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Summary

In the clinical trial community, it is usually not easy to find a treatment that benefits

all patients since the reaction to treatment may differ substantially across different

patient subgroups. The heterogeneity of treatment effect plays an essential role in per-

sonalized medicine. To facilitate the development of tailored therapies and improve

the treatment efficacy, it is important to identify subgroups that exhibit different

treatment effects. We consider a very general framework for subgroup identifica-

tion via the homogeneity pursuit methods usually employed in econometric time

series analysis. The change point detection algorithm in our procedure is most suit-

able for analyzing dense longitudinal or spatial data which are quite common for

biomedical studies these days. We demonstrate that our proposed method is fast and

accurate through extensive numerical studies. In particular, our method is illustrated

by analyzing a diffusion tensor imaging dataset.

KEYWORDS:
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recommendation, personalized medicine

1 INTRODUCTION

In the fight with diseases such as cancer, the effect of a new medication to treat disease is evaluated for the whole population.
However, if there is substantial heterogeneity of treatment effectives due to genetic variation or environmental influences, it is
likely that the new treatment is especially effective for certain subgroups of patients while not effective or less effective in other
subgroups. Consequently there is an increasing need to identify patient subgroups that have the desired efficacy based on proper
statistical models. For example, Zhang et al1 identified potential risk subgroups and risk factors for early preterm birth and
Schwalbe et al2 investigated whether additional molecular subgroups exist within childhood medulloblastoma and whether these
could be used to improve disease subclassification and prognosis predictions. The challenges and debates of subgroup identi-
fication have been well known in the literature3,4,5. The traditional subgroup identification methods are usually based on the
classification and regression tree (CART) approach6,7. Unlike the CART which fits a parametric model and uses multiple com-
parison procedures, the nonparametric methods based on recursive partitioning gain notable developments due to their flexibility
and efficiency. Key methods include interaction tree8,9,10, virtual twins11, model-based recursive partitioning (MOB)12, sub-
group identification based on differential effect search (SIDES)13, qualitative interaction trees (QUINT)14, patient rule induction
method (PRIM)15, generalized unbiased interaction detection and estimation (GUIDE)16, sequential bootstrapping and aggre-
gating of thresholds from trees (sequential-BATTing) and multiplicative rules-based modification of the adaptive index model
(AIM-rule)17, among others. Lipkovich et al18 provided a nice tutorial to describe, compare, and summarized the key features
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of these various methods. Recently, Schnell et al19 proposed a Bayesian credible subgroups method for simultaneous inference
regarding who benefits from treatment in the context of a hierarchical linear model; Schnell et al20 developed subgroup analysis
methods to handle cases in which more than two treatments are being compared with respect to multiple endpoints; Schnell et
al21 studied the details required to follow the credible subgroups approach in more realistic settings by considering nonlinear
and semiparametric regression models. Instead of dividing the samples according to cross-sectional subject characteristics, we
will propose a subgroup identification method based on homogeneity pursuit for longitudinal studies.

In clinical trials and observational studies, the follow-up information from patients are usually kept track and collected. It is
common to monitor the disease by collecting repeated measurements for patients. Longitudinal data have been studied to evaluate
the response of treatment for patients over time and compare treatments when the goal is to look for the most effective treatment.
Diaz et al22 adopted a random intercept linear model for the log of trough-plasma-concentration to determine the optimal dosage.
Cho et al23 estimated unobserved subject-specific treatment effects through conditional random-effects modeling, and applied
the random forest algorithm to allocate effective treatments for individuals. Zhu and Qu24 personalized drug dosage over time
under the framework of a log-linear mixed-effect model. Depending on the number of measurements or time points T within
subjects, longitudinal data may be sparse (T < ∞) or dense (T → ∞). The sparse longitudinal data25 has only finite and
possibly irregular measurements for some or all of the subjects and is most common in earlier trials and observational studies.
Recently there have been growing efforts on the modelling of the dense longitudinal data26,27 which has frequent measurements
and allows the number of measurements within subjects diverging to infinity. The collection of dense longitudinal data makes
it feasible to consider each patient to be a subgroup rather than only a member of the population. In other words, individualized
modeling28 is possible since the number of repeated measurements is abundant. As a result, the coefficients of covariates in
regression models may be allowed to be different for each of the patients.

The traditional “one-size fits all" whole population model is unable to incorporate heterogeneous effects from different indi-
viduals and assuming each individual has unique effects of all predictors is unrealistic. On the other hand, individual models may
contain large variability and may not be reliable for long term prediction. It is more reasonable to postulate that a subpopulation
of individuals share similar effects on a set of predictors of interest. Thus, pursuing homogeneity structure among individuals is
needed and naturally leads to subgrouping of the patient sample in empirical analysis. As a by product, the estimation accuracy
would be increased by borrowing information from homogeneous models and the number of unknown parameters is far less
than the individualized modeling.

Homogeneity arises when coefficients of parameters corresponding to nearby geographical regions or a similar cluster of
covariates are expected to be the same. There are various statistical methods proposed to pursue the homogeneity. For example,
Vostrikova29 proposed the binary segmentation to detect the number of change points and their positions simultaneously, Zhu
et al.30 proposed simultaneous grouping pursuit and variable selection by including L1 penalties on the individual coefficients
and Yang31 explored simultaneous variable grouping and selection with the assistance of an undirected graph by penalizing the
difference for each pair of coordinates connected by an edge in the graph. Other well-known methods include the hierarchical
clustering32, the fused lasso33, the OSCAR34, the grouping Pursuit35, and the Bayesian approach36. See37 for a recent review.
We will consider an extended binary segmentation algorithm in the following development. Such methods are widely practiced
in econometric time series analysis for portfolio management38. To our knowledge these methods are rarely applied to clinical
studies.

In this paper, we propose an estimation procedure combining the likelihood method and the change point detection with the
binary segmentation algorithm. Specifically, using the densely observed data for each subject we may first fit the individualized
model, and then find structural breaks for initial estimators of each covariate via the homogeneity pursuit. Finally, we refit the
overall model by incorporating the identified subgroup structure. The closest work to the method addressed in this paper is that
in Ke et al.38. However, they detected change points for the whole list of all regression coefficients while we detect change
points for regression coefficients of each covariate separately. Our partitioning method is more natural and interpretable since
not all covariates are on the same scales nor are their coefficients directly comparable. Simulation studies also demonstrate
that our method outperforms the method proposed in Ke et al.38. In general, our method enjoys nice theoretical property38

and computationally simplicity. Furthermore, besides dense longitudinal data, our method also can be applied to dense spatial
data39,40 where repeated measurements are taken over the space at different locations. Section 4 provides an example of analyzing
tensor image data. The detailed development in this paper offers a new tool for personalized medicine.

