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On a variation of the Erdős–Selfridge superelliptic curve

Sam Edis

Abstract

In a recent paper by Das, Laishram and Saradha, it was shown that if there exists a rational
solution of yl = (x + 1) . . . (x + i− 1)(x + i + 1) . . . (x + k) for i not too close to k/2 and y �= 0,
then log l < 3k. In this paper, we extend the number of terms that can be missing in the equation
and remove the condition on i.

1. Introduction

The Erdős–Selfridge superelliptic curves are the following family of curves,

yl = (x + 1) . . . (x + k). (1)

In [4], it is shown to not have any solutions in positive integers x, y, k, l with k, l � 2. It has
been conjectured by Sander [6] that for l � 4 there are no rational solutions to equation (1)
with y �= 0. In [1], for k � 2 a positive integer, there are at most finitely many solutions to (1)
with x and y rational numbers, l � 2 an integer with (k, l) �= (2, 2) and y �= 0. Further, it is
shown that if l is a prime, then all solutions satisfy log l < 3k.

In [2], by Das, Laishram and Saradha, they consider the following variation of the Erdős–
Selfridge superelliptic curves,

yl = (x + 1) . . . (x + i− 1)(x + i + 1) . . . (x + k), (2)

for k � 2 an integer, l a prime, x and y �= 0 rational numbers and i an integer strictly between
1 and k. Letting q be the smallest prime greater than or equal to k/2, they show that if (2)
holds and 2 � i � k − q or q < i < k then log l < 3k. Further, they show that if (2) holds and
3 � k � 26, then log l < 3k.

In this paper, we will further the results in [2] by removing the condition on i and also
extending the terms that can be missing from the equation. For k � 2 an integer, l a prime,
i and j integers 1 < i < j < k and ǫt ∈ {0, 1} for i < t < j, we call the following equation the
Erdős–Selfridge curve with an incomplete block,

yl =
i
∏

t=1

(x + t)

j−1
∏

t=i+1

(x + t)ǫt
k
∏

t=j

(x + t). (3)

We call a solution to (3) with x and y rational numbers and y �= 0 a non-trivial rational
solution. We note that the case j − i = 2 and ǫi+1 = 0 is the same as (2).

Theorem 1. If (x, y) is a non-trivial rational solution to equation (3) for k � 27 and

j − i− 1 < k/18 − 1, then log l < 3k. In particular, if j − i = 2, then log l < 3k holds for

k � 3.
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This will be proven by adjusting the proofs in [1, 2], by adding in new identities allowing us
to consider prime numbers less than k/2 and using a more combinatorial approach.

We will also consider a variation of the Erdős–Selfridge superelliptic curve from which terms
in the product have been removed without any specification of their location in the interval
[1, k].

Theorem 2. Letting 1 < t1 < . . . < tL < k and S = {1, . . . , k} \ {t1, . . . , tL}. If (x, y) is a

non-trivial rational solution to

yl =
∏

j∈S

(x + j), (4)

for k � 2 and L < 0.26
√

k
log k

, then log l < 3k.

2. Preliminaries

We will assume throughout that l is prime and l > k − 1. We will first prove the existence of
primes in the interval [k3 ,

k
2 ]. Following that we will look at the prime decomposition of the

factors of equation (3).

Lemma 3. For all k � 22, there exists a prime p such that 1
3k � p � k

2 .

Proof. In [5], it is shown that there is always a prime between z and (1 + 1
5 )z, for z � 25.

Hence, for k � 75, the result now follows, and for the other k, it follows from an explicit
computation. �

Following the work of Bennett and Siksek [1] and of Das, Laishram and Saradha [2], we write
the coordinates (x, y) as fractions in lowest common form, x = n/s and y = m/s′ for m �= 0, s
and s′ positive integers. From equation (3), we have

ml

s′l
=

i
∏

t=1

(n + ts)

j−1
∏

t=i+1

(n + ts)ǫt
k
∏

t=j

(n + ts)

sk−
∑

ǫi
.

