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Coverage Analysis of Drone-Assisted Backscatter

Communication for IoT Sensor Network
Ali Hayajneh, Syed Ali Raza Zaidi, Maryam Hafeez, Des McLernon and Moe Win

Abstract—In this article, we develop a comprehensive frame-
work to characterize the performance of drone assisted Backscat-
ter communication based Internet of things (IoT) sensor network.
We consider a scenario such where drone transmits RF carrier
which is modulated by IoT sensor node (SN) to transmit its data.
The SN implements load modulation which results in amplitude
shift keying (ASK) type modulation for the impinging RF carrier.
In order to quantify the performance of considered network,
we characterize the coverage probability for the ground based
SN node. The statistical framework developed to quantify the
coverage probability explicitly accommodates dyadic backscatter
channel which experiences deeper fades than that of the one-
way Rayleigh channel. Our model also incorporates Line of
Sight (LoS) and Non-LoS (NLoS) propogation states for accu-
rately modeling large-scale path-loss between drone and SN. We
consider spatially distributed SNs which can be modelled using
spatial Binomial Point process (BPP). We practically implement
the proposed system using Software Defined Radio (SDR) and
a custom designed SN tag. The measurements of parameters
such as noise figure, tag reflection coefficient etc., are used to
parametrize the developed framework. Lastly, we demonstrate
that there exists an optimal set of parameters which maximizes
the coverage probability for the SN.

Index Terms—Drone, Backscatter communication, Dyadic fad-
ing, Stochastic geometry, Binomial process, Coverage probability.

I. INTRODUCTION

The number of connected consumer electronic devices has

exponentially increased over the past few years. According

to recent statistics [1], there are already 19.4 billion internet

connected devices that are in use across the globe, with the

number of Internet-of-Things (IoT) devices currently around

8.3 billion. The number of IoT devices is expected to in-

crease at a startling compound annual growth rate (CAGR)

of 10%. With such massive volume of devices, it is becoming

increasingly important to explore energy efficient (EE) IoT

Sensor Node (SN) design. This is mainly motivated by the

fact that recharging the deployed SNs individually on regular

basis might be impractical, especially for those SNs which

have limited post-deployment accessibility.

To realize EE design for IoT SNs, there are two possible

avenues which have gained significant interest from research
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community: (i) develop energy optimal protocols/architecture

for communication; (ii) harvest energy from ambient natu-

ral/synthetic sources to power the communication hardware.

In recent past [2], there has been a significant interest in si-

multaneous wireless power and information transfer (SWIPT)

based SN design. The SWIPT techniques employ rectenna,

i.e., an antenna and a diode to charge an on board energy

storage component (such as battery or a super-capacitor).

The harvested power is in turn employed for provisioning

communication between the SN and the intended access point

(AP). The key limitation of SWIPT is that the harvested power

is very small and the RF signals which are optimal for energy

harvesting are not necessarily optimal for communication.

RF Backscatter based communication [3]–[6] presents an

attractive alternative. Backscatter radio communication does

not require expensive active components such as as RF os-

cillators, mixers, crystals and decoupling capacitors etc. The

SNs communicate with AP (also called Reader) by modulating

the ambient un-modulated RF carrier which is transmitted by

the AP. The RF carrier modulation is achieved by connecting

an antenna to different loads which fundamentally translates

into different antenna-load reflection coefficients. Interested

readers are directed to [1] for a recent tutorial which provides

a comprehensive coverage of the backscatter based SN design.

RF backscatter based IoT SNs are particularly well suited for

applications where periodic polling can be employed for SN

data aggregation/collection. In other words, the data collection

can be duty cycled by the reader in an adaptive manner. This

is particularly useful in multi-modal sensing where certain

knowledge at the reader can be employed to increase/decrease

the duty cycle of data collection. For instance, in smart

agriculture application, weather data can be exploited to duty

cycle the collection of reading from soil moisture sensors.

RF backscatter based IoT SNs are particularly well suited to

environmental monitoring applications where SNs are spread

across a wider geographical region. Our prime interest in RF

backscatter based SNs is in the context of smart agriculture

where such sensors can provide wide scale deployment at a

very low cost. In practice, it is possible to print these sensors

(either using conductive ink on paper or on the semiconductor

substrate) and mount a single chip to implement a SN node.

Some initial investigations on backscatter based SNs for soil

moisture monitoring are conducted in [5], [7]–[9].

