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The (theta, wheel)-free graphs

Part II: structure theorem

Marko Radovanović∗, Nicolas Trotignon†, Kristina Vušković‡

April 28, 2019

Abstract

A hole in a graph is a chordless cycle of length at least 4. A theta
is a graph formed by three paths between the same pair of distinct ver-
tices so that the union of any two of the paths induces a hole. A wheel
is a graph formed by a hole and a node that has at least 3 neighbors
in the hole. In this paper we obtain a decomposition theorem for the
class of graphs that do not contain an induced subgraph isomorphic
to a theta or a wheel, i.e. the class of (theta, wheel)-free graphs. The
decomposition theorem uses clique cutsets and 2-joins. Clique cutsets
are vertex cutsets that work really well in decomposition based algo-
rithms, but are unfortunately not general enough to decompose more
complex hereditary graph classes. A 2-join is an edge cutset that ap-
peared in decomposition theorems of several complex classes, such as
perfect graphs, even-hole-free graphs and others. In these decompo-
sition theorems 2-joins are used together with vertex cutsets that are
more general than clique cutsets, such as star cutsets and their gener-
alizations (which are much harder to use in algorithms). This is a first
example of a decomposition theorem that uses just the combination of
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clique cutsets and 2-joins. This has several consequences. First, we can
easily transform our decomposition theorem into a complete structure
theorem for (theta, wheel)-free graphs, i.e. we show how every (theta,
wheel)-free graph can be built starting from basic graphs that can be
explicitly constructed, and gluing them together by prescribed compo-
sition operations; and all graphs built this way are (theta, wheel)-free.
Such structure theorems are very rare for hereditary graph classes, only
a few examples are known. Secondly, we obtain an O(n4m)-time de-
composition based recognition algorithm for (theta, wheel)-free graphs.
Finally, in Parts III and IV of this series, we give further applications
of our decomposition theorem.

1 Introduction

In this article, all graphs are finite and simple.
A prism is a graph made of three node-disjoint chordless paths P1 =

a1 . . . b1, P2 = a2 . . . b2, P3 = a3 . . . b3 of length at least 1, such that a1a2a3
and b1b2b3 are triangles and no edges exist between the paths except those of
the two triangles. Such a prism is also referred to as a 3PC(a1a2a3, b1b2b3)
or a 3PC(∆,∆) (3PC stands for 3-path-configuration).

A pyramid is a graph made of three chordless paths P1 = a . . . b1, P2 =
a . . . b2, P3 = a . . . b3 of length at least 1, two of which have length at least
2, node-disjoint except at a, and such that b1b2b3 is a triangle and no edges
exist between the paths except those of the triangle and the three edges
incident to a. Such a pyramid is also referred to as a 3PC(b1b2b3, a) or a
3PC(∆, ·).

A theta is a graph made of three internally node-disjoint chordless paths
P1 = a . . . b, P2 = a . . . b, P3 = a . . . b of length at least 2 and such that no
edges exist between the paths except the three edges incident to a and the
three edges incident to b. Such a theta is also referred to as a 3PC(a, b) or
a 3PC(·, ·).

A hole in a graph is a chordless cycle of length at least 4. A wheel
W = (H, c) is a graph formed by a hole H (called the rim) together with a
node c (called the center) that has at least three neighbors in the hole.

A 3-path-configuration is a graph isomorphic to a prism, a pyramid or
a theta. Observe that the lengths of the paths in the definitions of 3-path-
configurations are designed so that the union of any two of the paths induce a
hole. A Truemper configuration is a graph isomorphic to a prism, a pyramid,
a theta or a wheel (see Figure 1). Observe that every Truemper configuration
contains a hole.
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Figure 1: Pyramid, prism, theta and wheel (dashed lines represent paths)

IfG andH are graphs, we say thatG contains H whenH is isomorphic to
an induced subgraph of G. We say that G is H-free if it does not contain H.
We extend this to classes of graphs with the obvious meaning (for instance,
a graph is (theta, wheel)-free if it does not contain a theta and does not
contain a wheel).

In this paper we prove a decomposition theorem for (theta, wheel)-free
graphs, from which we obtain a full structure theorem and a polynomial
time recognition algorithm. This is part of a series of papers that system-
atically study the structure of graphs where some Truemper configurations
are excluded. This project is motivated and explained in more details in the
first paper of the series [7]. In Parts III and IV of the series (see [11, 12])
we give several applications of the structure theorem.

The main result and the outline of the paper

A graph is chordless if all its cycles are chordless. By the following decom-
position theorem proved in [7], to prove a decomposition theorem for (theta,
wheel)-free graphs, it suffices to focus on graphs that contain a pyramid.

Theorem 1.1 ([7]) If G is (theta, wheel, pyramid)-free, then G is a line
graph of a triangle-free chordless graph or it has a clique cutset.

In Section 2, we define a generalization of pyramids that we call P-
graphs. The full definition is complex, but essentially, a P-graph is a graph
that can be vertexwise partitioned into the line graph of a triangle-free
chordless graph and a clique. Clearly, if a (theta, wheel)-free graph contains
a pyramid, then it contains a P-graph. We consider such a maximal P-
graph and prove that the rest of the graph attaches to it in a special way
that entails a decomposition.

The decompositions that we use are the clique cutset and the 2-join (to
be defined soon). Our main theorem is the following.
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Theorem 1.2 If G is (theta, wheel)-free, then G is a line graph of a
triangle-free chordless graph or a P-graph, or G has a clique cutset or a
2-join.

Clique cutsets are vertex cutsets that work really well in decomposition
based algorithms, but are unfortunately not general enough to decompose
more complex hereditary graph classes. A 2-join is an edge cutset that ap-
peared in decomposition theorems of several complex classes, such as perfect
graphs [3], even-hole-free graphs [6, 13] and others. In these decomposition
theorems 2-joins are used together with vertex cutsets that are more general
than clique cutsets, such as star cutsets and their generalizations (which are
much harder to use in algorithms). This is the first example of a decompo-
sition theorem that uses just the combination of clique cutsets and 2-joins.
This has several consequences. First, we can easily transform our decom-
position theorem into a complete structure theorem for (theta, wheel)-free
graphs, i.e. we show how every (theta, wheel)-free graph can be built start-
ing from basic graphs that can be explicitly constructed, and gluing them
together by prescribed composition operations; and all graphs built this way
are (theta, wheel)-free. Such structure theorems are very rare for hereditary
graph classes, only a few examples are known, such as chordal graphs [8],
universally-signable graphs [5], graphs that do not contain a cycle with a
unique chord [14], claw-free graphs [4] and bull-free graphs [2] (for a survey
see [15]).

The second consequence is the following theorem, and the remaining
consequences are given in [11].

Theorem 1.3 There exists an O(n4m)-time algorithm that decides whether
an input graph G is (theta, wheel)-free.

In Section 2, we give all the definitions needed in the statement of The-
orem 1.2. In particular, we define P-graphs and 2-joins. In Section 3, we
study skeletons (the skeleton is the root-graph of the line graph part of a P-
graph). In Section 4, we study the properties of P-graphs. In Section 5, we
study attachments to P-graphs in (theta, wheel)-free graphs. In Section 6,
we prove Theorem 1.2. In Section 7, we prove Theorem 1.3 and describe
how a structure theorem is derived from our decomposition theorem.

Terminology and notations

A clique in a graph is a (possibly empty) set of pairwise adjacent vertices.
We say that a clique is big if it is of size at least 3. A clique of size 3 is
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also referred to as a triangle, and is denoted by ∆. A diamond is a graph
obtained from a clique of size 4 by deleting an edge. A claw is a graph
induced by nodes u, v1, v2, v3 and edges uv1, uv2, uv3.

A path P is a sequence of distinct vertices p1p2 . . . pk, k ≥ 1, such that
pipi+1 is an edge for all 1 ≤ i < k. Edges pipi+1, for 1 ≤ i < k, are called the
edges of P . Vertices p1 and pk are the ends of P . A cycle C is a sequence
of vertices p1p2 . . . pkp1, k ≥ 3, such that p1 . . . pk is a path and p1pk is an
edge. Edges pipi+1, for 1 ≤ i < k, and edge p1pk are called the edges of C.
Let Q be a path or a cycle. The vertex set of Q is denoted by V (Q). The
length of Q is the number of its edges. An edge e = uv is a chord of Q if
u, v ∈ V (Q), but uv is not an edge of Q. A path or a cycle Q in a graph G

is chordless if no edge of G is a chord of Q.
Let A and B be two disjoint node sets such that no node of A is adjacent

to a node of B. A path P = p1 . . . pk connects A and B if either k = 1 and
p1 has neighbors in both A and B, or k > 1 and one of the two endnodes of
P is adjacent to at least one node in A and the other endnode is adjacent to
at least one node in B. The path P is a direct connection between A and B

if in G[V (P ) ∪ A ∪B] no path connecting A and B is shorter than P . The
direct connection P is said to be from A to B if p1 is adjacent to a node of
A and pk is adjacent to a node of B.

Let G be a graph. For x ∈ V (G), N(x) is the set of all neighbors of
x in G, and N [x] = N(x) ∪ {x}. Let H and C be vertex-disjoint induced
subgraphs of G. The attachment of C over H, denoted by NH(C), is the set
of all vertices of H that have at least one neighbor in C. When C consists of
a single vertex x, we denote the attachment of C over H by NH(x), and we
say that it is an attachment of x over H. Note that NH(x) = N(x)∩V (H).
For S ⊆ V (G), G[S] denotes the subgraph of G induced by S.

When clear from the context, we will sometimes write G instead of V (G).

2 Statement of the decomposition theorem

We start by defining the cutsets used in the decomposition theorem. In a
graph G, a subset S of nodes and edges is a cutset if its removal yields a
disconnected graph. A node cutset S is a clique cutset if S is a clique. Note
that every disconnected graph has a clique cutset: the empty set.

For a graph G and disjoint sets A,B ⊆ V (G), we say that a node cutset
S of G separates A and B if S ⊆ V (G) \ (A ∪ B) and no vertex of A is in
the same connected component of G \ S as some vertex of B.

An almost 2-join in a graph G is a pair (X1, X2) that is a partition of
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V (G), and such that:

• For i = 1, 2, Xi contains disjoint nonempty sets Ai and Bi, such that
every node of A1 is adjacent to every node of A2, every node of B1

is adjacent to every node of B2, and there are no other adjacencies
between X1 and X2.

• For i = 1, 2, |Xi| ≥ 3.

An almost 2-join (X1, X2) is a 2-join when for i ∈ {1, 2}, Xi contains
at least one path from Ai to Bi, and if |Ai| = |Bi| = 1 then G[Xi] is not a
chordless path.

We say that (X1, X2, A1, A2, B1, B2) is a split of this 2-join, and the sets
A1, A2, B1, B2 are the special sets of this 2-join.

A star cutset in a graph is a node cutset S that contains a node (called a
center) adjacent to all other nodes of S. Note that a nonempty clique cutset
is a star cutset.

Lemma 2.1 ([7]) If G is a (theta, wheel)-free graph that has a star cutset,
then G has a clique cutset.

We now define the basic graphs. A graph G is chordless if no cycle of G
has a chord, and it is sparse if for every edge e = uv, at least one of u or v
has degree at most 2. Clearly all sparse graphs are chordless.

An edge of a graph is pendant if at least one of its endnodes has degree 1.
A branch vertex in a graph is a vertex of degree at least 3. A branch in a
graph G is a path of length at least 1 whose internal vertices are of degree 2
in G and whose endnodes are both branch vertices. A limb in a graph G is
a path of length at least 1 whose internal vertices are of degree 2 in G and
whose one endnode has degree at least 3 and the other one has degree 1.
Two distinct branches are parallel if they have the same endnodes. Two
distinct limbs are parallel if they share the same vertex of degree at least 3.

Cut vertices of a graph R that are also branch vertices are called the
attaching vertices of R. Let x be an attaching vertex of a graph R, and let
C1, . . . , Ct be the connected components of R \ x that together with x are
not limbs of R (possibly, t = 0, when all connected components of R \ x

together with x are limbs). If x is the end of at least two parallel limbs of
R, let Ct+1 be the subgraph of R formed by all the limbs of R with endnode
x. The graphs R[V (Ci)∪ {x}] (for i = 1, . . . , t, if t 6= 0) and the graph Ct+1

(if it exists) are the x-petals of R.
For any integer k ≥ 1, a k-skeleton is a graph R such that (see Figures

2, 3 and 4 for examples of k-skeletons for k = 1, 2, 5):
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(i) R is connected, triangle-free, chordless and contains at least three
pendant edges (in particular, R is not a path).

(ii) R has no parallel branches (but it may contains parallel limbs).

(iii) For every cut vertex u of R, every component of R \ u has a vertex of
degree 1 in R.

(iv) For every vertex cutset S = {a, b} of R and for every component C of
R \ S, either R[C ∪ S] is a chordless path from a to b, or C contains
at least one vertex of degree 1 in R.

(v) For every edge e of a cycle of R, at least one of the endnodes of e is of
degree 2 in R.

(vi) Each pendant edge of R is given one label, that is an integer from
{1, . . . , k}.

(vii) Each label from {1, . . . , k} is given at least once (as a label), and some
label is used at least twice.

(viii) If some pendant edge whose one endnode is of degree at least 3 receives
label i, then no other pendant edge receives label i.

(ix) If R has no branches then k = 1, and otherwise if two limbs of R are
parallel, then their pendant edges receive different labels and at least
one of these labels is used more than once.

