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Abstract

We investigate the influence of the environment on the relaxation dynamics of well-defined H-
polymers diluted in a matrix of linear chains. The molar mass of the linear chain matrix is
systematically varied and the relaxation dynamics of the H-polymer is probetedéwys of linear
viscoelastic measurements, with the dimnunderstandts altered motion in the different blends,
compared to its pure melt stat®ur results indicate that short unentangled linear chains accelerate the
relaxation of both the branches and the backbone of the H-polymers by acting as an stib@ive
On the other hand, the relaxation of the H-polymer in an entangled matrix is slowed-down, with the
degree of retardation depending on the entanglements number of the linearWleahsw that this
retardation can be quantified by considering that the H-polymers are moving in a dilated tube at the

rhythm of the motion of the linear matrix.
[. Introduction

The tube model of Doi, Edwards and de Gehhgsovides the framework for a molecular
understanding of the relationship between the topological structure of entangled polymer systems and
their flow properties. The linear rheology of monodisperse entangled linear polymers is well
understood and can be predicted with state-of-the-art tube-based moleculaffnoHelwever, the
current tube models are not yet at the level of refinement where they can universally predict the linear
rheology of blends of two or more monodisperse polymdvest of the literature has focused on
binary linear blends’® and blends of linear and star polynté?4. The underlying physics governing
the blend relaxation is the constraint release (CR) effect of the faster relaxing short chains on the
slower long chain§. When changing the molecular structure of the probe (slower) polymer, CR may
have a different influence on non-reptative terminal relaxation. However, other than experimental
studies involving star and linear mixtures, there are arfgw other studies of binary mixtures of

well-characterized architecturally complex polyni&f8 Yet, such blends are encountered in all
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technological applications. In this work, we wish to further understand the relaxation of such complex

polymer blends by studying the viscoelastic response of a model H-polymer blended into linear chain
matrices of different molar masses. The choice of the particular probe molecule is based on the fact
that it is the simplest branched polymer after the stars, having two well-defined branching points. The
established pom-pom polyni&# is nothing more that the H-polymer with more than two branches

grafted in the ends of the linear backbone.

The underlying problem with these models is the uncertainty around the interpretatiomnof CR
describing the effect of the relaxation of surrounding chains on the motion of the tube surrounding the
probe chain.Examples of models which interpret CR inclugelf-consistent constraint release” *8,

“double reptation”38% “constraint release Rouse”*!#? and “dynamic tube dilation”**#2, Although they

have shown to be successful in limited cases, these models are not universal for all types of blends,
i.e., for a wide range of volume fractions and relaxation times of the respective monodisperse
components. For instance, most tube model theories for polydisperse systems include a full dynamic
tube dilation theory (DTD)**2 where the relaxed segments are immediately taken as a solvent and
act to enlarge the tube. However, as was recently demon$tfdt€d*, it may be that only partial

DTD is needed in order to provide a universal molecular picture for polydisperse polymers. Watanabe
demonstrated that full DTD is only applicable in the blend case of two monodisperse linear polymers
where the components have widely separated relaxation times. Thus, from this example, it seems
evident that the short component in polymer blends cannot always be considered as solvent for the
relaxation of the long component, and that clear criteria are needed which allow determining the

effective fraction of relaxed polymer diluting the entanglement network experienced by the slowe

polymers.

A first criterion has been proposed by Struglinsky and Graé8stethe specific case of binary
linear blends. According to this criterion, relaxation of the long component takes place at a rate

dictated by constraint release events only if the motion and renewal of the tube due tdréresloab
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of topological constraints, known as (thermal) Constraint Refedsis much faster than the reptation

of the long chains in their initial (thin) tube. In order to compare these times, the authors propose a

new parameter, calletle “Struglinsky-Graessley’ parameter, 75, defined as the ratio of the reptation

time of the long chains in an undilated tulre=BzZ 3 with z the relaxation time of a segment
between two entanglements and the number of entanglements per long chain) and the Constraint
Release Rouse time of this long componeiitig diluted in a matrix of short chains:ér =772, with

7= 37Zs, the reptation time of the short chain):

reg = b = MM (1)

where M and M are the molecular weights of the long and short linear polymer chains,
respectively. It must be noted that this criterion does not take into account the possible influence of
the Contour Length Fluctuations (CLF) mechanism, whicknown to significantly reduce the
relaxation time of the long chains if these last ones contain fewléorggentanglements (< 20).

For dilute long chains, when thesrvalue is smaller than a critical value, then reptation of the long
chains occurs along the thin tube, otherwise, the long chains relax by Constraint Release Rouse
faster than they can relax by reptation. Hence, according to this criterion, the CR mechanism can be
properly analyzed only if there is a distinct separation of time scales. Howeveality, this is

often not the case. Furthermore, the critical valuesefat which the transition takes place, from
reptation in a thin tube t6R Rouse motion, is not accurately defined, and seems to be much lower
than 1. For example, a critical value of 0.1 was determined from diffusivity measuré&mehtte

Park and Larsof found a value of 0.064 to be applicable in linear viscoelastic data. Also, this value
does not account for the influence of contour length fluctuations of the short component. Tracer

diffusion data for the long chains diffusing in a matrix of short chains demonstrated that reptation is
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the dominant diffusion mechanism when short chains molar mass is above a critical value, whereas
at smaller values, the diffusion coefficient associated with CR domffatéson further review,

Green and Kraméf accounted additionally for contour length fluctuations and could also predict
the crossover in Green’s diffusion data*®,

For more concentrated long chains, full relaxation@® Rouse motion is prevented by
entanglements between the long chains. Once the long component has occupied its dilated tube
(which is only formed by the entanglements between long chains), further relaxation is either via
reptation along the thin tube, or reptation (of the chain or of the thin tube) aldiigted tube
formed by the entanglements between long chains, at a rate dictated by CR events. Reptation along
the dilated tube is expected to occur at values®freater than the number of entanglements along
the dilated tub¥+°

Others such as Liu et &.have experimentally explored the consequences of CR on chain
dynamics. To this end, they have essentially swddif CR events by properly choosing blends
with specific ratios of characteristic times of the components, say a short one and a much longer
representing an effeve ‘sea’ of fixed constraints. This type of study allows quantifying the
“amount” of CR and is known as probe dynamics. Indeed, when dilute short entangled polymer
chains are added to a melt of long chains, the constraint release associated with the short chain
entanglements can be effectively switched-off. Therefore, this situation is analogous to a ohixture
dilute polymer chains in a cross-linked netwdf Probe rheology on binary blends as a tool to
determine the CR effects was also studied by Watanabe 2taal Matsumiya et &f. by
confronting viscoelastic and dielectric data of such blends, as well as by other @uthcal these
works, it was found that there is a retardation (slowing down) of the terminal relaxation time of the
short polymer chains in the environment of long polymer chains. This demonstrates the important

role of CR in speeding-up the relaxation processes (reptation or arm retraction).



From the above, it is evident that one needs to distinguish the CR events in a blend. Taking
the example of earlier works’ 1849 Read et a>*®have simplified the CR picture by assigning only
two constraint release states, corresponding to two specific tube diameters, as first proposed long
agd*® the first state represents the long chains entangled with all other chains, while the second
state only takes into account the entanglements of the long chains with other longTdhange
simplified tube-based picture (Figurg it that of two tubes, one ‘thin’ tube (representative of all
entanglements) contained infat’ (dilated) tube (representative of entanglements involving only the
long chains). According to the SG criterion, the long chains reptate in the dilatedxtdBdafger

than the thin tube, witho. being the weight fraction of long chains andthe dynamic dilution
exponent) only if the Struglinsky-Graessley parametgy is larger than the number of

entanglementsn the fat tube, otherwise their reptation will occur in the thin tube with no tube

dilation .

Figure 1. Probe chain in a thin tube (taking into account all entanglements of long chains) trapped
in a dilated tube (only based on the entanglements between the long chains). There are two
possibilities of long chain reptation: either in the thin tube with tube diamgtsrdalength bqoor

in the dilated tube with tube diameter apu. "2 and length bq = LeqaL*2.



This simplified description of CR, has been successfully used to model both linear
viscoelasticity and nonlinear and elongatibrheology of several bidisperse linear bleRdék>2 A
similar picture of thin and dilated tube was also used by van Ruymbeké®*ét ahd Ebrahimi et
al3! for modelling the viscoelastic behavior of binary linear blends with well separated molar
masses. In these modelsis assumed that the long chairee@ither move and relax in their thin
tube, or relax in their fat tube but only at the rhythm of the destruction/re-construction of the
entanglements involving short chains. Thus, while the contour length of the fat tube is shorter than
that of the initial tube (see Figure leqLeq0= 01%?), which speeds up reptation and CLF proesgss
the Rouse time associated with a long-long entanglement segment (i.e., a segment between two

entanglements of long chaing),,,;_iong., IS longer than its intrinsic Rouse time (equakdar?)
since it depends on the lifetime of a long-short entanglemestshortand on the number of such

entanglements per long-long entanglement segrosiot,.>*

T

2
— e Us
Tlong—long,e = max (?' Tlong—short (Z) )1 (2)

with vs being the weight fraction of short chains. These slow motions in a fat tube lead to extra
relaxation processes, defined as the CR-activated CLERrattivated reptation processes, which

take place in addition to the relaxation of the chains in their thirt4tfing

As shown in ref. [13,14, 53], when the CR-activated CLF has a large influence on thearlakati
long chains, an enhanced effect of CR process from the short chains is measured, corresponding tc
an experimentally determined apparent dynamic dilution expoagptwhich takes values close to
4/3 (as determined based on the evolution of the terminal modulus). Whereas this issue remains

unsettled, it has been shown recently that by accounting for CR-CLF process, the viscoelastic



properties of all these binary linear blends with well-separated molar masses can be correctly

predicted with a (theoretically determined) dynamic dilution expoaent'# 535

The objective of the present work is to extend the investigation of CR effexire complex
polymer blends, involving branched polymers which display hierarchical relaxation of their
different generations of branches in the monodisperse state and a respective tunable nonlinear
response (for example, extension hardening). To this end, we investigate the relaxation dynamics of
binary mixtures of entangled H-polymer (the prébé) linear polymers (the matrix) of varying
molar mass. In order to ensure working with model systems, a combination of state-of-the art
synthesis, characterization tools and careful rheological measurements is needed. The specific H-
polymer used in this study (coded as H3A1) is nearly monodisperse and its linear viscoelastic
properties have been well reported in the Past. In the melt state, the H-polymer undezgo
hierarchical relaxation where the four arms retract by fluctuations and act as a solvemt for th
backbone which eventually relaxes only after the arms have fully rettactettiitional friction
coming from the branches must be taken into account in the backbone relaxation, both in reptation
(center of mass diffusion of chains out of their tube) and in CLF proéesseslidition, there are
continuously constraint release events occurring when relaxed segments release topological
constraints on unrelaxed segments thus speeding up their relaxation Preft¥ssvhile the H3A1
polymer is in a very long linear matrix, constraint release events on the H-polymer shultebe
off and consequently its relaxation should be sid@own. In contrast, the H-polymer in a short
linear matrix should demonstrate a speeding up of the relaxation of the H-polymer due to additional
constraint release events from the surrounding short chains. Quantifying these effects is a real

challenge that we would like to address in this work.

