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Abstract 

We investigate the influence of the environment on the relaxation dynamics of well-defined H-

polymers diluted in a matrix of linear chains.  The molar mass of the linear chain matrix is 

systematically varied and the relaxation dynamics of the H-polymer is probed by means of linear 

viscoelastic measurements, with the aim to understand its altered motion in the different blends, 

compared to its pure melt state.  Our results indicate that short unentangled linear chains accelerate the 

relaxation of both the branches and the backbone of the H-polymers by acting as an effective solvent. 

On the other hand, the relaxation of the H-polymer in an entangled matrix is slowed-down, with the 

degree of retardation depending on the entanglements number of the linear chains. We show that this 

retardation can be quantified by considering that the H-polymers are moving in a dilated tube at the 

rhythm of the motion of the linear matrix.  

I. Introduction 

The tube model of Doi, Edwards and de Gennes1-3 provides the framework for a molecular 

understanding of the relationship between the topological structure of entangled polymer systems and 

their flow properties. The linear rheology of monodisperse entangled linear polymers is well 

understood and can be predicted with state-of-the-art tube-based molecular models4-7.  However, the 

current tube models are not yet at the level of refinement where they can universally predict the linear 

rheology of blends of two or more monodisperse polymers.  Most of the literature has focused on 

binary linear blends8-23 and blends of linear and star polymers24-32.  The underlying physics governing 

the blend relaxation is the constraint release (CR) effect of the faster relaxing short chains on the 

slower long chains10.  When changing the molecular structure of the probe (slower) polymer, CR may 

have a different influence on non-reptative terminal relaxation. However, other than experimental 

studies involving star and linear mixtures, there are only a few other studies of binary mixtures of 

well-characterized architecturally complex polymers33-35. Yet, such blends are encountered in all 
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technological applications. In this work, we wish to further understand the relaxation of such complex 

polymer blends by studying the viscoelastic response of a model H-polymer blended into linear chain 

matrices of different molar masses. The choice of the particular probe molecule is based on the fact 

that it is the simplest branched polymer after the stars, having two well-defined branching points. The 

established pom-pom polymer36,37 is nothing more that the H-polymer with more than two branches 

grafted in the ends of the linear backbone. 

The underlying problem with these models is the uncertainty around the interpretation of CR in 

describing the effect of the relaxation of surrounding chains on the motion of the tube surrounding the 

probe chain.  Examples of models which interpret CR include “self-consistent constraint release” 4,8,  

“double reptation”38,39, “constraint release Rouse”11,40 and “dynamic tube dilation”41,42.  Although they 

have shown to be successful in limited cases, these models are not universal for all types of blends, 

i.e., for a wide range of volume fractions and relaxation times of the respective monodisperse 

components. For instance, most tube model theories for polydisperse systems include a full dynamic 

tube dilation theory (DTD)37,41-43 where the relaxed segments are immediately taken as a solvent and 

act to enlarge the tube.  However, as was recently demonstrated17-19,33,44,45, it may be that only partial 

DTD is needed in order to provide a universal molecular picture for polydisperse polymers.  Watanabe 

demonstrated that full DTD is only applicable in the blend case of two monodisperse linear polymers 

where the components have widely separated relaxation times. Thus, from this example, it seems 

evident that the short component in polymer blends cannot always be considered as solvent for the 

relaxation of the long component, and that clear criteria are needed which allow determining the 

effective fraction of relaxed polymer diluting the entanglement network experienced by the slower 

polymers.  

A first criterion has been proposed by Struglinsky and Graessley10 in the specific case of binary 

linear blends. According to this criterion, relaxation of the long component takes place at a rate 

dictated by constraint release events only if the motion and renewal of the tube due to the loss/renewal 
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of topological constraints, known as (thermal) Constraint Release11,40, is much faster than the reptation 

of the long chains in their initial (thin) tube. In order to compare these times, the authors propose a 

new parameter, called the “Struglinsky-Graessley’ parameter, ݎௌீ, defined as the ratio of the reptation 

time of the long chains in an undilated tube (ʏL=3eZL
3, with e the relaxation time of a segment 

between two entanglements and ZL, the number of entanglements per long chain) and the Constraint 

Release Rouse time of this long component if it is diluted in a matrix of short chains (ʏCRR =SZL
2, with 

S=3eZS
3, the reptation time of the short chain):  

ௌீݎ    ൌ  ௓ಽ௓ೄయ ൌ  ெಽெ೐మெೄయ           (1) 

 

where ML and MS are the molecular weights of the long and short linear polymer chains, 

respectively. It must be noted that this criterion does not take into account the possible influence of 

the Contour Length Fluctuations (CLF) mechanism, which is known to significantly reduce the 

relaxation time of the long chains if these last ones contain few long-long entanglements (< 20).   

For dilute long chains, when the rSG value is smaller than a critical value, then reptation of the long 

chains occurs along the thin tube, otherwise, the long chains relax by Constraint Release Rouse 

faster than they can relax by reptation.  Hence, according to this criterion, the CR mechanism can be 

properly analyzed only if there is a distinct separation of time scales. However, in reality, this is 

often not the case. Furthermore, the critical value of rSG at which the transition takes place, from 

reptation in a thin tube to CR Rouse motion, is not accurately defined, and seems to be much lower 

than 1. For example, a critical value of 0.1 was determined from diffusivity measurements46, while 

Park and Larson21 found a value of 0.064 to be applicable in linear viscoelastic data. Also, this value 

does not account for the influence of contour length fluctuations of the short component. Tracer 

diffusion data for the long chains diffusing in a matrix of short chains demonstrated that reptation is 
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the dominant diffusion mechanism when short chains molar mass is above a critical value, whereas 

at smaller values, the diffusion coefficient associated with CR dominates46. Upon further review, 

Green and Kramer47 accounted additionally for contour length fluctuations and could also predict 

the crossover in Green’s diffusion data48. 

For more concentrated long chains, full relaxation by CR Rouse motion is prevented by 

entanglements between the long chains. Once the long component has occupied its dilated tube 

(which is only formed by the entanglements between long chains), further relaxation is either via 

reptation along the thin tube, or reptation (of the chain or of the thin tube) along a dilated tube 

formed by the entanglements between long chains, at a rate dictated by CR events. Reptation along 

the dilated tube is expected to occur at values of rSG greater than the number of entanglements along 

the dilated tube16,49. 

Others such as Liu et al.23 have experimentally explored the consequences of CR on chain 

dynamics. To this end, they have essentially  switched-off CR events by properly choosing blends 

with specific ratios of characteristic times of the components, say a short one and a much longer 

representing an effective ‘sea’ of fixed constraints. This type of study allows quantifying the 

“amount” of CR and is known as probe dynamics.  Indeed, when dilute short entangled polymer 

chains are added to a melt of long chains, the constraint release associated with the short chain 

entanglements can be effectively switched-off. Therefore, this situation is analogous to a mixture of 

dilute polymer chains in a cross-linked network23,50. Probe rheology on binary blends as a tool to 

determine the CR effects was also studied by Watanabe et al.19 and Matsumiya et al.44 by 

confronting viscoelastic and dielectric data of such blends, as well as by other authors51. In all these 

works, it was found that there is a retardation (slowing down) of the terminal relaxation time of the 

short polymer chains in the environment of long polymer chains. This demonstrates the important 

role of CR in speeding-up the relaxation processes (reptation or arm retraction). 
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 From the above, it is evident that one needs to distinguish the CR events in a blend.  Taking 

the example of earlier works2,17,18,49, Read et al.15,16 have simplified the CR picture by assigning only 

two constraint release states, corresponding to two specific tube diameters, as first proposed long 

ago2,49: the first state represents the long chains entangled with all other chains, while the second 

state only takes into account the entanglements of the long chains with other long chains. Thus, the 

simplified tube-based picture (Figure 1) is that of two tubes, one ‘thin’ tube (representative of all 

entanglements) contained in a ‘fat’ (dilated) tube (representative of entanglements involving only the 

long chains).  According to the SG criterion, the long chains reptate in the dilated tube (L
-/2 larger 

than the thin tube, with L being the weight fraction of long chains and , the dynamic dilution 

exponent) only if the Struglinsky-Graessley parameter ݎௌீ  is larger than the number of 

entanglements in the fat tube, otherwise their reptation will occur in the thin tube with no tube 

dilation .  

 

Figure 1:  Probe chain in a thin tube (taking into account all entanglements of long chains) trapped 

in a dilated tube (only based on the entanglements between the long chains).  There are two 

possibilities of long chain reptation: either in the thin tube with tube diameter a0 and length Leq,0 or 

in the dilated tube with tube diameter a= a0L
-/2 and length Leq = Leq,0L

/2. 
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This simplified description of CR, has been successfully used to model both linear 

viscoelasticity and nonlinear and elongational rheology of several bidisperse linear blends15,16,52.  A 

similar picture of thin and dilated tube was also used by van Ruymbeke et al.13,14 and Ebrahimi et 

al.31 for modelling the viscoelastic behavior of binary linear blends with well separated molar 

masses. In these models, it is assumed that the long chains can either move and relax in their thin 

tube, or relax in their fat tube but only at the rhythm of the destruction/re-construction of the 

entanglements involving short chains. Thus, while the contour length of the fat tube is shorter than 

that of the initial tube (see Figure 1: Leq/Leq,0 =L
/2), which speeds up reptation and CLF processes, 

the Rouse time associated with a long-long entanglement segment (i.e., a segment between two 

entanglements of long chains), ߬௟௢௡௚ି௟௢௡௚ǡ௘, is longer than its intrinsic Rouse time (equal to e/L
2) 

since it depends on the lifetime of a long-short entanglement, long-short and on the number of such 

entanglements per long-long entanglement segment, S/L.31 

  ߬ ௟௢௡௚ି௟௢௡௚ǡ௘ ൌ ݔܽ݉ ൬ ఛ೐జಽమ ǡ ߬௟௢௡௚ି௦௛௢௥௧ ቀజೄజಽቁଶ൰,      (2) 

with S being the weight fraction of short chains. These slow motions in a fat tube lead to extra 

relaxation processes, defined as the CR-activated CLF and CR-activated reptation processes, which 

take place in addition to the relaxation of the chains in their thin tube14-16,53.  

As shown in ref. [13,14, 53], when the CR-activated CLF has a large influence on the relaxation of 

long chains, an enhanced effect of CR process from the short chains is measured, corresponding to 

an experimentally determined apparent dynamic dilution exponent exp, which takes values close to 

4/3 (as determined based on the evolution of the terminal modulus).  Whereas this issue remains 

unsettled, it has been shown recently that by accounting for CR-CLF process, the viscoelastic 
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properties of all these binary linear blends with well-separated molar masses can be correctly 

predicted with a (theoretically determined) dynamic dilution exponent =1.14, 53,54   

The objective of the present work is to extend the investigation of CR effect in more complex  

polymer blends, involving branched polymers which display hierarchical relaxation of their 

different generations of branches in the monodisperse state and a respective tunable nonlinear 

response (for example, extension hardening). To this end, we investigate the relaxation dynamics of 

binary mixtures of entangled H-polymer (the probe)55 in linear polymers (the matrix) of varying 

molar mass. In order to ensure working with model systems, a combination of state-of-the art 

synthesis, characterization tools and careful rheological measurements is needed. The specific H-

polymer used in this study (coded as H3A1) is nearly monodisperse and its linear viscoelastic 

properties have been well reported in the past7,55,56. In the melt state, the H-polymer undergoes 

hierarchical relaxation where the four arms retract by fluctuations and act as a solvent for the 

backbone which eventually relaxes only after the arms have fully retracted36. Additional friction 

coming from the branches must be taken into account in the backbone relaxation, both in reptation 

(center of mass diffusion of chains out of their tube) and in CLF processes7. In addition, there are 

continuously constraint release events occurring when relaxed segments release topological 

constraints on unrelaxed segments thus speeding up their relaxation process57, 58, 59. While the H3A1 

polymer is in a very long linear matrix, constraint release events on the H-polymer should be turned 

off and consequently its relaxation should be slowed down. In contrast, the H-polymer in a short 

linear matrix should demonstrate a speeding up of the relaxation of the H-polymer due to additional 

constraint release events from the surrounding short chains. Quantifying these effects is a real 

challenge that we would like to address in this work.  

