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Abstract—As a kind of novel compliant actuators, pneumatic muscle actuators (PMAs) have been recently used in wearable 

devices for rehabilitation, industrial manufacturing and other fields due to their excellent actuation characteristics such as high 
power/weight ratio, safety and inherent compliance. However, the strong nonlinearity and asymmetrical hysteresis cause 
difficulties in implementing accurate trajectory control for robots actuated by PMAs. In this paper, a method for hysteresis 
modeling of PMA based on Hammerstein model is proposed, which introduces the BP neural network into the hysteretic system. In 
order to overcome the limitation of BP neural network’s single-valued mapping, an extended space input method is adapted while 
the Modified Prandtl-Ishlinskii model is applied to characterize the hysteretic phenomenon. A conventional PID control is 
implemented to track the trajectory of PMA with and without the feed-forward hysteresis compensation based on Hammerstein 
model, and experimental results validate the effectiveness of the designed model which has the advantages of high precision and 
easy identification.  

Keywords—pneumatic muscle actuator, Hammerstein model, Prandtl-Ishlinskii model, asymmetric hysteresis  

1. Introduction  
As a new type of biomechanical soft actuator, the pneumatic muscle actuator (PMA) plays a key role in rehabilitation fields 

or bionic robots due to its characteristics of high power/weight ratio, safety and flexibility [1]. By applying a certain internal 
pressure to the PMA, it generates displacement and contraction force, under which condition that displacement and contraction 
force are closely related to the internal pressure. However, the displacement of the PMA during the inflation and deflation is 
not completely consistent with the internal pressure which is referred to as length/pressure hysteresis characteristic [2]. One of 
the reasons why the PMAs-driven system has strong nonlinearity is precisely because of the hysteresis characteristics, which 
makes the precise trajectory control or force tracking control of the system increasingly difficult. In order to eliminate the 
nonlinearity caused by hysteresis, an accurate hysteresis model of the PMA needs to be established. 

There are many models for hysteresis characteristic of PMAs which can be roughly divided into two categories: one 
includes Preisach model [3], Krasnosel'skii-Pokrovskii (KP) model [4], Prandtl-Ishlinskii (PI) model [5], Maxwell-slip model 
[6] and its modified version [7]; they are phenomenological operator-based models, which adopt different types of 
mathematical operators to characterize hysteresis loops. And the other are differential-based hysteresis models, which employ 
nonlinear differential equations to simulate hysteresis dynamics [8], including Dahl model [9], LuGre model [10], Duhem 
model [11], Bouc-Wen model [12] and its variation [13]. Among the above models, the Preisach model is the most widely 
used, and is suitable for various hysteretic actuators, such as electromagnetic actuators [14], piezoelectric ceramic actuators 
[15], and magnetostrictive actuators [16]. Nevertheless, its mathematical form is very complex, which causes difficulties in 
deducing its inverse model. In contrast, the PI model, as a subclass of the Preisach model, is obtained by linear weighted 
superposition of a finite number of simple play operators, which facilitates the calculation of the inverse hysteresis model [17]. 
On the other hand, due to the symmetry of classical play operator [18], the classical PI (CPI) model is not suitable for 
asymmetric hysteretic system. In order to compensate for the shortcomings of the CPI model, Kuhnen [19] designed a 
modified PI (MPI) model by combining linear play operators with dead-zone (DZ) operators, which can describe asymmetric 
hysteresis and extend the application scope of the model. On the basis of MPI model, Xie et al. [20] proposed an MGPI model 
by adding an envelope to the input signal, which reduced the maximum error of the model to 3.0506 mm. But the complexity 
of the model was increased at the same time. Through comprehensive consideration of the above factors, the MPI model is 
adopted as the basic hysteresis operator for PMAs modeling in this paper. The Hammerstein model is composed of static 
nonlinear part and dynamic linear part in series, which is very suitable for describing hysteretic nonlinear system [21]. Taking 
advantages of Hammerstein model’s simple structure and less parameters, we apply it to the study for hysteresis characteristics 
of PMAs. Many scholars have devoted themselves to studying the hysteresis with Hammerstein model of rigid actuators such 
as electromagnetic and piezoelectric ceramics. But in recent years, there have been few researches on the hysteresis modeling 
of PMAs with Hammerstein model. 



