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 Abstract  

BACKGROUND 

It is important to map agricultural weed populations in order to improve management and 

maintain future food security. Advances in data collection and statistical methodology have 

created new opportunities to aid in the mapping of weed populations. We set out to apply 

these new methodologies (Unmanned Aerial Systems - UAS) and statistical techniques 

(Convolutional Neural Networks – CNN) for the mapping of black-grass, a highly impactful 

weed in wheat fields in the UK. We tested this by undertaking an extensive UAS and field-

based mapping over the course of two years, in total collecting multispectral image data from 

102 fields, with 76 providing informative data. We used these data to construct a Vegetation 

Index (VI), that we used to train a custom CNN model from scratch. We undertook a suite of 

data engineering techniques, such as balancing and cleaning to optimize performance of our 

metrics. We also investigate the transferability of the models from one field to another. 
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RESULTS 

The results show that our data collection methodology and implementation of CNN 

outperform pervious approaches in the literature. We show that data engineering to account 

for “artefacts” in the image data increases our metrics significantly. We are not able to 

identify any traits that are shared between fields that result in high scores from our novel 

leave one field our cross validation (LOFO-CV) tests.  

CONCLUSION 

We conclude that this evaluation procedure is a better estimation of real-world predictive 

value when compared to past studies. We conclude that by engineering the image data set 

into discrete classes of data quality we increase the prediction accuracy from the baseline 

model by 5% to an AUC of 0.825. We find that the temporal effects studied here have no 

effect on our ability to model weed densities. 

Keywords: 

Unmanned Aerial Systems, weed mapping, Convolutional Neural Networks, black-grass, 

management 
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1.1 Introduction 

The core objective of plant population ecology is to understand changes in numbers of 

individuals/organisms across time and space (1). Achieving this depends on methods that 

permit plants to be mapped and monitored at informative scales (2-4). Surveys of plant 

populations have been undertaken using a variety of different methods such as transect 

sampling, quadrat sampling and with Unmanned Ariel Systems (UAS) (5-7). Each of these 

methods has an inherent trade-off between the area that can be surveyed and the intensity at 

which the subjects can be studied in that area (8). Transect and quadrat sampling can be 

either used for small area, high intensity studies or large area, low intensity studies, but 

typically not both (9).  

UAS present a unique opportunity for ecological monitoring because, potentially, they 

can yield data across both large spatial areas and at high survey intensity. This bridges the 

gap between local scales at which interactions matter, and larger landscape scales at which 

environmental variation is important (10). UAS have been applied in a range of ecological 

scenarios including mapping communities (11), population monitoring (12) and mapping 

individuals in small areas (13). However, few studies have focused on mapping populations 

at differing times and places, or the challenges of the homogeneous of the environment.   

An economically important agricultural crop such as winter wheat (Triticum aestivum 

L.)  may be significantly impacted by competition from weeds (14). Weed species add 

additional costs to the production of crops by increasing the need for agricultural inputs: e.g. 

in one national-scale audit, it was estimated that weeds cost the Australian economy A$3.5B 

a year (15). Monitoring data can reduce costs by facilitating precision application of inputs 

such as herbicides, or better-informed cultural management (16). Ecological monitoring 

depends on being able to locate and enumerate individuals or species within a given 
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environment (17). Patches of weeds have shown to be persistent over 10 years, therefore 

mapping in one year represents a potential predictor of future occurrence (18). There are 

many challenges in the mapping of weeds such as their fast growth rates, and highly variable 

spatial and temporal distributions (19). Given the potential value of monitoring data, and the 

possibility of rapid large-scale acquisition of data using UAS, there is clear interest by 

researchers and farmers in applying this technology to measure weed populations (20).  

Despite the potential for data derived from UAS to improve weed management, 

previous research has highlighted significant issues in the use of them to monitor weed 

populations (6). Specifically, images and models calibrated to measure weeds in one 

environment appear to perform poorly when transferred to another. There are several reasons 

for this limited transferability, for example, variation in weather conditions or different 

growth stages of the weed or crop. As crop plants grow over the field season their phenology 

changes, as does that of the weeds (21). This results in changes in the spectral properties of 

the crop and weed species, both in the visible spectrum and beyond (22, 23). Moreover, 

common crops are grown in many different varieties, each with their own unique phenology 

and physiology (24-26). The statistical methodology of random forests (RF) and a dataset of 

mean pixel values from UAS image plots, as used in our previous study of weed monitoring 

does not fully capture the extent of these variations, thus failing to generate highly 

transferable models (6).  

