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Improving Random GUI Testing
with Image-Based Widget Detection

Thomas D. White
tdwhitel@sheffield.ac.uk
Department of Computer Science,
The University of Sheffield
Sheffield, United Kingdom

ABSTRACT

Graphical User Interfaces (GUIs) are one of the most common user
interfaces, enabling interactions with applications through mouse
movements and key presses. Tools for automated testing of GUIs
exist, however they usually rely on operating system specific or
framework specific knowledge in order to interact with the appli-
cation under test. Because of frequent operating system updates
and a large variety of GUI frameworks, such tools are made obso-
lete by time. For an automated GUI test generation tool, supporting
many frameworks and operating systems is impractical; new oper-
ating system updates can remove required information and each
different GUI framework uses unique underlying data structures.
We propose a technique for improving random GUI testing by au-
tomatically identifying GUI widgets in screen shots using machine
learning techniques. This information provides guidance to GUI
testing tools in environments not currently supported by deriv-
ing GUI widget information from screen shots only. In our exper-
iments, we found that identifying GUI widgets from screen shots
and using this information to guide random testing achieved a sig-
nificantly higher branch coverage in 18 of 20 applications, with an
average increase of 42.5% compared to conventional random test-
ing.

KEYWORDS

GUI testing, object detection, black box testing, software engineer-
ing, data generation, convolutional neural networks

1 INTRODUCTION

A Graphical User Interface (GUI) enables events to be triggered in
an application through visual entities called widgets (e.g., buttons).
Using keyboard and mouse, users interact with the widgets on a
GUI to fire events in the application. Automated GUI test genera-
tion tools (e.g., AutoBlackTest [10], Sapienz [9], or GUITAR [11])
simulate users by interacting with the widgets of a GUI, and they
are increasingly applied by companies to test mobile and desktop
applications. The effectiveness of these GUI test generation tools
depends the information they have available. A naive GUI test gen-
erator simply clicks on random screen positions. However, if a GUI
test generator knows the locations and types of widgets on the cur-
rent application screen, then it can make better informed choices
about where to target interactions with the program under test.
GUI test generation tools tend to retrieve the information about
available GUI widgets through the APIs of the GUI library of the
target application, or the accessibility API of the operating sys-
tem. However, relying on these APIs has drawbacks: Applications
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can be written using many different GUI libraries and widget sets,
each providing a different API to access widget information. Al-
though this can be circumvented by accessibility APIs, these differ
between operating systems, and updates to an Operating System
can remove or replace parts of the APIL Furthermore, some appli-
cations may not even be supported by such APIs, such as those
which draw directly to the screen, e.g., web canvasses [1]. These
challenges make it difficult to produce and to maintain testing tools
that rely on GUI information. Without knowledge of GUI widgets,
test generation tools have to resort to blindly interacting with ran-
dom screen locations.

To relieve GUI testing tools of the dependency on GUI and acces-
sibility APIs, in this paper we explore the use of machine learning
techniques in order to identify GUI widgets. A machine learning
model is trained to detect the widget types and positions on the
screen, and this information is fed to a test generator which can
then make more informed choices about how to interact with a pro-
gram under test. However, generating a widget prediction model is
non-trivial: Different GUI libraries and operating systems use dif-
ferent visual appearance of widgets. Even worse, GUIs can often be
customized with user-defined themse, or assistive techniques such
as a high/low contrast graphical mode. In order to overcome this
challenge, we randomly generate Java Swing GUIs, which can be
annotated automatically, as training data. The final machine learn-
ing model uses only visual data and can identify widgets in real
application GUIs without needing additional information from an
operating system or APL

In detail, the contributions of this paper are as follows:

e We describe a technique to automatically generate GUIs in
large quantities, in order to serve as training data for GUI
widget prediction.

e We describe a technique based on deep learning that adapts
machine learning object detection algorithms to the prob-
lem of GUI widget detection.

e We propose an improve random GUI testing approach that
relies on no external GUI APIs, and instead selects GUI in-
teractions based on a widget prediction model.

e We empircally investigate the effects of using GUI widget
prediction on random GUI testing.

In our experiments, for 18 out of 20 Java open source applica-
tions tested, a random tester guided using predicted widget loca-
tions achieved a significantly higher branch coverage than a ran-
dom tester without guidance, with an average coverage increase
of 42.5%. Although our experiments demonstrate that the use of an
API that provides the true widget details can lead to even higher



coverage, such APIs are not always available. In contrast, our wid-
get prediction library requires nothing but a screenshot of the ap-
plication, and even works across different operating systems.

2 BACKGROUND

Interacting with applications through a GUI involves triggering
events in the application with mouse clicks or key presses. Lo et
al. [8] define three types of widgets in a GUI:

e Static widgets in a GUI are generally labels or tooltips.

o Action widgets fire internal events in an application when
interacted with (e.g. buttons).

e Data widgets are used to store data (e.g., text fields).