In order to systematically investigate the influence of CR, we have  

selected several sets of H/linear blends: first, by using unentangled linear chains, the H-polymers are 
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expected to relax as in a real solvent. Therefore, at low concentration of H-polymers, we can 

investigate the Rouse dynamics of such H-polymers. Then, by gradually increasing the molar mass 

of the linear chains and by varying the concentration of H-polymers, we aim at understanding  and 

quantifying the expected retardation matrix of the relaxation of the H-polymers, compared to their 

relaxation in an unentangled matrix, and discuss the range of validity of our results. The paper is 

organized as follows: Section II is an experimental section which includes details of the preparation 

of the mixtures and the methods of characterization such as DSC and Small Oscillatory Shear 

measurement (SAOS). In Section III , the experimental linear viscoelastic data of the different 

samples are presented and discussed. Based on the experimental results, we develop a model in 

Section IV in order to describe the relaxation of such blends. In Section V, the data are analyzed and 

discussed, based on this model. Conclusions and Perspective are presented in Section VI. 

 

II . Experimental  

II.1 Materials.  The H-polymer and linear polymers were all synthesized by anionic polymerization 

under high vacuum.  In the first blend series, the H-polystyrene H3A1, which was studied in ref. 

[55], was blended with a series of linear polystyrenes (PS) with varying molar mass (obtained either 

from Polymer Source (Montreal, Canada) or Polymer Standard Service (Mainz, Germany)).  The 

molecular characteristics of the H-polymer are listed in Table 1, while those of the linear polymers 

are listed in Table 2.    

The purity of the sample was checked by temperature gradient interaction chromatography (TGIC) 

since this technique allows efficiently separating polymers of different molar masses with much 

higher resolution than size exclusion chromatography. As detailed in refs. [60-62], it is based on 

temperature dependent adsorptive interaction of polymers to the stationary phase. TGIC 

chromatogram of H3A1 is shown in Figure 2. Well-overlapped chromatograms recorded by UV 
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(A260) and light scattering (R90) detectors indicate that the polymer has a very narrow dispersity. The 

dispersity determined by the light scattering detection is lower than 1.01. 

 

 

Figure 2: TGIC chromatogram of the H polystyrene H3A1. Separation condition: Nucleosil C18 

(150 x 4.6 mm, 500 Å, 7 ȝm), CH2Cl2/CH3CN (58/42. v/v) at 0.5 mL/min. Temperature program is 

shown in the plot.  

 

The linear PS samples with narrow dispersity were blended with H3A1, the latter being at volume 

fractions H = 1.5%, 3% and/or 10% (Table 2).  The volume fraction was calculated as the ratio of 

the mass of H3A1 mH and the total mass mT of the blend, since the densities of linear and H-PS are 

the same. The conformation of flexible polymers can be described as random walks and the ratio of 

their mean square end-to-end distance <R2
>0 and their molar mass is a constant.   For PS, <R2

>0/M = 

0.0043 nm2.63  In order to calculate the radius of gyration of H-PS, we use Kramer’s theorem and 

follow the procedure of Colby and Rubinstein8, according to which the radius of gyration Rg of an 

H-polymer is:  
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ܴ௚ ൌ ܾඨቀಿమೌ ାே್ቁమଶሺேೌାே್ሻ െ ଵଷሺேೌାே್ሻమ ൤ቀேଶೌ ൅ ௕ܰቁଷ െ ேೌయସ଼ ൨       (3) 

where b is the Kuhn length and Na/4 and Nb are the number of Kuhn monomers of each arm and the 

backbone, respectively. The resulting value is Rg=18 nm.  With the monomer volume V0 of PS being 

1.2 nm3, the overlap volume fraction, defined as the ratio of the chemical (occupied) volume of a 

single polymer to the pervaded volume of the polymer chain, is:  

כ߶ ൌ ௏బሺேೌାே್ሻరయగோ೒య            (4) 

For the present H-PS in theta solvent conditions, ߶כ ൎ 4.4%.  

The samples were carefully weighed, sufficient toluene or tetrahydrofuran (THF) was added 

in order to completely dilute the mixture and the blend was slowly mixed (for a minimum of one 

day). In general, mixing was performed using a tumbler and THF was gradually replaced by toluene. 

To avoid the risk of degradation, the amount of THF was kept to a minimum.  Following mixing, 

the solvent was evaporated, first slowly and then more rapidly as the temperature was gradually 

increased well above the glass transition temperature in a well-sealed vacuum oven. This procedure 

ensured complete evaporation of the entire solvent, as checked by monitoring the mass of the 

mixture.   

The molar mass between entanglements Me  in Table 1 has been set to 14.8 kg/mol, based on 

the analysis of monodisperse samples with the time marching algorithm (TMA) tube model, as well 

as previous works with entangled PS samples58.  In the framework of tube model analysis, the value 

of the plateau modulus ܩே଴  is then calculated from Me, the mass density of the polymer ȡ, the 

universal gas constant R and the temperature T:65  

ே଴ܩ ൌ ସହ ఘோ்ெ೐            (5) 
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Its value was fixed to 0.23 MPa, consistently with [14, 64], which is close to the usual value 

proposed in literature, of 0.20 MPa.63,66 In addition, the weight-average molar mass of an arm Ma, 

the number of branch points q, the number of entanglements per arm Za=Ma/Me, the number of 

backbone entanglements Zb=Mb/Me,  Rg and ĳ* are listed in Table 1.  

 

Table 1: Molecular Characteristics of H-polystyrene (from Roovers55) 1 

   code   Me 

(kg/mol) 

M b 

(kg/mol) 

 

Zb 

M a 

 (kg/mol) 

 

Za 

 

q  

M total 

(kg/mol) 

Rg 

(nm) 

ʔ* 

H3A1 14.8 123 8.3 132 8.9 2 674 18.6 0.04 

1 The molar masses are weight-averaged and the polydispersity is below 1.1. 

 

Table 2: Molecular characteristics of H/linear polystyrene mixtures  

Code of linear 

matrix 

M lin = M w of linear 

matrix [kg/mol] 

M w/M n 
4 Volume fraction of 

H in the blends (H) 

M w,,total [kg/mol]     

of the blends 5 

PS 5k 1 5.1 1.08 1.5%, 3%, 10% 14.8, 24.5, 70 

PS 22k  1 22.2 1.07 1.5%, 3%, 10% 31.6, 41, 85 

PS 64k  1 64 1.06 1.5%, 3%, 10% 60, 70, 111 

PS 129k 1  129 1.04 3%, 10% 147, 181 

PS 185k  2 182 1.03 1.5%, 3%, 10% 189, 199, 229 

PS 483k 2 483 1.05 10% 500 

PS 1 M 3 1000 <1.1 10% 965 

1 from Polymer Source, Canada 

2 from Polymer Standard Service, Germany 

3 from University of Athens, Greece 

4 obtained via Size Exclusion Chromatography (see section II.3). 

5 average values estimated from the components  
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II.2 Differential Scanning Calorimetry (DSC). DSC measurements were performed in order to 

determine the glass temperature Tg of the different samples investigated.  A standard calorimeter 

(PL-DSC from TA) was used and all the samples were heated and cooled at a rate of 10 °C/min. The 

first run was not considered, as is customary. 

II.3 Size Exclusion Chromatography (SEC). For SEC analysis of the PS samples, two columns 

(Agilent, Mixed-B two-column set, 300 × 7.5 mm i.d.) were used at a column temperature of 40 °C. 

Eluent was THF (Samchun, HPLC grade) at a flow rate of 0.8 mL/min. SEC chromatograms were 

recorded with a light scattering (LS)/refractive index (RI)/viscometer (DP) (Viscotek TDA 302) and 

a UV absorption detector (TSP, UV2000 at 260 nm wavelength) for on-line determination of 

absolute molar mass of polymers. The dn/dc value for PS in THF is 0.185 mL/g. Polymer samples 

were dissolved in THF at a concentration of ~1 mg/mL, and the injection volume was 100 ȝL. 

II. 5 Small Amplitude Oscillatory Shear Results (SAOS). SAOS measurements were performed 

for the monodisperse and blend PS samples on an ARES 2KFRTN1 strain-controlled rheometer (TA 

Instruments, USA) at temperatures ranging from 110°C to 190°C with an Invar (a copper−iron alloy 

with low thermal expansion) parallel plate geometry of 8, 13 and 25 mm diameter.  Temperature 

control was achieved with a convection oven yielding an accuracy of  0.1C and the measurements 

were always performed in a nitrogen environment in order to reduce the risk of degradation.  Time-

temperature superposition (TTS)67,68 was performed at a reference temperature of 130°C and the 

generated master curves allowed obtaining the relevant viscoelastic parameters, i.e., Ĳe,  GN
0  and 

terminal relaxation time. Figure 3 depicts the temperature-dependent horizontal and vertical shift 

factors along with the fit of the former by means of the WLF equation67:  
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logሺ்ܽሻ ൌ ି஼భ൫்ି்ೝ೐೑൯஼మା்ି்ೝ೐೑          (6) 

The fit yielded C1=8.4 and C2=80°C at a reference temperature Tref of 130C, consistent with 

literature values when compared to the same reference temperature35,67,69.  The vertical (modulus-

scale) shift factors bT were calculated from the density compensation67:  

்ܾ ൌ ఘሺ்ሻሺ்ሻఘ൫்ೝ೐೑൯൫்ೝ೐೑൯          (7) 

with the temperature-dependent density being70: 

ሺܶሻߩ ൌ ͳǤʹͷͲ͵ െ ͸ǤͲͷ ͳͲିସሺܶሻ                  (8) 

 

Figure 3:  Horizontal aT and vertical bT shift factors associated to the PS linear and blend samples at 

Tref=130°C.  

Creep measurements were performed in order to extend the range of probed time scales 

where dynamic measurements were limited by the minimum torque resolution of the rheometer or 

by thermal degradation of the samples. Creep experiments were performed on a Physica MCR702 

rheometer (Anton Paar GmbH, Germany), equipped with a hybrid temperature control unit 



15 
 

(CTD180) which combines a Peltier element with gas convection. Nitrogen atmosphere was used to 

prevent degradation upon heating. For each sample, two different creep experiments were 

performed, with two different levels of the applied stress. The overlap of the resulting creep 

compliances demonstrated that the tests were carried out in linear conditions. The creep compliance 

was converted into dynamic moduli by means of the NLreg software, based on the Tikhonov 

regularization method65. 