The key issue with the traditional approaches is that the

coverage range for RF backscatter based SNs is only of

the order of few hundred meters at best. Consequently, a

dense deployment of readers is required for provisioning data

collection which is costly, as this requires not only more hard-
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ware but also post-deployment maintenance. A simple solution

would be to use a single RF reader which is mounted on a

mobile platform which can navigate the intended monitoring

area. Drones present an attractive choice for mounting the

backscattering reader as several farmers are using drones for

various other agricultural monitoring functions. For instance,

multi-spectral cameras mounted on drones are being used to

calculate vegetation indices (for instance Normalized Differ-

ential Vegetation Index (NDVI)) which highlight a particular

characteristic of vegetation. To this end, this paper explores the

performance of RF Backscatter based IoT SNs with a drone

mounted flying Reader (DFR).

A. Contributions

In order to fully understand networking dynamics of

backscatter based IoT SN served by the DFR, it is essential to

characterize both the link and the network level performance of

such deployments. To this end, in this paper, we aim to develop

a comprehensive statistical framework to characterize the per-

formance of considered IoT SN. To the best of our knowledge

this is first study which presents such a statistical framework to

characterize performance of drone assisted backscatter based

IoT SNs. The performance of SNs is measured and quantified

in terms of the well known coverage probability metric. The

coverage probability is defined as the probability that the

received signal-to-noise-ratio (SNR) exceeds a certain desired

threshold. The threshold can easily be selected to satisfy a

certain desired bit-error-rate (BER), i.e. coverage probability

can essentially serve as a proxy of successful packet decoding

probability. The framework presented in this paper implicitly

incorporates realistic propagation dynamics of communication

between DFR and SNs by: (i) employing the large-scale

path-loss model which accommodate both Line-of-Sight (LoS)

and Non-LoS (NLoS) link states; and (ii) by employing the

small-scale fading model which captures the dyadic nature of

backscatter communication, i.e., forward propagation (from

DFR-to-SN) and backward propagation (SN-to-DFR) may

experience non-zero correlation1. Due to dyadic Rayleigh

fading channel, it is difficult to analyse the performance of

randomly scattered SNs2. However, we present alternative

closed-form expressions which are amenable to analysis. We

practically implement a tag and software-defined radio (SDR)

based reader and parametrize the developed framework to

investigate the coverage performance of SNs. Lastly, impact

of various parametric variations and optimal dimensioning of

the network is briefly explored.

B. Organization

The rest of the paper is organized as follows: Section

II introduces the system model and deployment geometry

of the network. Section III gives the performance analysis

and mathematical modelling. Section IV presents numerical

results. Finally, Section V provides some future work and

conclusions.

1Notice that due to dyadic fading channel, the analysis of performance is
different from the scenario ( [10], [11]) where drone is used as a BS.

2We borrow tools from stochastic geometry for analysis. Interested reader
is directed to [?] for a comprehensive tutorial.

Fig. 1: Drone-assisted smart IoT agriculture geometry. A

snapshot of the distribution of 10 sensor tags on the circular

area of a radius Rc.

C. Notation.

Throughout this paper, we employ the following math-

ematical notations. The probability density function (PDF)

of a random variable X is represented as fX(x) with the

cumulative density function (CDF) written as FX(x). The

expectation of a function g(X) of a random variable X is

represented as EX[g(X)]. The bold-face lower case letters

(e.g., x) are employed to denote a vector in R
2 and ‖x‖ is

its Euclidean norm.

II. SYSTEM MODEL

A. Spatial and Network Models

As depicted in Figure 1, we consider a scenario where a

drone is employed for data aggregation from SN tags. The

drone is furnished with a mono-static SN tag reader and is

tasked to cover a desired service area which is modelled

by a disc of radius Rc. It is assumed that SN tags are

uniformly distributed in the intended service area. The reader

does not possess any prior knowledge about the tag location

and randomly moves across the area such that its reference

distance to the center of the disc is vo
3. Assuming that the

number of SNs is finite and fixed, the spatial distribution of

the SNs is captured by a binomial point process (BPP) such

that [12]:

Φ = {x0,x1, ...,xNs
, ∀ xi ∈ R

2}, (1)

where Ns is the number of tags on the two dimensional set

space. At a particular time instance, only one SN is served on

a particular resource channel to avoid co-channel interference.

The sensor at the location xi is associated to the nearest

neighbour flying drone reader.

3For randomly chosen point inside the circular coverage area, vo is no
longer constant and is indeed a random variable, say Vo with PDF given by

fVo
(vo) =

2vo
R2

c

, for vo ∈ [0, Rc].
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Fig. 2: Architecture of backscatter DFR and SN.

