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Abstract

NFκB is implicated in cancer and bone remodelling, and we have recently reported that the veriied NFκB inhibitor Parthe-

nolide (PTN) reduced osteolysis and skeletal tumour growth in models of metastatic breast cancer. Here, we took advantage 

of in vitro and ex vivo bone cell and organ cultures to study the efects of PTN on the ability of prostate cancer cells and 

their derived factors to regulate bone cell activity and osteolysis. PTN inhibited the in vitro growth of a panel of human, 

mouse and rat prostate cancer cells in a concentration-dependent manner with a varying degree of potency. In prostate can-

cer cell—osteoclast co-cultures, the rat Mat-Ly-Lu, but not human PC3 or mouse RM1-BT, enhanced RANKL stimulated 

osteoclast formation and PTN reduced these efects without afecting prostate cancer cell viability. In the absence of cancer 

cells, PTN reduced the support of Mat-Ly-Lu conditioned medium for the adhesion and spreading of osteoclast precursors, 

and survival of mature osteoclasts. Pre-exposure of osteoblasts to PTN prior to the addition of conditioned medium from 

Mat-Ly-Lu cells suppressed their ability to support the formation of osteoclasts by inhibition of RANKL/OPG ratio. PTN 

enhanced the ability of Mat-Ly-Lu derived factors to increase calvarial osteoblast diferentiation and growth. Ex vivo, PTN 

enhanced bone volume in calvaria organ—Mat-Ly-Lu cell co-culture, without afecting Mat-Ly-Lu viability or apoptosis. 

Mechanistic studies in osteoclasts and osteoblasts conirmed that PTN inhibit NFκB activation related to derived factors 

from Mat-Ly-Lu cells. Collectively, these indings suggest that pharmacological inhibition of the skeletal NFκB signalling 

pathway reduces prostate cancer related osteolysis, but further studies in the therapeutic implications of NFκB inhibition in 

cells of the osteoblastic lineage are needed.
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Abbreviations

PTN  Parthenolide

NFκ  Nuclear factor kappa-B

RANK  Receptor activator of NFκΒ

RANKL  RANK ligand

TNFα  Tumour necrosis factor alpha

IL1β  Interleukin 1 beta

CD40L  Cluster of diferentiation 40 ligand

TRAF  TNF receptor-associated factor

IKK  IκB kinase

TGFβ  Transforming growth factor beta

Runx2  Runt related transcription factor 2

M-CSF  Macrophage colony-stimulating factor

DMSO  Dimethyl sulfoxide

microCT  Micro–computed tomography

OPG  Osteoprotegerin

TRAcP  Tartrate-resistant acid phosphatase

Alk Phos  Alkaline phosphatase

ALZ  Alizarin red

BM  Bone marrow

ANOVA  Analysis of variance

SD  Standard deviation

Introduction

NFκB is implicated in cancer and bone remodelling 

[1–9]. Previous studies have shown that pharmacological 

and genetic inhibition of key components of the NFκB 
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signalling pathway reduce bone loss associated with vari-

ous bone disorders including bone metastasis, oestrogen 

deiciency, rheumatoid arthritis and Paget’s disease of 

bone [10–14]. The canonical NFκB signalling pathway 

consists of a family of transcription factors. Stimulation 

of receptors for various bone- and tumour-derived factors 

including receptor activator of NFκB ligand (RANKL), 

tumour necrosis factor alpha (TNFα), cluster of diferen-

tiation 40 ligand (CD40L) and interleukin-1 (IL-1) triggers 

a series of events that include the recruitment of adaptor 

proteins such as TRAF2 and 6 to the receptor, the assem-

bly of the inhibitor of IκB (IKK) complex and the phos-

phorylation and subsequent proteasomal degradation of 

IκB units leading to the translocation of NFκB dimers to 

the nucleus [15, 16]. Activation of cancer- and host-spe-

ciic NFκB signalling by these factors plays a key role in 

the initiation and progression of cancer related osteolytic 

and osteosclerotic bone metastases [17–21].

