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Abstract. The performance of a Glaucoma assessment system is highly
affected by the number of labelled images used during the training stage.
However, labelled images are often scarce or costly to obtain. In this pa-
per, we address the problem of synthesising retinal fundus images by
training a Variational Autoencoder and an adversarial model on 2357
retinal images. The innovation of this approach is in synthesising reti-
nal images without using previous vessel segmentation from a sepa-
rate method, which makes this system completely independent. The ob-
tained models are image synthesizers capable of generating any amount
of cropped retinal images from a simple normal distribution. Further-
more, more images were used for training than any other work in the
literature. Synthetic images were qualitatively evaluated by 10 clinical
experts and their consistency were estimated by measuring the propor-
tion of pixels corresponding to the anatomical structures around the
optic disc. Moreover, we calculated the mean-squared error between the
average 2D-histogram of synthetic and real images, obtaining a small
difference of 3× 10−4. Further analysis of the latent space and cup size
of the images was performed by measuring the Cup/Disc ratio of syn-
thetic images using a state-of-the-art method. The results obtained from
this analysis and the qualitative and quantitative evaluation demonstrate
that the synthesised images are anatomically consistent and the system is
a promising step towards a model capable of generating labelled images.

Keywords: Medical imaging, Retinal Image Synthesis, Fundus Images,
DCGAN, VAE

1 Introduction

Glaucoma is an irreversible eye disease mainly characterised by optic nerve fibre
loss. This loss is given by the increased intraocular pressure (IOP) and/or loss
of blood flow to the optic nerve. In a fundus image, the optic nerve head or optic
disc can be visually separated into two zones, a bright and central zone called
optic cup and a peripheral part called neuro-retinal rim. See Fig. 1(a).
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Fig. 1. Digital fundus images cropped around optic disc. (a) Main structures of a
healthy optic disc and (b) glaucomatous optic disc.

While the optic disc (OD) and cup are present in all individuals, an abnormal
size of the cup with respect to the optic disc is a characteristic of a glaucomatous
eye, as it is shown in Fig. 1(b). A deep understanding of the anatomy of the optic
disc is crucial for glaucoma understanding. For that reason, different approaches
have been developed towards optic disc analysis for Glaucoma assessment using
retinal images. For instance, in a state-of-the-art method developed by Chen et
al. [1], they used cropped images to train and evaluate their system and obtaining
an area under the ROC curve of 0.831 on a database of 650 images.

However, the amount of available images is a huge problem when trying to
generalise. For that reason, retinal image synthesizer has been a focus of the sci-
entific community. For instance, in [2] Fiorini et al. used a system that generated
the retinal background and the fovea and another system to generate the optic
disc by using a large dictionary of patches with no vessels that are later regis-
tered. After that, the authors developed a complementary work that is mainly
focused on vessel generation [3]. Although their method allows the generation of
high-quality and large resolution images, the process of concatenating the gen-
eration of the main parts of the images is a considerable complex computational
algorithm that relies on how well the images are registered.

Another approach in retinal image synthesis is the one developed by Costa
et al. [4]. In their work, they used a method trained on vessel networks and their
corresponding retinal fundus images. In other words, they learn a transformation
between the vessel trees and the retinal fundus. The main limitation of their
method is the dependency of an independent algorithm to segment the vessels.

In another paper, Costa et al. present a method which improves their previous
work. Instead of learning a transformation between the vessel trees and the
corresponding retinal image, the authors used the original vessel trees to train
an autoencoder. Then, the synthetic vessel trees are used as input to the retinal
image synthesizer [5].

Although the latter system proposed by Costa et al. is a substantial im-
provement in their previous work, both methods are dependent on how well the
independent method extracts the vessels. The quality of the segmented vessel
tree will affect the synthetic vessel trees and then, the final retinal image.

In this paper, we are mainly focused on developing image synthesizers of reti-
nal fundus images. In contrast to previous works, this novel approach does not
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need the vessel masks and used more images in the training stage. We trained
two well-known image generators: The Variational Autoencoder (VAE) [6] and
the Deep Convolutional Generative Adversarial Networks (DCGAN) [7] using
2357 images cropped around the optic disc. After that, we used these models to
generate synthetic retinal samples to finally evaluate them. Ten clinical experts
checked the quality and global consistency of the generated images. Moreover,
we compared the structural properties of synthetic and real images by measuring
the proportions of the area occupied by the vessel network and optic disc. The
consistency in colour terms between the synthetic and real images is also mea-
sured by extracting the 2D-histogram (or chromaticity diagram) and computing
the mean-squared error.