Supervised machine learning is a statistical method that generates a classification 

output after being presented with an unclassified input, having previously been trained on 

data consisting of known inputs and outputs (27). All such models are trained using 

“features”.  A feature is a numeric representation of the unclassified input. In the case of an 

image input, these can be engineered by researchers i.e. texture, colour, shape or they can be 
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abstractly and randomly defined by the model and adapted over iterations.  Here we highlight 

key network methods that are used in supervised machine learning.  

Neural Networks (NN) conceptually mimic biological neurons in their node-like 

structure. Each node is interconnected to others and sends a “signal” if threshold values are 

passed. Threshold values are tuneable at each node and are adjusted automatically over the 

course of fitting the model. An important advantage of NN is that they can bypass the need 

for domain knowledge of the dataset (feature engineering), allowing more abstract and 

potentially useful features to be used. This does, however, make the model less interpretable, 

as the features that are used are selected without logical justification. As with most statistical 

methods, NN perform better when trained on more data.  

CNN are a type of NN specifically applied to image data sets. Convolutional Neural 

Networks (CNN) have emerged as the most common, and frequently best performing, model 

for image classification tasks in the machine learning literature (28). CNN learn a sparser 

connection between regions of an image than traditional NN models by imposing spatial 

dependencies upon the pixels in the image (29). This may be of use when analysing weed 

distributions because these are spatially dependant (30-32).  CNN do not use user defined 

features such as colour, shape or texture to learn from the data. Instead CNN create abstract 

feature maps and then through training/iterations, assigns importance to different feature 

maps (33) representing different states in the image. These components of a CNN make them 

a well-suited method for mapping weed populations, but the underpinning model 

correspondingly harder to interpret. Spatial information is retained, and automated abstract 

feature identification can identify common aspects among the classes of data that human 

feature selection would otherwise miss (34). 

This article is protected by copyright. All rights reserved.
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Here we investigate how images collected from UAS can be classified using CNN to 

predict weed densities in unseen images. We explore how data engineering can be undertaken 

to improve the results and account for the heterogenous nature of the environment. We also 

investigate the seasonal effects of mapping on our ability to correctly predict weed densities 

by comparing our models between years and the week of survey, thus addressing key 

limitations from past literature. Finally we assess true out of sample predictions of CNN 

models to assess their transferability across populations.  

 

2.1 Materials & Methodology  

2.1.1 Description of dataset 

We studied Alopecurus myosuroides (black-grass) in populations of Triticum aestivum L. 

(winter wheat). 1.9 million hectares of wheat is cultivated per year in the UK, making it the 

most widely grown crop, with A. myosuroides becoming a significant problem throughout the 

UK (35).  

Our field sites were part of an ongoing study by the Black Grass Resistance Initiative 

(BGRI) into herbicide resistance levels in the weed nationally. We surveyed 102 new fields 

across the arable regions of the UK. Late season monitoring (13rd June – 12th August in 

2016 and 2017) was chosen as previous work shows that the weeds are distinguishable from 

the surrounding wheat crops at this time (6). This represents a BBCH weed growth stage of 

87-89 (36).  

Fields were subject to a range of differing management practices, across farms from 

80 to 3000 ha. The populations of black-grass had previously been measured in fields using 

the methodology developed by (3, 35) to estimate plant density states in a plot. Plots of 

20x20m were chosen as this allowed large amounts of contiguous ground-truthed data on the 
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densities of black-grass in a field to be collected. The average field was 8ha with 110 plots 

per field,  depending on the varying extents of the field. Five ordinal density states of black-

grass were denoted: absent, low, medium, high, very high,(0, 1-160, 161-450, 451-1450 and 

1451+, plants per 20m2 respectively). This method allows for multiple observers to be used, 

enabling large spatial scales to be covered with minimal misclassification error between 

observers.   

2.1.2 UAS platform 

A widely available commercial UAS platform was chosen to allow for low entry costs and 

high repeatability. We used the 3DR solo UAS1 as it permits third party imaging systems to 

be attached and operated. The Parrot Sequoia2 was chosen as the imaging sensor as this 

sensor has been specifically designed for use with UAS. This sensor records images in four 

discrete calibrated spectral channels: Green 550nm (fg), Red 660nm (fr), Red-Edge 735nm 

(fre) and Near Infrared 790nm (fn) at 1.2Mp. The sensor possesses a “sunshine sensor” that 

standardised against variable lighting conditions over the course of a flight by continuously 

recording the light conditions in each spectral channel and then automatically calibrating the 

outputs to the absolute values. 