The skeleton is a common site of metastasis in advanced 

prostate cancer. The homing, colonization and growth of 

metastatic prostate cancer cells in the skeleton are major 

causes of pathological fractures and bone pain in advanced 

cancer patients [22–24]. The majority of prostatic bone 

metastases in patients are predominately osteosclerotic and 

are frequently accompanied by enhanced osteoblast difer-

entiation and ectopic bone formation [25, 26]. However, 

the ability of prostate cancer cells to enhance the forma-

tion, survival and activity of osteoclasts by both directly 

and indirectly acting on osteoblasts, also contributes to the 

development of osteolytic lesions [24, 26–31].

A number of studies have implicated NFκB in the initia-

tion, progression and bone metastasis of prostatic tumours 

[10, 29, 32–42]. NFκB plays a role in the growth and meta-

static spread of androgen-independent prostate cancer cells 

[35–37], and pharmacological inhibition and knockdown 

of key components of NFκB signalling such as IKK have 

been found to reduce prostate cancer cell growth and 

metastasis [10, 29, 32–38, 43]. We have recently reported 

that a veriied inhibitor of canonical NFκB signalling, Par-

thenolide (PTN) [44–46], reduced breast cancer associ-

ated bone disease in mouse models [47–49]. Inhibition of 

NFκB has been found to enhance osteoblast diferentiation 

and maturation in the presence [47, 49] or absence [19] 

of cancer cells, however the efects of NFκB inhibitors on 

the ability of prostate cancer cells to inluence osteoblast 

diferentiation, osteoclast formation and osteolysis has not 

been investigated. In the present study, we show that PTN 

inhibited prostate cancer cell-related NFκB activation in 

osteoclasts and osteoblasts, reduced osteoclast formation 

and enhanced osteoblast diferentiation in the presence 

of cancer cells in vitro and increased bone volume in an 

ex vivo model of prostate cancer cell—calvarial organ co-

culture system.

Materials and Methods

Reagents and Cells

The sesquiterpene lactone, parthenolide (PTN) was pur-

chased from Tocris Biosciences (Bristol, UK). The human 

androgen-sensitive prostatic cancer cell line, LNCaP and 

the human castration-resistant cell lines PC3 and DU145 

were purchased from the ATCC (Manassas, VA). The rat 

Mat-Ly-Lu cells were a gift from Professor Daniel Chap-

pard (INSERM, Angers, France). The LNCaP bone meta-

static derivative C4-2B4 was a kind gift from Dr. Ning 

Wang (University of Sheield). The murine RM1-BT pros-

tate cancer cells were a kind gift from the laboratory of 

Dr. Martina Rauner and Professor Lorenz Hofbauer (Dres-

den, Germany). All cancer cell lines were grown in Dul-

becco’s Modiied Eagle Medium (DMEM), obtained from 

Sigma–Aldrich (Dorset, UK) with 10% foetal calf serum. 

Primary bone marrow derived macrophages, mature oste-

oclasts and calvarial osteoblasts were cultured in alpha-

Modiied Eagle Medium (αMEM). Primers for quantita-

tive PCR were obtained from Invitrogen (Paisley, UK) 

and probes were purchased from Roche Diagnostics Ltd. 

(East Sussex, UK). Western blot antibodies were obtained 

from Cell Signalling Biotechnology (MA, USA) except 

rabbit anti-actin was purchased from Sigma–Aldrich (Dor-

set, UK). Mouse macrophage-colony stimulating factor 

(M-CSF) was obtained from R&D Systems (Abingdon, 

UK) and RANK ligand (RANKL) was a gift from Patrick 

Mollat (Galapagos SASU, France) [47].

Cell Viability

The efect of Parthenolide on cell viability was measured 

by Alamar Blue as described in [50]. Prostate cancer cells 

(1 × 103 cells/well) were cultured in serum free DMEM 

and M-CSF dependent osteoclast precursors or calvarial 

osteoblast (10 × 103 cells/well) were cultured in stand-

ard αMEM medium in the presence of vehicle (DMSO) 

or PTN at the desired concentration and for the period 

indicated.

Cell Adhesion and Spreading

The efects of Parthenolide on cell adhesion and spread-

ing were measured using the XCELLigence system [51]. 

Briely, standard DMEM medium containing vehicle or 

PTN was added to the E-plate (16-wells) and a base read-

ing for normalisations was calculated. Prostate cancer cells 

(9 × 103 cells/well) were then added in standard DMEM 
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supplemented with vehicle (0.1% bovine serum albumin 

in PBS) or RANKL (100 ng/ml) and cell adhesion and 

spreading were measured as previously described [51].

