have not translated into the 
clinic. Although the disappointing outcomes of clinical 
trials apparently contradict the promising preclinical 
results that elicited them, they may actually mirror the 
results obtained from adequately designed animal studies 
carried out to high methodological standards.28 70

MSR and RCR scores were not influenced by the journal 
in which the results were published. Other researchers 
who have investigated the effect of journal on method-
ological standards and reporting quality have found a 
statistically significant but very small effect of whether 
or not the journal had endorsed the Animal Research: 
Reporting of In Vivo Experiments (ARRIVE) guide-
lines.76 77

In contrast to previous research, this study indicated a 
gradual improvement in the methodological standards 
and regulatory compliance reporting scores over time. 
However, it is difficult to say to what extent this is the 
result of field-specific guidelines, as there is an overall 
increasing trend in these scores. Our study, of course, 
is limited to the period and model under study, and 
some improvements may have occurred as a result of the 
informal discussion leading up to the formal workshops 
and guidelines (and more recently, the appearance of 
other transgenic models means that the study does not 
cover the entire field of ALS research for later years). 
Also, a surprisingly low number of papers (1/84 in 2009, 
10/106 in 2011, 10/115 in 2013 and 14/106 in 2015) 
referred to the Ludolph et al guidelines.2 38 Given the 
slow adoption of the ARRIVE guidelines,78 it seems likely 
it may also take some time for the ALS guidelines to have 
a detectable effect.

While reporting of relevant parameters such as blinding 
and randomisation was higher in our ‘preclinical’ subsa-
mple than what has been reported in other systematic 
reviews,16 31 76 78–81 the results for the overall sample were 
generally comparable. Also, and similarly to what was 
found in these systematic reviews, justification for sample 
size was rarely reported.

One way of addressing the problems with study quality 
could be for preclinical researchers to adopt the stan-
dards of randomised controlled trials in humans,82–85 
including trial preregistration.86 87 Compliance with 
existing guidelines would seem a more readily achievable 
goal; however, other self-regulatory mechanisms may be 
warranted to improve compliance, such as changes to the 
publishing requirements of biomedical journals88–90 or 
more demanding requirements by science funders, both 
of which are clearly on the horizon.30 91

COnClusIOn

The ALS research community pioneered the devel-
opment of field-specific guidelines, setting science 

community-based standards for animal research meth-
odology and reporting.2 38 Whereas we found significant 
improvement over time, it is less clear to what extent this 
is linked to the guidelines, which are rarely referred to. 
Animal research in the field of ALS does however differ 
from comparable research in other reviewed fields in one 
aspect: the implementation of predefined endpoints in 
studies of advanced disease stages. This practice is impor-
tant both for research quality and animal welfare and is 
indeed coherent with the field-specific guidelines. We 
propose that future guidelines should address measures 
to raise standards in the design, conduct and reporting 
of experiments, as well as to reduce the impact on animal 
welfare, as part of a concerted effort to make biomedical 
research using animals more ethically and socially accept-
able and effective.
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