The rest of the article is structured as follows. In Section 2, we introduce the proposed methodology. In particular, we provide
the subgroup model, propose a change point detection method via homogeneity pursuit to identify subgroups and also discuss
the computing issue. In Section 3, we evaluate the proposed subgroup identification techniques through extensive simulation
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studies. In Section 4, the performance of our method is examined by two real data examples. Finally, Section 5 provides some
closing remarks.

2 METHODS

2.1 Subgroup model

Consider the following supervised learning setting with data (Xit, yit), i = 1,⋯ , n, t = 1,⋯ , Ti, where Xit = (Xit1,⋯ , Xitp)
T

is a p-dimensional vector of predictors and yit is the response variable for the ith patient at the tth follow-up. Denote �i(Xit) =

E(yit|Xit) to be a linear combination of predictors, �i = (�i(Xi1),⋯ , �i(XiTi
))T and yi = (yi1,⋯ , yiTi)

T . We suppose that n
patients are independent. Then for Gaussian response, we can easily show that the negative observed log-likelihood function is
proportional to

∑n

i=1
(yi − �i)

TΣ−1(yi − �i), where Σ = Cov(yi|�i). In this paper we adopt a working independence assumption
to facilitate the methods. This approach is often considered under the marginal model for longitudinal studies (cf. chapter 2
of Kariya and Kurata (2004)41, chapter 11 of Fitzmaurice et al. (2004)42). More efficient results incorporating dependence
may be retained after identifying the subgroup structure. The log-likelihood for a general regression model is thus denoted by∑n

i=1

∑Ti
t=1

L(�i(Xit), yit).
For intensive longitudinal data, one would be very interested in the longitudinal progression, which is often non-linear. We

incorporate such a nonlinear progression into the model by including an unspecified function of time. We consider the following
partial linear model with certain subgroup structure in the population:

�i(Xit) = �̃i0 +

p∑
j=1

Xitj �̃ij + �(t), i = 1, ⋯ , n, t = 1, ⋯ , Ti, (1)

�̃ij =

⎧
⎪⎪⎨⎪⎪⎩

�1j when i ∈ Ω1,j

�2j when i ∈ Ω2,j

⋮ ⋮

�j+1j
when i ∈ Ωj+1,j

(2)

where {Ωk,j ∶ 1 ≤ k ≤ j + 1}, j = 0, 1,⋯ , p is an unknown partition of the patient index set {i ∶ 1 ≤ i ≤ n} and the
number of change points j is also unknown. For the sake of identifiability, we assume �(1) = 0 (cf. Zhang and Zhu43).

For the jth predictor, we may have j +1 different values for its regression coefficient and thus form j +1 subgroups. The
subjects with the same coefficient share a similar linear dependence between the response y and the jth predictor. We write | ⋅ |
to be the cardinality of a set and pkj = |Ωkj|∕n is the proportion of subjects in the kth subgroup.

For different j, the groupings in (2) may have complete, partial or zero overlap. Therefore the above model partitions the
whole population into at least maxj(j+1) and at most

∏p

j=0
(j+1) subgroups. Each subgroup has a distinct set of regression

coefficients and thus a different overall response-predictor dependence form. The total number of regression parameters to be
estimated is

∑p

j=0
(j + 1).

In summary,j , �kj ,Ωkj , k = 1, ⋯ , j+1, j = 0,⋯ , p, are unknown parameters of interest to be estimated. In a longitudinal
study, usually the covariance matrix for the response is also assumed unknown and needs to be obtained from the estimation. We
treat all variance and covariance parameters as nuisance parameters in this paper. In most medical studies, the main purpose is
to explore the impact of the covariate Xit on the response yit for different subgroups, which directly facilitates the development
of personalized treatment regimens. Therefore we focus more on the estimation for j , �kj , Ωkj , k = 1, ⋯ , j + 1, though
other unknown covariance parameters in the likelihood can be obtained easily in our estimation procedure.

2.2 Subgroup identification and estimation

Denote �̃ = (�̃
T

1
,⋯ , �̃

T

n
)T and �̃ i = (�̃i0,⋯ , �̃ip)

T . The procedure for estimating �̃ i consists of three stages. In the first stage, an
initial estimator for �̃ i is obtained for each subject i while keeping �(t) the same for all subjects. We then conduct homogeneity
pursuit to identify the change points among �kjs. Finally, we reparametrize the models concerned by replacing the �̃ is with the
identified subgroup structure, and apply the likelihood method again to estimate all the unknown parameters.

The following are the specific algorithms.
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Step 1 (Initial Estimation). Based on the observations for all n individuals, we can maximize the following log-likelihood function

n∑
i=1

Ti∑
t=1

L(�i(Xit), yit) =

n∑
i=1

Ti∑
t=1

L(�̃i0 +

p∑
j=1

Xitj �̃ij + �(t), yit). (3)

Splines are well-known smoothing methods to approximate the unknown functions. We consider the B-spline basis to
estimate the function �(t). Denote B(.) = (B1(.),… , BL(.))

T to be an equal-spaced B-spline basis of dimension L. Under
certain smoothness conditions, function �(.) can be approximated by

�(.) ≈ BT (.)
, (4)

where 
 is a loading vector of length L. Then the log-likelihood function (3) is close to
n∑
i=1

Ti∑
t=1

L(�i(Xit), yit) ≈

n∑
i=1

Ti∑
t=1

L(�̃i0 +

p∑
j=1

Xitj �̃ij + BT (t)
, yit). (5)

Denote the maximizer of (5) to be ({̂̃�ij , 1 ≤ i ≤ n, 0 ≤ j ≤ p}, ̂̃
), where ̂̃
 is a vector of length L. Further denote
̂̃� i = (̂̃�i0 ⋯ , ̂̃�ip)

T , then ̂̃� i is the initial estimator of �̃ i.

Step 2 (Homogeneity Pursuit). Throughout this paper we assume that the longitudinal or spatial data collected are sufficiently
dense and thus allow all the individual coefficients to be estimated consistently. A working independence is assumed as
well. The estimated coefficients from Step 1 can then be processed in the following calculation stages. Let ̂̃�ij be the

(j + 1)th component of ̂̃� i. For the jth covariate, we sort ̂̃�ij , i = 1, ⋯ , n, in ascending order, and denote them by

b(1) ≤ ⋯ ≤ b(n).

We use rij to denote the rank of ̂̃�ij . Identifying the homogeneity among �̃ij , i = 1, ⋯ , n, is equivalent to detecting the
change points among b(l), l = 1, ⋯ , n. To this end, we apply the binary segmentation algorithm as follows.

For any 1 ≤ i1 < i2 ≤ n, let

Δi1i2
(�) =

√
(i2 − �)(� − i1 + 1)

i2 − i1 + 1

(∑i2
l=�+1

b(l)

i2 − �
−

∑�

l=i1
b(l)

� − i1 + 1

)
.