 

Due to the development of artificial neural network and fuzzy logic, the method of applying neural network [22] to system 
modeling has appeared in recent years, whose single value mapping limits its application in the field of hysteretic system. In 
this paper, the MPI model is adopted to accomplish the mapping relationship between the input and output of hysteretic 
system, and then the multivalued mapping of hysteretic system is transformed into single value mapping combined with the 
input information, which realizes the introduction of neural network into the research of hysteretic system, and improves the 
accuracy of single MPI model. The structure of the Hammerstein model constructed in this paper is illustrated in Fig.1, where 
 u t  denotes the pressure signal of the PMA,  x t  is the output of the static nonlinear model and the input of the dynamic 

linear model at the same time,  Hy t  is the output of Hammerstein model, which refer to the displacement of the PMA under 
the corresponding pressure signal. The static nonlinear part of the model adopts BP network combined with MPI model, which 
can fully describe the hysteresis characteristics of PMAs and improve the accuracy of the model. And the ARX model is used 
as the dynamic linear part. 

  
Figure 1.  The structure of Hammerstein model. 

The configuration of this paper is organized as follows: Section 2 illustrates the principle and derivation process of 
Hammerstein model in detail. In Section 3, the experiments are carried out to identify the parameters of the model and verify 
the effectiveness of the model. The control strategy is carried out to verify the validity of the proposed model in Section 4. 
Section 5 draws conclusions from the current research. 

2. Hammerstein Model 
The Hammerstein model is generally divided into two parts, including the static nonlinear part and the dynamic linear part. 

And the former is composed of MPI model as basic hysteresis operator and BP neural network. In order to overcome the 
limitation of single mapping relationship between neural network input and output, a method of extending the input space 
dimension of neural network is utilized to obtain higher accuracy in modeling of asymmetric hysteresis characteristics. This 
section represents the components of the Hammerstein model in turn. 

2.1 BP Neural Network 
Artificial neural network [22] is a dynamic system formed by a combination of many neurons with strong ability of 

self-learning, which can achieve nonlinear fitting between input and output. Increasing attention has been paid to the neural 
network that is appropriate for the modeling of complex systems, among which Back Propagation (BP) neural network is the 
most common one. 

It is known that neural network is suitable not only for mapping between signal input and signal output, but also for 
mapping between multiple input and multiple output. Besides, the high precision approximation capability of neural network is 
very suitable for the modeling of hysteretic nonlinear system. However, it is hard for BP neural network to successfully and 
accurately complete the mapping relationship between signal input and multiple output in hysteretic system, whihc restricts the 
application of BP neural network in this modeling. Through further study of hysteretic characteristics, it can be found that with 
the trend of the input and output of the system and the information such as the historical extreme points, it is not difficult to 
determine the exclusive output value which is corresponding to the input signal. In this paper, MPI model is adopted to 
characterize the asymmetric hysteresis phenomenon of PMAs, and to distinguish the direction and trend of hysteresis curve. 
The input of BP neural network composes of the input signal of the system and the output of MPI model under the 
corresponding input signal simultaneously, which is referred to as the expansion of the input space, and determines the unique 



 

output value of the hysteretic system. The MPI model and BP neural network constitute the static nonlinear part of 
Hammerstein model together as shown in Fig.1. 

The static nonlinear model can be presented in the form of: 

       , Dx t f u t y t                                             (1) 

where  u t  denotes the input signal of hysteretic system which is the pressure signal of the PMA,  Dy t  is the output 

of MPI model,  f ฀  represents the transmission function of BP neural network and  x t  is the output of the static nonlinear 
model. The structure of BP neural network is shown in Fig.2. The input layer of BP neural network is 2-dimensional array, the 
output layer is 1-dimensional array, and the hidden layers adopt 2 layers. The first layer includes 5 neurons, and the second 
layer contains 10 neurons. 

 
Figure 2.  The structure of BP neural network. 

2.2 MPI Model 
In the static nonlinear model, the MPI model is adopted to simulate the asymmetric hysteresis characteristics of PMAs. 

Based on the CPI model, the MPI model expends the application scope of this model by utilizing the DZ operator. The CPI 
model can be expressed as [23], which is shown in Fig.3: 
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Its initial state performs as follows: 
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where rH  denotes the linear operator, n  is the number of operators, u  and cy  represent the input and output of CPI 

model, respectively. 0y  denotes the initial state,  1= T
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where   ˈ ˈ  are parameters obtained through experimental modeling. 



 

The expression of DZ operator, which is shown in Fig.3, is as follow: 
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Figure 3.  The structure of CPI model. 

Among them,  x t  and  y t  are the input and output of the DZ operator respectively, whose relationship is shown in 

Fig.4.   denotes the threshold value of the DZ operator which can be defined as  max 0,1, ,j c
j y j m

m
   ˈ , where m  

represents the superposition number of the DZ operators. The output of DZ model can be expressed as: 
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Figure 4.  The structure of DZ operator. 