(x) If k > 1 then for every attaching vertex x and for every x-petal H of
R, there are at least two distinct labels that are used in H. Moreover,
if H ′ is a union of at least one but not all x-petals, then there is a
label i such that both H ′ and (R \H ′)∪ {x} have pendant edges with
label i.

(xi) If k = 2, then both labels are used at least twice.

Note that if R is a k-skeleton, then it edgewise partitions into its branches
and its limbs. To prove this, let e be an edge of R and P = u . . . v, where
deg(u) ≥ deg(v), the maximal path of R that contains e and whose internal
vertices are of degree 2. If deg(u) = deg(v) = 1, then R is the chordless
path induced by V (P ), which contradicts (i). If deg(v) = 2, then, by the
maximality of P , uv is an edge of R. Now, if deg(u) = 2, then R is the
chordless cycle induced by V (P ), which contradicts (i); if deg(u) ≥ 3, then
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u is a cut vertex of R that contradicts (iii). So, deg(u), deg(v) ≥ 3 and P is
a branch of R, or deg(u) ≥ 2 and deg(v) = 1 in which case deg(u) ≥ 3 (by
the maximality of P ) and P is a limb of R.

Also, there is a trivial one-to-one correspondence between the pendant
edges of R and the limbs of R: any pendant edge belongs to a unique limb,
and conversely any limb contains a unique pendant edge.

If R is a graph, then the line graph of R, denoted by L(R), is the graph
whose nodes are the edges of R and such that two nodes of L(R) are adjacent
in L(R) if and only if the corresponding edges are adjacent in R.

A P-graph is any graph B that can be constructed as follows (see Figures
2, 3 and 4 for examples of P-graphs):

• Pick an integer k ≥ 1 and a k-skeleton R.

• Build L(R), the line graph of R. The vertices of L(R) that correspond
to pendant edges of R are called pendant vertices of L(R), and they
receive the same label as their corresponding pendant edges in R.

• Build a clique K with vertex set {v1, . . . , vk}, disjoint from L(R).

• B is now constructed from L(R) and K by adding edges between vi
and all pendant vertices of L(R) that have label i, for i = 1, . . . , k.

We say that K is the special clique of B and R is the skeleton of B.
The next lemma, that is proved in Part I, allows us to focus on (theta,

wheel, diamond)-free graphs in the remainder of the paper.

Lemma 2.2 ([7]) If G is a wheel-free graph that contains a diamond, then
G has a clique cutset.

Observe that P-graphs are generalizations of pyramids (this is why we
call them P-graphs). Let us explain this. A pyramid is long if all of its paths
are of length greater than 1. Note that in a wheel-free graph all pyramids are
long. Every long pyramid Π = 3PC(x1x2x3, y) is a P-graph, where K = {y}
and R is a tree that is obtained from a claw by subdividing each edge at
least once and giving all pendant edges label 1 (see Figure 2). It can be
checked that a pyramid whose one path is of length 1 (and that is therefore
a wheel) is not a P-graph. This is a consequence of Lemma 4.2 to be proved
soon, but let us sketch a direct proof: the apex of the pyramid is the center
of a claw, so it must be in the special clique, which therefore has size 1 or
2. It follows that the skeleton must contain two pendant edges with the
same label, and one of them contains a vertex of degree 3, a contradiction
to condition (viii).
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Figure 2: A 1-skeleton, its line graph and the corresponding P-graph.
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2 2

1

1 1
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K

Figure 3: A 2-skeleton, its line graph and the corresponding P-graph.

Lemma 2.3 A long pyramid is a P-graph.

In fact, every P-graph contains a long pyramid. Formally we do not need
this simple fact, we therefore just sketch the proof: consider three pendant
edges of the skeleton for which at most two labels are used (this exists by (i)
and (vii)). Consider a minimal connected subgraph T of R that contains
these three edges. It is easy to check that T is a tree with three pendant
edges and a unique vertex v of degree 3, and that adding to its line graph
the vertices of K corresponding to at most two labels yields a long pyramid.
To check that the pyramid is long condition (viii) is used, to check that two
paths of T linking v to pendant edges with the same label have length at
least 2.
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Figure 4: A 5-skeleton, its line graph and the corresponding P-graph (black
vertices are the vertices of the special clique of this P-graph; edges between
them are not drawn). An internal (resp. claw, clique) segment of this P-
graph is represented by a bold (resp. dashed, dotted) line.
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3 Connectivity of skeletons

In the following theorem we state versions of Menger’s theorem that we use
in this paper.

Theorem 3.1 Let G be a graph.

(i) Let u and v be non-adjacent vertices of G. Then the maximum number
of internally vertex-disjoint paths from u to v is equal to the minimum
size of a cutset S of G that separates {u} and {v}.

(ii) Let A and B be disjoint subsets of V (G). Then the maximum number
of vertex-disjoint paths with one endnode in A and the other in B is
equal to the minimum size of a cutset S of G that separates A and B.

(iii) Let u ∈ V (G) and B ⊆ V (G) \ {u}. Then the maximum number of
paths from u to B that are vertex-disjoint except at u is equal to the
minimum size of a cutset S of G that separates {u} and B.

Additionally, we will often use the following variant of Menger’s theorem,
which is due to Perfect [10].

Let G be a graph, x ∈ V (G) and Y ⊆ V (G) \ {x}. A set of k paths
P1, P2, . . . , Pk of G is a k-fan from x to Y if V (Pi) ∩ V (Pj) = {x}, for
1 ≤ i < j ≤ k, and |V (Pi) ∩ Y | = 1, for 1 ≤ i ≤ k. A fan from x to Y is a
|Y |-fan from x to Y .

Lemma 3.2 ([1, 10]) Let G be a graph, x ∈ V (G) and Y, Z ⊆ V (G) \ {x}
such that |Y | < |Z|. If there are fans from x to Y and from x to Z, then
there is a fan from x to Y ∪ {z}, for some z ∈ Z \ Y .

For distinct vertices v1, v2, . . . , vk of G, and pairwise disjoint and
non-empty subsets W1,W2, . . . ,Wk of V (G) \ {v1, v2, . . . , vk}, we say
that k vertex-disjoint paths P1, P2, . . . , Pk are from {v1, v2, . . . , vk} to
{W1,W2, . . . ,Wk} if for some permutation σ ∈ Sk, Pi∩{v1, v2, . . . , vk} = {vi}
and Pi ∩ (W1 ∪W2 ∪ . . . ∪Wk) is a vertex of Wσ(i), for 1 ≤ i ≤ k.

Lemma 3.3 Let G be a connected graph, v1, v2, . . . , vk distinct vertices of
G and W1,W2, . . . ,Wk pairwise disjoint and non-empty subsets of V (G) \
{v1, v2, . . . , vk}, such that all vertices of W1 are of degree 1. The following
holds:

(1) if k = 2, and all vertices of W2 are of degree 1 or W2 = {w2}, then
there exist 2 vertex-disjoint paths from {v1, v2} to {W1,W2}, or a ver-
tex u that separates {v1, v2} from W1 ∪W2;
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(2) if k = 3, W2 = {w2}, W3 = {w3} and there exist 2 vertex-disjoint paths
from {v2, v3} to {w2, w3}, then there exist 3 vertex-disjoint paths from
{v1, v2, v3} to {W1, {w2}, {w3}}, or there exist vertices u1 and u2 such
that {u1, u2} separates {v1, v2, v3} from W1 ∪ {w2, w3}.

proof — Let G′ be the graph obtained from G by adding a vertex v

(v 6∈ V (G)) and edges vvi, for 1 ≤ i ≤ k.

(1) By Menger’s theorem, there is a vertex u that separates {v1, v2} from
W1 ∪W2, or two vertex-disjoint paths from {v1, v2} to W1 ∪W2. If the first
outcome holds, then we are done, so we may assume that there are vertex-
disjoint paths P1 and P2 from {v1, v2} to W1 ∪ W2. If both W1 and W2

contain an endnode of P1 and P2, then we are again done. So we assume
that both P1 and P2 have an endnode in w.l.o.g. W1, and let these endnodes
be v′1 and v′2. This means that in G′ there is a fan from v to {v′1, v

′
2}. Since

G′ is connected, there is a fan from v to some v′′ ∈ W2, and therefore, by
Lemma 3.2, there is a fan from v to {v′, v′′}, for some v′ ∈ {v′1, v

′
2}. This

completes the proof of (1).

(2) By Menger’s theorem, there are vertices u1 and u2 that separate
{v1, v2, v3} from W1 ∪ {w2, w3}, or three vertex-disjoint paths such that
each of them has one endnode in {v1, v2, v3} and the other in W1∪{w2, w3}.
If the first outcome holds, then we are done, so we may assume that there
are vertex-disjoint paths P1, P2, P3 such that each of them has one endnode
in {v1, v2, v3} and the other in W1 ∪ {w2, w3}. Let the endnodes of paths
P1, P2, P3 that are in W1∪{w2, w3} be v′1, v

′
2, v

′
3. This means that in G′ there

is a fan from v to {v′1, v
′
2, v

′
3}. By the conditions of the lemma, there is also a

fan from v to {w2, w3}, and therefore, by Lemma 3.2, there is a fan from v to
{w,w2, w3}, for some w ∈ {v′1, v

′
2, v

′
3}\{w2, w3}. Since {v

′
1, v

′
2, v

′
3}\{w2, w3}

is a subset of W1, this completes our proof. 2

Recall a standard notion: a block of a graph is an induced subgraph
that is connected, has no cut vertices and is maximal with respect to these
properties. Recall that every block of a graph is either 2-connected, or is a
single edge. Recall that cut vertices of a graph R that are of degree at least
3 are called the attaching vertices of R.

Lemma 3.4 Let R be a k-skeleton. If C is a 2-connected block of R, then
no two vertices of C that are of degree at least 3 in R are adjacent. In
particular, every 2-connected block of R is sparse, no two adjacent vertices
of every cycle of R have degree at least 3, and if an edge of R is between two
vertices of degree at least 3, then it is a cutedge of R.
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proof — This is equivalent to condition (v) in the definition of a P-graph,
since an edge of R belongs to a cycle if and only if it belongs to a 2-connected
block of R. 2

Lemma 3.5 Let R be a k-skeleton. If e1 and e2 are edges of R, then there
exists a cycle of R that goes through e1 and e2, or there exists a path in R

whose endnodes are of degree 1 (in R) and that goes through e1 and e2.

proof — We set e1 = u1v1 and e2 = u2v2. We apply Menger’s theorem
to {u1, v1} and {u2, v2} (or their one-element subsets if these sets are not
disjoint). If the outcome is a pair of vertex-disjoint paths, then we obtain
the cycle whose existence is claimed. We may therefore assume that the
outcome is a cut vertex x that separates e1 from e2. Hence, R is vertex-wise
partitioned into X1, {x} and X2, in such a way that {u1, v1} ⊆ X1 ∪ {x}
and {u2, v2} ⊆ X2 ∪ {x} and there are no edges between X1 and X2. We
now show that R[X1 ∪ {x}] contains a path from a vertex of degree 1 in R

to x that contains e1. Since R is connected this is clearly true if an endnode
of e1 has degree 1 in R. So we may assume that both endnodes of e1 are of
degree greater than 1 in R. Let Y1 be the set of all vertices in X1 that have
degree 1 in R. Note that Y1 6= ∅ by (iii) of the definition of the skeleton.
Suppose u1 = x. By (iii) of the definition of the skeleton, there exists a path
in R[X1] from a vertex of degree 1 to v1, and this path can be extended to
a desired path by adding the edge v1u1. Therefore, by symmetry, we may
assume that x 6∈ {u1, v1}. In R[X1 ∪ {x}], we apply Lemma 3.3 to {u1, v1}
and {Y1, x}. If we obtain a cut vertex y that separates {u1, v1} from {x}∪Y1,
then y is cut vertex of R (separating e1 from Y1∪X2) and the component of
R \ y that contains e1 contradicts (iii). Hence, we obtain two vertex-disjoint
paths, whose union yields a path P1 that contains e1 from a vertex of degree
1 (in R) to x. A similar path P2 exists in R[X2 ∪{x}]. The union of P1 and
P2 yields the path whose existence is claimed. 2

Lemma 3.6 Let R be a k-skeleton. Every 2-connected induced subgraph
D of R has at least 3 distinct vertices that have neighbors outside D. In
particular, every 2-connected block of R has at least 3 attaching vertices.

proof — Let D be a 2-connected induced subgraph of R. Let u1 be a
degree 1 vertex of R (it exists by (i)). Since R is connected, there is a path
P1 = u1 . . . v1, where v1 is the unique vertex of P1 in D. In particular, v1 is
a vertex of D with a neighbor outside of D.
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If v1 is not a cut vertex of R that separates P1 \ v1 from D \ v1, then
there is a path P2 = u1 . . . v2, where v2 is the unique vertex of P2 in D.
Otherwise, by (iii), the component C of R \ v1 that contains D \ v1 has a
vertex u2 of degree 1 in R, and a path P2 = u2 . . . v2, where v2 is the unique
vertex of P2 from D. So in both cases we get a vertex v2 distinct from v1
such that both v1 and v2 have neighbors outside D. Since D is 2-connected,
v1 and v2 are contained in a cycle of D, so by (v), v1v2 is not an edge of R.

Suppose that {v1, v2} is not a cutset of R that separates (P1∪P2)\{v1, v2}
from a vertex of D. Then there is a path P3 = u3 . . . v3 in R\{v1, v2}, where
u3 is a vertex of (P1 ∪ P2) \ {v1, v2} and v3 is the unique vertex of D in P3,
and hence v1, v2, v3 are the desired three vertices.