In this paper, we focus on identifying action and data widgets.

The simplest approach to generating GUI tests is through click-
ing on random places in the GUI window [6], hoping to hit wid-
gets by chance. This form of testing (“monkey testing”) is effective
at finding crashes in applications and is cheap to run; no infor-
mation is needed (although knowing the position and dimensions
of the application on the screen is helpful). Monkey is now also
commonly used to test mobile applications through tools like the
Android Monkeyrunner [5].

GUI test generation tools can be made more efficient by provid-
ing them with information about the available widgets and events.
This information can be retrieved using the GUI libraries underly-
ing the widgets used in an application, or through the operating
system’s accessibility API. For example, Bauersfeld and Vos cre-
ated GUITest [2] (now known as TESTAR), which uses the Ma-
cOSX Accessibility API to identify possible GUI widgets to interact
with, and then randomly chooses from the available widgets dur-
ing test generation. TESTAR has been applied to many industrial
applications, including a web-based application from the rail sec-
tor [4]. The AutoBlackTest [10] relies on a commercial testing tool
(IBM Rational Functional Tester) to retrieve widget information,
and then uses Q-Learning to select the most promising widgets
for interaction.

In contrast to these randomized approaches, GUI ripping [11]
aims to identify all GUI widgets in an application to permit sys-
tematic test genration. However, a recent study of by Nguyen et
al [12] found that, although GUI ripping enables effective testing
and flexible support for automation, there are drawbacks mainly
related to the GUI ripping. For example, GUI trees have to be man-
ually validated, and component identification issues can lead to
inaccurate GUI trees being generated.

The problem of widget identification is not only relevant for test
input generation, but also for asserting the test outcome. For exam-
ple, the Sikuli [18] tool uses OpenCV, an image processing library,
to match images of GUI widgets saved in a test against the current
application’s GUL Matching an image of the button decreases the
chance of tests failing if the application’s GUI changes intention-
ally (e.g. by moving the button from the top of a GUI to the bottom).
Sikuli also features assertions, in which tests can check that some
part of the GUI exists after performing an interaction on the appli-
cation under test. However, Sikuli tries to exactly match images of
previously seen widgets, and therefore cannot be used to identify
new, not previouly seen widgets.

With the exception of randomized testing, all the current ap-
proaches rely on an automated method of extracting widget infor-
mation from a GUL There exists applications and application sce-
narios where widget information cannot be automatically derived,
and image labelling may be able to help with this.

3 PREDICTING GUI WIDGETS FOR TEST
GENERATION

In order to improve random GUI testing, we aim to identify wid-
gets in screen shots using machine learning techniques. A chal-
lenge lies in retrieving a sufficiently large labelled training dataset
to enable modern object recognition approaches to be applied. We
produce this data by (1) generating random Java Swing GUIs, and
(2) labelling screenshots of these applications with widget data re-
trieved through GUI ripping based on the Java Swing API The
trained network can then predict the location and dimensions of
widgets from screen shots during test generation, and thus influ-
ence where and how the GUI tester interacts with the application.

3.1 Identifying GUI Widgets

Environmental factors such as operating system, user-defined theme,
or application designer choice effect the appearance of widgets.
Each application can use a unique widget palette. When widget
information cannot be extracted through use of external tools, e.g.,
an accessibility API, then this diversity of widgets presents a prob-
lem for GUI testing tools. Applications that render GUIs directly
to an image buffer (e.g., web canvas applications) generally cannot
have their GUI structure extracted automatically. Pixels are drawn
directly to the screen and there is no underlying XML or HTML
structure to extract widget locations. We propose a technique of
identifying GUI widgets solely through visual information. This
is an instance of image labelling, i.e., the process of automatically
extracting and “tagging” parts of an image.

Some methods such as Region-based Convolutional Neural Net-
work (R-CNN) by Girshick et al [7] work by selecting areas of the
image to input through the neural network. Convolutional Neural
Networks (CNN) identify patterns in images and can be expensive
to compute, especially if a sliding window inputs subsets of the im-
age through a CNN multiple times. During GUI testing, we need to
be able to recognize widgets quickly. Therefore, we use You Only
Look Once (YOLO), proposed by Redmon et al. [13], which labels
an image by seeding the whole image through a CNN once. YOLO
is capable of predicting the positions and dimensions of objects in
an image.

The input to YOLO is an image with width and height being a
multiple of 32 pixels and equal in value. To predict labels, YOLO
continuously downsamples the input image into N - N grid cells,
where N is the width or height divided by 32 in the last layer. For
example, if the input dimension is (416, 416), YOLO will predict
widgets in a (13, 13) grid. YOLOv2 [14] is an extension to YOLO.
YOLOv2 predicts B boxes per grid cell. A cell is responsible for a
prediction if the centre of a box falls inside the dimensions of the
respective cell.