Cancer Cell: Mouse Calvaria Organ Co‑culture 
System

The efects of PTN on the development of prostate can-

cer related osteolysis were measured using an adaptation 

of the ex vivo mouse calvarial organ culture system [47]. 

Briely, murine calvaria were isolated from 7-day-old [C57/

Bl6] mice, divided in half equally along the medium sagit-

tal suture and each half was cultured on stainless steel rafts 

in 48-well plates. The standard alpha-MEM tissue culture 

medium containing test agents was changed every 48 h and 

the cultures were terminated on day 7. The experimental 

protocol was approved by the Ethics Committee at the Uni-

versity of Edinburgh and was conducted in accordance with 

the UK Home Oice regulations.

Micro‑computed Tomography

Bone volume was measured at the calvarial bone using 

microCT analysis [Skyscan 1172 instrument (Brucker, Bel-

gium)] at a resolution of 5 µm [52]. Images were recon-

structed by the Skyscan NRecon program and analysed using 

Skyscan CTAn software (Brucker, Belgium).

Osteoclast Cultures

Bone marrow (BM) cells were lushed from the long bones 

of 3–5 week old mice as previously described [53]. M-CSF 

dependent bone marrow macrophages (osteoclast precur-

sors) were plated into 96-well plates (15 × 103 cells/well) 

in standard alpha-MEM supplemented in the presence of 

M-CSF (100 ng/ml) for 48 h and then and in M-CSF (25 ng/

ml) and RANKL (100 ng/ml) for up to 5 days. For stud-

ies involving prostate cancer cells and their derived factors, 

M-CSF (25 ng/ml) and RANKL (100 ng/ml) were added 

6 h prior to the addition of prostate cancer cells (300 cells/

well) or their conditioned medium (20% v/v) prepared as 

previously described [53] Cultures were terminated by ixa-

tion in 4% paraformaldehyde, and mature osteoclasts were 

identiied by Tartrate-Resistant Acid Phosphatase (TRAcP) 

staining [53]. Osteoclast activity was assessed by measur-

ing resorbed area in mature osteoclasts cultured on Corn-

ing® Osteo Assay Surface multiple well plates (Corning, 

USA). Resorption pits were visualized on an Olympus 

ScanR microscope and resorbed area was quantiied by using 

ImageJ software.

Osteoblast Cultures

Primary osteoblasts were isolated from the calvarial bones of 

2-day-old mice as described previously [54]. Calvarial osteo-

blasts (1 × 105 cells/well) were cultured in standard alpha-

MEM for the desired period and osteoblast cell number and 

diferentiation were determined by AlamarBlue assay and 

alkaline phosphatase (Alk Phos) assays, respectively [54].

Assessment of DNA Fragmentation and Apoptosis

Adherent and non-adherent cells were collected, ixed with 

4% paraformaldehyde and cytospun into glass slides. Apop-

tosis was identiied using DAPI staining and TUNEL stain-

ing [55]. An average of 6 microscopic ields per group was 

analysed at ×200 magniication and the number of apoptotic 

cells were quantitated in relation to total cell number.

Western Blotting

Western blot analysis was used to detect the expression 

of total proteins and their phosphorylated forms in pros-

tate cancer and bone cells. Briely, cells were incubated in 

serum free medium with or without test agents for 60 min 

and then cells were treated with cytokines or conditioned 

medium from cancer cells and homogenized and collected 

in lysis bufer (0.1% (w/v) SDS, 0.5% (w/v) sodium deoxy-

cholate, 1% Triton X-100, 1 mMEDTA, 2% (v/v) protease 

inhibitor cocktail, 10 mM of sodium luoride and 2% (v/v) 

phosphatase inhibitor cocktail). Protein concentration was 

determined using BCA assay (Pierce, USA). Total protein 

(50–70 µg) was resolved by SDS–PAGE (BioRAD, UK) and 

immunoblotted and native and phosphorylated proteins were 

detected by using the indicated rabbit monoclonal antibod-

ies (all at 1:1000 dilution), and immuno-complexes were 

visualized using chemiluminescence (Amersham, UK) on a 

Syngene GeneGnome imaging system. Bands were quanti-

ied using GeneSnap software (Syngene, UK) and level of 

actin (Sigma–Aldrich, UK) was used for normalization.