In order to systematically investigate the influence of CR, we have

selected several sets of H/linear blends: first, by using unentangled linear chains, the H-polymers are



expected to relax as in a real solvent. Therefore, at low concentration of H-polymers, we can
investigate the Rouse dynamics of such H-polymers. Then, by gradually increasing the molar mass
of the linear chains and by varying the concentration of H-polymers, we aim at understanding
guantifying the expected retardatiéhatix Of the relaxation of the H-polymers, compared to their
relaxation in an unentangled matrix, and discuss the range of validity of our results. The paper is
organized as follows: Section Il is an experimental section which includes details of the preparation
of the mixtures and the methods of characterization such as DSC and Small Oscillatory Shear
measurement @&0S). In Sectionlll, the experimental linear viscoelastic data of the different
samples are presented and discussed. Based on the experimental results, we develop a model i
Section IV in order to describe the relaxation of such blends. In Section V, the data are analyzed an

discussed, based on this model. Conclusions and Perspective are presented in Section VI.

II. Experimental

Il.1 Materials. The H-polymer and linear polymers were all synthesized by anionic polymerization
under high vacuum. In the first blend series, the H-polystyrene H3A1, which was studied in ref.
[55], was blended with a series of linear polystyrenes (PS) with varying molar mass (obtained either
from Polymer Source (Montreal, Canada) or Polymer Standard Service (Mainz, Germany)). The
molecular characteristics of the H-polymer are listed in Table 1, while those of the linear polymers

are listed in Table 2.

The purity of the sample was checked by temperature gradient interaction chromatography (TGIC)
since this technique allows efficiently separating polymers of different molar masses with much
higher resolution than size exclusion chromatography. As detailed in refs. [60-62], it is based on
temperature dependent adsorptive interaction of polymers to the stationary phase. TGIC

chromatogram of H3Al1s shown in Figure 2. Well-overlapped chromatograms recorded by UV



(A260) and light scattering (§3) detectors indicate that the polymer has a very narrow dispersity. The

dispersity determined by the light scattering detection is lower than 1.01.

R, A (au)
)1

Figure 2: TGIC chromatogram of the H polystyrene H3A1. Separation condition: Nucleosil C18
(150 x 4.6 mm, 500 A, 7 pm), CH2Clo/CHsCN (58/42. v/v) at 0.5 mL/min. Temperature program is

shown in the plot.

The linear PS samples with narrow dispersity were blended with H3A1, the latter being at volume
fractionsovn = 1.5%, 3% and/or 10%Table 2). The volume fraction was calculated as the ratio of

the mass of H3A1 mand the total masstof the blend, since the densities of linear anet&hre

the same. The conformation of flexible polymers can be described as random walks and the ratio of
their mean square end-end distanceR2>o and their molar mass is a constarfor PS <R%>¢/M =

0.0043 nM.8® In order to calculate the radius of gyration oP8-we useKramer’s theorem and

follow the procedure of Colby and Rubinsfeiaccording to which the radius of gyratiog & an

H-polymeris:
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(M+Nb)2 1 N, 3 N3
_ 2 _ Na _ Na”
Rg = b\/z(zvaﬂvb) 3(Ng+Np)? [( > T Nb) 48 (3)

where b is the Kuhn length and/#land Nare the number of Kuhn monomers of each arm and the
backbone, respectively. The resulting valuegsl® nm. With the monomer volume &f PS being
1.2 nn¥, the overlap volume fraction, defined the ratio of the chemical (occupjedoblume of a

single polymeto the pervaded volume of the polymer chain, is:

_ Yo(Na+Np)

¢ = (4)

grcRg3
For the present HSin theta solvent conditiong,” ~ 4.4%.

The samples were carefully weighed, sufficient toluene or tetrahydrofuran (THF) was added
in order to completely dilute the mixture and the blend was slowly mixed (for a minimum of one
day). In general, mixing was performed using a tumbler and THF was gradually replaced by toluene.
To avoid the risk of degradation, the amount of THF was kept to a minimum. Following mixing,
the solvent was evaporated, fidbwly and then more rapidly as the temperature was gradually
increased well above the glass transition temperature in a well-sealed vacuum oven. This procedure
ensured complete evaporation of the entire solvent, as checked by monitoring the mass of the

mixture.

The molar mass between entanglemergsnVl'able 1 has been set to 14.8 kg/mol, based on
the analysis of monodisperse samples with the time marching algorithm (TMA) tube model, as well
as previous works with entangled PS samflel the framework of tube model analysis, the value
of the plateau modulu§y is then calculated from dthe mass density of the polymer the

universal gas constant R and the temperatiire T:

4 pRT
Gy = g[;w—e (5)
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Its value was fixed to 0.23 MPa, consistently with [14, 64], which is close to the usual value
proposed in literature, of 0.20 MP¥® In addition, the weight-average molar mass of an agn M
the number of branch points g, the number of entanglements peraaivh/Me, the number of

backbone entanglements=Mn/Me, Ryande * are listed in Table 1.

Table 1: Molecular Characteristics of H-polystyrene (from Roo¥Wrs

H3A1 14.8 123 8.3 132 8.9 2 674 18.6 0.04

1 The molar masses are weight-averaged and the polydispersitgis h.1.

Table 2 Molecular characteristics of H/linear polystyrene mixtures

PS 5kt 51 1.08 1.5%, 3%, 10% 14.8,24.570
PS 22k? 22.2 1.07 1.5%, 3%, 10% 31.6,41, 85
PS 64k? 64 1.06 1.5%, 3%, 10% 60, 70, 111
PS 129k 129 1.04 3%, 10% 147,181
PS 185k ? 182 1.03 1.5%, 3%, 10% 189, 199, 229
PS 483k? 483 1.05 10% 500
PS1M3 1000 <1.1 10% 965

L from Polymer Source, Canada

2 from Polymer Standard Service, Germany

3 from University of Athens, Greece

4 obtained via Size Exclusion Chromatography (see section 11.3).

5 average values estimated from the components
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II.2 Differential Scanning Calorimetry (DSC). DSC measurements were performed in order to
determine the glass temperaturgdrf the different samples investigated. A standard calorimeter
(PL-DSC from TA was used and all the samples were heated and cooled at a rate of 10 °C/min. The

first run was not considered, as is customary.

11.3 Size Exclusion Chromatography (SEC).For SEC analysis of the PS samples, two columns
(Agilent, Mixed-B two-column set, 300 x 7.5 mm i.d.) were used at a column temperature of 40 °C.
Eluent was THF (Samchun, HPLC grade) at a flow rate of 0.8 mL/min. SEC chromatograms were
recorded with a light scattering (LS)/refractive index (RI)/viscometer (DP) (Viscotek TDA 302) and

a UV absorption detector (TSP, UV2000 at 260 nm wavelength) for on-line determination of
absolute molar mass of polymers. The dn/dc value for PS in THF is 0.185 mL/g. Polymer samples

were dissolved in THF at a concentration of ~1 mg/mL, and the injection volume was 100 pL.

II.5 Small Amplitude Oscillatory Shear Results (SAOS)SAOS measurements were performed

for the monodisperse and blend PS samples on an ARES 2KFRTNL1 strain-controlled rheometer (TA
Instruments, USA) at temperatures ranging from 110°C to 190°C with an &ns@per-iron alloy

with low thermal expansigrparallel plate geometry of 8, 13 and 25 mm diameter. Temperature
control was achieved with a convection oven yielding an accuracY)dfC and the measurements

were always performed in a nitrogen environment in order to reduce the risk of degradation. Time-
temperature superposition (TPEF was performed at a reference temperature of 130°C and the

generated master curves allowed obtaining the relevant viscoelastic parametags,GR,\?.and

terminal relaxation time. Figur@ depicts the temperature-dependent horizontal and vertical shift

factors along with the fit of the former by means of the WLF equ¥tion
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—C1(T—Tref)

log(ar) = o+ T Tres (6)

The fit yielded G=8.4 and @=80°C at a reference temperaturgs Df 130°C, consistent with
literature values when compared to the same reference temp&fifire The vertical (modulus-

scale) shift factorstowere calculated from the density compensé&fion

(T)(T)
T P(Tref)(Tref) ( )

with the temperature-dependent density b&ing

p(T) = 1.2503 — 6.05 10™*(T) (8)

H3AIl
2k

51k

129k T 1.1
182k
483k
120k3
129k10 A
185Kk1.5
185Kk3 o

185k 10
11.0
— >

>>>rOdvOoASOO

1 L I . I . 1 " 09
120 140 . 160 180 200
TTC]

Figure 3: Horizontal a and vertical b shift factors associated to the PS linear and blend samples at

Tre=130°C.