All flights were carried out following UK rules and regulations controlling the use of 

UAS for scientific research. Flights were conducted within 2 hours either side of solar noon 

to reduce the effect of sun angle. The optimum flight parameters to cover each field in the 

minimal amount of time were a flight height of 100m and an image overlap of 60% (37). 

Each flight generated thousands of subfield scale images that are stitched together to create a 

single orthomosaic image, encompassing an entire field using relatively few ground control 

points. For this Agisoft Photoscan was used. This software also creates Vegetation Indices 

                                                            
1
 "Solo - The Smart Drone | Commercial Drone Platform." https://3dr.com/solo-drone/. Accessed 11 Jan. 2018.

 
 

2
  "Sequoia - MicaSense." https://www.micasense.com/sequoia/. Accessed 11 Jan. 2018. 
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(VIs) from the individual bands of the sequoia. The average ground sample distance (GSD) 

of all the flights was 8.27cm pixel-1. 

 Of the 102 fields that were flown, 76 generated data of high enough quality to 

analyse. The fields that were not suitable to be analysed were discarded for the following 

reasons: poor image quality, significant image stitching artefacts and sensor failure. 

The calibrated spectral channels of the sequoia sensor allow for VIs to be calculated 

for each pixel. VIs are used as they reduce multiband observations to a single numerical 

index (38). We used Green Normalized Differential Vegetation Index GNDVI (equation 1) to 

classify images:  

ܫܸܦܰܩ ൌ  ௙೙  ି௙೒௙೙ା௙೒       (1) 

All subsequent references to the data, refers to the GNDVI dataset See appendix Table 5, for 

statistical measurements of the GNDVI dataset. 

Our choice to base our analysis on GNDVI is because high biomass crops such as 

wheat cause saturation of chlorophyll levels in the red wavelength, resulting in poor 

performance when using Normalized Differential Vegetation Index NDVI (equation 2) (39).  

ܫܸܦܰ ൌ ௙ೝି௙೙௙ೝା௙೙       (2) 

Previous studies have focused on the NDVI owing to its correlation with plant vigour 

and growth (40). However, when needing to discriminate between invasive populations, 

vigour and growth rates with NDVI  has shown to be uninformative in cases of high saturation 

of a spectral channel (41). Analysis based on UAS imagery has often overlooked this feature 

of NDVI , but is recognised in satellite remote sensing work (42-44).  
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 The ground-truthed density data were overlaid on each georectified orthomosaic using 

GIS packages in R. Then the orthomosaic maps were split into 20x20m subplots, each 

geographically relating to the ground-truthed observations. This creates a dataset of images at 

the 20x20m scale, which our subsequent analysis area is based on. The resulting image 

dataset consists of 12,313 unique measurements of black-grass at 20x20m scale covering the 

full range of black-grass densities. The densities are however not evenly distributed. The 

breakdown as follows: Absent = 14.5% Low = 53.1% Med = 17.3% High = 8.2% Very High 

= 6.9%. 

 

2.1.3 Modelling approach and metrics 

We used a CNN to train a classifier on our black-grass image data. The model structure was 

taken from one of the top performing methods on the industry standard image database, 

ImageNet (45), called GoogLeNet (34). Whilst we use the structure of GoogLeNet, it is 

important to note that we do not use the pretrained model weights and biases that allowed the 

model to score so highly on ImageNet. Here we highlight four common components of our 

chosen model framework, that are then stacked together with other components such as batch 

normalisation and dropout to create a variety of different network structures:   

(1) Convolution: The convolutional step involves extracting features from an image 

whilst maintaining their spatial context, by using a filter to pass over an image and 

computing the dot product to create a generalised feature map.  

(2) Addition of Non-Linearity: Non-Linearity is introduced to the feature maps by 

applying a Rectified Linear Unit (ReLU), this speeds up the training process when 

compared to tanh/sigmoid activation functions. This means that model convergence 

will occur with a lower computational cost (46).  
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(3) Pooling: Pooling of the feature map is used to reduce dimensionality. This reduces the 

parameter number in the network, a key stage in preventing overfitting. Pooling also 

makes the network more stable to distortions in the training images (47).  

(4) Fully connected final layer: This combines all the neurons of the previous layer and 

applies an activation function to determine the final classification of an image. The 

most common form of activation function is SoftMax and the predictions always sum 

to 1 (48).  