 

III Experimental Results 

III .1 DSC.  Table 3 depicts the measured glass temperatures of nearly all samples. As expected, a 

difference in Tg between the lowest-Mw and the highest-Mw linear PS sample is observed. It is 

typically described by the Fox-Flory equation Tg=Tg,∞-C/Mn, where Tg,∞ is the limiting glass 

temperature at high molar mass, C=1.1x105 gK/mol is constant depending on chemistry and M the 

molar mass.72,73. Here we take Tg,∞=107C based on the data of Table 3 (about 10% higher than that 

reported by Rubinstein and Colby72, apparently due to the calibration of the DSC instrument used). 

The data of Table 3 do follow the predicted dependence on molar mass of Tg. Since Tg differences 

correspond to horizontal shift in the SAOS frequency axis, comparison of linear and blend 

viscoelastic curves with respect to one another requires to horizontally shift the PS22k, the PS64k 

and the PS1000k curves in order to obtain the same temperature difference between the reference 

temperature Tref  of the master curves and their respective glass transition temperatures, (Tref - Tg). 

The average Tg value of 106°C was chosen as the reference transition temperature Tg,ref. As 

expected, the barely entangled linear PS22k has a lower Tg (of 103±1°C) compared to Tg,ref. Since in 

this case, the (Tg-Tg,ref) difference corresponds to -3°C, the PS22k data have been shifted to Tref - 

3°C=127°C. The shift factor needed in order to compensate this difference is evaluated to be 0.47, 

while it is equal to 0.6 for PS64k which has a Tg of 104±1°C.  In contrast, PS1000k has a higher Tg 
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value of 107±1°C and a corresponding shift factor of 1.3.  Concerning the mixtures, their Tg values 

are rationalized by the Fox mixing rule  1/Tg,blend=w/Tg,1+(1-w)/Tg,2,  where 1 and 2 refer to the two 

constituents of the blend and w is the weight fraction74.  

 Table 3: Glass temperatures as obtained by DSC  

 

 

 

 

 

 

I II .2 Linear viscoelasticity 

I II .2.1 Monodisperse Polymers:  In order to study the viscoelastic properties of the H-polystyrenes 

diluted in the different linear matrices, it is important to first determine the behaviour and main 

relaxation times of the monodisperse components. Their rheological data are shown in Figure 4. For 

the monodisperse H-polymer, one can observe two different relaxation peaks (or more accurately, 

two different shoulders) in the loss modulus curve (shown in the figure by arrows): the first peak 

corresponds to the arm retraction process and the second shoulder observed at lower frequency, is 

representative of the relaxation of the backbone. However, while these two peaks are detectable, 

they are not well-separated. Similarly, in the corresponding storage modulus G’, one can hardly see 

the two plateau regimes that are expected from the hierarchical relaxation of such an architecturally 

complex macromolecule. This is due to the large number of arm entanglements, which makes the 

Linear and blend PS Tg (°C) 

PS 22k 103±1 

PS 64k 104±1 

PS 185k 106±1 

             PS 1000k 107±1 

            H3A1               105.5 

    PS 129k10% H3A1 106±1 

    PS 185k10% H3A1 106±1 
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backbone heavily diluted by the (relaxed) arms. Indeed, the volume fraction of the inner part of the 

backbone, b, is only of 19% and its number of entanglements, Zb, is approximately 8. Therefore if 

we consider full Dynamic Tube Dilation (DTD) and assume that the branches are fully relaxed, the 

effective number of entanglements of the (dynamically diluted) backbone Zb,dil= Zbb
, , reduces to 

only 1.6. This means that the backbone chains are nearly unentangled (with other backbone chains) 

and relax rapidly after the relaxation of the branches.  
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Figure 4: Experimental storage and loss moduli and tan master curves of H-PS sample H3A1 

(thick black ฀) and of the linear matrices (5k (blue o), 22k(red  >), 64k (grey ), 129k (green ), 

185(brown ), 483k (cyan ) and 1000k (violet <)), at the reference temperature of 130°C for 

samples PS 64k, PS 129k, PS 185k and PS483k, respectively, and at iso-Tg condition for the other 

samples, with (Tref - Tg) = 24°C (see section III.1). Continuous curves represent data obtained from 

creep measurements.  The arrows indicate the relaxation peaks of the arms and backbone of the H 

polymer. 

 

  Figure 4 also compares the linear viscoelastic master curves of the seven linear monodisperse 

PS matrices (5k, 22k, 64k, 129k, 185k, 483k and 1000k) with that of H3A1. The timescale 

separation between the linear and probe arm and backbone relaxations is critically important for the 

assessment of constraint release.  The main relaxation features of the linear polymers are directly 

observed in the rheological data. The G’(Ȧ) and G’’(Ȧ) moduli for the PS linear 5k and 22k, whose 

Mw is below or roughly equal to Me, does not show any rubbery plateau and exhibits a Rouse 

relaxation. The other well-entangled PS linear samples have a characteristic plateau modulus (which 

extends with increasing Mw) and a characteristic G’=G’’ crossover relaxation time at Ĳlin=1/Ȧc 

(since the linear samples are monodisperse).  In addition, the characteristic terminal slopes of 2 

(G’~Ȧ2) and 1 (G’~Ȧ) are observed at low frequency. Note that the low-frequency data of 129k 

exhibit weaker slopes, apparently due to some large-molar mass tail (despite the low polydispersity 

reported in Table 2). This however does not influence the message of the work and will not be 

further analyzed.  

 

I II .2.2 H-linear polymer blends:  Figure 5 depicts the linear viscoelastic storage moduli of the 

binary blends composed of 10 wt% of sample H3A1 and 90% of linear PS samples. It is observed 

that the relaxation of the H-polymers diluted in a linear matrix with Mw ≤ 185 kg/mol is much faster 
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than in its pure H-environment (see Figure 4). Indeed, their characteristic rheological features are 

overshadowed by the relaxation of the linear polymer. This feature is due to the small amount of H-

polymer in the blend, and can be explained as follows: as observed in Figure 5, the relaxation of the 

linear chains PS5k to PS185k takes place well before the time at which the retraction of the 

branches of H3A1 starts (at  around 10-3 rad/s). Therefore, one could consider that for the 

corresponding blends, the linear matrix acts as a solvent for the terminal relaxation of the H-

polymer. Under these conditions, the effective molar mass between two entanglements, Me, after the 

relaxation of the linear matrix is equal to Me,0/H = 148 kg/mol, i.e., larger than the molar mass of 

the H-branches (132 kg/mol) and about 3 times smaller than the molar mass of the end-to-end 

longest path of the H-PS. Thus, for these blends, if DTD holds the H-polymers should relax 

according to a Constraint – Release Rouse (CRR) process, i.e., without the appearance of a second, 

low-frequency plateau. This hypothesis will be tested and discussed in Section V.  

 

Figure 5:  Linear viscoelastic storage modulus at Tref=130°C of the binary blends composed of 10 

wt% H3A1 and 90 st% of linear PS of varying Mw (5k, 22k, 64k, 129k, 185k, 483k and 1000k) 

samples. For samples 483k and 1000k, the continuous curves represent data obtained from creep 
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measurements. In the former case there is unambiguous evidence of the presence of a slow terminal 

mode (which is not fully detected), whereas in the latter case there is only a hint of possible 

(anticipated) slow mode. 

 

  On the other hand, Figure 5 shows that the blends of H-polymer in the shortest linear 

matrices exhibit the strongest effect in their G’ (and G’’). Indeed, the PS5k and the PS22k mixtures 

have noticeably different G’(Ȧ) moduli compared to the linear monodisperse matrix (see Figure 4), 

with two distinct terminal relaxation modes. On the other hand, the presence of H-polymer in the 

longer matrices PS64k, PS129k and PS185k only leads to a weak, albeit unambiguous shoulder in 

the low-frequency data. This significant change observed in the shape of G’ with the molar mass of 

the linear matrix already indicates that the relaxation of the H-polymers cannot be explained by 

considering their relaxation by CRR process together with the conventional definition of CRR time 

(i.e. ʏCRR ൌ linZH
2, with lin the relaxation time of the linear matrix and ZH, the number of 

entanglements along the entire backbone of a H-polymer). Indeed, in such a case, the ratio (blend 

/lin) between the terminal time of the blend and the relaxation time of the linear matrix would have 

been constant for all the blends, which is obviously not the case. Instead, as illustrated in Figure 6, 

this ratio increases with decreasing molar mass of the linear chains, Mlin.  A similar trend has been 

observed in other binary mixtures9,31, and will be further discussed in Section V.  
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Figure 6. Comparison of the terminal relaxation time of blends with 10 wt% of H-PS, blend, and that  

of the linear matrix,lin, as function of the molar mass of the latter, Mlin at 130 oC. The terminal time 

H and Rouse time R(H) of the monodisperse H-PS are indicated by horizontal full and dashed lines, 

respectively. The terminal times were determined experimentally by fitting the terminal regime with 

two lines of slopes 1 and 2 (for G” and G’, respectively) and inverting the cross-over frequency. The 

only exceptions are the blends in the two largest molar masses linear matrices for which the terminal 

relaxation was too slow to be detected even by creep measurements. For the 483k matrix, the 

relaxation time was determined from the theoretical curves and involves some uncertainty. This was 

not attempted for the 1000k matrix because the uncertainty is huge (see also Figure 5). 

 

If a longer linear matrix is used, such as PS 483k or PS1000k, one cannot easily discern the slow 

mode signalling the relaxation of the H-polymers, even with creep measurements. Indeed, at very 

low frequencies the onset of a slow mode is observed in the 483k matrix and only a hint is given 

10
3

10
4

10
5

10
6

10
-2

10
0

10
2

10
4

10
6

M
lin

 [g/mol]

 lin
, 

bl
en

d, 
H

 

10 wt% H

Acceleration factor

 
H

 
blend

 
lin

 3.4

Retardation
factor

 
R

(H)



22 
 

(small change in low-frequcny moduli slopes) for the 1000k (this is   further discussed in Section 

V.4). Therefore, the relaxation time of the H polymer in the 483k matrix has been determined from 

the theoretical predictions, whereas for the case of 1000k matrix it is not reported due to larger 

uncertainty.  

 

IV. Modeling analysis 

In this Section we first briefly review the main features of the TMA model used for 

determining the viscoelastic properties of the monodisperse samples. This model has been presented 

in detail in ref. [14] for the linear matrix and ref. [7] for the H-samples. Then, based on the 

observations made in Section III, we propose a simple model to describe the relaxation of the 

H/linear blends.  

IV.1 Time marching algorithm (TMA) : The relaxation modulus of a polymer melt, G(t), is 

described by taking into account two different contributions:  

 

฀

G(t) GR(t)Gd(t)                (9)            

The first contribution, GR(t), describes the high-frequency Rouse modes taking place at time scales 

shorter than the Rouse entanglement time e, before the chains have time to experience the tube, as 

well as the longitudinal Rouse motion4:                       

ሻݐோሺܩ ൌ σ జೖఘோ்ெೖ ቄଵସ σ ݌ݔ݁ ቀ ି௣మ௧ఛೃሺெೖሻቁ ൅௓ೖ௣ୀଵ σ ݌ݔ݁ ቀ ିଶ௣మ௧ఛೃሺெೖሻቁ௡௣ୀ௓ೖାଵ ቅ௞ ,    (10) 

with k and R(Mk) representing the weight fraction and the Rouse time of the chain k, respectively 

(for monodisperse samples, k is fixed to 1). The second contribution, Gd(t), describes the relaxation 

of the whole chains through disentanglement process (reptation, Contour Length Fluctuations (CLF) 
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and Constraint Release). It depends on both the unrelaxed fraction of initial tube segments, ’(t), 

and the dilation factor (t): 

฀

Gd(t) GN

0 (t) GN

0 '(t){(t)}.       (11) 

The dilation factor ׋(t) takes into account the effect of CR on the chain entanglements and defines 

the diameter of the dilated tube (such as a=a0. ׋(t)-/2). It is a priori equal to the unrelaxed fraction 

of initial tube segments, ’(t). However, its decrease through time is limited by the fact that it 

cannot decrease faster than by a (Constraint Release) Rouse process. Since this condition does not 

apply to monodisperse samples, we don’t consider it here.  