Quantitative PCR

Quantitative PCR (qPCR) was used to detect RANKL 

and osteoprotegerin (OPG) gene expression in calvarial 

osteoblasts. Briely, RNA was quantiied using a nanodrop 

(Thermo Scientiic) and complementary DNA (cDNA) was 

generated using Invitrogen SuperScript III Reverse Tran-

scriptase kit according to manufacturer’s instructions. For 

ampliication of mouse OPG (forward primer: 5ƍ- ATG AAC 

AAG TGG CTG TGC TG-3ƍ, reverse primer 5ƍ-CAG TTT CTG 

GGT CAT AAT GCAA-3ƍ); mouse RANKL (forward primer: 

5ƍ-TGA AGA CAC ACT ACC TGA CTC CTG -3ƍ, reverse primer 

5ƍ-CCA CAA TGT GTT GCA GTT CC -3ƍ); mouse GAPDH 
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(forward primer: 5ƍ- CCT GAA TTT TAA GCT ACA CAC AGC  

-3ƍ, reverse primer 5ƍ- CTG GCA CTG CAC AAG AAG AT -3ƍ) 
were used. GAPDH was used for cDNA normalization.

Statistical Analysis

Comparison between groups was assessed by analysis of 

variance (ANOVA) followed by Dunnet’s post hoc test 

(SPSS for Windows, version 11). A p-value value of 0.05 or 

below was considered statistically signiicant. The half max-

imal inhibitory concentration (IC50) values were calculated 

using GraphPad Prism 7 software (V10, Microsoft, USA).

Results

Parthenolide Inhibits the Growth of Prostate Cancer 
Cells In Vitro

A body of work has implicated NFκB signalling in the pro-

gression of prostate cancer cells from androgen sensitive to 

androgen independence [29, 32, 35–39]. With this in mind, 

we irst assessed the cytotoxic efect of the veriied NFκB 

inhibitor PTN on the in vitro viability of a panel of prostate 

cancer with diferent abilities to metastasise to the skeleton. 

As shown in Fig. 1, PTN (0.001–100 µM) reduced the via-

bility of the human androgen-sensitive prostatic cancer cell 

line LNCaP and its metastatic sub-clone C42-B4, human 

castration-resistant cell lines PC3 and DU145, mouse RM1-

BT and rat Mat-Ly-Lu in a concentration-dependent manner. 

The concentration of this compound that half maximally 

inhibited cell viability (IC50) was signiicantly lower in the 

metastatic PC3, RM1-BT and DU145 cells when compared 

to other cell lines tested (Table 1).

Parthenolide Reduces Prostate Cancer Related 
Osteoclast Formation In Vitro

NFκB plays a key role in RANKL-induced osteoclas-

togenesis [11–13], and previous studies have shown that 

PTN reduces osteolysis in models of breast cancer bone 

metastasis [44–49]. Here, we tested the efects of PTN on 

the ability of prostate cancer cells to inluence RANKL-

induced osteoclastogenesis in vitro. To investigate this, we 

irst assessed the ability of a panel of human and murine 

prostate cancer cell lines to enhance osteoclast formation 

in cultures of mouse M-CSF generated bone marrow mac-

rophage (osteoclast precursors) at various concentrations of 

RANKL (5–100 ng/ml). These experiments revealed that 

pre-treatment of osteoclast precursors to the prostate cancer 

cells Mat-Ly-Lu—but not PC3 and RM1-BT (Fig. 2a and 

data not shown) or their derived factors (Fig. 2b and data 

not shown) enhanced RANKL-induced osteoclast formation 

(p < 0.001). Furthermore, exposure of osteoclast precursors 

to PTN (0.1–1 µM) for 1 h prior to the addition of Mat-Ly-

Lu, PC3, RM1-BT or their derived factors reduced osteo-

clast formation in these cultures (Fig. 2a, b). Representative 

photomicrographs of TRAcP positive multi-nucleated osteo-

clasts from the prostate Mat-Ly-Lu—osteoclast co-cultures 

described are shown in Fig. 2c.

