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ABSTRACT: The addition of water to dihydrolevoglucosenone (Cyrene) creates a solvent mixture with highly unusual properties 

and the ability to specifically and efficiently solubilise a wide range of organic compounds notably aspirin, ibuprofen, salicylic acid, 

ferulic acid, caffeine and mandelic acid. The observed solubility enhancement (up to 100-fold) can only be explained by the existence 

of micro-environments mainly centered on Cyrene’s geminal diol. Surprisingly the latter acts as a reversible hydrotrope and regulates 

the polarity of the created complex mixture. The possibility to tune the polarity of the solvent mixture through the addition of water, 

and the subsequent generation of variable amounts of Cyrene’s geminal diol, creates a continuum of green solvents with controllable 

solubilization properties. The effective presence of microheterogenieties in the Cyrene/water mixture was adequately proven by 1) 

FT-IR/DFT showing Cyrene dimerization 2) electronspray mass-spectrometry demonstrating the existence of dimers of Cyrene’s 
geminal diol and 3) the variable presence of single or multiple tetramethylsilane (TMS) peaks in the 1H NMR spectra of a range of 

Cyrene/water mixtures. The Cyrene-water solvent mixture is importantly not mutagenic, barely ecotoxic, bio-derived and endowed 

with tuneable hydrophilic/ hydrophobic properties.

INTRODUCTION 

The dissolution of chemical substances is a key technology 

in the chemical industry, with over 20 megatonnes of solvent 

consumed per year.1-3 Presently, the use of many conventional 

solvents has come under increasing scrutiny, due to their 

strongly negative environmental impacts and often high toxici-

ties.4 In this respect, the Registration, Evaluation, Authorisation 

& restriction of CHemicals regulation (REACH) is already be-

ginning to lead to restrictions in the use of many common con-

ventional solvents (e.g. nitrobenzene5, 1,2-dichloroethane5-6), 

which has, in turn, reinforced the search for novel solvents with 

more benign characteristics. Ideally, these are also bio-based; 

examples being methyltetrahydrofuran, glycerol, -valerolac-

tone, ethylacetate, and dihydrolevoglucosenone (Cyrene).7-10 

The last of these is of particular importance as it is a rare bio-

based dipolar aprotic solvent displaying similar solvent-charac-

teristics to N-methylpyrrolidone (NMP) and dimethylforma-

mide (DMF), but while both NMP and DMF are extremely ver-

satile and important solvents they also display reproductive tox-

icity (reprotoxity).8 In contrast Zhang et al. have reported that 

Cyrene is not mutagenic and barely ecotoxic, showing an LD50 

> 2000 mg L-1.9 Very recently the Circa Group, as the sole man-

ufacturer of Cyrene, has received REACH Annex VIII ap-

proval, allowing it to import and/or manufacture up to 100 

tonnes/year of Cyrene in the European Union.11 

Solubilization and extraction of solutes often require the use 

of (multiple) solvent mixtures and/or solubilizers added to the 

principal solvent.3 Besides bio-based solvents, the use of aque-

ous solvent systems, switchable solvents, ionic liquids, deep eu-

tectic solvents, CO2 tuneable solvents, CO2 expanded liquids 

and liquid polymers also often have solid green credentials.12-14 

The most common  solubilizers are surfactants and hydrotropes 

and these are most often amphiphilic compounds which can en-

hance the aqueous solubility of hydrophobic compounds mark-

edly.15-18  On a molecular level surfactants tend to feature longer 
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C8-C20 alkyl chains while hydrotropes typically have shorter 

alkyl tails ( C4) and/or aromatic rings.19 Hydrotropes are gen-

erally solids but they can also be liquids in which case they are 

known as "chameleonic solvents" or "solvo-surfactants".15 Ex-

amples of “chameleonic solvents” are the short-chain ethers of 

mono/di/tri propylene glycols, which can aid dissolution of or-

ganic substances in water by a hydrotropic mechanism but also 

by forming monophasic micro-emulsions. However, as with 

NMP and DMF, glycol ethers have known or suspected toxicity 

including reprotoxicity.15 Only recently, the underlying, general 

principle of hydrotrope-based solubilization was shown to be 

the result of non-specific association of hydrotropes with so-

lutes, which more than compensates the per-hydrotrope 

solubilization inefficiency due to hydrotrope self-association.20 

Also, the sudden onset of solubilization at critical hydrotrope 

concentrations, which is another characteristic signature of 

hydrotropy, has been linked to enhanced hydrotrope self-asso-

ciation around the solute.21 

Here we show that the addition of water to Cyrene, one of the 

new generations of bio-based solvents, can significantly in-

crease the solubility of a range of organic molecules, even for 

those with very low water solubility (Figure 1A, table 1S_A/B). 