So we may assume that {v1, v2} is a cutset of R that separates (P1∪P2)\
{v1, v2} from a vertex of D. By (ii) there is a component C ′ of R \ {v1, v2}
such that C ′ ∩D 6= ∅ and R[C ′ ∪ {v1, v2}] is not a chordless path. By (iv),
C ′ contains a vertex u3 of degree 1 in R, and a path P3 = u3 . . . v3, where
v3 is the unique vertex of P3 in D. Hence v1, v2, v3 are the desired three
vertices.

Finally, observe that if D is a block then each of v1, v2, v3 is a cut vertex
of R, and hence D has at least three attaching vertices. 2

Lemma 3.7 Let R be a k-skeleton. Let x1 and x2 be branch vertices of
R (not necessarily distinct). Then, there are two paths P1 = x1 . . . y1 and
P2 = x2 . . . y2, vertex-disjoint (except at x1 if x1 = x2) such that y1 and y2
both have degree 1 and are incident with edges with the same label.

proof — First suppose that there exists a label i that is used at least twice
in R, and such that there does not exist a vertex x and two setsX,Y ⊂ V (R)
such that X,Y, {x} form a partition of V (R), x1, x2 ∈ X ∪ {x}, all degree
1 vertices from edges with label i are in Y , and there are no edges between
X and Y . Then, by Menger’s theorem there exist two vertex-disjoint paths
(except at x1 if x1 = x2) between {x1, x2} and the set of all degree 1 vertices
from edges with label i.

So, suppose that in R, for every label i that is used at least twice in
R, there exists a vertex x and two sets X,Y ⊆ V (R) such that X,Y, {x}
form a partition of V (R), x1, x2 ∈ X ∪ {x}, all degree 1 vertices from edges
with label i are in Y , and there are no edges between X and Y . We then
choose i, x, X and Y subject to the minimality of X. We claim that x is an
attaching vertex of R. If x ∈ {x1, x2}, it is true by assumption. Otherwise,
if x has a unique neighbor x′ in X, then x′ is a cut vertex that contradicts
the minimality of X (it separates X \ {x′} from Y ∪ {x}). Hence, x has at
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least two neighbors in X, and at least one in Y , so it is indeed an attaching
vertex.

Suppose that X∪{x} contains a limb of R ending at x. This limb cannot
have x1 or x2 as its internal vertex, so we can move it to Y which contradicts
the minimality of X. It follows that X ∪{x} is an x-petal, or is the union of
two x-petals X1 (that contains x1) and X2 (that contains x2). In this last
case, by (x), there exists a label j that is used in both X1 and R \X1. So,
there exists a path from x1 to an edge with label j in X1 \ {x} and a path
in R\X1 from x2 to an edge with label j, and the conclusion follows. When
X ∪ {x} is an x-petal, we note that there exists another x-petal included in
Y ∪ {x}, because Y ∪ {x} cannot be a single limb since a label is used twice
in Y . Hence, by (x), there exists a label j that is used in both X and Y .
Let Z be the set of degree 1 vertices from X which are the degree 1 ends of
edges with label j.

First suppose that x = x1. Since R[Y ∪ {x}] is connected, it contains
a path from x to a vertex incident to an edge labeled j. If x2 = x then
similarly R[X ∪{x}] contains a path from x to a vertex in Z, and the result
holds. So we may assume that x2 ∈ X. By connectivity of X there exists a
path in R[X] from x2 to a vertex of Z, and the result holds. Therefore, by
symmetry, we may assume that x 6∈ {x1, x2}. Now suppose that x1 = x2. If
there are two paths from x1 to Z ∪ {x}, then the result holds (by possibly
extending one of the paths from x, through Y , to a vertex incident to an
edge labeled j). Otherwise, by Menger’s theorem there is a cut vertex that
contradicts the minimality of X. Therefore we may assume that x1 6= x2.

We now apply Lemma 3.3 to {x1, x2} and {Z, x}. If the conclusion is
two disjoint paths, we are done (by extending the path ending in x to an
edge with label j in Y ). And if the outcome is a cut vertex x′ that separates
{x1, x2} from {x} ∪Z, then we define X ′ as the union of the components of
R \ {x′} that contain x1 and x2. This contradicts the minimality of X. 2

Lemma 3.8 Let R be a k-skeleton. Let P = x1 . . . x2 be a branch of R and
x′1 a neighbor of x1 not in P . Then there are three paths P1 = x1 . . . y1,
P ′
1 = x1x

′
1 . . . y

′
1 and P2 = x2 . . . y2, vertex-disjoint except P1 and P ′

1 sharing
x1, and such that y1, y

′
1 and y2 are degree 1 vertices incident with edges with

at most two different labels.

proof — By Lemma 3.7, there are vertices y1 and y2 of degree 1 incident
with edges with the same label, such that there exist vertex-disjoint paths
from {x1, x2} to {y1, y2}. We define X as the set of all vertices of degree
1 in R, except y1 and y2. Note that X 6= ∅ by (i). We apply Lemma 3.3
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to {x′1, x1, x2} and {X, y1, y2}. If the output is three vertex-disjoint paths,
then the conclusion of the lemma holds (x1 needs to be added to the path
that starts at x′1). Otherwise, there exists a cutset {a, b} that separates
{x′1, x1, x2} from {y1, y2} ∪X. This contradicts (iv). 2

4 Properties of P-graphs

For a P-graph B with special clique K and skeleton R, we use the following
additional terminology. The cliques of L(R) of size at least 3 are called the
big cliques of L(R). Note that they correspond to sets of edges in R that are
incident to a vertex of degree at least 3. We denote by K the set that consists
of K and all big cliques of L(R). Remove from B the edges of cliques in K.
What remains are vertex-disjoint paths, except possibly those that meet at
a vertex of K. These paths are segments of B; moreover, a segment is an
internal segment if its endnodes belong to big cliques of L(R), and otherwise
it is a leaf segment. If S is a leaf segment and u ∈ K is an endnode of S,
we say that S is a claw segment if S is not the only segment with endnode
u; otherwise we say that S is a clique segment. Observe that it is possible
that a segment is of length 0, but then it must be an internal segment. Two
segments S1 = s1 . . . t1 and S2 = s2 . . . t2 are parallel if s1, t1, s2, t2 are all
distinct nodes and for some K1 ∈ K \ {K}, s1, s2 ∈ K1 and t1, t2 ∈ K.
Note also that every two cliques of B meet in at most one vertex (since R

is triangle-free).

Lemma 4.1 Let B be a graph that satisfies all the conditions of being a P-
graph except that its skeleton fails to satisfies (v) or (viii). Then B contains
a wheel.

proof — Let R be the skeleton of B, and K its special clique.
Case 1: when R fails to satisfy (v). Suppose that in R there exists an edge
e = xy contained in a cycle C such that x and y are both of degree at least
3. If in R\e, there are two internally vertex-disjoint paths from x to y, then
R contains a cycle with a chord (namely e). So in L(R), e is a vertex that is
the center of a wheel. Hence, by Menger’s theorem, we may assume that in
R \ e, there is a cut vertex u that separates x from y (note that u is on C).
Let X (resp. Y ) be the connected component of R \ {e, u} that contains x

(resp. y). We claim that in R[X ∪{u}] there exists a path Px = x′′ . . . x . . . u

such that x′′ has degree 1 in R.
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If x is a cut vertex of R, Px can be constructed as the union of a path
from x to u going through the component of R \ x that contains u, and a
path from a vertex x′′ of degree 1 (that exists by (iii)) to x going through
another component. So, we assume that x is not a cut vertex of R. Hence,
from here on, we assume that R \ x is connected.

We observe that {x, u} is a cutset of R, which separates y from each
neighbor of x distinct from y. We define u′ as the vertex of C \ e closest to
x along C \ e such that {x, u′} is a cutset of R that separates y from each
neighbor of x distinct from y. Let x′ be a neighbor of x not in C (this exists
since x has degree at least 3 by assumption). Since x is not a cut vertex of R,
u′ 6= x. Let X ′ be the connected component of R \ {x, u′} that contains x′.
Suppose xu′ ∈ E(R). Since R \ x is connected there is a path P from x′ to
u′ in X ′ ∪{u′}. Together with C this provides a cycle with a chord (namely
xu′), which yields a wheel in B. So, xu′ 6∈ E(R). Let Xc be the connected
component of R\{x, u′} that contains the vertices from C\e that are between
x and u′ (possibly, X ′ = Xc). Note that the vertices of C\e that are between
u′ and u are in the same connected component of R\{x, u′} as y, so none of
them is in X ′ ∪Xc. In R[X ′ ∪Xc ∪ {x, u′}] there are two internally vertex-
disjoint paths Q1 and Q2 from x to u′, for otherwise, by Menger’s theorem, a
vertex u′′ from C separates them, and {x, u′′} is a cutset that contradicts u′

being closest to x ({x, u′′} also separates y from each neighbor of x distinct
from y). Note that X ′ ∪ {u′, x} or Xc ∪ {u′, x} is not a chordless path,
since otherwise they induce parallel branches contradicting (ii). Therefore,
by (iv) one of them contains a vertex x′′ of degree 1. So, there exists a cycle
C ′ (made of Q1 and Q2) in R[X ′ ∪ Xc ∪ {x, u′}], and a minimal path in
R[X ′ ∪ Xc] from x′′ to a vertex in C ′. This proves that a path visiting in
order x′′, x and u′ exists. We build Px by extending this path to u along
C \ e.

We can build a similar path Py. In B, the paths Px and Py can be
completed to a wheel via K (e is the center of this wheel).
Case 2: when R fails to satisfy (viii). Suppose for a contradiction that
some edge xx′ of R has label 1, where x has degree at least 3 and x′ degree
1. Suppose moreover that another edge of R, say yy′ where y′ has degree 1,
also receives label 1. Let Z be set of all degree 1 vertices of R, except x′ and
y′. We claim that in R, there exist two vertex-disjoint paths Py = x′′ . . . y′

and Pz = x′′′ . . . z, where z ∈ Z and x′′, x′′′ are some neighbors of x different
from x′. For otherwise, by Lemma 3.3, there exists a cut vertex u in R that
separates {x′′, x′′′} from Z∪{y′}. Then {u, x′} is a cutset of R such that the
connected component C of R \ {u, x′} that contains x fails to satisfy (iv).
Additionally, we may assume that Py (resp. Pz) does not contain x, since

17



otherwise instead of Py (resp. Pz) we can take the subpath of Py (resp. Pz)
from a neighbor of x (on this path) to y′ (resp. z). Now, in B, the two paths
Py and Pz together with x and vertices from K yield a hole, that is the rim
of a wheel centered at the vertex xx′ of L(R). 2

Lemma 4.2 Every P-graph is (theta, wheel, diamond)-free.

proof — Let B be a P-graph with skeleton R and special clique K. By
construction of B, none of the vertices of L(R) can be centres of claws
in B. So all centres of claws of B are contained in K and are therefore
pairwise adjacent. It follows that B is theta-free. Since R is triangle-free
and pendant vertices of L(R) have unique neighbors in K, and by (viii), B
is diamond-free.

Suppose that B contains a wheel (H,x). If x ∈ K then some neighbor
x1 of x in H does not belong to K, and hence is a pendant vertex of L(R).
It follows that the neighborhood of x1 in L(R) is a clique and that x1 has a
unique neighbor in K. But this contradicts the assumption that x1 belongs
to the hole H of B \ x. Therefore, x 6∈ K.

Since x is a vertex of L(R), it cannot be a center of a claw in B. Since
B is diamond-free, x has neighbors x1, x2, x3 in H, where x2x3 is an edge
and x1x2 and x1x3 are not. Let x′1 and x′′1 be the neighbors of x1 in H.
Note that x has no neighbor in H \ {x1, x

′
1, x

′′
1, x2, x3} and it is adjacent to

at most one vertex of {x′1, x
′′
1}.

Suppose x1 ∈ K. Then w.l.o.g. x′1 6∈ K. But then x′1 and x are pendant
vertices of L(R) that have the same labels. Since {x, x2, x3} induce a triangle
in L(R), x corresponds to a pendant edge of R whose one endnode is of
degree at least 3, contradicting (viii). Therefore x1 6∈ K, and hence it
cannot be a center of a claw. Without loss of generality it follows that the
neighbors of x in H are x′1, x1, x2, x3 and none of them is in K. In particular,
x is not a pendant vertex of L(R).