On the other hand, the unrelaxed fraction of initial tube segments, ’(t), is determined by summing 

up the survival probabilities (by reptation or fluctuations) of at all molecular segments xk of all the 

different chains k: 

߮ᇱሺݐሻ ൌ σ ߭௞ ׬ ௞ǡݔ௥௘௣௧ሺ݌ ௞ǡݔ௙௟௨௖ሺ݌ ሻݐ ௞௫ೖୀଵ௫ೖୀ଴௞ݔ݀ ሻݐ      (12) 

As detailed in ref. [7], the probability prept(x,t) of a segment x to survive from reptation process at 

time t is given by the Doi and Edwards equation1, while the survival probability from fluctuation 

process is approximated by the decreasing exponential function, exp(-t/fluc(x)), where fluc (x) is the 

fluctuations time corresponding to segment x. 

It must be noted that in the case of unentangled chains (such as the linear matrix 5k and 22k), the 

polymer fully relaxes by Rouse process: 

ሻݐ௟௜௡ሺܩ ൌ ఘோ்ெಽ σ ݌ݔ݁ ቀ ିଶ௣మఛೃሺெಽሻቁ௣ୀே௣ୀଵ         (13) 

When diluted in a very short chain matrix, the H-polymers can also relax by a Rouse relaxation. 

This is discussed in section IV.3. 
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Subsequently, the storage and loss moduli are determined from G(t) by using an 

approximation of Fourier transform, as proposed by Schwarzl.75. The material parameters of the 

model are the plateau modulus, ܩே଴ , the molar mass between two entanglements, Me, and the Rouse 

time of an entanglement segment, e. We consistently use the same best fit TMA parameters 

(Me=14.8k, 0
NG =230kPa, ʏe=0.5s and Į=1) for all PS samples (linear and H) at a temperature of 

130°C (or at iso-Tg condition for PS5, PS22 and PS1000k).  These values are consistent with other 

works64 when taking into account the horizontal and vertical shift factors associated with a 

temperature difference. 

IV .2. Monodisperse H-polymer:  The description of the relaxation of an H-polymer is more 

complex due to the hierarchical relaxation of its two generations of molecular segments (the 

branches and the inner part of the backbone). At timescales larger than Ĳe, the polymer relaxation 

starts with the relaxation of the arms by early and activated fluctuations. After the arms retraction, 

the backbone segments are free to move and will proceed to relax by fluctuations modes7. A 

specificity of the TMA model, compared to other tube models5,6, is to utilize a unique molecular 

coordinate system, from x=0 at the chain extremity to x=1 at the middle of the H-polymer (see 

cartoon in Figure 7a), in order to determine the fluctuation times of the inner backbone7. In such a 

way, continuity is ensured between the relaxation time of the last segment of the branches and the 

one of the first backbone segment. Within this reference system, the influence of branching chains is 

taken into account by considering an extra friction point in the fluctuations time of the molecular 

segments localized between the branching point (x=xbr) and (x=1), as illustrated in Figure 7b. In the 

terminal regime, the reptation of the (entire) backbone will eventually take over as fluctuations will 

become exponentially slow.  
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Figure 7: (a) H-polymer molecular coordinate systems. The first one, from the end of the branches, 

xarm=0, to the branch point, xarm=1, is used for determining the relaxation time of the molecular 

segments around the arms. The second one, from the end of the branches, x=0, to the middle of the 

backbone, x=1, is used to determine the relaxation time of the (inner) backbone. (b) At time longer 

than the relaxation time of the branches, these last ones are seen as extra friction points along the 

backbone of the H-polymer. 

 

As discussed in refs. [57, 58], the presence of the branches has mainly two opposite effects 

on the relaxation of the inner backbone: on one hand, the motion of the branching points is strongly 

slowed down, which leads to extra friction felt by the backbone. However, on the other hand, it 

leads to large DTD effect due to the fast motion of the branches, which act as a solvent for the 

relaxation of the inner backbone33. This solvent effect is taken into account through the rescale of 

Me in the calculation of the fluctuation times:  

ሻݔ௘ሺܯ  ൌ ெ೐ǡబଵିௌሺ௫ሻ  ,  for  ݔ௕௥ ൏ ݔ ൑ ͳ            (14) 

 

with S(x), the relaxed fraction of the H-polymers, i.e. acting as a solvent, at the time the segment x is 

relaxing: 
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ܵሺݔሻ ൌ ߭௔௥௠൅߭௕  ௫ି௫್ೝଵି௫್ೝ                (15) 

In equation 15, b represents the weight fraction of the inner part of the H backbone. Alternatively, 

the backbone can relax by a Rouse relaxation process (if the volume fraction of the arms is large 

enough as to completely dilute the backbone, such as there is no backbone-backbone entanglement). 

In such a case, the monomeric friction from the branching points must also be taken into account. 

IV.3. H-polymer diluted in an oligomeric linear matrix (M lin = 5 kg/mol): Based on the 

experimental results (see Section III), we now propose a simple approach to describe the relaxation 

of the H-polymers diluted in a solvent-like (unentangled) matrix. This one is based on the fact that 

the H-polymers either do not contain self-entanglements (for the blends of H-polymers diluted at 

concentrations of 1.5 wt% and 3 wt%), or only contain 2.6 self-entanglements (for blends containing 

10 wt% of H-polymers).  Therefore, we can safely assume that the H-polymers are never confined in 

their ‘dilated’ tube, which only includes the H-H entanglements. Furthermore, the relaxation of the 

oligomeric linear matrix of mass 5kg/mol is so fast that it seems reasonable to consider it as acting 

as a real solvent. Therefore, the relaxation of the H-polymer in the 5 kg/mol matrix should be fully 

described by a Rouse relaxation.  

Calculating the Rouse spectrum of branched polymer architectures is not trivial, and becomes 

more complicated as the degree of branching and asymmetry of the molecule is increased. In fact, 

for the special case of a symmetric H-Polymer it is possible to obtain the forms of the Rouse 

eigenmodes analytically, and so obtain simple equations that can be numerically solved to find the 

Rouse spectrum, as we detail in the Appendix. We suspect that a similar approach could be used (for 

example) for a Cayley tree architecture, but for molecules beyond that degree of symmetry it is 

likely that the only viable approach is numerical solution for eigenmodes of a Rouse connectivity 

matrix, as proposed in refs. [76-78] for star polymers. As an alternative, in the main body of the 

paper we detail an approximate approach based on the insight that at high frequencies all polymer 
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architectures have effectively the same Rouse relaxation spectrum (since at short timescales, Rouse 

relaxation involves the collective motion of short chain subsections, but is insensitive to the larger 

scale connectivity of the molecule). Only the longest Rouse modes, corresponding to collective 

motion of chain sections larger than the distance between branching points (or from branching point 

to chain end), are significantly affected by the molecular connectivity, and so give differences from 

one molecular architecture to another. We show in the Appendix that this approximate approach 

gives results very close to the exact calculation for an H-polymer. We consider that the approximate 

approach can be a useful starting point for application to more complex architectures and so focus 

on this in the main text. 

In the approximate approach, the longest Rouse mode is attributed to the relaxation of the 

largest molecular segment, i.e., the largest end-to-end path between two chain extremities, of mass 

equal to 132+2x123=387 kg/mol. This span molar mass is called MH hereafter. In such a way, we 

ensure keeping consistency with the Rouse relaxation of an H-polymer having two of its branches 

replaced by extremely small branches, thus nearly forming a linear chain of mass 387 kg/mol. In 

addition, the possible influence of the branching point on the Rouse motion of H-polymers must be 

taken into account.  Here, we assume (as detailed above) that for Rouse modes involving chain 

subsections smaller than one branch or the inner backbone, the branching points should have no 

effect on the Rouse relaxation. Hence for fast relaxations we simply use the Rouse spectrum of 

linear chains of mass MH. However, the slower motion and higher friction from side branches could 

potentially delay the longest Rouse modes, which involve molecular segments longer than Ma (132 

kg/mol) or Mb (123 kg/mol). In the specific case of the H-PS studied here, we assume that these long 

modes correspond to the entire chain (mode 1) or to half of the chain (mode 2) from the Rouse 

spectrum of linear chains of mass MH, as illustrated in Figure 8. 
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Figure 8: Description of the different Rouse modes present in the relaxation of unentangled H-

polymer diluted in an oligomeric linear matrix. The grey circles define the longest molecular 

segment which can relax according to its intrinsic Rouse relaxation. The longest modes, 1 and 2, are 

possibly delayed by the slow motion of the branching points or self-entanglements. 

Another potential source of delay, for the component of the relaxation modulus attributed to 

these two longest Rouse modes, is the few H-H entanglements, on average 2.6 per MH, which are 

present when the H-polymer is diluted at 10 wt%. Since they would affect exactly the same Rouse 

modes as the branching points, it is not easy to separate these two contributions. However, they 

should only affect the blends containing 10% of H-polymers, while the delay due to branching point 

motion should be detected whatever the H-concentration may be. In order to take into account these 

two slower Rouse modes, we introduced a possible delay, H, in their corresponding Rouse 

relaxation. The relaxation modulus can then be described, considering both the H-polymer and the 

unentangled matrix: 

ሻݐሺܩ ൌ ሻݐுሺܩ  ൅  ሻ           (16)ݐ௟௜௡ሺܩ

ሻݐுሺܩ ൌ ߭ு ఘோ்ெಹ  Ǥ  ቆσ ே௣ୀଷ݌ݔ݁ ቀ ିଶ ௣మ௧ఛೃ೚ೠೞ೐ሺெಹሻቁ ൅ σ ଶ௣ୀଵ݌ݔ݁ ቀ ିଶ ௣మ௧ఏಹ Ǥఛೃ೚ೠೞ೐ሺெಹሻቁቇ   (17) 
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ሻݐ௟௜௡ሺܩ ൌ ߭௟௜௡ ఘோ்ெ೗೔೙  Ǥ  ൬σ ே௣ୀଵ݌ݔ݁ ൬ ିଶ ௣మ௧ఛೃ೚ೠೞ೐ሺெ೗೔೙ሻ൰  ൰      (18) 

 with N, the number of Kuhn segments in the chain. In these equations, Rouse(Mlin)=eZlin
2 represents 

the Rouse time of the diluting linear chains, while Rouse(MH) =eZH
2 represents the Rouse time of a 

linear chain of mass equal to span molar mass, MH, i.e. without accounting for the possible influence 

of the branching points.  Equation (17) is therefore just a modified Rouse spectrum for such a linear 

chain, with the longest two modes delayed by factor H.  The value of H is not known and is 

determined in Section V, by best-fitting procedure on the viscoelastic data of this specific blend. 