Furthermore, it is also apparent that the points of maximal 

solubilisation are actually controlled by the nature of the sub-

strate. Crucial to this behavior is the observation that Cyrene 

interacts chemically, and reversibly, with water, forming its 

geminal diol [(1S,5R)-6,8-dioxabicyclo[3.2.1]octan-4,4-diol] 

(Figure 1B). Consequently, marked amphiphilicity is created in 

the Cyrene-water solvent system. When taken together with the 

characteristic S-shape curve of the solubility profiles as viewed 

from the H2O side, we infer that Cyrene’s geminal diol is be-
having as a hydrotrope. The occurrence of a controllable equi-

librium between Cyrene, its geminal diol and H2O is remarkable 

in that it imparts tunability of the properties of the Cyrene sol-

vent. Indeed, while Cyrene has been classified as a dipolar apro-

tic solvent, the introduction of water and the consequent for-

mation of Cyrene's geminal diol introduces significant addi-

tional polarity from two hydroxyl groups. These two additional 

proton donor groups augment the existing proton-acceptor ca-

pacity of Cyrene and consequently enhance its overall hydrogen 

bonding capacity. 

RESULTS AND DISCUSSION  

The composition of the ternary Cyrene/water/geminal diol 

mixture (hereafter abbreviated as TM-H2O) has been 

investigated with 1H and quantitative 13C NMR. Figure 1B (and 

Table 2S_A) show its composition as a function of the initial 

amount of Cyrene added to water (in wt%) and with both the 

molar amounts of geminal diol and excess H2O (i.e. water that 

has not engaged in forming the geminal diol) normalized to 1 

mol Cyrene. The composition of the ternary mixture can thus 

be adequately described as [Cyrene normalized moles geminal 

diol; Cyrene normalized moles H2O] couples (see figure 1B). 

This data allows the investigation of the equilibrium of the Cy-

rene hydration reaction (table 2S_B). Two different models for 

the Cyrene – water interaction/reaction have been considered: 

(i) one that follows the intuitive reaction stoichiometry in which 

one molecule of Cyrene reacts with one water molecule yielding 

Figure 1. A) normalized solubility of a range of organic substrates 

B) the molar composition of the Cyrene-H2O solution as a function 

of the initial Cyrene concentration (based on 1H/13C NMR data). 

the geminal diol (see Figure 2 A) and (ii) a reaction stoichiom-

etry in which two water molecules are involved, one reacting 

with the Cyrene and one hydrogen bonding strongly to the gem-

inal diol (Figure 2B). Model (i) is only valid at initial cyrene 

concentrations > 85 wt% from which point it displays a constant 𝑲𝒆𝒒𝟏   (Figure 2A, yellow-striped zone). Alternatively, model (ii) 

(Figure 2B, cyan zone) yields a constant 𝑲𝒆𝒒𝟐  up to < 50 wt% 

initial Cyrene concentration, suggesting that this model pro-

vides a more realistic description of the reaction within this con-

centration range. The zone between 50-85 wt% is not straight-

forwardly categorizable to either model and may therefore re-

quire consideration of the involvement of other species/com-

plexes. 

To obtain more insight in the structure of Cyrene-water solu-

tions, a systematic FT-IR analysis of Cyrene and Cyrene-water 

solutions has been performed:  

 

Figure 2. A) Linearization of the Cyrene-H2O solution composi-

tional data based on the natural Cyrene-geminal diol equilibrium 

involving one water molecule; B) Linearization of the Cyrene-H2O 
solution compositional data based on the involvement of two water 

molecules in the equilibrium 



 

Firstly, and most surprisingly, the FT-IR spectrum of pure 

Cyrene, with just a single carbonyl group, displays at least two 

different IR carbonyl absorption bands centered at about 1730 

cm-1 (Figure 3A). Such an observation cannot relate to the open-

ing of the acetal group because this only occurs in the presence 

of a strong acid and at temperatures > 120 °C. The most plausi-

ble alternative explanation is that the carbonyl group sits in two 

or more different chemical environments. A Clausius 

Clapeyron plot obtained from the variation of the vapor pressure 

with temperature determined the Hvap of Cyrene at 67 kJ mol-

1. This value divided by Cyrene’s boiling point (476 K) gives a 
value for Svap of 140 J mol-1 K-1. This is substantially higher 

than that predicted by Trouton's rule which states that the en-

tropy of vaporization for many (but not all) liquids is about the 

same at 85–88 J mol-1 K-1.22 Exceptions to this rule are the en-

tropies of vaporization of water, ethanol, and formic acid, all of 

which form strong hydrogen bonding interactions in the liquid 

phase. A reasonable conclusion therefore is that the positive de-

viation from Trouton’s rule for Cyrene is due to the existence 
of strong hydrogen-bonding interactions between Cyrene mon-

omers. Consistent with this conclusion is the observation that 

the experimental FT-IR spectrum of Cyrene in excess CCl4, in 

which formation of higher order clusters of Cyrene molecules 

is likely to be impeded, reveals just a single carbonyl band (see 

Figure 3A).  