Each box contains five predicted values: the location (x, y), the
dimension (width, height) and a confidence score for the predic-
tion (c). Predicting multiple boxes per grid cell aids in training as
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Figure 1: A generated Java Swing GUI Each element has a
random chance to appear.

Algorithm 3.1: RANDOMWIDGETTREE(nodeCount)

nodes = [Container]
while |nodes| < nodeCount
do {nodes « nodes | J RANDOMWIDGETTYPE()
while (jnodes| > 1)
node < sample(nodes, 1)
parent < sample(nodes, 1)
do {if isContainer(parent) and node # parent
{parent.children « parent.children | J node
then
nodes < nodes \ node
return (nodes[0])

it allows different aspect ratios to be used for each box in each cell.
The aspect ratios are passed to the algorithm and multiply the pre-
dicted width and height of each box. To calculate the aspect ratios
to use, the dimensions of all boxes in the training data are clustered
into N clusters, where N is the number of boxes predicted per cell.
The centroid of each cluster gives the respective aspect ratios to
supply to YOLO.

A single class is predicted from C predefined classes for each
grid cell. In total, this makes the network’s output N- N -(B-5+C).
We can now filter the predicted boxes using the confidence values.
Boxes with confidence values close to zero may not be worth in-
vestigating.

Using the YOLO convolutional neural network, we can auto-
matically identify GUI components in a screen shot. We chose the
YOLO algorithm for our network due to the speed it can process en-
tire images, and the accuracy it achieves on predictions. Our imple-
mentation of YOLO only uses black and white images, so the first
layer of the network only has a single input per pixel opposed to
the three (r, g, b) values proposed in the original YOLO paper [13].

3.2 Generating Synthetic GUIs

One issue with using a neural network is that it requires large
amounts of labelled data for training. To obtain labelled screen
shots, we generate synthetic applications. A synthetic application
is one with no event handlers, containing only a single screen with
random placements of widgets. We use 11 standard types of wid-
gets in generated GUIs, which are shown in Table 1.

Algorithm 3.2: RANDOMJFRAME(width, height, nodeCount)

procedure ApplyWidget(container,widget)
swingComponent «— CoMPONENTFROMWIDGET(widget)
i<—0
while i < [widget.children|
child « widget.children[0]
do { AppLYWIDGET(swingComponent, child)
ie—i+1

container.add(swingComponent)

jframe « JFRAME<INIT>(width, height)
rootNode « RANDOMWIDGETTREE(nodeCount)
ArrPLYWIDGET(jframe, rootNode)

return (jframe)

To generate synthetic applications, we use the Java Swing GUI
framework. Initial attempts at generating GUI by entirely random
selection and placement of widgets yielded one-dimensional GUIs
and poor performance of the resulting prediction model. To create
more realistic GUIs, our approach therefore generates an abstract
tree beforehand, and uses this tree as a basis for the generated GUI.

First, we randomly choose a Swing layout manager and then
generate a random tree where each node represents a GUI widget.
Only widgets which can contain other widgets can be assigned
child nodes in the tree, for example, a tab pane can have children
representing other GUI widgets assigned to it, but a button cannot.
Algorithm 3.1 shows how a random abstract tree of GUI widget
types is generated. Here, the nodes list initially contains a “Con-
tainer” widget type which is to eliminate an infinite loop later if
the RandomW idgetType() function returns no containers. The call
to RandomWidgetType randomly returns one of the 11 types of
widgets. Each widget has the same probability of appearing but we
found that some GUI widgets are constructed of others when using
Java Swing, e.g. a Combo Box also contains a button, and a scroll
bar contains two buttons, one at each end. However, we lowered
the probability for menu_items to appear as a menu_item requires
a corresponding menu. We found that weighting menu_items with
an equal probability to appear made menus appear on nearly all
generated GUIs.

To generate a Swing GUI, Algorithm 3.2 walks through the gen-
erated tree. Each node is assigned a random position and dimen-
sion inside its parent. The position of a node is randomly selected
based on the layout manager. For example, with a GridLayout, we
randomly assign the element in the current node to a random (x, y)
coordinate in the grid. However, with a FlowLayout, the position
does not matter as all widgets appear side by side in a single line. In
algorithm 3.2, the container.add method call in the ApplyWidget
procedure is from the JComponent class of Java Swing, and the
random position is seeded here depending on the current Layout-
Manager.

Once a Swing GUI has been generated, Java Swing allows us
to automatically extract information for all widgets. This includes
position on screen, dimension and widget type. This is similar to
the approach current GUI testing tools use when interacting with
an application during test execution.