Let ex be the edge of R that corresponds to vertex x of L(R). Note that
the endnodes of ex are of degree at least 3 in R. So by (v), ex cannot be
contained in a 2-connected block of R. It follows that x is a cut vertex of
L(R). Let C1 and C2 be connected components of L(R) \ x. Then w.l.o.g.
x′1, x1 ∈ C1 and x2, x3 ∈ C2, and every path in B\x from {x′1, x1} to {x2, x3}
must go through K. It follows that H must have a chord, a contradiction.2

Lemma 4.3 If B is a P-graph with special clique K = {v1, . . . , vk} and v

a vertex of an internal segment of B, then there exists a hole H in B that
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contains v, some vertex vi ∈ K and two neighbors of vi in B \K.

proof — We view v as an edge of the skeleton R of B. The edge v belongs
to a branch of R with ends x1 and x2. Let P1 = x1 . . . y1 and P2 = x2 . . . y2
be the two paths whose existence is proved in Lemma 3.7 applied to x1
and x2. Let i be the label of edges incident to y1 and y2. The hole whose
existence is claimed is induced by vi and the line graph of the union of P1,
P2, and the branch of R from x1 to x2. 2

Lemma 4.4 Let B be a P-graph with special clique K = {v1, . . . , vk}. Let
K1,K2,K3 ∈ K \ {K} be three distinct big cliques. Then there exist three
paths P1 = v . . . u1, P2 = v . . . u2 and P3 = v . . . u3, vertex-disjoint except
at v, with no edges between them (except at v), such that v ∈ K and for
i ∈ {1, 2, 3}, Ki ∩ Pi = {ui}.

proof — Each of the cliques K1,K2 and K3 is a set of edges from R that
share a common vertex. This defines three branch vertices x1, x2 and x3 in
R. By Lemma 3.7 there are vertex-disjoint paths from {x1, x2} to {y1, y2},
where y1 and y2 are two vertices of R incident with edges that have the same
label say 1. We denote by X the set of all the vertices of degree 1 from R

different from y1 and y2 (X is not empty by (i)). We now apply Lemma
3.3 to {x1, x2, x3} and {X, y1, y2}. If three vertex-disjoint paths exist (up
to a permutation, say Q1 = x1 . . . y1, Q2 = x2 . . . y2 and Q3 = x3 . . . y3,
where y3 ∈ X and w.l.o.g. y3 has label 1 or 2), then we are done. Indeed, in
L(R), this yields three chordless paths with no edges between them, ending
at three vertices with labels 1, 1, 1 or 1, 1, 2. By adding v1 or v1, v2, we
obtain the three paths whose existence is claimed.

We may therefore assume that the outcome of Lemma 3.3 is a set C

of at most two vertices that separates {x1, x2, x3} and X ∪ {y1, y2}. This
contradicts (iii) or (iv). 2

Lemma 4.5 Let B be a P-graph with special clique K = {v1, . . . , vk}. Let
S be a leaf segment of B, whose ends are in K and in K2 ∈ K \ {K}. Let
K1 6= K2 be a clique in K \ {K}. Then there exist three paths P1 = v . . . u1,
P2 = v . . . u2 and PS = v . . . uS, vertex-disjoint except at v, with no edges
between them (except at v and for one edge in K2), such that v ∈ K, uS
is the endnode of S in K2, and for i ∈ {1, 2}, Ki ∩ Pi = {ui}. Moreover,
PS = S or PS \ v = S.
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proof — In skeleton R of B, the segment S corresponds to limb with a
pendant edge eS . Each of the cliques K1 and K2 is a set of edges from R

that share a common vertex. This defines two vertices x1 and x2 in R.
We suppose first that eS has a label that is used only once in the skeleton

R. We apply Lemma 3.7 to x1 and x2. This yields paths P1 and P2 that
have pendant edges with the same label, say 1. Then S, line graphs of P1

and P2 and vertex v1, give the desired three paths.
We now suppose that the label of es, say 1, is used for another pendant

edge with a vertex y of degree 1. We denote by X the set of all degree 1
vertices of R, except y and the end of es. We apply Lemma 3.3 to {x1, x2}
and {X, y}. If two paths are obtained, note that they do not intersect S

(because S is a limb), so by adding S to corresponding paths in B, we obtain
the paths that we need. Otherwise, we obtain a cut vertex, that together
with any vertex of S yields a cutset of size 2 that contradicts (iv). 2

Lemma 4.6 Let B be a P-graph with special clique K = {v1, . . . , vk} such
that k ≥ 2. Let S1 and S2 be leaf segments of B that have a common
endnode vi in K, and let their other endnodes be in K1 and K2, respectively
(K1 6= K2). Then there exist paths P1 = u′ . . . u1 and P2 = u′′ . . . u2, vertex-
disjoint except maybe at a vertex of K (when u′ = u′′) and with no edges
between them (except for one edge of K if u′ 6= u′′, or for edges incident to
u′ when u′ = u′′), such that for i ∈ {1, 2}, Ki ∩ Pi = {ui}, u

′, u′′ ∈ K \ {vi}
and vi 6∈ P1 ∪ P2.

proof — In skeleton R of B, the segments S1 and S2 correspond to limbs
with pendant edges e1 and e2, respectively. Each of the cliques K1 and K2 is
a set of edges from R that share a common vertex. This defines two vertices
x1 and x2 in R.

The label of e1 and e2 is i. We denote by X the set of all degree 1 vertices
of R that are incident with an edge not labeled with i. We apply Menger’s
theorem to {x1, x2} and X (by (vii) and (xi) we have |X| ≥ 2). If two paths
are obtained, then we are done. Otherwise, we obtain a cut vertex x, that
separates {x1, x2} from X. Since x1 and x2 are of degree 3 we may assume
that x is an attaching vertex, which contradicts (x). 2

Lemma 4.7 Let B be a P-graph with special clique K = {v1, . . . , vk} such
that k ≥ 2. Let S1 be a leaf segment with endnode vi ∈ K, and an endnode
in K1 ∈ K \ {K}, and let K2 ∈ K \ {K,K1}. Then there exist paths P1 =
u1 . . . u

′ and P2 = u2 . . . u
′′ vertex-disjoint except maybe at a vertex of K
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(when u′ = u′′) and with no edges between them (except for one edge of K
if u′ 6= u′′, and for edges incident to u′ when u′ = u′′), such that u′, u′′ ∈
K \ {vi}, vi 6∈ P1 ∪ P2, P1 ∩K1 = {u1} and P2 ∩K2 = {u2}.

proof — In skeleton R of B, the segment S1 corresponds to a limb with
pendant edge e1. Each of the cliques K1 and K2 is a set of edges from R

that share a common vertex. This defines two vertices x1 and x2 in R.
The label of e1 is i. We denote by X the set of all degree 1 vertices of

R that are incident with an edge not labeled with i. We apply Menger’s
theorem to {x1, x2} and X (by (vii) and (xi) we have |X| ≥ 2). If two paths
are obtained, then we are done. Otherwise, we obtain a cut vertex x, that
separates {x1, x2} from X. Since x1 and x2 are of degree 3 we may assume
that x is an attaching vertex, which contradicts (x). 2

Lemma 4.8 Let B be a P-graph with special clique K = {v1}. If S is a leaf
segment of B and S′ an internal segment of B, with an endnode in K ′ ∈ K
such that S ∩ K ′ = ∅, then there exists a pyramid Π contained in B, such
that S and S′ are contained in different paths of Π and |Π ∩K ′| = 2.

proof — Let R be the skeleton of B. Let PS (resp. PS′) be the limb
(resp. branch) of R that corresponds to S (resp. S′). Let x be the degree
1 vertex of PS , let x1 be the other endnode of PS , and let y1 and y2 be the
endnodes of PS′ , such that edges incident to y1 correspond to nodes of K ′.
Then x1 6= y1. Furthermore, let X be the set of all degree 1 vertices of R
different from x.

If in R there exists a vertex z that separates {y1, y2} fromX, then for any
internal vertex z′ of PS (it exists by (vii) and (viii)), the set {z, z′} is a cutset
of R that contradicts (iv). So, by Menger’s theorem there are vertex-disjoint
paths P ′ = y1 . . . x

′ and P ′′ = y2 . . . x
′′, where x′, x′′ ∈ X. Suppose that in

R \ y1 there exists a path from x to (P ′ ∪ P ′′) \ {y1}, and let P ′′′ be chosen
such that it has the minimum length. Then L(P ′ ∪ P ′′ ∪ P ′′′ ∪ PS′) ∪ {v1}
induces the desired pyramid.

So, we may assume that y1 is a cut vertex of R, such that x and (P ′ ∪
P ′′)\{y1} are contained in different connected components of R\y1. Let Cx

be the connected component of R \ {y1} that contains x, let ex be the edge
incident to x and let ey be an edge of PS′ . By Lemma 3.5 there exists a path
P in R that contains edges ex and ey whose endnodes are of degree 1 in R.
Note that P contains PS′ . Let x′1 be a node adjacent to x1 that does not
belong to P . Since x1 6= y1, we have {x1, x

′
1} ⊆ Cx. Let us apply Lemma

3.3 in graph Cx to {x1, x
′
1} and {X1, x}, where X1 is the set of all degree
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1 (in R) nodes of Cx different from x (X1 is non-empty, since otherwise for
any internal vertex z′ of PS the set {z′, y1} is a cutset of R that contradicts
(iv)). If vertex-disjoint paths P1 = PS and P ′

1 are obtained, then L(P ∪ P ′
1)

and v1 induce a desired pyramid Π. Otherwise, let z be a vertex of Cx that
separates {x1, x

′
1} from X1 ∪ {x}. But then {z, y1} is a cutset of R that

contradicts (iv). 2

Lemma 4.9 Let B be a P-graph with special clique K = {v1}. If S1 and S2

are leaf segments of B, then there exists a pyramid Π contained in B, such
that S1 and S2 are contained in different paths of Π.

proof — Let x1 (resp. x2) be degree 1 vertex of skeleton R of B incident
to pendant edge that corresponds to a vertex of S1 (resp. S2). Furthermore,
let X be the set of all degree 1 vertices of R different from x1 and x2. Note
that by (i), X 6= ∅. Let P ′ be a direct connection from {x1, x2} to X in
R, and w.l.o.g. let x1 be the neighbor of one endnode of P ′. Let P ′′ be a
direct connection from x2 to P ′. Then L(P ′∪P ′′)∪{v1} induces the desired
pyramid. 2

Lemma 4.10 Let B be a P-graph with special clique K = {v1, . . . , vk}.
Let v be the vertex of an internal segment of length 0, let K1 ∈ K \ {K}
be such that v ∈ K1 and let u ∈ K1 \ {v}. Then B contains a pyramid
Π = 3PC(uvx, y) such that x ∈ K1 and y ∈ K.

proof — Let R be the skeleton of B, and let e = x1x2 be an edge of
R that corresponds to vertex v. Let x′1 be the neighbor of x1 in R such
that x1x

′
1 corresponds to vertex u. Let P1 = x1 . . . y1, P ′

1 = x1x
′
1 . . . y

′
1

and P2 = x2 . . . y2 be the three paths obtained by applying Lemma 3.8 to
x1, x

′
1 and x2. Then y1, y

′
1 and y2 are vertices of degree 1 in R incident

with edges with at most two different labels, say i and j. It follows that
L({x1, x2} ∪ P1 ∪ P ′

1 ∪ P2) and {vi, vj} induce the desired pyramid in B. 2

5 Attachments to a P-graph

Lemma 5.1 ([7]) Let G be a (theta, wheel)-free graph. If H is a hole of G
and v a node of G \H, then the attachment of v over H is a clique of size
at most 2.
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Lemma 5.2 In a P-graph B every pair of segments is contained in a hole.
Also, every pair of vertices of B is contained in a hole.

proof — Follows directly from Lemma 3.5 (note that every vertex of B
is contained in a segment of B, and every segment contains a vertex that
corresponds to an edge of skeleton R of B). 2

Lemma 5.3 Let G be a (theta, wheel, diamond)-free graph and B a P-graph
contained in G. If v ∈ G\B, then either |NB(v)| ≤ 1 or NB(v) is a maximal
clique of B.

proof — Since G is diamond-free, it suffices to show that NB(v) is a
clique. Assume not and let v1 and v2 be non adjacent neighbors of v in B.
By Lemma 5.2, v1 and v2 are contained in a hole H of B. But then H and
v contradict Lemma 5.1. 2

Let G be a (theta, wheel, diamond)-free graph and Π = 3PC(x1x2x3, y)
be a pyramid contained in G. Then Π is a long pyramid and by Lemma 2.3
it is a P-graph with special clique {y}. For i = 1, 2, 3, we denote by Si the
branch of Π from y to xi and we denote by yi the neighbor of y on this path.
By Lemma 5.3 it follows that the attachment of a node v ∈ G \ Π over Π
is a clique of size at most 3. For i = 1, 2, 3, we shall say that v is of Type i
w.r.t. Π if |NΠ(v)| = i. We now define several kinds of paths that interact
with Π.

• A crossing of Π is a chordless path P = p1 . . . pk in G \ Π of length
at least 1, such that p1 and pk are of Type 1 or 2 w.r.t. Π, for some
i, j ∈ {1, 2, 3}, i 6= j, NΠ(p1) ⊆ Si, NΠ(pk) ⊆ Sj , p1 has a neighbor
in Si \ {y}, pk has a neighbor in Sj \ {y}, at least one of p1, pk has
a neighbor in (Si ∪ Sj) \ {xi, xj} and no node of P \ {p1, pk} has a
neighbor in Π.

• Let P = p1 . . . pk be a crossing of Π such that for some i, j ∈ {1, 2, 3},
i 6= j, NΠ(p1) = {yi} or {yi, y}, pk is of Type 2 w.r.t. Π and NΠ(pk) ⊆
Sj \ {y, yj}. Moreover, if NΠ(p1) = {yi} then Si has length at least 3.
Then we say that P is a crosspath of Π (from yi to Sj). We also say
that P is a yi-crosspath of Π.

• If P = p1 . . . pk is a crossing of Π such that p1 and pk are of Type 2
w.r.t. Π and neither is adjacent to {y, y1, y2, y3, x1, x2, x3}, then P is
a loose crossing of Π.
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A long pyramid with a loose crossing is a P-graph. To see this, consider
a 1-skeleton made of a chordless cycle C together with three chordless paths
P1, P2, P3, all of length at least 2, such that for i ∈ {1, 2, 3}, Pi ∩ C = {vi},
and v1, v2, v3 are pairwise distinct and nonadjacent. The three pendant
edges of the paths receive label 1, and the special clique has size 1.