Parthenolide Inhibits Prostate Cancer Related 
Osteoclast Motility In Vitro

RANKL is an essential regulator of motility of osteoclasts 

and their precursors [56, 57]. Here, we show that Mat-Ly-

Lu conditioned medium induced adhesion and spreading 

of RANKL and M-CSF generated osteoclast precursors 

(Fig. 3a) and this efect was completely abolished in cul-

tures treated with PTN (0.1 µM) treated cultures completely 

abolished by PTN (0.1 µM) after 6 h. In contrast, PTN 

(0.1–1.0 µM) had no efects on the proliferation of RANKL 

and M-CSF generated osteoclast precursors for up to 24 h at 

concentration tested (Fig. 3b), thus excluding the possibility 

that the inhibitory efect on osteoclast motility was mediated 

by a reduction in cell viability in the experiment described.

Parthenolide Inhibits Prostate Cancer Related 
Osteoclast Survival In Vitro

Next, we went on to carry out additional experiments on the 

efects of PTN on mature osteoclast activity and survival. 

Mature osteoclasts were generated in RANKL and M-CSF 

stimulated bone marrow macrophage cultures for 3 days, and 

then exposed to rat Mat-Ly-Lu conditioned medium (20% 

v/v) in the presence and absence of Parthenolide (PTN). The 

results of this experiment revealed that the ability of mature 

osteoclasts to form resorption pits in vitro was only reduced 

by PTN at 30 µM (Fig. 3c)—a concentration that signii-

cantly decreased the survival of mature osteoclasts in the 

model described (Fig. 3d). At 1 µM, PTN had no efects on 

bone resorption or survival of mature osteoclasts (Fig. 3c, d).

Parthenolide Reduces Osteoblast Support 
for Osteoclast Formation In Vitro

Osteoblasts are an essential source of RANKL [58]. In 

view of this, we next tested the efects of PTN on osteoblast 

Fig. 1  Parthenolide inhibits the viability of a panel of prostate cancer 
cells in vitro. a–f The efects of Parthenolide (PTN, 0.001–100 µM) 
on the viability of human androgen-sensitive prostatic cancer LNCaP 
(a) and its metastatic sub-clone  LNCaPC42-B4 (b) and castration-
resistant human PC3 (c) and DU145 (d), mouse RM1-BT (e) and rat 
Mat-Ly-Lu (f). Cell viability was assessed by AlamarBlue assay. G. 
Representative photomicrographs of Mat-Ly-Lu treated with PTN for 
72 h at the indicated concentrations. *p < 0.05 and **p < 0.01

◂
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support for osteoclastogenesis in the presence of derived 

factors from prostate cancer cell. Conditioned medium from 

the prostate Mat-Ly-Lu cells was used in these experiments 

on the basis that these cells enhanced osteoclast formation 

in RANKL stimulated bone macrophage cultures (Fig. 4). 

Pre-treatment of calvarial osteoblasts with PTN (1 µM) 

prior to the addition of condition medium from Mat-Ly-Lu 

cells and bone marrow macrophages reduced the increase 

of RANKL/OPG ratio after 24 h (Fig. 4a), and inhibited 

osteoclast formation after 48 h (Fig. 4b). At 5 µM, PTN 

completely abolished the increase in osteoclast number by 

condition medium from Mat-Ly-Lu cells in calvarial osteo-

blast cultures (Fig. 4b).

Table 1  Efects of Parthenolide 
on the viability of human, 
mouse and rat prostate cancer 
cells in vitro

Cell viability were measured 
after 72  h of continuous expo-
sure to PTN by AlamarBlue 
assay. Calculation of half maxi-
mal inhibitory concentrations 
(IC50) has been performed as 
described under “Materials and 
Methods”. Values are expressed 
as means ± SD and are obtained 
from 3 independent experiments

Cell viability 
 (IC50, µM)