B. SN Tag and DFR’s SDR Implementation

The backscattering SN tag reflects the ambient RF carrier

transmitted by the DFR by modulating the antenna’s reflection

coefficient. This is simply achieved by connecting the antenna

to two different loads (one for 0 information bit and the

other for 1 bit). In our SN design, the load modulation is

driven by the serial payload data packets generated by ultra-

low power microcontroller unit (MCU). Either MSP430 from

Texas Instrument or STM32L063R8 ARM M0+ are suitable

as their power-consumption is several µ-Amperes in different

modes. In our reference implementation the tag charges a

super-capacitor by harvesting energy from RF carrier. The

harvested power is used to drive the SN MCU. In a nutshell,

our load modulation scheme translates to amplitude shift

keying (ASK). We associate the higher reflection coefficient

Γa to the binary logic 0 and design a circuit which tries

to minimize reflection coffecient for binary logic 1 (i.e., no

reflected carrier for the 1 binary logic). Hence, if the binary

logic 1 has a reflection coefficient Γ0 = 0, the resulting tag

transmit signal can be written as [4]:

xTag(t) =

{
Γabn(t− nT ), Logic 0
0, Logic 1,

(2)

for t ∈ [nT, (n+ 1)nT ], where n(t− nT ) is the information

bit of a duration T . Figure 3 depicts the reception and

decoding of a serial data with the payload word “OK” in

our reference implementation. The carrier is generated by the

Nuand BladeRF SDR transceiver with the transmit power of

14 dBm. The bottom blue waveform presents the received

modulated carrier of a bit rate of 2.4 Kb/s. As we can see,

the reflection coefficient affects the distance between the two

binary levels of the modulated carries and this directly effects

the choice of constellation size 4 and the likelihood of correct

demodulation (i.e., the bit error rate of the communication

link). The red bit sequence is the decoded bits after performing

level detection on the bandpass received RF signal and then

recovering the clock utilizing Mueller-Müller timing recovery

scheme [13].

4It is envisioned that higher order modulation can be implemented by
employing cascaded RF switches

C. Large-Scale fading Model:

In order to accurately capture the propagation conditions

for drone assisted backscatter communication, we employ the

path-loss model presented in [14]. The backscatter commu-

nication link is dyadic in nature, i.e. it is characterized by

the product of forward (DFR-to-SN) and backward (SN-to-

DFR) channel gains. We assume both forward and backward

channel experience same path-loss, which is reasonable for

the mono-static architecture. The employed path-loss model

adequately captures LoS and NLoS contributions for drone-

to-ground communication as follows:

LLoS(hd, r) = KLoS

(

r2 + h2
d

)

, (3)

LNLoS(hd, r) = KNLoS

(

r2 + h2
d

)

, (4)

where hd is the height of the drone in meters, r is the

two dimensional projection separation between the drone and

the SN, KLoS and KNLoS are environment and frequency

dependent parameters such that Ki = ζi
(
c/(4πfMHz)

)−1
,

ζi is the excess path-loss for i ∈ {LoS,NLoS} with typical

values for urban areas ζLoS = 1 dB. The probabilites of having

a LoS and NLoS link between the DFR to the desired SN are

as follows:

PLoS(hd, r) =
1

1 + a e
−bη tan−1

(
r

hd

)

+b a
, (5a)

PNLoS(hd, r) = 1− PLoS(hd, r), (5b)

where a, b, c are environment dependent constants, η = 180/π
and θ is the elevation angle in degrees.

D. Small-Scale Dyadic Rayleigh Fading Channel

We consider a mono-static backscattering DFR where both

transmit and receive antennas are co-located as shown in

Figure 2. The DFR transmits an unmodulated RF carrier

and the SN tag reflects it back with a reflection coefficient

of Γa. Both forward (Gf ) and backward (Gb) propagation

channels suffer from Rayleigh flat fading. However, due to

the dyadic nature of the link, the channels have non-zero

correlation captured by the parameter ρ = E(Gf ,Gb) with

Gf ,Gb ∼ CN (0, 1). The received channel power gain is given

by Hf = ‖Gf‖2 and Hb = ‖Gb‖2 and has the joint distribution

as:

fHf ,Hb
(hf , hf ; ρ) =

2

ρ̃σ2
f σ

2
b

exp



−1

ρ̃

[

hf

σ2
f

+
hb

σ2
b

]



×Io
(

ρ
√
hfhb

(1− ρ2)σ2
f σ

2
b

)