Table 1: Widgets that the model can identify in a Graphical User Interface

Widget Description Example
Text Field Allows input from the keyboard to be stored in the GUI to be used later. ~/FBooks
Button Allows an event to be triggered by clicking with the mouse. Remove
Combo Box Allows selection of predefined values. Clicking either inside the box or Unicode (UTF-8) -
the attached button opens predefined options for users to select.
| 7 .FBReader
List Allows selection of predefined values, similar to a Combo Box, but the B9 ntelli/idea2018 1
values are present at all times. Scrolling may be needed to reveal more E :‘:‘:lr:
values. ok
~ gui-component-recognition.tex
» TODO
T Similar to a list but val di Clickinganode  » pioe
ree imilar to a list but values are stored in a tree structure. Clicking a node + BIBLIOGRAPHY
may reveal more values if the node has hidden child elements. references

Scroll Bar A horizontal or vertical bar used for scrolling with the mouse to reveal

more of the screen.

Menu A set of usually textual buttons across the top of a GUI

& Introduction

File Edit View Selection Colours

Menu Item An individual button in a menu. Clicking usually expands the menu Select_ion

revealing more interactable widgets.

Toggle Button  Buttons that have two states toggled by clicking on them.

Look for Books in Subdirectories

references.bib X widget-table.tex X

Tabs Buttons which change the contents in all or part of the GUI when : .
Clicked. meara wnliar iF Fha nada haes hiddAan ~F
Slider A button that can be click-and-dragged in a certain axis, changing

some value which is usually a numeric scale e.g. volume of a music

application.

3.3 A Random Bounding Box Tester

Once widgets are identified, they are used to influence a random
GUI tester. We created a tester which randomly clicks inside a
given bounding box. At the most basic level, a box containing the
whole application GUI is provided, and the tester will randomly
interact with this box. One of three actions is executed on the se-
lected box: a) left click anywhere inside the given box; b) right
click anywhere inside the given box; c) left click anywhere inside
the given box and type either a random string (e.g., “Hello World!”
in our implementation) or a random number (e.g., between -10000
and 10000 in our implementation). We use these two textual in-
puts to represent the most common use for text fields: storing a
string of characters or storing a number. Algorithm 3.3 shows the
algorithm for interacting with a box given to the GUI tester. In this
algorithm, rand(x, y)returns a random number between x and y in-
clusive. Le ftClick(x, y) and RightClick(x, y) represent moving the
mouse to position x, y on the screen and either left or right clicking
respectively. KeyboardType(string) represents pressing the keys
present in string in chronological order.

Algorithm 3.3: RANDOMINTERACTION(bOx)

then

interaction « rand(0, 2)
X < box.x + rand(0, box.width)
y « box.y + rand(0, box.height)
if interaction ==

then LEFTCLICK(X, y)

else if interaction ==

then RiGHTCLICK(X, V)

else if interaction == 2

LEFTCLICK(X, V)
inputType « rand(0, 1)
inputString < ""
if inputType ==
then inputString « "Hello World!"

inputNumber « rand(-10000, 10000)
inputString «— inputNumber.toString()
KeyBoARDTYPE(inputString)



We can refine the box provided to this random tester. Using the
trained YOLO network, we can select a random box with a confi-
dence greater than some value C. When seeded to the tester, the
tester will randomly click inside one of the predicted widgets from
the network.

Finally, we can provide the tester with a box directly from Java
Swing. This implementation currently only supports Java Swing
applications but will ensure that the GUI tester is always click-
ing inside the bounding box of a known widget currently on the
screen.

4 EVALUATION

To evaluate the effectiveness of our approach when automatically
testing GUIs, we investigate the following research questions:

RQ1 How accurate is a model trained on synthetic GUIs when
identifying widgets in GUIs from real applications?

RQ2 How accurate is a model trained on synthetic GUIs when
identifying widgets in GUIs from other operating system
and widget palettes?

RQ3 What benefit does random testing receive when guided by
predicted locations of GUI widgets from screen shots?

RQ4 How close can random guided by predicted widget locations
come to an automated tester guided by the exact positions
of widgets in a GUI?

4.1 Model Training

In order to create the prediction model, we created synthetic GUIs
on Ubuntu 18.04, and to capture different GUI styles, we used dif-
ferent operating system themes. We generated 10,000 GUI applica-
tions per theme and used six light themes: the default Java Swing
theme, adapta, adwaita, arc, greybird; two dark themes: adwaita-
dark, arc-dark, and two high contrast themes which are default
with Ubuntu 18.04. These are all popular themes for Ubuntu and
were chosen so that the pixel histograms of generated GUI images
were similar to that of real GUI images.

In total this resulted in 100,000 synthetic GUIs, which we split
as follows: 80% of data was used as training data, 10% as validation
data, and 10% as testing data. To train a model using this data, the
screen shots are fed through the YOLO network and the predicted
boxes from the network are compared against the actual boxes re-
trieved from Java Swing. If there is a difference, the weights of the
model are updated so next time the prediction will be more accu-
rate.