Given a threshold �, which can be selected by AIC or BIC in practice, the binary segmentation algorithm to detect the
change points works as follows:

(A) Find k̂1 such that
Δ1,n(k̂1) = max

1≤�<n
Δ1,n(�).

If Δ1,n(k̂1) ≤ �, there is no change point among b(l), l = 1, ⋯ , n, and the process of detection ends. Otherwise, add
k̂1 to the set of change points and divide the region {� ∶ 1 ≤ � ≤ n} into two subregions: {� ∶ 1 ≤ � ≤ k̂1} and
{� ∶ k̂1 + 1 ≤ � ≤ n}.

(B) Detect the change points in the two subregions obtained in part (A), respectively. Consider the region {� ∶ 1 ≤ � ≤

k̂1} first. Find k̂2 such that
Δ1,k̂1

(k̂2) = max
1≤�<k̂1

Δ1,k̂1
(�).

If Δ1,k̂1
(k̂2) ≤ �, there is no change point in the region {� ∶ 1 ≤ � ≤ k̂1}. Otherwise, add k̂2 to the set of change

points and divide the region {� ∶ 1 ≤ � ≤ k̂1} into two subregions: {� ∶ 1 ≤ � ≤ k̂2} and {� ∶ k̂2+1 ≤ � ≤ k̂1}.
Similarly, for the region {� ∶ k̂1 + 1 ≤ � ≤ n}, we find k̂3 such that

Δk̂1+1,n
(k̂3) = max

k̂1+1≤�<n
Δk̂1+1,n

(�).

If Δk̂1+1,n
(k̂3) ≤ �, there is no change point in the region {� ∶ k̂1 + 1 ≤ � ≤ n}. Otherwise, add k̂3 to the set of

change points and divide the region {� ∶ k̂1 + 1 ≤ � ≤ n} into two subregions: {� ∶ k̂1 + 1 ≤ � ≤ k̂3} and
{� ∶ k̂3 + 1 ≤ � ≤ n}.
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(C) For each subregion obtained in part (B), we continue using the same computational algorithm as that for the subregion
{� ∶ 1 ≤ � ≤ k̂1} or {� ∶ k̂1 + 1 ≤ � ≤ n} in part (B), and keep doing so until there is no subregion containing
any change point.

We sort the estimated change point locations in ascending order and denote them by

k̂(1) < k̂(2) < ⋯ < k̂
(̂j )

,

where ̂j is the number of change points detected. In addition, we denote k̂(0) = 0, and k̂
(̂j+1)

= n. We use ̂j to

estimate j . Let

Ω̂lj = {i ∶ k̂(l−1) < rij ≤ k̂(l)}, 1 ≤ l ≤ ̂j ,

we use
{
Ω̂lj ∶ 1 ≤ l ≤ ̂j + 1

}
to estimate the partition {Ωlj ∶ 1 ≤ l ≤ j + 1} and correspondingly{

p̂lj = |Ω̂lj|∕n ∶ 1 ≤ l ≤ ̂j + 1
}

to estimate the proportion of subjects {plj ∶ 1 ≤ l ≤ j + 1}. We thus treat all

the �̃ijs with the subscript i in the same member of the estimated partition Ω̂lj to be the same.

Step 3 (Final Estimation). We repeat Step 2 for all j = 0, 1,⋯ , p and obtain the estimated structure for our model. Using such a
structure we refit the model by maximizing the log-likelihood (5) with parsimonious parameters ({�kj , 1 ≤ k ≤ j+1, 0 ≤

j ≤ p}, 
). The final maximum likelihood estimator is denoted by ({�̂kj , 1 ≤ k ≤ j + 1, 0 ≤ j ≤ p}, 
̂). Thus �(t) can
be estimated by BT (t)
̂ .

Remark: Δi1i2
(�) can be interpreted as a scaled difference between the partial means of the first � − i1 + 1 observations

and the last i2 − � observations, where the scaling is chosen so as to keep the variance Δi1i2
(�) constant over � in the

idealized case of b(l) being i.i.d. Once such a � has been found, we use Δi1i2
(�) to test the null hypothesis of variance being

constant over [i1, i2]. The test statistic and its critical value are established such that when a change point is present, the
null hypothesis of no change is rejected with probability converging to 1. If the null hypothesis is rejected ,we continue
the simultaneous locating and testing of change points on the two segments to the left and right of � in a recursive manner
until no further change points are detected. Under certain technical conditions, the number and locations of the detected
change points can be shown to be consistent. More discussion about the properties of Δi1i2

(�) can be found in Ke, Fan
and Wu37 and Cho and Fryzlewicz44.

2.3 Computing issue

Our framework is very general and suitable for all kinds of outcome measures. For Gaussian response, the L function in
the log-likelihood is equivalent to the negative quadratic loss where

L(�, y) = −(y − �)2. (6)

For categorical response, one may consider cross entropy loss to facilitate the learning. Cross entropy loss measures
the performance of a classification model whose output is a probability value between 0 and 1. For example, in binary
classification, cross entropy loss can be calculated as −(y log(�)+ (1− y) log(1− �)). We will focus mainly on continuous
response in this paper and adopt (6).

The implementation of the log-likelihood can be achieved using familiar software ❘ package ❣❡❡♣❛❝❦ or ❧♠❡✹. We con-
sider function ❣❡❡❣❧♠ in ❣❡❡♣❛❝❦ in our program at Step 1 and Step 3. At Step 1, we use all the data without assuming any
structure. At Step 3, using the identified structure, the program automatically returns the estimated regression coefficients
along with their standard errors. Ke, Fan and Wu (2016)37 has shown that their proposed aCARDS and bCARDS include
the oracle estimator with true model structure being known as a strictly local minimizer with overwhelming probability.
Ke, Li and Zhang (2016)38 also showed the asymptotic normality for the estimated coefficients resulted from binary seg-
mentation. Their argument can be easily modified to justify the results in our paper. Such a strong oracle property makes
the standard errors from our approach trustworthy. Furthermore, since the standard errors here are univariate-level and not
adjusted for multiple comparisons and the sandwich variance formula implemented in ❣❡❡❣❧♠ is in general quite robust,
one may then carry out inference for the fitted regression model.
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In Step 2, we need to determine a tuning parameter �. We use a Bayesian information criterion (BIC) to this end and from
our simulation studies we find this method works very well. The BIC is defined as

n∑
i=1

Ti∑
t=1

(yit −
̂̃�i0 −

p∑
j=1

Xitj
̂̃�ij − BT (t)̂̃
)2 + # log(

n∑
i=1

Ti), (7)

where # is the total number of distinct parameters in the estimated model. The ❘ code for all the numerical analysis in this
paper can be requested from the authors.