While based on a single H-polymer one cannot investigate how this parameter depends on the H 

characteristics, it does not bring a large degree of freedom to the model since H should not depend 

on the linear matrix as long as the H-polymers are relaxing by Rouse modes.  

As noted above, in the Appendix we present an alternative to Equation (17) based on the 

exact solution of the Rouse model for the H-polymer architecture, comparing that result to Eq. (17).  

IV.4. H-polymer diluted in a weakly entangled short linear matrix (M L ൑ 185 kg/mol): A priori, 

the H-polymers diluted in an entangled linear matrix can relax according to numerous different 

mechanisms. They can relax in their thin tube, if the entanglement with the linear matrix has too 

long a lifetime to be neglected. At later times they might be considered to relax in a dynamically 

dilating  tube, as relaxation of the linear chains provides release of their entanglement constraints (if 

the H-polymers are sufficiently concentrated, entanglements between H-polymers would also need 

to be considered here). The process of enlarging the dynamically dilating tube is, in fact, the 

Constraint Release Rouse (CRR) process: the H-polymers are moving via Rouse motion in a sea of 

linear chains, at the rhythm of the destruction/re-construction of the entanglements involving the 

linear chains. Since the H3A1 samples diluted at 1.5, 3 or 10 wt% contain no or very few self-
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entanglements (see Section IV.3), the CRR process on its own provides a mechanism to relax 

practically the whole of the stress carried by the H-polymers. 

 Based on the discussion in Section III (see Figure 4), it seems reasonable to consider that the 

relaxation time of the short linear matrix (ML ൑ 185 kg/mol) is well-separated from those of the 

monodisperse H-polymer. Given this, we may assume that the CRR process is the fastest 

mechanism of the ones discussed above and so dominates the relaxation of the H-polymers. We will 

proceed on the assumption that it is the only relaxation mechanism, i.e. assuming all relaxation takes 

place via CRR and neglecting relaxation via tube escape (from thin or dynamically dilating tubes).  

We may anticipate that this approximation is best for the shortest linear chains, but  for longer linear 

chains, when CRR is slower, other relaxation mechanisms may become competitive.  

It is important to note that while the H-polymer diluted in both an unentangled and an entangled 

matrix, are relaxing by Rouse, the two systems are quite different: the (Constraint Release) Rouse 

motion of the H-polymer in an entangled matrix is governed by the motion of the linear chains (i.e. 

by long-short – see Equation 2), thus its terminal time can be much slower than in a oligomeric 

solvent. On the contrary, if the linear chains are too short to be entangled, the H-polymer relaxes 

according to its intrinsic Rouse process (i.e. governed by e) rather than through CRR process. 

Therefore, as illustrated in Figure 9, Rouse modes of the H-polymer in an entangled matrix must be 

divided into three categories: i) the intrinsic Rouse modes of the molecular segments shorter than 

one entangled segment, which take place from the time (t = 0) to (t = e); ii) The Rouse modes 

associated with molecular segments larger than Me but which do not require the motion of the 

branching point, i.e. associated with molecular segments shorter than min{Ma (132 kg/mol), Mb 

(123 kg/mol)}, which must involve a delay factor, matrix, in order to account for the influence of the 

slow motion of the linear chains; and iii) the longest modes (1-2), which are delayed by both the 
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linear matrix (matrix) and the slow motion of the branching points and/or the H-H 

entanglements(H).   

  

 

Figure 9: Description of the different Rouse modes present in the relaxation of H-polymer diluted in 

an entangled linear matrix. The red circles define the entanglement segments; the dashed grey 

circles define the longest molecular segment which can relax according to Constraint Release Rouse 

motion, at the rhythm of the motion of the linear chains. The dashed black circle describes the 

longest modes, 1 and 2, which are possibly delayed by both the linear matrix and the slow motion of 

the branching points and/or the few H-H entanglements. 

 

  From this scenario, we can determine the corresponding relaxation modulus, G(t). To do so, 

we use Equation (16) combined with the following expression for describing the H-polymer 

relaxation, which takes into account the possible delay in Rouse motion due to both the linear matrix 

(matrix) and the branching point and/or the H-H entanglements (H):   
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ሻݐுሺܩ ൌ ߭ு ێێۏ
ఘோ்ெಹۍێ  Ǥ ۈۉ 

σۇ ே௣ୀ௓ಹାଵ݌ݔ݁ ቀ ିଶ ௣మ௧ఛೃ೚ೠೞ೐ሺெಹሻቁ ൅ σ ௓ಹଷ݌ݔ݁ ቆ ିଶ ௣మ௧ఏ೘ೌ೟ೝ೔ೣ 
Ǥఛೃ೚ೠೞ೐ሺெಹሻቇ

 ൅ σ ଶ௣ୀଵ݌ݔ݁ ቆ ିଶ ௣మ௧ఏಹ Ǥఏ೘ೌ೟ೝ೔ೣ 
Ǥఛೃ೚ೠೞ೐ሺெಹሻቇ ۋی

ۊ
ۑۑے
ېۑ
 (19) 

with ZH, the number of initial entanglement segment along the end-to-end span segment of mass MH.  

 Furthermore, since the linear chains are entangled, their contribution to the relaxation modulus must 

include fast Rouse relaxation up to the entanglement segments, then their relaxation by CLF, 

reptation and CR: 

ሻݐ௟௜௡ሺܩ ൌ ߭௟௜௡ ൤ఘோ்ெ೗೔೙  Ǥ  ൬ଵସ σ ݌ݔ݁ ቀ ି௣మ௧ఛೃሺெ೗೔೙ሻቁ ൅௓೗೔೙௣ୀଵ σ ே௣ୀ௓೗೔೙݌ݔ݁ ൬ ିଶ ௣మ௧ఛೃ೚ೠೞ೐ሺெ೗೔೙ሻ൰  ൰ ൅
ேܩ ଴Ǥ  ߮௟௜௡ᇱሺݐሻǤ ൫߶௧௨௕௘ǡ௟௜௡ሺݐሻ൯ఈ൨ (20) 

In this equation, lin’(t) represents the unrelaxed fraction of initial tube segments of the linear matrix 

at time t, ranging from 1 at time (t=0) to 0 when the matrix is fully relaxed (since Glin(t) only 

focuses on the contribution from the linear chains), and ߶௧௨௕௘ǡ ௟௜௡ሺݐሻ describes the diameter of the 

tube in which the linear chains are moving, in function of time. Since at this time scale, the H-

polymer is still fully oriented,  ߶௧௨௕௘ǡ ௟௜௡ሺݐሻ is approximated as: 

߶௧௨௕௘ǡ ௟௜௡ሺݐሻ ൌ ߭ு ൅ ߭௟௜௡ Ǥ  ߮௟௜௡ᇱሺݐሻ         (21) 

 

Again, in these equations, a new parameter, matrix, appears. Contrary to H, this new parameter 

should vary as function of the molar mass of the linear chains since it represents the delay in the 

Rouse process of the H-polymer due to the slow motion of the linear matrix. However, if we assume 

that the relaxation time of the linear matrix is not influenced by the presence of the H-polymers, this 

parameter should not depend on the concentration of the latter. This assumption is valid here due to 
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the relatively low proportion of H-PS (from 1.5 wt% to 10wt%) and the rather fast relaxation of the 

linear chains (which occurs before DTD can influence their reptation process). As detailed in 

Section V, the parameter matrix is first considered as a fit parameter, determining its value in order 

to correctly describe the loss and storage moduli of the blends. Then, these best-fit values are 

discussed and rationalized for the different blends. 

 

V. Discussion 

V.1. Viscoelastic relaxation of monodisperse samples: Before applying the model developed in 

Section IV to the H/linear blends, we first compare the linear viscoelastic data of the reference 

samples with the curve predicted by the TMA model, based on Section IV.1. Results are shown in 

Figure 10. 
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Figure 10: Experimental Storage (o) and loss (฀) moduli of sample H3A1 H-polymer and of the 

linear matrices, at the master curve reference temperatures of 130°C. The continuous curves 

correspond to the data predicted with the TMA tube model (see Section IV.1). The dashed curves 

for samples 483k have been obtained from creep measurements. 

 

While the overall agreement between the experimental and the theoretical curves is remarkable, a 

few comments are in order. First, we observe a large deviation between model predictions and data 

in the case of sample 5k at high frequencies. This suggests that, as already observed in [79] or in 

[80], in this frequency domain, the chains are not relaxing as described by a pure Rouse process. 

Second, the model does not exactly capture the behavior of the 22k matrix at low frequencies. This 
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is due to the very small number of entanglements, equal to 1.48 per chain. While PS 5k and PS 22k 

are considered as not entangled and monodisperse in the model, we cannot exclude the presence of a 

few longer chains containing some entanglements, which slightly slows down their relaxation. In 

addition, we observe that the model correctly describes the terminal relaxation of the H-polymer. In 

this case, the entangled branches are considered to relax by early and activated fluctuations (see 

Section IV.2). However, the way the inner part of the backbone is relaxing is not clear. If we 

consider that the relaxed branches act as a solvent after their relaxation, we find that the inner part of 

the backbone is not entangled anymore, while the whole backbone (i.e. the longest end-to-end 

molecular segment) still contains few entanglements and thus, relaxes by fluctuations or reptation, 

rather than by a Rouse process. While this is this last approach which has been followed in this work 

(consistently with ref. 7), one should note that both approaches lead to similar results. Given the 

limited data available, we cannot confirm the validity of either approach and leave this question 

open for future investigations.   

V.2. Dilution of H-polymer in oligomeric linear chains: We next investigate the relaxation 

dynamics of a binary mixture consisting of 1.5 wt%, 3 wt% or 10 wt% of H-polymer (probe) diluted 

in oligomeric linear matrix, more specifically PS linear 5k (unentangled). The viscoelastic properties 

of this sample are modelled based on Equations (16-18) based on the Rouse model. As discussed in 

Section IV.2, the parameter H is determined by best fitting procedure. As shown in Figure 11a, the 

experimental data of the blends containing only 1.5 or 3 wt% of H-polymer (in the unentangled 

state) are very well captured by considering H =1. This means that the relaxation is well described 

by a Rouse process, and that the longest Rouse mode corresponds to the intrinsic Rouse relaxation 

of the longest end-to-end path between two chain extremities, i.e. the Rouse time of the H backbone 

in an oligomeric polystyrene at isofrictional condition. Thus, no specific delay coming from the 

branching points is observed, as we could have expected. The generality of this result is however not 

clear, since it is possible that the observed insensitivity of Rouse relaxation to the branching points 
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is due to the low number of branches attached to the polymer backbone in the specific case of a H-

polymer. Furthermore, for these two blends, the relaxation of the H-polymers is independent of their 

weight fraction. This can be confirmed in Figure 11b, where the storage moduli of the three samples 

have been vertically shifted by a factor (1/H): it is observed that the relaxation peak of the samples 

containing 1.5 wt% and 3 wt% of H-polymer superimpose very well.  