A long pyramid with a crosspath is also a P-graph. The special clique K
is {yi, y} (when NΠ(p1) = {yi}) or {yi, y, p1} (when NΠ(p1) = {yi, y}), so it
has size 2 or 3. It is easy to check that removing K yields the line graph of
a tree that has two vertices of degree 3 and four pendant edges that receive
labels 1, 1, 2, 2 when |K| = 2 and 1, 1, 2, 3, when |K| = 3.

Lemma 5.4 Let G be a (theta, wheel, diamond)-free graph. If P = p1 . . . pk
is a crossing of a Π = 3PC(x1x2x3, y) contained in G, then P is a crosspath
or a loose crossing of Π.

proof — Assume w.l.o.g. that p1 has a neighbor in S1 \ {y}, and pk in
S2 \{y}. Not both p1 and pk can be adjacent to y, since otherwise NΠ(p1) =
{y1, y} and NΠ(pk) = {y2, y}, and hence S1 ∪ S2 ∪ P induces a wheel with
center y. Suppose that both p1 and pk are of Type 2 w.r.t. Π. If p1 is
adjacent to y, then P is a crosspath, since otherwise pk is adjacent to y2 and
not to y, and hence S2 ∪ S3 ∪ P induces a wheel with center y2. So we may
assume that neither p1 nor pk is adjacent to y. If p1 is adjacent to y1, then
G[(Π \ {x2}) ∪ P ] contains a wheel with center y1. So p1 is not adjacent to
y1, and by symmetry pk is not adjacent to y2. If p1 is adjacent to x1, then
G[(Π \ {y2}) ∪ P ] contains a wheel with center x1. So p1 is not adjacent to
x1, and by symmetry pk is not adjacent to x2. It follows that P is a loose
crossing.

Without loss of generality we may now assume that p1 is of Type 1
w.r.t. Π. If pk is also of Type 1, then S1 ∪ S2 ∪ P induces a theta. So pk
is of Type 2. If p1 is not adjacent to y1, then G[(Π \ {x2}) ∪ P ] contains
a 3PC(y, ỹ), where ỹ is the only neighbor of p1 on Π. So p1 is adjacent
to y1. Since S1 ∪ S2 ∪ P cannot induce a wheel with center y, pk is not
adjacent to y. Since S2∪S3∪P ∪{y1} cannot induce a wheel with center y2,
NΠ(pk) ⊆ S2 \ {y, y2}. If S1 is of length 2, then G[(Π \ {y2}) ∪ P ] contains
a wheel with center x1. Therefore S1 is of length at least 3, and hence P is
a crosspath. 2

Lemma 5.5 Let G be a (theta, wheel, diamond)-free graph. If G contains
a pyramid Π with a crossing P , then G[Π ∪ P ] is a P-graph.
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proof — Follows from Lemma 5.4 and the fact already mentioned that a
pyramid together with a loose crossing or a crosspath is a P-graph. 2

Let S be a segment of a P-graph B such that its endnodes are in K1 and
K2. Then we say that S ∪K1 ∪K2 is an extended segment of B.

Lemma 5.6 Let B be a P-graph with special clique K which is contained
in a (theta,wheel,diamond)-free graph G. Let P = u . . . v be a path in G \B
whose interior nodes have no neighbors in B and one of the following holds:

(1) NB(u) and NB(v) are cliques of size at least 2 in B \K which are not
contained in the same extended segment of B.

(2) NB(u) = K, where |K| ≥ 2, and NB(v) is a clique of size at least 2
which is in B \K, but not in an extended clique segment of B.

(3) NB(u) = {w} ⊆ K, and NB(v) is a clique of size at least 2 in B \K
which is not in a extended segment of B incident with w.

Then G[B ∪ P ] is a P-graph contained in G.

proof — Let K = {v1, . . . , vk} and let R be the skeleton of B. In all
three cases neighbors of v in B are in fact in L(R), and they correspond to
some edges of R all incident to a single vertex k2 ∈ R. By Lemma 5.3, v
is adjacent to all vertices that correspond to edges incident to k2. We now
consider each of the cases.

(1) Let k1 be the vertex of R whose incident edges correspond to vertices
of the clique NB(u) in L(R). Note that by Lemma 5.3, u is adjacent to all
vertices that correspond to edges incident to k1. Construct graph R′ from
R by adding a branch PR between k1 and k2, of length one more than the
length of P . We prove that R′ is a k-skeleton.

By Lemma 4.1, it suffices to check that all conditions other than (v)
and (viii) are met. Since P is of length at least 1, PR is of length at least 2,
and thus (i) holds. Since NB(u) and NB(v) are not contained in the same ex-
tended segment of B, no branch of R contains both k1 and k2, and hence (ii)
holds.

Note that R and R′ have the same degree 1 vertices and the same limbs.
It follows that (vi), (vii), (ix) and (xi) hold for R′.

Let x be a cut vertex of R′. Since R is connected, x is not an internal
vertex of PR. Hence, x is also a cut vertex of R and every component of
R′ \ x contains a union of components of R \ x. It follows that (iii) holds.
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Also, every x-petal of R′ is a union of some x-petals of R and some vertices
of PR, and therefore (x) holds.

To prove (iv) let {a, b} be a cutset of R′. If a and b are in the interior
of PR, one component of R′ \ {a, b} is a chordless path from a to b, and the
other contains all the vertices of R′ of degree 1, so (iv) holds. If one of a or
b, say a, is in the interior of PR, and the other (so, b) is not, then b is a cut
vertex of R. Also, every component of R′ \ {a, b} contains a component of
R\b. Hence (iv) holds because (iii) holds for R. Finally, if none of a and b is
in the interior of PR, then {a, b} is also a cutset of R, and every components
of R′ \ {a, b} contains a component of R \ {a, b}. Therefore, (iv) holds for
R′ because it holds for R. Thus (iv) holds, and our claim is proven.

(2) Construct graph R′ from R by adding a chordless path PR of the same
length as P , whose one endnode is k2 and the remaining nodes are new.
Note that pendant edges of R are also pendant edges of R′, and R′ has one
new pendant edge (the one incident to the vertex of degree 1 in R′ that is in
PR). Let us assign label k + 1 to the new pendant edge. We claim that R′

is a skeleton. By Lemma 4.1, there is no need to check (v) and (viii). Since
PR is a limb, (i), (ii), (vi), (vii) and (xi) hold for R′ because they hold for
R and since in this case k ≥ 2.

Let us show that (ix) holds. It could be that the limb that we add to R

to build R′ is in fact parallel to a limb Q of R, that corresponds to a clique
segment S′ of B. If the label of pendant edge of Q is used only once, then
NB(v) is contained in an extended clique segment of B (namely extended
segment of S′), a contradiction. So (ix) holds.

The conditions (iii), (iv) and (x) hold for R′ because they hold for R.
Indeed, in R′, we added a limb, this only possibly adds a vertex of degree 1
to a component, making the condition easier to satisfy.

(3) Let w = vi. We build a path PR of the same length as P and we consider
the graph R′ obtained from R by attaching PR at k2. Hence, in PR there
is a pendant edge, and we give it label i. We claim that R′ is a skeleton.
By Lemma 4.1, there is no need to check (v) and (viii). Since PR is a
limb, (i), (ii), (vi), (vii) and (xi) hold for R′ because they hold for R.

Condition (ix) also holds, since the limb that we add to build R′ has
pendant edge with label i that is now used at least twice, and it is not
parallel to some other limb with pendant edge i by the condition of the
lemma.

The conditions (iii), (iv) and (x) hold for R′ because they hold for R.
Indeed, in R′ we added a limb, which only possibly adds a vertex of degree 1
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to a component, making the condition easier to satisfy. 2

Lemma 5.7 Let G be a (theta, wheel, diamond)-free graph, and let B be
the P-graph contained in G with special clique K = {v1, . . . , vk} and skeleton
R, such that k is maximum, and among all P-graphs contained in G and
with special clique of size k, B has the maximum number of segments. Let
P = u . . . v be a chordless path in G\B such that u and v both have neighbors
in B and no interior node of P has a neighbor in B. Then one of the
following holds:

(1) NB(P ) ⊆ K ′, where K ′ ∈ K.

(2) There exists a segment S of B, of length at least 1, whose endnodes
are in K1 ∪K2 where K1,K2 ∈ K, such that NB(P ) ⊆ K1 ∪K2 ∪ S.
Moreover, if u (resp. v) has a neighbor in Ki \ S, for some i ∈ {1, 2},
then u (resp. v) is complete to Ki.

proof — Before proving the theorem, note that in the proof, conclusion
(2) can be replaced by a weaker conclusion :

(2’) There exists a segment S of B, of length at least 1, whose endnodes
are in K1 ∪K2 where K1,K2 ∈ K, such that NB(P ) ⊆ K1 ∪K2 ∪ S.

Indeed, if (2’) is satisfied, then (1) or (2) is satisfied. Let us prove this.
Suppose that (2’) holds, but neither (1) nor (2) does. Up to symmetry, and
by Lemma 5.3, this means that NB(u) is a single vertex u′ of K1 \ S. If
NB(v) is also a single vertex v′, then by Lemma 5.2, P together with a hole
that goes through u′ and v′ forms a theta (note that since (1) does not hold,
v′ ∈ (S ∪K2) \K1 and hence since R has no parallel branches by (ii), u′v′

is not an edge). By Lemma 5.3, we may therefore assume that NB(v) = K2

or NB(v) is a clique of size 2 in S.
We first suppose that K 6∈ {K1,K2}. In R, NB(u) is an edge y1y

′
1, where

y′1 is a branch vertex and S corresponds to a branch P ′ = y′1 . . . y
′
2. We apply

Lemma 3.8 to y1, y
′
1 and y′2. Let P1, P2 and P3 be the three paths obtained

and suppose that label i is used on pendant edges of two of these paths.
Then the graph induced by L(P1 ∪P2 ∪P3) together with S \K1, P and K

contains a 3PC(u′, vi) (note that by (viii), u′vi is not an edge).
Next suppose thatK1 = K and let u′ = vi. First observe that if NB(v) =

K2 and there exists a segment S′ of B with endnode vi and an endnode in
K2, then P satisfies (2) w.r.t. S′. So this cannot happen. It follows that
if NB(v) ∩ K = ∅ then by part (3) of Lemma 5.6, the maximality of B is
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contradicted. So let vj ∈ NB(v)∩K, where vj 6= vi, and let S′ be a segment
of B with endnode vi. Let Q be a direct connection from S′ to S in B \K.
Then G[S ∪ S′ ∪ P ∪Q] is a wheel with center vj , a contradiction.

Therefore K2 = K. First suppose that u′ is a vertex of an internal
segment of B. Then by Lemma 4.3, there exists a hole H that contains
u′ and a vertex vj ∈ K such that neighbors of vj in H are in B \ K. If
S is not contained in H, then G[H ∪ P ∪ (S \K1)] contains a 3PC(u′, vj)
(note that since u′ belongs to an internal segment of B, u′vj is not an edge).
So S is contained in H, and hence vj is an endnode of S. If NB(v) = K

then G[H ∪ P ] is a theta. So NB(v) 6= K. In R, u′ is an edge y1y
′
1,

where y′1 is a branch vertex, and S corresponds to a limb P ′ = y′1 . . . y
′
2.

Let X be the set of all degree 1 vertices of R incident with pendant edges
labeled with j not including y′2 (note that X is nonempty) and Y the set
of all other degree 1 vertices of R not including y′2. If in (R \ P ′) ∪ {y′1}
there are vertex-disjoint paths P1 and P2 from {y′1, y1} to {X,Y }, then
G[L(P1∪P2)∪P ∪(S\K1)∪{u′}] contains a 3PC(u′, vj). So, by Lemma 3.3,
there is a vertex x in R that separates {y′1, y1} from X∪Y in (R\P ′)∪{y′1},
and therefore {y′2, x} is a cutset of R that contradicts (iv).

It follows that u′ is an endnode of a leaf segment S′ of B. Since (2) does
not hold for P and S′, NB(v) 6= K and hence NB(v) is a clique of size 2 in
S. Let vi (resp. vj) be the endnode of S (resp. S′) in K. Suppose vi = vj .
Then by (ix), R has no branches, so by (i), G[(B \ (S ∩K1)) ∪ P ] contains
a 3PC(u′, vi) (note that u′vi is not an edge by (viii)). So vi 6= vj . By (ix)
there is a segment S′′ 6∈ {S, S′} with an endnode in {vi, vj}. Note that S′′

does not have an endnode in K1. Let Q be a direct connection from S′′ to
K1 in B \K. Then G[(S \K1)∪S′∪S′′∪P ∪Q] either contains a 3PC(u′, vi)
(if S′′ has endnode vi) or 3PC(u′, vj) (if S′′ has endnode vj , note that in
this case by (viii), u′vj is not an edge). Therefore, if (2’) holds then (1) or
(2) holds.

We are now back to the main proof. Suppose the conclusion of the theo-
rem fails to be true. By Lemma 5.3, it suffices to consider the following cases.

Case 1: For some K1,K2 ∈ K \ {K}, NB(u) = K1 and NB(v) = K2.

Since (1) does not hold, K1 6= K2. Let us first prove that no segment of B
has endnodes in K1 ∪K2.