3 NUMERICAL STUDIES

In this section, we conduct extensive simulations to assess the performance of the proposed subgroup identification procedure.
We examine the accuracy of subgrouping, estimation and prediction across different number of patients and different number
of repeated measurements. We adopt cubic B-spline basis with 1 equally spaced inner knots and without intercept; thus, the
dimension of the B-spline basis is 4. Under this setting, �(t) at minimum t, which is �(1), is always estimated to be 0.

We consider the following true model:

yit = �̃i0 +

4∑
j=1

Xitj �̃ij + (t − 1)2 + "it, i = 1,⋯ , n, t = 1,⋯ , Ti, (8)

where individual-level covariates Xit = (Xit1,… , Xit4)
T = (0.1t + X̃it1,… , 0.1t + X̃it4)

T , i = 1,… , n, t = 1,⋯ , Ti.
(X̃it1,… , X̃it4)

T are i.i.d. from multivariate normal distribution with mean 04 and Cov(X̃itd , X̃itl) = 0.2|d−l|. The random error
("i1,⋯ , "iTi)

T are generated from a multivariate normal distribution with mean 0Ti and covariance �2R(�), where � = 1 and
R(�) is the correlation matrix. In total, we consider the following 5 cases.

In the first 3 cases, we consider the following true subgroup structure. For j = 0, 2, 4,

�̃ij =

{
6 when i = 1,⋯ ,

n

2

−5 when i =
n

2
+ 1,⋯ , n

(9)

and for j = 1, 3,

�̃ij =

⎧⎪⎪⎨⎪⎪⎩

1 when i = 1,⋯ ,
n

4
,

−2 when i =
n

4
+ 1,⋯ ,

n

2
,

3 when i =
n

2
+ 1,⋯ ,

3n

4
,

−4 when i =
3n

4
+ 1,⋯ , n.

(10)

Therefore, all patients are divided into 4 groups. Specifically, we consider:
Case I Subgroup structure (9) and (10) and Autoregressive of order 1 correlation structure (AR(1)) with Corr(�ij , �ik) = �|j−k|
with � = 0.2 or 0.8.
Case II Subgroup structure (9) and (10) and Compound Symmetry (CS) correlation structure with Corr(�ij , �ik) = � (j ≠ k)

with � = 0.2 or 0.8.
Case III Subgroup structure (9) and (10) and unstructured covariance with the following pattern:(

A Ti
2
×

Ti
2

0 Ti
2
×

Ti
2

0 Ti
2
×

Ti
2

A Ti
2
×

Ti
2

)
,

where A is Compound Symmetry with � = 0.2 or 0.8.
Case IV We generate �̃ i using the same data generating mechanism as that in Ke et al. (2016)38. Specifically, we consider �̃ij is
independently drawn from a discrete uniform with atoms {−4, 2} for j = 0, 2, 4 and �̃ij is independently drawn from a discrete
uniform with atoms {2, 4} for j = 1, 3. The correlation structure is the same as Case I.
Case V We consider the true model has homogeneous group structure. Specifically, we assume �̃i0 = 3, �̃i1 = 6, �̃i2 = 3, �̃i3 = 6,
�̃i4 = 3 for i = 1,⋯ , n and the correlation structure is the same as Case I.

In the numerical study, we consider the number of patients to be n = 60 or 120. We use BIC to select � in the change point
detection step. To have a deep insight about the advantage of our proposed method, we compare the following four approaches:
E1: Homogeneous model fitting method which does not consider the cluster effect in estimation �̃. That is, treat all patients as
one group and use likelihood estimation for the single model to estimate �̃. This is the simplest model with the least number of
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parameters. However, it ignores the subgroups completely.
E2: Heterogeneous model fitting method which uses pre-grouping initial estimators for �̃ i without homogeneity pursuit. That

is, use ̂̃� i as the final estimator of �̃ i. This is the approach with the greatest number of parameters since it allows every subject
to be in his own group.
E3: Our proposed method.
E4: The method used in Ke et al.38. Similar to our proposed method except that in Step 2, they do not identify the change point for

coefficients of each covariate ̂̃�ij , i = 1, ⋯ , n for j = 0,⋯ , p as in E3, but identify the change points among ̂̃� = (̂̃�
T

1
,⋯ , ̂̃�

T

n
)T .

This method mixes different covariates inappropriately and thus may produce misleading subgroups.
Performance of subgroup identification accuracy is evaluated in terms of the normalized mutual information (NMI) which

measures how close the estimated grouping structure approaches the true structure. Suppose A = {A1, A2,⋯} and B =

{B1, B2,⋯} are two sets of disjoint group of {1, 2,⋯ , n}. The NMI is defined as

NMI(A,B) =
2I(A,B)

H(A) +H(B)
,

where

I(A,B) =
∑
i,j

|Ai ∩ Bj|
n

log

(
n|Ai ∩ Bj|
|Ai||Bj|

)

is the mutual information between the two groups, and

H(A) =
∑
i

|Ai|
n

log

(
n

|Ai|
)

is the entropy of A. NMI ranges between 0 and 1 with larger value indicating a higher degree of similarity between the two groups.
In addition, we use in-sample prediction error (ISPE) to measure the accuracy of estimation. It is defined as

∑n

i=1

∑Ti
t=1

(yit −

ŷit)
2∕(

∑n

i=1
Ti), where ŷit is the fitted valued from each approach. We report out-of-sample prediction error by 5-fold cross-

validation (OSPE) to measure the ability of prediction. Moreover, we report the average of root mean integrated squared errors

(RMISE) defined as
√

1

n

∑n

i=1
1

Ti

∑Ti
t=1

(�(t) − �̂(t))2.
We consider balanced design where Tis are all equal. The number of repeated measurements is set to be Ti = 20 or 40. The

number of repeated measurements we considered here are comparable to most of the medical studies where usually at most tens
of measurements are obtained for each patient.

Results are based on 100 simulated data set. All experiments were performed on a desktop computer with Intel E5-2609
2.5GHz and 32GB RAM. The simulation codes are written in R Version 1.1.463. The computational time greatly depend on
implementation. For example, under Case I with n = 120 and Ti = 40, the average computational time per iteration are 17.66s,
39.05s, 70.28s and 61.81s for E1, E2, E3 and E4 respectively. Although the relative computational time of E1 and E2 are shorter
than those of E3 and E4, E1 and E2 do not take into account of the homogeneous structure within subgroups, while methods E3
and E4 do and they are also fast and computationally efficient.

In table 1, we summarize the median of 100 NMI and the Monte Carlo standard errors across different number of patients and
number of measurements. Results show that neither the naive homogeneous model fitting method E1 nor the over-parameterized
model fitting method E2 can identify the true structure among patients. Both methods E3 and E4 using homogeneity pursuit can
recover the true subgroup structure well, while our method E3 achieve much better performance in identifying the subgroups.
In addition, the chance of identifying the true subgroups increases as the cluster size Ti increases.