Substituting (2) into (5), the MPI model, which is shown in Fig.5, can be written as: 

         0,T T
D d c ry t u t S H u y t                                   (8) 



 

 
Figure 5.  The structure of MPI model. 

2.3 ARX Model 
The AutoRegressive eXogenous (ARX) model is a rational transfer function model, which is widely used in system 

identification. In this paper, it is used to represent the dynamic linear part of Hammerstein model. ARX mathematical 
expression is as follows: 

       A z y t B z x t                                       (9) 
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where  x t  and  y t  are the input and output of the model respectively,    ,A z B z  are the polynomial to be solved, 

and  H Z  denotes the transfer function of the ARX model. The Hammerstein model can be expressed as: 
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Moreover, the inverse Hammerstein model can be obtained from the inverse MPI model shown in equation (12) 
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3 Hysteresis Characteristics of PAMs 
3.1 Experiment Platform 

The length/pressure hysteresis characteristics of PMAs can be identified by isobaric experiment, with the hardware 
configuration as shown in Fig.6. It includes PMA (FESTO DMSP-20-400N), displacement transducer (MLO-POT-TLF), load 
cell, air proportional valve (ITV 2050-212N), A/D and D/A data acquisition card, host computer and air pump. One end of the 
PMA, which is connected to the trachea, is fixed to the base and the other end is connected to the external load. The internal 
pressure of the PMA is controlled by an air proportional valve. The displacement of the PMA are measured by a displacement 



 

transducer, and the sensing data are collected and then transmitted to the host computer through A/D data acquisition card. And 
then through the conversion of D/A data, the control signal from the host computer performs as the input signal of the 
proportional value, which changes the internal pressure of the PMA. The length/pressure hysteresis characteristics can be 
obtained according to the displacement data under different pressure. 

 
Figure 6.  The experimental platform for PMA. 

The experimental steps are as follows: In the initial state, the internal pressure and the displacement of the PMA are both 
zero, and the PMA is at the initial length. The control signal derives from different triangular waveforms with different 
amplitudes, whose amplitudes increases gradually from 0 bar to 4 bar ( 51 1 10bar Pa  ) with each step of 1 bar. Through 
recording the position information of the PMA during the experiment, the relationship of length/air pressure hysteresis under 
different pressure is obtained. Subsequently, by changing the external load of the PMA, the relationship between 
length/pressure hysteresis of PMA and external load can be obtained through experimental data. 

3.2 Length/Pressure Hysteresis Phenomenon 
After comprehensive analysis of experimental data, the length/pressure hysteresis curve can be obtained which is depicted 

in Fig.7 under the zero load condition. Fig.7 (a) illustrates the hysteresis curve through repeated experiments, which suggests 
that the system exits dithering error and there may be contingency in a single experiment. Therefore, the mean value calculated 
from multiple sets of experimental data is set to represent its hysteresis characteristics as shown in Fig.7 (b). Fig.8 (a)-(d) 
illustrate the hysteresis curves with external load of 1.5 kg, 3.5 kg, 5.5 kg and 7.5 kg respectively. The hysteresis curves with 
different external load at the same pressure are compared in Fig.9. 

 
(a) experomental curves                                (b) mean calculated curves 

Figure 7.  Hysteresis curves without external load.  

As can be clearly seen form Fig.7, the displacements of the PMA under the same internal pressure during inflation and 
deflation are different, which is referred to as a hysteresis loop. The hysteresis loop formed under the maximum input pressure 



 

signal is called the main loop, in which the loops are called the secondary loops. The measured data of the main loop are used 
to identify the parameters of the Hammerstein model. The hysteresis curve trend under different external loads shown in Fig.8 
is consistent with the hysteresis curve without external load, indicating that the external load does not change the inherent 
hysteresis curve of the PMA. 

  
(a) external load at 1.5kg                             (b) external load at 3.5kg 

   
(c) external load at 5.5kg                           (d) external load at 7.5kg 

Figure 8.  Hysteresis curves at different external load. 

Sarosi et al. [24] established the static contraction model and designed a function simulation for the force generated by 
PMAs. The contraction force was calculated by the internal pressure and contraction rate of PMAs which can be presented as: 

   , bF p p a e c p d p e                                       (15) 
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Among them, , ,F p   represent the contraction force, the internal pressure and contraction rate of a PMA respectively, 
and , , , ,a b c d e  are the model parameters to be solved. When the displacement of the PMA remains constant, the pressure 
increases with the increase of the contraction force. Fig.9 compares the hysteresis curves with different external load at the 
same pressure of 4 bar and points out that under the same displacement, the greater the external load, the greater the pressure 
value. This phenomenon can be satisfied both during the process of inflation and deflation. In this experiment, different 
external loads can be equivalent to the effect contraction force. 
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Figure 9.  Hysteresis curves with different external loads at 4 bar.  