As gcd(n, s) = gcd(m, s′) = 1 and l is a prime greater than k −
∑

ǫi, it follows there is a
positive integer d such that s = dl and s′ = dk−

∑
ǫi .

Hence, equation (3) can be written as

ml =

i
∏

t=1

(n + tdl)

j−1
∏

t=i+1

(n + tdl)ǫt
k
∏

t=j

(n + tdl), (5)

for m, n and d integers.
We now write each term in this product as

n + t1d
l = at1x

l
t1
, (6)

such that xt1 is an integer and at1 is an lth power free integer. Let p be a prime that divides
at1 , then p must also divide at2 for some t2, hence p divides (t1 − t2)d

l. If p divides d, then it
must also divide n, contradicting them being co-prime, hence p divides t1 − t2. It now follows
that all prime factors of at are bounded above by k.

We note here that the exact same reasoning applies to equation (4) giving the following
equation,

ml =

k
∏

t=1

(n + tdl)ǫt (7)

for ǫt = 1 if t ∈ S and zero otherwise.
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Lemma 4. For m,n and d solutions of equation (4) with L < 0.26
√

k
log k

and k � 22, there

exists a prime 1
3k � p � 1

2k that either divides d or divides m.

Proof. We can assume that no prime p in the range [k/3, k/2] divides d, otherwise the result
follows trivially. Such a prime must divide at least two and at most three of the terms n + tdl

for t ∈ [1, k]. If p does not divide m, then there are at least 2 values of t such that ǫt = 0. We
will label these as ip and ip + p. It is then clear that p is in the set of differences of the elements
in {t1, . . . , tL}. It is easily seen that

| {ti′ − tj′ : 1 � i′ < j′ � L} |� L2 − L + 1. (8)

It is then easily seen that if

L2 − L + 1 < π(k/2) − π(k/3), (9)

then there must be such a prime p. For k < 181000, we can explicitly calculate using Magma,
the following bound

0.07 k
log(k) < π(k/2) − π(k/3). (10)

For k � 181000, we use the following bounds in [3]

x

log(x) − 1
< π(x) for x � 5393, (11)

and

π(x) <
x

log(x) − 1.1
for x � 60184. (12)

It is then simple algebraic manipulation to see that for k � 181000

0.17 k
log(k) < π(k/2) − π(k/3). (13)

It is now seen that with L < 0.26
√

k
log k

, inequality (9) is true, completing the Lemma. �

3. Fermat equation

In this section, we will attach a solution to a Fermat equation from a solution of (3) and (4).
We will then use what is known about such equations to bound the exponent l.

Lemma 5. For k � 27, assume that equation (3) has a non-trivial rational point (x, y) for

j − i− 1 = L < k/18 − 1 or L = 1, or equation (4) has a solution for L < 0.26
√

k
log k

. Then,

there exists a prime 1
3k � p � 1

2k such that there are non-zero integers a, b, c, u, v, w satisfying

aul + bvl + cwl = 0 (14)

such that

(1) a, b, c are lth power free integers;

(2) all prime factors of abc are less than or equal to k;
(3) p ∤ abc;
(4) p divides precisely one of u, v, w.

Proof. We first deal with the case of equation (3). Let p be a prime as described and assume
that p ∤ d, then p must divide m. This follows simply from the following, let j be a value in



4 SAM EDIS

[1, k] such that n + jdℓ ≡ 0 mod p. Then, if p ∤ m, it follows that j − p � 0 and j + p � k + 1,
hence p � (k + 1)/2 contradicting our assumption on p. It follows that p either divides d or
divides exactly 1, 2 or 3 factors in the Erdős–Selfridge curve.

We first deal with p | d, then it follows that p ∤ m, so p ∤ atix
ℓ
ti

. Using (6) we see that

dℓ = atx
ℓ
t − at+1x

ℓ
t+1,

choosing a t such that ǫt and ǫt+1 are non-zero that gives the desired result.
We now deal with the case that p divides exactly one factor, which we take to be n + tdl.