2 Materials and Methods

2.1 Materials

A total of 2357 images from five public glaucoma-labelled databases: HRF [8] (45
images), Drishti-GS1 [9] (101 images), ORIGA-light [10] (650 images) RIM-ONE
[11] (455 images) and sjchoi86-HRF [12] database (401 images) and a private
database, ACRIMA (705 images), were used to train the generative models used
in this work. All images were manually cropped around the optic disc by an
expert, with the exception of RIM-ONE images that are already cropped.

For all the experiments carried out in this work, the open source Deep Learn-
ing library Keras [13] and NVIDIA Titan Xp GPU were used.

2.2 Variational Autoencoder

The Variational Autoencoder is composed by two neural networks: the approxi-
mate inference network (or encoder), that maps a training example to a latent
(hidden) space, and the decoder network that maps from the latent space to
a synthetic sample. In this work, we used the architecture proposed in [6], in
which the prior over the latent space is a centred isotropic multivariate Gaus-
sian, and the encoder and decoder are fully-connected neural networks with a
single hidden layer.

During training or learning phase, the encoder obtains the latent variables z
from the input data and the decoder draws those variables to generate a sample.
After that, during the generation phase, VAE draws samples from the latent
space that run through the decoder to finally obtain a synthetic sample. The
VAE architecture can be seen from the Fig. 2(a).

2.3 Generative Adversarial Network

Generative Adversarial Networks, or GAN, are deep neural net architectures
comprised of two nets. One is called the generator and the other (the adversary)
is called the discriminator.
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A class of CNN called Deep Convolutional Generative Adversarial Networks
(DCGAN) that are based on the adversarial strategy was used for this work.
This architecture was a major improvement on the first GAN, generating bet-
ter quality images and more stability during the training stage. Following the
guidelines to construct the generator and discriminator, described in the paper
written by Radford et al. [7], we implemented and trained them on cropped
retinal images using the original discriminator and generator cost functions.

In the same way, as in the VAE approach, synthetic image generation using
the DCGAN mainly consists of two phases: a learning phase and generation
phase. For the training phase, the generator draws samples from an N-dimension
normal distribution that run through the generator to obtain a synthetic sample
and the discriminator attempts to distinguish between images drawn from the
generator and images from the training set. A figure of a DCGAN architecture
can be seen from Fig. 2(b).
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Fig. 2. Schema of the VAE and DCGAN architecture. (a) VAE architecture and (b)
DCGAN architecture.

3 Experimental Evaluation

Although a great effort to develop objective metrics that correlate with perceived
quality measurement has been made in recent years, it is still a challenging task.
In the case of quality evaluation of synthetic images, it should be specific for
each application [14]. For that reason, we created a database composed of 200
images: 100 synthetic images and 100 real images (randomly selected from the
training set) to perform a qualitative and quantitative evaluation of our methods.
This database was analysed by clinical experts with the aim of evaluating the
anatomical consistency and plausibility of the synthetic images. The percentage
of pixels that composed the vessels and the percentage of pixels that composed
the optic disc were also compared between the synthetic and real images. To
obtain these percentages, optic disc masks were manually segmented by clinical
experts and the vessel masks were automatically segmented using the method
proposed in [15]. Moreover, an averaged chromaticity diagram per class (real
and synthetic) was computed with the aim of evaluating the colour properties of
the images. The mean-squared error between the averaged histograms and the
individual chromaticity diagram of each sample was measured.
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4 Results and Discussion

We trained the VAE and DCGAN architectures on cropped retinal images from
six different databases without using data augmentation. In order to keep a
trade-off between performance and system complexity, the images were automat-
ically re-scaled to the following resolutions: 28×28 pix, 56×56 pix, 112×112 pix
and 224×224 pix. For each image size, we tested a range of N-dimensional latent
spaces from 32 to 100 latent variables. Each latent space was explored in order
to check that the systems do not memorise the training database and, at the
same time, it generates plausible retinal images. To do that, we used spherical
interpolation to evaluate intermediate latent representation points [16].

For training the VAE model, we ran several tests and found out that the
best results are obtained when using a 100-dimension latent space and image
resolution of 28× 28 and 56× 56 pix. Running for 500 epochs and a small batch
size of 64, we obtained the synthetic images presented in Fig. 3

(a) (b) (c) (d)

Fig. 3. Examples of images synthesised by the VAE architecture. (a-b) Images of 28×28
pix and (c-d) images of 56× 56 pix.