Creep measurements were performed in order to extend the range of probed time scales
where dynamic measurements were limited by the minimum torque resolution of the rheometer or
by thermal degradation of the samples. Creep experiments were performed on a Physica MCR702

rheometer (Anton Paar GmbH, Germany), equipped with a hybrid temperature control unit
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(CTD180) which combines a Peltier element with gas convection. Nitrogen atmosphere was used to
prevent degradation upon heating. For each sample, two different creep experiments were
performed, with two different levels of the applied stress. The overlap of the resulting creep
compliances demonstrated that the tests were carried out in linear conditions. The creep compliance
was converted into dynamic moduli by means of the NLreg software, based on the Tikhonov

regularization methdé.

[l Experimental Results

[l .1 DSC. Table 3 depicts the measured glass temperatures of nearly all samples. As expected, a
difference in | between the lowest-Mand the highest-Mlinear PS sample is observed. It is
typically described by the Fox-Flory equation=Tg.-C/Mn, where T is the limiting glass
temperature at high molar mass, C=1.PxdR/mol is constant depending on chemistry and M the
molar masg2’3, Here we take gi.=107C based on the data of Table 3 (about 10% higher than that
repored by Rubinstein and Colts§; apparently due to the calibration of the DSC instrument used).
The data of Table 3 do follow the predicted dependence on molar magsSuce T differences
correspond to horizontal shift in the SAOS frequency axis, comparison of linear and blend
viscoelastic curves with respect to one another requires to horizontally shift the PS22k, the PS64
and the PS1000k curves in order to obtain the same temperature difference between the reference
temperature (ks of the master curves and their respective glass transition temperatwesT4T

The average gl value of 106€ was chosen as the reference transition temperatyig As
expected, the barely entangled linear PS22k has a lgyfef T03+1°C) compared toglet Since in

this case, the @ITyrep difference corresponds to -3°C, the PS22k data have been shifteg-to T
3°C=127T. The shift factor needed in order to compensate this difference is evaluated to be 0.47,

while it is equal to 0.6 foPH4k which has aglof 104+1°C. In contrast, PS1000k has a highgr T
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value of 107+£1°C and a corresponding shift factor of 1.3. Concerning the mixtures g thaues
are rationalized by the Fox mixing rule dAEn&wW/Tg1+(1-w)/Tg2, where 1 and 2 refer to the two

constituents of the blend and w is the weight fraéfion

Table 3 Glass temperatures as obtained by DSC

Linear and blend PS T4 (°C)
PS 22k 103+1
PS64k 104+1
PS 185k 106+1

PS 1000k 107+1

H3A1 105.5
PS 129k10% H3A1 106+1
PS 185k10% H3A1 106£1

[1l.2 Linear viscoelasticity

[11.2.1 Monodisperse Polymers:In order to study the viscoelastic properties of the H-polystgrene
diluted in the different linear matrices, it is important to first determine the behaviour and main
relaxation times of the monodisperse components. Their rheological data are shown in Figure 4. For
the monodisperse H-polymer, one can observe two different relaxation peaks (or more accurately,
two different shoulders) in the loss modulus curve (shown in the figure by arrows): the first peak
corresponds to the arm retraction process and the second shoulder observed at lower frequency, is
representative of the relaxation of the backbone. However, while these two peaks are detectable,
they are not well-separated. Similarly, in the corresponding storage madulase can hardly see

the two plateau regimes that are expected from the hierarchical relaxation of such an architecturally

complex macromoleculélhis is due to the large number of arm entanglements, which makes the

16



backbone heavily diluted by the (relaxed) arms. Indeed, the volume fraction of the inner part of the
backbonew, is only of 19% and its number of entanglemengsisZapproximately 8 Therefore if

we consider full Dynamic Tube Dilation (DTD) and assume that the branches are fully relaxed, the
effective number of entanglements of the (dynamically diluted) backbone Zo,w?, , reduces to

only 1.6. This means that the backbone chains are nearly unentangled (with other backbone chains)

and relax rapidly after the relaxation of the branches.
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Figure 4: Experimental storage and loss moduli and teraster curves of IS sample H3Al

(thick blackl]) and of the linear matrices (5k (blue 0), 22k(red >), 64k (¢ieL29k (greem),
185(brownV), 483k (cyan*) and 1000k (violet <)), at the reference temperature of 130°C for
samples PS 64k, PS 129k, PS 185k and PS483k, respectively, and atdswhiion for the other
samples, witi(Tref- Tg) = 24°C (see section 111.1). Continuous curves represent data obtained from
creep measurements. The arrows indicate the relaxation peaks of the arms and backbone of the I

polymer.

Figure 4 also compesthe linear viscoelastic master curves of the seven linear monodisperse
PS matrices (5k, 22k, 64k, 129k, 185k, 483k and 1000k) with that of H3A1l. The timescale
separation between the linear and probe arm and backbone relaxations is critically important for the
assessment of constraint release. The main relaxation features of the linear polymers are directly
observed in the rheological data. The G’(®) and G”’(®) moduli for the PS linear 5k and 22k, whose
Mw is below or roughly equal to dMdoes not show any rubbery plateau and exhibits a Rouse
relaxation. The other well-entangled PS linear samples have a characteristic plateau modulus (which
extends with increasing Wl and a characteristi¢'=G’’ crossover relaxation time at,=1/wc
(since the linear samples are monodisperse). In addition, the characteristic terminal slopes of 2
(G~w? and 1 G'~w) are observed at low frequency. Note that the low-frequency data of 129k
exhibit weaker slopes, apparently due to some large-molar mass tail (despite the low polydispersity
reported in Table 2). This however does not influence the message of the work and will not be

further analyzed.

[11.2.2 H-linear polymer blends: Figure 5 depicts the linear viscoelastic storage moduli of the
binary blends composed of ¥1% of sample H3A1 and 90% of line&S samples. It is observed

that the relaxation of the H-polymers diluted in a linear matrix withdM .85 kg/mol is much faster
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than in its pure H-environment (see Figure 4). Indeed, their characteristic rheological features are
overshadowed by the relaxation of the linear polymer. This feature is due to the small amount of H-
polymer in the blend, and can be explained as follows: as observed in Figure 5, the relaxation of the
linear chais PS5k to PS185k takes place well before the time at whichrethaction of the
branches of H3A1 starts (ab around 1G rad/s). Therefore, one could consider that for the
corresponding blends, the linear matrix acts as a solvent for the terminal relaxation of the H-
polymer. Under these conditions, the effective molar mass between two entanglemgafteMhe
relaxation of the linear matrix is equal ta ¥+ = 148 kg/mol, i.e., larger than the molar mass of

the H-branches (132 kg/mol) and about 3 times smaller than the molar mass of thesrhd-
longest path of the S Thus, for these blends, if DTD holds the H-polymers should relax
according to a ConstrairtRelease Rouse (CRR) process, i.e., without the appearance of a second,

low-frequency plateau. This hypothesis will be tested and discussed in Section V.
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Figure 5. Linear viscoelastic storage modulus a#TL.30°C of the binary blends composed of 10
wt% H3A1l and 90 st% of linear PS of varyingyKbk, 22k, 64k, 129k, 185k, 483k and 100k

samples. For samples 483k and 1000k, the continuous curves represent data obtained from creey
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measurements. In the former case there is unambiguous evidence of the presence of a slow termina
mode (which is not fully detected), whereas in the latter case there is only a hint of possible

(anticipated) slow mode.

On the other hand, Figure 5 shows that the blends of H-polymer in the shortest linear
matrices exhibit the strongest effétttheir G’ (and G”’). Indeed, the PS5k and the PS22k mixtures
havenoticeably different G’(®w) moduli compared to the linear monodisperse matrix (see Figure 4),
with two distinct terminal relaxation modes. On the other hand, the presence of H-polymer in the
longer matrice? B4k, PS129k and PS185k only leadsateeak, albeit unambiguous shoulder in
the low-frequency data. This significant change observed in the shapévath the molar mass of
the linear matrix already indicates that the relaxation of the H-polymers cannot be explained by
considering their relaxation by CRR process together with the conventional definition of CRR time
(i.e. tcrr = @inZ1%, With 7in the relaxation time of the linear matrix ang, Zzhe number of
entanglements along the entire backbone of a H-polymer). Indeed, in such a cad®) (hg.1a
/7in) between the terminal time of the blend and the relaxation time of the linear matrix would have
been constant for all the blends, which is obviously not the case. Instead, as illustrated in,Figure 6
this ratio increases with decreasing molar mass of the linear chainsAMimilar trend has been

observed in other binary mixtufes, and will be further discussed in Section V.
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Figure 6. Comparison of the terminal relaxation time of blends with 10 wt% BfS-viens, and that

of the linear matrixin, as function of the molar mass of the lattef, st 130°C. The terminal time

v and Rouse timer(H) of the monodisperse RSare indicated by horizontal full and dashed lines,
respectively. Tieterminal times were determined experimentally by fitting the terminal regime with
two lines of slopes 1 and 2 (for G” and G’, respectively) and inverting the cross-over frequency. The
only exceptions are the blends in the two largest molar masses linear matrices for which the terminal
relaxation was too slow to be detected even by creep measurements. For the 483k matrix, the
relaxation time was determined from the theoretical curves and involves some uncertainty. This was

not attempted for the 1000k matrix because the uncertainty is huge (see also)Figure 5

If a longer linear matrix is used, such as PS 483k or PS1000k, one cannot easily discern the slow
mode signalling the relaxation of the H-polymers, even with creep measurements. Indeeg, at ver

low frequencies the onset of a slow mode is observed in the 483k matrix andlontyls given
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(small change in low-frequcny moduli slopes) for the 1000k (this is further discussed in Section
V.4). Therefore, the relaxation time of the H polymer in the 483k matrix has been determined from

the theoretical predictions, whereas for the case of 1000k matrix it is not reported due to larger

uncertainty.

IV. Modeling analysis

In this Section we first briefly review the main features of the TMA model used for
determining the viscoelastic properties of the monodisperse samples. This model has been presentec
in detail in ref. [14] for the linear matrix and ref. [7] for the H-samples. Then, based on the

observations made in Section Ill, we propose a simple model to describe the relaxation of the

H/linear blends.