, (6)

where Io(z) = 1
π

∫ π

0
exp

(
−z cos(t)

)
dt, is the modified

Bessel function of first kind and zero order, ρ̃ = 1−ρ2, σ2
f and

σ2
b are the variances of Gf and Gb respectively. The PDF of

the equivalent dyadic fading channel coefficient H = HfHb

can be written as

fH(h, ρ) =
1

2ρ̃σ2
f σ

2
b

Io
(

ρ
√
h

ρ̃σfσb

)

Ko

(

ρ
√
h

ρ̃σfσb

)

, (7)
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Fig. 3: Backscatter transmission of the serial data for the word “OK” which is equivalent to the hexadecimal representation

of “0x4F,0x4B” from a sensor node tag. The lower curve is the ASK modulated carrier at the reader antenna. Serial data bit

rate is 2.4 Kb/s.

where Ko(z) =
∫∞

0
cos(z sinh(t)) dt, is the modified Bessel

function of second kind and zero order. The PDF in (7) can

be simplified as both forward and backward Rayleigh channels

have unit mean,i.e., E(Hf) = E(Hb) = 1, as follows:

fH(h, ρ) =
2

ρ̃
Io
(

2ρ
√
h

ρ̃

)

Ko

(

2ρ
√
h

ρ̃

)

. (8)

Obtaining a CDF for (8) which is required for the coverage

analysis is quite complicated and mathematically intractable.

Hence, we develop an alternative performance characterization

framework by developing a tight approximation for the PDF

in (8). In fact, (8) is a monotonically decreasing product of

two modified Bessel functions in the interval H ∈ (0,∞)
as demonstrated in [15]. Moreover, the product decreases

exponentially fast. Clearly, this motivates approximation of

PDF by using asymptotic expressions for Bessel functions. The

asymptotic Hankel expansion of the Bessle functions Io(z)
and Ko(z) is given as:

Ko(z) ≈
√
π

2
exp (−z) , (9)

Io(z) ≈
1

z
√
2π

exp (z) . (10)

Substituting the above to obtain f̃H(h) and normalizing the

result with the factor c =
∫∞

0
f̃H(h) dh, we can write the

approximate PDF as

PDF: fH(h, ρ) ≈ h−
1

2

2
√
ρ
exp

(

−2(1− ρ)
√
h

1− ρ2

)

(11)

CDF: FH(h, ρ) ≈ 1− exp

(

−2(1− ρ)
√
h

1− ρ2

)

. (12)

Figure 4 presents the tightness of the derived approximation

in (12). It is evident that the approximation is very tight

especially for high values of the correlation coefficient ρ.

Combining large-scale and small scale fading model the

overall propagation channel is given by HL(hd, r)
−2 with

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

3 3.5 4
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Fig. 4: Cumulative distribution function for the backscatter

dyadic fading channel coefficient H.

H = HfHb and L(hd, r) = LLoS(hd, r)PLoS(hd, r) +
LNLoS(hd, r)PNLoS(hd, r).

III. PERFORMANCE ANALYSIS

A. Link Distance Analysis

In this section, we characterize link distance distributions

which are required to quantify the large scale path-loss given

by (3). These distributions are employed to quantify coverage

probability in section III-B. The PDF for the distance R
from the DFR (located at distance vo from the center of

coverage region) to an arbitrary SN tag can be written as in

(16). Employing the derived PDF with order-statistics enable

derivation of the PDF of distance to nearest SN from DFR

denoted by R1 as summarized in Proposition 1.
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Proposition 1. The PDF of the distance R1 from the DFR

at distance vo from the centre of the intended coverage area

to the nearest SN tag can be evaluated as in (18) in the next

page.

Proof. Let Ns tags be distributed uniformly inside a circle

of radius Rc. Then the derivation of the nearest neighbour

distribution amongst the Ns SN tags follows the order statistics

using the fact that for general Ns i.i.d random variables

Zi ∈ {Z1, Z2, ..., ZNs
} with PDFs fZi

(z) ordered in ascending

order. Then the PDF of Z1 = min
i
(Zi) can be written as

fZ1
(z) = N

(
1− FZi

(z)
)N−1

fZi
(z) [16]. Then, by applying

this to (16), we can write the PDF of the distance R1 as

fR1
(r1|vo, Rc) =







f
(1)
R

1

(r1|vo, Rc), 0 ≤ r1 ≤ Rc − vo

f
(2)
R

1

(r1|vo, Rc), Rc − vo < r1 ≤ Rc + vo,

(13)

where

f
(1)
R

1

(r1|vo, Rc) = Ns(1− F
(1)
R (r1|vo))