On the contrary, at 10 wt% in an oligomeric matrix, the H-polymer exhibits longer relaxation 

time (see Figure 11b). Whereas the good superposition of the shifted experimental data at 

intermediate frequency demonstrates that its relaxation mechanism has the same origin as those of 

the two other blends (i.e., it is well-described by a Rouse relaxation process), its longest (terminal) 

mode is longer. As shown in Figure 12, the latter is well captured if the value of H is fixed to 2. As 

already mentioned, this larger value found with a 10 wt% concentration of H-polymer can be 

attributed to a delay of the longest relaxation modes due to the presence of a few entanglements 

(2.6) between the H-polymers. . In Figure 13, the influence of the delay of longest Rouse modes, 

can be observed by comparing the model predictions with H = 1 (dotted curves) and H = 2 

(continuous curves). Hence, it can be concluded that the influence of this parameter is rather limited. 

While the value of H =2 has been fixed here (by best-fitting process), the same value will be used 

for all blends composed of 10 wt% of H-polymer. 

In order to get further insight about the sample relaxation, we analyze in the following the 

theoretical storage and loss moduli by considering the contribution of each component, i.e., the 

linear chains, and the H-polymer. From this decomposition, it is clear that the slow gradual decrease 

observed for G’ at intermediate frequencies (10-2 rad/s to 1 rad/s) is due to the Rouse modes of the 

H-polymer, as observed with 1.5 or 3 wt% of H-polymer. Since the H-polymers are diluted in a 

‘solvent’ matrix, this Rouse relaxation is intrinsic to them and therefore, could never become shorter 

even if a shorter linear matrix was used (while keeping constant T-Tg). This explains why the 
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signature of the H-polymer is so pronounced when it is blended into a very short linear matrix, 

where the ratio between their respective relaxation times, 
ఛೃǡಹఛೃǡಽ , becomes larger with a shorter matrix. 

 

Figure 11: (a) Comparison between experimental (symbols and dashed curves) and theoretical 

(continuous curves) linear rheology data of 1.5 wt% (exp. data: black o and dashed curve (creep); 

predicted data: continuous grey curve) and 3 wt% (exp. data: blue  and dashed curve (creep); 

predicted data: continuous light blue curve) of H-polymer diluted in the PS5k linear matrix, at Tref 

=130C. The parameter H has been fixed to 1. (b) Experimental storage modulus of 1.5 wt% (o), 3 

wt% () and 10 wt% (฀) of H-polymer diluted in the PS5k linear matrix, vertically shifted by 

dividing G’() by the volume fraction of H-polymer,H. 
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Figure 12: Comparison between experimental (o) and theoretical (continuous black curves) linear 

rheology data of 10 wt% of H-polymer diluted in the PS5k linear matrix, at Tref =130C. The 

parameter H has been fixed to 2. The curves represent the contributions of the H-polymer 

(continuous red) and the linear matrix (dashed-dotted grey) to the moduli. The dashed red curves 

correspond to the predictions with H = 1. 

 

Figures 11 and 12 also justify our choice to consider the longest end-to-end path on the H-polymer 

(the span molecular weight MH = Mb +2Ma) in order to define the longest Rouse mode (see Section 

IV.3). It should be noted that if the arms of the H-polymers were considered as fully relaxed at times 

longer than the Rouse time of molecular segments of mass Ma, 80 wt% of the H-polymers would 

have already relaxed at a frequency around 10-2 rad/s.  
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V.3. Dilution of H-polymer in short linear chains: As the molar mass of linear chains is increased 

above Me, they no longer act as a solvent for the H-polymer, which is then expected to relax by 

Constraint Release Rouse (at the rhythm of the disentanglement/entanglement process of the linear 

chains) rather than by intrinsic Rouse relaxation. As described in Section IV.4., in our model, this is 

taken into account by considering the parameter matrix, which represents the retardation factor 

between these two Rouse processes: ߠ௠௔௧௥௜௫ ൌ ఛ಴ೃೃǡಹఛೃǡಹ   (see Figure 6) and by using Equation (19) in 

order to model the relaxation of the H-polymers in the blends. 

 We first apply the model to blends with a barely entangled 22k linear matrix, which is 

considered to fully relax by Rouse motion (see Equation 18). However, since these linear chains are 

larger than Me, even marginally, one cannot exclude that their presence slightly delays the relaxation 

of the H-polymers. In fact, this delay is confirmed in Figure 5, which shows that the relaxation time 

of the H-polymer is slightly longer in the 22k matrix compared to the 5k matrix. Since the value of ߠு  is fixed to 2 for the blends with 10 wt% of H-polymer (see Section V.2), the value of the 

retardation factor ߠ௠௔௧௥௜௫ is determined by a best-fitting procedure on the blend with 10 wt% H-PS 

in the 90 wt% 22k matrix  (since it is the only unknown) with results shown in Figure 14. A value  ߠ௠௔௧௥௜௫ =1.5 is found, which represents a small delay effect of the barely entangled linear matrix on 

the motion of the H-polymer, confirming that in this case the latter relaxes as if the 22k matrix  is 

nearly an oligomeric solvent. It is interesting to note that despite this small effect on the H-

relaxation, the relaxation of the linear 22k matrix is much slower than that of the 5k matrix (see 

Figure 10). Therefore, the G’ shoulder corresponding to the H-relaxation is much less pronounced in 

the 22k matrix than in the 5k matrix.   

As mentioned in Section IV.4, the retardation factor ߠ௠௔௧௥௜௫ should only depend on the molar 

mass of the linear matrix. Therefore, we use the same value for the two other blends, containing 1.5 

and 3 wt% of H-polymers in the 22k matrix.  As shown in Figure 13, in both cases a very good 
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agreement is obtained between model and experimental data when ߠு = 1. Hence, ߠு = 2 for all 

blends composed of 10 wt% of  polymer, and ߠு =  1 for all blends composed of 3 or 1.5 wt% of H-

polymer, conforming to the fact that the branching points have a negligible effect on the longest 

Rouse modes of the H-polymers considered here. On the contrary, the few H-H entanglements 

present at 10 wt% of H-polymer (≈2.6 on average) contribute to extra friction along the H-

backbone, which delays its slower Rouse modes (1 and 2), involving molecular segments longer 

than the average molar mass between two H-H entanglements.  

 

 

Figure 13:  Storage G’(Ȧ) and loss G’’(Ȧ) modulus data of 1.5% (), 3%(฀) and 10%(o) of H-

polymer diluted in the linear matrix 22k, at Tref =130C.  The experimental data (symbols) are 

plotted alongside the model data (continuous curves), as well as the deconvoluted linear (grey 
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dashed-dotted curves) and H (dashed curves) contributions to the curves. The parameter matrix has 

been fixed to 1.5. 

 

       The same approach can be applied to the other blends. By increasing the molar mass of the 

linear matrix, the retardation factor matrix is found to increase from 1.5 to 6, 19 and 58 for the 

matrices  22k, 64k, 129k and 185k, respectively, while ߠு has the same values as for the previous 

blends. As shown in Figure 14, the proposed model allows us to accurately describe the viscoelastic 

properties of these blends. This good agreement suggests that the H-polymers predominantly relax 

by a CRR process. This can be understood based on Figure 10, in which it is seen that even if these 

linear chains are well entangled, their relaxation time stays faster than the relaxation time of the 

branches of the H-polymers. By increasing the length of the linear matrix, it is expected that this 

difference in relaxation times decreases, until the point where the H-arms relax faster by fluctuations 

than by CRR at the rhythm of the linear chains motion.  

In Figure 14, we also observe that the G’ shoulder related to the relaxation of the H-polymers 

decreases substantially with increasing the molar mass of the linear matrix, and nearly disappears in 

matrix 185k, as discussed in Section 3.2. For this reason, we do not probe the full shape of the CRR 

relaxation spectrum of the H-polymers in the data, but rather only their terminal relaxation, and 

consequently it is impossible to rule out that other relaxation mechanisms, such as tube escape, 

contribute to the terminal relaxation process.  

However, despite this small shoulder corresponding to the H-relaxation, the corresponding 

retardation factor matrix is found to be much more important for the blends with higher molecular 

weight linear molecules. Hence, we conclude that the H-polymer relaxation is strongly slowed-down 

by the linear matrix (with potentially large consequences on the rheological properties). 
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In Figure 14, we separate the theoretical moduli of the 185k-blends into the contributions 

from the linear and the H-polymers. The moduli of the latter clearly show two Rouse relaxation 

processes: the first one, at high frequencies, corresponds to its segmental Rouse dynamics (see 

Equation 9), which is limited to the entanglement segments. Then, a plateau is observed in the 

storage modulus data. At this stage, the H-polymers are trapped in their thin tube and cannot relax 

further. At lower frequencies, we observe their CRR relaxation, which starts at a time equal to 

matrixe and ends as soon as the longest mode (corresponding to the longest end-to-end molecular 

segment) is relaxed.  As seen in this Figure, the theoretical result suggests that the CRR process of 

the H-polymers appears to start before the linear matrix is fully relaxed. Indeed, as already 

mentioned, if CRR was fully dominated by the matrix terminal relaxation time lin, the G’ shoulder 

corresponding to the H-relaxation should always be observed at the same frequency relative to the 

terminal relaxation frequency of the linear chains, which is obviously not the case. This can be 

explained by the fact that the H-polymers take time for exploring their dilated tube by CRR. 

Therefore, since their tube is not fully dilated when CRR starts, but is dilating fast enough to allow 

each CRR mode to relax, the H-polymers should never feel topological constraints from their 

surrounding tube. However, in order to validate this scenario, one should further analyze and 

rationalize the values used for the retardation factor matrix in the different blends, as proposed in 

Section V.5. At this stage, we just note that similar results were found in ref. [31], where it was 

shown that the CRR process of the long component (star polymers in that case) starts at a time Zlin
2 

times shorter than the relaxation time of the linear matrix, lin.  Similar behavior was also observed 

by Read et al.16 for moderately entangled linear matrices, based on slip-spring simulations (see 

Section V.5).  

Furthermore, it is interesting to note that the model we propose here for describing the 

relaxation of the H-polymer at the rhythm of the relaxation of the linear matrix is very similar to the 

sticky Rouse model proposed by Colby81 for describing the relaxation of unentangled linear chains 
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bearing stickers along their backbone. Indeed, for both types of systems the relaxation is governed 

by two Rouse dynamics: the first is associated to intrinsic Rouse motion taking place for molecular 

segments shorter than Me (in the case of H/linear blends) or shorter than the average mass between 

two stickers (in the case of sticky chains), while the second reflects slower Rouse modes, dominated 

either by the long-short entanglements (in case of H/linear blends) or by the lifetime of the stickers 

(in the case of sticky chains). Only the delay H induced by the few H-H entanglements along the H-

backbone does not have any equivalent in the sticky Rouse model. 
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Figure 14:  Storage G’(Ȧ) and loss G’’(Ȧ) modulus data of 1.5% (), 3%(฀) and 10%(o) of H-

polymer diluted in the linear matrices 64k, 129k and 185k, at Tref = 130C.  The experimental data 

(symbols) are plotted alongside the model (continuous curves), as well as the H contribution (dashed 

curves). The retardation factor matrix has been fixed to 6 (matrix 64k), 19 (matrix 129k) and 58 

(matrix 185k). 