3.3 Model Identification and Validation 
The inherent high nonlinearity, time-varying and hysteresis of the PMA cause difficulties in parameter identification. The 

nonlinear least squares algorithm is widely used in parameter estimation, which can find the optimal coefficient by minimizing 
the weighted cost function of the measured data [22]. 

The Hammerstein model consists of two parts, so it is necessary to identify the MPI model and ARX model separately in 
two steps. Firstly, the identification of the static hysteretic nonlinear module, which is mainly referred to MPI model, is carried 
out. An input signal with a frequency of 0.05 HZ is given on the experimental platform, and the position information of a PMA 
is collected. The parameters of MPI model are identified by the least squares method, under which condition the dynamic 
linear module is equal to 1. Afterwards, the parameters of dynamic linear module are identified. The order of ARX model is 
mainly determined by using AIC (Akaike’s information criterion) and the order of this system is determined to be the best at 2. 

It should be pointed out that the more the play operators and the DZ operators, the higher the accuracy of the MPI model, 
but at the same time, more calculations are needed. After comprehensive consideration, this experiment takes 20 play operators 
and 20 DZ operators, and the results of parameter identification are shown in Table 1 and 2. The identification results of ARX 
model are as follows: 

  2

0.9845 0.4851
0.5243 1.2471

zH z
z z




 
                                        (17) 

Table 1. Parameter identification results of MPI model 

    
  

0.0766 0.8335 4.8410 

Table 2. Parameter identification of DZ model 

i  1 2 3 4 5 6 7 8 9 10 

di
 

0.102 0.17
75 

0.0792 0.04
52 

0.11
30 

0.12
96 

-0.113 -0.013 0.0377 -0.0812 

i  11 12 13 14 15 16 17 18 19 20 

di
 

-0.042 0.01
5 

-0.055 0.06
8 

0.01
71 

0.01
58 

-0.032 -0.023 0.0168 -0.0129 

To fully confirm the effectiveness of the proposed model, the results of experimental verification of MPI model and 
Hammerstein model are respectively illustrated in Fig.10 and Fig.11, which compare the simulation results with the 
experimental length/hysteresis curve of PMA. From Fig.10 (a), it can be intuitively seen that the fitting effect of the MPI 
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model is not good and the maximum error reaches 0.8524cm. There exists a bit large modeling error in fitting hysteresis 
characteristic curve using MPI model as shown in Fig.10 (b) which is almost 10 times bigger than modeling error of 
Hammerstein model. On the other hand, it can be seen from Fig.11 (a) that the model simulation and experimental curves fit 
perfect which means that the Hammerstein model performs excellently in characterizing the hysteresis of PMAs. In order to 
eliminate the contingency in a single experimental result, 20 sets of experimental data are taken and corresponding model 
simulations are compared to obtain the mean absolute error (MAE) under each input pressure and the standard deviation (STD) 
which denotes the degree of deviation from the mean value, which are shown in Fig.11 (b). From Fig.11 (b), we can know that 
the maximum MAE under input pressure values is 0.438 mm, and the maximum deviation from the average value is no more 
than 0.8 mm. In the literature [20] mentioned in the Introduction, the MGPI model is used to simulate the hysteresis 
characteristics of a PMA, and the maximum error reaches 3.0506 mm, which further proves the validity of the Hammerstein 
model for high-precision modeling for hysteresis characteristics of PMAs. Comparing Fig.10 with Fig.11, it is clear that the BP 
neural network plays an importance role in the structure of Hammerstein model because of its high precision approximation 
capability. 

   
(a) hysteresis loops                                        (b) modeling errors 

Figure 10.  Model validation result of MPI model. 

 
(a) hysteresis loops                                     (b) modeling errors 

Figure 11.  Model validation result of Hammerstein model. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Pressure/bar

0

1

2

3

4

5

6

7

8

9

10
Hysteresis Chraracteristics
Modified Prandtl-Ishlinskii Model

Er
ro

r/c
m



 

4. Model-based Control Experiment 
To further illustrate the effect of the Hammerstein model, the feed-forward compensation based on the inverse 

Hammerstein model is adapted in the trajectory tracking control of PMA with PID control strategy, whose configuration is 
shown in Fig.12. 