Ns−1f
(1)
R (r1|vo) (14)

f
(2)
R

1

(r1|vo, Rc) = Ns(1− F
(2)
R (r|vo))

Ns−1f
(2)
R (r1|vo). (15)

From the previous proposition we can easily integrate

fR1
(r1|vo, Rc) in (18) to get the CDF of the nearest neighbour

distance distribution as

FR1
(r1|vo, Rc)

=

{

(1− F
(1)
R (r1|vo, Rc))

Ns , 0 ≤ r ≤ Rc − vo

(1− F
(2)
R (r1|vo, Rc))

Ns , Rc − vo < r ≤ Rc + vo.
(19)

B. Coverage Probability

The coverage probability is defined as the probability that

the SNR will be greater than a certain predefined value β. The

average SNR for the uplink DFR can be quantified as:

SNR =
PtHfHbΓa[LLoS(r1)]

−2

σ2
N

PLoS(r1)

︸ ︷︷ ︸

SNRL

+
PtHfHbΓa[LNLoS(r1)]

−2

σ2
N

PNLoS(r1)

︸ ︷︷ ︸

SNRNL

, (20)

where Pt is the reader’s transmit power, σ2
N is the additive

white Gaussian noise (AWGN) power, SNRL is SNR when

there is a LoS link between the user and the BS, SNRNL is

SNR when there is a NLoS link between the user and the

DFR. The coverage probability for any arbitrary mobile user

can be evaluated as in the following theorem.

Proposition 2. (Coverage probability). The coverage proba-

bility for any BPP with Ns SNs in the presence of AWGN can

be evaluated as shown in (21).

Proof. Let a pre-defined threshold β of SNR, then the cover-
age probability can be defined as

Pc(β|vo) = Pr[SNR ≥ β],

= Er1

[

1− FH(βσ2
N[LL(r1)]

2/PtΓa, ρ)
]

PL(r1)

+ Er1

[

1− FH(βσ2
N[LNL(r1)]

2/PtΓa, ρ)
]

PNL(r1).

(22)

Hence, by evaluating the averaging operator in (22) with

the distribution of R1 in (18), we can quantify the coverage

probability as shown in (21).

IV. RESULTS AND DISCUSSION

In this section, we validate the developed statistical frame-

work for quantifying the coverage probability. We also briefly

explore the impact of different parametric variations on the

coverage probability. We assume a rural environment with the

parameters a = 9.6, b = 0.28 for the path-loss model (see

Section 2), noise power σ2
N = 110 dBm, Pt = 0 dB and

f = 915 MHz illuminator carrier frequency. Also, as described

in the previous sections, we consider Rayleigh flat wireless

correlated fading channels. The noise power is estimated from

the practical implementation of the system as described in

Section II-B.

Figure 5(a) shows the coverage probability Pc versus the

DFR height hd for different tag reflection coefficient Γa

and different reference locations vo of the drone inside the

coverage area. The Figure shows that, for a certain deployment

parameters, there is always an optimal height of the DFR that

maximizes the coverage probability and this optimal height

changes with the change in the location of drone, i.e., with

the change in vo. For example, at vo = 0 and Γa = 0.9, the

optimal drone height is in the range of 40− 60 meters while

for vo = 500 and Γa = 0.9, the optimal height is lower in

the range of 50 − 60 meters. An interesting observation that

follows Figure 5(a) is that the range of heights which optimize

the coverage widens with increase in the reflection coefficient

Γa. Moreover, the decrease in the coverage probability with the

increase in DFR altitude (beyond optimal operational altitude)

is much slower for higher reflection coefficient. Consequently,

when reflection coefficient of tag is appropriately designed

optimal height can be reduced while concurrently the SN

coverage probability can be maximized.

Figure 5(b) studies coverage against increasing number of

deployed SNs for different values of β. The figure shows

that, as we increase the number of the deployed SNs, the

coverage probability will increase. This is due to the change

of the characteristics of the nearest neighbour SN distance

distribution (i.e., the distance to the nearest neighbour SN

becomes lower and hence the path-loss decreases). However,

this is only true if the SNs do not interfere with each

other, i.e., by employing highly directional antenna at DF.

In practice, the increasing number of SNs contribute to co-

channel interference and therefore reduce coverage probability.