IV.1 Time marching algorithm (TMA) : The relaxation modulus of a polymer melt, G(t), is

described by taking into account two different contributions:
G(t) = Gr(D) + Gy (2) )
The first contribution, &(t), describes the high-frequency Rousedes taking place at time scales

shorter than the Rouse entanglement time e, before the chains have time to experience the tube, as

well as the longitudinal Rouse motion®:

Gr(t) = kax;:T EZi’;l exp ( i ) + X p=z,+1€XD ( —2p%t )} (10)

TR(My) TR(M})

with v« and =(Mk) representing the weight fraction and the Rouse time of the chain k, respectively
(for monodisperse samples, k is fixed to 1). The second contribGign, describes the relaxation

of the whole chains through disentanglement process (reptation, Contour Length Fluctuations (CLF)
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and Constraint Release). It depends on both the unrelaxed fraction of initial tube segments:),

and the dilation factog(t):
G(0)=Gypt) =Gy (1) {p()}". (11)

The dlation factor¢(z) takes into account the effect of CR on the chain entanglements and defines
the diameter of the dilated tube (such as@#s@ “?). It is a priori equal to the unrelaxed fraction

of initial tube segmentsp’(z). However, its decrease through time is limited by the fact that it
cannot decrease faster than by a (Constraint Release) Rouse process. Since this condition does nc

apply to monodisperse samgle/e don’t consider it here.

On the other hand, the unrelaxed fraction of initial tube segments, ¢’(?), is determined by summing
up the survival probabilities (by reptation or fluctuations) of at all molecular segmenftsilk the

different chains k:

' =1
@' (1) = Ticvie [ Prepe (s ) Pprue (i £) dxe (12)

k=0

As detailed in ref. [7], the probability p,p:(x,¢) of a segment x to survive from reptation process at
time ¢ is given by the Doi and Edwards equation', while the survival probability from fluctuation
process is approximated by the decreasing exponential function, exp(-#/zuc(x)), where Tfuc (X) is the

fluctuations time corresponding to segment x.

It must be noted that in the case of unentangled chains (such as the linear matrix 5k and 22k), the

polymer fully relaxes by Rouse process:

Gun(t) = 25PN oxp (22) (13)

My, TrR(ML)

When diluted in a very short chain matrix, the H-polymers can also relax by a Rouse relaxation.

This is discussed in section [V.3.
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Subsequently, the storage and loss moduli are determined from G(#) by using an
approximation of Fourier transform, as proposed by Schwarzl.”>. The material parameters of the
model are the plateau modulus, G, the molar mass between two entanglements, M,, and the Rouse

time of an entanglement segment, 7z.. We consistently use the same best fit TMA parameters
(Me=14.8k, G =230KPa 1=0.5s and a=1) for all PS samples (linear and H) at a temperature of

130°C (or at iso-T; condition for PS5, PS22 and PS1000k). These values are consistent with other
works® when taking into account the horizontal and vertical shift factors associated with a

temperature difference.

IV.2. Monodisperse H-polymer: The description of the relaxation of an H-polymer is more
complex due to the hierarchical relaxation of its two generations of molecular segments (the
branches and the inner part of the backboAe)imescales larger than 7., the polymer relaxation
starts with the relaxation of the arms by early and activated fluctuations. After the arms retraction,

the backbone segments are free to move and will proceed to relax by fluctuations modes’. A
specificity of the TMA model, compared to other tube motfels to utilize a uniquenolecular
coordinate system, from x=0 at the chain extremity to x=1 at the middle of the H-polymer (see
cartoon in Figure 7a), in order to determine the fluctuation times of the inner backbone’. In such a
way, continuity is ensured between the relaxation time of the last segment of the branches and the

one of the first backbone segment. Within this reference system, the influence of branching chains is
taken into account by considering an extra friction point in the fluctuations time of the molecular
segments localized between the branching point (x=x;,) and (x=1), as illustrated in Figure 7b. In the
terminal regime, the reptation of the (entire) backbone will eventually take over as fluctuations will

become exponentially slow.
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Figure 7: (a) H-polymer molecular coordinate systems. The first one, from the end of the branches,
Xarm=0, to the branch point,ax%~1, is used for determining the relaxation time of the molecular
segments around the arms. The second one, from the end of the branches, x=0, to the middle of the
backbone, x=1, is used to determine the relaxation time of the (inner) backbone. (b) At time longer
than the relaxation time of the branches, these last ones are seen as extra friction points along the

backbone of the H-polymer.

As discussed in refs. [57, 58], the presence of the branches has mainly two opposite effects
on the relaxation of the inner backbone: on one hand, the motion of the branching points is strongly
slowed down, which leads to extra friction felt by the backbone. However, on the other hand, it
leads to large DTD effect due to the fast motion of the branches, which act as a solvent for the
relaxation of the inner backbone®. This solvent effect is taken into account through the rescale of

M. in the calculation of the fluctuation times:

Me o

M,(x) = s

for x,, <x <1 (14)

with S(x), the relaxed fraction of the H-polymers, i.e. acting as a solvent, at the time the segment x is

relaxing:
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X—Xbpr

1-Xxpr (15)

S(X) = UgrmtUp

In equation 15, vy represents the weight fraction of the inner part of the H backbone. Alternatively,
the backbone can relax by a Rouse relaxation process (if the volume fraction of the arms is large
enough as to completely dilute the backbone, such as there is no backbone-backbone entanglement).

In such a case, the monomeric friction from the branching points must also be taken into account.

IV.3. H-polymer diluted in an oligomeric linear matrix (Min = 5 kg/mol) Based on the
experimental results (see Section Ill), we now propose a simple approach to describe the relaxation
of the H-polymers diluted in a solvent-like (unentangled) matrix. This one is based on the fact that
the H-polymers either do not contain self-entanglements (for the blends of H-polymers diluted at
concentrations of 1.5 wt% and 3 wt%), or only contain 2.6 self-entanglements (for blends containing
10 wt% of H-polymers). Therefore, we can safely assume that the H-polymers are never confined in
their ‘dilated’ tube, which only includes the H-H entanglements. Furthermore, the relaxation of the
oligomeric linear matrix of mass 5kg/mol is so fast that it seems reasonable to consider it as acting
as a real solvent. Therefore, the relaxation of the H-polymer in the 5 kg/mol matrix should be fully

described by a Rouse relaxation.

Calculating the Rouse spectrum of branched polymer architectures is not trivial, and becomes
more complicated as the degree of branching and asymmetry of the molecule is increased. In fact,
for the special case of a symmetric H-Polymer it is possible to obtain the forms of the Rouse
eigenmodes analytically, and so obtain simple equations that can be numerically solved to find the
Rouse spectrum, as we detail in the Appendix. We suspect that a similar approach could be used (for
example) fora Cayley tree architecture, but for molecules beyond that degree of symmetry it is
likely that the only viable approach is numerical solution for eigenmodes of a Rouse connectivity
matrix, as proposed in refs. [76-78] for star polymers. As an alternative, in the main body of the

paper we detail an approximate approach based on the insight that at high frequencies all polymer
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architectures have effectively the same Rouse relaxation spectrum (since at short timescales, Rouse
relaxation involves the collective motion of short chain subsections, but is insensitive to the larger
scale connectivity of the molecule). Only the longest Rouse modes, corresponding to collective
motion of chain sections larger than the distance between branching points (or from branching point
to chain end), are significantly affected by the molecular connectivity, and so givertferfrom

one molecular architecture to another. We show in the Appendix that this approximate approach
gives results very close to the exact calculation for an H-polymer. We consider that the approximate
approachcan be a useful starting point for application to more complex architectures and so focus

on this in the main text.

In the approximate approach, the longest Rouse mode is attributed to the relaxation of the
largestmolecular segment, i.e., the largest end-to-end path between two chain extremities, of mass
equal to 132+2x123=387 kg/mol. This span molar mass isddsllly hereafter. In such a way, we
ensure keeping consistency with the Rouse relaxati@m éf-polymer having two of its branches
replaced by extremely small branches, thus nearly forming a linear chain of mass 387 kg/mol. In
addition, the possible influence of the branching point on the Rouse motion of H-polymers must be
taken into account. Here, we assume (as detailed above) that for Rouse modes involving chain
subsections smaller than one branch or the inner backbone, the branching points should have no
effect on the Rouse relaxation. Hence for fast relaxations we simply use the Rouse spectrum of
linear chains of mass iMHowever, the sloar motionand higher friction from side branches could
potentially delay the longest Rouse modes, which involve molecular segments longeg {132 M
kg/mol) or M, (123 kg/mol). In the specific case of theR$studied here, we assume that these long
modes correspond to the entire chain (mode 1) or to half of the chain (mode 2) from the Rouse

spectrum of linear chains of massg,Ms illustrated in Figure 8.
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Figure 8: Description of the different Rouse modes present in the relaxation of unentangled H-
polymer diluted in an oligomeric linear matrix. The grey circles define the longest molecular
segment which can relax according to its intrinsic Rouse relaxation. The longest modes, 1 and 2, are

possibly delayed by the slow motion of the branching points or self-entanglements.

Another potential source of delay, for the component of the relaxation modulus attributed to
these two longest Rouse modes, is the few H-H entanglements, on average 246 wkrcMare
present when the H-polymer is diluted at 10 wt%. Since they would affect exactly the same Rouse
modes as the branching points, it is not easy to separate these two contributions. However, they
should only affect the blends containing 10% of H-polymers, while the delay due to branching point
motion should be detected whatever the H-concentration may be. In order to take into account these
two slower Rouse modes, we introduced a possible deéday,n their corresponding Rouse
relaxation. The relaxation modulus can then be described, considering both the H-polymer and the

unentangled matrix:

G() = Gy(t) + Gun(t) (16)

TRouse(MH) OH TRouse(My)

Gy(t) = UH% . <Zg=3 exp (;pzt) + 212):1 exp (i)) (17)
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RT -2 p?
Giin(t) = Ulin,C,Tm . ( §=1 exp (—pt) ) (18)

TRouse (Mlin)

with N, the number of Kuhn segments in the chain. In these equatiorgMin)= 7Zin> represents

the Rouse time of the diluting linear chains, whiteusMn) = 7Z+? represents the Rouse timeaof

linear chain of mass equal to span molar mass,.Bl without accounting for the possible influence

of the branching pointsEquation (17) is therefore just a modified Rouse spectrum for such a linear
chain, with the longest two modes delayed by faé@ The value oféy is not known and is
determined in Section V, by best-fitting procedure on the viscoelastic data of this specific blend.
While based on a single H-polymer one cannot investigate how this parameter depends on the H
characteristics, it does not briadarge degree of freedoton the model sincéh should not depend

on the linear matrix as long as the H-polymers are relaxing by Rouse modes.