LNCaP 8.9 ± 1.9

LNCaP—C42B4 43.8 ± 4.1

PC3 2.7 ± 1.1

DU145 4.7 ± 1.9

RM1-BT 3.9 ± 0.4

Mat-Ly-Lu 18.7 ± 2.8

Fig. 2  Parthenolide inhib-
its prostate cancer cell- and 
RANKL-related osteoclastogen-
esis in vitro. a, b. Osteoclast 
formation in murine M-CSF 
(25 ng/ml) and RANKL 
(100 ng/ml) stimulated bone 
marrow macrophage (pre-osteo-
clasts) cultures after exposure to 
rat Mat-Ly-Lu, human PC3 and 
mouse RM1-BT prostate cancer 
cells (a) or their conditioned 
medium (20% v/v) (b) in the 
presence and absence of Parthe-
nolide (PTN) at the indicated 
concentration for 48 h. C Rep-
resentative photomicrographs of 
TRAcP positive multi-nucleated 
osteoclasts from the experiment 
described in panel b. *p < 0.05 
from vehicle and +p < 0.05 from 
vehicle treated with conditioned 
medium
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Fig. 3  Parthenolide inhibits prostate cancer cell- and RANKL-related 
osteoclast motility and survival in vitro. a, b Pre-osteoclast adhesion 
and spreading (a) and number (b) in cultures of murine M-CSF-
dependent bone marrow macrophage after exposure to rat Mat-Ly-Lu 
conditioned medium (20% v/v) in the presence and absence of Par-
thenolide (PTN) at the indicated concentration for 6 h. Cell motility 
and viability were assessed by real-time cell analyzer xCELLigence 
and AlamarBlue assay, respectively. c In  vitro bone resorption in 
mature osteoclast cultures. Mature osteoclasts were generated in 
RANKL and M-CSF stimulated bone marrow macrophage cultures 
for 3 days, and then exposed to rat Mat-Ly-Lu conditioned medium 
(20% v/v) in the presence and absence of Parthenolide (PTN) at the 
indicated concentration for 72 h. d Total osteoclast number from the 
experiment described in panel c as assessed by TRAcP staining. Val-
ues are mean ± SD. *p < 0.05 from vehicle and +p < 0.05 from vehicle 
treated with conditioned medium. AU denotes arbitrary unit

Fig. 4  Parthenolide enhances osteoblast diferentiation and reduces 
their support for osteoclastogenesis in  vitro. a RANKL and OPG 
mRNA expression in mouse calvarial osteoblasts exposed to condi-
tioned medium (20% v/v) from Mat-Ly-Lu prostate cancer cells after 
24 h in the presence and absence of PTN (1 µM). b Osteoclast for-
mation in mouse calvarial osteoblast—bone marrow cell co-cultures 
pre-treated with Mat-Ly-Lu conditioned medium (CM, 20% v/v) 
in the presence and absence of Parthenolide (PTN, 0.1–5 µM). c, d 
In  vitro osteoblast diferentiation (c) and viability (d) after 48  h in 
mouse calvarial osteoblasts exposed to standard medium or condi-
tioned medium from Mat-Ly-Lu prostate cancer cells in the presence 
and absence of PTN at the indicated concentration. Osteoblast dif-
ferentiation and viability were assessed by alkaline phosphatase (Alk 
Phos) and AlamarBlue assays, respectively. Values are mean ± SD. 
*p < 0.05 from vehicle and +

p < 0.05 from vehicle treated with con-
ditioned medium
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Parthenolide Enhances Osteoblast Number 
and Diferentiation In Vitro

Osteoblastic lesions are observed in prostate cancer patients 

[28, 59]. Thus, we examined the efects of PTN on osteoblast 

proliferation and diferentiation in the presence of derived 

factors from the prostate Mat-Ly-Lu cells. Exposure of 

mouse calvarial osteoblasts to conditioned medium from 

the prostate Mat-Ly-Lu cells increased alkaline phosphatase 

activity (Fig. 4c) and viability (Fig. 4d), and these efects 

were signiicantly enhanced by PTN at concentrations as 

low as 0.01 µM. Together, these results indicate that PTN 

enhances in vitro osteoblast number and maturation at con-

centrations that inhibited osteoclast formation under the 

conditions described.

Parthenolide Disrupts Prostate Cancer Cell‑Related 
NFκB Activation in Bone Cells

Western blot analysis of cultures of calvarial osteoblasts and 

M-CSF-generated osteoclast precursors showed that condi-

tioned medium from Mat-Ly-Lu cells (20% v/v) enhanced 

the phosphorylation of IκB (Fig.  5a, b) and ERK42/44 

MAPK (Fig. 5c, d) after 18 min (Fig. 5). Pre-treatment of 

osteoblasts and osteoclast precursors with PTN (20 µM) for 

1 h prior to addition of conditioned medium reduced the 

phosphorylation of IκB but not ERK1/2 (Fig. 5). These data 

indicate that Parthenolide disrupts the activation of the IκB/

NFκB signalling pathway by Mat-Ly-Lu derived factors.