CNN have been successfully applied to many datasets similar to ImageNet through a 

process known as transfer learning, whereby only the weights of the connected final layer of 

a pretrained model are altered (49). We do not use the process of transfer learning as our 

proposed dataset is significantly different from that of ImageNet. Instead, we use the 

GoogleLeNet structure and independently train all layers of our model.  

To model a CNN three data sets are needed: training, validation and test sets. Each 

dataset comprises pairs of input images and target vectors. Target vectors act as a labelling 

method and are what the model tries to predict when given a new image. In our example the 

input image is a 20x20m image plot and the target vector represents the five different ordinal 

density states. CNN are trained using a variety of parameters. From our initial exploration of 

the modelling we settled on using the following as our standards: a decaying momentum 

beginning at 0.1 and halving every 32000 steps as our optimizer, categorical cross entropy as 

our loss function and a batch size of 128.  

We report, where appropriate, three metrics for our models. These are: Multiclass 

AUC, Cohen’s kappa and weighted Cohen’s kappa. AUC refers to the Area Under the 

Receiver Operating Characteristic (ROC) curve, that is the true positive rate (Sensitivity) 

against the true negative rate (Specificity). AUC is used for its ability to differentiate between 

two groups, and is equal to the probability that the classifier will rank a randomly chosen 
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positive example higher than a randomly chosen negative example (50). AUC values range 

from 0 – 1. We plot a diagonal line from (x=0, y=1) to (x=1, y=0)  known as the line of 

equality or the random chance line (51). Points that fall below this line represent non-

informative models where random classification would perform better. For the x-axis in our 

AUC plots we use 1 – Specificity. 

The categorical predictions of a model and ground-truthed observations can be 

viewed as different raters. This allows us to assess the degree to which they agree or disagree 

and utilise Cohen’s kappa statistic (52)  (equation 3): 

Ɉ ൌ  ௣೚ ି ௣೐ଵ ି ௣೐       (3) 

Where ȡo is the observed agreement and ȡe is agreement due to chance. This results in a range 

from 1 indicating complete agreement between raters, through 0 indicating that agreement is 

only due to random allocation and -1 indicating complete disagreement.  

AUC and kappa do not consider the ordinal structure of our data, with observations 

ranging from Absent to Very High in incrementing ordered categories. Therefore, an 

observation of Absent and a prediction of Low is closer to agreeing than if the prediction 

were Very High. We therefore used weighted Cohen’s kappa (equation 4): 

Ɉ௪ ൌ ͳ െ  σ ௞௜ୀଵ σ ௞௝ୀଵ ன೔ೕ ௫೔ೕσ ௞௜ୀଵ σ ௞௝ୀଵன೔ೕ௠೔ೕ     (4) 

Where ț is the number of categories, Ȧij , Ȥij and mij  represent the weight from the matrix.  

This allows us to count disagreements differently (53). The weighted kappa is on the same 

scale and distribution as the base Cohen’s kappa. We use a squared weighting matrix of 1, 4, 

9, 16 and 25 ranging from agreement to significant disagreement, to penalise significantly 

wrong agreements.  
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2.1.4 Model refinement: data balancing 

We checked the performance of the model in several respects. First, we analysed the effect of 

balancing the data in terms of the distribution of observations among density states. This is 

important because the dataset is heavily weighted towards the Low-density state, comprising 

over 50% of the dataset. Such imbalanced distributions can lead to lazy or biased classifiers, 

whereby the model can default to predicting the majority class but will nevertheless still score 

well in many metrics such as error or accuracy rate. To investigate this, we created balanced 

datasets and use metrics as outlined above. In our dataset the Very High class had the 

smallest representation with only 565 examples in the training set. We therefore randomly 

sampled 565 of each remaining density states, to create a balanced training set of 2825 

images. The same balancing process was repeated for the validation and testing data sets 

resulting in 800 and 575 images respectively.  

 

2.1.5 Model refinement: data cleaning 

It is important to consider the quality of imaging data. Specifically, many of our 20x20m 

aerial plots contain “artefacts” that were not accounted for in our ground observations. Figure 

1 shows examples of three such types of artefacts. In Figure 1 an overhanging tree, the 

tramline and the field hedgerow in the top right hand corner are introducing significant noise 

into the image that does not represent either wheat or black-grass. It is this excess 

noise/uncategorised data we aimed to remove.  

(Figure 1 near here) 
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To achieve this, we subsampled each individual 20x20m plot into 16 smaller images. 