In order to support this hypothesis, a series of density func-

tional theory (DFT) calculations were carried out at the 

M062X/cc-pVDZ level on the Cyrene system.  Geometry opti-

mizations and vibrational frequency analysis allowed the simu-

lation of IR spectra for each structure. As expected, the resulting 

simulated IR spectrum of the Cyrene monomer revealed just 

one single carbonyl stretching band (see SI).  However, IR sim-

ulations of a number of different structural isomers of the Cy-

rene dimer revealed doublet carbonyl stretching bands where 

the structures of those dimers resulted in different chemical en-

vironments for the two carbonyl groups (see Figure 3B and the 

SI). Similarly, a simulated IR spectrum for one conformer of 

the Cyrene trimer revealed a triplet of carbonyl stretching bands 

(see SI). 

Addition of water to Cyrene shows a progressive change in 

the relative intensities of the two carbonyl IR stretching bands, 

becoming equal at ~24 wt% water. This suggests a persistent 

presence of the Cyrene dimer over a large range of concentra-

tions (Figure 4A/B). Likewise, the symmetric and asymmetric 

geminal diol OH stretches at 1080 and 1063 cm-1 also show a 

progressive variation in relative intensities with increasing wa-

ter content (Figure 4C/D).  Of particular note, in the 25-65 wt% 

water range, rapid changes in the C-C skeletal vibrational bands 

of Cyrene at 906 and  917 cm-1 are observed which suggests 

involvement of the acetal oxygens (1020 and 984 cm-1 bands) 

in hydrogen bonding to other Cyrene molecules, or to Cyrene’s 
geminal diol or indeed with H2O (Figure 4C/D) (Figure 

4C/D).23  

To gain further insight we evaluated the solubility profiles for 

a range of organic substrates (Figure 5 and Table 1S A/B), 

through linear regression, as a function of the 4 main compo-

nents [Cyrene (Cy), Cyrene dimer, geminal diol (GD) & H2O] 

and 4 possible molecular complexes ‘Cyrene –geminal diol‘, 
‘geminal diol-water‘, ‘geminal diol dimer‘ and ‘Cyrene-wa-

ter‘(see Equation 1, Table 1 and Figure 5). These complexes 

then refer to the potential presence of micro-heterogeneities in 

the Cyrene-H2O solvent mixture. As can be seen from Figure 5  

 

Figure 3. A) A comparison of the FTIR spectra of Cyrene in 

CCl4 (upper) with pure liquid Cyrene.  B) A simulation of the 

IR spectrum of one of the six stable conformations of the Cy-

rene dimer obtained from the DFT calculations. This structure 

is the second most stable (see SI for further examples). 

Figure 4. a) and b) Evolution of the carbonyl stretching bands 

of Cyrene with increasing water content presented as a) a series 

of one dimensional IR spectra and b) a 2-D IR spectrum.  c) and 

d): Evolution of the C-OH and C-O-C vibrational bands of Cy-

rene with increasing water content presented as c) a series of 

one dimensional IR spectra and d) a 2-D IR spectrum. 
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(equation 1)  

the concept of micro- heterogeneity proves valuable as the sol-

ubilities of all the tested solutes can be described adequately in 

this way. The amount to which the tested compounds dissolve 

in a certain micro-environment is thereby proportional to the 

probability of finding this microcluster in solution. It can be 

seen that the solubility of the organic substrates around 

maximum solubilization can always be described as a  function 

of 2-4 main solvent components: 

a) Cyrene & the ‘Cyrene-geminal diol’ complex are found to 
be  the main contributors to ibuprofen dissolution; 

b) Cyrene, Cyrene-water, Cyrene-geminal diol and geminal 

diol dimer are the main contributors to aspirin dissolution; 

c) Cyrene, geminal diol and the ‘Cyrene-geminal diol’ 
complex for salicylic and ferulic acid dissolution; 

d) geminal diol (major) and water (minor) for caffeine; 

e) ‘Cyrene-geminal diol’ and water (minor) for mandelic 

acid; 