In table 2-4, we report the ISPE, OSPE, RMISE and their standard errors respectively. For in-sample prediction, the over-
parameterized model E2 performs the best while our method E3 performs very competitively. However, for out-of-sample
prediction and RMISE for�(t), our method E3 is the best in most simulation scenarios. E1, E2 and E4 are inferior to our proposed
methods in almost all cases, producing poorer prediction results. E4 (Ke et al. (2016)) has only slightly better performance than
our proposed estimation method E3 under Case IV where E4 is favored by construction.

When the true model has homogeneous group structure, our method almost always successfully identifies a single group,
which suggest that our proposed method could protect against Type I error inflation due to multiple comparison.

Comparing the cases with the same within-subject correlation structure but different correlation coefficient �, higher corre-
lation coefficient � may lead to relatively worse performance in subgroup identification, but better performance in estimation as
well as prediction for response variable. In general, results under different correlation structures yield very similar results. In con-
clusion, our proposed method works quite well in terms of subgroup identification, parameter estimation, in-sample estimation
as well as out-of-sample prediction under a variety of scenarios.
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4 REAL DATA ANALYSIS

In this section, we illustrate the proposed change point detection method using the diffusion tensor imaging dataset from medical
studies. For the purpose of comparison, we also consider the four approaches E1-E4 examined in simulation studies.

In the rich neuroimaging literature, massive imaging data are usually observed over space and time using modern imaging
techniques such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG) or diffusion tensor imaging
(DTI)45. The first two imaging techniques have been commonly used in behavioral and cognitive neuroscience to learn inte-
gration and segregation of different brain regions for a single person and across different persons46. In DTI, different diffusion
properties are measured by common major white matter fiber tracts for different subjects to study the orientation and structure
of white matter in brain47.

The DTI data were transformed by two important steps. The first step is to use the weighted least squares estimation method48

to construct the diffusion tensors. The second step is to use a DTI atlas building pipeline49 to register DTIs from multiple
subjects to create an unbiased image and skeleton. One diffusion property, called fractional anisotropy (FA), was computed for
all subjects from the DTI after eddy current correction and automatic brain extraction using FMRIB software library. In the
tract based spatial statistics analysis, the FA data of all the subjects were aligned into a common space by non-linear registration
and the mean FA image were created and thinned to obtain a mean FA skeleton, which represents the centers of all WM tracts
common to the group. Subsequently, diffusion tensors and the FA were calculated at each location for each subjects by using
diffusion tensors in neighboring voxels close to the fiber tract. For more detailed information about DTI data, refer to Li et al.
(2017)50, Zhu et al. (2012)51, among others.

We obtain DTI data for n = 213 subjects (123 males and 90 females) from NIH Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study. The response variable is the FA evaluated at Ti = 83 location points for all subjects. The predictors include
gender ("female" is taken to be the reference), age (years), handedness ("right-hand" is taken to be the reference), education level
(years), an indicator for Alzheimer’s disease (AD) and an indicator for mild cognitive impairment (MCI) status. We standardized
all continuous variables to achieve a uniform scale. We are particularly interested in testing the association between FA and the
set of predictors across different locations. We have tried the semi-parametric model (1) and the estimated function �̂(location)
suggests parametric regression is sufficient. In the initial analysis, we include all second order interactions, observe that the
interaction terms of location with gender, handedness, education and AD are not significant in our initial analysis and therefore
remove them from further consideration. After dropping these terms, we end up with the following model:

yit =�̃i0 + gender.�̃1 + age.�̃2 + handedness.�̃3 + education.�̃4 + AD.�̃5 + MCI.�̃6 + location.�̃i7
+(age × location).�̃i8 + (MCI × location).�̃i9 + "it, i = 1,⋯ , n, t = 1,⋯ ,M

(11)

We focus on model (11) and intend to investigate whether there exists subgroups with different regression coefficients among
the subjects.

We first calculate the subgroups identified and the model-based mean squared error (MSE) which is defined as
∑n

i=1

∑M

t=1
(yit−

ŷit)
2 by implementing the methods E1 to E4. We observe that the individualized modeling method E2 produces smallest MSE

(0.791) and the population modeling methods E1 yields relatively greater MSE (0.987) than E3 (0.851) and E4 (0.878). Although
both E3 and E4 using the homogeneous pursuit identify similar number of subgroups (10 subgroups by E3 and 9 subgroups by
E4), our proposed method E3 yields slightly smaller MSE. We have also computed the MSE for test samples by using a 5 fold
cross-validation procedure and observe the same order of magnitude for the 4 methods.

After applying the proposed change point detection method E3, we obtain the following estimated model:

yit = 0.859I{i ∈ Ω̂1,0} + 0.431I{i ∈ Ω̂2,0} + 0.010I{i ∈ Ω̂3,0} + gender × 0.059 − age × 0.111

− handedness × 0.039 − education × 0.061 − AD × 0.130 − MCI × 0.078

− location × 0.677I{i ∈ Ω̂1,7} − location × 0.924I{i ∈ Ω̂2,7} − (age × location) × 0.048

+ (MCI × location) × 0.278I{i ∈ Ω̂1,9} − (MCI × location) × 0.276I{i ∈ Ω̂2,9}, i = 1,⋯ , n, t = 1,⋯ ,M,

(12)

with the estimated number of subjects in each groupings |Ω̂1,0| = 97, |Ω̂2,0| = 86, |Ω̂3,0| = 30, |Ω̂1,7| = 110, |Ω̂2,7| = 103,
|Ω̂1,9| = 107 and |Ω̂2,9| = 106. Some of these groupings are overlapping and in total 10 distinct subgroups have been identified
with group sizes 49, 31, 18, 9, 12, 36, 3, 37, 6 and 12, respectively.

Results show that men may have higher FA values than women. People using right hand tends to have higher FA values than
people using left hand. Patients with AD may have smaller FA values than normal subjects. Being more educated tends to have
lower FA values. These findings are supported by previous analysis51,50. However without our subgroup identification method
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it is hard to provide a precise definition of various subgroups. Our results may lead to more accurate and personalized medical
decision making for these subjects.

In addition, the effects of age and MCI on FA is interacting with the location. Our change point detection method suggests
that the effects of intercept, location and MCI × location are not constant for all subjects. This nonlinear pattern of intercept
is also witnessed by Li et al50 when analyzing the data using a functional varying-coefficient model. The marginal effects of
location on FA is negative, but the overall effect of location may vary with age and MCI.