Figure 1 demonstrates the outline of this subsampling grid. This yielded a dataset of 197 008 

images. We then manually examined this dataset and set aside all subsamples that we 

determined to contain artefacts. In the case of Figure 1 only two subplots of “pure wheat” 

remained ((1, 2), (1, 3)), that were subsequently used in what we will refer to as the Clean 

dataset. This created a clean data set of 101,907 images and Artefact dataset of 95101 images. 

The training and test sets were the same as the previous experiments, but now “cleaned”. We 

use the Clean and Artefact datasets to build models and predict on the test data of the other 

dataset e.g. clean model on artefact test data, and vice versa. This allows us to test the 

influence of data cleaning.  

To make a comparison with our ground observations, we must upscale the subplot 

predictions back up to the 20x20m scale at which ground observations were recorded. There 

is often variation in density within each plot, but this is not recorded. In a hypothetical 

situation this could mean that the model is perfectly fitting the subplot test data, but then 

being penalised as we are unable to ascertain the observed level of black-grass in that specific 

subplot, only the entire 20x20m plot. We therefore take the median prediction from each 

subplot of one 20x20m plot as the model observation. This gives us a prediction of only the 

areas of the image with wheat and/or black-grass in them, at a scale that allows for 

comparison to our ground truthed data.  

 

2.1.6 Model transferability: Field level Cross validation 

To test out-of-sample/new field performance we conducted leave-one-field-out cross 

validation (LOFO-CV) trails and created 76 models, i.e one per field. Each model was trained 

using the baseline model parameters and cleaned upscaled subplots from all the fields. One 
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field was withheld from the training dataset to become the test set in each new model. We 

report back metrics at field level (i.e. not 20x20m plot level) as not all fields have the full five 

density states present.    

 

 

2.1.7 Modelling workflow – baseline model 

Having created the relevant datasets for each question we trained a model using our standard 

parameters. We began the analysis with a simple baseline test of how the models perform 

when 10% of the entire data is randomly selected as the test set. The model was then used to 

predict the ground-truthed observations of the relevant test set. We then calculated all 

relevant metrics and plot a ROC curve where appropriate. This assessed the performance of 

the CNN and established a baseline against which further analysis could be benchmarked. We 

investigated the effect of data balancing, data engineering and LOFO-CV against the baseline 

model.  

To account for possible differences owing to variation in the date or survey or 

between years, we grouped the LOFO-CV models by years with 38 and 43 fields in 2016 and 

2017 respectively and took the mean values of the AUC for each year. Each field season 

lasted 6 weeks and averaged the same number of fields each week. Consequently, we 

grouped the LOFO-CV models by week and took the mean values of AUC.   Owing to the 

design of our field season we begin in the south and move north over the course of the 

season, so latitudinal effects will also be present but are not accounted for.   

 

3.1 Results 
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3.1.1 Baseline Model 

We find that the baseline model gives an AUC of 0.78, a weighted kappa of 0.59 and an 

average misclassification rate across all states of 17.8% as seen in Figure 2. We see that the 

Very High and Absent density states show the AUCs closest to x=1, y=1. This means that 

these density states are easier to distinguish for the model than the states in between. 

(Figure 2 near here) 

3.1.2 Data Balancing 

The same training and evaluation parameters were used to train a model for the data in which 

the proportions of the density states were balanced. We see that by balancing the data set we 

slightly reduced the AUC and Cohen’s kappa of the model (see Figure 3 for the ROC plot), 

whilst slightly increasing the weighted kappa and increasing the misclassification rate to 

22.4%. This is most likely a consequence of the reduced number of training samples, leading 

to a poorer ability of the model to generalise features unique to each class. Table A1-A4 

present statistical analysis on the differences between curves. (54). The results in Table A1 

show that when the curves from Figure 2 (baseline model) are compared to those of Figure 3 

(data balanced) that all but the Low density state curve are statistically non-significantly 

different. Balancing the dataset or not therefore does not affect the predictive performance of 

the models. We therefore continue to use the unbalanced dataset for the rest of our analysis. 

(Figure 3 near here) 

 

3.1.3 Data Cleaning 

To examine how the data cleaning process (Figure 1) affects our models a new model was 

trained using the same parameters as the baseline model, but using the unbalanced, Clean 
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dataset. Figure 4 shows us that the AUC increased by 4.6%, a significant improvement with a 

similar misclassification rate to the baseline of 17.5%. Table A2 presents the statistical 

breakdown of the individual comparisons of AUC to the baseline.   