Suppose to the contrary that some segment S of B has endnodes in
K1 ∪K2. Since (2’) does not hold, S is of length 0, say S = x. So S is an
internal segment of B. Let ex be the edge of R that corresponds to x. By
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Lemma 3.4, ex is a cut edge of R, and hence x is a cut vertex of L(R). For
i = 1, 2, let Ci be the connected component of L(R)\x that contains Ki \x.
Note that the endnodes of ex in R are cut vertices of R, and hence by (iii),
Ci has a pendant vertex, for i = 1, 2. It follows that B contains a chordless
wz-path Q, where w ∈ K1 \ x, z ∈ K2 \ x and no interior node of Q has a
neighbor in K1 ∪K2. But then P ∪Q ∪ {x} induces a wheel with center x.
Therefore, no segment of B has an endnode in K1 ∪K2.

Now, by part (1) of Lemma 5.6, this contradicts the maximality of B.

Case 2: For some K1 ∈ K \ {K}, NB(u) = K1 and NB(v) = K.

Since (2’) does not hold, there is no (leaf) segment with endnodes in
K1 and K, and so by parts (2) and (3) of Lemma 5.6 and maximality of B,
this case is impossible.

Case 3: For some segment S of B, NB(u) = K and NB(v) ⊆ S.

Since (2’) does not hold, S is an internal segment of B. Let v′ be a
neighbor of v in S. Apply Lemma 4.3 to B and v′. This provides a hole
H in B that contains v′ and a single node of K. Note that H contains S

because S is a segment. If v′ is the only neighbor of v in S, then H and P

form a theta, a contradiction. So, by Lemma 5.1, for some vertex v′′ of S
adjacent to v′, NB(v) = {v′, v′′}. By parts (2) and (3) of Lemma 5.6 this
contradicts the maximality of B.

Case 4: For some K1 ∈ K \ {K} and some internal segment S of B,
NB(u) = K1 and NB(v) ⊆ S.

Let K2 and K3 be the end cliques of S. Since (1) and (2’) do not
hold, K1 6∈ {K2,K3}. We apply Lemma 4.4 to K1, K2 and K3. This
provides three paths P1, P2 and P3. If NB(v) = {v′} then P1, P2, P3, S and
P induce a theta. So by Lemma 5.3 NB(v) = {v′, v′′} where v′ and v′′ are
two adjacent vertices of S. By part (1) of Lemma 5.6 this contradicts the
maximality of B.

Case 5: For some K1 ∈ K\{K} and some leaf segment S of B, NB(u) = K1

and NB(v) ⊆ S.

Let the endnodes of S be in cliques K and K2 ∈ K \ {K}. Since S

is a leaf segment of B, it is of length at least 1. Since (2’) does not
hold, K1 6= K2. Let v′ be a neighbor of v in S, and let P1 = w1 . . . w,
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P2 = w2 . . . w and PS = ws . . . w be paths obtained when Lemma 4.5 is
applied to segment S and clique K1.

First, let us assume that NB(v) = {v′}. If v′ 6= w and v′ is not adjacent
to w, then G[P1 ∪ P2 ∪ PS ∪ P ] induces a 3PC(v′, w), a contradiction. So,
v′ = w or v′w is an edge. If v′ ∈ K, then by part (3) of Lemma 5.6 and
maximality of B, there is a segment S′ with one endnode in K1 and the
other v′. But then P and S′ satisfy condition (2’). So, v′ 6∈ K, and hence
v′w is an edge. Suppose k = 1. Let z be a node of K1 that belongs to an
internal segment of B (note that since K1 6= K2, and since R is connected
by (i), it follows that R has a branch and z exists by (ix)). By Lemma
4.8 there exists a pyramid Π contained in B such that S and z belong to
different paths of Π and |Π ∩K1| = 2. So, NΠ(u) is an edge of a path of Π
that contains z. Note that since G is wheel-free, Π is a long pyramid and
by Lemma 5.4 P is a crosspath of Π. But then G[Π ∪ P ] is a P-graph with
special clique of size greater than 1, contradicting our choice of B (since
k = 1). Therefore, k > 1. Let Q1 and Q2 be paths obtained when Lemma
4.7 is applied to S and K1. Then G[Q1 ∪Q2 ∪ S ∪ P ] induces a theta or a
wheel, a contradiction. So, by Lemma 5.3, NB(v) is a clique of size 2.

If NB(v) ∩K = ∅, then, by (1) of Lemma 5.6, we have a contradiction
to the maximality of B. So, NB(v) = {v′, v′′}, where v′′ ∈ K. If v′′ 6= w,
then G[P1 ∪ P2 ∪ PS ∪ P ] induces a wheel, a contradiction. So, v′′ = w.
If k = 1, then by Lemma 4.8 there exists a pyramid Π, contained in B,
such that S and z are in different paths of Π, where z is a node of K1 that
belongs to an internal segment of B (it exists by the same argument as in
the previous paragraph). Note that w is the center of the claw of Π. But
then G[Π ∪ P ] is a P-graph whose special clique is of size 3, contradicting
our choice of B. So k > 1. Let Q1 and Q2 be paths obtained when Lemma
4.7 is applied to S and a node z ∈ K1 that is on an internal segment of B.
Then G[Q1 ∪Q2 ∪ S ∪ P ] induces a wheel, a contradiction.

Case 6: For some distinct segments S and S′ of B, NB(u) ⊆ S and
NB(v) ⊆ S′.

Let K1 and K2 (resp. K3 and K4) be the end cliques of S (resp. S′).
We divide this case in several subcases.

Case 6.1: K 6∈ {K1,K2,K3,K4}.

We may assume that K3 6∈ {K1,K2}. Let P1, P2 and P3 be the 3 paths
obtained by applying Lemma 4.4 to K1, K2 and K3. Suppose that NB(u) is
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a single vertex u′. Since (2’) does not hold, v has a neighbor in S′\(K1∪K2).
But then G[P1 ∪P2 ∪P3 ∪P ∪S ∪ (S′ \ (K1 ∪K2))] contains a theta. So, by
Lemma 5.3, NB(u) is a clique of size 2 in S, and similarly NB(v) is a clique
of size 2 in S′. By (1) of Lemma 5.6, this contradicts the maximality of B.

Case 6.2: K4 = K and K 6∈ {K1,K2}.

Case 6.2.1: k = 1.

By Lemma 4.8, B contains a pyramid Π = 3PC(x1x2x3, v1) such that S

and S′ are contained in different paths of Π. By part (1) of Lemma 5.6, P
cannot be a loose crossing of Π. So by Lemma 5.4, P is a crosspath of Π.
But this contradicts our choice of B since k = 1.

Case 6.2.2: k ≥ 2.

For i ∈ {1, 2}, let xi be the endnode of S that is in Ki, and let vi and vS′ be
the endnodes of S′. First suppose that K2 = K3. Let P1 = w . . . w1, P2 =
w . . . w2 and PS′ = w . . . vS′ be the three paths obtained by applying Lemma
4.5 to S′ and K1 (where for i ∈ {1, 2}, Pi ∩Ki = {wi}). Then G[P1 ∪ P2 ∪
PS′∪S] is a pyramid Π = 3PC(x2w2vS′ , w), and S and S′ belong to different
paths of Π. Suppose vi = w and NB(v) = vi. If u has a unique neighbor u′ in
S, then G[Π∪P ] contains a 3PC(u′, w), and otherwise by part (3) of Lemma
5.6 our choice of B is contradicted. So either vi 6= w or NB(v) 6= {vi}. But
then by Lemma 5.4, P is a crosspath or a loose crossing of Π, and therefore
by Lemma 5.6 our choice of B is contradicted.

So by symmetry, K3 6∈ {K1,K2}. Let P1 = w . . . w1, P2 = w . . . w2

and P3 = w . . . w3 be the three paths obtained by applying Lemma 4.4 to
K1, K2 and K3 (so w ∈ K and for i ∈ {1, 2, 3}, Pi ∩ Ki = {wi}). Let
Q be a direct connection from K3 to P1 ∪ P2 in B \ K and H a hole in
G[P1 ∪P2 ∪P3 ∪S ∪S′ ∪Q] that contains S and S′. Suppose NB(v) = {w}.
If NB(u) = {u′}, then G[H ∪P ] contains a 3PC(u′, w). So NB(u) is a clique
of size 2 in S, and hence by Lemma 5.6 our choice of B is contradicted. So
NB(v) 6= {w}. Now, let us assume that vi 6= w and that one of the paths P1

and P2 contains a vertex from K\{w, vi}. Note that then P3∩S
′ = ∅. Let Π′

be a pyramid contained inG[P1∪P2∪P3∪S∪Q] (this pyramid contains S and
its claw has center w). Then G[P ∪P3∪Q∪S′] contains a crossing of Π′ with
an endnode in u, and hence u has two neighbors in S (since u is not adjacent
to w). If NB(v) = {v′} 6= {vi}, then G[P1 ∪ P2 ∪ P3 ∪ S ∪ S′ ∪ P ] contains
a 3PC(u′, w), and if NB(v) = {vi}, then our choice of B is contradicted by
Lemma 5.6. So, we may assume that NB(v) = {v′, vi}, since otherwise our
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choice of B is contradicted by Lemma 5.6. But then G[P1 ∪P2 ∪S ∪S′ ∪P ]
contains a wheel with center vi, a contradiction.

So vi = w or P1∩K,P2∩K ∈ {{w}, {w, vi}}. Then G[P1∪P2∪P3∪S ∪
S′ ∪Q] contains a pyramid Π (whose claw has center w or vi), such that S
and S′ belong to different paths of Π. By our choice of B and Lemma 5.6, P
cannot be a loose crossing of Π. So, by Lemma 5.4, P is a crosspath of Π. If
the center of the claw of Π is vi and vi 6= w, then G[P1∪P2∪P3∪S∪S′∪P ]
contains a theta or a wheel, a contradiction. So, the center of the claw of Π
is w. Also w = vi, since otherwise our choice of B is contradicted by Lemma
5.6. This implies that S′ is a claw segment of B. Let Q1 and Q2 be the
paths obtained when Lemma 4.7 is applied to K1 and S′ (we assume that
Q1 ∩K1 6= ∅). Furthermore, if Q1 does not contain S, then we can extend
Q1 such that it contains one neighbor of u and such that we do not introduce
edges between this new path and Q2. But then, G[Q1∪Q2∪S′∪P ] contains
a wheel or a theta, a contradiction.

Case 6.3: K2 = K4 = K and K1 6= K3.

Let vi (resp. vj) be the endnode of S (resp. S′) in K, and let xS (resp. xS′)
be the other endnode of S (resp. S′).

Case 6.3.1: vi = vj .

First, let k = 1. By Lemma 4.9 B contains a pyramid Π = 3PC(x1x2x3, vi)
such that S and S′ are contained in different paths of Π. Since P does not
satisfy (1) and does not satisfy (2’) w.r.t. S nor w.r.t. S′, P is a crossing of
Π. By the choice of B and since k = 1, P cannot be a crosspath of Π. So
by Lemma 5.4, P is a loose crossing of Π. But then by part (1) of Lemma
5.6, our choice of B is contradicted.

So, let k ≥ 2. Let P1 and P2 be paths obtained when Lemma 4.6 is
applied to S and S′. Since P does not satisfy (2’), node u (resp. v) has
a neighbor in S \ {vi} (resp. S′ \ {vi}). If u or v is adjacent to vi, then
G[S ∪ S′ ∪ P ∪ P1 ∪ P2] contains a wheel with center vi. Therefore, neither
u nor v is adjacent to vi. Suppose that u has the unique neighbor u′ in S.
If u′vi is not an edge, then G[S ∪S′ ∪P ∪P1] contains a 3PC(u′, vi). If u

′vi
is an edge, then G[S ∪S′ ∪P ∪P1 ∪P2] contains a wheel with center vi or a
theta. So by Lemma 5.3, NB(u) is a clique of size 2 that belongs to S \ vi,
and by symmetry NB(v) is a clique of size 2 that belongs to S′ \ vi. By (1)
of Lemma 5.6, this contradicts the maximality of B.

Case 6.3.2: vi 6= vj .
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In particular, k ≥ 2. First suppose that S and S′ are both clique segments
of B. Let P1 = w . . . w1, P2 = w . . . w2 and PS′ = w . . . wS′ be the three
paths obtained by applying Lemma 4.5 to S′ and K1. So w 6∈ {vi, vj}. Since
(2’) does not hold u (resp. v) has a neighbor in S \ {vi} (resp. S′ \ {vj}).
Let u′ be a neighbor of u in S \{vi}. If either NB(u) = {u′} or u is adjacent
to vi, then G[P1 ∪ P2 ∪ S ∪ (S′ \ {vj})] contains a wheel with center vi or a
3PC(u′, w). So by Lemma 5.3, NB(u) is a clique of size 2 in S \K, and by
symmetry NB(v) is a clique of size 2 in S′ \K. But then by (1) of Lemma
5.6 our choice of B is contradicted.

So w.l.o.g. we may assume that S is a claw segment. Let Q be a direct
connection from K1 to K3 in B \ K. Let S1 be a segment of B distinct
from S that has endnode vi. Let Q1 be a direct connection from S1 to Q in
B \ K. Then G[S ∪ S′ ∪ S1 ∪ Q ∪ Q1] is a pyramid Π = 3PC(x1x2x3, vi),
in which S and S′ are contained in different paths of Π. P cannot be a
loose crossing of Π, since otherwise by (1) of Lemma 5.6 our choice of B is
contradicted. Therefore by Lemma 5.4, P is a v′i-crosspath of Π, where v′i is
the neighbor of vi in S (since v has a neighbor in S′ \ {vj}). In particular,
uv′i is an edge and NB(u) ⊆ {v′i, vi}. By (xi) there exists a leaf segment S2

of B with endnode vk such that either vk ∈ K \ {vi, vj}, or vk = vj and
S2 6= S′. Let Q2 be a direct connection from S2 to Π. Then G[Π ∪ S2 ∪Q2]
contains a 3PC(v′i, vj) (if NB(u) = {v′i} and j 6= k) or a wheel with center
vi (otherwise).