We plot the FA response curves for the 10 identified subgroups in Figure 1. Taking one individual with the median covariate
values in each of the subgroups, we plot the 10 typical individuals’ FA curves over the observed location region in Figure 2. We
observe that the FA curves for the 10 identified subgroups have similar overall curvature patterns with slightly different local
turning points. In particular, FA curve of subgroup 6 is almost always above other identified subgroups. Furthermore, Figure
3 presents the mean values of gender, age, handedness, education, AD and MCI for the 10 subgroups. It appears average age
and education level are similar among the 10 groups whereas substantial mean differences for other variables exist among the
10 subgroups. For example, groups 2 and 5 have a very high prevalence of AD and a very low prevalence of MCI. All subjects
in group 10 are MCI and right-handed while all those in group 9 are right-handed but not MCI. These subgroups may provide
valuable information for investigators.

5 DISCUSSION

In this paper, we proposed the change point detection method based on homogeneity pursuit to perform subgroup identification
of patients and estimation of parameter coefficients. Our method is illustrated by analyzing dense longitudinal and spatial data.
Numerical studies indicate that our proposed method is effective in identifying subgroups and estimating the regression coef-
ficients. Also, the usefulness and advantages of our method have been demonstrated by analyzing the DTI data. Our proposed
change point detection method is natural and effective, as demonstrated in simulation studies and real data analysis. However,
compared to other tree structured approaches, the rules for developing the subgroups are not directly interpretable in our proposed
method. Practitioners need to understand the identified groups by referring to the underlying model form and the corresponding
parameterization.

Through extensive simulation studies, we observe that our proposed method appears to achieve better results in terms of
subgroup identification, estimation and prediction accuracy than the method in Ke et al. (2016)38 in most scenarios. Therefore,
if the true model is more heterogeneous than those assumed in Ke et al. (2016), our method with higher degree of complexity
should work better.

In our implementation, we adopted BIC to select the optimal � since it can be evaluated very quickly in practical. Using
AIC or BIC to determine the critical value � in the homogeneity pursuit step is heuristic and the choice of � would affect the
performance to some extent. This strategy of using a threshold � amounts to applying a stopping rule in decision trees. A better
alternative may be to treat it as a tuning parameter and then apply pruning plus cross validation to determine the optimal value.
Another open issue for future research is whether varying � should be used in different scenarios.

The R code of our program and the DTI dataset can be directly requested from the authors. We will consider providing more
friendly computing platforms for large scale data sets with dense measurements. This will facilitate analysis of millions of
electronic health records, genomic data and data derived from wearables.
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TABLE 1 The NMI for simulation. E1: Homogeneous model fitting method. E2: Heterogeneous model fitting method. E3:
Our proposed method. E4: Similar to our proposed method except that for homogeneity pursuit step, identify the change points
among ̂̃�. The values in the parentheses are the robust standard deviations.

Structure � n NMI (E1) NMI (E2) NMI (E3) NMI (E4)
Ti = 20 Ti = 40 Ti = 20 Ti = 40 Ti = 20 Ti = 40 Ti = 20 Ti = 40

Case I 0.2 60 0 0 0.506 0.506 1 1 0.978 1
(<0.001) (<0.001) (<0.001) (<0.001) (0.004) (<0.001) (0.059) (0.018)

120 0 0 0.449 0.449 1 1 0.894 0.946
(<0.001) (<0.001) (<0.001) (<0.001) (0.004) (<0.001) (0.026) (0.021)

0.8 60 0 0 0.506 0.506 1 1 0.912 0.946
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (0.036) (0.04)

120 0 0 0.449 0.449 1 1 0.893 0.921
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (0.015) (0.013)

Case II 0.2 60 0 0 0.506 0.506 1 1 0.891 0.957
(<0.001) (<0.001) (<0.001) (<0.001) (0.002) (<0.001) (0.053) (0.040)

120 0 0 0.449 0.449 1 1 0.870 0.917
(<0.001) (<0.001) (<0.001) (<0.001) (0.003) (<0.001) (0.023) (0.014)

0.8 60 0 0 0.506 0.506 1 1 0.883 0.884
(<0.001) (<0.001) (<0.001) (<0.001) (0.030) (0.021) (0.026) (0.019)

120 0 0 0.449 0.449 0.893 0.893 0.821 0.828
(<0.001) (<0.001) (<0.001) (<0.001) (0.039) (0.038) (0.045) (0.040)

Case III 0.2 60 0 0 0.506 0.506 1 1 0.952 1
(<0.001) (<0.001) (<0.001) (<0.001) (0.005) (<0.001) (0.058) (0.022)

120 0 0 0.449 0.449 1 1 0.892 0.946
(<0.001) (<0.001) (<0.001) (<0.001) (0.004) (<0.001) (0.026) (0.020)

0.8 60 0 0 0.506 0.506 1 1 0.917 0.946
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (0.041) (0.039)

120 0 0 0.449 0.449 1 1 0.894 0.920
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (0.016) (0.016)

Case IV 0.2 60 0 0 0.875 0.871 1 1 1 1
(<0.001) (<0.001) (0.011) (0.011) (0.002) (<0.001) (0.003) (0.001)

120 0 0 0.820 0.819 1 1 0.998 1
(<0.001) (<0.001) (0.006) (0.005) (0.001) (<0.001) (0.003) (0.001)

0.8 60 0 0 0.874 0.875 1 1 0.994 0.996
(<0.001) (<0.001) (0.010) (0.011) (<0.001) (<0.001) (0.006) (0.005)

120 0 0 0.820 0.821 1 1 0.991 0.995
(<0.001) (<0.001) (0.005) (0.006) (0.011) (<0.001) (0.006) (0.004)

Case V 0.2 60 1 1 0 0 1 1 1 1
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (0.191) (<0.001)

120 1 1 0 0 1 1 1 1
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (0.382) (<0.001)

0.8 60 1 1 0 0 1 1 1 1
(<0.001) (<0.001) (<0.001) (<0.001) (0.112) (<0.001) (0.503) (0.302)

120 1 1 0 0 1 1 1 1
(<0.001) (<0.001) (<0.001) (<0.001) (0.657) (0.284) (0.549) (0.428)
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TABLE 2 The ISPE for simulation. E1: Homogeneous model fitting method. E2: Heterogeneous model fitting method. E3:
Our proposed method. E4: Similar to our proposed method except that for homogeneity pursuit step, identify the change points
among ̂̃�. The values in the parentheses are the robust standard deviations.