It is important to have a validation dataset to determine whether
the model is over-fitting on the training data. This can be done by
checking the training progress of the model against the training
and validation dataset. During training, the model is only exposed
to the training dataset, so if the model is improving when evaluated
against the training dataset, but not improving on the validation
dataset, the model is over-fitting.

Afterwards, we trained a model which uses the YOLOv2 net-
work. During training, we artificially increased the size of input
data using two techniques: brightness and contrast adjustment. Each
image has a 10% chance to be manipulated for each of these adjust-
ments and the adjustment was a random shift of 10%. For example,
an image could be made up to 10% lighter/darker and have the pixel

intensity values moved up to 10% closer/further from the median
of the image’s intensity values. Artificial data inflation allows de-
tection of widgets using a wider range of themes by exposing the
network to more varied data during training.

4.2 Experimental Setup

4.2.1 RQI. Toevaluate RQ1, we compare the performance when
predicting GUI widgets in 250 screen shots of real applications
against performance when predicting widgets in synthetic appli-
cations. 150 of the screen shots were taken from the top 20 Swing
applications on SourceForge and annotated via the Swing API. The
remaining 100 screen shots were taken from the top 15 applica-
tions on the Ubuntu software center and manually annotated. The
model used to predict widget locations was trained on only syn-
thetic GUIs, and in RQ1 we see if the model is able to make predic-
tions for real applications.

YOLO predicts many boxes, which could cause a low precision.
To lower the amount of boxes predicted, we pruned any predicted
boxes below a certain confidence threshold. To tune this confi-
dence threshold, we evaluated different confidence values against
the synthetic validation dataset. As recall is more important to us
than precision, we used the confidence value with the highest F2-
measure to compare synthetic against real application screen shots.
We found this value C to be 0.1 for through parameter tuning on
the synthetic validation dataset.

In order to assess whether a predicted box correctly matches
with an actual box in a GUI, we present two metrics. Both metrics
use only predicted boxes with a confidence value greater than C.

The first metric (called “center point”) involves checking if the
center of a predicted bounding box falls inside the actual bound-
ing box. Precision is the number of predicted boxes with a center
point inside an actual box, divided by the number of all predicted
boxes. Recall for this technique is the number of actual boxes with
the center point of a predicted box inside it, divided by the total
number of actual boxes.

The second metric involves using the Intersection-over-union
(IoU) between the predicted and actual boxes. The IoU of two boxes
is the area that the boxes intersect, divided by the union of both
areas. An IoU value of one indicates that the boxes are identical,
having an equal intersection and union. An IoU of 0 indicates the
boxes have no area of overlap. See Figure 3 for an example of IoU
values for overlapping boxes. The shaded area indicates overlap
between both boxes. Precision is the number of predicted boxes
which have a corresponding actual box with an IoU greater than
0.3 divided by the number of predicted boxes. Recall is the number
of actual boxes which have a corresponding predicted box with an
IoU greater than 0.3, divided by the total number of actual boxes.

We use two metrics because of the features that a box is predict-
ing. If a box has a well suited center point, then the first metric
will perform well. If the center point and the dimension prediction
is accurate, then the second metric will also perform well. An in-
accurate dimension prediction is indicated by the second metric
performing worse than the first, and an inaccurate box center pre-
diction will cause both metrics to perform poorly.

4.2.2 RQ2. To evaluate RQ2, we use the same principle as in
RQ1. However, the comparison datasets are the synthetic dataset
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and a set of screen shots taken from the Apple store and manually
annotated. We gathered 50 screen shots, five per application of the
top 10 applications on the store.

4.2.3 RQ3. To evaluate RQ3, we compare the branch coverage
of tests generated by a random clicker to tests where the clicker is
guided by predicted bounding boxes. The subject under test are
20 Java Swing applications, taken from SourceForge, GitHub or
personal project pages. We limited the random tester to 1000 ac-
tions. On a crash or application exit, the application under test was
restarted. Each technique was applied 30 times on each of the ap-
plications. Although all the applications use Java Swing, this was
to aid conducting experiments when measuring branch coverage
and allow retrieval of the positions of widgets currently on the
screen from the Java Swing APL Our approach should work on
many kinds of applications using any operating system.

4.24 RQ4. To answer RQ4, we compare the branch coverage
of tests generated by a random clicker guided by predicted bound-
ing boxes, to a random clicker guided by the known locations of
widgets retrieved from the Java Swing APL. We use the same ap-
plications as RQ3. We allowed each tester to execute 1000 actions.
On a crash or application exit,the application under test is restarted.
Each technique ran on each application for 30 iterations.
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4.3 Threats to Validity

There is a chance that our model over-trains on the training and
validation synthetic GUI dataset and therefore achieves a high pre-
cision and recall on these datasets. To counteract this, we use the
third test dataset when calculating precision and recall values for
the synthetic dataset which has been completely isolated from the
training procedure.
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Table 2: The applications tested when comparing the three
testing techniques.