 

V.4. Dilution of H-polymer in long entangled linear chains: Upon further increasing the molar 

mass of the linear matrix to 483 kg/mol or 1000 kg/mol, the large separation between the reptation 

time of the matrix and the relaxation of the H branches is lost (see Figure 4). Therefore, because of 

the long lifetime of their entanglements with the linear matrix, one cannot consider anymore that the 

H-polymers relax by a Rouse process and that the linear matrix acts as a solvent for the relaxation of 

the branches of the H molecules. However, since both the linear chains and the branches of the H 

molecules are relaxing much faster than the inner part of the backbone of the H-polymer,   they are 

expected to play the role of an effective solvent for the remaining unrelaxed part of the inner H-

polymers, enabling them to explore their surroundings. Thus, CR effects from the linear matrix and 

the H branches should speed-up the relaxation of the inner part of the H-polymers. We therefore 

model the relaxation of these blends by using Equations 10 and 11 and considering the retraction 

process of the inner backbone of the H-polymers in their tube, taking into account the extra friction 

coming from the branches (see Section IV.2) as well as the extra solvent coming from the linear 

matrix. Theoretical curves are compared to the experimental data in Figure 15, for the pure linear 

matrix as well as the blends composed of 10 wt% of H-polymer. 

From the modeling results one may observe that the signature of the H-polymer is negligible 

at intermediate frequencies and only appears in the terminal flow region, when the storage modulus 

is lower than ܩே଴ ߭௕ , with  ߭ ௕ being the weight fraction of the inner part of the backbone. In this 
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region, an extra shoulder appears, which is more visible with the linear matrix PS 483k than with PS 

1000k. The experimental data also reveal the onset of a slow relaxation shoulder in these  blends 

(see Figures 5, 15 and 16), confirming the ultra-slow relaxation attributed to the H polymer. 

However, whereas this shoulder seems real, it can be sensitive to the creep conversion, which has 

been achieved based on the NLReg approach developed by Honerkamp et al.71. Indeed, with such an 

approach it is known that the data obtained in the first and last decades of the frequency window 

may lose accuracy. Hence, we refrain from further discussing these data at present. Figure 16 shows 

the experimental data of Figures 14 and 15 (10% H-polymer in matrices 185k, 483k and 1000k) 

plotted as Ș’’(Ȧ)=G’(Ȧ)/Ȧ against frequency. This representation captures the low-frequency 

response more sensitively and further supports the presence of a slow relaxation in 185k matrix (a), 

which however progressively becomes barely detectable as the molar mass increases to 483k (b) and 

1000k (c).  This prevents a more detailed quantitative analysis. To bring the slow mode within the 

experimentally accessible window, dilution with a small-molecule or oligomeric solvent would be 

the choice but this is beyond the scope of the present work. It is even worth noting that in this 

sensitive plot (the out of phase dynamic viscosity is in linear scale), even for the 185k for which the 

slow relaxation process of the H-polymer is probed unambiguously, its characteristic time is 

captured by the Rouse model with delayed modes whereas its intensity (value of Ș’’) is 

overpredicted by a factor of 2 (Figure 16a). The discrepancies are larger for the larger molar mass 

matrices, predicted based on the tube model. These observations call for further improvements of the 

current analysis.  
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Figure 15: Comparison between experimental (red o and dashed curves for the data coming from 

creep measurements) and theoretical linear rheology data of 10 wt% of H-polymer diluted in linear 

matrices (continuous black curves) for (a) PS483k and (b) PS1000k For comparison, the predicted 

data obtained for the pure matrices are also shown (grey continuous curves).  
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Figure 16: Same data as in Figures 14 and 15, but plotted as effective dynamic viscosity (G’(Ȧ)/Ȧ) 

against frequency.  This representation sensitively captures the low-frequency region. Symbols are 

experimental SAOS data and dashed-dotted curves are transformed creep data of 10 wt% of H-

polymer diluted in linear matrices comprising (a) PS185k , (b) PS483k and (c) PS1000k. The black 

lines are the theoretical predictions. The grey and black arrows indicate the theoretical relaxation 
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peaks of the matrix and the H polymer, respectively. For comparison, the predicted data obtained for 

the pure matrices are also shown (grey continuous curves). 

 

V.5. Retardation factor matrix  for the relaxation of the H-polymer:  Compared to its relaxation in 

a monodisperse environment, the relaxation of a H-polymer diluted in a linear matrix is much faster 

for fast linear chains (M<185K) (see Section V.3). Therefore, we can envisage an acceleration factor, 

defined as the ratio between the terminal relaxation times of the monodisperse H-polymer and the 

blends (as proposed in Figure 6). However, since in their terminal regime the H-polymers are not 

entangled anymore or contain too few entanglements to relax in a constraining tube, it seems more 

instructive to look at the retardation factor matrix of these blends compared to the terminal time of the 

H-polymers diluted in a small-molecule solvent (or equivalently, in an oligomeric PS matrix). Within 

this scenario, we consider the retardation factor corresponding to the ratio between the CRR time and 

the intrinsic Rouse time of the H-polymers (see Figure 6):   

௠௔௧௥௜௫ߠ ൌ ఛ಴ೃೃǡಹఛೃǡಹ ൌ ఛ೗೚೙೒షೞ೓೚ೝ೟௓ಹమఛ೐௓ಹమ       (22) 

 

where the average lifetime long-short governing the CRR process in unknown, and ZH is the number of 

entanglements in the H backbone. As discussed in Section V.3, this time cannot be simply 

proportional to the relaxation time of the linear chains, lin, as proposed by Struglinsky and 

Graessley10, otherwise the importance of the G’ shoulder would have been identical for all blends 

with the same concentration of H-polymer. The failure of this rule (i.e., ߬௟௢௡௚ି௦௛௢௥௧ ן ߬௟௜௡ ) is 

illustrated in Figure 17, where the values of matrix obtained by best fitting procedure on the different 

blends are compared to the relaxation time of the linear matrix, ߬௟௜௡, as function of the molar mass of 

the linear chains. Clearly, the retardation factor is not following the same trend as ߬௟௜௡Ǥ Indeed, while 
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for very short matrix its value can never become lower than 1 (which represents the intrinsic Rouse 

relaxation of the H-polymers in an oligomeric solvent at isofrictional condition), it does not increase 

as fast as the reptation time of the entangled matrix.  

This conclusion is in good agreement with previous works14,16-18,31. In particular, in their 

recent paper16, Read et al. determined this retardation factor, based on slip-spring simulations on 

bidisperse linear blends, and found that it is well estimated by: 

݌݈݅ݏ௠௔௧௥௜௫ሺߠ      െ ሻ݃݊݅ݎ݌ݏ ൌ ͲǤͲͶ͹ ఛ೗೔೙ఛ೐  ቆͳ ൅ ଵ଴Ǥଷ଺ ට ఛ೐଴Ǥ଴ସ଻ ఛ೗೔೙ቇ ൅ ͳǤ   (23) 

 

Thus, while the dependence of this factor on ߬௟௜௡  is rather complex for moderately entangled linear 

matrices, in the limit of very well-entangled short matrix ߬௟௢௡௚ି௦௛௢௥௧ should be smaller than ߬௟௜௡  by 

a factor 0.047. As shown in Figure 17, the theoretical factors are rather close to the values of matrix 

determined experimentally, despite some deviation observed for the longest matrices, which can be 

due to different reasons (such as the estimation of lin, the estimation of the constants in Eq. 23, or an 

increasing effect of other relaxation mechanisms of the H-polymers in the longer matrices).  

 

The retardation factor can also be compared to the  scaling proposed by Ebrahimi et al.31 

based on star polymers diluted in an entangled linear matrix, according to which the retardation 

factor is inversely proportional to Zlin
2, the square of the number of entanglement segments in a 

linear chain. In this case the retardation factor should be well-described by ߠ௠௔௧௥௜௫ ൌ ఛ೗೚೙೒షೞ೓೚ೝ೟ఛ೐ ൌ
ഓ೗೔೙ೋ೗೔೙మఛ೐  and should be equal to 1 with unentangled matrix. As observed in Figure 17, the agreement 

between this scaling and the value of matrix obtained experimentally is also very good (the origin of 

the factor 3 found in the relationship between ߠ௠௔௧௥௜௫ and lin is not clear, but was also found in ref. 

[31]). This suggests that rather than being the relaxation time of the linear matrix, the parameter  
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߬௟௢௡௚ି௦௛௢௥௧  should be seen as a kind of ‘rescaled e’ which represents the relaxation time of a 

molecular segment of mass Me obtained if the entire linear chains were relaxing Rouse-like with a 

relaxation time lin (rather than their intrinsic Rouse time).   

It is interesting to note here that while both theoretical approaches lead to comparable values of 

matrix for the data analyzed in this work, large differences are expected to be found with longer 

matrices. Indeed, while Eq. 23 predicts that for very well entangled matrices, matrix is a proportional 

to lin, Ebrahimi et al. proposed a scaling going with lin/Zlin
2. Therefore, in order to experimentally 

test these two different scaling laws, one should design and measure the CRR behavior of very long 

linear chains moving in a long matrix (Zlin>20). 

 

 

Figure 17: Retardation factor matrix, matrix (slip-spring), relaxation time of the linear matrix lin and 

ratio 

ഓ೗೔೙ೋ೗೔೙మఛ೐  as functions of the molar mass of the linear matrix. 
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Note also that this definition of retardation factor is valid only if the long component is relaxing by 

CRR process. With longer linear matrices, such as 483k or 1000k, a significant part of the H-

polymers is relaxing by fluctuations in their thin tube. Therefore, this relationship should not hold 

anymore. 

 

VI. Conclusions    

We investigated the role of constraint release on the relaxation of a model H-polymer diluted 

in a linear matrix of varying molar mass and concentration (1.5, 3 amd 10 wt % H). The 

experimental frequency spectra, obtained by dynamic oscillatory and complementary creep 

measurements, were analyzed by means of the TMA (Time-Marching Algorithm) model in order to 

quantitatively describe the linear viscoelasticity of the monodisperse component and validate the 

choice of the material parameters, i.e., the plateau modulus, the molar mass between two 

entanglements and the Rouse time of an entanglement segment. We then investigated the effects of 

the environment (molar mass of linear chain matrix) on the dynamics of the H-polymer. It was 

found that very short (oligomeric) linear chains act as a solvent, with the H-polymers relaxing 

according to their intrinsic Rouse modes. From these data, a time delay H observed in the longest 

Rouse modes with 10wt% of H-polymers (corresponding to semidilute regime) was attributed to the 

presence of a few H-H entanglements inducing extra friction points to the Rouse relaxation.  

As the molar mass of the linear chains increased, H-linear chain entanglements were formed.  

It was found that if the reptation time of the linear chains is faster than the retraction time of the 

branches, the linear chains also act as solvents for the H-polymers. However, the latter can only 

explore their dilated tube at the rhythm of the motion of the linear matrix. We took this into account 

by considering that the H-polymers relax according to a Constraint Release Rouse (CRR) process, 
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that we assumed to be slower than the corresponding intrinsic Rouse process by a factor matrix. By 

analyzing the dependence of this retardation factor matrix on the molar mass of the linear matrix, we 

showed that it is not only proportional to the relaxation time of the linear matrix, as usually 

considered10, but also depends on the entanglement state (number of entanglements per chain) of the 

linear chains. This result is in agreement with the recent works of Read et al.16 on bidisperse linear 

blends and Ebrahimi et al.31 on star polymers diluted in a linear matrix, which suggests a generic 

picture of retardation factor of H-polymers in moderately entangled linear matrix environments. 