4.1 Controller design 
A conventional PID control [25] is implemented to track the trajectory of PMA with the feed-forward hysteresis 

compensation which is designed to reduce the influence of the hysteresis characteristics. The inverse Hammerstein model maps 
the desired trajectory Hy  into the desired pressure HP  for a PMA, which is then applied to the air proportional value as 
control signal. Therefore, the actual trajectory Ay  can be collected and compared with the desired trajectory Hy . In this 
paper, the gains of the PID control included in the feedback loop are set in Table 3. 

 
Figure 12.  The control scheme for PMA. 

Table 3. Controller gains for the PID control 

Proportional Integral Differential 

1 0.01 0 

4.2 Experimental results 
In order to testify the performance of the proposed control strategy and the effect of the hysteresis compensation based on 

the inverse Hammerstein model, the experiments on trajectory tracking control with and without the hysteresis compensator for 
a PMA is implemented and compared later. The desired tracking signal is designed as: 

   sin 2dy t A ft H                                         (18) 

where , ,A f H  are the amplitude, the frequency and offset of the desired tracking signal, respectively, which are given 
in Table 4. 

Table 4. Parameters of sinusoidal signal 

 A cm   f Hz   H cm  

3 0.2 4 



 

 
(a) tracking responds                                       (b) tracking error 

Figure 13.  Results for the trajectory tracking control of the PMA without the hysteresis compensation. 

 
(a) tracking responds                                       (b) tracking error 

Figure 14.  Results for the trajectory tracking control of the PMA witH the hysteresis compensation. 

Given the desired tracking signal, the results of the trajectory tracking control without and with the feed-forward hysteresis 
compensation based on the Hammerstein model are shown in Fig.13 and 14 respectively. Table 5 lists the statics of the 
trajectory tracking error. It is obvious that the tracking errors become a bit larger at peaks and troughs than that at other parts of 
the trajectory for both conditions. Nevertheless, by adding the hysteresis compensation into the control scheme, the 
performance of the trajectory tracking control becomes much better not only at peaks and troughs, but also the other parts of 
the trajectory achieve a more smooth movement than that of the trajectory under conventional PID control. 

Table 5. The tracking errors of sinusoidal trajectory 

 Maximum error

 cm  
Mean absolute error

 cm  

RMS error  cm  

PID 0.2952 0.0665 0.0861 

PID + feed-forward 0.1319 0.0359 0.0445 

It can be seen from Fig.10 and 13 that the error in the trajectory tracking control is larger than that of the simulation of the 
proposed model. The reason why tracking error increases compared with model error is because there exit uncertainties such as 
system interference under dynamic condition, moreover, the hysteresis characteristics of PMAs become more complicated. 
From the numerical results as shown in Table 5, it is clear that the maximal error is 0.1319 cm, the mean absolute error is 
0.0359 cm and the RMS error is only 0.0445 cm, which are much smaller than those in the PID control without the 
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feed-forward compensator, and meanwhile are also about as half as small as those in the literature [25] under the same control 
scheme with the hysteresis compensation. The generalized PI (GPI) model is designed to perform as hysteresis compensation 
in the trajectory tracking control in literature [25]. Form experimental results, the Hammerstein model performs better in 
compensating the influence of length/pressure hysteresis than the GPI model under same condition. 

5. Conclusion   
In this paper, a Hammerstein model is presented to characterize the asymmetric length/pressure hysteresis of PMAs. The 

proposed MPI model combines the linear play operator with the DZ operator, which extends the application of the CPI model 
and is suitable for representing the asymmetric hysteresis characteristics. Simultaneously utilizing the input signal of hysteresis 
system and the output of MPI model as the input of BP neural network, the limitation for single-valued mapping of neural 
network is successfully overcome, and the high-precision approximation ability of neural network is introduced into the 
research of hysteresis modeling of PMAs, which improves the accuracy of the model while improving the self-learning ability 
of the model. In order to verify the effect of the model, a conventional PID control with hysteresis compensation is carried out. 
And the trajectory tracking results demonstrate that the Hammerstein model and its inversion can realize high accuracy in both 
model simulation and trajectory control, which is significant for the applications driven by PMAs. 

In order to prevent secondary injury of patients, the assistant motion of the rehabilitation robot driven by PMAs is carried 
out at low frequency. Therefore, it is reasonable to study the hysteresis characteristics of PMAs under quasi-static conditions. 
Under dynamic conditions, not only the hysteresis characteristics of PMAs will become more complicated, but also the 
uncertainties such as system interference will appear in real-time application, making it impossible to establish its accurate 
model. Moreover, there exit dithering and creep during the trajectory tracking control. Therefore, it is necessary to achieve a 
more intelligent control method to solve the above problems. In the future, we will focus on the control method and develop a 
strong robust controller to achieve more accurate trajectory control of PMAs.  
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