Case 6.4: K2 = K4 = K and K1 = K3.

Let vi (resp. vj) be the endnode of S (resp. S′) in K, and let xS (resp. xS′)
be the other endnode of S (resp. S′).

Case 6.4.1: k = 1.

Then by (ix) R has no branches. By (i) B contains a pyramid Π =
3PC(xSxS′x, v1) where S and S′ are paths of Π. Since P does not sat-
isfy (1) and does not satisfy (2’) w.r.t. S nor w.r.t. S′, P is a crossing of Π.
By the choice of B and since k = 1, P cannot be a crosspath of Π. So by
Lemma 5.4, P is a loose crossing of Π. But then by part (1) of Lemma 5.6,
our choice of B is contradicted.

Case 6.4.2: k ≥ 2.

Then by (ix), vi 6= vj and w.l.o.g. vi is an endnode of a leaf segment S1 6= S.
Let Q be a direct connection from S1 to K1 in B \ K. Then S, S′, S1 and
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Q induce a pyramid Π = 3PC(xSxS′x, vi) (where x is an endnode of Q)
such that S and S′vi are paths of Π. Since P does not satisfy (1) and it
does not satisfy (2’) w.r.t. S nor w.r.t. S′, P is a crossing of Π. By (1)
of Lemma 5.6 and our choice of B, P cannot be a loose crossing of Π. So
by Lemma 5.4, P is a crosspath of Π. If P is a vj-crosspath of Π then by
part (3) of Lemma 5.6, our choice of B is contradicted. So for the neighbor
v′i of vi in S, P is a v′i-crosspath of Π. In particular, u is adjacent to v′i
and NB(u) ⊆ {vi, v

′
i}, and NB(v) is a clique of size 2 of S′ \ {vj}. By

(xi) there exists a leaf segment S2 with endnode vk ∈ K \ {vi} such that
S2 6= S′. Let Q2 be a direct connection from S2 to Π \ (S ∪ S′ ∪ K). But
then G[(Π \ {xS′})∪S2 ∪Q2] either contains a 3PC(v′i, vj) (if k = j and uvi
is not an edge) or a wheel with center vi (otherwise). 2

Let Π = 3PC(x1x2x3, y) be a pyramid contained in a graph G. A hat of
Π is a chordless path P = p1 . . . pk in G \Π such that p1 and pk both have a
single neighbor in Π and they are adjacent to different nodes of {x1, x2, x3},
and no interior node of P has a neighbor in Π.

Lemma 5.8 Let G be a (theta, wheel)-free graph. If G contains a pyramid
with a hat, then G has a clique cutset.

proof — Let P = p1 . . . pk be a hat of Π = 3PC(x1x2x3, y) contained
in G, with w.l.o.g. NΠ(p1) = {x1} and NΠ(pk) = {x2}. Assume that G

does not have a clique cutset. Then by Lemma 2.2, G is diamond-free.
Let S be the set comprised of {x1, x2, x3} and all nodes u ∈ G \ Π such
that NΠ(u) = {x1, x2, x3}. Since G is diamond-free, S is a clique. Let
Q = q1 . . . ql be a direct connection from P to Π \ {x1, x2, x3} in G \ S. We
may assume w.l.o.g. that a hat P and direct connection Q are chosen so
that |V (P ) ∪ V (Q)| is minimized.

By Lemma 5.3, ql either has a single neighbor in Π or NΠ(ql) are two
adjacent nodes of a path of Π. If a node qi, i < l, is adjacent to a node of
{x1, x2, x3}, then by definition of Q, qi has a single neighbor in Π. If at least
two nodes of {x1, x2, x3} have a neighbor in Q \ ql, then a subpath of Q \ ql
is a hat of Π, contradicting the minimality of P ∪ Q. So at most one node
of {x1, x2, x3} has a neighbor in Q \ ql. Suppose xi, for some i ∈ {1, 2, 3},
has a neighbor in Q \ ql, and let qt be such a neighbor with highest index.
Then NΠ(ql) ⊆ Si, since otherwise qt . . . ql is a crossing of Π that contradicts
Lemma 5.4. If i = 3 then a subpath of (P \ pk) ∪Q or (P \ p1) ∪Q is a hat
of Π, contradicting the minimality of P ∪ Q. So w.l.o.g. i = 1. But then
G[(Π \ y2) ∪ P ∪Q] contains a wheel with center x1. Therefore, no node of
{x1, x2, x3} has a neighbor in Q \ ql.
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Without loss of generality we may assume that P ∪ {q1} contains a
chordless path P ′ from p1 to q1 that does not contain pk. Then NΠ(ql) ⊆ S1,
since otherwise the path induced by P ′∪Q is a crossing of Π that contradicts
Lemma 5.4. If NΠ(ql) = {y} then P ′ ∪ Q ∪ S1 ∪ S3 induces a 3PC(x1, y).
So ql has a neighbor in S1 \ {x1, y}. If p1 is the unique neighbor of q1 in P ,
then G[P ∪Q∪ (Π \ y2)] contains a wheel with center x1. So P ∪ {q1} must
contain a chordless path P ′′ from pk to q1 that does not contain p1. But
then the path induced by P ′′ ∪Q is a crossing of Π that contradicts Lemma
5.4. 2

6 Proof of Theorem 1.2

A strip is a triple (H,A,A′) that satisfies the following:

(i) H is a graph and A and A′ are disjoint non-empty cliques of H;

(ii) every vertex of H is contained in a chordless path of H whose one
endnode is in A, the other is in A′, and no interior node is in A ∪ A′

(such a path is called an AA′-rung).

Let B be a P-graph with special clique K, and let V0 be the set of all
vertices of B that are the unique vertex of some segment of length zero. A
strip system S is any graph obtained from B as follows:

• for every segment S = u . . . v of B of length at least 1, let
(HS , Qu,S , Qv,S) be a strip, such that Qu,S ∩ S = {u} and Qv,S ∩ S =
{v};

• V (S) is the union of vertices of HS , for all segments S of B of length
at least 1, and V0;

• if S = u . . . v, u ∈ K, is a claw segment of B, then Qu,S = {u};

• for segments S and S′ of length at least 1, if S ∩S′ = ∅, then V (HS)∩
V (HS′) = ∅;

• a clique Qx,S is complete to a clique Qx′,S′ whenever x and x′ are in
the same clique of K;

• a clique Qx,S is complete to x′ whenever x and x′ are in the same
clique of K and x′ ∈ V0;
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• these are the only edges of the strip system.

Furthermore, for a clique K1 ∈ K, we denote QK1
=

⋃
u∈K1

Qu,S ∪ K1

(where S is a segment of length at least 1 that contains u).
Note that any P-graph can be seen as a strip system, where every seg-

ment of length at least 1 is replaced by a strip equal to the segment. So,
strip system can be seen as a way to thicken a P-graph. In the other direc-
tion, consider a graph T induced by V0 and vertices of one rung from every
strip of a strip system S. We say that T is a template of S. Note that in
particular B is a strip system with unique template, namely B.

Lemma 6.1 Let G be a (theta, wheel)-free graph. Then every template of
a strip system of G is a P-graph.

proof — We claim that given a P-graph B and a strip system obtained
from B (that is contained in G), replacing one segment S = u . . . v of B by
a corresponding rung S′ = u′ . . . v′ yields another P-graph B′. The lemma
then follows from this claim by induction on the number of segments. So let
us prove the claim.

Let K be the special clique of B and R its skeleton. If u or v, say u, is
in K, then let K ′ = {u′} ∪K \ {u}; otherwise let K ′ = K.

By [9] a graph is (claw,diamond)-free if and only if it is the line graph of
a triangle-free graph. So, B \K is (claw,diamond)-free, and hence the same
holds for B′ \K ′, i.e. B′ \K ′ is the line graph of a triangle-free graph R′.
Observe that R′ can be obtained from R by changing the length of a single
branch or limb. Furthermore, in this way no branch of length 1 is obtained
since the two cliques of any strip are disjoint. Therefore, R′ satisfies all
conditions of the definition of a skeleton, except possibly the ones that are
concerned with the lengths of the limbs. So, we only need to check that R′

satisfies (viii), which is true by Lemma 4.1. 2

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2: Let G be a (theta, wheel)-free graph, and assume that
G does not have a clique cutset and that it is not a line graph of triangle-free
chordless graph. By Lemma 2.2, G is diamond-free and by Theorem 1.1, G
contains a pyramid, and hence a long pyramid (since G is wheel-free). So,
by Lemma 2.3, G contains a P-graph. Let B be a P-graph contained in G

with maximum size of the special clique K, say |K| = k, and such that out
of all P-graphs with special clique of size k it has the maximum number of
segments. Let K be the set that includes all big cliques of B and K, and let
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R be the skeleton of B. Furthermore, let S be a maximal (w.r.t. inclusion)
strip system obtained from B.

Claim 1. For every w ∈ G\S either for some clique K1 ∈ K, NS(w) = QK1
,

or for some segment S of B of length at least 1, NS(w) ⊆ HS .

Proof of Claim 1. Suppose not. Observe that if for some K1 ∈ K, w has
two distinct neighbors in QK1

, then since G is diamond-free, w is complete
to QK1

.
First suppose that w is adjacent to a vertex v ∈ V0. By Lemma 2.1,

X = (NG(v) \ ({w} ∪ S)) ∪ {v} is not a star cutset of G, so there exists a
chordless path P = w . . . w′ in G \ (S ∪X) such that w′ has a neighbor u′

in S \ {v} and no interior node of P has a neighbor in S. By definition of a
strip and S, there is a template of S that contains u′ and v. By Lemma 6.1
we may assume w.l.o.g. that B contains u′ and v. By Lemma 5.7 applied to
P and B, and since w′ is not adjacent to v, NB(P ) ⊆ K ′ ∈ K. In particular,
K ′ ∈ K\{K}, u′, v ∈ K ′ and NB(w

′) = {u′}. By Lemma 4.10, B contains a
pyramid Π = 3PC(u′vx, y), with x ∈ K ′ and y ∈ K. If NΠ(w) = {v} then
P is a hat of Π, contradicting Lemma 5.8. So there exists v′ ∈ NΠ(w) \ {v}.
By Lemma 5.3, NΠ(w) is a maximal clique of Π. If NΠ(w) 6= {u′, v, x} then
G[Π ∪ P ] contains a wheel with center v. So NΠ(w) = {u′, v, x}, and hence
w is complete to QK′ . It follows that w has a neighbor u′′ in S \QK′ . Let B′

be a template of S that contains v and u′′. By Lemma 6.1, B′ is a P-graph.
By Lemma 5.3, NB′(w) is a maximal clique of B′, and in particular vu′′ is
an edge. It follows that for some K ′′ ∈ K \ {K ′,K}, w is complete to QK′′ .
By Lemma 4.3 applied to B and v, there exists a hole H in B that contains
v, and hence it contains a vertex of K ′ \ {v} and a vertex of K ′′ \ {v}. But
then (H,w) is a wheel, a contradiction.

Therefore, w is not adjacent to a vertex of V0. It follows that there exist
distinct segments S and S′ of B, both of length at least 1, such that w has
a neighbor u in HS , a neighbor v ∈ HS′ , and there is no clique K1 ∈ K such
that u and v are both in QK1

. Let B′ be a template of S that contains u

and v (it exists by definition of a strip and S). But then by Lemma 6.1, B′

and w contradict Lemma 5.3. This completes the proof of Claim 1.

Claim 2. Let S be a segment of B of length at least 1 with endnodes
u ∈ K1 and v ∈ K2, where K1 and K2 are distinct cliques of K, K1 6= K,
and let (HS , Qu,S , Qv,S) be the corresponding strip of S. Then G\S cannot
contain a chordless path P = w1 . . . w2 such that the following hold:

• NS(w1) = QK1
,
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• NS(w2) = QK2
, or NS(w2) ⊆ HS and w2 has a neighbor in HS \QK1

,
and

• no interior node of P has a neighbor in S \Qu,S .

Proof of Claim 2. Assume such a path exists. Let H ′
S = HS ∪ P and

Q′
u,S = Qu,S ∪ {w1}. If NS(w2) = QK2

and either K2 6= K or k > 1, then
let Q′

v,S = Qv,S ∪ {w2}, and otherwise let Q′
v,S = Qv,S . Since w2 has a

neighbor in HS \ QK1
, H ′

S contains a rung with endnode w1 that contains
P , so (H ′

S , Q
′
u,S , Q

′
v,S) is a strip. Since, by maximality of S, S ′ = S ∪ P

cannot be a strip system, it follows that S is a claw segment (so K2 = K)
and NS(w2) = K and k > 1. Since S is a claw segment of B, Qv,S = {v},
and there exists another leaf segment S′ of B with endnode v. Suppose
that a node u1 of Qu,S has a neighbor in interior of P . Let S1 be a rung
of HS that contains u1. By Lemma 6.1, B′ = (B \ S) ∪ S1 is a P -graph
where S1 is a claw segment, so by (viii) of the definition of skeleton, u1v
is not an edge. Let H ′ be a hole of B′ that contains S1 and S′. But then
G[H ′ ∪ (P \w1)] contains a 3PC(u1, v), a contradiction. Therefore, no node
of S has a neighbor in interior of P . But then by (2) of Lemma 5.6, the
choice of B is contradicted. This completes the proof of Claim 2.