However, further analysis is needed in order to better understand the molecular origin of this non-

proportionality between matrix and lin. Testing and potentially adjusting this picture in longer, well-

entangled matrices is also an open challenge. 
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A. Appendix: Exact Rouse modes of H-shaped architecture    

In this Appendix we detail a solution for the exact Rouse modes of monodisperse H-shaped polymer 

in which all arms have identical molecular weight. The symmetry of the structure allows an exact 

determination of the mode structure. In general, for any linear section of chain within the branched 
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polymer, the equation of motion of the position R of a given monomer is identical to the standard 

Rouse model, i.e.  

ߞ డ܀డ௧ ൌ ݇ డమ܀డ௡మ ൅  (24)          ࢌ

where ߞ is the monomer friction constant, ݇ ൌ ଷ௞ಳ்௕మ  is the monomer spring constant, n is a variable 

that counts monomers along the chain strand and ࢌ is the local stochastic force.  Rouse modes of a 

polymer must be eigenmodes of the 
డమడ௡మ operator along linear chain sections, i.e. along each linear 

chain section they must take the form:  

܀ ൌ ௣܆ ቀܣ cos ௣గ௡ே ൅ ܤ sin ௣గ௡ே ቁ        (25) 

where ܆௣ is the amplitude of the mode p and we have written the wavenumber as 
௣గே  (where N is the 

total degree of polymerisation) so that for a linear polymer p would take integer values to give the 

well-known Rouse modes of a linear chain.  Substituting equation (25) back into (24) reveals that the 

relaxation time of mode p is:  

߬௣ ൌ ேమ௕మ఍ଷగమ௞ಳ்௣మ ൌ ఛೃ௣మ          (26) 

where ߬ ோ is the Rouse relaxation time of a linear molecule of degree of polymerisation N.  For any 

given eigenmode of the chain, all linear chain subsections of the molecule must relax with the same 

timescale (they all have the same eigenvalue) and so all of them must take the same value p for the 

shape of the modes described in Equation 25 (i.e. the eigenmode has the same wavelength for every 

linear chain subsection).  However, the form of the eigenmodes, and the allowed values of p (which 

in general will not be integers) are determined by the whole shape of the branched molecule and the 

boundary conditions at chain ends and branchpoints. An example of this calculation, for the 

symmetric star architecture, may be found in ref.[82]: here we generalise this to the H-shaped 

architecture.  To do this we must specify the monomer coordinate frame we will use for each linear 
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chain subsection which we illustrated in Figure 18a.  In terms of these co-ordinates, the boundary 

conditions are as follows.  At chain ends of all four arms, there is no chain tension, hence:     

డ܀ಲభడ௡ ቚ௡ୀேಲ ൌ డ࡭܀૛డ௡ ቚ௡ୀேಲ ൌ డ܀ಲయడ௡ ቚ௡ୀேಲ ൌ డ܀ಲరడ௡ ቚ௡ୀேಲ ൌ ૙.     (27) 

At branchpoints, the displacements of all connected chains must be equal, so (for example) at the 

right hand branch-point:     

஺ଵሺ݊܀ ൌ Ͳሻ ൌ ஺ଶሺ݊܀ ൌ Ͳሻ ൌ ஻܀ ቀ݊ ൌ ேಳଶ ቁ.       (28) 

 

Figure 18: (a) Chain co-ordinates used for H-polymer modes.  Backbone co-ordinate runs from െ ேಳଶ  to 
ேಳଶ .   Arm co-ordinates run from 0 (at branchpoint) to ஺ܰ.  (b) Symmetry of Mode set A – 

asymmetric along molecule length with displacement node at centre of backbone.  (c) Symmetry of 

Mode set B – symmetric along molecule length with displacement maximum at centre of backbone.  

(d) Symmetry of Mode set C – asymmetric along arms at one end of molecule with node at 

branchpoint and rest of molecule undisplaced.  These modes have degeneracy 2.  In all cases (Mode 

A, B and C) the slowest mode of the set is shown, but higher modes have the same symmetry. 
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Chain tension must also balance at the branchpoint, hence (again, for example) at the right-hand 

branchpoint:     

డ܀ಲభడ௡ ቚ௡ୀ଴ ൅ డ࡭܀૛డ௡ ቚ௡ୀ଴ ൌ డ܀ಳడ௡ ቚ௡ୀಿಳమ .        (29) 

Considering the symmetry of the H-molecule, we identify three mutually orthogonal sets of 

eigenmodes, depicted schematically in Figure 18(b-d).  These are: 

 

Mode set A: These are asymmetric along the length of the molecule, so:  ܀஻ ൌ ௣܆ sin ௣గ௡ே           (30) 

and ܀஺ଵሺ݊ሻ ൌ ஺ଶሺ݊ሻ܀ ൌ െ܀஺ଷሺ݊ሻ ൌ െ܀஺ସሺ݊ሻ ൌ ௣܆ ቀܣ cos ௣గ௡ே ൅ ܤ sin ௣గ௡ே ቁǤ   (31) 

Applying boundary conditions (28) and (29) at the branchpoint gives ܣ ൌ sin ௣గ௙ಳଶ  and  

ܤ ൌ ଵଶ cos ௣గ௙ಳଶ  where ݂ ஻ ൌ ேಳே  is the backbone fraction. Then, applying boundary condition (27) 

gives:  ʹsin ௣గ௙ಳଶ  sin ߨ݌ ஺݂ ൌ cos ௣గ௙ಳଶ  cos ߨ݌ ஺݂       (32) 

where ݂஺ ൌ ேಲே  is the arm fraction.  Equation (32) can be solved to obtain the values of p for the 

Mode set A.  For the H-polymer used in this paper (஻݂ ൌ ͲǤͳͺͻ, ݂ ஺ ൌ ͲǤʹͲ͵) this yields p values 

{1.358, 5.000, 8.770, 11.518…}.  Hence, the longest relaxation time of the molecule is 

 
ఛೃଵǤଷହ଼మ ൌ ͲǤͷͶ͵߬ோ.  

 

Mode set B: These are symmetric along the length of the molecule, so:  ܀஻ ൌ ௣܆ cos ௣గ௡ே           (33) 

and 



56 
 

஺ଵሺ݊ሻ܀ ൌ ஺ଶሺ݊ሻ܀ ൌ ஺ଷሺ݊ሻ܀ ൌ ஺ସሺ݊ሻ܀ ൌ ௣܆ ቀܣ cos ௣గ௡ே ൅ ܤ sin ௣గ௡ே ቁǤ   (34) 

Applying boundary conditions (28) and (29) at the branchpoint gives ܣ ൌ cos ௣గ௙ಳଶ  and  

ܤ ൌ െ ଵଶ sin ௣గ௙ಳଶ . Then, applying boundary condition (27) gives:  

ʹcos ௣గ௙ಳଶ  sin ߨ݌ ஺݂ ൌ െ sin ௣గ௙ಳଶ  cos ߨ݌ ஺݂.       (35) 

Equation (35) can be solved to obtain the values of p for the Mode set B.  For the H-polymer used in 

this paper (݂஻ ൌ ͲǤͳͺͻ, ݂ ஺ ൌ ͲǤʹͲ͵) this yields p values {3.710, 6.434, 10.000, 13.821…}, which 

are faster relaxations than for set A. 

 

Mode set C: These comprise two degenerate sets of modes in which the backbone and the arms of 

one end do not move, while the arms at the other end stretch antisymmetrically from the branchpoint, 

which itself does not move. Hence one set of modes are given by:  ܀஻ ൌ ஺ଷ܀ ൌ ஺ସ܀ ൌ ૙          (36) 

and ܀஺ଵሺ݊ሻ ൌ െ܀஺ଶሺ݊ሻ ൌ ௣܆ sin ௣గ௡ே Ǥ        (37) 

Boundary conditions (28) and (29) are automatically satisfied, whilst boundary condition (27) gives: 

  cos ߨ݌ ஺݂ ൌ Ͳ           (38) 

with solutions ݌ ൌ ଶ௠ିଵଶ௙ಲ  for ݉ =1,2,3… For the H-polymer used in this paper (஺݂ ൌ ͲǤʹͲ͵) this 

yields p values {2.466, 2.466, 7.398, 7.398,…}, where the p values are repeated to indicate the 

degeneracy. 

To obtain the linear viscoelastic spectrum, we note that each mode carries the same modulus 

contribution (equal to ݇஻ܶ times the number of molecules per unit volume, i.e. for H-polymers at 

fraction ߭ ு  the modulus for each mode is ߭ு ఘோ்ெౄǡ౪౥౪౗ౢ where ܯୌǡ୲୭୲ୟ୪ is the total molecular weight of 
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the H-polymer. The stress relaxation time for each mode is one half the orientation relaxation time. 

Hence, the Rouse relaxation spectrum of the H-polymer (including only monomer friction) is then:  

ሻݐுሺܩ ൌ ߭ு ఘோ்ெౄǡ౪౥౪౗ౢ  σ exp ቀିଶ ௣మ௧ఛೃ ቁ௣          (39) 

where the summation is over all p values identified as solutions to equations (32), (35) and (38) 

above (with solutions to (38) repeated twice to account for the degeneracy of Mode set C).  We list 

the numerical solutions for the first 50 modes in Table 4.   

Although the spectrum of modes is not identical to that of a linear polymer of the same molecular 

weight (with p values now being non-integer in general) the modulus per mode is the same as for the 

linear polymer, and at high values of p the mode density is identical (i.e. one mode per unit increase 

in p on average).  Hence at high frequencies (short times) the relaxation spectrum is identical to that 

of the linear polymer, as is expected because at these short times the Rouse modes correspond to 

local chain motion insensitive to the (rare) chain ends or branch points. This observation also acts as 

confirmation that Mode sets A, B and C above include all the available Rouse modes. However, the 

spectrum at the longest times, or lowest frequencies, does depend on the polymer architecture, so the 

shape of the relaxation curve changes in the approach to the terminal relaxation. 

In Figure 19, the storage modulus predicted with this exact Rouse solution (see Eq. 16, 18 and 39) 

and the approximated Rouse model (see Eq. 16, 17 and 18) are compared in the case of 3 and 1.5 

wt% of H polymer diluted in the oligomeric matrix of 5 kg/mol. As it can be seen, the difference 

between two approaches is very small. Only a slight difference appears at low frequency, where it 

seems that the longest modes of the exact Rouse model are slightly longer than the approximated 

model. 
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Figure 19: Comparison between experimental and theoretical linear rheology data of 1.5 wt% (exp. 

data: black o and dashed-dotted curve (creep)) and 3 wt% (exp. data: blue  and dashed-dotted curve 

(creep)) of H-polymer diluted in the PS5k linear matrix, at Tref =130C. The data predicted with the 

exact Rouse model are shown by the continuous grey curve, while the data predicted with the 

approximated Rouse model are shown by the dashed red curves. 

 

 

Table 4: The first 50 p-modes for ஻݂ ൌ ͲǤͳͺͻ, ݂ ஺ ൌ ͲǤʹͲ͵ 

Mode set A (eq 31) Mode set B (eq 34) Mode set C (eq 37) 

1.357668 3.710458 2.465909 

5.000104 6.434078 7.397727 

8.770082 10.00084 12.32955 

11.51824 13.82128 17.26136 

15.00284 16.60932 22.19318 

18.86437 20.00676 27.12500 

21.70621 23.89990 32.05682 
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38.96806 40.05587 NB Degeneracy of 

42.12309 43.98055 above modes is 2 

45.08030 47.22662  

48.98922 50.11114  
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