(Figure 4 near here) 

 The images vary greatly in quality, with some having a large amount of high quality 

coverage, whilst in other cases only a small amount of the image is of good quality. We 

therefore divided the dataset according only to the percentage cover of good quality data of 

the original 20x20m plots remaining after the cleaning, regardless of black-grass level. Five 

equal categories of coverage of the 16 subplots, ranging from <20% (~3 subplots) to >80% 

(13-16 subplots) were established.  Looking at the Multi-class AUC values for each plot in 

Figure 5, we see there is a ~6% difference in the lowest (0.67, <20%) and highest values 

(0.73, 60%-80%). We highlight the statistical differences between the categories with the 

highest and lowest AUCs in table A3. Showing that whilst the individual density states lines 

are not significantly different, the overall graphs are significant in conjunction with Figure 5.  

(Figure 5 near here) 

3.1.4 Analysis artefact data 

Having shown in Figure 4 that cleaning and upscaling the data results in improved metrics 

from the baseline we next investigated the predictive performance of models fitted to the 

“artefact” images. To do this we used the 95101 artefact images set aside from the training 

set, predicted on the artefact images from cleaning the test data and then upscaled. Figure 6 

suggests that the artefact plots still have features within them that allow us to classify black-

grass as accurately as the Clean model (Figure 4). It also shows that with a higher weighted 

kappa and lower misclassification rate of 15.5%, it does better at not making large ordinal 

disagreements e.g. Very High observation Vs Absent prediction, when compared to the Clean 
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model. The Clean model predicted Absent when a Very High was observed in 8.75% of 

cases, compared with the artefact model only predicting 6.3% of such cases.  

(Figure 6 near here) 

As shown in Figure 7, the clean model can predict the black-grass levels in the 

artefact dataset with some degree of accuracy, with an AUC of 0.61 and misclassification rate 

of 17.1%. However, the model for the artefact data is not able to predict the clean test dataset 

accurately, with an AUC of 0.463, a misclassification rate of 42.1% and the AUC for all 

density states were significantly different as shown in Table A4. This suggests that the 

features used by the artefact model are not conducive to black-grass identification. Therefore, 

the features in the model for Figure 6, must not be directly related to black-grass. This also 

suggests that our manual screening of the data may have been overly strict, and we are 

thereby missing data that could increase the ability of the model to generalise features for the 

identification of black-grass.  

(Figure 7 near here) 

3.1.5 Out of Sample predictions - LOFO-CV 

Here we examine the true out of sample prediction for the dataset. In all our previous models 

we have used an initial random 10% as our test dataset as described in our initial test set. 

Therefore, the model has been trained on a large sample of each individual field, allowing it 

to generalise features specific to that field, making it more sensitive to outliers. Thus, our 

reported results so far are not truly out of sample and may have limited repeatability in 

further studies, even when using the standardised data collection methodology described 

here.   

(Figure 8 near here) 
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Figure 8 shows the mean AUC of the fields is 0.54 with a  range of 0.38  0.81. This 

means that LOFO-CV predictions for these models are frequently no better than random. The 

kappa metrics were not used here as most of our out of sample fields did not contain the full 

range of black-grass densities and so are penalised for lack of agreement when there are no 

observations of a level.  

 

 

3.1.6 Temporal Effects 

To investigate temporal effects on the results of our out of sample predictions, we studied 

whether the year or the week we visited the field had any effect on the AUC. Figure 9 shows 

the mean and standard errors of the AUC for each year and week. Neither year nor week has 

a significant effect on the model performance measured by the AUC of the model, with 

adjusted R2 values of -0.011 and 0.008 respectively. This means that the temporal variation in 

the time surveying has not influenced our results.   

(Figure 9 near here) 

4.1 Discussion  

We set out to predict distributions of weed densities using UAS imagery and CNN. We have 

devised a standardised and repeatable UAS data collection methodology, applied it over 

multiple years across the major arable areas of the UK and utilised data engineering 

techniques to increase the quality of our datasets. Whilst the weeds have been shown to be 

detectable, it is by no means a simple task, as both species are grasses with many similar 

traits. Our main conclusion is that data engineering increases the performance of our metrics 

the most, relative to other methods attempted when given a sample of known states in a field. 
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Increases in performance such as these are not common for CNN in the computer vision 

literature. There was no evidence that temporal factors such as year or  time of sampling, 

affects the performance of the out of sample predictions.  