As noted above, in the Appendix we present an alternative to Equation (17) based on the

exact solution of the Rouse model for the H-polymer architecture, comparing that result to Eq. (17).

IV.4. H-polymer diluted in a weakly entangled short linear matrix (M. < 185 kg/mol} A priori,

the H-polymers diluted in an entangled linear matrix can relax according to numerous different
mechanisms. They can relax in their thin tube, if the entanglement with the linear matrix has too
long a lifetime to be neglected. At later times they might be considered to relax in a dynamically
dilating tube, as relaxation of the linear chains provides release of their entanglement constraints (if
the H-polymers are sufficiently concentrated, entanglements between H-polymers would also need
to be considered here). The process of enlarging the dynamically dilating tube is, in fact, the
Constraint Release Rouse (CRR) process: the H-polymers are moving via Rouse motion in a sea of
linear chains, at the rhythm of the destruction/re-construction of the entanglements involving the

linear chains. Since the H3A1l samples diluted at 1.5, 3 or 10 wt% contain no or very few self-
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entanglements (see Section 1V.3), the CRR process on its own provides a mechanism to relax

practically the whole of the stress carried by the H-polymers.

Based on the discussion in Section Il (see Figure 4), it seems reasonable to consider that the
relaxation time of the short linear matrjd. <185 kg/mol) is well-separated from those of the
monodisperse H-polymer. Given this, we may assume that the CRR process is the fastest
mechanism of the ones discussed above and so dominates the relaxation of the H-polymers. We will
proceed on the assumption that it is the only relaxation mechanism, i.e. assuming all relaxation takes
place via CRR and neglecting relaxation via tube escape (from thin or dynamically dilating tubes)
We may anticipate that this approximation is best for the shortest linear chains, but for longer linear

chains, when CRR is slower, other relaxation mechanisms may become competitive.

It is important to note that while the H-polymer diluted in both an unentangled and an entangled
matrix, are relaxing by Rouse, the two systems are quite different: the (Constraint Release) Rouse
motion of the H-polymer in an entangled matrix is governed by the motion of the linear chains (i.e.
by tiong-shot — See Equation 2), thus its terminal time can be much slower than in a oligomeric
solvent. On the contrary, if the linear chains are too short to be entangled, the H-polyne=r relax
according to its intrinsic Rouse process (i.e. governedepyather than through CRR process.
Therefore, as illustrated in Figure 9, Rouse modes of the H-polymer in an entangled matrix must be
divided into three categories: i) the intrinsic Rouse modes of the molecular segments shorter than
one entangled segment, which take place from the time#) to (t = =); i) The Rouse modes
associated with molecular segments larger thanbid which do not require the motion of the
branching point, i.e. associated with molecular segments shorter than a(ib3®1 kg/mol), M

(123 kg/mol)}, which must involve a delay fact@katix in order to account for the influence of the

slow motion of the linear chains; and iii) the longest modes (1-2), which are delayed by both the
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linear matrix @ratriy and the slow motion of the branching points and/or thed H-

entanglementsty).
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~ Modes (Z+1)toN y:
N ’
~ ”
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Figure 9: Description of the different Rouse modes present in the relaxation of H-polymer diluted in
an entangled linear matrix. The red circles define the entanglement segments; the dashed grey
circles define the longest molecular segment which can relax according to Constraint Release Rouse
motion, at the rhythm of the motion of the linear chains. The dashed black circle describes the
longest modes, 1 and 2, which are possibly delayed by both the linear matrix and the slow motion of

the branching points and/or the few H-H entanglements.

From this scenario, we can determine the corresponding relaxation modulus, G(t). To do so,
we use Equation (16) combined with the following expression for describing the H-polymer
relaxation, which takes into account the possible delay in Rouse motion due to both the linear matrix

(6atriy) @and the branching point and/or the H-H entanglemeh)s (

31



-2 p2t

N _—2pit Zy —2p?t \]
Gy(t) PRT (Zp:ZH+1 exp (TRouse(MH)) + 25" exp <9matrix 'TROHS@(MH)>
H =V _—.

H (19)
o \ + 3 exp( pt )

OH -0, g trix TRouse (MH)

with Zu, the number of initial entanglement segment along the end-to-end span segment of mass My.

Furthermore, since the linear chains are entangled, their contribution to the relaxation modulus must

include fast Rouse relaxation up to the entanglement segments, then their relaxation by CLF,

reptation and CR:

PRT 1 «Zy; -p?t -2p?t
Giin () = Viin [m : (Z Yph exp (TR(MUn)) + Xy =2y, €XP (—> > +

TRouse(Miin)

Gy °. ®uin’ (1. (¢tube,lin(t))a] (20)

In this equationgin '(t) represents thenrelaxed fraction of initial tube segments of the linear matrix
at time ¢, ranging from 1 at time (¢=0) to 0 when the matrix is fully relaxed (since Giin(?) only
focuses on the contribution from the linear chains), and ¢, ;,, (t) describes the diameter of the
tube in which the linear chains are moving, in function of time. Since at this time scale, the H-

polymer is still fully oriented, ¢, ;;,,(t) is approximated as:

d)tube, lin(t) = Uy + Vyin - (plin’(t) 21

Again, in these equations, a new paramefksrix, appears. Contrary téy, this new parameter

should varyas function of the molar mass of the linear chains since it represents the delay in the
Rouse process of the H-polymer due to the slow motion of the linear matrix. However, if we assume
that the relaxation time of the linear matrix is not influenced by the presence of the H-polymers, this

parameter should not depend on the concentration of the latter. This assumption is valid here due to
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the relatively low proportion of HRS (from 1.5 wt% to 10wt%) and the rather fast relaxation of the
linear chains (which occurs before DTD can influence their reptation process). As detailed in
Section V, the parametéhatix is first considered as a fit parameter, determining its value in order

to correctly describe the loss and storage moduli of the blends. Then, these best-fit values are

discussed and rationalized for the different blends.

V. Discussion

V.1. Viscoelastic relaxation of monodisperse sampleBefore applying the model developed in
Section IV to the H/linear blends, we first compare the linear viscoelastic data of the reference

samples with the curve predicted by the TMA model, based on Section IV.1. Results are shown in

Figure 10.

33



=
o
1

=
o

AR ERLE. N A E 20 B R ER PR

=
o
w

b.G',b.G"(w) [Pa]

=
o

T

H
o
]

(N
T IIHI“’ T AAHHA’

b.G',b.G"(w) [Pa]

-2
10 10
a o [rad/s]
Figure 10: Experimental Storage (0) and los9 (noduli of sample H3A1 H-polymer and of the
linear matrices, at the master curve reference temperatures of 130°C. The continuous curves
correspond to the data predicted with the TMA tube model (see Section IV.1). The dashed curves

for samples 483k have been obtained from creep measurements.

While the overall agreement between the experimental and the theoretical curves is renarkable,
few comments are in order. First, we observe a large deviation between model predictions and data
in the case of sample 5k at high frequencies. This suggests that, as already observed in [79] or in
[80], in this frequency domain, the chains are not relaxing as desdjbadoure Rouse process.

Second, the model does not exactly capture the behavior of the 22k matrix at low frequencies. This
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is due to the very small number of entanglements, equal to 1.48 per chainP&bKeand PS 22k

are considered as not entangled and monodisperse in the model, we cannot exclude the paesence of
few longer chains containing some entanglements, which slightly slows down their relaxation. In
addition, we observe that the model correctly describes the terminal relaxation of the H-polymer. In
this case, the entangled branches are considered to relax by early and activated fluctuations (see
Section 1V.2). However, the way the inner part of the backbone is relaxing is not clear. If we
consider that the relaxed branches act as a solvent after their relaxation, we finel ithagr part of

the backbone is not entangled anymore, while the whole backbone (i.e. the longestrmhd-
molecular segment) still contains few entanglements and thus, relaxes by fluctuations or reptation,
rather than by a Rouse process. While this is this last approach which has been followed in this work
(consistently with ref. 7), one should note that both approaches lead to similar results. Given the
limited data available, we cannot confirm the validity of either approach and leave this question

open for future investigations.

V.2. Dilution of H-polymer in oligomeric linear chains We next investigate the relaxation
dynamics ofa binary mixture consisting of 1.5 wt%, 3 wt% or 10 wt% of H-polymer (probe) diluted

in oligomeric linear matrix, more specifically PS linear 5k (unentangled). The viscoelastic properties
of this sample are modelled based on Equations (16-18) based on the Rouse model. As discussed ir
Section 1V.2, the parameték is determined by best fitting procedufes shown in Figure 11a, the
experimental data of the blends containing only 1.5 or 3 wt% of H-polymer (in the unentangled
state) are very well captured by consideréhg=1. This means that the relaxation is well described

by a Rouse process, and that the longest Rouse mode corresponds to the intrinsic Rouse relaxatior
of the longest ents-end path between two chain extremities, i.e. the Rouse time of the H backbone

in an oligomeric polystyrene at isofrictional condition. Thus, no specific delay coming from the
branching points is observed, as we could have expected. The generality of this result is however not
clear, since it is possible that the observed insensitivity of Rouse relaxation to the branching points
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is due to the low number of branches attached to the polymer backbone in the specific case of a H-
polymer. Furthermore, for these two blends, the relaxation of the H-polymers is independdnt of the
weight fraction. This can be confirmed in Figure 11b, where the storage moduli of the threes sample
have been vertically shifted by a factor«y. it is observed that the relaxation peak of the samples

containing 1.5 wt% and 3 wt% of H-polymer superimpose very well.