Claim 3. For a clique K1 ∈ K\{K}, there cannot exist a vertex w of G\S
such that NS(w) = QK1

.

Proof of Claim 3. Suppose such a vertex exists. Let K ′ be a maximal clique
of G \ {w} that contains QK1

. Note that since G is diamond-free, no node
of G \ (K ′ ∪ {w}) is complete to QK1

. Since K ′ cannot be a clique cutset
of G, there exists a chordless path P = w . . . w′ in G \ (S ∪ K ′) such that
w′ has a neighbor u′ in S \ QK1

, no node of P \ {w} is complete to QK1
,

and no interior node of P has a neighbor in S \QK1
. By Claim 1 one of the

following two cases hold.

Case 1: For some segment S of B of length at least 1, NS(w
′) ⊆ HS .

First suppose that S has an endnode u ∈ K1 and an endnode v ∈ K2, for
K2 ∈ K \ {K1}. By Claim 2, a node of QK1

\ Qu,S must have a neighbor
in P \ w. Let w′′ be a node of P \ {w} closest to w′ that has a neighbor
in QK1

\ Qu,S . So, since G is diamond-free and |K1| ≥ 3, NS(w
′′) = {u′′},

where u′′ ∈ QK1
\ Qu,S . Let B′ be a template of S that contains u′ and

u′′. By Lemma 6.1 B′ is a P -graph, and so B′ and the w′′w′-subpath of P
contradict Lemma 5.7.
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So S does not have an endnode in K1. Let w′′ be a node of P closest
to w′ that has a neighbor in QK1

. Let u′′ be a neighbor of w′′ in QK1
, and

let B′ be a a template of S that contains u′ and u′′. By Lemma 6.1 B′ is a
P -graph, and so B′ and the w′′w′-subpath of P contradict Lemma 5.7.

Case 2: For some clique K2 ∈ K \ {K1}, NS(w
′) = QK2

.

First suppose that there exists a segment S of B of length at least 1
with endnode u ∈ K1 and an endnode v ∈ K2. Then by Claim 2, a node of
QK1

\Qu,S has a neighbor in P . Let w′′ be the node of P closest to w′ that
has a neighbor in QK1

\Qu,S . Then NS(w
′′) = {u′′}. Let B′ be a template

of S that contains S and u′′. By Lemma 6.1 B′ is a P -graph, and so B′

and the w′′w′-subpath of P contradict Lemma 5.7.
So no segment of B of length at least 1 has an endnode in K1 and an

endnode in K2. Let w′′ be the node of P closest to w′ that has a neighbor
u1 ∈ QK1

\ QK2
. Let B′ be a template of S that contains u1. Then by

Lemma 6.1, B′ and the w′′w′-subpath of P contradict Lemma 5.7.
This completes the proof of Claim 3.

Claim 4. Let S be a clique segment of B with endnode v ∈ K. Then G \S
cannot contain a chordless path P = w1 . . . w2 such that the following hold:

• w1 has a neighbor in HS \QK ,

• NS(w2) = QK , and

• no interior node of P has a neighbor in S \Qv,S .

Proof of Claim 4. Assume such a path exists. By Lemma 6.1, w.l.o.g. we
may assume that w1 has a neighbor in S \ K. Let u be an endnode of S
different from v, and let K1 ∈ K \ {K} such that u ∈ K1. By Claim 3,
NS(w1) 6= QK1

, and so by Claim 1, NS(w1) ⊆ HS . Let H ′
S = HS ∪ P and

Q′
v,S = Qv,S ∪ {w2}. Then (H ′

S , Q
′
v,S , Qu,S) is a strip and S ′ = S ∪ P is a

strip system that contradicts our choice of S. This completes the proof of
Claim 4.

Claim 5. For every connected component C of G\S, there exists a segment
S of B of length at least 1 such that NS(C) ⊆ HS .

Proof of Claim 5. Suppose that a connected component C of G\S does not
satisfy the stated property. Since QK is not a clique cutset, some node of C
has a neighbor in S \QK . So by Claims 2 and 3 some node w1 of C has a
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neighbor in HS \QK for some segment S of B of length at least 1. So there
exists a chordless path P = w1 . . . w2 in C such that w2 has a neighbor in
S \HS . We choose P to be a minimal such path.

First suppose that S is an interior segment of B, and let u ∈ K1 and
v ∈ K2 be endnodes of S, where K1,K2 ∈ K \ {K}. By Lemma 6.1 w.l.o.g.
we may assume that w1 has a neighbor in S and w2 has a neighbor in B \S.
By the choice of P , no interior node of P has a neighbor in B. But then by
Lemma 5.7, w2 is complete toK1 orK2, sayK1. By Claim 1 NS(w2) = QK1

,
contradicting Claim 3. Therefore S is a leaf segment of B.

Let u ∈ K1 and v ∈ K be the endnodes of S. By the choice of P , no
interior node of P has a neighbor in S \ Qv,S . Suppose w2 has a neighbor
in S \ QK . Then by Lemma 6.1, w.l.o.g. we may assume that w1 has a
neighbor in S \ {v} and w2 has a neighbor in B \ (K ∪ S). By Lemma 5.7
and Claims 1 and 3, an interior node of P is adjacent to v. Let w′

1 be the
interior node of P closest to w2 that is adjacent to v. By Lemma 5.7 applied
to w′

1w2-subpath of P , for some leaf segment S′ of B with endnode v, w2

has a neighbor in S′ \ v. Let K2 be the clique in K \ {K} that contains a
node of S′. Recall that interior nodes of P do not have neighbors in B \ v.
Also by Claims 1 and 3 and by Lemma 5.3, NB(w1) (resp. NB(w2)) is either
a single node or an edge of S (resp. S′). Suppose k ≥ 2. Then by (ix) of
the definition of skeleton, K1 6= K2. Let P1 and P2 be the paths obtained
by applying Lemma 4.6 to S and S′. Then G[S ∪ S′ ∪P1 ∪P2 ∪P ] contains
a theta or a wheel with center v. So k = 1.

By Lemma 4.9 let Π be a pyramid contained in B such that S and S′ are
contained in different paths of Π. If w1 is adjacent to v thenG[Π∪P ] contains
a wheel with center v. So w1 is not adjacent to v and by symmetry neither is
w2. If both w1 and w2 have unique neighbors in Π, then G[Π∪P ] contains a
wheel with center v or a theta. So w.l.o.g. NB(w1) = {w′

1, w
′′
1} where w′

1w
′′
1

is an edge of S. Then G[Π ∪ P ] contains a pyramid Π′ = 3PC(w1w
′
1w

′′
1 , v).

But then, by Lemma 5.4, P \Π′ is a crosspath of Π′ contradicting our choice
of B (since k = 1). Therefore, NS(w2) ⊆ QK .

Since w2 has a neighbor outside S, k > 1. Let v2 be a neighbor of w2

in K \ {v}. Let w be a node of B \K adjacent to v2, and let Q be a direct
connection in B \K from w to K1. By Lemma 6.1 w.l.o.g. w1 has a neighbor
in S\K. Note that by Claims 1 and 3, NB(w1) ⊆ S. By Lemma 5.3, NB(w1)
is a clique of size 1 or 2 in S. If v has a neighbor in P , then G[S ∪ P ∪Q]
contains a theta or a wheel. So v has no neighbor in P . Then by Lemma
5.7, w2 is complete to K, and hence by Claim 1, NS(w2) = QK . By Claim
4, S is a claw segment of B. So there is a node w′ of B \ (K ∪ S) adjacent
to v. Let Q′ be a direct connection in B \K from w′ to K1, and let w′

1 be
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the neighbor of w1 in S \K which is the closest to K1. If w
′
1 is adjacent to

v, then G[S ∪ P ∪Q] is a wheel with center v. So, w′
1 is not adjacent to v,

and hence by Lemma 5.6, w′
1 is the unique neighbor of w1 in S. But then

G[S ∪ P ∪Q′] is a theta. This completes the proof of Claim 5.

Suppose G 6= B. Then by Claim 5, there exists a segment S of B of
length at least 1 such that either HS 6= S or a node of G \ S has a neighbor
in HS . Let C be the union of all connected components C of G \ S that
have a node with a neighbor in HS . By Claim 5, NS(C) ⊆ HS . If S is not a
claw segment of B, then (HS ∪ C, G \ (HS ∪ C)) is a 2-join of G. So we may
assume that S is a claw segment of B with an endnode u ∈ K. Then, by
Claim 5, ((HS \ {u}) ∪ C, (G \ (HS) ∪ C) ∪ {u}) is a 2-join of G (note that
Qu,S = {u} and by (viii) of the definition of skeleton, every rung of HS is of
length at least 2). 2

7 Recognition algorithm

In this section we give a recognition algorithm and a structure theorem for
the class of (theta,wheel)-free graph. For this, most of the necessary work
is already done in [7] (see Sections 6 and 7, where all important steps in the
proof are given for (theta,wheel)-graphs).

To obtain a recognition algorithm for (theta,wheel)-free graphs we mod-
ify the algorithm given in Theorem 7.6 of [7] for only-pyramid graphs. In
fact, the only modification that should be made is the change of the subrou-
tine that checks whether a graph is basic. A recognition algorithm for basic
(theta,wheel)-free graphs is given in the following lemma.

Lemma 7.1 There is an O(n2m)-time algorithm that decides whether an
input graph is the line graph of a triangle-free chordless graph or a P-graph.

proof — By Lemma 7.4 from [7], there is an O(n2m)-time algorithm that
decides whether an input graph is the line graph of a triangle-free chordless
graph. So, it is enough to give an O(n2m)-time algorithm that decides
whether an input graph is a P-graph.

First, in time O(n2m) we can find the set S of all centers of claws in G.
If S = ∅, or S does not induce a clique, then G is not a P-graph. So, assume
that S induces a non-empty clique. Next, let K be a maximal clique of G
that contains S, unless |S| = 1, in which case take K = S if the vertex of S
is not contained in a clique of size 3, or K is a maximal clique of size at least
3 that contains S otherwise. Now, let G′ be the graph obtained from G by
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removing all vertices of K (and edges incident with them). Using Lemma
7.4 from [7] we decide (in time O(n2m)) whether G′ is a line graph of a
triangle-free chordless graph, and if it is find R such that G′ = L(R) (if G′ is
not a line graph of a triangle-free chordless graph, then G is not a P-graph).
Now, we check whether R is a k-skeleton, where k = |K|. To do this, first
we find all pendant edges of R. We name vertices of K with numbers 1 to k,
and give labels to the pendant edges of R according to their neighbor in K.
We test whether (i), (vi), (vii), (viii) and (xi) in the definition of a k-skeleton
are satisfied. Next, we check if (iii) is satisfied (in time O(n(n +m))) and
then if (iv) is satisfied (in time O(n2(n +m))). To check (v), note that an
edge e is contained in a cycle of R if and only if R \ e is connected, that is
(v) can be check in time O(m(n+m)) = O(n2m). Branches and limbs of R
can be found in time O(n + m) and the number of them is O(m). Hence,
(ii) and (ix) can be checked in time O(n+m+m2) = O(n2m). Finally, for
an attaching vertex x of R all x-petals can be found in time O(n+m), and
hence (x) can be be checked in time O(n(n+m)). 2

By the previous lemma, recognition of basic (theta,wheel)-free graphs
can be done in the same running time as the recognition of basic only-
pyramid graphs (used in [7]). Hence, the recognition algorithm for
(theta,wheel)-free graphs, that was explained above, has the same running
time as the algorithm given in Theorem 7.6 of [7]. This proves Theorem 1.3.

As in [7], our decomposition theorem for (theta,wheel)-free graphs can
be turned into a structure theorem as follows.

Let G1 be a graph that contains a clique K and G2 a graph that contains
the same clique K, and is node disjoint from G1 apart from the nodes of K.
The graph G1 ∪ G2 is the graph obtained from G1 and G2 by gluing along
a clique.

Let G1 be a graph that contains a path a2c2b2 such that c2 has degree 2,
and such that (V (G1) \ {a2, c2, b2}, {a2, c2, b2}) is a consistent almost 2-join
of G1 (consistent almost 2-join is a special type of almost 2-joins – for the
definition see [7]). Let G2, a1, c1, b1 be defined similarly. Let G be the graph
built on (V (G1) \ {a2, c2, b2}) ∪ (V (G2) \ {a1, c1, b1}) by keeping all edges
inherited from G1 and G2, and by adding all edges between NG1

(a2) and
NG2

(a1), and all edges between NG1
(b2) and NG2

(b1). Graph G is said to
be obtained from G1 and G2 by consistent 2-join composition. Observe that
(V (G1) \ {a2, c2, b2}, V (G2) \ {a1, c1, b1}) is a 2-join of G and that G1 and
G1 are the blocks of decomposition of G with respect to this 2-join.

Using the results from [7], it is straightforward to check the following
structure theorem. Every (theta,wheel)-free graph can be constructed as
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follows:

• Start with line graphs of triangle-free chordless graphs and P-graphs.

• Repeatedly use consistent 2-join compositions from previously con-
structed graphs.

• Gluing along a clique previously constructed graphs.
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