However, when predicting on fields with no previous ground truthing (i.e. true out of 

sample data), the success as revealed by our metrics was highly variable. This may be due to 

the problem of dataset shift (55). Dataset or covariate shift occurs when there is a change in 

distribution of the classes between the training and test datasets. We know from our ground 

observations that on an individual field-by-field basis that it is rare to find fields with the full 

five density state distribution and there are no cases where all five are present in an equal 

distribution. One way of counteracting this issue in the literature is by constructing a density 

estimation of the labels in the test dataset and reweighting the training dataset accordingly 

(56). This approach is not applicable in a fully automated UAS system for the prediction of 

density states, as it is still dependant on ground-truthed observations from skilled observers.  

Our study is the first to use repeated UAS surveys and deep learning statistical 

methodology to assess the impact of the significant heterogeneity in conditions across time 

and space on automated monitoring of weed densities. Anderson & Gaston (57) outline many 

areas in which UAS can be used in ecology and emphasise the need for temporally resolved 

studies, allowing for scale appropriate measurements using UAS that can be at user defined 

times and locations. This is a change in precedent from remote sensing work using satellite 

data, where data was only available at set times, resolutions and spectral frequencies. 

However, many previous studies using UAS have focused on repeated visits to one single site 

over time (58) or multiple sites at one time point (59). The use of trial plots in some studies 

does allow for a more detailed assessment of certain variables (60). However, in real world 

applications of methodologies and management decisions developed under these controlled 

settings, much more spatial and temporal variability when applied in agronomic use cases 
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will be encountered, thus reducing the transferability and scope of the studies (61). Therefore, 

our focus of only using “live” uncontrolled agronomic scenarios, does result in reduced 

reported metrics but allows our work to be applied with a more realistic understanding of the 

results that would be seen in the field.   

Neural networks have previously been used and compared to other statistical methods, 

to classify the state of weed populations at a range of spatial scales (62-64). Barrero (13), 

trained a NN with a user defined texture feature derived from NDVI to identify a weed 

species amongst a single rice paddy. They reported a 99% precision on test data, with no 

reported recall score. This is most likely an overstatement of the model performance and 

approach. However, this study only focused on the binary classification issue of 

presence/absence of a weed, a much simpler and less informative on-farm metric, and only 

considered predictions from a single field at a single time point, suggesting that the 

performance is being overstated with no LOFO-CV being attempted. It is to be expected that 

our metrics (AUC, Cohen’s kappa and weighted Cohen’s kappa) are lower than the 

equivalent ones reported in the NN study, due to our focus on multiple fields spanning a wide 

variety crop conditions and for the more advanced use of density state predictions. Therefore, 

our results are more representative and transferable than these studies due to our LOFO-CV 

analysis, for methodologies involving UAS and machine learning to map weed populations 

going forward. However, our results indicate a more extensive and controlled analysis of the 

transferability of models is still needed.  

The process of manually screening the datasets for artefacts is a slow and non-

reproducible or scalable task. In the future we propose to train a classifier to automatically 

partition an entire dataset into clean and artefact sections. This approach is comparable to 

work that quantifies the data quality of video using a CNN (65). This would allow us to 
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expand our analysis into other Vegetation Indices by improving and standardising the data 

processing pipeline. 

With the artefact dataset predicting to the same if not higher standards in our metrics 

than the clean dataset, it stands to reason then that a composite modelling approach could be 

undertaken to channel the clean and artefact subplots to their respective models and then 

recombined at the upscaling stage. This is a concept similar to ensemble based classifiers, 

where multiple differing model types are trained on the same data set and aggregate their 

predictions for the test set (66). Our approach described here would use this concept but 

instead of differing model types on the same dataset, we propose the same model on differing 

datasets and aggregating their predictions. This would reduce the amount of data loss and 

combine the differing feature sets of the models to aid in the detection of arable weeds. 

 

4.1.2 Concluding remarks 

We have demonstrated here how data engineering of UAS imagery and use of CNN can be 

used to classify weed densities. We highlight the methodological improvements resulting in 

increased prediction accuracy compared to past research using a variety of metrics, statistics 

and data collection procedures that provide a more detailed assessment of true model 

performance. All our models apart from the LOFO-CV are composed of a random 10% of 

individual subplots for the test set. This means that the models will have most likely been 

exposed to some in-field examples of the test set, and therefore can generate features that are 

specific and not generalised to the detection of the weed. We can conclude that when only 

considering the images of a new field and no other data, we cannot be highly confident in the 

ability of most of our models to map the black-grass in the field. Whilst we don't show a 

significant improvement in LOFO-CV testing with no apparent factors that make an 
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individual field be predicted well or poorly. We believe that the robustness of this evaluation 

procedure is a greater estimation of real-world predictive value when compared to past 

studies, which consequently overestimate their applicability. Therefore, the methodology set 

out in this paper represents a new standard in the area of weed mapping with UAS due to the 

expanded capabilities of data collection, statistical methods and evaluation procedures.  
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Appendix 

Table 1 Non-Equal dataset AUC’s compared to the Equal datasets. Used (54) to test the 
statistical difference of the AUC of each Density state.  