Application Description LOC  Branches
Address Book Contact recorder 363 83
bellmanzadeh Fuzzy decision maker 1768 450
BibTex Manager Reference Manager 804 309
BlackJack Casino card game 771 178
Dietetics BMI calculator 471 188
DirViewerDU View directories and size 219 90
JabRef Reference Manager 60620 23755
Java Fabled Lands RPG game 16138 9263
Minesweeper Puzzle game 388 155
Mobile Atlas Creator Create offline atlases 20001 5818
Movie Catalog Movie journal 702 183
ordrumbox Create mp3 songs 31828 6064
portecle Keystore manager 7878 2543
QRCode Generator Create QR codes for links 679 100
Remember Password Save account details 296 44
Scientific Calculator Advanced maths calculator 264 62
Shopping List Manager ~ List creator 378 62
Simple Calculator Basic maths calculator 305 110
SQuiz Load and answer quizzes 415 146
UPM Save account details 2302 530

To ensure that our real GUI screen shot corpus represents gen-
eral applications, the Swing screenshots were from the top appli-
cations on SourceForge, the top rated applications on the Ubuntu
software center, and the top free applications from the Apple Store.

In object detection, usually an IoU value of 0.5 or more is used
for predicted box to be considered a true positive. However, we use
anIoU threshold of 0.3 as the predicted box does not have to exactly
match the actual GUI widget box, but it needs enough overlap to
enable interaction. Russakovsky et al. found that training humans
to differentiate between bounding boxes with an IoU value of 0.3
or 0.5 is challenging [16], so we chose the lower threshold of 0.3.

As the GUI tester uses randomized processes, we ran all config-
urations on all applications for 30 iterations. We used a two-tail
test to compare each technique and a Vargha-Delaney A3 to find
the best technique.
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Figure 6: Precision and recall of synthetic data against real
GUIs on Ubuntu/Java Swing using two different metrics: cen-
ter point or IoU > 0.3.

4.4 Results

4.4.1 RQI: How accurate is a model trained on synthetic data
when detecting widgets in real GUIs? Figure 6 shows the precision
and recall using the two different metrics: center point and IoU. We
can see that predicting widgets on screen shots of Ubuntu and Java
Swing GUIs achieves a lower precision and recall than on synthetic
GUIs. However, most widgets are identified as shown by a high
recall value. A low precision but high recall could indicate that we
are predicting too many widgets in each GUI screen shot. Figure
2a shows an example of a manually annotated image, and Figure
2b shows the same screen shot but with predicted widget boxes.

Currently we have only evaluated if the predicted box aligns
with an actual box. Figure 5 shows the confusion matrix for class
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Figure 7: Precision and recall of synthetic data against real
GUIs on Mac OSX using two different metrics: center point
or IoU > 0.3

predictions. A red square indicates a high proportion of predic-
tions, and blue low. We can see that for synthetic applications, most
class predictions are correct. However, the model struggles to iden-
tify menu_items and this is most likely due to the lower probability
of them appearing in synthesized GUIs. The network would rather
classify them as a button which appears much more commonly
through all synthesized GUIs.

From the confusion matrix, another problem for classification
seems to be buttons. Buttons are varied in shape, size and fore-
ground. For example, a button can be a single image, a hyper-link,
or text surrounded by a border. Subtle modifications to a widget
can change how a user perceives the widget’s class, but are much
harder to detect automatically.

While this shows that there is room for improvement of the pre-
diction model, these improvements are not strictly necessary for
the random tester as described in Section 3.3, since it interacts with
all widgets in the same manner irrespective of the predicted type.
Hence, predicting the correct class for a widget is not as important
as identifying the actual location of a GUI, which our approach
achieves. However, future improvements of the test generation ap-
proach may rely more on the class prediction.

RQ1: In our experiments, widgets in real applications were
detected with an average recall of 95% and 77% for the center and
IoU metrics.

4.4.2 RQ2: How accurate is a model trained on synthetic data
when detecting widgets on a different operating system? To detect
whether widgets can be detected in other operating systems with
a different widget palette, we apply a similar approach to RQ1 and
use the same two metrics, evaluated on screenshots taken on a
different operating system and different applications.

Figure 7 shows the precision and recall using the two different
metrics: center point and IoU. We again see a lower precision and

recall on screen shots of OSX (Mac) GUIs compared to synthetic
GUISs, but we still identify above 50% of widgets in these applica-
tions.

Alower precision indicates many false positive predictions when
using the OSX theme in applications. A large difference between
the first and second metric for recall indicates that our technique
has difficulty in predicting correct dimensions for bounding boxes
on OSX. See Figure 4 for correct predicted boxes with a correspond-
ing matched manually annotated box using the IoU metric in “Pho-
toscape X”. However, for the purposes of testing the exact bound-
ing boxes are less relevant as long as the interaction happens some-
where within the bounding box of the actual widget, which is rep-
resented by the center point metric. Here, the recall is substantially
higher, achieving an average recall of 80% verses 52% for the IoU
metric.