Parthenolide Enhanced Bone Volume Without 
Tumour Cell Inhibition

We took advantage of the cancer cell—mouse calvarial organ 

co-culture system (Fig. 6a) to assess whether PTN preserve 

bone volume in the presence of the prostate Mat-Ly-Lu cells. 

Fig. 5  Parthenolide inhibits prostate cancer cell induced NFκB acti-
vation in osteoclasts and osteoblasts in  vitro. Western blot analysis 
of total and phosphorylated IκB and ERK42/44 MAPK in cultures 
of RANKL (100 ng/ml) and M-CSF (25 ng/ml) osteoclasts (left) and 
calvarial osteoblasts (right) pre-treated with PTN at the indicated 

concentration for 1 h and exposed to conditioned medium (CM, 20% 
v/v) from the rat prostate cancer cells Mat-Ly-Lu for 18 min. Values 
are mean ± SD. *p < 0.05 from vehicle and +

p < 0.05 from vehicle 
treated with conditioned medium
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Fig. 6  Parthenolide preserves bone in an ex  vivo model of pros-
tate cancer osteolysis. a Graphic representation of mouse calvaria 
organ—prostate cancer cell co-culture system. b Bone volume (BV/
TV, %) in mouse calvaria bone from 7-day-old C57BL/6 mice co-
cultured with Mat-Ly-Lu cells in the presence and absence of vehicle 
or PTN (1 µM). c Representative photomicrographs of microCT scan 
of mouse calvaria bone from the experiment described in panels a, 

b. d The efects of PTN (1 µM) on the viability of Mat-Ly-Lu pros-

tate cancer cells from the experiment described in a–c as assessed 
by AlamarBlue assay. e, f In vitro caspase-3 activation (e) and DNA 
fragmentation and apoptosis (f) in Mat-Ly-Lu cells in the presence 
and absence of PTN at indicated concentration for 7 days as assessed 
by Western Blot analysis and TUNEL assay, respectively. Values are 
mean ± SD. *p < 0.05 from vehicle and $

p < 0.05 from PTN (10 µM). 
cC3 denotes cleaved caspase-3
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MicroCT analysis of the calvarial bone in these experiments 

conirmed that PTN (1.0 µM) signiicantly enhanced bone 

volume after 7 days of continuous treatment. Representa-

tive microCT images of calvarial bone from the experiment 

described are shown in Fig. 6c. To exclude the possibility 

this efect was due to the anti-proliferative efects of PTN 

on cancer cells, we went on to show that PTN (1.0 µM) had 

no efects on the viability of Mat-Ly-Lu cells in the mouse 

calvarial organ co-culture system (Fig. 6d), and it failed to 

induce caspase-3/7 activation (Fig. 6e) or cause nuclear con-

densation and DNA fragmentation (Fig. 6f).

Discussion

Cancer associated bone disease is a serious complication of 

metastatic prostate cancer [22–24]. The growth and expan-

sion of prostatic tumour cells in the skeleton coupled with 

the development of osteosclerotic and osteolytic lesions are 

the causes of morbidity in patients with advanced disease 

[24, 26–31]. NFκB signalling pathway has been implicated 

in the initiation, progression and bone metastasis of prostate 

cancer [10, 29, 32–43]. In view of the fact that the canonical 

NFκB signalling pathway plays a major role in the regulation 

of bone growth, osteoclastic bone resorption and osteoblas-

tic bone formation [11–13], we employed a pharmacologi-

cal approach to test if the veriied inhibitor of the canonical 

NFκB signalling pathway PTN disrupts the ability of pros-

tate cancer cells to inluence osteoclast formation, osteoblast 

diferentiation and osteolysis.