Density State AUC 1 AUC 2 D p-value 

Abs 0.75 0.77 -0.94 0.34354 

Low 0.66 0.58 2.87 0.004032 

Med 0.59 0.55 1.48 0.138393 

High 0.56 0.58 -0.46 0.643204 

V High 0.71 0.74 -1.00 0.313908 

 

Table 2 Non-Equal dataset AUC compared to the Cleaned dataset.  

Density State AUC 1 AUC 2 D p-value 

Abs 0.75 0.73 0.76 0.445291 

Low 0.66 0.66 -0.34 0.727911 

Med 0.59 0.52 3.72 0.000193 

High 0.56 0.53 1.81 0.069353 

V High 0.71 0.67 1.34 0.177991 

 

Table 3 Worst performing bracket AUC from data quality testing (20% <)(AUC 1) compared 
to the best performing AUC bracket (60% - 80%) (AUC 2).  

Density State AUC 1 AUC 2 D p-value 

Abs 0.61 0.74 -2.25 0.023968 

Low 0.64 0.71 -1.47 0.140146 

Med 0.56 0.53 0.23 0.813781 
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High 0.72 0.56 1.12 0.261717 

V High 0.73 0.86 -0.70 0.479862 

 

Table 4 Clean model AUC’s from predicting on the artefact dataset compared to the Artefact 
model AUC’s from predicting on the clean dataset.  

Density State AUC 1 AUC 2 D p-value 

Abs 0.66 0.51 12.22 2.43E-34 

Low 0.62 0.53 11.62 2.94E-31 

Med 0.52 0.5 4.70 2.56E-06 

High 0.51 0.5 2.88 0.003877 

V High 0.69 0.5 9.26 1.92E-20 

 

Table 5 Statistical measurements of the GNDVI pixel values for each vegetation group.  

GNDVI Mean Standard Deviation 
Black-grass 0.336 0.007 
Winter wheat 0.304 0.011 
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Figure 1 Example of a Very High, 20x20m plot with significant non-black-grass “artefacts”, 
reducing the signal in the image coming from the Very High level of black-grass that was 
observed on the ground in this plot. The grid overlay represents the subsampling 
methodology used to break each image into 16 smaller representations of the entire plot. The 
subplots are referenced by their position relative to the bottom left hand corner (1,1) and top 
right corner (4,4). 

 

 

Figure 2 Baseline, ROC plot of a CNN trained using 90% of the dataset and used to predict 
the multiclass black-grass density state of the completely withheld random 10% of data. 
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Figure 3 ROC plot of a CNN trained using 90% of the balanced dataset used to predict the 
multiclass black-grass density state of the completely withheld random 10% of balanced data. 
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Figure 4 ROC plot of a CNN trained using 90% of the entire Clean subplot dataset used to 
predict the multiclass black-grass density state of the completely withheld random 10% of 
Clean data. The subplot predictions are then scaled back up to 20x20m plots for comparisons 
to our ground observations.  
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Figure 5 ROC plots showing how the percentage cover of the subplots in the Clean dataset 
affect  performance (measured as AUC and kappa).  
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Figure 6 ROC plot of a CNN trained using 90% of the artefact subplot dataset used to predict 
the multiclass black-grass density state of the completely withheld random 10% of artefact 
data. 
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Figure 7 (a) ROC plot of a model trained using the Clean training set, then used to predict the 
five density level states in the artefact test set. (b) ROC plot of a model trained using the 
artefact training set, then used to predict the five density level states in the cleaned test set. 
The predictions are upscaled to plot level.  
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Figure 8 AUC of each field’s out of sample prediction. Each point represents a separate 
model that was trained on all but the Field ID in question which is used as the test set. Field 
ID is a randomised ordering of the field names across both survey years.  

 

 

Figure 9 (left) Mean AUC for every model in each year. (right) Mean AUC for every model 
in each week.  
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