Structure � n ISPE (E1) ISPE (E2) ISPE (E3) ISPE (E4)
Ti = 20 Ti = 40 Ti = 20 Ti = 40 Ti = 20 Ti = 40 Ti = 20 Ti = 40

Case I 0.2 60 449.834 1188.792 0.720 0.864 1.009 0.996 1.250 1.324
(11.575) (11.730) (0.038) (0.028) (0.124) (0.030) (0.19) (0.121)

120 449.615 1189.043 0.721 0.859 0.993 0.998 1.097 1.035
(6.406) (8.447) (0.027) (0.019) (0.036) (0.020) (0.079) (0.029)

0.8 60 451.777 1186.91 0.513 0.704 0.971 0.988 1.010 1.269
(13.358) (13.445) (0.049) (0.039) (0.089) (0.055) (0.201) (0.390)

120 451.086 1187.965 0.524 0.709 0.993 0.992 0.941 0.980
(7.730) (10.624) (0.025) (0.033) (0.058) (0.043) (0.052) (0.041)

Case II 0.2 60 451.833 1187.407 0.603 0.702 0.995 0.991 1.102 1.154
(10.971) (14.798) (0.031) (0.021) (0.090) (0.047) (0.180) (0.208)

120 451.906 1188.667 0.602 0.698 0.994 0.994 1.037 0.978
(7.729) (10.091) (0.019) (0.018) (0.046) (0.035) (0.071) (0.038)

0.8 60 453.214 1184.455 0.151 0.176 0.847 0.855 0.902 0.906
(12.461) (13.714) (0.008) (0.005) (0.167) (0.133) (0.113) (0.115)

120 451.59 1186.222 0.150 0.175 0.658 0.649 0.761 0.777
(8.177) (9.775) (0.005) (0.004) (0.090) (0.097) (0.091) (0.086)

Case III 0.2 60 451.09 1186.642 0.725 0.857 1.008 0.997 1.253 1.298
(11.303) (11.587) (0.034) (0.027) (0.095) (0.064) (0.193) (0.156)

120 449.581 1188.743 0.729 0.859 1.006 0.994 1.105 1.032
(8.697) (10.345) (0.024) (0.019) (0.035) (0.020) (0.074) (0.036)

0.8 60 451.750 1188.287 0.568 0.726 0.968 0.990 1.065 1.218
(11.262) (13.608) (0.049) (0.048) (0.070) (0.063) (0.200) (0.347)

120 449.899 1187.98 0.585 0.727 1.005 0.995 0.984 0.989
(8.584) (8.448) (0.035) (0.025) (0.053) (0.037) (0.059) (0.037)

Case IV 0.2 60 57.549 138.001 0.714 0.863 0.987 1 1.016 1.008
(5.714) (17.310) (0.034) (0.027) (0.046) (0.031) (0.052) (0.033)

120 58.163 139.927 0.722 0.86 0.993 0.998 1.018 1.004
(4.207) (13.031) (0.027) (0.021) (0.034) (0.022) (0.047) (0.023)

0.8 60 56.514 137.387 0.522 0.709 0.979 0.991 0.992 1.013
(5.711) (16.583) (0.046) (0.048) (0.080) (0.060) (0.081) (0.067)

120 58.801 139.269 0.525 0.707 0.979 0.993 0.990 1.010
(4.050) (12.773) (0.031) (0.032) (0.056) (0.044) (0.059) (0.046)

Case V 0.2 60 0.998 0.994 0.728 0.855 0.998 0.994 1.004 0.995
(0.044) (0.028) (0.037) (0.026) (0.044) (0.028) (0.048) (0.028)

120 0.999 0.996 0.725 0.856 0.999 0.996 1.010 0.997
(0.033) (0.019) (0.028) (0.020) (0.033) (0.019) (0.046) (0.019)

0.8 60 0.999 0.993 0.522 0.705 0.996 0.993 1.014 0.997
(0.081) (0.059) (0.045) (0.039) (0.081) (0.059) (0.084) (0.061)

120 0.993 0.995 0.520 0.703 0.814 0.985 1 1
(0.055) (0.047) (0.027) (0.034) (0.042) (0.047) (0.058) (0.047)
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TABLE 3 The OSPE for simulation. E1: Homogeneous model fitting method. E2: Heterogeneous model fitting method. E3:
Our proposed method. E4: Similar to our proposed method except that for homogeneity pursuit step, identify the change points
among ̂̃�. The values in the parentheses are the robust standard deviations.

Structure � n OSPE (E1) OSPE (E2) OSPE (E3) OSPE (E4)
Ti = 20 Ti = 40 Ti = 20 Ti = 40 Ti = 20 Ti = 40 Ti = 20 Ti = 40

Case I 0.2 60 482.766 1210.639 1.940 1.389 1.449 1.158 1.885 1.375
(34.579) (20.978) (0.442) (0.182) (0.409) (0.178) (0.497) (0.241)

120 466.953 1205.381 1.732 1.316 1.213 1.082 1.665 1.196
(16.471) (15.987) (0.259) (0.097) (0.177) (0.083) (0.301) (0.131)

0.8 60 488.652 1207.807 1.191 1.307 1.093 1.160 1.145 1.308
(34.972) (24.650) (0.159) (0.189) (0.14) (0.168) (0.235) (0.317)

120 468.577 1198.705 1.113 1.160 1.065 1.063 1.071 1.070
(19.464) (14.849) (0.111) (0.102) (0.092) (0.089) (0.104) (0.123)

Case II 0.2 60 490.401 1211.728 1.587 1.198 1.278 1.120 1.466 1.197
(38.275) (28.966) (0.323) (0.149) (0.284) (0.144) (0.330) (0.197)

120 466.851 1202.475 1.493 1.135 1.137 1.060 1.360 1.087
(19.073) (17.019) (0.182) (0.084) (0.122) (0.088) (0.193) (0.110)

0.8 60 490.07 1209.087 1.388 1.276 1.009 0.986 0.990 0.931
(38.081) (26.134) (0.100) (0.035) (0.185) (0.131) (0.143) (0.125)

120 465.259 1200.935 1.348 1.259 0.793 0.768 0.780 0.749
(16.93) (15.558) (0.046) (0.016) (0.078) (0.092) (0.076) (0.068)

Case III 0.2 60 484.98 1213.458 1.813 1.383 1.377 1.162 1.747 1.371
(37.824) (28.833) (0.285) (0.163) (0.319) (0.176) (0.329) (0.262)

120 465.927 1199.472 1.788 1.321 1.229 1.081 1.600 1.083
(16.897) (14.070) (0.372) (0.091) (0.230) (0.082) (0.374) (0.103)

0.8 60 483.655 1211.413 1.348 1.340 1.142 1.145 1.267 1.290
(28.787) (24.035) (0.203) (0.223) (0.169) (0.176) (0.257) (0.314)

120 464.097 1200.058 1.297 1.252 1.104 1.096 1.142 1.063
(16.130) (14.077) (0.152) (0.111) (0.101) (0.095) (0.163) (0.140)

Case IV 0.2 60 65.021 144.038 1.859 1.412 1.323 1.165 1.357 1.210
(8.618) (18.797) (0.427) (0.207) (0.315) (0.199) (0.389) (0.383)