On the contrary, at 10 wt% in an oligomeric matrix, the H-polymer exhibits longer relaxation
time (see Figure 1l1b)Whereas the good superposition of the shifted experimental data at
intermediate frequency demonstrates that its relaxation mechanism has the same origin as those of
the two other blends (i.e., it is well-described by a Rouse relaxation process), its longest (terminal)
mode is longer. As shown in Figure 12, the latter is well captured if the valseofixed to 2. As
already mentioned, this larger value found watli0 wt% concentration of H-polymer can be
attributed to a delay of the longest relaxation modes due to the presence of a few entanglements
(=2.6) between the H-polymers. . In Figure 13, the influence of the delay of longest Rouse modes
can be observed by comparing the model predictions @it 1 (dotted curves) anéy = 2
(continuous curves). Hence, it can be concluded that the influence of this parameter is rather limited.
While the value otk =2 has been fixed here (by best-fitting process), the same value will be used

for all blends composed of 10 wt% of H-polymer.

In order to get further insight about the sample relaxation, we analythe following the
theoretical storage and loss moduli by considering the contribution of each component, i.e., the
linear chains, and the H-polymer. From this decomposition, it is clear that the slow gradual decrease
observedor G’ at intermediate frequencies (4@ad/s to 1 rad/s) is due to the Rouse modes of the
H-polymer, as observed with 1.5 or 3 wt% of H-polymer. Since the H-polymers are diluted in a
‘solvent’ matrix, this Rouse relaxation is intrinsic to them and therefore, could never become shorter

even if a shorer linear matrix was used (while keeping constantg)l-This explains why the
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signature of the H-polymer is so pronounced when it is blended into a very short linear matrix,

where the ratio between their respective relaxation tiéﬁ@sbecomes larger withshorter matrix.
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Figure 11 (a) Comparison between experimental (symbols and dashed curves) and theoretical
(continuous curves) linear rheology data of 1.5 wt% (exp. data: black o and dashed curve (creep);
predicted data: continuous grey cunand 3 wt% (exp. data: blug and dashed curve (creep);
predicted data: continuous light blue curve) of H-polymer diluted in the PS5k linear matrix, at T
=130C°C. The parametdiy has been fixed to 1. (b) Experimental storage modulus of 1.5 wt% (0), 3
wt% (A) and 10 wt% [() of H-polymer diluted in the PS5k linear matrix, vertically shifted by

dividing G’(®) by the volume fraction of H-polymes.
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Figure 12 Comparison between experimental (0) and theoretical (continuous black curves) linear
rheology data of 10 wt% of H-polymer diluted in the PS5k linear matrix,at=T30°C. The

parameterfy has been fixed to 2. The curves represent the contributions of the H-polymer
(continuous red) and the linear matrix (dashed-dotted grey) to the moduli. The dashed red curve

correspond to the predictions with= 1.

Figures 11 and 12 also justify our choice to consider the longest@rdd path on the H-polymer
(the span molecular weightdM= My +2Ma) in order to define the longest Rouse mode (see Section
IV.3). It should be noted that if the arms of the H-polymers were considered as fully reléiress at
longer than the Rouse time of molecular segments of mas8Mwvt% of the H-polymers would

have already relaxed at a frequency arountira6/s.
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V.3. Dilution of H-polymer in short linear chains: As the molar mass of linear chains is increased
above M, they no longer act as a solvent for the H-polymer, which is then expectethx by
Constraint Release Rouse (at the rhythm of the disentanglement/entanglement process of the linear
chains) rather than by intrinsic Rouse relaxation. As described in Section 1V.4., in our model, this is

taken into account by considering the paraméigfix, Which represents the retardation factor

between these two Rouse proces8gg; ix = TiRR'” (see Figure 6) and by using Equation (19) in

RH

order to model the relaxation of the H-polymers in the blends.

We first apply the model to blends with a barely entangled 22k linear matrix, which is
considered to fully relax by Rouse motion (see Equation 18). However, since these linear chains are
larger than M even marginally, one cannot exclude that their presence slightly delays the relaxation
of the H-polymers. In fact, this delay is confirmed in Figure 5, which shows that the relaxation time
of the H-polymer is slightly longer in the 22k matrix compared to the 5k matrix. Since the value of
0y is fixed to 2 for the blermlwith 10 wt% of H-polymer (see Section V.2), the value of the
retardation facto@,, i, iS determinedy a best-fitting procedure on the blend with 10 wt% 8-
in the 90 wt% 22k matrix (since it is the only unknown) with results shown in Figure 14. A value
Omatrixz =1.5 is found, which represents a small delay effect of the barely entangled lineéaiomatr
the motion of the H-polymer, confirming that in this case the latter relaxes as if the 22k matrix
nearly an oligomeric solvent. It is interesting to note that despite this small effect on the H-
relaxation, the relaxation of the linear 22k matrix is much slower than that of the 5k matrix (see
Figure 10. Therefore, the G’ shoulder corresponding to the H-relaxation is much less pronoundad

the 22k matrix thaim the 5k matrix.

As mentioned in Section V.4, the retardation faékqy:,i, Should only depend on the molar
mass of the linear matrix. Therefore, we use the same value for the two other blends, containing 1.5

and 3 wt% of H-polymere the 22k matrix. As shown in Figure 13, in both cases a very good
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agreement is obtained between model and experimental datafyhkeh. Hencefdy, = 2 for all

blends composed of 10 wt% of polymer, @d= 1 for all blends composed of 3 or 1.5 wt% of H-
polymer, conforming to the fact that the branching points have a negligible effect on the longest
Rouse modes of the H-polymers considered here. On the contrary, the few H-H entanglements
present at 10 wt% of H-polymerZ.6 on average) contribute to extra friction along the H-
backbone, which delayiss slower Rouse modes (1 and 2), involving molecular segments longer

than the average molar mass between two H-H entanglements.

b_G'(w) [Pa]

b_G"(0) [Pal

-4 -3 -2 -1 0 1
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Figure 13 Storage G’(®) and loss G”’(w) modulus data of 1.5% (A), 3%(7) and 10%(0) of H-
polymer diluted in the linear matrix 22k, atfIF130°C. The experimental data (symbols) are

plotted alongside the model data (continuous curves), as well as the deconvoluted linear (grey
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dashed-dotted curves) and H (dashed curves) contributions to the curves. The p&ametas

been fixed to 1.5.

The same approach can be applied to the other blends. By increasing the molar mass of the
linear matrix, the retardation fact@atix is found to increase from 1.5 to 6, 19 and 58 for the
matrices 22k, 64k, 129k and 185k, respectively, whjldas the same values as for the previous
blends. As shown in Figure 14, the proposed model allows us to accurately describe the viscoelastic
properties of these blends. This good agreement suggests that the H-polymers predominantly relax
by a CRR process. This can be understood based on Figure 10, in which it is seen that even if these
linear chains are well entangled, their relaxation time stays faster than the relaxation time of the
branches of the H-polymers. By increasing the length of the linear matrix, it is expected that this
difference in relaxation times decreases, until the point where the H-arms relax faster by fluctuations

than by CRR at the rhythm of the linear chains motion.

In Figure 14 we also observe that the G’ shoulder related to the relaxation of the H-polyraer
decreases substantially with increasing the molar mass of the linear matrix, and nearly disappears in
matrix 185k, as discussed in Section 3.2. For this reason, we do not probe the full shape of the CRR
relaxation spectrum of the H-polymers in the data, but rather only their terminal relaxation, and
consequently it is impossible to rule out that other relaxation mechanisms, such as tube escape,

contribute to the terminal relaxation process.

However, despite this small shoulder corresponding to the H-relaxation, the corresponding
retardation factoBhatix is found to be much more important for the blends with higher molecular
weight linear molecules. Hence, we conclude that the H-polymer relaxation is strongly slowed-down

by the linear matrix (with potentially large consequences on the rheological properties).
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In Figure 14, we separate the theoretical moduli of the 185k-blends into the contributions
from the linear and the H-polymerShe moduli of the latter clearly show two Rouse relaxation
processes: the first one, at high frequencmesresponds to its segmental Rouse dynamics (see
Equation 9), which is limited to the entanglement segments. Then, a plateau is observed in the
storage modulus data. At this stage, the H-polymers are trapped in their thin tube and cannot relax
further. At lower frequencies, we observe their CRR relaxation, which starts at a time equal to
Gmatrixte and ends as soon as the longest mode (corresponding to the longesemthanolecular
segment) is relaxed. As seen in this Figure, the theoretical result suggests that the CRR process of
the H-polymers appears to start before the linear matrix is fully relaxed. Indeetteady a
mentioned, if CRR was fully dominated by the matrix terminal relaxation timpehe G’ shoulder
corresponding to the H-relaxation should always be observed at the same frequency relative to the
terminal relaxation frequency of the linear chains, which is obviously not the case. This can be
explained by the fact that the H-polymers take time for exploring their dilated tube by CRR.
Therefore, since their tube is not fully dilated when CRR starts, but is dilating fast enough to allow
each CRR mode to relax, the H-polymers should never feel topological constraints from their
surrounding tube. However, in order to validate this scenario, one should further analyze and
rationalize the values used for the retardation fagtatix in the different blends, as proposed in
Section V.5. At this stage, we just note that similar results were found ifBigfwhere it was
shown that the CRR process of the long component (star polymers in that case) starts at.a time Z
times shorter than the relaxation time of the linear matix, Similar behavior was also observed
by Read et a¥® for moderately entangled linear matrices, based on slip-spring simulations (see

Section V.5).