Prostate cancer cells interact with osteoblasts and clinical 

evidence suggests that prostate cancer osteoblastic lesions 

give rise to increased osteoclastic activity and thus osteolytic 

lesions and bone loss [25, 26]. Here, we provide in vitro 

evidence to show that PTN, acting on osteoblasts and oste-

oclasts, reduces prostate cancer cells and RANKL-related 

osteoclastogenesis. The evidence for this comes from the 

experiments in which PTN inhibited the ability of Mat-Ly-

Lu prostate cancer cells to enhance the spread and adhesion 

of bone marrow derived pre-osteoclasts and the formation 

of multi-nucleated osteoclasts in the presence of RANKL or 

calvarial osteoblasts. Furthermore, PTN also inhibited the 

survival of mature osteoclast survival in the presence of con-

ditioned medium from Mat-Ly-Lu cells, but it had no direct 

efect on osteoclastic bone resorption at concentrations that 

do not inhibit osteoclast survival. An interesting observation 

of our present study is that human PC3 and mouse RM1-BT 

and their derived factors—but not Mat-Ly-Lu cells—failed 

to enhance RANKL-induced osteoclast formation in our 

models. We cannot readily explain this except to note that 

previous studies have shown that prostate cancer cells such 

as PC3 and DU145 produce the RANKL decoy receptor 

OPG [60].

Mechanistic data showed that PTN reduced RANKL/

OPG production by osteoblasts and inhibited both RANKL 

and Mat-Ly-Lu conditioned medium induced IκB phospho-

rylation in osteoblasts and osteoclasts. These indings are 

of interest in suggesting that NFκB inhibition suppresses 

osteoclast formation stimulated by RANKL as well as other 

NFκB stimulating prostate cancer-derived factors such as 

TNFα and ILβ that are known to be present in the bone 

metastatic microenvironment [24, 26–31]. Of note, PTN had 

no efects on the activation of ERK1/2 by prostate cancer-

derived factors, conirming the speciicity of this agent to 

the canonical NFκB signalling.

Prostate cancer cells in bone promote osteoblastic bone 

metastasis [25, 26]. In support of previous studies that have 

shown that inhibition of NFκB enhances osteoblast difer-

entiation and maturation in the presence [47, 49] or absence 

[19] of cancer cells, we have found that PTN increased the 

ability of Mat-Ly-Lu prostate cancer cells to enhance oste-

oblast diferentiation and cell number. The ability of this 

compound to enhance osteoblast diferentiation and reduce 

osteoclastogenesis is broadly consistent with its osteopro-

tective efects in the calvarial organ - of Mat-Ly-Lu cell 

co-culture system. It is important to note that the osteo-

protective efects of PTN in our model was achieved at a 

concentration of 1 µM that had no efects on the viability 

or apoptosis of the Mat-Ly-Lu prostate cancer cells tested, 

thereby excluding prostate cancer cell growth inhibition in 

this in vitro experiment. However, PTN (1 µM) signiicantly 

reduced the in vitro growth of Mat-Ly-Lu in the absence of 

the mouse calvarial. We cannot readily explain this except 

speculate that the presence of host-derived factors in the 

calvarial organ culture model may have contributed to the 

ex vivo growth inhibition by PTN. Notwithstanding this, 

our present data complement previous studies that reported 

that reduction of osteoclast bone resorption and stimula-

tion of osteoblast activity due to NFκB inhibition reduce 

bone loss induced by disorders that include bone metastasis, 

inlammation, oestrogen deiciency, rheumatoid arthritis and 

Paget’s disease of bone loss [2, 4, 6, 8–14]. One important 

caveat of our present study, however, is that the increase in 

osteoblast number and diferentiation by NFκB inhibition 

is likely to contribute to the development of prostate cancer 

related osteosclerosis—a common feature of prostate cancer 

bone metastasis in patients [25, 26].

In conclusion, our present indings conirm that inhibi-

tion of the canonical NFκB signalling pathway may have a 

potential role in protecting the skeleton from the osteoly-

sis associated with prostate cancer. When combined with 

previous studies [34–42], these indings suggest that NFκB 

inhibitors as both anti-metastatic and anti-osteoclastic agents 

may be of value in protecting against skeletal complications 

associated with prostate cancer bone metastasis. However, 

further studies are needed to explore the role of NFκB in 
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the initiation, development and progression of osteoblastic 

prostate cancer metastases, and ascertain whether, and to 

what extent, the promotion of osteoblast diferentiation by 

NFκB inhibitors may limit the usefulness of this class of 

agents for the treatment of osteoblast-driven cancer associ-

ated bone diseases such as prostate cancer and sarcomas. For 

that, further in vivo studies are needed and ongoing.
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