120 62.459 142.703 1.729 1.315 1.191 1.082 1.290 1.112
(5.275) (13.662) (0.250) (0.095) (0.164) (0.087) (0.334) (0.161)

0.8 60 65.742 143.496 1.239 1.282 1.141 1.127 1.110 1.168
(11.006) (16.826) (0.185) (0.155) (0.184) (0.137) (0.261) (0.153)

120 62.447 142.417 1.165 1.224 1.055 1.073 1.129 1.127
(5.091) (12.641) (0.109) (0.103) (0.089) (0.093) (0.109) (0.083)

Case V 0.2 60 1.371 1.169 1.997 1.420 1.368 1.169 1.396 1.184
(0.314) (0.164) (0.472) (0.195) (0.310) (0.164) (0.354) (0.25)

120 1.162 1.091 1.733 1.323 1.165 1.091 1.233 1.111
(0.172) (0.113) (0.281) (0.120) (0.172) (0.112) (0.237) (0.18)

0.8 60 1.132 1.157 1.166 1.217 1.120 1.156 1.213 1.203
(0.161) (0.172) (0.239) (0.185) (0.153) (0.172) (0.240) (0.261)

120 1.055 1.086 1.103 1.186 0.989 1.084 1.100 1.101
(0.077) (0.111) (0.09) (0.124) (0.070) (0.111) (0.149) (0.192)
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TABLE 4 The RMISE for simulation. E1: Homogeneous model fitting method. E2: Heterogeneous model fitting method. E3:
Our proposed method. E4: Similar to our proposed method except that for homogeneity pursuit step, identify the change points
among ̂̃�. The values in the parentheses are the robust standard deviations.

Structure � n RMISE (E1) RMISE (E2) RMISE (E3) RMISE (E4)
Ti = 20 Ti = 40 Ti = 20 Ti = 40 Ti = 20 Ti = 40 Ti = 20 Ti = 40

Case I 0.2 60 1.270 1.336 0.173 0.132 0.129 0.110 0.158 0.181
(0.665) (0.831) (0.086) (0.057) (0.067) (0.058) (0.093) (0.086)

120 0.841 0.960 0.104 0.095 0.088 0.083 0.103 0.084
(0.550) (0.568) (0.06) (0.051) (0.057) (0.049) (0.05) (0.043)

0.8 60 1.252 1.478 0.141 0.145 0.121 0.128 0.133 0.140
(0.715) (0.895) (0.064) (0.080) (0.060) (0.079) (0.068) (0.078)

120 0.907 1.069 0.115 0.114 0.100 0.103 0.103 0.106
(0.465) (0.598) (0.046) (0.050) (0.044) (0.051) (0.049) (0.049)

Case II 0.2 60 1.313 1.534 0.137 0.115 0.117 0.100 0.121 0.114
(0.784) (0.970) (0.076) (0.059) (0.069) (0.056) (0.075) (0.070)

120 0.959 0.952 0.092 0.076 0.074 0.061 0.091 0.070
(0.508) (0.549) (0.043) (0.037) (0.042) (0.035) (0.047) (0.041)

0.8 60 1.282 1.473 0.059 0.052 0.052 0.048 0.056 0.050
(0.767) (0.879) (0.033) (0.032) (0.029) (0.027) (0.027) (0.028)

120 0.861 0.966 0.050 0.043 0.038 0.032 0.043 0.033
(0.480) (0.519) (0.024) (0.021) (0.021) (0.019) (0.028) (0.020)

Case III 0.2 60 1.273 1.385 0.159 0.132 0.118 0.105 0.148 0.131
(0.803) (0.784) (0.072) (0.06) (0.056) (0.057) (0.087) (0.097)

120 0.853 0.928 0.113 0.088 0.097 0.075 0.111 0.084
(0.455) (0.534) (0.064) (0.042) (0.06) (0.041) (0.048) (0.05)

0.8 60 1.161 1.299 0.156 0.141 0.137 0.126 0.139 0.144
(0.712) (0.654) (0.072) (0.074) (0.071) (0.069) (0.067) (0.08)

120 0.909 0.995 0.111 0.103 0.097 0.094 0.110 0.103
(0.483) (0.611) (0.058) (0.047) (0.056) (0.047) (0.046) (0.041)

Case IV 0.2 60 0.715 0.559 0.130 0.111 0.125 0.107 0.100 0.087
(0.390) (0.325) (0.073) (0.064) (0.07) (0.062) (0.047) (0.047)

120 0.437 0.485 0.092 0.086 0.087 0.081 0.073 0.068
(0.241) (0.281) (0.046) (0.055) (0.039) (0.049) (0.033) (0.035)

0.8 60 0.627 0.748 0.135 0.147 0.131 0.146 0.113 0.101
(0.399) (0.427) (0.070) (0.089) (0.071) (0.079) (0.057) (0.050)

120 0.478 0.528 0.112 0.099 0.105 0.098 0.088 0.071
(0.274) (0.327) (0.051) (0.055) (0.049) (0.049) (0.037) (0.034)

Case V 0.2 60 0.111 0.110 0.120 0.117 0.111 0.110 0.085 0.082
(0.056) (0.058) (0.064) (0.065) (0.056) (0.058) (0.032) (0.042)

120 0.088 0.082 0.102 0.086 0.088 0.082 0.059 0.070
(0.044) (0.053) (0.047) (0.059) (0.044) (0.053) (0.026) (0.041)

0.8 60 0.143 0.133 0.153 0.136 0.143 0.133 0.106 0.103
(0.082) (0.067) (0.090) (0.069) (0.082) (0.068) (0.054) (0.033)

120 0.088 0.099 0.095 0.102 0.088 0.099 0.071 0.064
(0.046) (0.057) (0.048) (0.060) (0.046) (0.057) (0.031) (0.026)
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FIGURE 1 Plot of the FA curves stratified by identified subgroups.
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FIGURE 2 Plot of the FA curves for the 10 individuals with the median age in each of the subgroups.



LI, YUE and ZHANG 19

1 2 3 4 5 6 7 8 9 10

gender

0
.0

0
.2

0
.4

0
.6

0
.8

1 2 3 4 5 6 7 8 9 10

age

0
2

0
4

0
6

0

1 2 3 4 5 6 7 8 9 10

handiness

0
.0

0
0

.0
5

0
.1

0
0

.1
5

1 2 3 4 5 6 7 8 9 10

education

0
5

1
0

1
5

2
0

1 2 3 4 5 6 7 8 9 10

AD

0
.0

0
.1

0
.2

0
.3

0
.4

1 2 3 4 5 6 7 8 9 10

MCI

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FIGURE 3 Plot of the mean values of gender, age, handedness, education, AD and MCI for each of the subgroups.
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