RQ2: GUI widgets can be identified in different operating systems
using a model trained on widgets with a different theme, achieving
an average recall of 80% and 52% for the center and IoU metrics.

4.4.3 RQ3: What benefit does random testing receive when guided
by predicting widget positions? Figure 8 shows the branch cover-
age achieved by the random tester when guided by different tech-
niques. Here we can see that interacting with predicted GUI wid-
gets achieves a significantly higher coverage for 18 of the 20 appli-
cations tested. Table 3 shows the mean branch coverage for each
technique, where a bold value indicates significance.

Overall, guiding the random tester with predicted widget loca-
tions increased coverage by an average of 42.5%. The main cover-
age increases were in applications with sparse GUIs, like Address
Book (24%—48%) and Dietetics (20%—54%). The predicted widgets
also aided the random tester to achieve coverage where complex
sequences of events are needed, such as the Bellmanzadeh appli-
cation (22%—28%). Bellmanzadeh is a fuzzy logic application, and
requires many fields to be created of different types. Random is un-
likely to create many variables of unique types, but when guided
by predicted widget locations, is likely to interact with the same
widgets again to create more variables.

One notable example here is JabRef, where unguided random
achieved 6.6% branch coverage, significantly better than random
guided by widget predictions which achieved 5.2%. JabRef is a bib-
tex reference manager, and by default it starts with no file open.
The only buttons accessible are “New File” and “Open”. The pre-
dicted boxes contain an accurate match for the “Open” button and
a weak match for the “New File” button. If the “Open” button is
pressed, a Java file browser opens, locking the main JabRef win-
dow.

As we randomly select a window to interact with from the avail-
able, visible windows, any input into the main JabRef window is
ignored until the file browser closes. There are two ways to exit the
file browser: clicking the “Cancel” button or location a valid JabRef
file and pressing “Open”. There are, however, many widgets on this
screen to interact with lowering the chance of hitting cancel, and
it is near impossible to find a valid JabRef file to open for both the
prediction technique and the API technique. Even if the “Cancel”
button is pressed, there is a high chance of interacting with the
“Open” button again in the main JabRef window.



Table 3: Branch coverage of random guided by no guidance, widget prediction and the Java Swing API. Bold is significance.

Application Prediction Cov. Random Cov. p,, (Pred, Rand) Aj(Pred, Rand) APICov. p, (Pred, API) A;;(Pred, API)
Address-Book 0.484 0.235 <0.001 0.032 0.370 <0.001 0.237
bellmanzadeh 0.276 0.215 <0.001 0.048 0.425 <0.001 1.000
BibTex-Manager 0.214 0.160 <0.001 0.145 0.347 <0.001 0.998
BlackJack 0.355 0.167 <0.001 0.143 0.848 <0.001 1.000
Dietetics 0.544 0.197 <0.001 <0.001 0.564 0.067 0.640
DirViewerDU 0.728 0.522 <0.001 <0.001 0.576 <0.001 0.089
JabRef 0.052 0.066 <0.001 0.768 0.060 0.608 0.540
Java-FabledLands 0.105 0.056 <0.001 0.098 0.102 <0.001 0.122
Minesweeper 0.837 0.811 <0.001 0.170 0.850 <0.001 0.859
Mobile-Atlas-Creator 0.120 0.059 <0.001 0.199 0.224 <0.001 1.000
Movie-Catalog 0.581 0.328 <0.001 0.007 0.643 <0.001 0.826
ordrumbox 0.192 0.181 <0.001 0.056 0.203 <0.001 0.905
portecle 0.063 0.049 <0.001 0.121 0.106 <0.001 0.948
QRCode-Generator 0.673 0.582 <0.001 0.024 0.658 0.010 0.304
Remember-Password 0.333 0.255 <0.001 0.182 0.535 <0.001 0.968
Scientific-Calculator 0.588 0.469 <0.001 0.129 0.863 <0.001 1.000
ShoppingListManager 0.758 0.563 <0.001 0.032 0.758 1.000 0.500
Simple-Calculator 0.769 0.460 <0.001 <0.001 0.864 <0.001 1.000
SQuiz 0.111 0.111 1.000 0.500 0.130 <0.001 1.000
UPM 0.125 0.060 <0.001 0.040 0.460 <0.001 0.986
Mean 0.395 0.277 0.050 0.135 0.479 0.084 0.746

On the other hand, the random technique has a low chance of
hitting the “Open” button. When JabRef starts, the “New” button
is focused. We repeatedly observe the random technique click any-
where in the tool bar and type “Hello World!”. As soon as it pressed
the space key, a new JabRef project would open. This then unlocks
all the other buttons to interact with in the JabRef tool bar

RQ3: In our experiments, widget prediction significantly increased
branch coverage by an average of 42.5% over random testing.