Furthermore, it is interesting to note that the model we propose here for describing the
relaxation of the H-polymer at the rhythm of the relaxation of the linear matrix is very similar to the

sticky Rouse model proposed by Cdtbfor describing the relaxation of unentangled linear chains
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bearing stickers along their backbone. Indeed, for both types of systems the relaxaiwernsd

by two Rouse dynamicshe first is associated to intrinsic Rouse motion taking place for molecular
segments shorter thanein the case of H/linear blends) or shorter than the average mass between
two stickers (in the case of sticky chains), while the second reflects slower Rouse modes, dominated
either by the long-short entanglements (in case of H/linear blends) or by the lifetime of the stickers
(in the case of sticky chains). Only the det&yyinduced by the few H-H entanglements along the H-

backbone does not have any equivalent in the sticky Rouse model.
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Figure 14 Storage G’(®) and loss G”’(®w) modulus data of 1.5% (A), 3%(’) and 10%(0) of H-
polymer diluted in the linear matrices 64k, 129k and 185k,-atTL30°C. The experimental data
(symbols) are plotted alongside the model (continuous curves), as well as the H contribution (dashed
curves). The retardation fact@matix has been fixed to 6 (matrix 64k), 19 (matrix 129k) and 58

(matrix 185k).

V.4. Dilution of H-polymer in long entangled linear chains Upon further increasing the molar

mass of the linear matrix to 483 kg/mol or 1000 kg/mol, the large separation between the reptation
time of the matrix and the relaxation of the H branches is lost (see Figure 4). Therefore, because
the long lifetime of their entanglements with the linear matrix, one cannot consider anymore that the
H-polymers relax by a Rouse process and that the linear matrix acts as a solvent for the relaxation of
the branches of the H molecules. However, since both the linear chains and the branches of the H
molecules are relaxing much faster than the inner part of the backbone of the H-potimeeare
expected to play the role of an effective solvent for the remaining unrelaxed part of the inner H-
polymess, enabling then to explore their surroundings. Thus, CR effects from the linear matrix and
the H branches shoulkjpeedup the relaxation of the inner part of the H-polymers. We therefore
model the relaxation of these blenalg using Equations 10 and 11 and considering the retraction
process of the inner backbone of the H-polymers in their tube, taking into account the extra friction
coming from the branches (see Section IV.2) as well as the extra solvent coming from the linear
matrix. Theoretical curves are compared to the experimental data in Figure 15, for the jpure line

matrix as well as the blends composed of 10 wt% of H-polymer.

From the modeling results one may observe that the signature of the H-polymer is negligible
at intermediate frequencies and only appears in the terminal flow region, when the storage modulus
is lower thanGyv, , with v, being the weight fraction of the inner part of the backbone. In this
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region, an extra shoulder appears, which is more visible with the linear &#&3k than with PS

1000k. The experimental data also reveal the onset of a slow relaxation shoulder in these blends
(see Figure 5, 15 and 16), confirming the ultra-slow relaxation attributed to the H polymer.
However, whereas this shoulder seems ie@an be sensitive to the creep conversion, which has
been achieved based on the NLReg approach developed by Honerkarfip latiaed, with such an
approach it is known that the data obtained in the first and last decades of the frequency window
may lose accuracy. Hence, we refrain from further discussing these data at present 6Fsgoresl

the experimental data of Figures 14 and 15 (10% H-polymer in matrices 185k, 483k and 1000k)
plotted asn”’(w)=G’(w)/® against frequency. This representation captures the low-frequency
response more sensitively and further supports the presence of a slow relaxation in 185k matrix (a),
which however progressively becomes barely detectable as the molar mass increases taa#é3k (b)
1000k (c). This prevents a more detailed quantitative analysis. To bring the slow mode within the
experimentally accessible window, dilution with a small-molecule or oligomeric solvent would be
the choice but this is beyond the scope of the present work. It is even worth noting that in this
sensitive plot (the out of phase dynamic viscosity is in linear scale), even for the 185k for which the
slow relaxation process of the H-polymer is probed unambiguously, its characteristic time is
captured by the Rouse model with delayed modésreas its intensity (value of n’’) is
overpredicted by a factor of 2 (Figure 16a). The discrepancies are larger for therlal@emass
matrices, predicted based on the tube model. These observations call for further improvements of the

current analysis.
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Figure 15 Comparison between experimental (red o and dashed curves for the data coming from
creep measurements) and theoretical linear rheology data of 10 wt% of H-polymer dilutedrin linea
matrices (continuous black curves) for (a) PS483k and (b) PS1000k For comparison, the predicted

data obtained for the pure matrices are also shown (grey continuous curves).
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Figure 16. Same data as in Figures 14 and 15, but plotted as effégtiumic viscosity (G’(®)/®)

against frequency. This representation sensitively captures the low-frequency region. Symbols are

experimental SAOS data and dashed-dotted curves are transformed creep data of 10Hwt% of

polymer diluted in linear matrices comprising (a) PS185k , (b) PS483k and (c) PS1000k. The black

lines are the theoretical predictions. The grey and black arrows indicate the theoretical relaxation
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peaks of the matrix and the H polymer, respectively. For comparison, the predicted data obtained for

the pure matrices are also shown (grey continuous curves).

V.5. Retardation factor Omatrix for the relaxation of the H-polymer. Compared to its relaxation in

a monodisperse environment, the relaxation of a H-polymer diluted in a linear matrix is much faster
for fast linear chains (M<185K) (see Section V.3). Therefore, we can envisage an acceleration factor
defined as the ratio between the terminal relaxation times of the monodisperse H-polymer and the
blends (as proposed in Figure 6). However, since in their terminal regime the H-polymers are not
entangled anymore or contain too few entanglements to relax in a constraining tube, it seems more
instructive to look at the retardation factatix of these blends compared to the terminal time of the
H-polymers diluted in a small-molecule solvent (or equivalently, in an oligomeric PS matrix). Within
this scenaripwe consider the retardation factor corresponding to the ratio between the CRR time and

the intrinsic Rouse time of the H-polymers (see Figure 6):

TCRRH __ Tlong—shortZHz (22)

Bmatn’x -

2
TRH TeZH

where the average lifetim®ng-shortgoverning the CRR process in unknown, apdszhe number of
entanglements in the H backbone. As discussed in Section V.3, thiscdmet be simply
proportional to the relaxation time of the linear chaims, as proposed by Struglinsky and
Graesslelf, otherwise th@mportance of the G’ shoulder would have been identical for all blends
with the same concentration of H-polymer. The failure of this rule €.&,g—snore X Tiin) IS
illustrated in Figure 17, where the valuesthfix obtained by best fitting procedure on the different
blends are compared to the relaxation time of the linear mattixasfunction of the molar mass of

the linear chains. Clearly, the retardation factor is not following the same trepgl bsleed, while
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for very short matrix its value can never become lower than 1 (which represents the intrinsic Rouse
relaxation of the H-polymers in an oligomeric solvent at isofrictional condition), it does not increase
as fast as the reptation time of the entangled matrix.

This conclusion is in good agreement with previous wérks83! In particular, in their
recent papéf, Read et al. determined this retardation factor, based on slip-spring simulations on

bidisperse linear blends, and found tihas well estimated by:

. . in 1 e
Omatrix(Slip — spring) = 0'047% (1 o 0_0:7 sz) + 1. (23)
Thus, while the dependence of this factorrgp is rather complex for moderately entangled linear

matrices, in the limit of very well-entangled short matjx,;_snor: Should be smaller tham;,, by

a factor 0.047. As shown in Figure 17, the theoretical factors are rather close to the val4es of
determined experimentally, despite some deviation observed for the longest matrices, which can be
due to different reasons (such as the estimatiam pfhe estimation of the constants in Eq. 23, or an

increasing effect of other relaxation mechanisms of the H-polymers in the longer matrices).

The retardation factor can also be compared to the scaling proposed by Ebrahifhi et al.
based on star polymers diluted in an entangled linear matrix, according to which the retardation

factor is inversely proportional toi2, the square of the number of entanglement segmerds in

linear chain. In this case the retardation factor should be well-descritigl, by, = —2md=short —

Te

Tlin

. 2 . . - -
Zin_ and should be equal to 1 with unentangled matrix. As observed in Figure 17, the agreement

Te
between this scaling and the valuethwix Obtained experimentally is also very good (the origin of
the factor 3 found in the relationship betwégn,.;, andain is not clear, but was also found in ref.

[31]). This suggests that rather than being the relaxation time of the linear matrix, the parameter
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Tiong-short ShOUld be seen as kind of ‘rescaled te’” which represents the relaxation time af
molecular segment of mass: Mbtained if the ent&linear chains were relaxing Rouse-like with a
relaxation timenin (rather than their intrinsic Rouse time).

It is interesting to note here that while both theoretical approaches lead to comparable values of
bmatrix for the data analyzed in this work, large differences are expected to be found with longer
matrices. Indeed, while Eq. 23 predicts that for very well entangled mawiges,is a proportional

to ain, Ebrahimi et al. proposed a scaling going witiZin2. Therefore, in order to experimentally

test these two different scaling laws, one should design and measure the CRR behavidoofjvery

linear chains moving in a long matrixitz20).
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Figure 17: Retardation factobatrix, Gmatrix (Slip-spring), relaxation time of the linear mateix and
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Note also that this definition of retardation factor is valid only if the long component is relaxing by
CRR process. With longer linear matrices, such as 483k or 1000k, a significant part of the H-
polymers is relaxing by fluctuations in their thin tube. Therefore, this relationship should not hold

anymore.

VI. Conclusions

We investigated the role of constraint release on the relaxation of a model H-polymer diluted
in a linear matrix of varying molar mass and concentration (1.5, 3 amd 10 wt % H). The
experimental frequency spectra, obtained by dynamic oscillatory and complementary creep
measurements, were analyzed by means of the TMA (Time-Marching Algorithm) model itoorder
guantitatively describe the linear viscoelasticity of the monodisperse component and validate the
choice of the material parameters, i.e., the plateau modulus, the molar mass between two
entanglements and the Rouse time of an entanglement segment. We then investigated the effects o
the environment (molar mass of linear chain matrix) on the dynamics of the H-polymer. It was
found that very short (oligomeric) linear chains act as a solvent, with the H-polymers relaxing
according to their intrinsic Rouse modes. From these data, a time&ietdgerved in the longest
Rouse modes with 10wt% of H-polymérerresponding to semidilute regime) was attributed to the

presence offew H-H entanglements inducing extra friction points to the Rouse relaxation.