We consider the identity,

(n + tdl) − (n + t′dl) = (t− t′)dl,

for t′ a positive integer less than k + 1 such that |t′ − t| < p. Because L < p− 1, it follows that
there exists such a t′ such that (n + t′dl) appears on the right-hand side of (5). As p must
divide n + tdl to an lth power, applying (6), we then get an equation satisfying the Lemma,
that is,

atx
l
t − at′x

l
t′ − (t′ − t)dl = 0.

We now consider the case that p divides exactly two factors, n + tdl and n + (t + p)dl. We
consider a similar identity as before,

(n + tdl)(n + (t + p)dl) − (n + (t + α)dl)(n + (t + p− α)dl) = α(α− p)d2l,

for α a positive integer less than p.
It is clear that for distinct α and α′ � p/2, {t + α, t + p− α} ∩ {t + α′, t + p− α′} = ∅.

Hence, as L < p/2 − 1, there exists α such that both n + (t + α)dl and n + (t + p− α)dl appear
as factors in (5). Hence, the result now follows from (6) and the same finishing argument
as above.

We are left to deal with the case that p divides exactly three factors, n + tdl, n + (t + p)dl

and n + (t + 2p)dl.
We point out the following identity,

(n+ tdl)(n+ (t+ p)dl)(n+ (t+ 2p)dl) − (n+ (t+α)dl)(n+ (t+ p+α)dl)(n+ (t+ 2p− 2α)dl)

= 3α(α− p)

(

n +

(

t +
2(p + α)

3

)

dl
)

d2l, (15)

defined for α a positive integer less than p with α ≡ −p (mod 3). For α and α′ positive integers
either less than p/2, then
{

t + α, t +
2(p + α)

3
, t + p + α, t + 2p− 2α

}

∩
{

t + α′, t +
2(p + α′)

3
, t + p + α′, t + 2p− 2α′

}

= ∅.

This follows from some simple inequalities and calculations mod 3. Hence, it follows that there
are more than p

6 − 1 distinct values of α with α ≡ −p (mod 3), such that the terms in (15)
involving α do not coincide. So, we see that we have more choices of α than terms deleted,
hence at least one α will give us such an equation with all terms defined. We note that as
k � 26, there will always be a prime greater than or equal to 13 in the permitted interval,
meaning we can always take L = 1 for these values of k.

In the case of equation (4), we first apply Lemma 4, then follow the above argument
identically. �
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It is worth noting that in the third case there is also the following identity,

(n+ tdl)(n+ (t+ p)dl)(n+ (t+ 2p)dl) − (n+ (t+ 2α)dl)(n+ (t+ p− α)dl)(n+ (t+ 2p− α)dl)

= 3α(α− p)

(

n +

(

t +
4p− 2α

3

)

dl
)

d2l, (16)

defined for α a positive integer less than p with α ≡ −p (mod 3). In specific cases of a fixed
L, the use of (15) and (16) together can give specific values of α removing the need for
combinatorial arguments.

We now state a Lemma which follows from [1].

Lemma 6. If a, b, c, u, v, w are non-zero integers satisfying

aul + bvl + cwl = 0, (17)

k is a fixed integer and 1
3k � p � 1

2k is a prime such that

(1) a, b, c are lth power free integers;

(2) all prime factors of abc are less than or equal to k;

(3) p ∤ abc;
(4) p divides precisely one of u, v, w;

(5) l > k is prime.

Then, log l � (N ′+1)
6 log(

√
p + 1), where N ′ = 24Rad2(abc) and Rad2(n) denotes the product

of all primes dividing n, apart from 2.

Proof. This follows immediately from [1, p.4]. �

Remark 1. It is then a routine calculation, as in [1], using
∑

q�k
q prime

log q < 1.000081k,

from [7] and k � 26 to conclude that

log l < 3k.

Proof of Theorem 1. For k � 27, this follows immediately by applying Lemma 5, Lemma 6
and the remark above. We now finish with the case of L = 1 and k � 26. If ǫi+1 = 1, then this
follows from [1]. If however ǫi+1 = 0 and k � 26, then this is covered by [2]. �

Proof of Theorem 2. For k � 27, this follows identically to above, if k < 27, then it is clear
that L = 0 and so follows from [1]. �
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