444 RQ4: How close can random guided by predicted widget lo-
cations come to an automated tester guided by the exact positions of
widgets in a GUI?. Using GUI ripping to identify actual GUI widget
locations serves as a "golden" model of how much testing could
be improved with a perfect prediction model. Therefore, Figure
8 also shows branch coverage for a tester guided by widget po-
sitions extracted from the Java Swing API. It is clear that whilst
predicted widget locations aids the random tester in achieving a
higher branch coverage, unsurprisingly, using the positions of wid-
gets from an API is still superior. This suggests that there is still
room for improving the prediction model further.

However, notably there are cases where the widget prediction
technique improves over using the API positions. One such case
is DirViewerDU. This is an application consisting of only a single
tree spanning the whole width and height of the GUL If a node in
the tree is right clicked, a pop-up menu appears containing a cus-
tom widget not supported or present in the API widget positions.
However, the prediction approach correctly identifies this as an
interactable widget and interacts with it.

Another application is the Address Book application. Both guid-
ance techniques lead the application into a state with two widgets:
a text field and a button. To leave this GUI state, text needs to be
typed in the text field and then the button needs to be clicked. If

no button is clicked, an error message is shown and the GUI state
remains the same. However, the information of the text field is not
retrieved by the Swing APl as it is a custom widget. The API guided
approach then spends the rest of the testing budget clicking the
button, producing the same error message. Predicted widget guid-
ance identifies the text field, and can leave this state to explore
more of the application.

RQ4: Exploiting the known locations of widgets through an API
achieves a significantly higher branch coverage than predicted
locations, however widget prediction can identify and interact

with custom widgets not detected by the APL

5 RELATED WORK

Bajammal et al. undertook previous work in generating assertions
for web canvasses [1]. Normally, web pages have a Document Ob-
ject Model (DOM), however web canvasses do not have this under-
lying exploitable structure so have limited testability for current
testing tools. For web canvasses, applications draw directly to a
buffer representing the screen contents seen by users.

The approach by Bajammal et al. identified common shapes in
web canvasses and could generate assertions from identified shapes.
This was achieved through multiple image processing steps. Al-
though shapes could be identified, identification and classification
of GUI widgets is different. The approach used by Bajammal et al.
may be able to identify shapes in GUI widgets, such as squares
for text fields, but would not be able to differentiate between GUI
widget classes.

However, we may be able to use this work to generate assertions.
We predict rectangles that contain widgets on a GUI Hence, we
can directly apply the assertion technique to generate assertions
on the application under test.
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Figure 8: Branch Coverage achieved by a random clicker when clicking random coordinates, guided by predicted widgets

positions and guided by the Swing APIL

Previous work on applying context to GUI widgets involved
searching for possible descriptive labels for each data widget. Becce
et al. search above and to the left of data widgets for static wid-
gets that can provide more information for testers about the type
of data to input [3]. Coverage increase of 6% and 5% were found
in the two applications tested when providing context about data
widgets to the tool AutoBlackTest.

6 CONCLUSIONS

In conclusion, we found that a model trained on screen shots of
synthetic GUIs can identify widgets in real GUIs. Applying this
model during random GUI testing led to a significant coverage in-
crease in 18 out of 20 applications in our evaluation. A particular
advantage of this approach is that the prediction model is indepen-
dent of a specific GUI library or operating system. Consequently,
our prediction model can immediately support any GUI testing ef-
forts.

Comparison to a "golden" model with perfect information of

GUI widgets shows that there is }])Dotential for future improvement:
o Firstly, we need to find a better method of classifying GUI

widgets. A tab that changes the contents of all or part of
a GUT’s screen has the same function as a button, so they
could be grouped together.

e We currently use YOLOv2 and this predicts classes exclu-
sively: if a button is predicted, there is no chance that a tab

could also be predicted. Newer methods of object detection
(e.g. YOLOv3 [15]) focus on multiple classification, where
a widget could be classified as a button and as a tab. This
could improve the classification rate of widgets that inherit
attributes and style.

e Whilst labor intensive, further improvements to the widget
prediction model could be made by training a model on a la-
beled dataset of real GUIs and augmenting this dataset with
generated GUIs. The efficiency of the model is dependent
on the quality of training data.

e Furthermore, in this paper we focused on a single system
with various themes. However, it may be beneficial to train
the model using themes from many operating systems and
environments to improve performance when identify wid-
gets across different platforms.

Besides improvements on the prediction model itself, there is
potential to make better use of the widget information during test
generation. For example, if there are a limited number of boxes
to interact with, it may be possible to increase the efficiency of
the tester by weighting widgets differently depending on whether
they have previously been interacted with (e.g., [17]). This could
be further enhanced using a technique like Q-learning (cf. Auto-
BlackTest [10]).
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