As the molar mass of the linear chains increased, H-linear chain entanglamrentsrmed.
It was found that if the reptation time of the linear chains is faster than the retraction time of the
branches, the linear chains aksct as solvents for the H-polymers. However, the latter can only
explore their dilated tube at the rhythm of the motion of the linear matrix. We took this into account

by considering that the H-polynsarelax according to a Constraint Release Rouse (CRR) process,
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that we assumed to be slower than the corresponding intrinsic Rouse process by dactBy
analyzing the dependence of this retardation fa@terix on the molar mass of the linear matrix, we
showed that it is not only proportional to the relaxation time of the linear matrix, as usually
consideed®, but also depends on the entanglement state (number of entanglements pef thain
linear chains. This result is in agreement with the recent works of Reaéf emnabbidisperse linear
blends and Ebrahimi et &lon star polymers diluted in a linear matrix, which suggests a generic
picture of retardation factor of H-polymers in moderately entangled linear matrix environments.
However, further analysis is needed in order to better understand the molecular origin of this non-
proportionality betweemhatrix and zin. Testing and potentially adjusting this picture in longer, well-

entangled matrices is also an open challenge.
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A. Appendix: Exact Rouse modes of H-shaped architecture

In this Appendix we detail a solution for the exact Rouse modes of monodisperse H-shaped polymer
in which all arms have identical molecular weight. The symmetry of the structure allows an exact

determination of the mode structure. In general, for any linear section of chain within theetdranch
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polymer, the equation of motion of the positiBnof a given monomeis identical to the standard

Rouse model, i.e.

dR 9%R
(e =kgmtf (24)

. .. 3kpT . . . .
where( is the monomer friction constarit,= b—i is the monomer spring constant, n is a variable

that counts monomers along the chain strandfasdhe local stochastic force. Rouse modes of a

2
polymer must be eigenmodes of 9%19 operator along linear chain sections, i.e. along each linear

chain section they must take the form:
_ pmn . pmn
R=X, (A cos——+ B sin T) (25)

whereX,, is the amplitude of the mode p and we have written the Wavenum%\]’é(valsere N is the

total degree of polymerisation) so that for a linear polymer p would take integer values to give the
well-known Rouse modes of a linear chain. Substituting equation (25) back into (24) reveals that the

relaxation time of mode p is:

szzf TR
Ty =————=— 26
p 3m2kgTp? p2 ( )

wherery is the Rouse relaxation time of a linear molecule of degree of polymerisation N. For any
given eigenmode of the chain, all linear chain subsections of the molecule must relax with the same
timescale (they all have the same eigenvalue) and so all of them must take the same value p for the
shape of the modes descridadEquation 25 (i.e. the eigenmode has the same wavelength for every
linear chain subsection). However, the form of the eigenmodes, and the allowed valuesiohp (w

in general will not be integers) are determined by the whole shape of the branched molecule and the
boundary conditions at chain ends and branchpoints. An example of this calculation, for the
symmetric star architecture, may be found in ref.[82]: here we generalise this to theed-sha

architecture. To do this we must specify the monomer coordinate frame we will use for each linear
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chain subsection which we illustrated in Figure 18a. In terms of these co-ordinates, the boundary

conditions are as follows. At chain ends of all four arms, there is no chain tension, hence:

6RA1 _ aRAZ _ aRAS _ aRA4_

on n=Ng4 on n=Ng4 on n=Ng4 on n=Ngy

= 0. 27)

At branchpoints, the displacements of all connected chains must be equal, so (for example) at the

right hand branch-point:

N
Rui(n=0) = Riz(n=0) =Ry (n = ). (28)
a) a Al N b) Mode set A
A
Ng N
2 9 7?// 0
- , = T—C=
 — _
A3 A2
c) Mode set B d) Mode set C

— = —
<: [ :) (: 1

Degeneracy 2

Figure 18: (a) Chain co-ordinates used for H-polymer modes. Backbone co-ordinate runs from
—% to%. Arm co-ordinates run from O (at branchpoint)Ng. (b) Symmetry of Mode set A

asymmetric along molecule length with displacement node at centre of backbone. (c) Syshmetry
Mode set B- symmetric along molecule length with displacement maximum at centre of backbone.
(d) Symmetry of Mode set G asymmetric along arms at one end of molecule with node at
branchpoint and rest of molecule undisplaced. These modes have degeneracy 2. In all cases (Mode

A, B and C) the slowest mode of the is shown, but higher modes have the same symmetry.

54



Chain tension must also balance at the branchpoint, hence (again, for example) at the right-hand

branchpoint:

6RA1
on

ORg2
n=0 on

__ 9Rp

n=0 on

g (29)

Considering the symmetry of the H-molecule, we identify three mutually orthogonal sets of

eigenmodes, depicted schematically in Figure 18(b-d). These are:

Mode set A These are asymmetric along the length of the molecule, so:

pmn

Rz =X, sm— (30)
and
Ry (n) = Ry (n) = —Ry3(n) = =Ry (n) = (A cos 2= 4 Bsi np”n) (31)
Applying boundary conditions (28) and (29) at the branchpoint gies sin—— p"fB and
B = cos p”fB wheref; = % is the backbone fraction. Then, applying boundary condition (27
gives:
. Prfp zmzfs (32)

wheref, = % is the arm fraction. Equation (32) can be solved to obtain the values of p for the

Mode set A. For the H-polymer used in this paggr= 0.189, f, = 0.203) this yields p values

{1.358, 5.000, 8.770, 11.518...}. Hence, the longest relaxation time of the molecule is

—E_ = 054375,

Mode set B These are symmetric along the length of the molecule, so:
Rz =X, cosu (33)

and
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Ra1(n) = Ry(n) = Ryz(n) = Rya(n) =X, (A cos% +B sin%). (34)

Applying boundary conditions (28) and (29) at the branchpoint gi&{escos@ and

B = —%sin @. Then, applying boundary condition (27) gives:

ZCOS% sinprnf, = — sin% COSpTTfy. (35)

Equation (35) can be solved to obtain the values of p for the Mode set B. For the H-polymer used in

this paper fz = 0.189, f, = 0.203) this yields pvalues {3.710, 6.434, 10.000, 13.821...}, which

are faster relaxations than for set A.

Mode set C These comprise two degenerate sets of modes in which the backbone and the arms of
one end do not move, while the arms at the other end stretch antisymmetrically from the branchpoint,

which itself does not move. Hence one set of modes are given by:

Rp=Ry3 =Ry, =0 (36)
and
R, (n) = —R,,(n) = X, sin %. (37)

Boundary conditions (28) and (R8re automatically satisfied, whilst boundary condition (27) gives:

cosprf, =0 (38)

2

with solutionsp = "}_1 form =1,2,3... For the H-polymer used in this papef, & 0.203) this
A

2
yields p values {2.466, 2.466, 7.398, 7.398, where the p values are repeated to indicate the

degeneracy.

To obtain the linear viscoelastic spectrum, we note that each mode carries the same modulus

contribution (equal t&zT times the number of molecules per unit volume, i.e. for H-polymers at

fractionvy the modulus for each modeuig pRT

where My ota) 1S the total molecular weight of
My total ’
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the H-polymer. The stress relaxation time for each mode is one half the orientation relaxation time.

Hence, the Rouse relaxation spectrum of the H-polymer (including only monomer friction) is then:

Gu(t) = vy 22— 3, exp (22 (39)

My total TR

where the summation is over all p values identified as solutions to equations (32), (383Band (
above (with solutions to (38) repeated twice to account for the degeneracy of Mode set C). We list

the numerical solutions for the first 50 modes in Table 4.

Although the spectrum of modes is not identical to that of a linear polymer of the same molecular
weight (with p values now being non-integer in general) the modulus per mode is the same as for the
linear polymer, and at high values of p the mode density is identical (i.e. one mode per unit increase
in p on average). Hence at high frequencies (short times) the relaxation spectrum is identical to that
of the linear polymer, as is expected because at these short times the Rouse modes correspond t
local chain motion insensitive to the (rare) chain ends or branch points. This observation also acts as
confirmation that Mode sets A, B and C above include all the available Rouse modes. However, the
spectrum at the longest times, or lowest frequencies, does depend on the polymer architecture, so the

shape of the relaxation curve changes in the approach to the terminal relaxation.

In Figure 19, the storage modulus predicted with this exact Rouse solution (see Eq. 16, 18 and 39)
and the approximated Rouse model (see Eq. 16, 17 and 18) are compared in the case of 3 and 1.!
wt% of H polymer diluted in the oligomeric matrix of 5 kg/mol. As it can be seen, the difference
between two approaches is very small. Only a slight difference appears at low frequency, where it
seems that the longest modes of the exact Rouse model are slightly longer than the approximated

model.

57



10
10
10

[EEN
o

LI L B I UL B B B LB B B [P P L/ S B I P PP I AU IR )

b.. G'(w) [Pal]

10
10

a [rad/s]

Figure 19: Comparison between experimental and theoretical linear rheology data of 1.5 wt% (exp.
data: black o and dashed-dotted curve (creep)) and 3 wt% (exp. datA:dridedlashed-dotted curve
(creep)) of H-polymer diluted in the PS5k linear matrix, a=0L.3C°C. The data predicted with the

exact Rouse model are shown by the continuous grey curve, while the data predicted with the

approximated Rouse model are shown by the dashed red curves.

Table 4 The first 50 p-modes fgf; = 0.189, f, = 0.203

Mode set A (eq 31) Mode set B (eq 34) Mode set C (eq 37)
1.357668 3.710458 2.465909
5.000104 6.434078 7.397727
8.770082 10.00084 12.32955
11.51824 13.82128 17.26136
15.00284 16.60932 22.19318
18.86437 20.00676 27.12%0
21.70621 23.8990 32.05682
25.01329 26.80758 36.98864
28.92852 30.02315 41.92045
31.91192 33.95098 46.85227
35.03709 37.01765
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38.96806 40.05587 NB Degeneracy of
42.12309 43.98055 above modes is 2
45.08(80 47.22662
48.98922 50.11114
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