Although the texture of the synthetic images obtained from VAE is similar
to the real images, they are blurry and do not have the expected features in a
fundus image. For that reason, we only trained on the resolution 28 × 28 and
56× 56 pix.

Regarding the DCGAN architecture, we found that realistic images were
obtained when using an image size of 224× 224 pix, a small batch size of 32 and
35000 steps. Examples of them are shown in Fig. 4(d-f).

(a) (b) (c) (d) (e) (f)

Fig. 4. Examples of real images and examples of synthetic images generated by the
DCGAN architecture. (a - c) Real images and (d - f) Synthetic images.

The main advantage of using the DCGAN architecture is that synthetic im-
ages are sharper than the ones synthesised by the VAE approach. We can see
from Fig. 4(d-f) well-defined optic disc shapes, how blood vessels converge into
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the optic disc and the right and left eye symmetry. For this reason, we continued
with the evaluation of only the images synthesised by the DCGAN architecture.

Qualitative evaluation of the database described in Section 3 (100 synthetic
images and 100 real images) was carried out by ten experts with 3 to 10 years of
experience. For each expert, we calculated the Cohen’s kappa coefficient using
the ground-truth labels (Fake - Real) and the labels given by each expert. The
Cohen’s kappa coefficient ranges from −1 to +1, where 0 represents the amount
of agreement that can be expected from random chance, and 1 represents a
perfect agreement between the ground-truth and the expert. The obtained results
are presented in Fig. 5.

Fig. 5. Qualitative evaluation using Cohen’s Kappa coefficient and years of experience

It can be seen from Fig. 5 that although the Cohen’s Kappa coefficient is high
for two experts with high expertise, most of them were fooled when evaluating
synthetic images.

Quantitative evaluation was carried out by measuring the average proportion
of pixels belonging to the vessel and optic disc structures. Table 1 shows the
obtained results.

Table 1. Mean and standard deviation of pixel proportion occupied by the vessels,
optic disc and background on the evaluation database.

Synthetic Images Real Images

Vessel proportion 0.1431 ± 0.0306 0.1519 ± 0.0306

Optic Disc proportion 0.1776 ± 0.0339 0.2456 ± 0.0722

Background 0.6792 ± 0.0428 0.6025 ± 0.0795

It is possible to observe from Table 1 that the mean proportions between
synthetic and real images are very similar. The small difference between the
mean proportion of the synthetic and real optic discs depends on the normal
variation of the optic disc size among real fundus images.

To support the quantitative evaluation and to analyse the similarity between
synthetic and real images, we also obtained the average 2D-histogram of real
and synthetic images. These 2D-histograms were constructed using the Red and
Green channels normalized by the luminance (See Fig. 6).

Moreover, we calculated the mean-squared error between the average 2D-
histograms and the chromaticity diagram of each of the 200 images of the
database. The obtained results are presented in Table 2
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(a) (b) (c)

Fig. 6. Average 2D-histograms of the synthetic and real images. (a) Average 2D-
histogram of real images, (b) Average 2D-histogram of synthetic images and (c) Mean-
squared error between synthetic and real 2D-histogram.

Table 2. Average and standard deviation of the mean-squared error between the av-
erage 2D-histograms and all images.

Average 2D-histogram Real Images Synthetic Images

Real 0.0028 ± 3.25 × 10−4 0.0036 ± 5.43 × 10−4

Synthetic 0.0031 ± 4.61 × 10
−4 0.0022 ± 5.62 × 10−4

The obtained results of this evaluation show that the mean-squared error be-
tween synthetic and real images is smaller than the resulting standard deviation
among real images (3.25× 10−4).

An additional experiment to further analyse the latent space and cup size
of the images was performed. We automatically measured the Cup/Disc ratio
(CDR) to 1500 synthetic images using the method proposed by Fu et al. [17].
Based on the CDR value, we obtained 743 glaucomatous images when setting
the CDR threshold to 0.6 and 344 glaucomatous images when setting the CDR
threshold to 0.7.

5 Conclusion

In this paper, two generative models based on the VAE and DCGAN architecture
were trained on cropped retinal images from one private and five public databases
(2357 retinal images). In contrast to previous approaches that are based on the
vessel masks to train their system, the models presented here do not need the
vessel masks to synthesise images. Using the DCGAN model, high plausible
cropped retinal images were generated and evaluated by clinical experts. Results
from this evaluation prove that this initial system is a promising step towards a
model capable of generating labelled cropped images.
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