Figure 5(c) shows the coverage probability against the DFR

distance vo from the center of the coverage area. As we

describes before, the coverage probability decreases as the
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fR(r|vo, Rc) =







f
(1)
R (r|vo, Rc) =

2r
R2

c

, 0 ≤ r ≤ Rc − vo

f
(2)
R (r|vo, Rc) =

2r
πR2

c

arccos

(

r
2+v

2
o
−R

2
c

2vor

)

, Rc − vo < r ≤ Rc + vo,
(16)

with the CDF as follows:

FR(r|vo) =







F
(1)
R (r|vo) =

r
2

R2
c

, 0 ≤ r ≤ Rc − vo

F
(2)
R (r|vo) =

r
2

π R2
c

(
θ1 −

1
2
sin (2 θ1)

)
+ 1

π

(
θ2 −

1
2
sin (2 θ2)

)
, Rc − vo < r ≤ Rc + vo,

(17)

with θ1 = arccos

(

r
2
−R

2
c
+vo

2vor

)

and θ2 = arccos

(

−r
2+R

2
c
+vo

2voRc

)

.

fR1
(r1|vo, Rc) =







f
(1)
R

1

(r1|vo, Rc) =
2Nsr1

R2
c

(

1−
r
2
1

R2
c

)
Ns−1

, 0 ≤ r1 ≤ Rc − vo

f
(2)
R

1

(r1|vo, Rc) =
2Nsr1

πR2
c

arccos

(

r
2
1
+v

2
o
−R

2
c

2vor1

)

×



1−

(

r
2
1

π R2
c

(

θ11 − 1
2
sin
(

2 θ11

))

+ 1
π

(

θ12 − 1
2
sin
(

2 θ12

))
)



Ns−1

, Rc − vo < r1 ≤ Rc + vo,

(18)

with θ11 = arccos
(

r1
2
−R2

c
+vo

2vor1

)

and θ12 = arccos
(

−r1
2+R2

c
+vo

2voRc

)

.

Pc(β|vo) =

∫ Rc−v0

0

f
(1)
R

1

(r1|vo, Rc)
[[
1− FH(ζ1, ρ)

]
PL(r1) +

[
1− FH(ζ1, ρ)

]
PNL(r1)

]

dr1

+

∫ Rc+v0

Rc−v0

f
(2)
R

1

(r1|vo, Rc)
[[
1− FH(ζ2, ρ)

]
PL(r1) +

[
1− FH(ζ2, ρ)

]
PNL(r1)

]

dr1, (21)

with ζ1 = βσ2
N[LL(r1)]

2/PtΓa and ζ2 = βσ2
N[LNL(r1)]

2/PtΓa.
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Fig. 5: (a) Coverage probability with Ns = 200, Rc = 500, ρ = .5, σ2
N = −110 dBm, β = 10 dBm. (b) Coverage probability

with Rc = 500, ρ = .5, σ2
N = −110 dBm, Γa = 0.9 and (c) Coverage probability with hd = 50 [m], Ns = 50, Rc = 500,

ρ = .5, σ2
N = −110 dBm, β = 0 dBm.

DFR become closer to the border of the circular coverage

area. This is due to the BPP non-stationarity (i.e., the distance

distributions and void probability characteristics are not the

same for any arbitrary chosen point). Lastly, Figure 6 investi-

gates the effect of jointly changing the height of the DFR and

the number of SNs on the coverage probability. The Figure
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Fig. 6: Coverage probability. Rc = 500, ρ = .5, σ2
N = −110

dBm, β = 0 dBm, Γa = 0.9

shows that for any chosen number of SNs, there is always a

DFR height that maximizes the coverage probability.

V. CONCLUSION

In this paper, we investigated design space of backscatter

IoT SNs which are polled via drone based SN tag reader.

We developed a point-to-point implementation using SDR and

custom designed SN tag. We then developed a comprehensive

statistical framework to quantify link level performance of

randomly distributed SNs. Our model explicitly incorporates

dyadic fading channel whereby forward (Drone-to-SN) and

backward(SN-to-Drone) propagation channels can experience

non-zero correlation. Performance analysis for dyadic fading

channel is intricate due to nature of PDF expressions. We

present closed-form tight approximations which simplify the

analysis. Our analytical model also incorporates LoS and

NLoS components which characterize the path-loss for drone

based communication. The developed model is parametrized

by the experimental implementation and subsequently impact

of different parameters on the coverage performance of SN

is investigated. We demonstrate that there exists a fruitful

interplay between SN’s reflection coefficient, drone height and

number of SNs which jointly dictate an optimal operation point

at which coverage probability is maximized.
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