The existence of microheterogeneities in the Cyrene/wa-

ter/geminal diol mixture was also revealed, somewhat serendip-

itously, through the behavior of the tetramethylsilane (TMS) 

reference peak in the 1H NMR spectra. It can be seen in Figure 

6A that for 90-65 wt% Cyrene the TMS peak separates into 

multiplets. As all of the CH3 groups (and so all related protons) 

in TMS are chemically equivalent, this can only be explained if 

the TMS is experiencing different chemical environments on  

Figure 5 Impact of a range of potential solution components 

on the solubility of a series of organic compounds as identified 

by linear regression of the original solubility data 

Table 1 Constants obtained for the linear regression analysis 

of the solubility data  
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the molecular level. It is also noteworthy that the 1H NMR re-

laxation times of the TMS protons are different for all the ob-

servable TMS 1H NMR peaks, further supporting the presence 

of microheterogeneities in the Cyrene-water mixture (Figure 

6B). To the best of the authors’ knowledge, this is unprece-

dented in the literature. Additionally, the explicit existence of 

dimeric geminal diol was proven by electronspray 

massspectrometry (ESI-MS) as shown in figure 2S. Interest-

ingly, maximum solubility seems to always involve Cyrene’s  

Figure 6 A) appearance of the TMS peak(s) in the 1H NMR 

spectra of a range of different Cyrene/water mixtures B) 1H 

NMR relaxation times (in seconds) of the TMS protons for the 

different observable TMS peaks  



 

geminal diol, irrespective of the identity of the solute. It is also 

noteworthy that we have presently not been able to establish a 

link between the ranges of maximum dissolution and any phys-

ical property of the solutes (e.g. density, viscosity, Kow of the 

substrates). It could thus be concluded that the observed 

hydrotropy is strongly linked to the presence of Cyrene’s gem-
inal diol. Tables 3S/4S show that the solubility of all tested 

compounds increases by a factor of between 4- 100 compared 

to the solubility in water and between 1.5- 9 times when com-

pared to their solubility in Cyrene. 

To date hydrotropic solubilization, with the occurrence of 

strong solubility maxima, has been little reported on. A note-

worthy example is the dissolution of lignin monomeric model 

compounds and technical lignins using aqueous solutions of 

deep eutectic solvents (DESs).24 Also ionic liquids (ILs) have 

been shown to function as ‘catanionic’ hydrotropes when used 
in an aqueous medium.25 Very recently, Ma et al. published a 

comprehensive overview on how the addition of water to DESs 

and ILs affects their  properties, behavior and three-dimensional 

structure.26 Structural organization is long known to exist in 

urea/water mixtures.27 

Importantly, for practical applications (e.g., extractions, iso-

lations) recovery of the substrates can be achieved by shifting 

the TM-H2O equilibrium to a zone in which the solute is no 

longer soluble. This can be realized by adding the necessary 

amount of water to achieve, for example, a Cyrene concentra-

tion below 40 wt%, at which point most of the solutes discussed 

above are significantly less soluble (Figure 5). The drawback to 

this procedure is the need to distill out larger amounts of water 

in order to regain pure Cyrene, which evidently comes at a sig-

nificant energetic cost. However, for this, and probably also 

many other applications, distillation basically needs to reform 

only a suitable technical grade of Cyrene such as 80wt% Cyrene 

in water. In cases of poor solute solubility in Cyrene, the use of  

water as an anti-solvent could be foresaken and the water could 

be directly distilled  out of the mixture. Any recovered water 

could be re-used to reform the required/desired Cyrene/water 

mixture and/or as the anti-solvent without extensive purifica-

tion. A full LCA analysis is currently in progress. Lowering or 

increasing the temperature may also aid the precipitation pro-

cess as variable temperature NMR studies of the TM-H2O equi-

librium show that a decrease/increase in temperature favors the 

geminal diol and Cyrene respectively (Figure 3S_A/B), thus 

changing the polarity of the overall mixture. 

CONCLUSION 

In conclusion, this work describes an elegant way to tune the 

dissolution properties of Cyrene by the addition of water, thus 

generating a continuum of green solvents with controllable 

solubilization properties. Central to this is the unique ability of 

Cyrene to generate significant amounts of Cyrene’s geminal 
diol. In this respect, it is noteworthy that with most ketones in 

aqueous solutions the ketone/geminal diol equilibrium tends to 

lie dominantly on the ketone side. Additionally, many ketones 

are also insoluble in water e.g. cycloheptanone. Cyrene’s 
geminal diol is an amphiphilic molecule, which can act as a 

switchable and reversible hydrotrope. Solubility increases of up 

to 100-fold (over water solubility) can be achieved. Examina-

tion by linear regression of the solubility profiles of a range of 

compounds shows that the observed solubility profiles can only 

be explained by considering the existence of micro-environ-

ments in the TM-H2O system. The existence of such micro-en-

vironments is adequately, and uniquely, proven by FT-IR, DFT, 

ESI-MS and the variable presence of single or multiple tetrame-

thylsilane peaks in the 1H NMR spectra of a range of Cy-

rene/water mixtures. The Cyrene-water solvent mixture is im-

portantly not mutagenic, barely ecotoxic, bio-derived and en-

dowed with tuneable hydrophilic/ hydrophobic properties. 
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Addition of water to Cyrene generates a continuum of green solvents with controllable solubilization properties centered on 

Cyrene’s geminal diol. The solvent is non-mutagenic, barely ecotoxic and bio-derived. 


